mirror of https://github.com/vladmandic/human
8052 lines
1.5 MiB
8052 lines
1.5 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Og=Object.defineProperty;var vN=(e,t,n)=>t in e?Og(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var wN=e=>Og(e,"__esModule",{value:!0});var xa=(e=>typeof require!="undefined"?require:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof require!="undefined"?require:t)[n]}):e)(function(e){if(typeof require!="undefined")return require.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')});var qp=(e,t)=>{wN(e);for(var n in t)Og(e,n,{get:t[n],enumerable:!0})};var pe=(e,t,n)=>(vN(e,typeof t!="symbol"?t+"":t,n),n),Qb=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var Ec=(e,t,n)=>(Qb(e,t,"read from private field"),n?n.call(e):t.get(e)),Rc=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},$c=(e,t,n,s)=>(Qb(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);function at(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: ${r} expecting json file`);return r}function ae(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Ae=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Mg(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")Mg(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&ae("invalid configuration",s),s}function $n(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=$n(a,o):n[r]=o}),n),{})}var Jo={backend:"",modelBasePath:"",wasmPath:"",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:11,skipTime:2e3,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:12,skipTime:2e3,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:13,skipTime:2e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:14,skipTime:2e3,modelPath:"antispoof.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",detector:{modelPath:""},maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:2e3},hand:{enabled:!0,rotation:!0,skipFrames:2,skipTime:2e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:15,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var wl={};qp(wl,{Abs:()=>ni,Acos:()=>Vl,Acosh:()=>Ul,AdadeltaOptimizer:()=>ff,AdagradOptimizer:()=>mf,AdamOptimizer:()=>gf,AdamaxOptimizer:()=>Af,Add:()=>Hr,AddN:()=>wa,All:()=>Gl,Any:()=>Hl,ArgMax:()=>ka,ArgMin:()=>jl,Asin:()=>ql,Asinh:()=>Xl,Atan:()=>Kl,Atan2:()=>Yl,Atanh:()=>Zl,AvgPool:()=>Ia,AvgPool3D:()=>Fc,AvgPool3DGrad:()=>th,AvgPoolGrad:()=>eh,BackendWasm:()=>y6,BatchMatMul:()=>Sa,BatchToSpaceND:()=>si,Bincount:()=>nh,BroadcastArgs:()=>sh,BroadcastTo:()=>m5,Callback:()=>Tk,CallbackList:()=>mw,Cast:()=>Ca,Ceil:()=>Ta,ClipByValue:()=>jr,Complex:()=>Oc,ComplexAbs:()=>Mc,Concat:()=>ri,Conv2D:()=>Na,Conv2DBackpropFilter:()=>rh,Conv2DBackpropInput:()=>Ea,Conv3D:()=>zc,Conv3DBackpropFilterV2:()=>ah,Conv3DBackpropInputV2:()=>oh,Cos:()=>Ra,Cosh:()=>$a,CropAndResize:()=>oi,Cumsum:()=>ai,CustomCallback:()=>Aw,DataStorage:()=>Dc,DenseBincount:()=>ih,DepthToSpace:()=>ii,DepthwiseConv2dNative:()=>Da,DepthwiseConv2dNativeBackpropFilter:()=>lh,DepthwiseConv2dNativeBackpropInput:()=>uh,Diag:()=>ch,Dilation2D:()=>Lc,Dilation2DBackpropFilter:()=>ph,Dilation2DBackpropInput:()=>dh,ENV:()=>Ir,EarlyStopping:()=>Ek,Einsum:()=>Bc,Elu:()=>Pa,EluGrad:()=>hh,Environment:()=>h5,Equal:()=>li,Erf:()=>Jl,Exp:()=>Fa,ExpandDims:()=>ui,Expm1:()=>ci,FFT:()=>fh,Fill:()=>Ql,FlipLeftRight:()=>di,Floor:()=>Oa,FloorDiv:()=>Ma,FromPixels:()=>Kc,FusedBatchNorm:()=>za,FusedConv2D:()=>mo,FusedDepthwiseConv2D:()=>go,GPGPUContext:()=>vm,GatherNd:()=>hi,GatherV2:()=>pi,GraphModel:()=>i7,Greater:()=>fi,GreaterEqual:()=>La,History:()=>gw,IFFT:()=>mh,Identity:()=>Ba,Imag:()=>Wc,InputSpec:()=>Yt,IsFinite:()=>eu,IsInf:()=>tu,IsNan:()=>nu,KernelBackend:()=>Ll,LRN:()=>Uc,LRNGrad:()=>Ah,LayerVariable:()=>cw,LayersModel:()=>na,LeakyRelu:()=>mi,Less:()=>gi,LessEqual:()=>Ai,LinSpace:()=>gh,Log:()=>Wa,Log1p:()=>su,LogSoftmax:()=>g5,LogicalAnd:()=>yi,LogicalNot:()=>ru,LogicalOr:()=>Vc,MathBackendCPU:()=>xy,MathBackendWebGL:()=>Kd,Max:()=>Va,MaxPool:()=>Ga,MaxPool3D:()=>Gc,MaxPool3DGrad:()=>xh,MaxPoolGrad:()=>yh,MaxPoolWithArgmax:()=>bh,Maximum:()=>Ua,Mean:()=>Ha,Min:()=>ja,Minimum:()=>qa,MirrorPad:()=>Xa,Mod:()=>au,MomentumOptimizer:()=>yf,Multinomial:()=>vh,Multiply:()=>Ka,Neg:()=>xi,NonMaxSuppressionV3:()=>vi,NonMaxSuppressionV4:()=>ou,NonMaxSuppressionV5:()=>wi,NotEqual:()=>bi,OP_SCOPE_SUFFIX:()=>$5,OneHot:()=>Ii,OnesLike:()=>ki,Optimizer:()=>Qr,Pack:()=>Si,PadV2:()=>Za,Pool:()=>dE,Pow:()=>Ya,Prelu:()=>Ja,Prod:()=>Ci,RMSPropOptimizer:()=>xf,RNN:()=>sa,Range:()=>iu,Rank:()=>Xg,Real:()=>Hc,RealDiv:()=>_a,Reciprocal:()=>lu,Reduction:()=>Vn,Relu:()=>Qa,Relu6:()=>to,Reshape:()=>Ti,ResizeBilinear:()=>eo,ResizeBilinearGrad:()=>kh,ResizeNearestNeighbor:()=>uu,ResizeNearestNeighborGrad:()=>wh,Reverse:()=>Ni,RotateWithOffset:()=>Vi,Round:()=>Ei,Rsqrt:()=>no,SGDOptimizer:()=>xd,ScatterNd:()=>Ri,Select:()=>$i,Selu:()=>cu,Sequential:()=>Gf,Sigmoid:()=>ro,Sign:()=>du,Sin:()=>so,Sinh:()=>_i,Slice:()=>Di,Softmax:()=>io,Softplus:()=>pu,SpaceToBatchND:()=>Pi,SparseFillEmptyRows:()=>Ih,SparseReshape:()=>Sh,SparseSegmentMean:()=>Ch,SparseSegmentSum:()=>Th,SparseToDense:()=>jc,SplitV:()=>Fi,Sqrt:()=>ao,Square:()=>hu,SquaredDifference:()=>lo,Step:()=>ho,StridedSlice:()=>Oi,StringNGrams:()=>qc,StringSplit:()=>Nh,StringToHashBucketFast:()=>Eh,Sub:()=>uo,Sum:()=>oo,SymbolicTensor:()=>fr,Tan:()=>Mi,Tanh:()=>co,Tensor:()=>Ye,TensorBuffer:()=>sn,Tile:()=>qr,TopK:()=>zi,Transform:()=>Li,Transpose:()=>po,Unique:()=>Rh,Unpack:()=>Bi,UnsortedSegmentSum:()=>Xc,Variable:()=>sd,ZerosLike:()=>Wi,_FusedMatMul:()=>fo,abs:()=>rn,acos:()=>A3,acosh:()=>y3,add:()=>ie,addN:()=>Vh,all:()=>T2,any:()=>Uh,argMax:()=>Hs,argMin:()=>x3,asin:()=>b3,asinh:()=>v3,atan:()=>w3,atan2:()=>k3,atanh:()=>I3,avgPool:()=>Hh,avgPool3d:()=>R2,backend:()=>Tr,backend_util:()=>N,basicLSTMCell:()=>jR,batchNorm:()=>wu,batchNorm2d:()=>N3,batchNorm3d:()=>E3,batchNorm4d:()=>R3,batchToSpaceND:()=>jh,bincount:()=>$2,booleanMaskAsync:()=>aP,broadcastArgs:()=>$3,broadcastTo:()=>ud,browser:()=>Gs,buffer:()=>Le,callbacks:()=>bV,cast:()=>de,ceil:()=>D3,clipByValue:()=>fs,clone:()=>or,complex:()=>yo,concat:()=>It,concat1d:()=>_3,concat2d:()=>ku,concat3d:()=>P3,concat4d:()=>F3,constraints:()=>Uv,conv1d:()=>D2,conv2d:()=>ko,conv2dTranspose:()=>P2,conv3d:()=>F2,conv3dTranspose:()=>M3,copyRegisteredKernels:()=>fE,cos:()=>qh,cosh:()=>O2,cosineWindow:()=>i1,cumsum:()=>M2,customGrad:()=>Er,data:()=>l7,denseBincount:()=>z3,deprecationWarn:()=>I2,depthToSpace:()=>L3,depthwiseConv2d:()=>cd,deregisterOp:()=>wV,device_util:()=>gu,diag:()=>w$,dilation2d:()=>B3,disableDeprecationWarnings:()=>lR,dispose:()=>Q,disposeVariables:()=>uR,div:()=>he,divNoNan:()=>W3,dot:()=>R$,dropout:()=>Av,einsum:()=>V3,elu:()=>dd,enableDebugMode:()=>iR,enableProdMode:()=>m3,enclosingPowerOfTwo:()=>yv,engine:()=>ss,env:()=>K,equal:()=>Cs,erf:()=>U3,exp:()=>Ts,expandDims:()=>Kt,expm1:()=>G3,eye:()=>z2,fft:()=>af,fill:()=>Iu,findBackend:()=>S2,findBackendFactory:()=>hR,floor:()=>pd,floorDiv:()=>C2,forceHalfFloat:()=>zS,fused:()=>So,gather:()=>Su,gatherND:()=>gv,gather_util:()=>A2,getBackend:()=>ir,getGradient:()=>Gg,getKernel:()=>$h,getKernelsForBackend:()=>Xr,getThreadsCount:()=>q0e,gpgpu_util:()=>dS,grad:()=>tD,grads:()=>nD,greater:()=>ms,greaterEqual:()=>Yi,ifft:()=>gd,imag:()=>Xh,image:()=>$e,inTopKAsync:()=>gP,initializers:()=>Zv,input:()=>Bw,io:()=>ns,irfft:()=>t1,isFinite:()=>H$,isInf:()=>q$,isNaN:()=>H3,keep:()=>yn,kernel_impls:()=>Xs,layers:()=>iw,leakyRelu:()=>Kh,less:()=>L2,lessEqual:()=>Ji,linalg:()=>Nv,linspace:()=>j3,loadGraphModel:()=>st,loadLayersModel:()=>$B,localResponseNormalization:()=>q3,log:()=>Ns,log1p:()=>Zh,logSigmoid:()=>lD,logSoftmax:()=>B2,logSumExp:()=>J3,logicalAnd:()=>lr,logicalNot:()=>Jh,logicalOr:()=>U2,logicalXor:()=>bD,losses:()=>eO,matMul:()=>He,math:()=>K5,max:()=>rs,maxPool:()=>Qh,maxPool3d:()=>G2,maxPoolWithArgmax:()=>Q3,maximum:()=>Yr,mean:()=>Wt,memory:()=>Bh,meshgrid:()=>CD,metrics:()=>Ik,min:()=>ef,minimum:()=>hd,mirrorPad:()=>ev,mod:()=>tv,model:()=>EB,models:()=>Sk,moments:()=>tf,movingAverage:()=>lP,mul:()=>W,multiRNNCell:()=>PD,multinomial:()=>nv,neg:()=>Ot,nextFrame:()=>Ev,norm:()=>a1,notEqual:()=>Tu,oneHot:()=>id,ones:()=>gs,onesLike:()=>Es,op:()=>V,outerProduct:()=>LD,pad:()=>qs,pad1d:()=>VD,pad2d:()=>GD,pad3d:()=>jD,pad4d:()=>XD,pool:()=>QD,pow:()=>Io,prelu:()=>sf,print:()=>U5,prod:()=>H2,profile:()=>cR,rand:()=>r_,randomGamma:()=>l_,randomNormal:()=>sv,randomUniform:()=>Nu,range:()=>Eu,ready:()=>Wh,real:()=>fd,reciprocal:()=>rv,registerBackend:()=>Ki,registerCallbackConstructor:()=>DB,registerGradient:()=>A5,registerKernel:()=>Kr,registerOp:()=>vV,regularizers:()=>Ck,relu:()=>Rr,relu6:()=>X2,removeBackend:()=>pR,reshape:()=>G,reverse:()=>Rs,reverse1d:()=>A_,reverse2d:()=>x_,reverse3d:()=>v_,reverse4d:()=>k_,rfft:()=>of,round:()=>K2,rsqrt:()=>Z2,scalar:()=>Ee,scatterND:()=>mv,scatter_util:()=>y2,selu:()=>Y2,separableConv2d:()=>av,sequential:()=>RB,serialization:()=>le,setBackend:()=>g3,setPlatform:()=>fR,setThreadsCount:()=>j0e,setWasmPath:()=>H0e,setWasmPaths:()=>b6,setWebGLContext:()=>pm,setdiff1dAsync:()=>ov,shared:()=>om,sigmoid:()=>hs,sign:()=>iv,signal:()=>QF,sin:()=>J2,sinh:()=>Q2,slice:()=>_e,slice1d:()=>rf,slice2d:()=>e1,slice3d:()=>Ru,slice4d:()=>md,slice_util:()=>An,softmax:()=>$u,softplus:()=>Cu,spaceToBatchND:()=>nf,sparse:()=>yd,sparseToDense:()=>o1,spectral:()=>JF,split:()=>Sn,sqrt:()=>_n,square:()=>xt,squaredDifference:()=>n1,squeeze:()=>pt,stack:()=>Pn,step:()=>Ad,stridedSlice:()=>lv,string:()=>hf,sub:()=>ye,sum:()=>Ie,sumOutType:()=>rd,tan:()=>uv,tanh:()=>vu,tensor:()=>Gt,tensor1d:()=>Zt,tensor2d:()=>ur,tensor3d:()=>Z5,tensor4d:()=>K_,tensor5d:()=>Z_,tensor6d:()=>Y_,tensor_util:()=>rr,test_util:()=>p3,tidy:()=>j,tile:()=>js,time:()=>dR,topk:()=>cv,train:()=>tl,transpose:()=>et,truncatedNormal:()=>lf,unique:()=>s1,unregisterGradient:()=>hE,unregisterKernel:()=>pE,unsortedSegmentSum:()=>dv,unstack:()=>as,upcastType:()=>Bn,util:()=>v,valueAndGrad:()=>sD,valueAndGrads:()=>rD,variable:()=>pv,variableGrads:()=>X3,version:()=>w6,version_converter:()=>SU,version_core:()=>up,version_cpu:()=>dH,version_layers:()=>U1,version_wasm:()=>X0e,version_webgl:()=>zJ,webgl:()=>LJ,webgl_util:()=>FI,webgpu:()=>bC,where:()=>Wn,whereAsync:()=>r1,zeros:()=>Ht,zerosLike:()=>tt});var zl=(e=>typeof xa!="undefined"?xa:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof xa!="undefined"?xa:t)[n]}):e)(function(e){if(typeof xa!="undefined")return xa.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),kN=Object.create,Xp=Object.defineProperty,IN=Object.getOwnPropertyDescriptor,SN=Object.getOwnPropertyNames,CN=Object.getPrototypeOf,TN=Object.prototype.hasOwnProperty,e5=e=>Xp(e,"__esModule",{value:!0}),Ws=(e=>typeof zl!="undefined"?zl:typeof Proxy!="undefined"?new Proxy(e,{get:(t,n)=>(typeof zl!="undefined"?zl:t)[n]}):e)(function(e){if(typeof zl!="undefined")return zl.apply(this,arguments);throw new Error('Dynamic require of "'+e+'" is not supported')}),ts=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},ze=(e,t)=>{e5(e);for(var n in t)Xp(e,n,{get:t[n],enumerable:!0})},NN=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of SN(t))!TN.call(e,s)&&s!=="default"&&Xp(e,s,{get:()=>t[s],enumerable:!(n=IN(t,s))||n.enumerable});return e},Qo=e=>NN(e5(Xp(e!=null?kN(CN(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),EN=ts({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(_){}function s(_,T,M){this.low=_|0,this.high=T|0,this.unsigned=!!M}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(_){return(_&&_.__isLong__)===!0}s.isLong=r;var a={},o={};function i(_,T){var M,U,H;return T?(_>>>=0,(H=0<=_&&_<256)&&(U=o[_],U)?U:(M=c(_,(_|0)<0?-1:0,!0),H&&(o[_]=M),M)):(_|=0,(H=-128<=_&&_<128)&&(U=a[_],U)?U:(M=c(_,_<0?-1:0,!1),H&&(a[_]=M),M))}s.fromInt=i;function l(_,T){if(isNaN(_))return T?b:x;if(T){if(_<0)return b;if(_>=g)return P}else{if(_<=-A)return F;if(_+1>=A)return E}return _<0?l(-_,T).neg():c(_%m|0,_/m|0,T)}s.fromNumber=l;function c(_,T,M){return new s(_,T,M)}s.fromBits=c;var u=Math.pow;function d(_,T,M){if(_.length===0)throw Error("empty string");if(_==="NaN"||_==="Infinity"||_==="+Infinity"||_==="-Infinity")return x;if(typeof T=="number"?(M=T,T=!1):T=!!T,M=M||10,M<2||36<M)throw RangeError("radix");var U;if((U=_.indexOf("-"))>0)throw Error("interior hyphen");if(U===0)return d(_.substring(1),T,M).neg();for(var H=l(u(M,8)),z=x,X=0;X<_.length;X+=8){var ee=Math.min(8,_.length-X),Y=parseInt(_.substring(X,X+ee),M);if(ee<8){var se=l(u(M,ee));z=z.mul(se).add(l(Y))}else z=z.mul(H),z=z.add(l(Y))}return z.unsigned=T,z}s.fromString=d;function p(_,T){return typeof _=="number"?l(_,T):typeof _=="string"?d(_,T):c(_.low,_.high,typeof T=="boolean"?T:_.unsigned)}s.fromValue=p;var h=1<<16,f=1<<24,m=h*h,g=m*m,A=g/2,y=i(f),x=i(0);s.ZERO=x;var b=i(0,!0);s.UZERO=b;var w=i(1);s.ONE=w;var k=i(1,!0);s.UONE=k;var S=i(-1);s.NEG_ONE=S;var E=c(4294967295|0,2147483647|0,!1);s.MAX_VALUE=E;var P=c(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=P;var F=c(0,2147483648|0,!1);s.MIN_VALUE=F;var R=s.prototype;R.toInt=function(){return this.unsigned?this.low>>>0:this.low},R.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},R.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(F)){var M=l(T),U=this.div(M),H=U.mul(M).sub(this);return U.toString(T)+H.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var z=l(u(T,6),this.unsigned),X=this,ee="";;){var Y=X.div(z),se=X.sub(Y.mul(z)).toInt()>>>0,ne=se.toString(T);if(X=Y,X.isZero())return ne+ee;for(;ne.length<6;)ne="0"+ne;ee=""+ne+ee}},R.getHighBits=function(){return this.high},R.getHighBitsUnsigned=function(){return this.high>>>0},R.getLowBits=function(){return this.low},R.getLowBitsUnsigned=function(){return this.low>>>0},R.getNumBitsAbs=function(){if(this.isNegative())return this.eq(F)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,M=31;M>0&&(T&1<<M)==0;M--);return this.high!=0?M+33:M+1},R.isZero=function(){return this.high===0&&this.low===0},R.eqz=R.isZero,R.isNegative=function(){return!this.unsigned&&this.high<0},R.isPositive=function(){return this.unsigned||this.high>=0},R.isOdd=function(){return(this.low&1)==1},R.isEven=function(){return(this.low&1)==0},R.equals=function(T){return r(T)||(T=p(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},R.eq=R.equals,R.notEquals=function(T){return!this.eq(T)},R.neq=R.notEquals,R.ne=R.notEquals,R.lessThan=function(T){return this.comp(T)<0},R.lt=R.lessThan,R.lessThanOrEqual=function(T){return this.comp(T)<=0},R.lte=R.lessThanOrEqual,R.le=R.lessThanOrEqual,R.greaterThan=function(T){return this.comp(T)>0},R.gt=R.greaterThan,R.greaterThanOrEqual=function(T){return this.comp(T)>=0},R.gte=R.greaterThanOrEqual,R.ge=R.greaterThanOrEqual,R.compare=function(T){if(r(T)||(T=p(T)),this.eq(T))return 0;var M=this.isNegative(),U=T.isNegative();return M&&!U?-1:!M&&U?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},R.comp=R.compare,R.negate=function(){return!this.unsigned&&this.eq(F)?F:this.not().add(w)},R.neg=R.negate,R.add=function(T){r(T)||(T=p(T));var M=this.high>>>16,U=this.high&65535,H=this.low>>>16,z=this.low&65535,X=T.high>>>16,ee=T.high&65535,Y=T.low>>>16,se=T.low&65535,ne=0,J=0,te=0,ue=0;return ue+=z+se,te+=ue>>>16,ue&=65535,te+=H+Y,J+=te>>>16,te&=65535,J+=U+ee,ne+=J>>>16,J&=65535,ne+=M+X,ne&=65535,c(te<<16|ue,ne<<16|J,this.unsigned)},R.subtract=function(T){return r(T)||(T=p(T)),this.add(T.neg())},R.sub=R.subtract,R.multiply=function(T){if(this.isZero())return x;if(r(T)||(T=p(T)),n){var M=n.mul(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}if(T.isZero())return x;if(this.eq(F))return T.isOdd()?F:x;if(T.eq(F))return this.isOdd()?F:x;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(y)&&T.lt(y))return l(this.toNumber()*T.toNumber(),this.unsigned);var U=this.high>>>16,H=this.high&65535,z=this.low>>>16,X=this.low&65535,ee=T.high>>>16,Y=T.high&65535,se=T.low>>>16,ne=T.low&65535,J=0,te=0,ue=0,ce=0;return ce+=X*ne,ue+=ce>>>16,ce&=65535,ue+=z*ne,te+=ue>>>16,ue&=65535,ue+=X*se,te+=ue>>>16,ue&=65535,te+=H*ne,J+=te>>>16,te&=65535,te+=z*se,J+=te>>>16,te&=65535,te+=X*Y,J+=te>>>16,te&=65535,J+=U*ne+H*se+z*Y+X*ee,J&=65535,c(ue<<16|ce,J<<16|te,this.unsigned)},R.mul=R.multiply,R.divide=function(T){if(r(T)||(T=p(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var U,H,z;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return k;z=b}else{if(this.eq(F)){if(T.eq(w)||T.eq(S))return F;if(T.eq(F))return w;var X=this.shr(1);return U=X.div(T).shl(1),U.eq(x)?T.isNegative()?w:S:(H=this.sub(T.mul(U)),z=U.add(H.div(T)),z)}else if(T.eq(F))return this.unsigned?b:x;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();z=x}for(H=this;H.gte(T);){U=Math.max(1,Math.floor(H.toNumber()/T.toNumber()));for(var ee=Math.ceil(Math.log(U)/Math.LN2),Y=ee<=48?1:u(2,ee-48),se=l(U),ne=se.mul(T);ne.isNegative()||ne.gt(H);)U-=Y,se=l(U,this.unsigned),ne=se.mul(T);se.isZero()&&(se=w),z=z.add(se),H=H.sub(ne)}return z},R.div=R.divide,R.modulo=function(T){if(r(T)||(T=p(T)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return c(M,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},R.mod=R.modulo,R.rem=R.modulo,R.not=function(){return c(~this.low,~this.high,this.unsigned)},R.and=function(T){return r(T)||(T=p(T)),c(this.low&T.low,this.high&T.high,this.unsigned)},R.or=function(T){return r(T)||(T=p(T)),c(this.low|T.low,this.high|T.high,this.unsigned)},R.xor=function(T){return r(T)||(T=p(T)),c(this.low^T.low,this.high^T.high,this.unsigned)},R.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):c(0,this.low<<T-32,this.unsigned)},R.shl=R.shiftLeft,R.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)==0?this:T<32?c(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):c(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},R.shr=R.shiftRight,R.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var M=this.high;if(T<32){var U=this.low;return c(U>>>T|M<<32-T,M>>>T,this.unsigned)}else return T===32?c(M,0,this.unsigned):c(M>>>T-32,0,this.unsigned)},R.shru=R.shiftRightUnsigned,R.shr_u=R.shiftRightUnsigned,R.toSigned=function(){return this.unsigned?c(this.low,this.high,!1):this},R.toUnsigned=function(){return this.unsigned?this:c(this.low,this.high,!0)},R.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},R.toBytesLE=function(){var T=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},R.toBytesBE=function(){var T=this.high,M=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},s.fromBytes=function(T,M,U){return U?s.fromBytesLE(T,M):s.fromBytesBE(T,M)},s.fromBytesLE=function(T,M){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,M)},s.fromBytesBE=function(T,M){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],M)}}}),RN=ts({"(disabled):node-fetch"(){}}),$N=ts({"(disabled):util"(){}}),DN=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(c){var u=this,d=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=d(" "),u.s1=d(" "),u.s2=d(" "),u.s0-=d(c),u.s0<0&&(u.s0+=1),u.s1-=d(c),u.s1<0&&(u.s1+=1),u.s2-=d(c),u.s2<0&&(u.s2+=1),d=null}function o(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function i(c,u){var d=new a(c),p=u&&u.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var c=4022871197,u=function(d){d=String(d);for(var p=0;p<d.length;p++){c+=d.charCodeAt(p);var h=.02519603282416938*c;c=h>>>0,h-=c,h*=c,c=h>>>0,h-=c,c+=h*4294967296}return(c>>>0)*23283064365386963e-26};return u}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),_N=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),PN=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var d=0;d<u.length+64;d++)c.x^=u.charCodeAt(d)|0,d==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function o(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),FN=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.x,p=c.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,c.i=p+1&7,f};function u(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}u(c,l)}function o(l,c){return c.x=l.x.slice(),c.i=l.i,c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.x&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),ON=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var c=this;c.next=function(){var d=c.w,p=c.X,h=c.i,f,m;return c.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,c.i=h,m+(d^d>>>16)|0};function u(d,p){var h,f,m,g,A,y=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g<x;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=y[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(y[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;d.w=A,d.X=y,d.i=m}u(c,l)}function o(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function i(l,c){l==null&&(l=+new Date);var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(d.X&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),MN=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var c=this,u="";c.next=function(){var p=c.b,h=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^h,c.c=h=h-f|0,c.d=f<<16^h>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var d=0;d<u.length+20;d++)c.b^=u.charCodeAt(d)|0,c.next()}function o(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function i(l,c){var u=new a(l),d=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var h=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,d&&(typeof d=="object"&&o(d,u),p.state=function(){return o(u,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),zN=ts({"(disabled):crypto"(){}}),LN=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",c=r.pow(a,o),u=r.pow(2,i),d=u*2,p=a-1,h;function f(w,k,S){var E=[];k=k==!0?{entropy:!0}:k||{};var P=y(A(k.entropy?[w,b(s)]:w==null?x():w,3),E),F=new m(E),R=function(){for(var _=F.g(o),T=c,M=0;_<u;)_=(_+M)*a,T*=a,M=F.g(1);for(;_>=d;)_/=2,T/=2,M>>>=1;return(_+M)/T};return R.int32=function(){return F.g(4)|0},R.quick=function(){return F.g(4)/4294967296},R.double=R,y(b(F.S),s),(k.pass||S||function(_,T,M,U){return U&&(U.S&&g(U,F),_.state=function(){return g(F,{})}),M?(r[l]=_,T):_})(R,P,"global"in k?k.global:this==r,k.state)}function m(w){var k,S=w.length,E=this,P=0,F=E.i=E.j=0,R=E.S=[];for(S||(w=[S++]);P<a;)R[P]=P++;for(P=0;P<a;P++)R[P]=R[F=p&F+w[P%S]+(k=R[P])],R[F]=k;(E.g=function(_){for(var T,M=0,U=E.i,H=E.j,z=E.S;_--;)T=z[U=p&U+1],M=M*a+z[p&(z[U]=z[H=p&H+T])+(z[H]=T)];return E.i=U,E.j=H,M})(a)}function g(w,k){return k.i=w.i,k.j=w.j,k.S=w.S.slice(),k}function A(w,k){var S=[],E=typeof w,P;if(k&&E=="object")for(P in w)try{S.push(A(w[P],k-1))}catch(F){}return S.length?S:E=="string"?w:w+"\0"}function y(w,k){for(var S=w+"",E,P=0;P<S.length;)k[p&P]=p&(E^=k[p&P]*19)+S.charCodeAt(P++);return b(k)}function x(){try{var w;return h&&(w=h.randomBytes)?w=w(a):(w=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(w)),b(w)}catch(E){var k=n.navigator,S=k&&k.plugins;return[+new Date,n,S,n.screen,b(s)]}}function b(w){return String.fromCharCode.apply(0,w)}if(y(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=zN()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),Kp=ts({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=DN(),s=_N(),r=PN(),a=FN(),o=ON(),i=MN(),l=LN();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),t5=ts({"(disabled):src/node_modules/string_decoder/index.js"(){}}),BN=ts({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return te.buffer!=Et&&kn(te.buffer),Pt}function o(){return te.buffer!=Et&&kn(te.buffer),Jn}function i(){return te.buffer!=Et&&kn(te.buffer),On}function l(){return te.buffer!=Et&&kn(te.buffer),ds}function c(){return te.buffer!=Et&&kn(te.buffer),Is}var u=typeof r!="undefined"?r:{},d,p;u.ready=new Promise(function(C,$){d=C,p=$});var h={},f;for(f in u)u.hasOwnProperty(f)&&(h[f]=u[f]);var m=[],g="./this.program",A=function(C,$){throw $},y=!1,x=!1,b=!1,w=!1;y=typeof window=="object",x=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",w=!y&&!b&&!x;var k=u.ENVIRONMENT_IS_PTHREAD||!1;k&&(Et=u.buffer);var S="";function E(C){return u.locateFile?u.locateFile(C,S):S+C}var P,F,R,_,T,M;if(b){x?S=Ws("path").dirname(S)+"/":S=__dirname+"/",P=function($,L){return T||(T=Ws("fs")),M||(M=Ws("path")),$=M.normalize($),T.readFileSync($,L?null:"utf8")},R=function($){var L=P($,!0);return L.buffer||(L=new Uint8Array(L)),we(L.buffer),L},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(C){if(!(C instanceof Nc))throw C}),process.on("unhandledRejection",Wr),A=function(C){process.exit(C)},u.inspect=function(){return"[Emscripten Module object]"};var U;try{U=Ws("worker_threads")}catch(C){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),C}global.Worker=U.Worker}else w?(typeof read!="undefined"&&(P=function($){return read($)}),R=function($){var L;return typeof readbuffer=="function"?new Uint8Array(readbuffer($)):(L=read($,"binary"),we(typeof L=="object"),L)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(A=function(C){quit(C)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||x)&&(x?S=self.location.href:typeof document!="undefined"&&document.currentScript&&(S=document.currentScript.src),typeof s!="undefined"&&s&&(S=s),S.indexOf("blob:")!==0?S=S.substr(0,S.lastIndexOf("/")+1):S="",b?(P=function($,L){return T||(T=Ws("fs")),M||(M=Ws("path")),$=M.normalize($),T.readFileSync($,L?null:"utf8")},R=function($){var L=P($,!0);return L.buffer||(L=new Uint8Array(L)),we(L.buffer),L}):(P=function(C){var $=new XMLHttpRequest;return $.open("GET",C,!1),$.send(null),$.responseText},x&&(R=function(C){var $=new XMLHttpRequest;return $.open("GET",C,!1),$.responseType="arraybuffer",$.send(null),new Uint8Array($.response)}),F=function(C,$,L){var Z=new XMLHttpRequest;Z.open("GET",C,!0),Z.responseType="arraybuffer",Z.onload=function(){if(Z.status==200||Z.status==0&&Z.response){$(Z.response);return}L()},Z.onerror=L,Z.send(null)}),_=function(C){document.title=C});b&&typeof performance=="undefined"&&(global.performance=Ws("perf_hooks").performance);var H=u.print||console.log.bind(console),z=u.printErr||console.warn.bind(console);for(f in h)h.hasOwnProperty(f)&&(u[f]=h[f]);h=null,u.arguments&&(m=u.arguments),u.thisProgram&&(g=u.thisProgram),u.quit&&(A=u.quit);function X(C){X.shown||(X.shown={}),X.shown[C]||(X.shown[C]=1,z(C))}var ee=Atomics.load,Y=Atomics.store,se=Atomics.compareExchange,ne;u.wasmBinary&&(ne=u.wasmBinary);var J=u.noExitRuntime||!0;typeof WebAssembly!="object"&&Wr("no native wasm support detected");var te,ue,ce=!1,xe;function we(C,$){C||Wr("Assertion failed: "+$)}function Ce(C){var $=u["_"+C];return we($,"Cannot call unknown function "+C+", make sure it is exported"),$}function Oe(C,$,L,Z,ge){var fe={string:function(Mn){var Ml=0;if(Mn!=null&&Mn!==0){var Jb=(Mn.length<<2)+1;Ml=Pl(Jb),ut(Mn,Ml,Jb)}return Ml},array:function(Mn){var Ml=Pl(Mn.length);return At(Mn,Ml),Ml}};function me(Mn){return $==="string"?rt(Mn):$==="boolean"?Boolean(Mn):Mn}var Te=Ce(C),ht=[],fn=0;if(Z)for(var nn=0;nn<Z.length;nn++){var ya=fe[L[nn]];ya?(fn===0&&(fn=Tc()),ht[nn]=ya(Z[nn])):ht[nn]=Z[nn]}var Ol=Te.apply(null,ht);return Ol=me(Ol),fn!==0&&_l(fn),Ol}function Ue(C,$,L,Z){L=L||[];var ge=L.every(function(me){return me==="number"}),fe=$!=="string";return fe&&ge&&!Z?Ce(C):function(){return Oe(C,$,L,arguments,Z)}}function Xe(C,$,L){for(var Z=$+L,ge="";!($>=Z);){var fe=C[$++];if(!fe)return ge;if(!(fe&128)){ge+=String.fromCharCode(fe);continue}var me=C[$++]&63;if((fe&224)==192){ge+=String.fromCharCode((fe&31)<<6|me);continue}var Te=C[$++]&63;if((fe&240)==224?fe=(fe&15)<<12|me<<6|Te:fe=(fe&7)<<18|me<<12|Te<<6|C[$++]&63,fe<65536)ge+=String.fromCharCode(fe);else{var ht=fe-65536;ge+=String.fromCharCode(55296|ht>>10,56320|ht&1023)}}return ge}function rt(C,$){return C?Xe(o(),C,$):""}function ft(C,$,L,Z){if(!(Z>0))return 0;for(var ge=L,fe=L+Z-1,me=0;me<C.length;++me){var Te=C.charCodeAt(me);if(Te>=55296&&Te<=57343){var ht=C.charCodeAt(++me);Te=65536+((Te&1023)<<10)|ht&1023}if(Te<=127){if(L>=fe)break;$[L++]=Te}else if(Te<=2047){if(L+1>=fe)break;$[L++]=192|Te>>6,$[L++]=128|Te&63}else if(Te<=65535){if(L+2>=fe)break;$[L++]=224|Te>>12,$[L++]=128|Te>>6&63,$[L++]=128|Te&63}else{if(L+3>=fe)break;$[L++]=240|Te>>18,$[L++]=128|Te>>12&63,$[L++]=128|Te>>6&63,$[L++]=128|Te&63}}return $[L]=0,L-ge}function ut(C,$,L){return ft(C,o(),$,L)}function ct(C){for(var $=0,L=0;L<C.length;++L){var Z=C.charCodeAt(L);Z>=55296&&Z<=57343&&(Z=65536+((Z&1023)<<10)|C.charCodeAt(++L)&1023),Z<=127?++$:Z<=2047?$+=2:Z<=65535?$+=3:$+=4}return $}function At(C,$){a().set(C,$)}function yt(C,$){return C%$>0&&(C+=$-C%$),C}var Et,Pt,Jn,wn,nr,On,ds,Ls,Is;function kn(C){Et=C,u.HEAP8=Pt=new Int8Array(C),u.HEAP16=wn=new Int16Array(C),u.HEAP32=On=new Int32Array(C),u.HEAPU8=Jn=new Uint8Array(C),u.HEAPU16=nr=new Uint16Array(C),u.HEAPU32=ds=new Uint32Array(C),u.HEAPF32=Ls=new Float32Array(C),u.HEAPF64=Is=new Float64Array(C)}var br=u.INITIAL_MEMORY||16777216;if(k)te=u.wasmMemory,Et=u.buffer;else if(u.wasmMemory)te=u.wasmMemory;else if(te=new WebAssembly.Memory({initial:br/65536,maximum:2147483648/65536,shared:!0}),!(te.buffer instanceof SharedArrayBuffer))throw z("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");te&&(Et=te.buffer),br=Et.byteLength,kn(Et);var Rn,vr=[],wr=[],pa=[],Ac=[],sr=[],wp=!1,f0=!1;k||wr.push({func:function(){Bp()}});function kp(){if(!k){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)m0(u.preRun.shift());Rl(vr)}}function Ip(){wp=!0,!k&&Rl(wr)}function Sp(){k||Rl(pa)}function Qn(){k||(f0=!0)}function Cp(){if(!k){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)g0(u.postRun.shift());Rl(sr)}}function m0(C){vr.unshift(C)}function g0(C){sr.unshift(C)}var Bs=0,yc=null,Xo=null;function A0(C){we(!k,"addRunDependency cannot be used in a pthread worker"),Bs++,u.monitorRunDependencies&&u.monitorRunDependencies(Bs)}function y0(C){if(Bs--,u.monitorRunDependencies&&u.monitorRunDependencies(Bs),Bs==0&&(yc!==null&&(clearInterval(yc),yc=null),Xo)){var $=Xo;Xo=null,$()}}u.preloadedImages={},u.preloadedAudios={};function Wr(C){u.onAbort&&u.onAbort(C),k&&console.error("Pthread aborting at "+new Error().stack),C+="",z(C),ce=!0,xe=1,C="abort("+C+"). Build with -s ASSERTIONS=1 for more info.";var $=new WebAssembly.RuntimeError(C);throw p($),$}function Ko(C,$){return String.prototype.startsWith?C.startsWith($):C.indexOf($)===0}var x0="data:application/octet-stream;base64,";function Tp(C){return Ko(C,x0)}var b0="file://";function Np(C){return Ko(C,b0)}var es="tfjs-backend-wasm-threaded-simd.wasm";Tp(es)||(es=E(es));function v0(C){try{if(C==es&&ne)return new Uint8Array(ne);if(R)return R(C);throw"both async and sync fetching of the wasm failed"}catch($){Wr($)}}function Ep(){if(!ne&&(y||x)){if(typeof fetch=="function"&&!Np(es))return fetch(es,{credentials:"same-origin"}).then(function(C){if(!C.ok)throw"failed to load wasm binary file at '"+es+"'";return C.arrayBuffer()}).catch(function(){return v0(es)});if(F)return new Promise(function(C,$){F(es,function(L){C(new Uint8Array(L))},$)})}return Promise.resolve().then(function(){return v0(es)})}function w0(){var C={a:fg};function $(me,Te){var ht=me.exports;if(u.asm=ht,Rn=u.asm.kb,ue=Te,!k){var fn=Re.unusedWorkers.length;Re.unusedWorkers.forEach(function(nn){Re.loadWasmModuleToWorker(nn,function(){--fn||y0("wasm-instantiate")})})}}k||A0("wasm-instantiate");function L(me){$(me.instance,me.module)}function Z(me){return Ep().then(function(Te){return WebAssembly.instantiate(Te,C)}).then(me,function(Te){z("failed to asynchronously prepare wasm: "+Te),Wr(Te)})}function ge(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!Tp(es)&&!Np(es)&&typeof fetch=="function"?fetch(es,{credentials:"same-origin"}).then(function(me){var Te=WebAssembly.instantiateStreaming(me,C);return Te.then(L,function(ht){return z("wasm streaming compile failed: "+ht),z("falling back to ArrayBuffer instantiation"),Z(L)})}):Z(L)}if(u.instantiateWasm)try{var fe=u.instantiateWasm(C,$);return fe}catch(me){return z("Module.instantiateWasm callback failed with error: "+me),!1}return ge().catch(p),{}}var Rp={10072:function(){throw"Canceled!"},10090:function(C,$){setTimeout(function(){jb(C,$)},0)}};function k0(){Re.initRuntime()}function Rl(C){for(;C.length>0;){var $=C.shift();if(typeof $=="function"){$(u);continue}var L=$.func;typeof L=="number"?$.arg===void 0?Rn.get(L)():Rn.get(L)($.arg):L($.arg===void 0?null:$.arg)}}var ha={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135};function xc(C,$){if(C<=0||C>a().length||C&!0||$<0)return-28;if($==0)return 0;$>=2147483647&&($=1/0);var L=Atomics.load(i(),Fl>>2),Z=0;if(L==C){var ge=Atomics.compareExchange(i(),Fl>>2,L,0);if(ge==L&&(--$,Z=1,$<=0))return 1}var fe=Atomics.notify(i(),C>>2,$);if(fe>=0)return fe+Z;throw"Atomics.notify returned an unexpected value "+fe}u._emscripten_futex_wake=xc;function I0(C){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in killThread!";i()[C+12>>2]=0;var $=Re.pthreads[C];$.worker.terminate(),Re.freeThreadData($),Re.runningWorkers.splice(Re.runningWorkers.indexOf($.worker),1),$.worker.pthread=void 0}function S0(C){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in cancelThread!";var $=Re.pthreads[C];$.worker.postMessage({cmd:"cancel"})}function $p(C){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!C)throw"Internal Error! Null pthread_ptr in cleanupThread!";var $=Re.pthreads[C];if($){i()[C+12>>2]=0;var L=$.worker;Re.returnWorkerToPool(L)}}var Re={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var C=8,$=0;$<C;++$)Re.allocateUnusedWorker()},initRuntime:function(){for(var C=Yo(228),$=0;$<228/4;++$)l()[C/4+$]=0;i()[C+12>>2]=C;var L=C+152;i()[L>>2]=L;for(var Z=Yo(512),$=0;$<128;++$)l()[Z/4+$]=0;Atomics.store(l(),C+100>>2,Z),Atomics.store(l(),C+40>>2,C),Pg(C,!x,1),Gb(C)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Re.threadExitHandlers.length>0;)Re.threadExitHandlers.pop()();k&&Aa()&&Ub()},runExitHandlersAndDeinitThread:function(C,$){Atomics.store(l(),C+56>>2,1),Atomics.store(l(),C+60>>2,0),Re.runExitHandlers(),Atomics.store(l(),C+4>>2,$),Atomics.store(l(),C+0>>2,1),xc(C+0,2147483647),Pg(0,0,0)},threadExit:function(C){var $=Aa();$&&(Re.runExitHandlersAndDeinitThread($,C),k&&postMessage({cmd:"exit"}))},threadCancel:function(){Re.runExitHandlersAndDeinitThread(Aa(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var C in Re.pthreads){var $=Re.pthreads[C];$&&$.worker&&Re.returnWorkerToPool($.worker)}Re.pthreads={};for(var L=0;L<Re.unusedWorkers.length;++L){var Z=Re.unusedWorkers[L];Z.terminate()}Re.unusedWorkers=[];for(var L=0;L<Re.runningWorkers.length;++L){var Z=Re.runningWorkers[L],$=Z.pthread;Re.freeThreadData($),Z.terminate()}Re.runningWorkers=[]},freeThreadData:function(C){if(!!C){if(C.threadInfoStruct){var $=i()[C.threadInfoStruct+100>>2];i()[C.threadInfoStruct+100>>2]=0,Cc($),Cc(C.threadInfoStruct)}C.threadInfoStruct=0,C.allocatedOwnStack&&C.stackBase&&Cc(C.stackBase),C.stackBase=0,C.worker&&(C.worker.pthread=null)}},returnWorkerToPool:function(C){Re.runWithoutMainThreadQueuedCalls(function(){delete Re.pthreads[C.pthread.threadInfoStruct],Re.unusedWorkers.push(C),Re.runningWorkers.splice(Re.runningWorkers.indexOf(C),1),Re.freeThreadData(C.pthread),C.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(C){i()[Yb>>2]=0;try{C()}finally{i()[Yb>>2]=1}},receiveObjectTransfer:function(C){},loadWasmModuleToWorker:function(C,$){C.onmessage=function(L){var Z=L.data,ge=Z.cmd;if(C.pthread&&(Re.currentProxiedOperationCallerThread=C.pthread.threadInfoStruct),Z.targetThread&&Z.targetThread!=Aa()){var fe=Re.pthreads[Z.targetThread];fe?fe.worker.postMessage(L.data,Z.transferList):console.error('Internal error! Worker sent a message "'+ge+'" to target pthread '+Z.targetThread+", but that thread no longer exists!"),Re.currentProxiedOperationCallerThread=void 0;return}if(ge==="processQueuedMainThreadWork")Hp();else if(ge==="spawnThread")zp(L.data);else if(ge==="cleanupThread")$p(Z.thread);else if(ge==="killThread")I0(Z.thread);else if(ge==="cancelThread")S0(Z.thread);else if(ge==="loaded")C.loaded=!0,$&&$(C),C.runPthread&&(C.runPthread(),delete C.runPthread);else if(ge==="print")H("Thread "+Z.threadId+": "+Z.text);else if(ge==="printErr")z("Thread "+Z.threadId+": "+Z.text);else if(ge==="alert")alert("Thread "+Z.threadId+": "+Z.text);else if(ge==="exit"){var me=C.pthread&&Atomics.load(l(),C.pthread.threadInfoStruct+64>>2);me&&Re.returnWorkerToPool(C)}else if(ge==="exitProcess")try{bN(Z.returnCode)}catch(Te){if(Te instanceof Nc)return;throw Te}else ge==="cancelDone"?Re.returnWorkerToPool(C):ge==="objectTransfer"?Re.receiveObjectTransfer(L.data):L.data.target==="setimmediate"?C.postMessage(L.data):z("worker sent an unknown command "+ge);Re.currentProxiedOperationCallerThread=void 0},C.onerror=function(L){z("pthread sent an error! "+L.filename+":"+L.lineno+": "+L.message)},b&&(C.on("message",function(L){C.onmessage({data:L})}),C.on("error",function(L){C.onerror(L)}),C.on("exit",function(L){})),C.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||s,wasmMemory:te,wasmModule:ue})},allocateUnusedWorker:function(){var C=E("tfjs-backend-wasm-threaded-simd.worker.js");Re.unusedWorkers.push(new Worker(C))},getNewWorker:function(){return Re.unusedWorkers.length==0&&(Re.allocateUnusedWorker(),Re.loadWasmModuleToWorker(Re.unusedWorkers[0])),Re.unusedWorkers.length>0?Re.unusedWorkers.pop():null},busySpinWait:function(C){for(var $=performance.now()+C;performance.now()<$;);}};function C0(C,$){Kb(C,$),_l(C)}u.establishStackSpace=C0;function T0(){return J}u.getNoExitRuntime=T0;function N0(C,$){return Rn.get(C)($)}u.invokeEntryPoint=N0;function E0(C,$,L,Z){Wr("Assertion failed: "+rt(C)+", at: "+[$?rt($):"unknown filename",L,Z?rt(Z):"unknown function"])}function R0(C,$){var L=_main(C,$)}var Zo;b?Zo=function(){var C=process.hrtime();return C[0]*1e3+C[1]/1e6}:k?Zo=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?Zo=dateNow:Zo=function(){return performance.now()};function $0(C){return i()[Wb()>>2]=C,C}function D0(C,$){if(k)return fa(1,1,C,$)}function _0(C,$){if(C==$)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:C,cmd:"processThreadQueue"});else{var L=Re.pthreads[C],Z=L&&L.worker;if(!Z)return;Z.postMessage({cmd:"processThreadQueue"})}return 1}function P0(){Wr()}function F0(C,$,L){var Z=L0($,L);return Rp[C].apply(null,Z)}function O0(C,$){}function Dp(C,$,L){if(C<=0||C>a().length||C&!0)return-28;if(y){if(Atomics.load(i(),C>>2)!=$)return-6;for(var ge=performance.now(),fe=ge+L,me=Atomics.exchange(i(),Fl>>2,C);;){if(ge=performance.now(),ge>fe)return me=Atomics.exchange(i(),Fl>>2,0),-73;if(me=Atomics.exchange(i(),Fl>>2,0),me==0)break;if(Hp(),Atomics.load(i(),C>>2)!=$)return-6;me=Atomics.exchange(i(),Fl>>2,C)}return 0}else{var Z=Atomics.wait(i(),C>>2,$,L);if(Z==="timed-out")return-73;if(Z==="not-equal")return-6;if(Z==="ok")return 0;throw"Atomics.wait returned an unexpected value "+Z}}function M0(C,$,L){o().copyWithin(C,$,$+L)}function z0(){return b?Ws("os").cpus().length:navigator.hardwareConcurrency}function fa(C,$){for(var L=arguments.length-2,Z=Tc(),ge=L,fe=Pl(ge*8),me=fe>>3,Te=0;Te<L;Te++){var ht=arguments[2+Te];c()[me+Te]=ht}var fn=Xb(C,ge,fe,$);return _l(Z),fn}var bc=[],vc=[];function L0(C,$){vc.length=0;var L;for($>>=2;L=o()[C++];){var Z=L<105;Z&&$&1&&$++,vc.push(Z?c()[$++>>1]:i()[$]),++$}return vc}function B0(C,$,L){bc.length=$;for(var Z=L>>3,ge=0;ge<$;ge++)bc[ge]=c()[Z+ge];var fe=C<0,me=fe?Rp[-C-1]:hg[C];return me.apply(null,bc)}function W0(){return o().length}function V0(C){try{return te.grow(C-Et.byteLength+65535>>>16),kn(te.buffer),1}catch($){}}function U0(C){var $=W0();if(C<=$)return!1;var L=2147483648;if(C>L)return!1;for(var Z=1;Z<=4;Z*=2){var ge=$*(1+.2/Z);ge=Math.min(ge,C+100663296);var fe=Math.min(L,yt(Math.max(C,ge),65536)),me=V0(fe);if(me)return!0}return!1}var Ge={inEventHandler:0,removeAllEventListeners:function(){for(var C=Ge.eventHandlers.length-1;C>=0;--C)Ge._removeHandler(C);Ge.eventHandlers=[],Ge.deferredCalls=[]},registerRemoveEventListeners:function(){Ge.removeEventListenersRegistered||(Ac.push(Ge.removeAllEventListeners),Ge.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(C,$,L){function Z(me,Te){if(me.length!=Te.length)return!1;for(var ht in me)if(me[ht]!=Te[ht])return!1;return!0}for(var ge in Ge.deferredCalls){var fe=Ge.deferredCalls[ge];if(fe.targetFunction==C&&Z(fe.argsList,L))return}Ge.deferredCalls.push({targetFunction:C,precedence:$,argsList:L}),Ge.deferredCalls.sort(function(me,Te){return me.precedence<Te.precedence})},removeDeferredCalls:function(C){for(var $=0;$<Ge.deferredCalls.length;++$)Ge.deferredCalls[$].targetFunction==C&&(Ge.deferredCalls.splice($,1),--$)},canPerformEventHandlerRequests:function(){return Ge.inEventHandler&&Ge.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Ge.canPerformEventHandlerRequests())for(var C=0;C<Ge.deferredCalls.length;++C){var $=Ge.deferredCalls[C];Ge.deferredCalls.splice(C,1),--C,$.targetFunction.apply(null,$.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(C,$){for(var L=0;L<Ge.eventHandlers.length;++L)Ge.eventHandlers[L].target==C&&(!$||$==Ge.eventHandlers[L].eventTypeString)&&Ge._removeHandler(L--)},_removeHandler:function(C){var $=Ge.eventHandlers[C];$.target.removeEventListener($.eventTypeString,$.eventListenerFunc,$.useCapture),Ge.eventHandlers.splice(C,1)},registerOrRemoveHandler:function(C){var $=function(ge){++Ge.inEventHandler,Ge.currentEventHandler=C,Ge.runDeferredCalls(),C.handlerFunc(ge),Ge.runDeferredCalls(),--Ge.inEventHandler};if(C.callbackfunc)C.eventListenerFunc=$,C.target.addEventListener(C.eventTypeString,$,C.useCapture),Ge.eventHandlers.push(C),Ge.registerRemoveEventListeners();else for(var L=0;L<Ge.eventHandlers.length;++L)Ge.eventHandlers[L].target==C.target&&Ge.eventHandlers[L].eventTypeString==C.eventTypeString&&Ge._removeHandler(L--)},queueEventHandlerOnThread_iiii:function(C,$,L,Z,ge){var fe=Tc(),me=Pl(12);i()[me>>2]=L,i()[me+4>>2]=Z,i()[me+8>>2]=ge,_g(0,C,637534208,$,Z,me),_l(fe)},getTargetThreadForEventCallback:function(C){switch(C){case 1:return 0;case 2:return Re.currentProxiedOperationCallerThread;default:return C}},getNodeNameForTarget:function(C){return C?C==window?"#window":C==screen?"#screen":C&&C.nodeName?C.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function G0(C){var $=ct(C)+1,L=Yo($);return ut(C,L,$),L}function H0(C,$,L,Z){var ge=Tc(),fe=Pl(12),me=0;$&&(me=G0($)),i()[fe>>2]=me,i()[fe+4>>2]=L,i()[fe+8>>2]=Z,_g(0,C,657457152,0,me,fe),_l(ge)}function j0(C,$,L,Z){$=$?rt($):"",H0(C,$,L,Z)}function q0(C){return C>2?rt(C):C}var X0=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function K0(C){C=q0(C);var $=X0[C]||(typeof document!="undefined"?document.querySelector(C):void 0);return $}function wc(C){return K0(C)}function _p(C,$,L){var Z=wc(C);if(!Z)return-4;if(Z.canvasSharedPtr&&(i()[Z.canvasSharedPtr>>2]=$,i()[Z.canvasSharedPtr+4>>2]=L),Z.offscreenCanvas||!Z.controlTransferredOffscreen){Z.offscreenCanvas&&(Z=Z.offscreenCanvas);var ge=!1;if(Z.GLctxObject&&Z.GLctxObject.GLctx){var fe=Z.GLctxObject.GLctx.getParameter(2978);ge=fe[0]===0&&fe[1]===0&&fe[2]===Z.width&&fe[3]===Z.height}Z.width=$,Z.height=L,ge&&Z.GLctxObject.GLctx.viewport(0,0,$,L)}else if(Z.canvasSharedPtr){var me=i()[Z.canvasSharedPtr+8>>2];return j0(me,C,$,L),1}else return-4;return 0}function Pp(C,$,L){return k?fa(2,1,C,$,L):_p(C,$,L)}function Z0(C,$,L){var Z=wc(C);return Z?_p(C,$,L):Pp(C,$,L)}function Y0(C){}function J0(C,$){}function Q0(C){var $=C.getExtension("ANGLE_instanced_arrays");if($)return C.vertexAttribDivisor=function(L,Z){$.vertexAttribDivisorANGLE(L,Z)},C.drawArraysInstanced=function(L,Z,ge,fe){$.drawArraysInstancedANGLE(L,Z,ge,fe)},C.drawElementsInstanced=function(L,Z,ge,fe,me){$.drawElementsInstancedANGLE(L,Z,ge,fe,me)},1}function eg(C){var $=C.getExtension("OES_vertex_array_object");if($)return C.createVertexArray=function(){return $.createVertexArrayOES()},C.deleteVertexArray=function(L){$.deleteVertexArrayOES(L)},C.bindVertexArray=function(L){$.bindVertexArrayOES(L)},C.isVertexArray=function(L){return $.isVertexArrayOES(L)},1}function tg(C){var $=C.getExtension("WEBGL_draw_buffers");if($)return C.drawBuffers=function(L,Z){$.drawBuffersWEBGL(L,Z)},1}function ng(C){return!!(C.multiDrawWebgl=C.getExtension("WEBGL_multi_draw"))}var dt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function($){dt.lastError||(dt.lastError=$)},getNewId:function(C){for(var $=dt.counter++,L=C.length;L<$;L++)C[L]=null;return $},getSource:function(C,$,L,Z){for(var ge="",fe=0;fe<$;++fe){var me=Z?i()[Z+fe*4>>2]:-1;ge+=rt(i()[L+fe*4>>2],me<0?void 0:me)}return ge},createContext:function(C,$){var L=C.getContext("webgl",$);if(!L)return 0;var Z=dt.registerContext(L,$);return Z},registerContext:function(C,$){var L=Yo(8);i()[L+4>>2]=Aa();var Z={handle:L,attributes:$,version:$.majorVersion,GLctx:C};return C.canvas&&(C.canvas.GLctxObject=Z),dt.contexts[L]=Z,(typeof $.enableExtensionsByDefault=="undefined"||$.enableExtensionsByDefault)&&dt.initExtensions(Z),L},makeContextCurrent:function(C){return dt.currentContext=dt.contexts[C],u.ctx=ma=dt.currentContext&&dt.currentContext.GLctx,!(C&&!ma)},getContext:function(C){return dt.contexts[C]},deleteContext:function(C){dt.currentContext===dt.contexts[C]&&(dt.currentContext=null),typeof Ge=="object"&&Ge.removeAllHandlersOnTarget(dt.contexts[C].GLctx.canvas),dt.contexts[C]&&dt.contexts[C].GLctx.canvas&&(dt.contexts[C].GLctx.canvas.GLctxObject=void 0),Cc(dt.contexts[C].handle),dt.contexts[C]=null},initExtensions:function(C){if(C||(C=dt.currentContext),!C.initExtensionsDone){C.initExtensionsDone=!0;var $=C.GLctx;Q0($),eg($),tg($),$.disjointTimerQueryExt=$.getExtension("EXT_disjoint_timer_query"),ng($);var L=$.getSupportedExtensions()||[];L.forEach(function(Z){Z.indexOf("lose_context")<0&&Z.indexOf("debug")<0&&$.getExtension(Z)})}},populateUniformTable:function(C){for(var $=dt.programs[C],L=dt.programInfos[C]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},Z=L.uniforms,ge=ma.getProgramParameter($,35718),fe=0;fe<ge;++fe){var me=ma.getActiveUniform($,fe),Te=me.name;L.maxUniformLength=Math.max(L.maxUniformLength,Te.length+1),Te.slice(-1)=="]"&&(Te=Te.slice(0,Te.lastIndexOf("[")));var ht=ma.getUniformLocation($,Te);if(ht){var fn=dt.getNewId(dt.uniforms);Z[Te]=[me.size,fn],dt.uniforms[fn]=ht;for(var nn=1;nn<me.size;++nn){var ya=Te+"["+nn+"]";ht=ma.getUniformLocation($,ya),fn=dt.getNewId(dt.uniforms),dt.uniforms[fn]=ht}}}}},sg=["default","low-power","high-performance"];function rg(C,$){var L=$>>2,Z=i()[L+(24>>2)],ge={alpha:!!i()[L+(0>>2)],depth:!!i()[L+(4>>2)],stencil:!!i()[L+(8>>2)],antialias:!!i()[L+(12>>2)],premultipliedAlpha:!!i()[L+(16>>2)],preserveDrawingBuffer:!!i()[L+(20>>2)],powerPreference:sg[Z],failIfMajorPerformanceCaveat:!!i()[L+(28>>2)],majorVersion:i()[L+(32>>2)],minorVersion:i()[L+(36>>2)],enableExtensionsByDefault:i()[L+(40>>2)],explicitSwapControl:i()[L+(44>>2)],proxyContextToMainThread:i()[L+(48>>2)],renderViaOffscreenBackBuffer:i()[L+(52>>2)]},fe=wc(C);if(!fe||ge.explicitSwapControl)return 0;var me=dt.createContext(fe,ge);return me}function ag(C,$){return rg(C,$)}var $l={mappings:{},buffers:[null,[],[]],printChar:function(C,$){var L=$l.buffers[C];$===0||$===10?((C===1?H:z)(Xe(L,0)),L.length=0):L.push($)},varargs:void 0,get:function(){$l.varargs+=4;var C=i()[$l.varargs-4>>2];return C},getStr:function(C){var $=rt(C);return $},get64:function(C,$){return C}};function Fp(C){return k?fa(3,1,C):0}function Op(C,$,L,Z,ge){if(k)return fa(4,1,C,$,L,Z,ge)}function Mp(C,$,L,Z){if(k)return fa(5,1,C,$,L,Z);for(var ge=0,fe=0;fe<L;fe++){for(var me=i()[$+fe*8>>2],Te=i()[$+(fe*8+4)>>2],ht=0;ht<Te;ht++)$l.printChar(C,o()[me+ht]);ge+=Te}return i()[Z>>2]=ge,0}function og(C){var $=Re.threadExitHandlers.pop();C&&$()}function ig(C,$){Re.threadExitHandlers.push(function(){Rn.get(C)($)})}function zp(C){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var $=Re.getNewWorker();if($.pthread!==void 0)throw"Internal error!";if(!C.pthread_ptr)throw"Internal error, no pthread ptr!";Re.runningWorkers.push($);for(var L=Yo(128*4),Z=0;Z<128;++Z)i()[L+Z*4>>2]=0;var ge=C.stackBase+C.stackSize,fe=Re.pthreads[C.pthread_ptr]={worker:$,stackBase:C.stackBase,stackSize:C.stackSize,allocatedOwnStack:C.allocatedOwnStack,threadInfoStruct:C.pthread_ptr},me=fe.threadInfoStruct>>2;Atomics.store(l(),me+(64>>2),C.detached),Atomics.store(l(),me+(100>>2),L),Atomics.store(l(),me+(40>>2),fe.threadInfoStruct),Atomics.store(l(),me+(80>>2),C.stackSize),Atomics.store(l(),me+(76>>2),ge),Atomics.store(l(),me+(104>>2),C.stackSize),Atomics.store(l(),me+(104+8>>2),ge),Atomics.store(l(),me+(104+12>>2),C.detached);var Te=Vb(),ht=Te+40;Atomics.store(l(),me+(172>>2),ht),$.pthread=fe;var fn={cmd:"run",start_routine:C.startRoutine,arg:C.arg,threadInfoStruct:C.pthread_ptr,stackBase:C.stackBase,stackSize:C.stackSize};$.runPthread=function(){fn.time=performance.now(),$.postMessage(fn,C.transferList)},$.loaded&&($.runPthread(),delete $.runPthread)}function lg(C,$,L,Z){if(typeof SharedArrayBuffer=="undefined")return z("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!C)return z("pthread_create called with a null thread pointer!"),28;var ge=[],fe=0;if(k&&(ge.length===0||fe))return qb(687865856,C,$,L,Z);if(fe)return fe;var me=0,Te=0,ht=0;$&&$!=-1?(me=i()[$>>2],me+=81920,Te=i()[$+8>>2],ht=i()[$+12>>2]!==0):me=2097152;var fn=Te==0;fn?Te=Zb(16,me):(Te-=me,we(Te>0));for(var nn=Yo(228),ya=0;ya<228>>2;++ya)l()[(nn>>2)+ya]=0;i()[C>>2]=nn,i()[nn+12>>2]=nn;var Ol=nn+152;i()[Ol>>2]=Ol;var Mn={stackBase:Te,stackSize:me,allocatedOwnStack:fn,detached:ht,startRoutine:L,pthread_ptr:nn,arg:Z,transferList:ge};return k?(Mn.cmd="spawnThread",postMessage(Mn,ge)):zp(Mn),0}function ug(){if(!!k){var C=Aa();if(!!C){var $=Atomics.load(l(),C+56>>2);if(!$){var L=Atomics.load(l(),C+0>>2);if(L==2)throw"Canceled!"}}}}function cg(){b||x||X("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function dg(C,$,L){if(!C)return z("pthread_join attempted on a null thread pointer!"),ha.ESRCH;if(k&&Aa()==C)return z("PThread "+C+" is attempting to join to itself!"),ha.EDEADLK;if(!k&&Hb()==C)return z("Main thread "+C+" is attempting to join to itself!"),ha.EDEADLK;var Z=i()[C+12>>2];if(Z!==C)return z("pthread_join attempted on thread "+C+", which does not point to a valid thread, or does not exist anymore!"),ha.ESRCH;var ge=Atomics.load(l(),C+64>>2);if(ge)return z("Attempted to join thread "+C+", which was already detached!"),ha.EINVAL;for(L&&cg();;){var fe=Atomics.load(l(),C+0>>2);if(fe==1){var me=Atomics.load(l(),C+4>>2);return $&&(i()[$>>2]=me),Atomics.store(l(),C+64>>2,1),k?postMessage({cmd:"cleanupThread",thread:C}):$p(C),0}if(!L)return ha.EBUSY;ug(),k||Hp(),Dp(C+0,fe,k?100:1)}}function pg(C,$){return dg(C,$,!0)}function Lp(C){if(k)return fa(6,1,C);switch(C){case 30:return 16384;case 85:var $=2147483648;return $/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return $0(28),-1}k||Re.initMainThreadBlock();var ma,hg=[null,D0,Pp,Fp,Op,Mp,Lp],fg={e:E0,r:R0,x:_0,b:P0,y:F0,j:O0,d:Dp,c:xc,f:Zo,p:M0,A:z0,u:B0,q:U0,v:Z0,i:Y0,s:J0,w:ag,l:Fp,n:Op,g:Mp,o:k0,a:te||u.wasmMemory,z:og,k:ig,h:lg,m:pg,t:Lp},Bb=w0(),Bp=u.___wasm_call_ctors=function(){return(Bp=u.___wasm_call_ctors=u.asm.B).apply(null,arguments)},mg=u._init=function(){return(mg=u._init=u.asm.C).apply(null,arguments)},gg=u._init_with_threads_count=function(){return(gg=u._init_with_threads_count=u.asm.D).apply(null,arguments)},Ag=u._get_threads_count=function(){return(Ag=u._get_threads_count=u.asm.E).apply(null,arguments)},yg=u._register_tensor=function(){return(yg=u._register_tensor=u.asm.F).apply(null,arguments)},xg=u._dispose_data=function(){return(xg=u._dispose_data=u.asm.G).apply(null,arguments)},bg=u._dispose=function(){return(bg=u._dispose=u.asm.H).apply(null,arguments)},vg=u._Abs=function(){return(vg=u._Abs=u.asm.I).apply(null,arguments)},wg=u._Add=function(){return(wg=u._Add=u.asm.J).apply(null,arguments)},kg=u._AddN=function(){return(kg=u._AddN=u.asm.K).apply(null,arguments)},Ig=u._All=function(){return(Ig=u._All=u.asm.L).apply(null,arguments)},Sg=u._Any=function(){return(Sg=u._Any=u.asm.M).apply(null,arguments)},Cg=u._ArgMax=function(){return(Cg=u._ArgMax=u.asm.N).apply(null,arguments)},Tg=u._AvgPool=function(){return(Tg=u._AvgPool=u.asm.O).apply(null,arguments)},Ng=u._BatchMatMul=function(){return(Ng=u._BatchMatMul=u.asm.P).apply(null,arguments)},Eg=u._Ceil=function(){return(Eg=u._Ceil=u.asm.Q).apply(null,arguments)},Rg=u._ClipByValue=function(){return(Rg=u._ClipByValue=u.asm.R).apply(null,arguments)},$g=u._Conv2D=function(){return($g=u._Conv2D=u.asm.S).apply(null,arguments)},Wp=u._Conv2DBackpropInput=function(){return(Wp=u._Conv2DBackpropInput=u.asm.T).apply(null,arguments)},Vp=u._Cos=function(){return(Vp=u._Cos=u.asm.U).apply(null,arguments)},kc=u._Cosh=function(){return(kc=u._Cosh=u.asm.V).apply(null,arguments)},Dl=u._CropAndResize=function(){return(Dl=u._CropAndResize=u.asm.W).apply(null,arguments)},Dg=u._Cumsum=function(){return(Dg=u._Cumsum=u.asm.X).apply(null,arguments)},Ic=u._DepthToSpace=function(){return(Ic=u._DepthToSpace=u.asm.Y).apply(null,arguments)},re=u._DepthwiseConv2dNative=function(){return(re=u._DepthwiseConv2dNative=u.asm.Z).apply(null,arguments)},oe=u._Elu=function(){return(oe=u._Elu=u.asm._).apply(null,arguments)},ke=u._Equal=function(){return(ke=u._Equal=u.asm.$).apply(null,arguments)},it=u._Exp=function(){return(it=u._Exp=u.asm.aa).apply(null,arguments)},Lt=u._FlipLeftRight=function(){return(Lt=u._FlipLeftRight=u.asm.ba).apply(null,arguments)},Rt=u._Floor=function(){return(Rt=u._Floor=u.asm.ca).apply(null,arguments)},Je=u._FloorDiv=function(){return(Je=u._FloorDiv=u.asm.da).apply(null,arguments)},Qe=u._FusedBatchNorm=function(){return(Qe=u._FusedBatchNorm=u.asm.ea).apply(null,arguments)},In=u._FusedConv2D=function(){return(In=u._FusedConv2D=u.asm.fa).apply(null,arguments)},Vr=u._FusedDepthwiseConv2D=function(){return(Vr=u._FusedDepthwiseConv2D=u.asm.ga).apply(null,arguments)},Ur=u._Gather=function(){return(Ur=u._Gather=u.asm.ha).apply(null,arguments)},Up=u._GatherNd=function(){return(Up=u._GatherNd=u.asm.ia).apply(null,arguments)},Sc=u._Greater=function(){return(Sc=u._Greater=u.asm.ja).apply(null,arguments)},ps=u._GreaterEqual=function(){return(ps=u._GreaterEqual=u.asm.ka).apply(null,arguments)},ga=u._LeakyRelu=function(){return(ga=u._LeakyRelu=u.asm.la).apply(null,arguments)},Gp=u._Less=function(){return(Gp=u._Less=u.asm.ma).apply(null,arguments)},IT=u._LessEqual=function(){return(IT=u._LessEqual=u.asm.na).apply(null,arguments)},ST=u._Log=function(){return(ST=u._Log=u.asm.oa).apply(null,arguments)},CT=u._LogicalAnd=function(){return(CT=u._LogicalAnd=u.asm.pa).apply(null,arguments)},TT=u._Max=function(){return(TT=u._Max=u.asm.qa).apply(null,arguments)},NT=u._MaxPool=function(){return(NT=u._MaxPool=u.asm.ra).apply(null,arguments)},ET=u._Maximum=function(){return(ET=u._Maximum=u.asm.sa).apply(null,arguments)},RT=u._Mean=function(){return(RT=u._Mean=u.asm.ta).apply(null,arguments)},$T=u._Min=function(){return($T=u._Min=u.asm.ua).apply(null,arguments)},DT=u._Minimum=function(){return(DT=u._Minimum=u.asm.va).apply(null,arguments)},_T=u._MirrorPad=function(){return(_T=u._MirrorPad=u.asm.wa).apply(null,arguments)},PT=u._Multiply=function(){return(PT=u._Multiply=u.asm.xa).apply(null,arguments)},FT=u._Neg=function(){return(FT=u._Neg=u.asm.ya).apply(null,arguments)},OT=u._NonMaxSuppressionV3=function(){return(OT=u._NonMaxSuppressionV3=u.asm.za).apply(null,arguments)},MT=u._NonMaxSuppressionV4=function(){return(MT=u._NonMaxSuppressionV4=u.asm.Aa).apply(null,arguments)},zT=u._NonMaxSuppressionV5=function(){return(zT=u._NonMaxSuppressionV5=u.asm.Ba).apply(null,arguments)},LT=u._NotEqual=function(){return(LT=u._NotEqual=u.asm.Ca).apply(null,arguments)},BT=u._OneHot=function(){return(BT=u._OneHot=u.asm.Da).apply(null,arguments)},WT=u._PadV2=function(){return(WT=u._PadV2=u.asm.Ea).apply(null,arguments)},VT=u._Pow=function(){return(VT=u._Pow=u.asm.Fa).apply(null,arguments)},UT=u._Prelu=function(){return(UT=u._Prelu=u.asm.Ga).apply(null,arguments)},GT=u._Prod=function(){return(GT=u._Prod=u.asm.Ha).apply(null,arguments)},HT=u._RealDiv=function(){return(HT=u._RealDiv=u.asm.Ia).apply(null,arguments)},jT=u._Relu=function(){return(jT=u._Relu=u.asm.Ja).apply(null,arguments)},qT=u._Relu6=function(){return(qT=u._Relu6=u.asm.Ka).apply(null,arguments)},XT=u._ResizeBilinear=function(){return(XT=u._ResizeBilinear=u.asm.La).apply(null,arguments)},KT=u._Reverse=function(){return(KT=u._Reverse=u.asm.Ma).apply(null,arguments)},ZT=u._RotateWithOffset=function(){return(ZT=u._RotateWithOffset=u.asm.Na).apply(null,arguments)},YT=u._Round=function(){return(YT=u._Round=u.asm.Oa).apply(null,arguments)},JT=u._Rsqrt=function(){return(JT=u._Rsqrt=u.asm.Pa).apply(null,arguments)},QT=u._ScatterNd=function(){return(QT=u._ScatterNd=u.asm.Qa).apply(null,arguments)},eN=u._SelectV2=function(){return(eN=u._SelectV2=u.asm.Ra).apply(null,arguments)},tN=u._Sigmoid=function(){return(tN=u._Sigmoid=u.asm.Sa).apply(null,arguments)},nN=u._Sin=function(){return(nN=u._Sin=u.asm.Ta).apply(null,arguments)},sN=u._Softmax=function(){return(sN=u._Softmax=u.asm.Ua).apply(null,arguments)},rN=u._Sqrt=function(){return(rN=u._Sqrt=u.asm.Va).apply(null,arguments)},aN=u._Square=function(){return(aN=u._Square=u.asm.Wa).apply(null,arguments)},oN=u._SquaredDifference=function(){return(oN=u._SquaredDifference=u.asm.Xa).apply(null,arguments)},iN=u._Step=function(){return(iN=u._Step=u.asm.Ya).apply(null,arguments)},lN=u._StridedSlice=function(){return(lN=u._StridedSlice=u.asm.Za).apply(null,arguments)},uN=u._Sub=function(){return(uN=u._Sub=u.asm._a).apply(null,arguments)},cN=u._Sum=function(){return(cN=u._Sum=u.asm.$a).apply(null,arguments)},dN=u._Tan=function(){return(dN=u._Tan=u.asm.ab).apply(null,arguments)},pN=u._Tanh=function(){return(pN=u._Tanh=u.asm.bb).apply(null,arguments)},hN=u._Tile=function(){return(hN=u._Tile=u.asm.cb).apply(null,arguments)},fN=u._TopK=function(){return(fN=u._TopK=u.asm.db).apply(null,arguments)},mN=u._Transform=function(){return(mN=u._Transform=u.asm.eb).apply(null,arguments)},gN=u._Transpose=function(){return(gN=u._Transpose=u.asm.fb).apply(null,arguments)},AN=u.__FusedMatMul=function(){return(AN=u.__FusedMatMul=u.asm.gb).apply(null,arguments)},Yo=u._malloc=function(){return(Yo=u._malloc=u.asm.hb).apply(null,arguments)},Cc=u._free=function(){return(Cc=u._free=u.asm.ib).apply(null,arguments)},Wb=u.___errno_location=function(){return(Wb=u.___errno_location=u.asm.jb).apply(null,arguments)},Vb=u._emscripten_get_global_libc=function(){return(Vb=u._emscripten_get_global_libc=u.asm.lb).apply(null,arguments)},Aa=u._pthread_self=function(){return(Aa=u._pthread_self=u.asm.mb).apply(null,arguments)},Ub=u.___pthread_tsd_run_dtors=function(){return(Ub=u.___pthread_tsd_run_dtors=u.asm.nb).apply(null,arguments)},Hp=u._emscripten_main_thread_process_queued_calls=function(){return(Hp=u._emscripten_main_thread_process_queued_calls=u.asm.ob).apply(null,arguments)},yN=u._emscripten_current_thread_process_queued_calls=function(){return(yN=u._emscripten_current_thread_process_queued_calls=u.asm.pb).apply(null,arguments)},Gb=u._emscripten_register_main_browser_thread_id=function(){return(Gb=u._emscripten_register_main_browser_thread_id=u.asm.qb).apply(null,arguments)},Hb=u._emscripten_main_browser_thread_id=function(){return(Hb=u._emscripten_main_browser_thread_id=u.asm.rb).apply(null,arguments)},jb=u.__emscripten_do_dispatch_to_thread=function(){return(jb=u.__emscripten_do_dispatch_to_thread=u.asm.sb).apply(null,arguments)},qb=u._emscripten_sync_run_in_main_thread_4=function(){return(qb=u._emscripten_sync_run_in_main_thread_4=u.asm.tb).apply(null,arguments)},Xb=u._emscripten_run_in_main_runtime_thread_js=function(){return(Xb=u._emscripten_run_in_main_runtime_thread_js=u.asm.ub).apply(null,arguments)},_g=u.__emscripten_call_on_thread=function(){return(_g=u.__emscripten_call_on_thread=u.asm.vb).apply(null,arguments)},xN=u._emscripten_tls_init=function(){return(xN=u._emscripten_tls_init=u.asm.wb).apply(null,arguments)},Pg=u.__emscripten_thread_init=function(){return(Pg=u.__emscripten_thread_init=u.asm.xb).apply(null,arguments)},Tc=u.stackSave=function(){return(Tc=u.stackSave=u.asm.yb).apply(null,arguments)},_l=u.stackRestore=function(){return(_l=u.stackRestore=u.asm.zb).apply(null,arguments)},Pl=u.stackAlloc=function(){return(Pl=u.stackAlloc=u.asm.Ab).apply(null,arguments)},Kb=u._emscripten_stack_set_limits=function(){return(Kb=u._emscripten_stack_set_limits=u.asm.Bb).apply(null,arguments)},Zb=u._memalign=function(){return(Zb=u._memalign=u.asm.Cb).apply(null,arguments)},Yb=u.__emscripten_allow_main_runtime_queued_calls=10064,Fl=u.__emscripten_main_thread_futex=10268;u.cwrap=Ue,u.PThread=Re,u.PThread=Re,u.wasmMemory=te,u.ExitStatus=Nc;var jp;function Nc(C){this.name="ExitStatus",this.message="Program terminated with exit("+C+")",this.status=C}Xo=function C(){jp||Fg(),jp||(Xo=C)};function Fg(C){if(C=C||m,Bs>0)return;if(k){d(u),Ip(),postMessage({cmd:"loaded"});return}if(kp(),Bs>0)return;function $(){jp||(jp=!0,u.calledRun=!0,!ce&&(Ip(),Sp(),d(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),Cp()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),$()},1)):$()}u.run=Fg;function bN(C,$){if(!($&&J&&C===0)){if(!$&&k)throw postMessage({cmd:"exitProcess",returnCode:C}),new Nc(C);J||(Re.terminateAllThreads(),xe=C,Qn(),u.onExit&&u.onExit(C),ce=!0),A(C,new Nc(C))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return k&&(J=!1,Re.initWorker()),Fg(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),WN=ts({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(re,oe){o=re,i=oe});var l={},c;for(c in a)a.hasOwnProperty(c)&&(l[c]=a[c]);var u=[],d="./this.program",p=function(re,oe){throw oe},h=!1,f=!1,m=!1,g=!1;h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!m&&!f;var A="";function y(re){return a.locateFile?a.locateFile(re,A):A+re}var x,b,w,k,S,E;m?(f?A=Ws("path").dirname(A)+"/":A=__dirname+"/",x=function(oe,ke){return S||(S=Ws("fs")),E||(E=Ws("path")),oe=E.normalize(oe),S.readFileSync(oe,ke?null:"utf8")},w=function(oe){var ke=x(oe,!0);return ke.buffer||(ke=new Uint8Array(ke)),H(ke.buffer),ke},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(re){if(!(re instanceof Dg))throw re}),process.on("unhandledRejection",sr),p=function(re){process.exit(re)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(oe){return read(oe)}),w=function(oe){var ke;return typeof readbuffer=="function"?new Uint8Array(readbuffer(oe)):(ke=read(oe,"binary"),H(typeof ke=="object"),ke)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(p=function(re){quit(re)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||f)&&(f?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),s&&(A=s),A.indexOf("blob:")!==0?A=A.substr(0,A.lastIndexOf("/")+1):A="",x=function(re){var oe=new XMLHttpRequest;return oe.open("GET",re,!1),oe.send(null),oe.responseText},f&&(w=function(re){var oe=new XMLHttpRequest;return oe.open("GET",re,!1),oe.responseType="arraybuffer",oe.send(null),new Uint8Array(oe.response)}),b=function(re,oe,ke){var it=new XMLHttpRequest;it.open("GET",re,!0),it.responseType="arraybuffer",it.onload=function(){if(it.status==200||it.status==0&&it.response){oe(it.response);return}ke()},it.onerror=ke,it.send(null)},k=function(re){document.title=re});var P=a.print||console.log.bind(console),F=a.printErr||console.warn.bind(console);for(c in l)l.hasOwnProperty(c)&&(a[c]=l[c]);l=null,a.arguments&&(u=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(p=a.quit);var R;a.wasmBinary&&(R=a.wasmBinary);var _=a.noExitRuntime||!0;typeof WebAssembly!="object"&&sr("no native wasm support detected");var T,M=!1,U;function H(re,oe){re||sr("Assertion failed: "+oe)}function z(re){var oe=a["_"+re];return H(oe,"Cannot call unknown function "+re+", make sure it is exported"),oe}function X(re,oe,ke,it,Lt){var Rt={string:function(ps){var ga=0;if(ps!=null&&ps!==0){var Gp=(ps.length<<2)+1;ga=kc(Gp),te(ps,ga,Gp)}return ga},array:function(ps){var ga=kc(ps.length);return ue(ps,ga),ga}};function Je(ps){return oe==="string"?ne(ps):oe==="boolean"?Boolean(ps):ps}var Qe=z(re),In=[],Vr=0;if(it)for(var Ur=0;Ur<it.length;Ur++){var Up=Rt[ke[Ur]];Up?(Vr===0&&(Vr=Wp()),In[Ur]=Up(it[Ur])):In[Ur]=it[Ur]}var Sc=Qe.apply(null,In);return Sc=Je(Sc),Vr!==0&&Vp(Vr),Sc}function ee(re,oe,ke,it){ke=ke||[];var Lt=ke.every(function(Je){return Je==="number"}),Rt=oe!=="string";return Rt&&Lt&&!it?z(re):function(){return X(re,oe,ke,arguments,it)}}var Y=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function se(re,oe,ke){for(var it=oe+ke,Lt=oe;re[Lt]&&!(Lt>=it);)++Lt;if(Lt-oe>16&&re.subarray&&Y)return Y.decode(re.subarray(oe,Lt));for(var Rt="";oe<Lt;){var Je=re[oe++];if(!(Je&128)){Rt+=String.fromCharCode(Je);continue}var Qe=re[oe++]&63;if((Je&224)==192){Rt+=String.fromCharCode((Je&31)<<6|Qe);continue}var In=re[oe++]&63;if((Je&240)==224?Je=(Je&15)<<12|Qe<<6|In:Je=(Je&7)<<18|Qe<<12|In<<6|re[oe++]&63,Je<65536)Rt+=String.fromCharCode(Je);else{var Vr=Je-65536;Rt+=String.fromCharCode(55296|Vr>>10,56320|Vr&1023)}}return Rt}function ne(re,oe){return re?se(Ce,re,oe):""}function J(re,oe,ke,it){if(!(it>0))return 0;for(var Lt=ke,Rt=ke+it-1,Je=0;Je<re.length;++Je){var Qe=re.charCodeAt(Je);if(Qe>=55296&&Qe<=57343){var In=re.charCodeAt(++Je);Qe=65536+((Qe&1023)<<10)|In&1023}if(Qe<=127){if(ke>=Rt)break;oe[ke++]=Qe}else if(Qe<=2047){if(ke+1>=Rt)break;oe[ke++]=192|Qe>>6,oe[ke++]=128|Qe&63}else if(Qe<=65535){if(ke+2>=Rt)break;oe[ke++]=224|Qe>>12,oe[ke++]=128|Qe>>6&63,oe[ke++]=128|Qe&63}else{if(ke+3>=Rt)break;oe[ke++]=240|Qe>>18,oe[ke++]=128|Qe>>12&63,oe[ke++]=128|Qe>>6&63,oe[ke++]=128|Qe&63}}return oe[ke]=0,ke-Lt}function te(re,oe,ke){return J(re,Ce,oe,ke)}function ue(re,oe){we.set(re,oe)}function ce(re,oe){return re%oe>0&&(re+=oe-re%oe),re}var xe,we,Ce,Oe,Ue,Xe,rt,ft,ut;function ct(re){xe=re,a.HEAP8=we=new Int8Array(re),a.HEAP16=Oe=new Int16Array(re),a.HEAP32=Xe=new Int32Array(re),a.HEAPU8=Ce=new Uint8Array(re),a.HEAPU16=Ue=new Uint16Array(re),a.HEAPU32=rt=new Uint32Array(re),a.HEAPF32=ft=new Float32Array(re),a.HEAPF64=ut=new Float64Array(re)}var At=a.INITIAL_MEMORY||16777216,yt,Et=[],Pt=[],Jn=[],wn=[],nr=!1;Pt.push({func:function(){Ep()}});function On(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)kn(a.preRun.shift());Bs(Et)}function ds(){nr=!0,Bs(Pt)}function Ls(){Bs(Jn)}function Is(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)br(a.postRun.shift());Bs(wn)}function kn(re){Et.unshift(re)}function br(re){wn.unshift(re)}var Rn=0,vr=null,wr=null;function pa(re){Rn++,a.monitorRunDependencies&&a.monitorRunDependencies(Rn)}function Ac(re){if(Rn--,a.monitorRunDependencies&&a.monitorRunDependencies(Rn),Rn==0&&(vr!==null&&(clearInterval(vr),vr=null),wr)){var oe=wr;wr=null,oe()}}a.preloadedImages={},a.preloadedAudios={};function sr(re){a.onAbort&&a.onAbort(re),re+="",F(re),M=!0,U=1,re="abort("+re+"). Build with -s ASSERTIONS=1 for more info.";var oe=new WebAssembly.RuntimeError(re);throw i(oe),oe}function wp(re,oe){return String.prototype.startsWith?re.startsWith(oe):re.indexOf(oe)===0}var f0="data:application/octet-stream;base64,";function kp(re){return wp(re,f0)}var Ip="file://";function Sp(re){return wp(re,Ip)}var Qn="tfjs-backend-wasm.wasm";kp(Qn)||(Qn=y(Qn));function Cp(re){try{if(re==Qn&&R)return new Uint8Array(R);if(w)return w(re);throw"both async and sync fetching of the wasm failed"}catch(oe){sr(oe)}}function m0(){if(!R&&(h||f)){if(typeof fetch=="function"&&!Sp(Qn))return fetch(Qn,{credentials:"same-origin"}).then(function(re){if(!re.ok)throw"failed to load wasm binary file at '"+Qn+"'";return re.arrayBuffer()}).catch(function(){return Cp(Qn)});if(b)return new Promise(function(re,oe){b(Qn,function(ke){re(new Uint8Array(ke))},oe)})}return Promise.resolve().then(function(){return Cp(Qn)})}function g0(){var re={a:es};function oe(Je,Qe){var In=Je.exports;a.asm=In,T=a.asm.h,ct(T.buffer),yt=a.asm.Sa,Ac("wasm-instantiate")}pa("wasm-instantiate");function ke(Je){oe(Je.instance)}function it(Je){return m0().then(function(Qe){return WebAssembly.instantiate(Qe,re)}).then(Je,function(Qe){F("failed to asynchronously prepare wasm: "+Qe),sr(Qe)})}function Lt(){return!R&&typeof WebAssembly.instantiateStreaming=="function"&&!kp(Qn)&&!Sp(Qn)&&typeof fetch=="function"?fetch(Qn,{credentials:"same-origin"}).then(function(Je){var Qe=WebAssembly.instantiateStreaming(Je,re);return Qe.then(ke,function(In){return F("wasm streaming compile failed: "+In),F("falling back to ArrayBuffer instantiation"),it(ke)})}):it(ke)}if(a.instantiateWasm)try{var Rt=a.instantiateWasm(re,oe);return Rt}catch(Je){return F("Module.instantiateWasm callback failed with error: "+Je),!1}return Lt().catch(i),{}}function Bs(re){for(;re.length>0;){var oe=re.shift();if(typeof oe=="function"){oe(a);continue}var ke=oe.func;typeof ke=="number"?oe.arg===void 0?yt.get(ke)():yt.get(ke)(oe.arg):ke(oe.arg===void 0?null:oe.arg)}}function yc(){sr()}function Xo(re,oe,ke){Ce.copyWithin(re,oe,oe+ke)}function A0(){return Ce.length}function y0(re){try{return T.grow(re-xe.byteLength+65535>>>16),ct(T.buffer),1}catch(oe){}}function Wr(re){var oe=A0(),ke=2147483648;if(re>ke)return!1;for(var it=1;it<=4;it*=2){var Lt=oe*(1+.2/it);Lt=Math.min(Lt,re+100663296);var Rt=Math.min(ke,ce(Math.max(re,Lt),65536)),Je=y0(Rt);if(Je)return!0}return!1}var Ko={mappings:{},buffers:[null,[],[]],printChar:function(re,oe){var ke=Ko.buffers[re];oe===0||oe===10?((re===1?P:F)(se(ke,0)),ke.length=0):ke.push(oe)},varargs:void 0,get:function(){Ko.varargs+=4;var re=Xe[Ko.varargs-4>>2];return re},getStr:function(re){var oe=ne(re);return oe},get64:function(re,oe){return re}};function x0(re){return 0}function Tp(re,oe,ke,it,Lt){}function b0(re,oe,ke,it){for(var Lt=0,Rt=0;Rt<ke;Rt++){for(var Je=Xe[oe+Rt*8>>2],Qe=Xe[oe+(Rt*8+4)>>2],In=0;In<Qe;In++)Ko.printChar(re,Ce[Je+In]);Lt+=Qe}return Xe[it>>2]=Lt,0}function Np(){return 28}var es={a:yc,d:Xo,e:Wr,f:x0,c:Tp,b:b0,g:Np},v0=g0(),Ep=a.___wasm_call_ctors=function(){return(Ep=a.___wasm_call_ctors=a.asm.i).apply(null,arguments)},w0=a._init=function(){return(w0=a._init=a.asm.j).apply(null,arguments)},Rp=a._init_with_threads_count=function(){return(Rp=a._init_with_threads_count=a.asm.k).apply(null,arguments)},k0=a._get_threads_count=function(){return(k0=a._get_threads_count=a.asm.l).apply(null,arguments)},Rl=a._register_tensor=function(){return(Rl=a._register_tensor=a.asm.m).apply(null,arguments)},ha=a._dispose_data=function(){return(ha=a._dispose_data=a.asm.n).apply(null,arguments)},xc=a._dispose=function(){return(xc=a._dispose=a.asm.o).apply(null,arguments)},I0=a._Abs=function(){return(I0=a._Abs=a.asm.p).apply(null,arguments)},S0=a._Add=function(){return(S0=a._Add=a.asm.q).apply(null,arguments)},$p=a._AddN=function(){return($p=a._AddN=a.asm.r).apply(null,arguments)},Re=a._All=function(){return(Re=a._All=a.asm.s).apply(null,arguments)},C0=a._Any=function(){return(C0=a._Any=a.asm.t).apply(null,arguments)},T0=a._ArgMax=function(){return(T0=a._ArgMax=a.asm.u).apply(null,arguments)},N0=a._AvgPool=function(){return(N0=a._AvgPool=a.asm.v).apply(null,arguments)},E0=a._BatchMatMul=function(){return(E0=a._BatchMatMul=a.asm.w).apply(null,arguments)},R0=a._Ceil=function(){return(R0=a._Ceil=a.asm.x).apply(null,arguments)},Zo=a._ClipByValue=function(){return(Zo=a._ClipByValue=a.asm.y).apply(null,arguments)},$0=a._Conv2D=function(){return($0=a._Conv2D=a.asm.z).apply(null,arguments)},D0=a._Conv2DBackpropInput=function(){return(D0=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},_0=a._Cos=function(){return(_0=a._Cos=a.asm.B).apply(null,arguments)},P0=a._Cosh=function(){return(P0=a._Cosh=a.asm.C).apply(null,arguments)},F0=a._CropAndResize=function(){return(F0=a._CropAndResize=a.asm.D).apply(null,arguments)},O0=a._Cumsum=function(){return(O0=a._Cumsum=a.asm.E).apply(null,arguments)},Dp=a._DepthToSpace=function(){return(Dp=a._DepthToSpace=a.asm.F).apply(null,arguments)},M0=a._DepthwiseConv2dNative=function(){return(M0=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},z0=a._Elu=function(){return(z0=a._Elu=a.asm.H).apply(null,arguments)},fa=a._Equal=function(){return(fa=a._Equal=a.asm.I).apply(null,arguments)},bc=a._Exp=function(){return(bc=a._Exp=a.asm.J).apply(null,arguments)},vc=a._FlipLeftRight=function(){return(vc=a._FlipLeftRight=a.asm.K).apply(null,arguments)},L0=a._Floor=function(){return(L0=a._Floor=a.asm.L).apply(null,arguments)},B0=a._FloorDiv=function(){return(B0=a._FloorDiv=a.asm.M).apply(null,arguments)},W0=a._FusedBatchNorm=function(){return(W0=a._FusedBatchNorm=a.asm.N).apply(null,arguments)},V0=a._FusedConv2D=function(){return(V0=a._FusedConv2D=a.asm.O).apply(null,arguments)},U0=a._FusedDepthwiseConv2D=function(){return(U0=a._FusedDepthwiseConv2D=a.asm.P).apply(null,arguments)},Ge=a._Gather=function(){return(Ge=a._Gather=a.asm.Q).apply(null,arguments)},G0=a._GatherNd=function(){return(G0=a._GatherNd=a.asm.R).apply(null,arguments)},H0=a._Greater=function(){return(H0=a._Greater=a.asm.S).apply(null,arguments)},j0=a._GreaterEqual=function(){return(j0=a._GreaterEqual=a.asm.T).apply(null,arguments)},q0=a._LeakyRelu=function(){return(q0=a._LeakyRelu=a.asm.U).apply(null,arguments)},X0=a._Less=function(){return(X0=a._Less=a.asm.V).apply(null,arguments)},K0=a._LessEqual=function(){return(K0=a._LessEqual=a.asm.W).apply(null,arguments)},wc=a._Log=function(){return(wc=a._Log=a.asm.X).apply(null,arguments)},_p=a._LogicalAnd=function(){return(_p=a._LogicalAnd=a.asm.Y).apply(null,arguments)},Pp=a._Max=function(){return(Pp=a._Max=a.asm.Z).apply(null,arguments)},Z0=a._MaxPool=function(){return(Z0=a._MaxPool=a.asm._).apply(null,arguments)},Y0=a._Maximum=function(){return(Y0=a._Maximum=a.asm.$).apply(null,arguments)},J0=a._Mean=function(){return(J0=a._Mean=a.asm.aa).apply(null,arguments)},Q0=a._Min=function(){return(Q0=a._Min=a.asm.ba).apply(null,arguments)},eg=a._Minimum=function(){return(eg=a._Minimum=a.asm.ca).apply(null,arguments)},tg=a._MirrorPad=function(){return(tg=a._MirrorPad=a.asm.da).apply(null,arguments)},ng=a._Multiply=function(){return(ng=a._Multiply=a.asm.ea).apply(null,arguments)},dt=a._Neg=function(){return(dt=a._Neg=a.asm.fa).apply(null,arguments)},sg=a._NonMaxSuppressionV3=function(){return(sg=a._NonMaxSuppressionV3=a.asm.ga).apply(null,arguments)},rg=a._NonMaxSuppressionV4=function(){return(rg=a._NonMaxSuppressionV4=a.asm.ha).apply(null,arguments)},ag=a._NonMaxSuppressionV5=function(){return(ag=a._NonMaxSuppressionV5=a.asm.ia).apply(null,arguments)},$l=a._NotEqual=function(){return($l=a._NotEqual=a.asm.ja).apply(null,arguments)},Fp=a._OneHot=function(){return(Fp=a._OneHot=a.asm.ka).apply(null,arguments)},Op=a._PadV2=function(){return(Op=a._PadV2=a.asm.la).apply(null,arguments)},Mp=a._Pow=function(){return(Mp=a._Pow=a.asm.ma).apply(null,arguments)},og=a._Prelu=function(){return(og=a._Prelu=a.asm.na).apply(null,arguments)},ig=a._Prod=function(){return(ig=a._Prod=a.asm.oa).apply(null,arguments)},zp=a._RealDiv=function(){return(zp=a._RealDiv=a.asm.pa).apply(null,arguments)},lg=a._Relu=function(){return(lg=a._Relu=a.asm.qa).apply(null,arguments)},ug=a._Relu6=function(){return(ug=a._Relu6=a.asm.ra).apply(null,arguments)},cg=a._ResizeBilinear=function(){return(cg=a._ResizeBilinear=a.asm.sa).apply(null,arguments)},dg=a._Reverse=function(){return(dg=a._Reverse=a.asm.ta).apply(null,arguments)},pg=a._RotateWithOffset=function(){return(pg=a._RotateWithOffset=a.asm.ua).apply(null,arguments)},Lp=a._Round=function(){return(Lp=a._Round=a.asm.va).apply(null,arguments)},ma=a._Rsqrt=function(){return(ma=a._Rsqrt=a.asm.wa).apply(null,arguments)},hg=a._ScatterNd=function(){return(hg=a._ScatterNd=a.asm.xa).apply(null,arguments)},fg=a._SelectV2=function(){return(fg=a._SelectV2=a.asm.ya).apply(null,arguments)},Bb=a._Sigmoid=function(){return(Bb=a._Sigmoid=a.asm.za).apply(null,arguments)},Bp=a._Sin=function(){return(Bp=a._Sin=a.asm.Aa).apply(null,arguments)},mg=a._Softmax=function(){return(mg=a._Softmax=a.asm.Ba).apply(null,arguments)},gg=a._Sqrt=function(){return(gg=a._Sqrt=a.asm.Ca).apply(null,arguments)},Ag=a._Square=function(){return(Ag=a._Square=a.asm.Da).apply(null,arguments)},yg=a._SquaredDifference=function(){return(yg=a._SquaredDifference=a.asm.Ea).apply(null,arguments)},xg=a._Step=function(){return(xg=a._Step=a.asm.Fa).apply(null,arguments)},bg=a._StridedSlice=function(){return(bg=a._StridedSlice=a.asm.Ga).apply(null,arguments)},vg=a._Sub=function(){return(vg=a._Sub=a.asm.Ha).apply(null,arguments)},wg=a._Sum=function(){return(wg=a._Sum=a.asm.Ia).apply(null,arguments)},kg=a._Tan=function(){return(kg=a._Tan=a.asm.Ja).apply(null,arguments)},Ig=a._Tanh=function(){return(Ig=a._Tanh=a.asm.Ka).apply(null,arguments)},Sg=a._Tile=function(){return(Sg=a._Tile=a.asm.La).apply(null,arguments)},Cg=a._TopK=function(){return(Cg=a._TopK=a.asm.Ma).apply(null,arguments)},Tg=a._Transform=function(){return(Tg=a._Transform=a.asm.Na).apply(null,arguments)},Ng=a._Transpose=function(){return(Ng=a._Transpose=a.asm.Oa).apply(null,arguments)},Eg=a.__FusedMatMul=function(){return(Eg=a.__FusedMatMul=a.asm.Pa).apply(null,arguments)},Rg=a._malloc=function(){return(Rg=a._malloc=a.asm.Qa).apply(null,arguments)},$g=a._free=function(){return($g=a._free=a.asm.Ra).apply(null,arguments)},Wp=a.stackSave=function(){return(Wp=a.stackSave=a.asm.Ta).apply(null,arguments)},Vp=a.stackRestore=function(){return(Vp=a.stackRestore=a.asm.Ua).apply(null,arguments)},kc=a.stackAlloc=function(){return(kc=a.stackAlloc=a.asm.Va).apply(null,arguments)};a.cwrap=ee;var Dl;function Dg(re){this.name="ExitStatus",this.message="Program terminated with exit("+re+")",this.status=re}wr=function re(){Dl||Ic(),Dl||(wr=re)};function Ic(re){if(re=re||u,Rn>0||(On(),Rn>0))return;function oe(){Dl||(Dl=!0,a.calledRun=!0,!M&&(ds(),Ls(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),Is()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),oe()},1)):oe()}if(a.run=Ic,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return Ic(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),VN=1e-7,UN=1e-4,Dc=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Ll=class{refCount(e){return Vs("refCount")}incRef(e){return Vs("incRef")}timerAvailable(){return!0}time(e){return Vs("time")}read(e){return Vs("read")}readSync(e){return Vs("readSync")}numDataIds(){return Vs("numDataIds")}disposeData(e,t){return Vs("disposeData")}write(e,t,n){return Vs("write")}move(e,t,n,s,r){return Vs("move")}memory(){return Vs("memory")}floatPrecision(){return Vs("floatPrecision")}epsilon(){return this.floatPrecision()===32?VN:UN}dispose(){return Vs("dispose")}};function Vs(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function n5(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,Zp(e,t,n)}function GN(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,Zp(e,n,s),Zp(t,n,s)}function _c(e,t,n){return Math.max(e,Math.min(t,n))}function HN(e){return e%2==0?e:e+1}function Zp(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function jN(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function qN(e,t){let n=Math.random();return t*n+(1-n)*e}function XN(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function O(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function zn(e,t,n=""){O(Gr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ei(e){O(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function ti(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Dn(e)&&!n)for(let s=0;s<e.length;++s)ti(e[s],t,n);else t.push(e);return t}function Ut(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function KN(e){return e.length===0}function Gr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function mn(e){return e%1==0}function ZN(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function YN(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function JN(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return n5(t),t}function Pc(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function QN(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function eE(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function Us(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),O(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),O(e.every(s=>mn(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function s5(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:Us(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function r5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function a5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function o5(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function i5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function tE(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Dn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function zg(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function l5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function ba(e){return typeof e=="string"||e instanceof String}function u5(e){return typeof e=="boolean"}function c5(e){return typeof e=="number"}function Yp(e){return Array.isArray(e)?Yp(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":c5(e)?"float32":ba(e)?"string":u5(e)?"bool":"float32"}function va(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Jp(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Bl(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function d5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,c)=>l*c)*(s?2:1);for(let l=0;l<a;l++)r[l]=d5(e+l*i,o,n,s)}return r}function Wl(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return d5(0,e,t,n)}function Lg(e,t){let n=Qp(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function Qp(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function nE(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return Wl(e,new Float32Array(n));if(t==="int32")return Wl(e,new Int32Array(n));if(t==="bool")return Wl(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Bg(e){e.forEach(t=>{O(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function sE(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function rE(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function Wg(e){return e&&e.then&&typeof e.then=="function"}function kr(...e){K().getBool("IS_TEST")||K().getBool("PROD")||console.warn(...e)}function aE(...e){K().getBool("IS_TEST")||K().getBool("PROD")||console.log(...e)}var p5="tfjsflags",h5=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=oE,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&kr(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];kr(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Wg(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);p5 in e&&e[p5].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=lE(s,r)})}};function oE(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(iE(t,s[0],s[1]),s.join("="))),t}function iE(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function lE(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function K(){return Ir}var Ir=null;function uE(e){Ir=e}var Vg;function f5(){if(Vg==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Vg=e}return Vg}function cE(){let e=f5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Ug(e,t){let n=cE();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var ni="Abs",Vl="Acos",Ul="Acosh",Hr="Add",wa="AddN",Gl="All",Hl="Any",ka="ArgMax",jl="ArgMin",ql="Asin",Xl="Asinh",Kl="Atan",Zl="Atanh",Yl="Atan2",Ia="AvgPool",eh="AvgPoolGrad",Fc="AvgPool3D",th="AvgPool3DGrad",Sa="BatchMatMul",si="BatchToSpaceND",nh="Bincount",m5="BroadcastTo",sh="BroadcastArgs",Ca="Cast",Ta="Ceil",jr="ClipByValue",Oc="Complex",Mc="ComplexAbs",ri="Concat",Na="Conv2D",rh="Conv2DBackpropFilter",Ea="Conv2DBackpropInput",zc="Conv3D",ah="Conv3DBackpropFilterV2",oh="Conv3DBackpropInputV2",Ra="Cos",$a="Cosh",ai="Cumsum",oi="CropAndResize",ih="DenseBincount",ii="DepthToSpace",Da="DepthwiseConv2dNative",lh="DepthwiseConv2dNativeBackpropFilter",uh="DepthwiseConv2dNativeBackpropInput",ch="Diag",Lc="Dilation2D",dh="Dilation2DBackpropInput",ph="Dilation2DBackpropFilter",_a="RealDiv",Bc="Einsum",Pa="Elu",hh="EluGrad",Jl="Erf",li="Equal",Fa="Exp",ui="ExpandDims",ci="Expm1",fh="FFT",Ql="Fill",di="FlipLeftRight",Oa="Floor",Ma="FloorDiv",za="FusedBatchNorm",pi="GatherV2",hi="GatherNd",fi="Greater",La="GreaterEqual",Ba="Identity",mh="IFFT",Wc="Imag",eu="IsFinite",tu="IsInf",nu="IsNan",mi="LeakyRelu",gi="Less",Ai="LessEqual",gh="LinSpace",Wa="Log",su="Log1p",yi="LogicalAnd",ru="LogicalNot",Vc="LogicalOr",g5="LogSoftmax",Uc="LRN",Ah="LRNGrad",Va="Max",Ua="Maximum",Ga="MaxPool",yh="MaxPoolGrad",Gc="MaxPool3D",xh="MaxPool3DGrad",bh="MaxPoolWithArgmax",Ha="Mean",ja="Min",qa="Minimum",Xa="MirrorPad",au="Mod",vh="Multinomial",Ka="Multiply",xi="Neg",bi="NotEqual",vi="NonMaxSuppressionV3",ou="NonMaxSuppressionV4",wi="NonMaxSuppressionV5",ki="OnesLike",Ii="OneHot",Si="Pack",Za="PadV2",dE="Pool",Ya="Pow",Ja="Prelu",Ci="Prod",iu="Range",Hc="Real",lu="Reciprocal",Qa="Relu",Ti="Reshape",uu="ResizeNearestNeighbor",wh="ResizeNearestNeighborGrad",eo="ResizeBilinear",kh="ResizeBilinearGrad",to="Relu6",Ni="Reverse",Ei="Round",no="Rsqrt",Ri="ScatterNd",$i="Select",cu="Selu",Di="Slice",so="Sin",_i="Sinh",du="Sign",ro="Sigmoid",pu="Softplus",ao="Sqrt",oo="Sum",Pi="SpaceToBatchND",Fi="SplitV",io="Softmax",Ih="SparseFillEmptyRows",Sh="SparseReshape",Ch="SparseSegmentMean",Th="SparseSegmentSum",jc="SparseToDense",lo="SquaredDifference",hu="Square",Oi="StridedSlice",qc="StringNGrams",Nh="StringSplit",Eh="StringToHashBucketFast",uo="Sub",Mi="Tan",co="Tanh",qr="Tile",zi="TopK",Li="Transform",po="Transpose",Rh="Unique",Bi="Unpack",Xc="UnsortedSegmentSum",Wi="ZerosLike",ho="Step",Kc="FromPixels",Vi="RotateWithOffset",fo="_FusedMatMul",mo="FusedConv2D",go="FusedDepthwiseConv2D",fu=Ug("kernelRegistry",()=>new Map),Zc=Ug("gradRegistry",()=>new Map);function $h(e,t){let n=Hg(e,t);return fu.get(n)}function Gg(e){return Zc.get(e)}function Xr(e){let t=fu.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function Kr(e){let{kernelName:t,backendName:n}=e,s=Hg(t,n);fu.has(s)&&kr(`The kernel '${t}' for backend '${n}' is already registered`),fu.set(s,e)}function A5(e){let{kernelName:t}=e;Zc.has(t)&&K().getBool("DEBUG")&&kr(`Overriding the gradient for '${t}'`),Zc.set(t,e)}function pE(e,t){let n=Hg(e,t);if(!fu.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);fu.delete(n)}function hE(e){if(!Zc.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Zc.delete(e)}function fE(e,t){Xr(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});Kr(r)})}function Hg(e,t){return`${t}_${e}`}var v={};ze(v,{arraysEqual:()=>Gr,assert:()=>O,assertNonNegativeIntegerDimensions:()=>Bg,assertNonNull:()=>ei,assertShapesMatch:()=>zn,bytesFromStringArray:()=>l5,bytesPerElement:()=>zg,checkConversionForErrors:()=>o5,clamp:()=>_c,computeStrides:()=>Bl,createScalarValue:()=>bE,createShuffledIndices:()=>JN,decodeString:()=>Ph,distSquared:()=>XN,encodeString:()=>Qc,fetch:()=>wE,fingerPrint64:()=>xE,flatten:()=>ti,getArrayFromDType:()=>a5,getTypedArrayFromDType:()=>r5,hasEncodingLoss:()=>tE,hexToLong:()=>Yc,indexToLoc:()=>rE,inferDtype:()=>Yp,inferFromImplicitShape:()=>eE,isBoolean:()=>u5,isFunction:()=>va,isInt:()=>mn,isNumber:()=>c5,isPromise:()=>Wg,isScalarShape:()=>KN,isString:()=>ba,isTypedArray:()=>Dn,isValidDtype:()=>i5,locToIndex:()=>sE,makeOnesTypedArray:()=>Lg,makeZerosNestedTypedArray:()=>nE,makeZerosTypedArray:()=>Qp,nearestDivisor:()=>Jp,nearestLargerEven:()=>HN,now:()=>Jc,parseAxisParam:()=>Us,randUniform:()=>qN,repeatedTry:()=>QN,rightPad:()=>Pc,shuffle:()=>n5,shuffleCombo:()=>GN,sizeFromShape:()=>Ut,sizeToSquarishShape:()=>YN,squeezeShape:()=>s5,sum:()=>jN,swap:()=>Zp,tanh:()=>ZN,toNestedArray:()=>Wl,toTypedArray:()=>_h});var y5=Qo(EN()),Ui=y5.default||y5;function Yc(e){return Ui.fromString(e,!0,16)}var x5=Yc("c3a5c85c97cb3127"),Gi=Yc("b492b66fbe98f273"),Ln=Yc("9ae16a3b2f90404f");function jg(e){return e.xor(e.shru(47))}function b5(e,t,n){let s=e.slice(t,t+n);return Ui.fromBytes(Array.from(s),!0,!0)}function kt(e,t){return b5(e,t,8)}function v5(e,t){return b5(e,t,4)}function gn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Ao(e,t,n=Yc("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function mE(e,t,n,s,r,a){r=r.add(e),a=gn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(gn(r,44)),[r.add(s),a.add(o)]}function Dh(e,t,n,s){return mE(kt(e,t),kt(e,t+8),kt(e,t+16),kt(e,t+24),n,s)}function gE(e,t=e.length){if(t>=8){let n=Ln.add(t*2),s=kt(e,0).add(Ln),r=kt(e,t-8),a=gn(r,37).mul(n).add(s),o=gn(s,25).add(r).mul(n);return Ao(a,o,n)}if(t>=4){let n=Ln.add(t*2),s=v5(e,0);return Ao(s.shl(3).add(t),v5(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return jg(Ln.mul(a).xor(x5.mul(o))).mul(Ln)}return Ln}function AE(e,t=e.length){let n=Ln.add(t*2),s=kt(e,0).mul(Gi),r=kt(e,8),a=kt(e,t-8).mul(n),o=kt(e,t-16).mul(Ln);return Ao(gn(s.add(r),43).add(gn(a,30)).add(o),s.add(gn(r.add(Ln),18)).add(a),n)}function yE(e,t=e.length){let n=Ln.add(t*2),s=kt(e,0).mul(Ln),r=kt(e,8),a=kt(e,t-8).mul(n),o=kt(e,t-16).mul(Ln),i=gn(s.add(r),43).add(gn(a,30)).add(o),l=Ao(i,s.add(gn(r.add(Ln),18)).add(a),n),c=kt(e,16).mul(n),u=kt(e,24),d=i.add(kt(e,t-32)).mul(n),p=l.add(kt(e,t-24)).mul(n);return Ao(gn(c.add(u),43).add(gn(d,30)).add(p),c.add(gn(u.add(s),18)).add(d),n)}function xE(e,t=e.length){let n=Ui.fromNumber(81,!0);if(t<=32)return t<=16?gE(e,t):AE(e,t);if(t<=64)return yE(e,t);let s=n,r=n.mul(Gi).add(113),a=jg(r.mul(Ln).add(113)).mul(Ln),o=[Ui.UZERO,Ui.UZERO],i=[Ui.UZERO,Ui.UZERO];s=s.mul(Ln).add(kt(e,0));let l=0,c=(t-1>>6)*64,u=c+(t-1&63)-63;do s=gn(s.add(r).add(o[0]).add(kt(e,l+8)),37).mul(Gi),r=gn(r.add(o[1]).add(kt(e,l+48)),42).mul(Gi),s=s.xor(i[1]),r=r.add(o[0]).add(kt(e,l+40)),a=gn(a.add(i[0]),33).mul(Gi),o=Dh(e,l,o[1].mul(Gi),s.add(i[0])),i=Dh(e,l+32,a.add(i[1]),r.add(kt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==c);let d=Gi.add(a.and(255).shl(1));return l=u,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=gn(s.add(r).add(o[0]).add(kt(e,l+8)),37).mul(d),r=gn(r.add(o[1]).add(kt(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(kt(e,l+40))),a=gn(a.add(i[0]),33).mul(d),o=Dh(e,l,o[1].mul(d),s.add(i[0])),i=Dh(e,l+32,a.add(i[1]),r.add(kt(e,l+16))),[a,s]=[s,a],Ao(Ao(o[0],i[0],d).add(jg(r).mul(x5)).add(a),Ao(o[1],i[1],d).add(s),d)}function bE(e,t){return t==="string"?Qc(e):_h([e],t)}function vE(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function _h(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=ti(e)),K().getBool("DEBUG")&&o5(e,t),vE(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Jc(){return K().platform.now()}function wE(e,t){return K().platform.fetch(e,t)}function Qc(e,t="utf-8"){return t=t||"utf-8",K().platform.encode(e,t)}function Ph(e,t="utf-8"){return t=t||"utf-8",K().platform.decode(e,t)}var kE=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new SE)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=Jc();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Jc()-o})}if(K().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let c=s[l];c.data().then(u=>{IE(u,c.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function IE(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var SE=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?Pc(`${s}ms`,9):s.error,i=Pc(e,25),l=t.rank,c=t.size,u=Pc(t.shape.toString(),14),d="";for(let p in r){let h=r[p];if(h!=null){let f=h.shape||t.shape,m=f.length;d+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${u} %c${c} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function CE(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let d in u){let p=u[d],h=!1;for(let f=0;f<t.length;f++)if(s[p.id]){c.outputs.forEach(m=>s[m.id]=!0),h=!0,r[c.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let d=0;d<c.outputs.length;d++)if(a[c.outputs[d].id]){for(let p in u)a[u[p].id]=!0,o[c.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let c=e[l];if(r[c.id]&&o[c.id]){let u={};for(let p in c.inputs){let h=c.inputs[p];s[h.id]&&(u[p]=h)}let d=Object.assign({},c);d.inputs=u,d.outputs=c.outputs,i.push(d)}}return i}function TE(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let c=e[l.id];c!=null?o.push(c):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let c=n(()=>i[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=a.inputs[l];if(!Gr(c.shape,u.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let d=e[u.id];e[u.id]=s(d,c),d.dispose()}}}}var w5=20,ed=3,qg=7;function NE(e,t,n,s){let r=Bl(t),a=EE(e,t,n,r),o=t.length,i=Fh(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(c=>" "+c).join(`
|
|
`)),l.join(`
|
|
`)}function EE(e,t,n,s){let r=Ut(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?nd(e):e;if(i>1)for(let c=0;c<r/a;c++){let u=c*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],td(l[u+d],0,n).length)}return o}function td(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(qg))} + ${parseFloat(e[1].toFixed(qg))}j`:ba(e)?s=`'${e}'`:n==="bool"?s=k5(e):s=parseFloat(e.toFixed(qg)).toString(),Pc(s,t)}function k5(e){return e===0?"false":"true"}function Fh(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=nd(e);return[td(m[0],0,n)]}return n==="bool"?[k5(e[0])]:[e[0].toString()]}if(l===1){if(i>w5){let g=ed*o,A=Array.from(e.slice(0,g)),y=Array.from(e.slice((i-ed)*o,i*o));return n==="complex64"&&(A=nd(A),y=nd(y)),["["+A.map((x,b)=>td(x,r[b],n)).join(", ")+", ..., "+y.map((x,b)=>td(x,r[i-ed+b],n)).join(", ")+"]"]}let m=n==="complex64"?nd(e):Array.from(e);return["["+m.map((g,A)=>td(g,r[A],n)).join(", ")+"]"]}let c=t.slice(1),u=s.slice(1),d=s[0]*o,p=[];if(i>w5){for(let m=0;m<ed;m++){let g=m*d,A=g+d;p.push(...Fh(e.slice(g,A),c,n,u,r,!1))}p.push("...");for(let m=i-ed;m<i;m++){let g=m*d,A=g+d;p.push(...Fh(e.slice(g,A),c,n,u,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*d,A=g+d;p.push(...Fh(e.slice(g,A),c,n,u,r,m===i-1))}let h=l===2?",":"";p[0]="["+p[0]+h;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+h;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(a?"":f),p}function nd(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var sn=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Ut(e),n!=null){let s=n.length;O(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||a5(t,this.size),this.strides=Bl(e)}set(e,...t){t.length===0&&(t=[0]),O(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Sr().makeTensor(this.values,this.shape,this.dtype)}},Sr=null,mu=null,RE=null;function $E(e){Sr=e}function DE(e){mu=e}function _E(e){RE=e}var Ye=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Ut(e),this.strides=Bl(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return mu.buffer(this.shape,this.dtype,e)}bufferSync(){return mu.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Wl(this.shape,e,this.dtype==="complex64")}arraySync(){return Wl(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Sr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Ph(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Sr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Ph(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Sr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Sr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return mu.print(this,e)}clone(){return this.throwIfDisposed(),mu.clone(this)}toString(e=!1){let t=this.dataSync();return NE(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),mu.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Sr().makeVariable(this,e,t,n)}};Object.defineProperty(Ye,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function PE(){return Ug("Tensor",()=>Ye)}PE();var sd=class extends Ye{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Gr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Sr().disposeTensor(this),this.dataId=e.dataId,Sr().incRef(this,null)}dispose(){Sr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(sd,Symbol.hasInstance,{value:e=>e instanceof Ye&&e.assign!=null&&e.assign instanceof Function});var rr={};ze(rr,{assertTypesMatch:()=>I5,getTensorsInContainer:()=>Qg,isTensorInList:()=>OE,makeTypesMatch:()=>Ft});var Xg;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Xg||(Xg={}));var Kg;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Kg||(Kg={}));var Zg;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Zg||(Zg={}));var Yg;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Yg||(Yg={}));var Jg;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Jg||(Jg={}));var FE={float32:Yg,int32:Kg,bool:Zg,complex64:Jg};function Bn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return FE[e][t]}function rd(e){return Bn(e,"int32")}function Ft(e,t){if(e.dtype===t.dtype)return[e,t];let n=Bn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function I5(e,t){O(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function OE(e,t){return t.some(n=>n.id===e.id)}function Qg(e){let t=[],n=new Set;return S5(e,t,n),t}function S5(e,t,n){if(e==null)return;if(e instanceof Ye){t.push(e);return}if(!ME(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),S5(a,t,n))}}function ME(e){return Array.isArray(e)||typeof e=="object"}function e2(e){return e.kernelName!=null}var C5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},t2=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new C5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(kr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new kE(this.backendInstance),!0}setupRegisteredKernels(){Xr(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Xr(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Ll)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,kr(`Initialization of backend ${e} failed`),kr(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return kr(`Initialization of backend ${e} failed`),kr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return t2.nextTensorId++}nextVariableId(){return t2.nextVariableId++}clone(e){let t=B.runKernel(Ba,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return B.runKernel(Ca,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!($h(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=e2(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(e2(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=$h(h,this.backendName);O(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let A=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,A,y);let x=y.map(b=>{if(b.rank!=null)return b;let{dataId:w,shape:k,dtype:S}=b;return this.makeTensorFromDataId(w,k,S)});if(s){let b=this.getTensorsForGradient(h,f,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:c,attrs:u}=e,d=e2(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(l,c,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),s&&this.addTapeNode(l,c,t,d,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(h=>c[h]!=null?c[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=Gg(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(O(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,c)=>a[c]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&ba(e[0])&&(r=e.map(i=>Qc(i)));let a=s.write(r,t,n),o=new Ye(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=l5(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new Ye(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new sd(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*zg(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof sd||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*zg(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=Gg(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((c,u)=>{if(c==null){let d=n[u],p=Qp(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return c}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Qg(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(O(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));O(r instanceof Ye,()=>"The result y returned by f() must be a tensor.");let a=CE(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?zE(r.shape):n,TE(o,a,l=>this.tidy(l),LE);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return O(va(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{O(t.every(o=>o instanceof Ye),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),O(n.value instanceof Ye,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),O(va(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),c=Array.isArray(l)?l:[l];O(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),O(c.every(d=>d instanceof Ye),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((d,p)=>{u[p]=()=>d}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Jc(),n=await this.backend.time(e);return n.wallMs=Jc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new C5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},n2=t2;n2.nextTensorId=0;n2.nextVariableId=0;function zE(e){let t=Lg(Ut(e),"float32");return B.makeTensor(t,e,"float32")}function T5(){let e=f5();if(e._tfengine==null){let t=new h5(e);e._tfengine=new n2(t)}return uE(e._tfengine.ENV),$E(()=>e._tfengine),e._tfengine}var B=T5();function LE(e,t){let n={a:e,b:t};return B.runKernel(Hr,n)}var gu={};ze(gu,{isBrowser:()=>N5,isMobile:()=>VE,mockIsMobile:()=>WE});function BE(){return typeof navigator!="undefined"&&navigator!=null}var s2;function WE(e){s2=e}function VE(e){if(s2!==void 0)return s2;if(e||BE()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function N5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ar=K();ar.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ar.registerFlag("IS_BROWSER",()=>N5());ar.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ar.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ar.registerFlag("PROD",()=>!1);ar.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ar.getBool("DEBUG"));ar.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ar.registerFlag("IS_TEST",()=>!1);ar.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ar.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Cr(e,t){let n=e;if(Dn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||Dn(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&K().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&E5(e,s,[]),s}function E5(e,t,n){if(n=n||[],!Array.isArray(e)&&!Dn(e)){O(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}O(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),O(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)E5(e[r],s,n.concat(r))}function R5(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function D(e,t,n,s="numeric"){if(e instanceof Ye)return R5(s,e.dtype,t,n),e;let r=Yp(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),R5(s,r,t,n),e==null||!Dn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=Cr(e,r);!Dn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?_h(e,r):ti(e,[],!0);return B.makeTensor(i,a,r)}function ad(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>D(a,`${t}[${o}]`,n,s))}var $5="__op";function V(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+$5;let r=(...a)=>{B.startScope(n);try{let o=s(...a);return Wg(o)&&console.error("Cannot return a Promise inside of tidy."),B.endScope(o),o}catch(o){throw B.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function UE(e,t){let n=D(e,"real","complex"),s=D(t,"imag","complex");zn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return B.runKernel(Oc,r)}var yo=V({complex_:UE});function xo(e,t,n,s){if(s==null&&(s=Yp(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Dn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Bg(t);let r=Ut(t),a=Ut(n);O(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==Ut(t.slice(o)):!0;O(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Dn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?_h(e,s):ti(e,[],!0),B.makeTensor(e,t,s)}function Gt(e,t,n){let s=Cr(e,n);return xo(e,t,s,n)}var r2={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Oh=4;async function GE(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let c={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async d=>{let p=await l.bytes(),h=p.reduce((g,A)=>g+A.length,0)+Oh*p.length,f=new Uint8Array(h),m=0;for(let g=0;g<p.length;g++){let A=p[g],y=new Uint8Array(new Uint32Array([A.length]).buffer);f.set(y,m),m+=Oh,f.set(A,m),m+=A.length}d(f)});s.push(u)}else s.push(l.data());t!=null&&(c.group=t),n.push(c)}let a=await Promise.all(s);return{data:HE(a),specs:n}}function D5(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,c=Ut(l),u;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=r2[d.dtype],h=e.slice(r,r+c*p),f=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){u=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=g*d.scale+d.min}}else if(d.dtype==="float16")s===void 0&&(s=YE()),u=s(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);u=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];u[m]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*p}else if(i==="string"){let d=Ut(a.shape);u=[];for(let p=0;p<d;p++){let h=new Uint32Array(e.slice(r,r+Oh))[0];r+=Oh;let f=new Uint8Array(e.slice(r,r+h));u.push(f),r+=h}}else{let d=r2[i],p=e.slice(r,r+c*d);if(i==="float32")u=new Float32Array(p);else if(i==="int32")u=new Int32Array(p);else if(i==="bool")u=new Uint8Array(p);else if(i==="complex64"){u=new Float32Array(p);let h=new Float32Array(u.length/2),f=new Float32Array(u.length/2);for(let A=0;A<h.length;A++)h[A]=u[A*2],f[A]=u[A*2+1];let m=Gt(h,l,"float32"),g=Gt(f,l,"float32");n[o]=yo(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=c*d}i!=="complex64"&&(n[o]=Gt(u,l,i))}return n}function HE(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var a2=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function _5(e){return a2?Buffer.byteLength(e):new Blob([e]).size}function jE(e){if(a2)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function qE(e){if(a2){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function o2(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function P5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function F5(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function i2(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function od(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:_5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:_5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function XE(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function KE(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function ZE(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function YE(){let e=XE(),t=KE(),n=ZE();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Bt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Bt.instance==null&&(Bt.instance=new Bt),Bt.instance}static registerSaveRouter(e){Bt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Bt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Bt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Bt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Bt.getInstance().loadRouters:Bt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},JE=e=>Bt.registerSaveRouter(e),QE=e=>Bt.registerLoadRouter(e),e9=e=>Bt.getSaveHandlers(e),t9=(e,t)=>Bt.getLoadHandlers(e,t),l2="tensorflowjs",u2=1,Hi="models_store",bo="model_info_store";function O5(){if(!K().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function c2(e){let t=e.result;t.createObjectStore(Hi,{keyPath:"modelPath"}),t.createObjectStore(bo,{keyPath:"modelPath"})}var ji=class{constructor(e){if(this.indexedDB=O5(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(l2,u2);r.onupgradeneeded=()=>c2(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(Hi,"readonly"),l=o.objectStore(Hi).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=c=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=od(t),i=a.transaction(bo,"readwrite"),l=i.objectStore(bo),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),u;c.onsuccess=()=>{u=a.transaction(Hi,"readwrite");let p=u.objectStore(Hi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{l=i.objectStore(bo);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(p.error)),f.onerror=m=>(a.close(),s(p.error))}},c.onerror=d=>(a.close(),s(c.error)),i.oncomplete=()=>{u==null?a.close():u.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};ji.URL_SCHEME="indexeddb://";var M5=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ji.URL_SCHEME)?n9(e.slice(ji.URL_SCHEME.length)):null;Bt.registerSaveRouter(M5);Bt.registerLoadRouter(M5);function n9(e){return new ji(e)}function s9(e){return e.startsWith(ji.URL_SCHEME)?e.slice(ji.URL_SCHEME.length):e}var r9=class{constructor(){this.indexedDB=O5()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(l2,u2);n.onupgradeneeded=()=>c2(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(bo,"readonly"),o=r.objectStore(bo).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=s9(e),new Promise((t,n)=>{let s=this.indexedDB.open(l2,u2);s.onupgradeneeded=()=>c2(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(bo,"readwrite"),o=a.objectStore(bo),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=o.delete(e),u=()=>{l=r.transaction(Hi,"readwrite");let p=l.objectStore(Hi).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};c.onsuccess=u,c.onerror=d=>(u(),r.close(),n(i.error))}},i.onerror=c=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Zr="/",Au="tensorflowjs_models",z5="info",a9="model_topology",o9="weight_specs",i9="weight_data",l9="model_metadata";function L5(e){return{info:[Au,e,z5].join(Zr),topology:[Au,e,a9].join(Zr),weightSpecs:[Au,e,o9].join(Zr),weightData:[Au,e,i9].join(Zr),modelMetadata:[Au,e,l9].join(Zr)}}function B5(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function u9(e){let t=e.split(Zr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Zr)}function c9(e){return e.startsWith(qi.URL_SCHEME)?e.slice(qi.URL_SCHEME.length):e}var qi=class{constructor(e){if(!K().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=L5(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=od(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,jE(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw B5(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=qE(a),t}};qi.URL_SCHEME="localstorage://";var W5=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(qi.URL_SCHEME)?d9(e.slice(qi.URL_SCHEME.length)):null;Bt.registerSaveRouter(W5);Bt.registerLoadRouter(W5);function d9(e){return new qi(e)}var p9=class{constructor(){O(K().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),O(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Au+Zr,n=Zr+z5;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=u9(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=c9(e);let t=L5(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return B5(t),n}},yu="://",Ss=class{constructor(){this.managers={}}static getInstance(){return Ss.instance==null&&(Ss.instance=new Ss),Ss.instance}static registerManager(e,t){O(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(yu)&&(e=e.slice(0,e.indexOf(yu))),O(e.length>0,()=>"scheme must not be an empty string.");let n=Ss.getInstance();O(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Mh(e){if(e.indexOf(yu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Ss.getSchemes().join(",")}`);return{scheme:e.split(yu)[0],path:e.split(yu)[1]}}async function V5(e,t,n=!1){O(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Bt.getLoadHandlers(e);O(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),O(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Bt.getSaveHandlers(t);O(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),O(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=Mh(e).scheme,l=Mh(e).path,c=i===Mh(e).scheme,u=await r.load();n&&c&&await Ss.getManager(i).removeModel(l);let d=await o.save(u);return n&&!c&&await Ss.getManager(i).removeModel(l),d.modelArtifactsInfo}async function h9(){let e=Ss.getSchemes(),t={};for(let n of e){let s=await Ss.getManager(n).listModels();for(let r in s){let a=n+yu+r;t[a]=s[r]}}return t}async function f9(e){let t=Mh(e);return Ss.getManager(t.scheme).removeModel(t.path)}async function m9(e,t){return V5(e,t,!1)}async function g9(e,t){return V5(e,t,!0)}var A9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(K().get("IS_BROWSER")){K().setPlatform("browser",new A9);try{Ss.registerManager(qi.URL_SCHEME,new p9)}catch(e){}try{Ss.registerManager(ji.URL_SCHEME,new r9)}catch(e){}}var y9={importFetch:()=>RN()},d2,x9=class{constructor(){this.util=$N(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return K().global.fetch!=null?K().global.fetch(e,t):(d2==null&&(d2=y9.importFetch()),d2(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};K().get("IS_NODE")&&K().setPlatform("node",new x9);function Le(e,t="float32",n){return t=t||"float32",Bg(e),new sn(e,t,n)}function b9(e,t){let n=D(e,"x","cast");if(!i5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return B.runKernel(Ca,s,r)}var de=V({cast_:b9});function v9(e){let n={x:D(e,"x","clone","string_or_numeric")};return B.runKernel(Ba,n)}var or=V({clone_:v9});function U5(e,t=!1){console.log(e.toString(t))}T5();var w9={buffer:Le,cast:de,clone:or,print:U5};DE(w9);var ns={};ze(ns,{browserFiles:()=>E9,browserHTTPRequest:()=>P9,concatenateArrayBuffers:()=>o2,copyModel:()=>m9,decodeWeights:()=>D5,encodeWeights:()=>GE,fromMemory:()=>O9,getLoadHandlers:()=>t9,getModelArtifactsForJSON:()=>i2,getModelArtifactsInfoForJSON:()=>od,getSaveHandlers:()=>e9,http:()=>m2,isHTTPScheme:()=>f2,listModels:()=>h9,loadWeights:()=>R9,moveModel:()=>g9,registerLoadRouter:()=>QE,registerSaveRouter:()=>JE,removeModel:()=>f9,weightsLoaderFactory:()=>q5,withSaveHandler:()=>M9});var k9="model",I9=".json",S9=".weights.bin";function G5(e){return new Promise(t=>setTimeout(t)).then(e)}var p2=class{constructor(e){if(!K().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(p2.URL_SCHEME)&&(e=e.slice(p2.URL_SCHEME.length)),(e==null||e.length===0)&&(e=k9),this.modelJsonFileName=e+I9,this.weightDataFileName=e+S9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=F5(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await G5(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await G5(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:od(e)}}}},zh=p2;zh.URL_SCHEME="downloads://";var C9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=i2(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,o2(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>P5(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=P5(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},T9=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(zh.URL_SCHEME)?N9(e.slice(zh.URL_SCHEME.length)):null;Bt.registerSaveRouter(T9);function N9(e="model"){return new zh(e)}function E9(e){return new C9(e)}function H5(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(c=>{let u=n+ ++r/e.length*(s-n);return t(u),c}),l);function o(l){O(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,c){O(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),O(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),O(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(a))}async function j5(e,t){t==null&&(t={});let n=t.fetchFunc==null?K().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await H5(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,c=1;return t.onProgress==null?await Promise.all(i):await H5(i,t.onProgress,l,c)}async function R9(e,t="",n,s){return q5(o=>j5(o,{requestInit:s}))(e,t,n)}function q5(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let A="quantization"in g?g.quantization.dtype:g.dtype,y=r2[A]*Ut(g.shape),x=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:y})};s!=null?s.forEach((b,w)=>{b===g.name&&(x(),o[w]=!0)}):x(),i.push(g.name),m+=y})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),c=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),d={},p=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=u[p+b].byteLength;let g=new ArrayBuffer(m),A=new Uint8Array(g),y=0;for(let b=0;b<f;b++){let w=new Uint8Array(u[p+b]);A.set(w,y),y+=w.byteLength}a[h].forEach(b=>{let w=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=D5(w,[b.manifestEntry]);for(let S in k)d[S]=k[S]}),p+=f}),d}}var $9="application/octet-stream",D9="application/json",h2=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(O(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=K().platform.fetch,O(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&O(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=F5(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:D9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:$9}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:od(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return i2(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=_9(t),r=this.weightPathPrefix||n,a=[];for(let c of e)a.push(...c.weights);let o=[],i=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(u)):o.push(r+u+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await j5(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,o2(l)]}};h2.URL_SCHEME_REGEX=/^https?:\/\//;function _9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function f2(e){return e.match(h2.URL_SCHEME_REGEX)!=null}var X5=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>f2(s)):n=f2(e),n)return m2(e,t)}return null};Bt.registerSaveRouter(X5);Bt.registerLoadRouter(X5);function m2(e,t){return new h2(e,t)}function P9(e,t){return m2(e,t)}var g2=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},F9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function O9(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new g2(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new g2({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new g2({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function M9(e){return new F9(e)}var K5={};ze(K5,{confusionMatrix:()=>V9});function z9(e,t,n=!1,s=!1){let r=D(e,"a","matMul"),a=D(t,"b","matMul");[r,a]=Ft(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return B.runKernel(Sa,o,i)}var He=V({matMul_:z9});function L9(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:D(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return B.runKernel(Ii,a,o)}var id=V({oneHot_:L9});function B9(e,t){let n=D(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{O(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return B.runKernel(po,s,r)}var et=V({transpose_:B9});function W9(e,t,n){let s=D(e,"labels","confusionMatrix"),r=D(t,"predictions","confusionMatrix");O(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),O(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),O(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),O(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),O(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=id(de(s,"int32"),n),o=id(de(r,"int32"),n),i=et(a),l=He(i,o);return de(l,"int32")}var V9=V({confusionMatrix_:W9}),Gs={};ze(Gs,{fromPixels:()=>K9,fromPixelsAsync:()=>q9,toPixels:()=>X9});function Z5(e,t,n){if(ei(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Cr(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return xo(e,t,s,n)}var xu;function Y5(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if($h(Kc,B.backendName)!=null){let f={pixels:e},m={numChannels:t};return B.runKernel(Kc,f,m)}let[c,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,c,u).data:s||n?d=e.data:(a||r||i)&&(xu==null&&(xu=document.createElement("canvas").getContext("2d")),xu.canvas.width=c,xu.canvas.height=u,xu.drawImage(e,0,0,c,u),d=xu.getImageData(0,0,c,u).data);let p;if(t===4)p=new Int32Array(d);else{let f=c*u;p=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)p[m*t+g]=d[m*4+g]}return Z5(p,[u,c,t],"int32")}function U9(e){return e!=null&&e.data instanceof Uint8Array}function G9(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function H9(e){return e!=null&&e.width!==0&&e.height!==0}function j9(e){return G9()&&!(e instanceof ImageBitmap)&&H9(e)&&!U9(e)}async function q9(e,t=3){let n=null;if(K().getBool("WRAP_TO_IMAGEBITMAP")&&j9(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return Y5(n,t)}async function X9(e,t){let n=D(e,"img","toPixels");if(!(e instanceof Ye)){let c=n;n=de(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let c=0;c<s*r;++c){let u=[0,0,0,255];for(let p=0;p<a;p++){let h=o[c*a+p];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(u[0]=h*i,u[1]=h*i,u[2]=h*i):u[p]=h*i}let d=c*4;l[d+0]=Math.round(u[0]),l[d+1]=Math.round(u[1]),l[d+2]=Math.round(u[2]),l[d+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=s;let c=t.getContext("2d"),u=new ImageData(l,r,s);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var K9=V({fromPixels_:Y5}),A2={};ze(A2,{prepareAndValidate:()=>J5});function J5(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Ut(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;d<r.length-1;++d)o*=r[d];let i=e.shape,l=r.slice();l.pop();let c=1;for(let d=a;d<n;++d)c*=i[d],l.push(i[d]);let u=[...Bl(e.shape).map(d=>d/c),1].slice(0,a);return[l,o,c,u]}var y2={};ze(y2,{calculateShapes:()=>Q5,validateInput:()=>b2,validateUpdateShape:()=>x2});function x2(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function b2(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}x2(n,t,e)}function Q5(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;d<a;++d)o*=n[d];let i=r<1?1:r,l=Ut(t.shape)/i,c=[...Bl(n.slice(0,r)),1],u=Ut(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:c,outputSize:u}}var An={};ze(An,{assertParamsValid:()=>Z9,computeFlatOffset:()=>J9,computeOutShape:()=>e3,getNormalizedAxes:()=>r3,isSliceContinous:()=>Y9,maskToAxes:()=>Lh,parseSliceParams:()=>c3,sliceInfo:()=>Q9,startForAxis:()=>l3,startIndicesWithElidedDims:()=>a3,stopForAxis:()=>u3,stopIndicesWithElidedDims:()=>o3,stridesForAxis:()=>i3,stridesWithElidedDims:()=>t3});function Z9(e,t,n){let s=e.shape.length;O(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),O(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)O(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Lh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function e3(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function t3(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function n3(e,t,n){return n<=e?n:n-(t-1)}function s3(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function r3(e,t,n,s,r,a,o,i,l){let c=e.length,u=new Array(c),d=new Array(c),p=new Array(c);if(t.length&&n>0){let h=t[0],f=n+1;u=a3(o,h,f,s,e),d=o3(i,h,f,r,e),p=t3(a,h,f,e)}else for(let h=0;h<c;h++)u[h]=l3(o,s,a,e,h,l),d[h]=u3(i,r,a,e,h,l),p[h]=i3(a,h,l);return{begin:u,end:d,strides:p}}function a3(e,t,n,s,r){let a=[...r],o=s3(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=n3(t,n,i),c=s[l];e&1<<l&&(c=0),a[i]=c}return a}function o3(e,t,n,s,r){let a=[...r],o=s3(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=n3(t,n,i),c=s[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),a[i]=c}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=_c(0,a[i],r[i])}return a}function i3(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function l3(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=_c(0,o,l-1),o}function u3(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=_c(0,o,l):o=_c(-1,o,l-1),o}function Y9(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function J9(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function c3(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{O(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(O(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function Q9(e,t,n,s,r,a,o,i,l){let c=t.slice(),u=n.slice(),d=s;s==null&&(d=new Array(c.length));let p=Lh(o);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-c.length,f=Lh(i),m=e.slice();f.forEach(S=>{c[S]=0,u[S]=1,m.splice(S,0,1)});let{begin:g,end:A,strides:y}=r3(m,p,h,c,u,d,r,a,o);c=g,u=A,d=y;let x=Lh(l);x.forEach(S=>{u[S]=c[S]+1,d[S]=1});let b=e3(c,u,d),w=b.filter((S,E)=>x.indexOf(E)===-1);return{nonStrided:d.every(S=>S===1),$begin:c,$end:u,$strides:d,size:b,newShape:m,outShape:w}}var le={};ze(le,{Serializable:()=>d3,SerializationMap:()=>Xi,registerClass:()=>vo});var d3=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Xi=class{constructor(){this.classNameMap={}}static getMap(){return Xi.instance==null&&(Xi.instance=new Xi),Xi.instance}static register(e){Xi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function vo(e){O(e.className!=null,()=>"Class being registered does not have the static className property defined."),O(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),O(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Xi.register(e)}var p3={};ze(p3,{TEST_EPSILON_FLOAT16:()=>h3,encodeStrings:()=>f3,expectArrayBuffersEqual:()=>oR,expectArraysClose:()=>tR,expectArraysEqual:()=>sR,expectNumbersClose:()=>rR,expectPromiseToFail:()=>nR,expectValuesInRange:()=>aR,testEpsilon:()=>v2});var eR=.001,h3=.1;function tR(e,t,n){return n==null&&(n=v2()),w2(e,t,(s,r)=>k2(s,r,n))}function v2(){return B.backend.floatPrecision()===32?eR:h3}function w2(e,t,n){let s=!0;if((Dn(e)||Dn(t))&&(s=!1),Dn(e)&&Dn(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=Cr(e),i=Cr(t);if(!Gr(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=Dn(e)?e:ti(e),a=Dn(t)?t:ti(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function nR(e,t){e().then(()=>t.fail(),()=>t())}function sR(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return ba(e)||ba(e[0])||ba(t)||ba(t[0])?w2(e,n,(s,r)=>s==r):w2(e,t,(s,r)=>k2(s,r,0))}function rR(e,t,n){if(n==null&&(n=v2()),!k2(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function k2(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function aR(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function oR(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function f3(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?f3(n):e[t]=Qc(n)}return e}function m3(){K().set("PROD",!0)}function iR(){K().set("DEBUG",!0)}function lR(){K().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function I2(e){K().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}_E(I2);function uR(){B.disposeVariables()}function ss(){return B}function Bh(){return B.memory()}function cR(e){return B.profile(e)}function j(e,t){return B.tidy(e,t)}function Q(e){Qg(e).forEach(n=>n.dispose())}function yn(e){return B.keep(e)}function dR(e){return B.time(e)}function g3(e){return B.setBackend(e)}function Wh(){return B.ready()}function ir(){return B.backendName}function pR(e){B.removeBackend(e)}function S2(e){return B.findBackend(e)}function hR(e){return B.findBackendFactory(e)}function Ki(e,t,n=1){return B.registerBackend(e,t,n)}function Tr(){return B.backend}function fR(e,t){K().setPlatform(e,t)}function mR(e,t){let n=D(e,"a","add"),s=D(t,"b","add");[n,s]=Ft(n,s);let r={a:n,b:s};return B.runKernel(Hr,r)}var ie=V({add_:mR});function gR(e,t){let n=D(e,"a","floorDiv"),s=D(t,"b","floorDiv");[n,s]=Ft(n,s);let r={a:n,b:s};return B.runKernel(Ma,r)}var C2=V({floorDiv_:gR});function AR(e,t){let n=D(e,"a","div"),s=D(t,"b","div");if([n,s]=Ft(n,s),n.dtype==="int32"&&s.dtype==="int32")return C2(n,s);let r={a:n,b:s},a={};return B.runKernel(_a,r,a)}var he=V({div_:AR});function yR(e,t){let n=D(e,"a","mul"),s=D(t,"b","mul");[n,s]=Ft(n,s);let r={a:n,b:s};return B.runKernel(Ka,r)}var W=V({mul_:yR});function xR(e){let t=D(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return B.runKernel(Mc,n)}else{let n={x:t};return B.runKernel(ni,n)}}var rn=V({abs_:xR});function bR(e){let n={x:D(e,"x","acos")};return B.runKernel(Vl,n)}var A3=V({acos_:bR});function vR(e){let n={x:D(e,"x","acosh")};return B.runKernel(Ul,n)}var y3=V({acosh_:vR});function wR(e){O(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),O(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>D(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!Gr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return B.runKernel(wa,s)}var Vh=V({addN_:wR});function kR(e,t=null,n=!1){let r={x:D(e,"x","all","bool")},a={axis:t,keepDims:n};return B.runKernel(Gl,r,a)}var T2=V({all_:kR});function IR(e,t=null,n=!1){let r={x:D(e,"x","any","bool")},a={axis:t,keepDims:n};return B.runKernel(Hl,r,a)}var Uh=V({any_:IR});function SR(e,t=0){let s={x:D(e,"x","argMax")},r={axis:t};return B.runKernel(ka,s,r)}var Hs=V({argMax_:SR});function CR(e,t=0){let s={x:D(e,"x","argMin")},r={axis:t};return B.runKernel(jl,s,r)}var x3=V({argMin_:CR});function TR(e){let n={x:D(e,"x","asin")};return B.runKernel(ql,n)}var b3=V({asin_:TR});function NR(e){let n={x:D(e,"x","asinh")};return B.runKernel(Xl,n)}var v3=V({asinh_:NR});function ER(e){let n={x:D(e,"x","atan")};return B.runKernel(Kl,n)}var w3=V({atan_:ER});function RR(e,t){let n=D(e,"a","atan2"),s=D(t,"b","atan2");[n,s]=Ft(n,s);let r={a:n,b:s};return B.runKernel(Yl,r)}var k3=V({atan2_:RR});function $R(e){let n={x:D(e,"x","atanh")};return B.runKernel(Zl,n)}var I3=V({atanh_:$R});function DR(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=T3(r);return ld(e,i,n,a,s,null,null,l)}function S3(e,t,n,s,r,a,o="channelsLast"){let[i,l]=Gh(t),c;if(o==="channelsLast")c=[i,l,e[3],e[3]];else if(o==="channelsFirst")c=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return ld(e,c,n,s,r,a,!1,o)}function _R(e,t,n,s,r,a,o="NDHWC"){let[i,l,c]=E2(t),u,d;if(o==="NDHWC")d="channelsLast",u=[i,l,c,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",u=[i,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return C3(e,u,n,s,r,!1,d,a)}function ld(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,c,u,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,d]=e;else if(i==="channelsFirst")[l,d,c,u]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=Gh(n),[A,y]=Gh(s),x=bu(p,A),b=bu(h,y),{padInfo:w,outHeight:k,outWidth:S}=OR(r,c,u,m,g,x,b,a,i),E=o?f*d:f,P;return i==="channelsFirst"?P=[l,E,k,S]:i==="channelsLast"&&(P=[l,k,S,E]),{batchSize:l,dataFormat:i,inHeight:c,inWidth:u,inChannels:d,outHeight:k,outWidth:S,outChannels:E,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:A,dilationWidth:y,inShape:e,outShape:P,filterShape:t}}function C3(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,c,u,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,d,p]=e;else if(o==="channelsFirst")[l,p,c,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[A,y,x]=E2(n),[b,w,k]=E2(s),S=bu(h,b),E=bu(f,w),P=bu(m,k),{padInfo:F,outDepth:R,outHeight:_,outWidth:T}=MR(r,c,u,d,A,y,x,S,E,P,i),M=a?g*p:g,U;return o==="channelsFirst"?U=[l,M,R,_,T]:o==="channelsLast"&&(U=[l,R,_,T,M]),{batchSize:l,dataFormat:o,inDepth:c,inHeight:u,inWidth:d,inChannels:p,outDepth:R,outHeight:_,outWidth:T,outChannels:M,padInfo:F,strideDepth:A,strideHeight:y,strideWidth:x,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:S,effectiveFilterHeight:E,effectiveFilterWidth:P,dilationDepth:b,dilationHeight:w,dilationWidth:k,inShape:e,outShape:U,filterShape:t}}function PR(e,t,n,s,r){s==null&&(s=N2(e,t,n));let a=e[0],o=e[1],i=Zi((a-t+2*s)/n+1,r),l=Zi((o-t+2*s)/n+1,r);return[i,l]}function FR(e,t,n,s,r,a){r==null&&(r=N2(e,t,s));let o=e[0],i=e[1],l=e[2],c=Zi((o-t+2*r)/s+1,a),u=Zi((i-t+2*r)/s+1,a),d=Zi((l-t+2*r)/s+1,a);return[c,u,d,n]}function N2(e,t,n,s=1){let r=bu(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Gh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function E2(e){return typeof e=="number"?[e,e,e]:e}function bu(e,t){return t<=1?e:e+(e-1)*(t-1)}function OR(e,t,n,s,r,a,o,i,l){let c,u,d;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=PR([t,n],a,s,e,i);u=h[0],d=h[1]}else if(e==="same"){u=Math.ceil(t/s),d=Math.ceil(n/r);let p=Math.max(0,(u-1)*s+a-t),h=Math.max(0,(d-1)*r+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),A=h-g;c={top:f,bottom:m,left:g,right:A,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=Zi((t-a+p+h)/s+1,i),d=Zi((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:d}}function MR(e,t,n,s,r,a,o,i,l,c,u){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=FR([t,n,s,1],i,1,r,e,u);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(p-1)*r+i-t,g=(h-1)*a+l-n,A=(f-1)*o+c-s,y=Math.floor(m/2),x=m-y,b=Math.floor(g/2),w=g-b,k=Math.floor(A/2),S=A-k;d={top:b,bottom:w,left:k,right:S,front:y,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-c+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function Zi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function wo(e){let[t,n,s]=Gh(e);return t===1&&n===1&&s===1}function Nr(e,t){return wo(e)||wo(t)}function T3(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function zR(e,t){let s={x:D(e,"x","reshape","string_or_numeric")},r={shape:t};return B.runKernel(Ti,s,r)}var G=V({reshape_:zR});function LR(e,t,n,s,r){let a=D(e,"x","avgPool","float32"),o=1;O(Nr(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&O(mn(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=B.runKernel(Ia,c,u);return d=de(d,a.dtype),l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Hh=V({avgPool_:LR});function BR(e,t,n,s,r,a="NDHWC"){let o=D(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&O(mn(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=B.runKernel(Fc,c,u);return d=de(d,i.dtype),l?G(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var R2=V({avgPool3d_:BR});function WR(e,t=0){O(e.length>=1,()=>"Pass at least one tensor to concat");let n=ad(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return or(n[0]);let s=n,r={axis:t};return B.runKernel(ri,s,r)}var It=V({concat_:WR});function VR(e){let n={x:D(e,"x","sigmoid","float32")};return B.runKernel(ro,n)}var hs=V({sigmoid_:VR});function UR(e,t,n){let s=D(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return B.runKernel(Di,r,a)}var _e=V({slice_:UR});function GR(e){let n={x:D(e,"x","tanh","float32")};return B.runKernel(co,n)}var vu=V({tanh_:GR});function HR(e,t,n,s,r,a){let o=D(e,"forgetBias","basicLSTMCell"),i=D(t,"lstmKernel","basicLSTMCell"),l=D(n,"lstmBias","basicLSTMCell"),c=D(s,"data","basicLSTMCell"),u=D(r,"c","basicLSTMCell"),d=D(a,"h","basicLSTMCell"),p=It([c,d],1),h=He(p,i),f=ie(h,l),m=f.shape[0],g=f.shape[1]/4,A=[m,g],y=_e(f,[0,0],A),x=_e(f,[0,g],A),b=_e(f,[0,g*2],A),w=_e(f,[0,g*3],A),k=ie(W(hs(y),vu(x)),W(u,hs(ie(o,b)))),S=W(vu(k),hs(w));return[k,S]}var jR=V({basicLSTMCell_:HR});function qR(e,t,n){let s=D(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);O(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),O(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),O(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return B.runKernel(si,a,o)}var jh=V({batchToSpaceND_:qR});function XR(e){let t;return e.rank===0||e.rank===1?t=G(e,[1,1,1,e.size]):e.rank===2?t=G(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function KR(e,t,n,s,r,a){a==null&&(a=.001);let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),c;r!=null&&(c=D(r,"scale","batchNorm"));let u;s!=null&&(u=D(s,"offset","batchNorm")),O(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),O(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),O(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:XR(o),scale:c,offset:u,mean:i,variance:l},h={varianceEpsilon:a},f=B.runKernel(za,p,h);return G(f,o.shape)}var wu=V({batchNorm_:KR});function ZR(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),c;r!=null&&(c=D(r,"scale","batchNorm"));let u;return s!=null&&(u=D(s,"offset","batchNorm")),O(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),O(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),O(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),wu(o,i,l,u,c,a)}var N3=V({batchNorm2d_:ZR});function YR(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),c;r!=null&&(c=D(r,"scale","batchNorm"));let u;return s!=null&&(u=D(s,"offset","batchNorm")),O(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),O(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),O(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),wu(o,i,l,u,c,a)}var E3=V({batchNorm3d_:YR});function JR(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),c;r!=null&&(c=D(r,"scale","batchNorm"));let u;return s!=null&&(u=D(s,"offset","batchNorm")),O(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),O(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),O(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&O(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&O(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),wu(o,i,l,u,c,a)}var R3=V({batchNorm4d_:JR});function QR(e,t,n){let s=D(e,"x","bincount"),r=D(t,"weights","bincount");O(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return B.runKernel(nh,a,o)}var $2=V({bincount_:QR});function e$(e,t){let n=D(e,"s0","broadcastArgs","int32"),s=D(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return B.runKernel(sh,r)}var $3=V({broadcastArgs_:e$});function t$(e,t){let n=D(e,"broadcastTo","x"),s=n.shape;if(t.some(c=>!(c>0)||c%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let c=n.shape.slice();for(;c.length<t.length;)c.unshift(1);n=G(n,c)}let r=n.shape,a=Array.from(t);for(let c=t.length-1;c>=0;c--)if(r[c]===t[c])a[c]=1;else if(n.shape[c]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((c,u)=>c>1?u:-1).filter(c=>c>=0).length===0)return or(n);let i={x:n},l={reps:a};return B.runKernel(qr,i,l)}var ud=V({broadcastTo_:t$});function n$(e){let n={x:D(e,"x","ceil","float32")};return B.runKernel(Ta,n)}var D3=V({ceil_:n$});function s$(e,t,n){let s=D(e,"x","clipByValue");O(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return B.runKernel(jr,r,a)}var fs=V({clipByValue_:s$});function r$(e){return It(e,0)}var _3=V({concat1d_:r$});function a$(e,t){return It(e,t)}var ku=V({concat2d_:a$});function o$(e,t){return It(e,t)}var P3=V({concat3d_:o$});function i$(e,t){return It(e,t)}var F3=V({concat4d_:i$});function l$(e,t,n,s,r="NHWC",a=[1,1],o){let i=D(e,"x","conv2d","float32"),l=D(t,"filter","conv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&O(mn(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?c.shape[3]:c.shape[1];O(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),O(Nr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:c,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=B.runKernel(Na,p,h);return u?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var ko=V({conv2d_:l$});function u$(e,t,n,s,r="NWC",a=1,o){let i=D(e,"x","conv1d"),l=D(t,"filter","conv1d"),c=i,u=!1;i.rank===2&&(u=!0,c=G(i,[1,i.shape[0],i.shape[1]])),O(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),O(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&O(mn(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),O(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),O(Nr(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),O(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=G(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=G(c,[c.shape[0],1,c.shape[1],c.shape[2]]),g=ko(p,d,[1,n],s,"NHWC",[1,a],o);return u?G(g,[g.shape[2],g.shape[3]]):G(g,[g.shape[0],g.shape[2],g.shape[3]])}var D2=V({conv1d_:u$});function c$(e,t,n,s,r,a="NHWC",o){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,c=!1;t.rank===3&&(c=!0,l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),O(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),O(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),O(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];O(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),O(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&O(mn(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let p={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=B.runKernel(Ea,p,h);return c?G(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var _2=V({conv2DBackpropInput_:c$});function d$(e,t,n,s,r,a){let o=D(e,"x","conv2dTranspose"),i=D(t,"filter","conv2dTranspose");return _2(n,o,i,s,r,"NHWC",a)}var P2=V({conv2dTranspose_:d$});function p$(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=D(e,"x","conv3d"),i=D(t,"filter","conv3d"),l=o,c=!1;o.rank===4&&(c=!0,l=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),O(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),O(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),O(Nr(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},p=B.runKernel(zc,u,d);return c?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var F2=V({conv3d_:p$});function h$(e,t,n,s,r){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],c=o.shape[4];O(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),O(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),O(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),O(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),O(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},p=B.runKernel(oh,u,d);return i?G(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var O3=V({conv3DBackpropInput_:h$});function f$(e,t,n,s,r){let a=D(e,"x","conv3dTranspose"),o=D(t,"filter","conv3dTranspose");return O3(n,a,o,s,r)}var M3=V({conv3dTranspose_:f$});function m$(e){let n={x:D(e,"x","cos","float32")};return B.runKernel(Ra,n)}var qh=V({cos_:m$});function g$(e){let n={x:D(e,"x","cosh","float32")};return B.runKernel($a,n)}var O2=V({cosh_:g$});function A$(e,t=0,n=!1,s=!1){let a={x:D(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return B.runKernel(ai,a,o)}var M2=V({cumsum_:A$});function y$(e,t,n,s=!1){let r=D(e,"x","denseBincount"),a=D(t,"weights","denseBincount");O(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),O(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return B.runKernel(ih,o,i)}var z3=V({denseBincount_:y$});function x$(e,t,n="NHWC"){let s=D(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];O(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),O(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),O(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),O(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return B.runKernel(ii,i,l)}var L3=V({depthToSpace_:x$});function b$(e,t,n,s,r="NHWC",a=[1,1],o){let i=D(e,"x","depthwiseConv2d","float32"),l=D(t,"filter","depthwiseConv2d","float32"),c=i,u=!1;i.rank===3&&(u=!0,c=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),O(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&O(mn(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:c,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},h=B.runKernel(Da,d,p);return u?G(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var cd=V({depthwiseConv2d_:b$});function v$(e){let n={x:D(e,"x","diag")};return B.runKernel(ch,n)}var w$=V({diag_:v$});function k$(e,t,n,s,r=[1,1],a="NHWC"){let o=D(e,"x","dilation2d"),i=D(t,"filter","dilation2d");O(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),O(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),O(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,c=!1;o.rank===3&&(l=G(o,[1,o.shape[0],o.shape[1],o.shape[2]]),c=!0);let u={x:l,filter:i},d={strides:n,pad:s,dilations:r},p=B.runKernel(Lc,u,d);return c?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var B3=V({dilation2d_:k$});function I$(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function an(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function St(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}function S$(e,t){let n=D(e,"a","equal","string_or_numeric"),s=D(t,"b","equal","string_or_numeric");[n,s]=Ft(n,s),St(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(li,r)}var Cs=V({equal_:S$});function C$(e,t,n){let s=D(t,"a","where"),r=D(n,"b","where"),a=D(e,"condition","where","bool"),o=St(St(a.shape,s.shape),r.shape),i=ud(a,o),l=ud(s,o),c=ud(r,o),u={condition:i,t:l,e:c};return B.runKernel($i,u)}var Wn=V({where_:C$});function T$(e){let n={x:D(e,"x","zerosLike")};return B.runKernel(Wi,n)}var tt=V({zerosLike_:T$});function N$(e,t){let n=D(e,"a","div"),s=D(t,"b","div");[n,s]=Ft(n,s);let r=he(n,s),a=tt(r),o=Cs(s,a);return Wn(o,a,r)}var W3=V({divNoNan_:N$});function E$(e,t){let n=D(e,"t1","dot"),s=D(t,"t2","dot");O((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(O(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=G(n,[1,-1]),i=G(s,[-1,1]),l=He(o,i);return G(l,[])}else if(n.rank===1&&s.rank===2){let o=G(n,[1,-1]),i=G(s,[s.shape[0],s.shape[1]]),l=He(o,i);return G(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=G(s,[-1,1]),i=He(n,o);return G(i,[i.size])}else{let o=G(s,[s.shape[0],s.shape[1]]);return He(n,o)}}var R$=V({dot_:E$});function $$(e,...t){let n=t.map((r,a)=>D(r,`tensors${a}`,"einsum")),s={equation:e};return B.runKernel(Bc,n,s)}var V3=V({einsum_:$$});function D$(e){let n={x:D(e,"x","elu","float32")};return B.runKernel(Pa,n)}var dd=V({elu_:D$});function _$(e){let t=D(e,"x","erf");O(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=de(t,"float32"));let n={x:t};return B.runKernel(Jl,n)}var U3=V({erf_:_$});function P$(e){let n={x:D(e,"x","exp")};return B.runKernel(Fa,n)}var Ts=V({exp_:P$});function F$(e,t=0){let n=D(e,"x","expandDims","string_or_numeric");O(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return B.runKernel(ui,s,r)}var Kt=V({expandDims_:F$});function O$(e){let n={x:D(e,"x","expm1")};return B.runKernel(ci,n)}var G3=V({expm1_:O$});function M$(e,t){let n=D(e,"x","tile","string_or_numeric");O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return B.runKernel(qr,s,r)}var js=V({tile_:M$});function z$(e,t,n,s="float32"){t==null&&(t=e);let r=Le([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=G(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return js(Kt(o,0),[n[0],1,1]);if(n.length===2)return js(Kt(Kt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return js(Kt(Kt(Kt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var z2=V({eye_:z$});function Iu(e,t,n){let s={shape:e,value:t,dtype:n};return B.runKernel(Ql,{},s)}function L$(e){let n={x:D(e,"x","floor","float32")};return B.runKernel(Oa,n)}var pd=V({floor_:L$});function B$(e,t,n=0,s=0){let r=D(e,"x","gather"),a=D(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return B.runKernel(pi,o,i)}var Su=V({gather_:B$});function W$(e,t){let n=D(e,"a","greater","string_or_numeric"),s=D(t,"b","greater","string_or_numeric");[n,s]=Ft(n,s),St(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(fi,r)}var ms=V({greater_:W$});function V$(e,t){let n=D(e,"a","greaterEqual","string_or_numeric"),s=D(t,"b","greaterEqual","string_or_numeric");[n,s]=Ft(n,s),St(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(La,r)}var Yi=V({greaterEqual_:V$});function U$(e){let n={input:D(e,"input","imag")};return B.runKernel(Wc,n)}var Xh=V({imag_:U$});function G$(e){let n={x:D(e,"x","isFinite")};return B.runKernel(eu,n)}var H$=V({isFinite_:G$});function j$(e){let n={x:D(e,"x","isInf")};return B.runKernel(tu,n)}var q$=V({isInf_:j$});function X$(e){let n={x:D(e,"x","isNaN")};return B.runKernel(nu,n)}var H3=V({isNaN_:X$});function K$(e,t=.2){let s={x:D(e,"x","leakyRelu")},r={alpha:t};return B.runKernel(mi,s,r)}var Kh=V({leakyRelu_:K$});function Z$(e,t){let n=D(e,"a","less","string_or_numeric"),s=D(t,"b","less","string_or_numeric");[n,s]=Ft(n,s),St(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(gi,r)}var L2=V({less_:Z$});function Y$(e,t){let n=D(e,"a","lessEqual","string_or_numeric"),s=D(t,"b","lessEqual","string_or_numeric");[n,s]=Ft(n,s),St(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Ai,r)}var Ji=V({lessEqual_:Y$});function j3(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return B.runKernel(gh,{},s)}function J$(e,t=5,n=1,s=1,r=.5){let a=D(e,"x","localResponseNormalization");O(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),O(mn(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=G(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},c={depthRadius:t,bias:n,alpha:s,beta:r},u=B.runKernel(Uc,l,c);return i?G(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var q3=V({localResponseNormalization_:J$});function Q$(e){let n={x:D(e,"x","log","float32")};return B.runKernel(Wa,n)}var Ns=V({log_:Q$});function eD(e){let n={x:D(e,"x","log1p")};return B.runKernel(su,n)}var Zh=V({log1p_:eD});function tD(e){return O(va(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=D(t,"x","tf.grad","string_or_numeric"),r=n!=null?D(n,"dy","tf.grad"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(s),[s],r);return r!=null&&zn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Yh(o),o[0]})}}function nD(e){return O(va(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{O(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=ad(t,"args","tf.grads","string_or_numeric"),r=n!=null?D(n,"dy","tf.grads"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(...s),s,r);return r!=null&&zn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Yh(o),o})}}function sD(e){return O(va(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{O(t instanceof Ye,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),O(n==null||n instanceof Ye,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=B.gradients(()=>e(t),[t],n);return Yh(s),{grad:s[0],value:r}}}function rD(e){return O(va(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{O(Array.isArray(t)&&t.every(r=>r instanceof Ye),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),O(n==null||n instanceof Ye,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=B.gradients(()=>e(...t),t,n);return n!=null&&zn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Yh(s.grads),s}}function X3(e,t){O(va(e),()=>"The f passed in variableGrads(f) must be a function"),O(t==null||Array.isArray(t)&&t.every(c=>c instanceof sd),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in B.registeredVariables)t.push(B.registeredVariables[c])}let s=n?t.filter(c=>!c.trainable):null,r=t.length;t=t.filter(c=>c.trainable),O(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=B.gradients(e,t,null,a);O(i.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),O(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((c,u)=>{i[u]!=null&&(l[c.name]=i[u])}),s!=null&&s.forEach(c=>l[c.name]=null),{value:o,grads:l}}function Er(e){return B.customGrad(e)}function Yh(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function aD(e){let n={x:D(e,"x","neg")};return B.runKernel(xi,n)}var Ot=V({neg_:aD});function oD(e){let n={x:D(e,"x","softplus")};return B.runKernel(pu,n)}var Cu=V({softplus_:oD});function iD(e){let t=D(e,"x","logSigmoid");return Er(s=>({value:Ot(Cu(Ot(s))),gradFunc:o=>W(o,hs(Ot(s)))}))(t)}var lD=V({logSigmoid_:iD});function uD(e,t=null,n=!1){let r={x:D(e,"x","max")},a={reductionIndices:t,keepDims:n};return B.runKernel(Va,r,a)}var rs=V({max_:uD});function cD(e,t){let n=D(e,"a","sub"),s=D(t,"b","sub");[n,s]=Ft(n,s);let r={a:n,b:s};return B.runKernel(uo,r)}var ye=V({sub_:cD});function dD(e,t=null,n=!1){let s=D(e,"x","sum");s.dtype==="bool"&&(s=de(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(oo,r,a)}var Ie=V({sum_:dD});function pD(e,t=-1){let n=D(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Er((r,a)=>{let o=!0,i=rs(r,t,!0),l=ye(r,i),c=ye(de(l,"float32"),Ns(Ie(Ts(l),t,o)));return a([c]),{value:c,gradFunc:(d,p)=>{let[h]=p,f=!0,m=Ts(h);return ye(d,W(Ie(d,t,f),m))}}})(n)}var B2=V({logSoftmax_:pD});function W2(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function K3(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function Z3(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function Qi(e,t){let n=t.map(s=>1);return K3(e,n,t)}function hD(e,t,n){O(W2(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Y3(e,t){if(W2(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function V2(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function fD(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function mD(e,t=null,n=!1){let s=D(e,"x","logSumExp"),r=Us(t,s.shape),a=rs(s,r,!0),o=ye(s,a),i=Ts(o),l=Ie(i,r),c=Ns(l),u=ie(G(a,c.shape),c);if(n){let d=Qi(u.shape,r);return G(u,d)}return u}var J3=V({logSumExp_:mD});function gD(e,t){let n=D(e,"a","logicalAnd","bool"),s=D(t,"b","logicalAnd","bool");St(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(yi,r)}var lr=V({logicalAnd_:gD});function AD(e){let n={x:D(e,"x","logicalNot","bool")};return B.runKernel(ru,n)}var Jh=V({logicalNot_:AD});function yD(e,t){let n=D(e,"a","logicalOr","bool"),s=D(t,"b","logicalOr","bool");St(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Vc,r)}var U2=V({logicalOr_:yD});function xD(e,t){let n=D(e,"a","logicalXor","bool"),s=D(t,"b","logicalXor","bool");return St(n.shape,s.shape),lr(U2(e,t),Jh(lr(e,t)))}var bD=V({logicalXor_:xD});function vD(e,t,n,s,r){let a=D(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),O(Nr(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&O(mn(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=B.runKernel(Ga,c,u);return l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Qh=V({maxPool_:vD});function wD(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=D(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&O(mn(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let c={x:i},u={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=B.runKernel(Gc,c,u);return l?G(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var G2=V({maxPool3d_:wD});function kD(e,t,n,s,r=!1){let o={x:D(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=B.runKernel(bh,o,i);return{result:l[0],indexes:l[1]}}var Q3=V({maxPoolWithArgmax_:kD});function ID(e,t){let n=D(e,"a","maximum"),s=D(t,"b","maximum");[n,s]=Ft(n,s),n.dtype==="bool"&&(n=de(n,"int32"),s=de(s,"int32")),St(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Ua,r)}var Yr=V({maximum_:ID});function SD(e,t=null,n=!1){let r={x:D(e,"x","mean")},a={axis:t,keepDims:n};return B.runKernel(Ha,r,a)}var Wt=V({mean_:SD});function Ht(e,t="float32"){if(t==="complex64"){let s=Ht(e,"float32"),r=Ht(e,"float32");return yo(s,r)}let n=Qp(Ut(e),t);return B.makeTensor(n,e,t)}function gs(e,t="float32"){if(t==="complex64"){let s=gs(e,"float32"),r=Ht(e,"float32");return yo(s,r)}let n=Lg(Ut(e),t);return B.makeTensor(n,e,t)}function CD(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=D(e,"x","meshgrid",e instanceof Ye?e.dtype:"float32");if(t===void 0)return[s];let r=D(t,"y","meshgrid",t instanceof Ye?t.dtype:"float32"),a=Ut(s.shape),o=Ut(r.shape);return n==="xy"?(s=G(s,[1,-1]),r=G(r,[-1,1]),[He(gs([o,1],s.dtype),s),He(r,gs([1,a],r.dtype))]):(s=G(s,[-1,1]),r=G(r,[1,-1]),[He(s,gs([1,o],s.dtype)),He(gs([a,1],r.dtype),r)])}function TD(e,t=null,n=!1){let r={x:D(e,"x","min")},a={axis:t,keepDims:n};return B.runKernel(ja,r,a)}var ef=V({min_:TD});function ND(e,t){let n=D(e,"a","minimum"),s=D(t,"b","minimum");[n,s]=Ft(n,s),n.dtype==="bool"&&(n=de(n,"int32"),s=de(s,"int32")),St(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(qa,r)}var hd=V({minimum_:ND});function ED(e,t,n){O(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=D(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");O(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)O(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),O(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return B.runKernel(Xa,o,a)}var ev=V({mirrorPad_:ED});function RD(e,t){let n=D(e,"a","mod"),s=D(t,"b","mod");[n,s]=Ft(n,s);let r={a:n,b:s};return B.runKernel(au,r)}var tv=V({mod_:RD});function $D(e){let t=D(e,"x","square"),n={};return B.runKernel("Square",{x:t},n)}var xt=V({square_:$D});function DD(e,t=null,n=!1){e=D(e,"x","moments");let s=Us(t,e.shape),r=Wt(e,s,n),a=r.shape;n||(a=Qi(r.shape,s));let o=xt(ye(de(e,"float32"),G(r,a))),i=Wt(o,s,n);return{mean:r,variance:i}}var tf=V({moments_:DD});function _D(e,t,n,s){let r=D(t,"data","multiRNNCell"),a=ad(n,"c","multiRNNCell"),o=ad(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d<e.length;d++){let p=e[d](i,a[d],o[d]);l.push(p[0]),l.push(p[1]),i=p[1]}let c=[],u=[];for(let d=0;d<l.length;d+=2)c.push(l[d]),u.push(l[d+1]);return[c,u]}var PD=V({multiRNNCell_:_D});function FD(e,t,n,s=!1){let r=D(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?G(r,[1,-1]):r},c={numSamples:t,seed:n,normalized:s},u=B.runKernel(vh,l,c);return o===1?G(u,[u.size]):u}var nv=V({multinomial_:FD});function OD(e,t){let n=D(e,"a","notEqual","string_or_numeric"),s=D(t,"b","notEqual","string_or_numeric");[n,s]=Ft(n,s),St(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(bi,r)}var Tu=V({notEqual_:OD});function MD(e){let n={x:D(e,"x","onesLike")};return B.runKernel(ki,n)}var Es=V({onesLike_:MD});function zD(e,t){let n=D(e,"v1","outerProduct"),s=D(t,"v2","outerProduct");O(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=G(n,[-1,1]),a=G(s,[1,-1]);return He(r,a)}var LD=V({outerProduct_:zD});function BD(e,t,n=0){let s=D(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return B.runKernel(Za,a,r)}var qs=V({pad_:BD});function WD(e,t,n=0){return O(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),qs(e,[t],n)}var VD=V({pad1d_:WD});function UD(e,t,n=0){return O(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),qs(e,t,n)}var GD=V({pad2d_:UD});function HD(e,t,n=0){return O(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),qs(e,t,n)}var jD=V({pad3d_:HD});function qD(e,t,n=0){return O(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),qs(e,t,n)}var XD=V({pad4d_:qD});function KD(e,t,n){let s=D(e,"x","spaceToBatchND");O(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),O(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),O(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return B.runKernel(Pi,r,a)}var nf=V({spaceToBatchND_:KD});function ZD(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=D(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2]])),O(Nr(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=S3(i.shape,t,a,r,s),u=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=JD([c.filterHeight,c.filterWidth],u):d=[[0,0],[0,0]];let p=u[0]===1&&u[1]===1,[h,f]=YD([c.inHeight,c.inWidth],u,d),m=p?s:"valid",g=p?i:nf(i,u,h),y=(n==="avg"?()=>Hh(g,t,a,m):()=>Qh(g,t,a,m))(),x=p?y:jh(y,u,f);return l?G(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function YD(e,t,n){let s=n.map(u=>u[0]),r=n.map(u=>u[1]),a=e.concat(s,r),o=t.map((u,d)=>(u-a[d]%u)%u),i=r.map((u,d)=>u+o[d]),l=t.map((u,d)=>[s[d],i[d]]),c=t.map((u,d)=>[0,o[d]]);return[l,c]}function JD(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var QD=V({pool_:ZD});function e_(e,t){let n=D(e,"base","pow"),s=D(t,"exp","pow");[n,s]=Ft(n,s);let r={a:n,b:s};return B.runKernel(Ya,r)}var Io=V({pow_:e_});function t_(e,t){let n=D(e,"x","prelu"),s=D(t,"alpha","prelu"),r={x:n,alpha:s};return B.runKernel(Ja,r)}var sf=V({prelu_:t_});function n_(e,t=null,n=!1){let s=D(e,"x","prod");s.dtype==="bool"&&(s=de(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(Ci,r,a)}var H2=V({prod_:n_});function s_(e,t,n){let s=Ut(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return B.makeTensor(r,e,n)}var r_=V({rand_:s_}),j2=Qo(Kp()),q2=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=j2.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},a_=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=j2.alea(r.toString()),this.randn=new q2(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},o_=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=j2.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function i_(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new a_(t,n,s,r),o=Le(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var l_=V({randomGamma_:i_});function u_(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new q2(t,n,s,!1,r),o=Le(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var sv=V({randomNormal_:u_});function c_(e,t=0,n=1,s="float32",r){let a=Le(e,s),o=new o_(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var Nu=V({randomUniform_:c_});function Eu(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return B.runKernel(iu,{},r)}function d_(e){let n={input:D(e,"input","real")};return B.runKernel(Hc,n)}var fd=V({real_:d_});function p_(e){let n={x:D(e,"x","reciprocal")};return B.runKernel(lu,n)}var rv=V({reciprocal_:p_});function h_(e){let n={x:D(e,"x","relu")};return B.runKernel(Qa,n)}var Rr=V({relu_:h_});function f_(e){let n={x:D(e,"x","relu6")};return B.runKernel(to,n)}var X2=V({relu6_:f_});function m_(e,t){let s={x:D(e,"x","reverse")},r={dims:t};return B.runKernel(Ni,s,r)}var Rs=V({reverse_:m_});function g_(e){let t=D(e,"x","reverse");return O(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Rs(t,0)}var A_=V({reverse1d_:g_});function y_(e,t){let n=D(e,"x","reverse");return O(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Rs(n,t)}var x_=V({reverse2d_:y_});function b_(e,t){let n=D(e,"x","reverse");return O(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Rs(n,t)}var v_=V({reverse3d_:b_});function w_(e,t){let n=D(e,"x","reverse");return O(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Rs(n,t)}var k_=V({reverse4d_:w_});function I_(e){let n={x:D(e,"x","round")};return B.runKernel(Ei,n)}var K2=V({round_:I_});function S_(e){let n={x:D(e,"x","rsqrt","float32")};return B.runKernel(no,n)}var Z2=V({rsqrt_:S_});function Ee(e,t){if((Dn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Dn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return xo(e,[],[],t)}function C_(e){let n={x:D(e,"x","selu")};return B.runKernel(cu,n)}var Y2=V({selu_:C_});function T_(e,t,n,s,r,a=[1,1],o="NHWC"){let i=D(e,"x","separableConv2d"),l=D(t,"depthwiseFilter","separableConv2d"),c=D(n,"pointwiseFilter","separableConv2d"),u=i,d=!1;if(i.rank===3&&(d=!0,u=G(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");O(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),O(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),O(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),O(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let p=l.shape[2],h=l.shape[3];O(c.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${c.shape[2]}.`);let f=cd(u,l,s,r,o,a),g=ko(f,c,1,"valid",o);return d?G(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var av=V({separableConv2d_:T_});async function N_(e,t){let n=D(e,"x","setdiff1d"),s=D(t,"y","setdiff1d");O(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),O(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),O(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let u=0;u<r.length;u++)o.has(r[u])||i++;let l=new sn([i],n.dtype),c=new sn([i],"int32");for(let u=0,d=0;u<r.length;u++)o.has(r[u])||(l.values[d]=r[u],c.values[d]=u,d++);return[l.toTensor(),c.toTensor()]}var ov=N_;function E_(e){let n={x:D(e,"x","sign")};return B.runKernel(du,n)}var iv=V({sign_:E_});function R_(e){let n={x:D(e,"x","sin","float32")};return B.runKernel(so,n)}var J2=V({sin_:R_});function $_(e){let n={x:D(e,"x","sinh")};return B.runKernel(_i,n)}var Q2=V({sinh_:$_});function D_(e,t,n){let s=D(e,"x","slice1d");return O(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),_e(s,[t],[n])}var rf=V({slice1d_:D_});function __(e,t,n){let s=D(e,"x","slice2d");return O(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var e1=V({slice2d_:__});function P_(e,t,n){let s=D(e,"x","slice3d");return O(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var Ru=V({slice3d_:P_});function F_(e,t,n){let s=D(e,"x","slice4d");return O(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var md=V({slice4d_:F_});function O_(e,t=-1){let n=D(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return B.runKernel(io,s,r)}var $u=V({softmax_:O_});function M_(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(fh,t)}var af=V({fft_:M_});function z_(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(mh,t)}var gd=V({ifft_:z_});function L_(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=G(e,[n,t]);s=gd(r)}else{let r=[n,2*(t-1)],a=G(fd(e),[n,t]),o=G(Xh(e),[n,t]),i=Rs(_e(a,[0,1],[n,t-2]),1),l=W(Rs(_e(o,[0,1],[n,t-2]),1),Ee(-1)),c=It([a,i],1),u=It([o,l],1),d=G(yo(c,u),[r[0],r[1]]);s=gd(d)}if(s=fd(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=G(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var t1=V({irfft_:L_});function B_(e,t,n=0){let r={x:D(e,"x","split")},a={numOrSizeSplits:t,axis:n};return B.runKernel(Fi,r,a)}var Sn=V({split_:B_});function W_(e,t){O(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=_e(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=It([e,Ht(f)],e.shape.length-1),n=t}else r=e;let a=tt(r),o=G(yo(r,a),[s,n]),i=af(o),l=Math.floor(n/2)+1,c=fd(i),u=Xh(i),d=Sn(c,[l,n-l],c.shape.length-1),p=Sn(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,G(yo(d[0],p[0]),h)}var of=V({rfft_:W_});function V_(e){let n={x:D(e,"x","sqrt","float32")};return B.runKernel(ao,n)}var _n=V({sqrt_:V_});function U_(e,t){let n=D(e,"a","squaredDifference"),s=D(t,"b","squaredDifference");[n,s]=Ft(n,s),St(n.shape,s.shape);let r={a:n,b:s},a={};return B.runKernel(lo,r,a)}var n1=V({squaredDifference_:U_});function G_(e,t){let n=D(e,"x","squeeze");return G(n,s5(n.shape,t).newShape)}var pt=V({squeeze_:G_});function H_(e,t=0){let n=ad(e,"tensors","stack","string_or_numeric");O(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&O(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return B.runKernel(Si,s,r)}var Pn=V({stack_:H_});function j_(e,t=0){let s={x:D(e,"x","step")},r={alpha:t};return B.runKernel(ho,s,r)}var Ad=V({step_:j_});function q_(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let u={x:D(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return B.runKernel(Oi,u,d)}var lv=V({stridedSlice_:q_});function X_(e){let n={x:D(e,"x","tan","float32")};return B.runKernel(Mi,n)}var uv=V({tan_:X_});function Zt(e,t){ei(e);let n=Cr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return xo(e,null,n,t)}function ur(e,t,n){if(ei(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Cr(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return xo(e,t,s,n)}function K_(e,t,n){if(ei(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Cr(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return xo(e,t,s,n)}function Z_(e,t,n){if(ei(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Cr(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return xo(e,t,s,n)}function Y_(e,t,n){if(ei(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Cr(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,xo(e,t,s,n)}function J_(e,t=1,n=!0){let s=D(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=B.runKernel(zi,a,o);return{values:i,indices:l}}var cv=V({topk_:J_});function Q_(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new q2(t,n,s,!0,r),o=Le(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var lf=V({truncatedNormal_:Q_});function eP(e,t=0){let n=D(e,"x","unique","string_or_numeric");O(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=B.runKernel(Rh,s,r);return{values:a,indices:o}}var s1=V({unique_:eP});function tP(e,t,n){let s=D(e,"x","unsortedSegmentSum"),r=D(t,"segmentIds","unsortedSegmentSum","int32");O(mn(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return B.runKernel(Xc,a,o)}var dv=V({unsortedSegmentSum_:tP});function nP(e,t=0){let n=D(e,"x","unstack","string_or_numeric");O(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return B.runKernel(Bi,s,r)}var as=V({unstack_:nP});function pv(e,t=!0,n,s){return B.makeVariable(e,t,n,s)}function hv(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=Le(e,"int32"),r=Le([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function sP(e){let t=D(e,"condition","whereAsync","bool"),n=await t.data(),s=hv(t.shape,n);return e!==t&&t.dispose(),s}var r1=sP;async function rP(e,t,n){let s=D(e,"tensor","boolMask"),r=D(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;O(o>0,()=>"mask cannot be scalar"),zn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let c=i.slice(0,a).concat([l],i.slice(a+o)),u=G(s,c),d=G(r,[-1]),p=await r1(d),h=pt(p,[1]),f=Su(u,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),d.dispose(),p.dispose(),f}var aP=rP;function oP(e,t="euclidean",n=null,s=!1){e=D(e,"x","norm");let r=fv(e,t,n),a=r.shape;if(s){let o=Us(n,e.shape);a=Qi(r.shape,o)}return G(r,a)}function fv(e,t,n=null){if(e.rank===0)return rn(e);if(e.rank!==1&&n===null)return fv(G(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Ie(rn(e),n);if(t===1/0)return rs(rn(e),n);if(t===-1/0)return ef(rn(e),n);if(t==="euclidean"||t===2)return _n(Ie(Io(rn(e),Ee(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return rs(Ie(rn(e),n[0]),n[1]-1);if(t===1/0)return rs(Ie(rn(e),n[1]),n[0]);if(t===-1/0)return ef(Ie(rn(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return _n(Ie(xt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var a1=V({norm_:oP});function iP(e,t,n,s,r=!0){let a=D(e,"v","movingAverage"),o=D(t,"x","movingAverage"),i=D(n,"decay","movingAverage");I5(a,o),O(Gr(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Ee(1),c=ye(l,i),u=W(ye(o,a),c);if(r){O(s!=null,()=>"When using zeroDebias: true, step is required.");let d=D(s,"step","movingAverage");u=he(u,ye(l,Io(i,d)))}return ie(a,u)}var lP=V({movingAverage_:iP});function uP(e,t,n){let s=D(e,"indices","scatterND","int32"),r=D(t,"updates","scatterND");b2(r,s,n);let a={indices:s,updates:r},o={shape:n};return B.runKernel(Ri,a,o)}var mv=V({scatterND_:uP});function cP(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function dP(e,t,n,s=0){let r=D(e,"sparseIndices","sparseToDense","int32"),a=D(t,"sparseValues","sparseToDense"),o=D(s,"defaultValue","sparseToDense",a.dtype);cP(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return B.runKernel(jc,i,l)}var o1=V({sparseToDense_:dP});function pP(e,t){let n=D(t,"indices","gatherND","int32"),r={params:D(e,"x","gatherND","string_or_numeric"),indices:n};return B.runKernel(hi,r)}var gv=V({gatherND_:pP});function hP(e,t){if(t==null)return e.shape.slice();if(Gr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function fP(e,t,n,s){let r=D(e,"x","dropout");if(O(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),O(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ye?r.clone():r;let a=hP(r,n),o=1-t,i=he(pd(ie(Nu(a,0,1,"float32",s),o)),o);return W(r,i)}var Av=V({dropout_:fP});function yv(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function i1(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return Zt(r,"float32")}async function mP(e,t,n=1){let s=D(e,"predictions","inTopK"),r=D(t,"targets","inTopK");O(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),O(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),zn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];O(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,c]=[o.length/a,a],u=r5("bool",l);for(let d=0;d<l;d++){let p=d*c,h=o.subarray(p,p+c),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),u[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){u[d]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),Gt(u,r.shape,"bool")}var gP=mP,So={};ze(So,{conv2d:()=>xP,depthwiseConv2d:()=>kP,matMul:()=>SP});function AP(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]])),O(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),O(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),O(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=a==="NHWC"?i.shape[3]:i.shape[1],u=a==="NHWC"?l.shape[3]:l.shape[1];O(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),O(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),o!=null&&O(mn(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return B.runKernel(rh,d,p)}var l1=V({conv2DBackpropFilter_:AP});function uf(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return W(e,Ad(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function cf(e,t){let n=t,s=an(e.shape,t.shape);return s.length>0&&(n=Ie(n,s)),G(n,e.shape)}function df(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Rr(e);if(t==="elu")return dd(e);if(t==="relu6")return X2(e);if(t==="prelu")return sf(e,n);if(t==="leakyrelu")return Kh(e,s);if(t==="sigmoid")return hs(e);throw new Error(`Unknown fused activation ${t}.`)}var pf=(e,t)=>!(e>0)||t==="linear";function yP({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",pf(B.state.gradientDepth,l)===!1){let w=ko(e,t,n,s,r,a,o);return i!=null&&(w=ie(w,i)),df(w,l,c,u)}let d=D(e,"x","conv2d","float32"),p=D(t,"filter","conv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=G(d,[1,d.shape[0],d.shape[1],d.shape[2]])),O(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),O(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),o!=null&&O(mn(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),O(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),O(Nr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=ld(h.shape,p.shape,n,a,s,o),g;i!=null&&(g=D(i,"bias","fused conv2d"),[g]=Ft(g,d),St(m.outShape,g.shape));let A;c!=null&&(A=D(c,"prelu weights","fused conv2d"));let y=(w,k)=>{let[S,E,P,F]=k,R=uf(w,P,l);O(wo(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let _=_2(E.shape,R,S,n,s),T=l1(E,R,S.shape,n,s),M=[_,T];if(F!=null){let U=cf(F,R);M.push(U)}return M},x={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?Er((k,S,E)=>{let P=B.runKernel(mo,x,b);return E([S,k,P]),f&&(P=G(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:y}})(h,p):Er((k,S,E,P)=>{let F=B.runKernel(mo,x,b);return P([S,k,F,E]),f&&(F=G(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:y}})(h,p,g)}var xP=V({fusedConv2d_:yP});function bP(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=G(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:i,dy:l},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return B.runKernel(lh,c,u)}var xv=V({depthwiseConv2dNativeBackpropFilter_:bP});function vP(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=G(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:i,filter:n},u={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=B.runKernel(uh,c,u);return l?G(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var bv=V({depthwiseConv2dNativeBackpropInput_:vP});function wP({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(pf(B.state.gradientDepth,l)===!1){let w=cd(e,t,n,s,r,a,o);return i!=null&&(w=ie(w,i)),df(w,l,c,u)}let d=D(e,"x","depthwiseConv2d","float32"),p=D(t,"filter","depthwiseConv2d","float32"),h=d,f=!1;d.rank===3&&(f=!0,h=G(d,[1,d.shape[0],d.shape[1],d.shape[2]])),O(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),O(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),O(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),O(Nr(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&O(mn(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=ld(h.shape,p.shape,n,a,s,o,!0),g;i!=null&&(g=D(i,"bias","fused conv2d"),[g]=Ft(g,d),St(m.outShape,g.shape));let A;c!=null&&(A=D(c,"prelu weights","fused depthwiseConv2d"));let y=(w,k)=>{O(wo(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[S,E,P,F]=k,R=uf(w,P,l),_=bv(E.shape,R,S,n,s,a,o),T=xv(E,R,S.shape,n,s,a,o);if(F!=null){let M=cf(g,R);return[_,T,M]}return[_,T]},x={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:u};return i==null?Er((k,S,E)=>{let P=B.runKernel(go,x,b);return E([S,k,P]),f&&(P=G(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:y}})(h,p):Er((k,S,E,P)=>{let F=B.runKernel(go,x,b);return P([S,k,F,E]),f&&(F=G(F,[F.shape[1],F.shape[2],F.shape[3]])),{value:F,gradFunc:y}})(h,p,g)}var kP=V({fusedDepthwiseConv2d_:wP});function IP({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(pf(B.state.gradientDepth,a)===!1){let F=He(e,t,n,s);return r!=null&&(F=ie(F,r)),df(F,a,o,i)}let l=D(e,"a","fused matMul"),c=D(t,"b","fused matMul");[l,c]=Ft(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?c.shape[c.rank-1]:c.shape[c.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),g=Ut(f),A=Ut(m);O(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),O(Gr(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),O(u===d,()=>`Error in fused matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${s} must match.`);let y=l.shape.slice(0,-2).concat([p,h]),x=n?G(l,[g,u,p]):G(l,[g,p,u]),b=s?G(c,[A,h,d]):G(c,[A,d,h]),w;r!=null&&(w=D(r,"bias","fused matMul"),[w]=Ft(w,l),St(y,w.shape));let k;o!=null&&(k=D(o,"prelu weights","fused matMul"));let S=(F,R)=>{let[_,T,M,U]=R,H=uf(G(F,M.shape),M,a),z,X;if(!n&&!s?(z=He(H,T,!1,!0),X=He(_,H,!0,!1)):!n&&s?(z=He(H,T,!1,!1),X=He(H,_,!0,!1)):n&&!s?(z=He(T,H,!1,!0),X=He(_,H,!1,!1)):(z=He(T,H,!0,!0),X=He(H,_,!0,!0)),r!=null){let ee=cf(U,H);return[z,X,ee]}else return[z,X]},E={a:x,b,bias:w,preluActivationWeights:k},P={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?Er((R,_,T)=>{let M=B.runKernel(fo,E,P);return T([R,_,M]),{value:G(M,y),gradFunc:S}})(x,b):Er((R,_,T,M)=>{let U=B.runKernel(fo,E,P);return M([R,_,U,T]),{value:G(U,y),gradFunc:S}})(x,b,w)}var SP=V({fusedMatMul_:IP});function CP(e){return i1(e,.54,.46)}var TP=V({hammingWindow_:CP});function NP(e){return i1(e,.5,.5)}var vv=V({hannWindow_:NP});function EP(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(_e(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=It([_e(e,a,t-i),Iu([i],r)]);o.push(l),a+=n}return o.length===0?ur([],[0,t]):G(It(o),[o.length,t])}var wv=V({frame_:EP});function RP(e,t,n,s,r=vv){s==null&&(s=yv(t));let a=wv(e,t,n),o=W(a,r(t));return of(o,s)}var $P=V({stft_:RP});function DP(e,t,n,s,r="bilinear",a=0){let o=D(e,"image","cropAndResize"),i=D(t,"boxes","cropAndResize","float32"),l=D(n,"boxInd","cropAndResize","int32"),c=i.shape[0];O(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${i.shape}.`),O(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${i.shape}.`),O(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),O(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),O(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return B.runKernel(oi,u,d)}var _P=V({cropAndResize_:DP});function PP(e){let t=D(e,"image","flipLeftRight","float32");O(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return B.runKernel(di,n,{})}var FP=V({flipLeftRight_:PP});function OP(e){let t=D(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];O(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),O(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,js(t,r)}var MP=V({grayscaleToRGB_:OP});function zP(e,t,n=0,s=.5){let r=D(e,"image","rotateWithOffset","float32");O(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return B.runKernel(Vi,a,o)}var LP=V({rotateWithOffset_:zP});function Du(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),O(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),O(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),O(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),O(t.rank===1,()=>"scores must be a 1D tensor"),O(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),O(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function BP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=D(e,"boxes","nonMaxSuppression","float32"),o=D(t,"scores","nonMaxSuppression","float32"),i=Du(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return B.runKernel(vi,{boxes:a,scores:o},l)}var WP=V({nonMaxSuppression_:BP});function VP(e,t,n){let s=UP(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function UP(e,t,n){return HP(e,t,n||GP)}function GP(e,t){return e>t?1:e<t?-1:0}function HP(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function kv(e,t,n,s,r){return u1(e,t,n,s,r,0)}function Iv(e,t,n,s,r,a){return u1(e,t,n,s,r,0,!1,a,!0)}function Sv(e,t,n,s,r,a){return u1(e,t,n,s,r,a,!0)}function u1(e,t,n,s,r,a,o=!1,i=!1,l=!1){let c=[];for(let g=0;g<t.length;g++)t[g]>r&&c.push({score:t[g],boxIndex:g,suppressBeginIndex:0});c.sort(Cv);let u=a>0?-.5/a:0,d=[],p=[];for(;d.length<n&&c.length>0;){let g=c.pop(),{score:A,boxIndex:y,suppressBeginIndex:x}=g;if(A<r)break;let b=!1;for(let w=d.length-1;w>=x;--w){let k=jP(e,y,d[w]);if(k>=s){b=!0;break}if(g.score=g.score*qP(s,u,k),g.score<=r)break}g.suppressBeginIndex=d.length,b||(g.score===A?(d.push(y),p.push(g.score)):g.score>r&&VP(c,g,Cv))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),l&&(m.validOutputs=h),m}function jP(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),c=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(d-c)*(p-u);if(h<=0||f<=0)return 0;let m=Math.max(a,c),g=Math.max(o,u),A=Math.min(i,d),y=Math.min(l,p),x=Math.max(A-m,0)*Math.max(y-g,0);return x/(h+f-x)}function qP(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function Cv(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function XP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=D(e,"boxes","nonMaxSuppressionAsync"),o=D(t,"scores","nonMaxSuppressionAsync"),i=Du(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),c=l[0],u=l[1],{selectedIndices:d}=kv(c,u,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Zt(d,"int32")}var KP=XP;function ZP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=D(e,"boxes","nonMaxSuppression"),i=D(t,"scores","nonMaxSuppression"),l=Du(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c={boxes:o,scores:i},u={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=B.runKernel(wi,c,u);return{selectedIndices:d[0],selectedScores:d[1]}}var YP=V({nonMaxSuppressionWithScore_:ZP});async function JP(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=D(e,"boxes","nonMaxSuppressionAsync"),i=D(t,"scores","nonMaxSuppressionAsync"),l=Du(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let c=await Promise.all([o.data(),i.data()]),u=c[0],d=c[1],{selectedIndices:p,selectedScores:h}=Sv(u,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Zt(p,"int32"),selectedScores:Zt(h)}}var QP=JP;function eF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=D(e,"boxes","nonMaxSuppression"),i=D(t,"scores","nonMaxSuppression"),l=Du(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:c,iouThreshold:u,scoreThreshold:d,padToMaxOutputSize:a},f=B.runKernel(ou,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var tF=V({nonMaxSuppressionPadded_:eF});async function nF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=D(e,"boxes","nonMaxSuppressionAsync"),i=D(t,"scores","nonMaxSuppressionAsync"),l=Du(o,i,n,s,r,null),c=l.maxOutputSize,u=l.iouThreshold,d=l.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=Iv(p,h,c,u,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Zt(f,"int32"),validOutputs:Ee(m,"int32")}}var sF=nF;function rF(e,t,n=!1,s=!1){let r=D(e,"images","resizeBilinear");O(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),O(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=G(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=B.runKernel(eo,i,l);return o?G(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var aF=V({resizeBilinear_:rF});function oF(e,t,n=!1,s=!1){let r=D(e,"images","resizeNearestNeighbor");O(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),O(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),O(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=G(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},c=B.runKernel(uu,i,l);return o?G(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var iF=V({resizeNearestNeighbor_:oF});function lF(e,t="binary",n=!1,s=.5){let r=D(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],c=W(Zt([s]),255),u,d,p,h;if(O(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),O(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),O(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),O(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[u,d,p]=Sn(r,[1,1,1],-1);let g=W(u,a),A=W(d,o),y=W(p,i);h=ie(ie(g,A),y)}else h=e;if(t==="otsu"){let g=$2(de(K2(h),"int32"),Gt([]),256);c=uF(g,l)}let f=n?Ji(h,c):ms(h,c);return de(W(f,255),"int32")}function uF(e,t){let n=Zt([-1]),s=Zt([0]),r=Zt([0]),a,o,i,l,c,u;for(let d=0;d<e.size-1;d++){a=_e(e,0,d+1),o=_e(e,d+1),c=he(Ie(a),t),u=he(Ie(o),t);let p=Ie(W(a,Eu(0,a.size)));i=he(p,Ie(a));let h=Iu(o.shape,a.size),f=ie(Eu(0,o.size),h),m=W(o,f);l=he(Ie(m),Ie(o));let g=ye(i,l),A=ye(i,l),y=W(c,u);r=W(W(y,g),A);let x=ms(r,s);s=Wn(x,r,s),n=Wn(x,Zt([d]),n)}return n}var cF=V({threshold_:lF});function dF(e,t,n="nearest",s="constant",r=0,a){let o=D(e,"image","transform","float32"),i=D(t,"transforms","transform","float32");O(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),O(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},c={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return B.runKernel(Li,l,c)}var pF=V({transform_:dF});function hF(e,t,n){O(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),O(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=D(e,"a","bandPart");O(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=G(Eu(0,a,1,"int32"),[-1,1]),l=Eu(0,o,1,"int32"),c=ye(i,l),u=lr(Ji(c,Ee(+t,"int32")),Yi(c,Ee(-n,"int32"))),d=Ht([a,o],s.dtype);return G(Pn(as(G(s,[-1,a,o])).map(p=>Wn(u,p,d))),r)}var fF=V({bandPart_:hF});function mF(e){let t;if(Array.isArray(e)){t=!1,O(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)O(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=Sn(e,e.shape[0],0).map(r=>pt(r,[0]));O(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(B.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=W(Ie(W(n[o],a)),n[o]);a=ye(a,i)}return he(a,a1(a,"euclidean"))}));return t?Pn(n,0):n}var gF=V({gramSchmidt_:mF});function AF(e,t=!1){if(O(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Tv(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),s=as(G(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[c,u]=Tv(l,t);r.push(c),a.push(u)});let o=G(Pn(r,0),e.shape),i=G(Pn(a,0),e.shape);return[o,i]}}function Tv(e,t=!1){return B.tidy(()=>{O(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=z2(n),a=or(e),o=ur([[1]],[1,1]),i=or(o),l=n>=s?s:n;for(let c=0;c<l;++c){let u=a,d=i,p=r;[i,a,r]=B.tidy(()=>{let h=_e(a,[c,c],[n-c,1]),f=a1(h),m=_e(a,[c,c],[1,1]),g=Wn(ms(m,0),ur([[-1]]),ur([[1]])),A=ye(m,W(g,f)),y=he(h,A);y.shape[0]===1?i=or(o):i=It([o,_e(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=Ot(he(He(g,A),f)),b=_e(a,[c,0],[n-c,s]),w=W(x,i),k=et(i);if(c===0)a=ye(b,He(w,He(k,b)));else{let P=ye(b,He(w,He(k,b)));a=It([_e(a,[0,0],[c,s]),P],0)}let S=et(w),E=_e(r,[0,c],[n,r.shape[1]-c]);if(c===0)r=ye(E,He(He(E,i),S));else{let P=ye(E,He(He(E,i),S));r=It([_e(r,[0,0],[n,c]),P],1)}return[i,a,r]}),Q([u,d,p])}return!t&&n>s&&(r=_e(r,[0,0],[n,s]),a=_e(a,[0,0],[s,s])),[r,a]})}var yF=V({qr_:AF}),Vn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Vn||(Vn={}));function xF(e,t,n=Vn.SUM_BY_NONZERO_WEIGHTS){let s=D(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=D(t,"weights","computeWeightedLoss"));let a=r==null?s:W(s,r);if(n===Vn.NONE)return a;if(n===Vn.SUM)return Ie(a);if(n===Vn.MEAN){if(r==null)return Wt(a);{let o=s.size/r.size,i=he(Ie(a),Ie(r));return o>1?he(i,Ee(o)):i}}if(n===Vn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return he(Ie(a),Ee(s.size));{let o=W(r,gs(s.shape)),i=de(Ie(Tu(o,Ee(0))),"float32");return he(Ie(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Jr=V({computeWeightedLoss_:xF});function bF(e,t,n,s=Vn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","absoluteDifference"),a=D(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=D(n,"weights","absoluteDifference")),zn(r.shape,a.shape,"Error in absoluteDifference: ");let i=rn(ye(r,a));return Jr(i,o,s)}var vF=V({absoluteDifference_:bF});function wF(e,t,n,s,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","cosineDistance"),o=D(t,"predictions","cosineDistance"),i=null;s!=null&&(i=D(s,"weights","cosineDistance")),zn(a.shape,o.shape,"Error in cosineDistance: ");let l=Ee(1),c=ye(l,Ie(W(a,o),n,!0));return Jr(c,i,r)}var kF=V({cosineDistance_:wF});function IF(e,t,n,s=Vn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","hingeLoss"),a=D(t,"predictions","hingeLoss"),o=null;n!=null&&(o=D(n,"weights","hingeLoss")),zn(r.shape,a.shape,"Error in hingeLoss: ");let i=Ee(1);r=ye(W(Ee(2),r),i);let l=Rr(ye(i,W(r,a)));return Jr(l,o,s)}var SF=V({hingeLoss_:IF});function CF(e,t,n,s=1,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","huberLoss"),o=D(t,"predictions","huberLoss"),i=null;n!=null&&(i=D(n,"weights","huberLoss")),zn(a.shape,o.shape,"Error in huberLoss: ");let l=Ee(s),c=rn(ye(o,a)),u=hd(c,l),d=ye(c,u),p=ie(W(Ee(.5),xt(u)),W(l,d));return Jr(p,i,r)}var TF=V({huberLoss_:CF});function NF(e,t,n,s=1e-7,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","logLoss"),o=D(t,"predictions","logLoss"),i=null;n!=null&&(i=D(n,"weights","logLoss")),zn(a.shape,o.shape,"Error in logLoss: ");let l=Ee(1),c=Ee(s),u=Ot(W(a,Ns(ie(o,c)))),d=W(ye(l,a),Ns(ie(ye(l,o),c))),p=ye(u,d);return Jr(p,i,r)}var EF=V({logLoss_:NF});function RF(e,t,n,s=Vn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","meanSquaredError"),a=D(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=D(n,"weights","meanSquaredError")),zn(r.shape,a.shape,"Error in meanSquaredError: ");let i=n1(r,a);return Jr(i,o,s)}var $F=V({meanSquaredError_:RF});function DF(e,t){let n=D(e,"labels","sigmoidCrossEntropyWithLogits"),s=D(t,"logits","sigmoidCrossEntropyWithLogits");zn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Rr(s),a=W(s,n),o=Zh(Ts(Ot(rn(s))));return ie(ye(r,a),o)}function _F(e,t,n,s=0,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"multiClassLabels","sigmoidCrossEntropy"),o=D(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=D(n,"weights","sigmoidCrossEntropy")),zn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let c=Ee(s),u=Ee(1),d=Ee(.5);a=ie(W(a,ye(u,c)),W(d,c))}let l=DF(a,o);return Jr(l,i,r)}var PF=V({sigmoidCrossEntropy_:_F});function FF(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Er((r,a,o)=>{let l=J3(a,[n],!0),c=ye(de(a,"float32"),l);o([r,c]);let u=Ot(W(c,r));return{value:Ie(u,[n]),gradFunc:(h,f)=>{let[m,g]=f,A=Qi(h.shape,[n]);return[W(G(h,A),ye(de(m,"float32"),Ts(g))),W(G(h,A),ye(Ts(g),de(m,"float32")))]}}})(e,t)}function OF(e,t,n,s=0,r=Vn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"onehotLabels","softmaxCrossEntropy"),o=D(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=D(n,"weights","softmaxCrossEntropy")),zn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let c=Ee(s),u=Ee(1),d=Ee(a.shape[1]);a=ie(W(a,ye(u,c)),he(c,d))}let l=FF(a,o);return Jr(l,i,r)}var MF=V({softmaxCrossEntropy_:OF});function zF(e,t,n,s){let r=D(e,"indices","sparseFillEmptyRows"),a=D(t,"values","sparseFillEmptyRows"),o=D(n,"denseShape","sparseFillEmptyRows"),i=D(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},c=B.runKernel(Ih,l);return{outputIndices:c[0],outputValues:c[1],emptyRowIndicator:c[2],reverseIndexMap:c[3]}}var LF=V({sparseFillEmptyRows_:zF});function BF(e,t,n){let s=D(e,"inputIndices","sparseReshape"),r=D(t,"inputShape","sparseReshape"),a=D(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=B.runKernel(Sh,o);return{outputIndices:i[0],outputShape:i[1]}}var WF=V({sparseReshape_:BF});function VF(e,t,n){let s=D(e,"data","sparseSegmentMean"),r=D(t,"indices","sparseSegmentMean"),a=D(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(Ch,o)}var UF=V({sparseSegmentMean_:VF});function GF(e,t,n){let s=D(e,"data","sparseSegmentSum"),r=D(t,"indices","sparseSegmentSum"),a=D(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(Th,o)}var HF=V({sparseSegmentSum_:GF});function jF(e,t,n,s,r,a,o,i){let l=D(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let c=D(t,"dataSplits","stringNGrams");if(c.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let u={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:c},p=B.runKernel(qc,d,u);return{nGrams:p[0],nGramsSplits:p[1]}}var qF=V({stringNGrams_:jF});function XF(e,t,n=!0){let s=D(e,"input","stringSplit","string"),r=D(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=B.runKernel(Nh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var KF=V({stringSplit_:XF});function ZF(e,t){let n=D(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return B.runKernel(Eh,r,s)}var YF=V({stringToHashBucketFast_:ZF}),JF={fft:af,ifft:gd,rfft:of,irfft:t1},QF={hammingWindow:TP,hannWindow:vv,frame:wv,stft:$P},$e={flipLeftRight:FP,grayscaleToRGB:MP,resizeNearestNeighbor:iF,resizeBilinear:aF,rotateWithOffset:LP,cropAndResize:_P,nonMaxSuppression:WP,nonMaxSuppressionAsync:KP,nonMaxSuppressionWithScore:YP,nonMaxSuppressionWithScoreAsync:QP,nonMaxSuppressionPadded:tF,nonMaxSuppressionPaddedAsync:sF,threshold:cF,transform:pF},Nv={bandPart:fF,gramSchmidt:gF,qr:yF},eO={absoluteDifference:vF,computeWeightedLoss:Jr,cosineDistance:kF,hingeLoss:SF,huberLoss:TF,logLoss:EF,meanSquaredError:$F,sigmoidCrossEntropy:PF,softmaxCrossEntropy:MF},yd={sparseFillEmptyRows:LF,sparseReshape:WF,sparseSegmentMean:UF,sparseSegmentSum:HF},hf={stringNGrams:qF,stringSplit:KF,stringToHashBucketFast:YF},Qr=class extends d3{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return Q(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return X3(e,t)}dispose(){this.iterations_!=null&&Q(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ee(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Qr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var ff=class extends Qr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:j(()=>tt(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:j(()=>tt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;j(()=>{let c=ie(W(i,this.rho),W(xt(o),1-this.rho)),u=W(he(_n(ie(l,this.epsilon)),_n(ie(i,this.epsilon))),o),d=ie(W(l,this.rho),W(xt(u),1-this.rho));i.assign(c),l.assign(d);let p=ie(W(u,-this.learningRate),r);r.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Q(this.accumulatedGrads.map(e=>e.variable)),Q(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};ff.className="Adadelta";vo(ff);var mf=class extends Qr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:j(()=>Iu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;j(()=>{let i=ie(o,xt(a));o.assign(i);let l=ie(W(he(a,_n(ie(i,B.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Q(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};mf.className="Adagrad";vo(mf);var gf=class extends Qr{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],j(()=>{this.accBeta1=Ee(t).variable(),this.accBeta2=Ee(n).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);j(()=>{let n=ye(1,this.accBeta1),s=ye(1,this.accBeta2);t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:j(()=>tt(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:j(()=>tt(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedSecondMoment[a].variable,d=ie(W(c,this.beta1),W(l,1-this.beta1)),p=ie(W(u,this.beta2),W(xt(l),1-this.beta2)),h=he(d,n),f=he(p,s);c.assign(d),u.assign(p);let m=ie(W(he(h,ie(_n(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(W(this.accBeta1,this.beta1)),this.accBeta2.assign(W(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Q(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Q(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),j(()=>{this.accBeta1.assign(Io(this.beta1,this.iterations_+1)),this.accBeta2.assign(Io(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};gf.className="Adam";vo(gf);var Af=class extends Qr{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],j(()=>{this.iteration=Ee(0).variable(),this.accBeta1=Ee(t).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);j(()=>{let n=ye(1,this.accBeta1),s=he(-this.learningRate,ie(W(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:tt(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:tt(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let c=this.accumulatedFirstMoment[a].variable,u=this.accumulatedWeightedInfNorm[a].variable,d=ie(W(c,this.beta1),W(l,1-this.beta1)),p=W(u,this.beta2),h=rn(l),f=Yr(p,h);c.assign(d),u.assign(f);let m=ie(W(he(s,n),he(d,ie(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ie(this.iteration,1)),this.accBeta1.assign(W(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Q(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Q(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Af.className="Adamax";vo(Af);var xd=class extends Qr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=B.registeredVariables[n];j(()=>{let o=ie(W(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=yn(Ee(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};xd.className="SGD";vo(xd);var yf=class extends xd{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ee(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:j(()=>tt(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&j(()=>{let i,l=ie(W(this.m,a),o);this.useNesterov?i=ie(W(this.c,ie(o,W(l,this.m))),r):i=ie(W(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Q(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};yf.className="Momentum";vo(yf);var xf=class extends Qr{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=B.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:j(()=>tt(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:j(()=>tt(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:j(()=>tt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;j(()=>{let c=ie(W(i,this.decay),W(xt(o),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[s].variable,d=ie(W(u,this.decay),W(o,1-this.decay)),p=he(W(o,this.learningRate),_n(ye(c,ie(xt(d),this.epsilon)))),h=ie(W(l,this.momentum),p);i.assign(c),u.assign(d),l.assign(h);let f=ye(r,h);r.assign(f)}else{let u=ie(W(i,this.decay),W(xt(o),1-this.decay)),d=ie(W(l,this.momentum),he(W(o,this.learningRate),_n(ie(u,this.epsilon))));i.assign(u),l.assign(d);let p=ye(r,d);r.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Q(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Q(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Q(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};xf.className="RMSProp";vo(xf);var el=class{static sgd(e){return new xd(e)}static momentum(e,t,n=!1){return new yf(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new xf(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new gf(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new ff(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new Af(e,t,n,s,r)}static adagrad(e,t=.1){return new mf(e,t)}},tl={sgd:el.sgd,momentum:el.momentum,adadelta:el.adadelta,adagrad:el.adagrad,rmsprop:el.rmsprop,adamax:el.adamax,adam:el.adam},tO=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Ev(){return new Promise(e=>tO(()=>e()))}var N={};ze(N,{ERF_A1:()=>pO,ERF_A2:()=>hO,ERF_A3:()=>fO,ERF_A4:()=>mO,ERF_A5:()=>gO,ERF_P:()=>dO,PARALLELIZE_THRESHOLD:()=>c1,SELU_SCALE:()=>$v,SELU_SCALEALPHA:()=>Rv,applyActivation:()=>df,assertAndGetBroadcastShape:()=>St,assertAxesAreInnerMostDims:()=>hD,assertParamsConsistent:()=>nO,assignToTypedArray:()=>wO,axesAreInnerMostDims:()=>W2,calculateShapes:()=>Q5,checkEinsumDimSizes:()=>NO,combineLocations:()=>K3,complexWithEvenIndex:()=>xO,complexWithOddIndex:()=>bO,computeConv2DInfo:()=>ld,computeConv3DInfo:()=>C3,computeDefaultPad:()=>N2,computeDilation2DInfo:()=>DR,computeOptimalWindowSize:()=>rO,computeOutAndReduceShapes:()=>Z3,computeOutShape:()=>sO,computePool2DInfo:()=>S3,computePool3DInfo:()=>_R,convertConv2DDataFormat:()=>T3,decodeEinsumEquation:()=>CO,eitherStridesOrDilationsAreOne:()=>Nr,expandShapeToKeepDim:()=>Qi,exponent:()=>IO,exponents:()=>kO,fromStringArrayToUint8:()=>MO,fromUint8ToStringArray:()=>OO,getAxesPermutation:()=>Y3,getBroadcastDims:()=>I$,getComplexWithIndex:()=>vO,getEinsumComputePath:()=>EO,getEinsumPermutation:()=>TO,getFusedBiasGradient:()=>cf,getFusedDyActivation:()=>uf,getImageCenter:()=>aO,getInnerMostAxes:()=>fD,getPermuted:()=>iO,getReductionAxes:()=>an,getReshaped:()=>oO,getReshapedPermuted:()=>lO,getSliceBeginCoords:()=>uO,getSliceSize:()=>cO,getUndoAxesPermutation:()=>V2,isIdentityPermutation:()=>RO,log:()=>aE,mergeRealAndImagArrays:()=>AO,prepareAndValidate:()=>J5,prepareSplitSize:()=>DO,segment_util:()=>Pv,shouldFuse:()=>pf,slice_util:()=>An,splitRealAndImagArrays:()=>yO,tupleValuesAreOne:()=>wo,upcastType:()=>Bn,validateInput:()=>b2,validateUpdateShape:()=>x2,warn:()=>kr});function nO(e,t){let n=e[0].length;e.forEach((r,a)=>{O(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),O(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)O(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function sO(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var c1=30;function rO(e){return e<=c1?e:Jp(e,Math.floor(Math.sqrt(e)))}function aO(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function oO(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function iO(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function lO(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function uO(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function cO(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var Rv=1.7580993408473768,$v=1.0507009873554805,dO=.3275911,pO=.254829592,hO=-.284496736,fO=1.421413741,mO=-1.453152027,gO=1.061405429;function AO(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function yO(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function xO(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function bO(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function vO(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function wO(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function kO(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function IO(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var d1="->",SO=/->/g,Dv=",",_v="...";function CO(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(SO,"").length)/d1.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${d1}").`);let[s,r]=e.split(d1);O(s.indexOf(_v)===-1,()=>`The ellipsis notation ("${_v}") is not supported yet.`);let a=s.split(Dv),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;p<r.length;++p){let h=r[p];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;p<s.length;++p){let h=s[p];i.indexOf(h)===-1&&h!==Dv&&i.push(h)}let l=new Array(a.length);for(let p=0;p<o;++p){if(new Set(a[p].split("")).size!==a[p].length)throw new Error(`Found duplicate axes in input component ${a[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let h=0;h<a[p].length;++h)l[p].push(i.indexOf(a[p][h]))}let c=i.length,u=r.length,d=[];for(let p=u;p<c;++p)d.push(p);return{allDims:i,summedDims:d,idDims:l}}function TO(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function NO(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:O(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function EO(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=$O(t,i);for(let c of l)a.indexOf(c)===-1&&(s[o].push(c),a.push(c))}return{path:n,steps:s}}function RO(e){return e.every((t,n)=>t===n)}function $O(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function DO(e,t,n=0){let s=[];if(typeof t=="number")O(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);O(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}O(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var Pv={};ze(Pv,{collectGatherOpShapeInfo:()=>FO,computeOutShape:()=>PO,segOpComputeOptimalWindowSize:()=>_O});function _O(e,t){let n=!1,s;for(e<=c1?(s=e,n=!0):s=Jp(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=Jp(e,s+1);return s}function PO(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function FO(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let d=0;d<s;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],l=1,c=1,u=1;for(let d=0;d<s;++d)i.push(e.shape[d]),l*=e.shape[d];for(let d=s;d<n;d++)i.push(e.shape[d]),c*=e.shape[d];for(let d=s;d<r;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),u*=e.shape[d];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:o,outputShape:i}}function OO(e){try{return e.map(t=>Ph(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function MO(e){return e.map(t=>Qc(t))}var Xs={};ze(Xs,{nonMaxSuppressionV3Impl:()=>kv,nonMaxSuppressionV4Impl:()=>Iv,nonMaxSuppressionV5Impl:()=>Sv,whereImpl:()=>hv});var Fv={kernelName:ni,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,Ad(de(n,"float32"),-1))}}},zO={kernelName:Vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=xt(de(n,"float32")),r=_n(ye(Ee(1),s));return Ot(he(e,r))}}}},LO={kernelName:Ul,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=_n(ye(xt(de(n,"float32")),1));return he(e,s)}}}},BO={kernelName:Hr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=St(n.shape,s.shape);return{a:()=>{let i=e,l=an(n.shape,r);return l.length>0&&(i=Ie(i,l)),G(i,n.shape)},b:()=>{let i=e,l=an(s.shape,r);return l.length>0&&(i=Ie(i,l)),G(i,s.shape)}}}},WO={kernelName:wa,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},VO={kernelName:ka,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>tt(n)}}},UO={kernelName:jl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>tt(n)}}},GO={kernelName:ql,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,_n(ye(Ee(1),xt(de(n,"float32")))))}}},HO={kernelName:Xl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=_n(ie(Ee(1),xt(de(n,"float32"))));return he(e,s)}}}},jO={kernelName:Yl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=St(n.shape,s.shape);return{a:()=>{let i=ie(xt(n),xt(s)),l=W(e,he(s,i)),c=an(n.shape,r);return c.length>0&&(l=Ie(l,c)),G(l,n.shape)},b:()=>{let i=ie(xt(n),xt(s)),l=Ot(W(e,he(n,i))),c=an(s.shape,r);return c.length>0&&(l=Ie(l,c)),G(l,s.shape)}}}},qO={kernelName:Kl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,ie(xt(de(n,"float32")),1))}}},XO={kernelName:Zl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,ye(Ee(1),xt(de(n,"float32"))))}}};function KO(e,t,n,s,r,a){let o=D(e,"dy","avgPool3dGrad"),i=D(t,"input","avgPool3dGrad"),l=o,c=i,u=!1;i.rank===4&&(u=!0,l=G(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),c=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),O(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),a!=null&&O(mn(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:c},p={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=B.runKernel(th,d,p);return u?G(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var ZO=V({avgPool3dGrad_:KO}),YO={kernelName:Fc,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>ZO(e,s,r,a,o,i)}}};function JO(e,t,n,s,r){let a=D(e,"dy","avgPoolGrad"),o=D(t,"input","avgPoolGrad");O(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,c=!1;o.rank===3&&(c=!0,i=G(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=G(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),O(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let u={dy:l,input:i},d={filterSize:n,strides:s,pad:r},p=B.runKernel(eh,u,d);return c?G(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var QO=V({avgPoolGrad_:JO}),eM={kernelName:Ia,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>QO(e,s,r,a,o)}}},tM={kernelName:Sa,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>He(e,r,!1,!0),b:()=>He(s,e,!0,!1)}:!a&&o?{a:()=>He(e,r,!1,!1),b:()=>He(e,s,!0,!1)}:a&&!o?{a:()=>He(r,e,!1,!0),b:()=>He(s,e,!1,!1)}:{a:()=>He(r,e,!0,!0),b:()=>He(e,s,!0,!0)}}},nM={kernelName:si,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>nf(e,s,r)}}},sM={kernelName:m5,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>Ie(e,i,!0)}}},rM={kernelName:Ca,gradFunc:e=>({x:()=>e.clone()})},aM={kernelName:Ta,gradFunc:e=>({x:()=>tt(e)})},oM={kernelName:jr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Wn(lr(Yi(s,r),Ji(s,a)),e,tt(e))}}},iM={kernelName:Mc,inputsToSave:["x"],gradFunc:Fv.gradFunc},lM={kernelName:ri,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=Us(r,t[0].shape)[0],o=s.map(l=>l[a]);return Sn(e,o,a).map(l=>()=>l)}},uM={kernelName:Na,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return O(wo(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>_2(s.shape,e,r,o,i,l),filter:()=>l1(s,e,r.shape,o,i,l)}}},cM={kernelName:Ea,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>ko(e,r,a,o,i,1,l),filter:()=>l1(e,s,r.shape,a,o,i,l)}}};function dM(e,t,n,s,r){let a=e;e.rank===4&&(a=G(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=G(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),O(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),O(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),O(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),O(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),O(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return B.runKernel(ah,i,l)}var pM=V({conv3DBackpropFilter_:dM}),hM={kernelName:zc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;O(wo(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>O3(o.shape,e,i,r,a),filter:()=>pM(o,e,i.shape,r,a)}}},fM={kernelName:Ra,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(Ot(J2(de(n,"float32"))),e)}}},mM={kernelName:$a,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(Q2(de(n,"float32")),e)}}},gM={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=Y3([r],s.rank),l=M2(e,r,a,!o);return i!=null&&(l=et(l,i)),l}}}},AM={kernelName:Da,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;O(wo(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,c]=t;return O(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),O(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),O(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),O(Nr(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&O(mn(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>bv(l.shape,e,c,r,a,i,o),filter:()=>xv(l,e,c.shape,r,a,i,o)}}},yM={kernelName:Lc,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>B.runKernel(dh,a,n),filter:()=>B.runKernel(ph,o,n)}}},xM={kernelName:Pa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>B.runKernel(hh,s)}}},bM={kernelName:Jl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=W(Ts(Ot(xt(n))),2/Math.sqrt(Math.PI));return{x:()=>W(e,s)}}},vM={kernelName:Fa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n)}}},wM={kernelName:ui,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>G(e,n.shape)}}},kM={kernelName:ci,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,Ts(n))}}},IM={kernelName:Oa,gradFunc:e=>({x:()=>tt(e)})},SM={kernelName:Ma,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=St(n.shape,s.shape);return{a:()=>{let i=he(e,de(s,"float32")),l=an(n.shape,r);return l.length>0?G(Ie(i,l),n.shape):i},b:()=>{let i=W(e,de(n,"float32")),l=an(s.shape,r);l.length>0&&(i=G(Ie(i,l),s.shape));let c=xt(s);return Ot(he(i,de(c,"float32")))}}}},CM={kernelName:za,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ee(1):i,c=an(a.shape,r.shape),u=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)u.push(r.shape[b]);u.push(1)}let d=ye(r,a),p=W(e,l),h=Z2(ie(o,Ee(s))),f=W(W(W(h,h),h),Ee(-.5));return{x:()=>a.rank===1?G(W(W(e,js(G(h,[1,1,1,a.shape[0]]),u)),l),r.shape):G(W(W(e,h),l),r.shape),mean:()=>{let b=W(W(h,Ee(-1)),p);return a.rank===1&&(b=Ie(b,c)),G(b,a.shape)},variance:()=>{let b=W(W(f,d),p);return a.rank===1&&(b=Ie(b,c)),G(b,a.shape)},scale:()=>{let b=W(d,h),w=W(e,b);return a.rank===1&&(w=Ie(w,c)),G(w,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=Ie(b,c)),G(b,a.shape)}}}},TM={kernelName:pi,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=Us(a,s.shape)[0];return{x:()=>{let l=s.shape,c=r.size,u=l.slice(0,o),d=u.length,p=l.slice(a,l.length).slice(1),h=p.length,f=Ov(0,d),m=Ov(d+1,d+1+h),g=Mv([u,[c],p]),A=G(e,g),y=G(r,[c]),x=Mv([[d],f,m]),b=et(A,x),w=dv(b,y,s.shape[o]),k=V2(x);return w=et(w,k),w},indices:()=>r}}};function Ov(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Mv(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var NM={kernelName:La,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>tt(n),b:()=>tt(s)}}},EM={kernelName:Ba,gradFunc:e=>({x:()=>de(e,"float32")})},RM={kernelName:eu,gradFunc:e=>({x:()=>tt(e)})},$M={kernelName:tu,gradFunc:e=>({x:()=>tt(e)})},DM={kernelName:nu,gradFunc:e=>({x:()=>tt(e)})},_M={kernelName:mi,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=ms(s,0);return{x:()=>Wn(a,e,W(e,r))}}},PM={kernelName:su,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,ie(n,1))}}},FM={kernelName:Wa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,de(n,"float32"))}}},OM={kernelName:g5,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=Ts(s);return ye(e,W(Ie(e,r,a),o))}}}};function MM(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return B.runKernel(Ah,i,l)}var zM=V({localResponseNormalizationBackprop_:MM}),LM={kernelName:Uc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>zM(s,r,e,a,o,i,l)}}};function zv(e,t,n,s){return t.rank<n.rank&&(t=G(t,Qi(t.shape,s))),e.rank<n.rank&&(e=G(e,Qi(e.shape,s))),{x:()=>W(e,de(Cs(n,t),e.dtype))}}var Lv={kernelName:Va,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=Us(r,a.shape),l=zv(e,o,a,i);return{x:()=>l.x()}}},BM={kernelName:Ua,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>W(e,de(Yi(n,s),"float32")),b:()=>W(e,de(L2(n,s),"float32"))}}};function WM(e,t,n,s,r,a,o){let i=D(e,"dy","maxPool3dGrad"),l=D(t,"input","maxPool3dGrad"),c=D(n,"output","maxPool3dGrad"),u=i,d=l,p=c,h=!1;l.rank===4&&(h=!0,u=G(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=G(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=G(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),O(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),O(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),O(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),o!=null&&O(mn(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:u,input:d,output:p},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=B.runKernel(xh,f,m);return h?G(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var VM=V({maxPool3dGrad_:WM}),UM={kernelName:Gc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>VM(e,s,r,a,o,i,l)}}};function GM(e,t,n,s,r,a,o){let i=D(e,"dy","maxPoolGrad"),l=D(t,"input","maxPoolGrad"),c=D(n,"output","maxPoolGrad");O(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),O(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),O(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&O(mn(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let u={dy:i,input:l,output:c},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return B.runKernel(yh,u,d)}var HM=V({maxPoolGrad_:GM}),jM={kernelName:Ga,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>HM(e,s,r,a,o,i)}}},qM={kernelName:Ha,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=Us(r,s.shape),i=Z3(s.shape,a)[1],l=Ut(i);return{x:()=>{let u=s.shape.slice();a.forEach(h=>{u[h]=1});let d=G(e,u);return he(W(d,gs(s.shape,"float32")),l)}}}},XM={kernelName:ja,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=Us(r,a.shape),l=zv(e,o,a,i);return{x:()=>l.x()}}},KM={kernelName:qa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>W(e,de(Ji(n,s),"float32")),b:()=>W(e,de(ms(n,s),"float32"))}}},ZM={kernelName:Xa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},YM={kernelName:au,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=St(n.shape,s.shape);return{a:()=>{let i=an(n.shape,r);return i.length>0?G(Ie(e,i),n.shape):e},b:()=>{let i=W(e,Ot(pd(he(n,s)))),l=an(s.shape,r);return l.length>0?G(Ie(i,l),s.shape):i}}}},JM={kernelName:Ka,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=St(n.shape,s.shape);return{a:()=>{let i=W(e,de(s,"float32")),l=an(n.shape,r);return l.length>0?G(Ie(i,l),n.shape):i},b:()=>{let i=W(e,de(n,"float32")),l=an(s.shape,r);return l.length>0?G(Ie(i,l),s.shape):i}}}},QM={kernelName:xi,gradFunc:e=>({x:()=>Ot(e)})},ez={kernelName:Ii,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ht(n.shape,"float32")}}},tz={kernelName:ki,gradFunc:e=>({x:()=>tt(e)})},nz={kernelName:Si,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return as(e,s).map(a=>()=>a)}},Bv={kernelName:Za,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},sz={kernelName:Ya,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=St(a.shape,o.shape);return{a:()=>{let u=de(o,"float32"),d=W(e,W(u,Io(a,ye(u,Ee(1))))),p=an(a.shape,i);return p.length>0&&(d=Ie(d,p)),G(d,a.shape)},b:()=>{let u=ms(a,0),d=Wn(u,Ns(a),tt(a)),p=W(e,W(r,d)),h=an(o.shape,i);return h.length>0&&(p=Ie(p,h)),G(p,o.shape)}}}},rz={kernelName:Ja,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=ms(n,0);return{x:()=>Wn(r,e,W(e,s)),alpha:()=>{let a=Wn(r,tt(e),W(e,n)),o=an(s.shape,e.shape);return o.length>0&&(a=Ie(a,o)),G(a,s.shape)}}}},az={kernelName:_a,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=St(n.shape,s.shape);return{a:()=>{let i=he(e,de(s,"float32")),l=an(n.shape,r);return l.length>0?G(Ie(i,l),n.shape):i},b:()=>{let i=W(e,de(n,"float32")),l=an(s.shape,r);l.length>0&&(i=G(Ie(i,l),s.shape));let c=xt(s);return Ot(he(i,de(c,"float32")))}}}},oz={kernelName:lu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,Ot(xt(n)))}}},iz={kernelName:to,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=W(Ji(n,6),Ad(n));return{x:()=>W(e,de(s,"float32"))}}},lz={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,de(Ad(n),"float32"))}}},uz={kernelName:Ti,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>G(e,n.shape)}}},cz={kernelName:eo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(kh,r,n)}}},dz={kernelName:uu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(wh,r,n)}}},pz={kernelName:Ni,gradFunc:(e,t,n)=>{let{dims:s}=n,r=Us(s,e.shape);return{x:()=>Rs(e,r)}}},hz={kernelName:Ei,gradFunc:e=>({x:()=>tt(e)})},fz={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ot(he(e,W(Io(n,1.5),2)))}}},mz={kernelName:$i,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>de(tt(n),"float32"),t:()=>W(e,de(n,e.dtype)),e:()=>W(e,de(Jh(n),e.dtype))}}},gz={kernelName:cu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ms(n,Ee(0)),r=Ee(Rv),a=Ee($v),o=W(e,a),i=W(W(e,r),Ts(de(n,"float32")));return Wn(s,o,i)}}}},Az={kernelName:ro,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,W(n,ye(Ee(1),n)))}}},yz={kernelName:du,gradFunc:e=>({x:()=>tt(e)})},xz={kernelName:so,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(qh(de(n,"float32")),e)}}},bz={kernelName:_i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(O2(de(n,"float32")),e)}}},vz={kernelName:Di,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=c3(s,r,a),c=[];for(let u=0;u<e.rank;u++)c.push([i[u],o[u]-i[u]-l[u]]);return{x:()=>qs(e,c)}}},wz={kernelName:io,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=W(e,s);return{logits:()=>ye(o,W(Ie(o,[r],a),s))}}},kz={kernelName:pu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,hs(n))}}},Wv={kernelName:Pi,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>jh(e,s,r)}}},Vv={kernelName:Fi,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>It(e,s)}}},Iz={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,W(_n(de(n,"float32")),2))}}},Sz={kernelName:hu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,W(de(n,"float32"),2))}}},Cz={kernelName:lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ee(2);return{a:()=>W(e,W(r,ye(n,s))),b:()=>W(e,W(r,ye(s,n)))}}},Tz={kernelName:ho,gradFunc:e=>({x:()=>tt(e)})},Nz={kernelName:uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=St(n.shape,s.shape);return{a:()=>{let i=e,l=an(n.shape,r);return l.length>0&&(i=Ie(i,l)),G(i,n.shape)},b:()=>{let i=e,l=an(s.shape,r);return l.length>0&&(i=Ie(i,l)),G(Ot(i),s.shape)}}}},Ez={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;Us(a,s.shape).forEach(c=>{r[c]=1});let i=G(e,r),l=W(i,gs(s.shape,"float32"));return{x:()=>l}}},Rz={kernelName:Mi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>he(e,xt(qh(n)))}}},$z={kernelName:co,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(ye(Ee(1),xt(n)),e)}}},Dz={kernelName:qr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=tt(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=ie(o,_e(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=ie(o,_e(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)o=ie(o,_e(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let c=0;c<r[2];++c)for(let u=0;u<r[3];++u)o=ie(o,_e(e,[i*s.shape[0],l*s.shape[1],c*s.shape[2],u*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},_z={kernelName:po,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=V2(r);return{x:()=>et(e,a)}}},Pz={kernelName:Bi,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>Pn(e,r)}}},Fz={kernelName:Xc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Oz(e,n)}}};function Oz(e,t){let n=Yr(t,tt(t)),s=Su(e,n),r=Yi(t,Ee(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Kt(r,i+1);r=lr(r,gs(s.shape,"bool"));let o=tt(s);return Wn(r,s,o)}var Mz={kernelName:Wi,gradFunc:e=>({x:()=>tt(e)})},zz=[Fv,zO,LO,BO,WO,VO,UO,GO,HO,jO,qO,XO,YO,eM,tM,nM,sM,rM,aM,oM,iM,lM,cM,uM,hM,fM,mM,gM,AM,yM,az,xM,bM,vM,wM,kM,SM,IM,CM,TM,NM,EM,RM,$M,DM,_M,PM,FM,OM,LM,Lv,Lv,BM,UM,jM,qM,XM,KM,ZM,YM,JM,QM,ez,tz,nz,Bv,Bv,sz,rz,oz,iz,lz,uz,cz,dz,pz,hz,fz,mz,gz,Az,yz,xz,bz,vz,wz,kz,Wv,Wv,Vv,Vv,Iz,Cz,Sz,Tz,Nz,Ez,Rz,$z,Dz,_z,Pz,Fz,Mz];for(let e of zz)A5(e);var Uv={};ze(Uv,{maxNorm:()=>Vz,minMaxNorm:()=>Hz,nonNeg:()=>Gz,unitNorm:()=>Uz});var p1;function on(){return p1==null&&(p1=Tr().epsilon()),p1}function cr(){return"channelsLast"}var ea=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ea.prototype)}},dr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,dr.prototype)}},q=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,q.prototype)}},Be=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Be.prototype)}},Gv=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Gv.prototype)}};function nl(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function $r(e,t){if(!e)throw new Gv(t)}function Hv(e,t){let n=0;for(let s of e)s===t&&n++;return n}function os(e){return e.length===1?e[0]:e}function Ct(e){return Array.isArray(e)?e:[e]}function ta(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function sl(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Ks={};function h1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function f1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>f1(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:f1(s))}}}function bd(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Ks)o=Ks[a];else if(o=t[a],o==null)throw new q(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new q(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Ks?[i,l]=Ks.className:o in t&&([i,l]=t[o]),i==null)throw new q(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let h of Object.keys(Ks))c[h]=Ks[h];for(let h of Object.keys(n))c[h]=n[h];let u=a.config;u.customObjects=c;let d={...Ks};for(let h of Object.keys(n))Ks[h]=n[h];f1(a.config);let p=l(i,a.config,n,r);return Ks={...d},p}else{let c={...Ks};for(let d of Object.keys(n))Ks[d]=n[d];let u=new i(a.config);return Ks={...c},u}}}function Lz(e,t){return e<t?-1:e>t?1:0}function bf(e,t){return-1*Lz(e,t)}function Co(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function Bz(e){if(e==null)throw new q(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function rl(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new q(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function m1(e,t,n=0,s=1/0){return $r(n>=0),$r(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function xn(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>xn(n,`element ${s+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${jv(e)}.`)}function jv(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>jv(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function Wz(e,t,n){let s=n!=null?n():v.now(),r;return(...o)=>{let i=n!=null?n():v.now();return i-s<t||(s=i,r=e(...o)),r}}function qv(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function g1(e,t){return j(()=>_n(Ie(W(e,e),t,!0)))}var vd=class extends le.Serializable{getConfig(){return{}}},A1=class extends vd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>{let t=g1(e,this.axis),n=fs(t,0,this.maxValue);return W(e,he(n,ie(on(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};A1.className="MaxNorm";le.registerClass(A1);var y1=class extends vd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>he(e,ie(on(),g1(e,this.axis))))}getConfig(){return{axis:this.axis}}};y1.className="UnitNorm";le.registerClass(y1);var x1=class extends vd{apply(e){return Rr(e)}};x1.className="NonNeg";le.registerClass(x1);var b1=class extends vd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return j(()=>{let t=g1(e,this.axis),n=ie(W(this.rate,fs(t,this.minValue,this.maxValue)),W(1-this.rate,t));return W(e,he(n,ie(on(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};b1.className="MinMaxNorm";le.registerClass(b1);var Xv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function ln(e){return h1(e)}function Kv(e,t={}){return bd(e,le.SerializationMap.getMap().classNameMap,t,"constraint")}function un(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Xv?Xv[e]:e,config:{}};return Kv(n)}else return e instanceof vd?e:Kv(e)}function Vz(e){return new A1(e)}function Uz(e){return new y1(e)}function Gz(){return new x1}function Hz(e){return new b1(e)}var Zv={};ze(Zv,{constant:()=>fL,glorotNormal:()=>vL,glorotUniform:()=>bL,heNormal:()=>wL,heUniform:()=>kL,identity:()=>yL,leCunNormal:()=>IL,leCunUniform:()=>SL,ones:()=>hL,orthogonal:()=>CL,randomNormal:()=>gL,randomUniform:()=>mL,truncatedNormal:()=>AL,varianceScaling:()=>xL,zeros:()=>pL});var jz=["channelsFirst","channelsLast"],qz=["nearest","bilinear"],Xz=["valid","same","causal"],Kz=["max","avg"],Zz=["sum","mul","concat","ave"],_u=new Map;function jt(e){rl(jz,"DataFormat",e)}function Yz(e){rl(qz,"InterpolationFormat",e)}function $s(e){rl(Xz,"PaddingMode",e)}function Yv(e){rl(Kz,"PoolMode",e)}var wd=[],Jv="/";function al(e,t){wd.push(e);try{let n=t();return wd.pop(),n}catch(n){throw wd.pop(),n}}function Jz(){return wd.length===0?"":wd.join(Jv)+Jv}function Qv(e){if(!tw(e))throw new Error("Not a valid tensor name: '"+e+"'");return Jz()+e}function ew(e){if(!tw(e))throw new Error("Not a valid tensor name: '"+e+"'");_u.has(e)||_u.set(e,0);let t=_u.get(e);if(_u.set(e,_u.get(e)+1),t>0){let n=`${e}_${t}`;return _u.set(n,1),n}else return e}var Qz=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function tw(e){return!!e.match(Qz)}function eL(e){return e===parseInt(e.toString(),10)}function To(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function Pu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function No(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function pr(e,t){if(t<e)throw new q(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function vf(e,t){return de(e,t)}function kd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),G(e,n)}function tL(e,t){return j(()=>{if(e.shape.length!==2)throw new q(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=kd(e,1);return k1(n,[1,t,1])})}function nL(e){let t=[To(e.shape)];return G(e,t)}function sL(e){if(e.rank<=1)throw new q(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],To(e.shape,1)];return G(e,t)}function ol(e,t,n){return j(()=>{switch(e.rank){case 1:return rf(e,t,n);case 2:return e1(e,[t,0],[n,e.shape[1]]);case 3:return Ru(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return md(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return _e(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return _e(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new q(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function v1(e,t,n){return j(()=>{switch(e.rank){case 1:return rf(e,t,n);case 2:return e1(e,[0,t],[e.shape[0],n]);case 3:return Ru(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return md(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function wf(e,t,n,s){return j(()=>{switch(e.rank){case 1:return rf(e,t,n);case 2:switch(s){case 1:return ol(e,t,n);case 2:return v1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return ol(e,t,n);case 2:return Ru(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return v1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return ol(e,t,n);case 2:return md(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return md(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return v1(e,t,n);default:throw new q(`The axis is not within the rank of the tensor ${s}`)}default:throw new q(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function w1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),It(e,t)}function nw(e,t){switch(e.rank){case 1:return _3([e,t]);case 2:return ku([e,t],0);case 3:return P3([e,t],0);case 4:return F3([e,t],0);default:throw new q(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function k1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new q(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return js(e,t)}function kf(e,t=0,n=1,s,r){return sv(e,t,n,s,r)}function Dr(e,t,n,s){if(e.rank<2||t.rank<2)throw new Be(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Be(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return So.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?I1(e.rank,s,cr()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=G(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),c=[...o,i],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=G(et(t,u),[l,-1]);let d=[...r,...c],p=!1,h=!1;return G(So.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:s?I1(e.rank,s,cr()):null,activation:n}),d)}}function sw(e,t,n){return j(()=>(Array.isArray(t)?t=Zt(t,"int32"):t=de(t,"int32"),Su(e,t,n)))}function Id(e){return W(e,e)}function I1(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new q(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1,1,1]):G(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,1,1,s[0]]):G(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1,1]):G(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,1,s[0]]):G(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?G(t,[1,s[0],1]):G(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?G(t,[1,1,s[0]]):G(t,[1].concat(s))}else if(e<3)return t;throw new q(`Unsupported input rank by biasAdd: ${t.rank}`)}function hr(e,t,n){return j(()=>(n==null&&(n=cr()),jt(n),ie(e,I1(e.rank,t,n))))}function rL(e,t=1){if(t!==1)throw new Be(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return dd(e)}function aL(e){return j(()=>he(e,ie(rn(e),1)))}function rw(e,t,n,s){return j(()=>Av(e,t,n,s))}function oL(e){return j(()=>{let t=ie(.5,W(.2,e));return fs(t,0,1)})}function Sd(e,t,n=!1){return n?e():t()}var iL=["fanIn","fanOut","fanAvg"],lL=["normal","uniform","truncatedNormal"];function uL(e){rl(iL,"FanMode",e)}function cL(e){rl(lL,"Distribution",e)}var Zs=class extends le.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},S1=class extends Zs{apply(e,t){return Ht(e,t)}};S1.className="Zeros";le.registerClass(S1);var If=class extends Zs{apply(e,t){return gs(e,t)}};If.className="Ones";le.registerClass(If);var C1=class extends Zs{constructor(e){super();if(typeof e!="object")throw new q(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new q(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return j(()=>W(Ee(this.value),gs(e,t)))}getConfig(){return{value:this.value}}};C1.className="Constant";le.registerClass(C1);var T1=class extends Zs{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Nu(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};T1.className="RandomUniform";le.registerClass(T1);var N1=class extends Zs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Be(`randomNormal does not support dType ${t}.`);return kf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};N1.className="RandomNormal";le.registerClass(N1);var E1=class extends Zs{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Be(`truncatedNormal does not support dType ${t}.`);return lf(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};E1.className="TruncatedNormal";le.registerClass(E1);var R1=class extends Zs{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return j(()=>{if(e.length!==2||e[0]!==e[1])throw new q("Identity matrix initializer can only be used for 2D square matrices.");return W(this.gain,z2(e[0]))})}getConfig(){return{gain:this.gain}}};R1.className="Identity";le.registerClass(R1);function dL(e,t="channelsLast"){let n,s;if(jt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=To(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=To(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=To(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var is=class extends Zs{constructor(e){super();if(e.scale<0)throw new q(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,uL(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,cL(this.distribution),this.seed=e.seed}apply(e,t){let n=dL(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Be(`${this.getClassName()} does not support dType ${t}.`);return lf(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return Nu(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};is.className="VarianceScaling";le.registerClass(is);var Sf=class extends is{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return is.className}};Sf.className="GlorotUniform";le.registerClass(Sf);var Cf=class extends is{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return is.className}};Cf.className="GlorotNormal";le.registerClass(Cf);var Tf=class extends is{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return is.className}};Tf.className="HeNormal";le.registerClass(Tf);var Nf=class extends is{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return is.className}};Nf.className="HeUniform";le.registerClass(Nf);var Ef=class extends is{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return is.className}};Ef.className="LeCunNormal";le.registerClass(Ef);var Rf=class extends is{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return is.className}};Rf.className="LeCunNormal";le.registerClass(Rf);var $1=class extends Zs{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Be("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return j(()=>{if(e.length<2)throw new Be("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=kf(n,0,1,"float32"),r=Nv.gramSchmidt(s);return e[0]>e[1]&&(r=et(r)),W(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};$1.className="Orthogonal";le.registerClass($1);var aw={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function ow(e,t={}){return bd(e,le.SerializationMap.getMap().classNameMap,t,"initializer")}function Mt(e){return h1(e)}function $t(e){if(typeof e=="string"){let t=e in aw?aw[e]:e;if(t==="GlorotNormal")return new Cf;if(t==="GlorotUniform")return new Sf;if(t==="HeNormal")return new Tf;if(t==="HeUniform")return new Nf;if(t==="LeCunNormal")return new Ef;if(t==="LeCunUniform")return new Rf;{let n={};return n.className=t,n.config={},ow(n)}}else return e instanceof Zs?e:ow(e)}function pL(){return new S1}function hL(){return new If}function fL(e){return new C1(e)}function mL(e){return new T1(e)}function gL(e){return new N1(e)}function AL(e){return new E1(e)}function yL(e){return new R1(e)}function xL(e){return new is(e)}function bL(e){return new Sf(e)}function vL(e){return new Cf(e)}function wL(e){return new Tf(e)}function kL(e){return new Nf(e)}function IL(e){return new Ef(e)}function SL(e){return new Rf(e)}function CL(e){return new $1(e)}var iw={};ze(iw,{Layer:()=>nt,RNN:()=>sa,RNNCell:()=>Dd,activation:()=>iW,add:()=>gW,alphaDropout:()=>QW,average:()=>AW,averagePooling1d:()=>JA,averagePooling2d:()=>QA,averagePooling3d:()=>ey,avgPool1d:()=>CW,avgPool2d:()=>NW,avgPool3d:()=>RW,avgPooling1d:()=>TW,avgPooling2d:()=>EW,avgPooling3d:()=>$W,batchNormalization:()=>kW,bidirectional:()=>HW,concatenate:()=>yW,conv1d:()=>JB,conv2d:()=>QB,conv2dTranspose:()=>eW,conv3d:()=>tW,conv3dTranspose:()=>nW,convLstm2d:()=>WW,convLstm2dCell:()=>VW,cropping2D:()=>rW,dense:()=>lW,depthwiseConv2d:()=>oW,dot:()=>wW,dropout:()=>uW,elu:()=>jB,embedding:()=>mW,flatten:()=>dW,gaussianDropout:()=>JW,gaussianNoise:()=>YW,globalAveragePooling1d:()=>DW,globalAveragePooling2d:()=>_W,globalMaxPool1d:()=>qW,globalMaxPool2d:()=>XW,globalMaxPooling1d:()=>bk,globalMaxPooling2d:()=>vk,gru:()=>FW,gruCell:()=>OW,input:()=>Bw,inputLayer:()=>HB,layerNormalization:()=>IW,leakyReLU:()=>XB,lstm:()=>MW,lstmCell:()=>zW,masking:()=>eV,maxPool1d:()=>KW,maxPool2d:()=>ZW,maxPooling1d:()=>wk,maxPooling2d:()=>kk,maxPooling3d:()=>PW,maximum:()=>xW,minimum:()=>bW,multiply:()=>vW,permute:()=>fW,prelu:()=>KB,reLU:()=>qB,repeatVector:()=>pW,reshape:()=>hW,rnn:()=>UW,separableConv2d:()=>sW,simpleRNN:()=>LW,simpleRNNCell:()=>BW,softmax:()=>ZB,spatialDropout1d:()=>cW,stackedRNNCells:()=>GW,thresholdedReLU:()=>YB,timeDistributed:()=>jW,upSampling2d:()=>aW,zeroPadding2d:()=>SW});var TL=0;function lw(){return TL++}var $f={};function Df(e=""){return e in $f||($f[e]=0),$f[e]+=1,e+$f[e].toString()}function D1(e){return Array.isArray(e)&&Array.isArray(e[0])}function _f(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Ve(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new q(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function mt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new q(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Pf(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var uw="Variable",cw=class{constructor(e,t="float32",n=uw,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=lw(),n=n==null?uw:n,this.originalName=Qv(n),this.name=ew(this.originalName),this.trainable_=s,this.constraint=r,this.val=pv(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),NL(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function NL(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function _1(e){return e.map(t=>t.read())}function P1(e){e.forEach(t=>{t[0].write(t[1])})}var Yt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},fr=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=lw(),a!=null&&(this.originalName=Qv(a),this.name=ew(this.originalName)),this.rank=t.length}},EL=0,Ff=class{constructor(e,t){this.callArgs=t,this.id=EL++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},RL=0,nt=class extends le.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=RL++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ta(n)+"_"+Df(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new dr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new q(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return os(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return os(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ea(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ea(`Layer ${this.name} is not connected, no input to return.`);return os(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ea(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ea(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return os(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=Ct(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=Ct(this.inputSpec);if(e.length!==t.length)throw new q(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new q(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),c=r.axes[i],u=l>=0?o[l]:o[o.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new q(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=Ct(e),s=!0;for(let a of n)if(!(a instanceof fr)){s=!1;break}let r=!0;for(let a of n)if(a instanceof fr){r=!1;break}if(s===r)throw new q("Arguments to apply() must be all SymbolicTensors or all Tensors");return al(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of Ct(e))a.push(o.shape);this.build(os(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=Ct(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=os(i),this.activityRegularizer!=null)throw new Be("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=$L(e),o=this.computeOutputShape(a),i,l=DL(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((c,u)=>new fr(l,c,this,Ct(e),t,this.name,u)):i=new fr(l,o,this,Ct(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Be("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ea(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ea(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new dr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Pf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return _1(e?this.trainableWeights:this.weights)}setWeights(e){j(()=>{let t=this.weights;if(t.length!==e.length)throw new q(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=_1(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!v.arraysEqual(a.shape,i.shape))throw new q(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}P1(n)})}addWeight(e,t,n,s,r,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new q(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=i!=null?i():$t("zeros"));let l=s.apply(t,n),c=new cw(l,n,e,a,o);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(c.read())),a==null&&(a=!0),a?this._trainableWeights.push(c):this._nonTrainableWeights.push(c),c}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=Ct(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=Ct(e);t=Ct(t),n=Ct(n),s=Ct(s),r=_f(r),a=_f(a);let l=[],c=[],u=[];for(let d of i)l.push(d.sourceLayer),c.push(d.nodeIndex),u.push(d.tensorIndex);new Ff({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function $L(e){e=Ct(e);let t=[];for(let n of e)t.push(n.shape);return os(t)}function DL(e){return"float32"}function dw(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],c=dw(o,i,l);for(let u of c)r.indexOf(u)===-1&&r.push(u)}return r}}}var Fu=class extends nt{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Df("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new q("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new q("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new q("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new fr(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new Ff({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new q(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Fu.className="InputLayer";le.registerClass(Fu);function pw(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new q("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Fu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Eo(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];Q(s)}}function hw(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var fw;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(fw||(fw={}));var _L=125,Ou=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},mw=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},PL=class extends Ou{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=j(()=>ie(this.totals[s],W(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:j(()=>{let s=W(he(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),yn(t[n])}))}},gw=class extends Ou{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},Aw=class extends Ou{constructor(e,t){super();if(this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||Ev,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=_L),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=Wz(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await Eo(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Eo(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Eo(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Eo(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Eo(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Eo(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Eo(e),await this.trainEnd(e))}};function yw(e,t){return e==null&&(e={}),e instanceof Ou?[e]:Array.isArray(e)&&e[0]instanceof Ou?e:Ct(e).map(s=>new Aw(s,t))}var _r=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),_r.checkForDuplicate(t),_r.constructors[e]==null&&(_r.constructors[e]=[]),_r.constructors[e].push(t)}static checkForDuplicate(e){for(let t in _r.constructors)_r.constructors[+t].forEach(s=>{if(s===e)throw new q("Duplicate callback constructor.")})}static clear(){_r.constructors={}}static createCallbacks(e){let t=[];for(let n in _r.constructors){let s=+n;e>=s&&t.push(..._r.constructors[s])}return t.map(n=>new n)}},F1=_r;F1.constructors={};function xw(e,t,n,s,r,a,o,i,l){let c=new gw,u=[new PL,...F1.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let d=new mw(u);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:c}}function mr(e,t={},n=!1){return bd(e,le.SerializationMap.getMap().classNameMap,t,"layer",n)}function Of(e,t){return j(()=>{e.dtype!=="float32"&&(e=de(e,"float32"));let n=Ie(Id(e),t,!0),s=Iu(n.shape,on()),r=_n(Yr(n,s));return he(e,r)})}function il(e,t){return j(()=>Wt(Id(ye(t,e)),-1))}function Mf(e,t){return j(()=>Wt(rn(ye(t,e)),-1))}function Mu(e,t){return j(()=>{let n=ye(e,t),s=fs(rn(e),on(),Number.MAX_VALUE),r=rn(he(n,s));return W(100,Wt(r,-1))})}function FL(e,t){return j(()=>{let n=fs(t,on(),Number.MAX_VALUE),s=Ns(ie(1,n)),r=fs(e,on(),Number.MAX_VALUE),a=Ns(ie(1,r));return Wt(Id(ye(s,a)),-1)})}function OL(e,t){return j(()=>{let n=Yr(0,ye(1,W(e,t)));return Wt(Id(n),-1)})}function ML(e,t){return j(()=>{let n=Yr(0,ye(1,W(e,t)));return Wt(n,-1)})}function zL(e,t){return j(()=>{let n=Ie(W(e,t),-1),s=rs(W(ye(1,e),t),-1);return Yr(0,ie(1,ye(s,n)))})}function LL(e,t){return j(()=>{let n=Math.log(2),s=ye(t,e),r=ye(ie(s,Cu(W(-2,s))),n);return Wt(r,-1)})}function Cd(e,t,n=!1){return j(()=>{if(n)t=$u(t);else{let s=Ie(t,t.shape.length-1,!0);t=he(t,s)}return t=fs(t,on(),1-on()),Ot(Ie(W(de(e,"float32"),Ns(t)),t.shape.length-1))})}function zf(e,t,n=!1){return j(()=>{let s=de(pd(nL(e)),"int32");t=fs(t,on(),1-on());let r=t.shape,a=G(id(s,r[r.length-1]),r);return Cd(a,t,n)})}function BL(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new q(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return j(()=>{let n=Rr(t),s=Ot(rn(t));return ie(ye(n,W(t,e)),Zh(Ts(s)))})}function Lf(e,t){return j(()=>{let n;return n=fs(t,on(),1-on()),n=Ns(he(n,ye(1,n))),Wt(BL(e,n),-1)})}function WL(e,t){return j(()=>{let n=fs(e,on(),1),s=fs(t,on(),1);return Ie(W(e,Ns(he(n,s))),-1)})}function VL(e,t){return j(()=>{let n=Ns(ie(on(),t));return Wt(ye(t,W(e,n)),-1)})}function O1(e,t){return j(()=>{let n=Of(e,-1),s=Of(t,-1),r=W(n,s);return Ot(Ie(r,-1))})}var Bf={meanSquaredError:il,meanAbsoluteError:Mf,meanAbsolutePercentageError:Mu,meanSquaredLogarithmicError:FL,squaredHinge:OL,hinge:ML,categoricalHinge:zL,logcosh:LL,categoricalCrossentropy:Cd,sparseCategoricalCrossentropy:zf,binaryCrossentropy:Lf,kullbackLeiblerDivergence:WL,poisson:VL,cosineProximity:O1};function M1(e){if(typeof e=="string"){if(e in Bf)return Bf[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new q(t)}else return e}function z1(e,t){return j(()=>{let n=W(.5,Es(t)),s=vf(ms(t,n),e.dtype);return Wt(Cs(e,s),-1)})}function L1(e,t){return j(()=>vf(Cs(Hs(e,-1),Hs(t,-1)),"float32"))}function bw(e,t){return j(()=>de(Ie(lr(Cs(e,1),Cs(t,1))),"float32"))}function UL(e,t){return j(()=>de(Ie(lr(Cs(e,1),Cs(t,0))),"float32"))}function GL(e,t){return j(()=>de(Ie(lr(Cs(e,0),Cs(t,1))),"float32"))}function vw(e,t){return j(()=>{let n=bw(e,t),s=GL(e,t),r=ie(n,s);return de(Wn(ms(r,0),he(n,r),0),"float32")})}function HL(e,t){return j(()=>{let n=bw(e,t),s=UL(e,t),r=ie(n,s);return de(Wn(ms(r,0),he(n,r),0),"float32")})}function ww(e,t){return Lf(e,t)}function kw(e,t){return e.rank===t.rank&&(e=pt(e,[e.rank-1])),t=Hs(t,-1),t.dtype!==e.dtype&&(t=de(t,e.dtype)),de(Cs(e,t),"float32")}var jL=il,qL=il,XL=Mf,KL=Mf,ZL=Mu,YL=Mu,B1=Cd,JL=O1,Iw=zf,Wf={binaryAccuracy:z1,categoricalAccuracy:L1,precision:vw,categoricalCrossentropy:B1,sparseCategoricalCrossentropy:Iw,mse:jL,MSE:qL,mae:XL,MAE:KL,mape:ZL,MAPE:YL,cosine:JL};function QL(e){if(typeof e=="string"&&e in Wf)return Wf[e];if(typeof e!="string"&&e!=null)return e;throw new q(`Unknown metric ${e}`)}function Vf(e){if($r(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Bf))if(Bf[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Wf))if(Wf[n]===e){t=n;break}return t!==void 0?t:e.name}}function eB(e){let t={Adagrad:()=>tl.adagrad(.01),Adadelta:()=>tl.adadelta(1,.95,on()),Adam:()=>tl.adam(.001,.9,.999,on()),Adamax:()=>tl.adamax(.002,.9,.999,on(),0),RMSProp:()=>tl.rmsprop(.001,.9,0,on()),SGD:()=>tl.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new q(`Unknown Optimizer ${e}`)}var Sw=1*1024*1024;function Cw(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!W1(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>Sw&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${Sw}.`)}}function W1(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!W1(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!W1(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function tB(e,t,n,s=console.log){let r=sB(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let o;if(!r){a.push("Receives inputs"),o=[];for(let u in e.nodesByDepth)o.push(...e.nodesByDepth[u])}s("_".repeat(t)),Uf(a,n,s),s("=".repeat(t));let i=e.layers;for(let u=0;u<i.length;++u)r?rB(i[u],n,s):aB(i[u],n,o,s),s((u===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=nB(e),c=Pf(e.nonTrainableWeights);s(`Total params: ${l+c}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${c}`),s("_".repeat(t))}function nB(e){let t;return e.collectedTrainableWeights!=null?t=Pf(e.collectedTrainableWeights):t=Pf(e.trainableWeights),t}function sB(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Uf(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function rB(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];Uf(o,t,n)}function aB(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let a=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let d=0;d<u.inboundLayers.length;++d){let p=u.inboundLayers[d].name,h=u.nodeIndices[d],f=u.tensorIndices[d];a.push(`${p}[${h}][${f}]`)}let o=e.name,i=e.getClassName(),l=a.length===0?"":a[0],c=[`${o} (${i})`,r,e.countParams().toString(),l];Uf(c,t,s);for(let u=1;u<a.length;++u)Uf(["","","",a[u]],t,s)}function Tw(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Td(e,t){if(e===null)return null;if(typeof e=="string")return sl(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Tw(t,r,a)?n.push(a):n.push(Td(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=sl(s);n[a]=Td(r,a)}}return n}}function V1(e,t){if(e==null)return null;if(typeof e=="string")return ta(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Tw(t,r,a)?n.push(a):n.push(V1(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=ta(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=V1(r,s)}return n}}var U1="0.0.0";function oB(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return de(t,e.dtype)}catch(n){throw new q(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var ll=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof ll)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=oB(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new q(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof fr){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof fr){if(this.id2Value[e.id]==null)throw new q(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new q(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Q(this.id2Mask)}},G1={},Nw={};function Nd(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],c=t.names();for(let f of i)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let u=i.join(",")+"|"+t.names().join(","),d,p;if(G1[u]==null){let f=iB(o,t);d=f.sorted,p=f.recipientCounts,G1[u]=d,Nw[u]=p}d=G1[u],p={},r||Object.assign(p,Nw[u]);let h=new ll(t);for(let f=0;f<d.length;++f){if(s!=null){let P=Bh().numTensors;P>s.maxNumTensors&&(s.maxNumTensors=P),P<s.minNumTensors&&(s.minNumTensors=P)}let m=d[f],g=m.sourceLayer;if(g instanceof Fu)continue;let A=[],y=[],x=[],b=!1;for(let P of m.inputs){let F=h.getValue(P),R=h.getMask(P);A.push(F),y.push(R),R!=null&&(b=!0),r||(p[P.name]--,p[P.name]===0&&!t.hasKey(P)&&i.indexOf(P.name)===-1&&!F.isDisposed&&P.sourceLayer.stateful!==!0&&x.push(F))}b&&(n=n||{},n.mask=y[0]);let w=Ct(g.apply(A,n)),k=null;g.supportsMasking&&(k=g.computeMask(A,y));let S=uB(m),E=Array.isArray(S)?S:[S];for(let P=0;P<E.length;++P){h.hasKey(E[P])||h.add(E[P],w[P],Array.isArray(k)?k[0]:k);let F=i.indexOf(E[P].name);F!==-1&&(l[F]=w[P])}r||Q(x)}return h.disposeMasks(),a?l:l[0]}function iB(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Ew(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=Ew(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(c=>s[l].add(c))}}return{sorted:n,recipientCounts:lB(s)}}function lB(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Ew(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let c of i.inputs)r[c.name]==null&&(r[c.name]=new Set),r[c.name].add(i.name),!n.has(c.name)&&a.push(c)}}return{sorted:s,recipientMap:r}}function uB(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var Pr=class extends nt{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let A=this.getClassName().toLowerCase();this.name=Df(A)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Co(this.inputs).length!==this.inputs.length)throw new q(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(A=>A.name)}`);Co(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let A of this.inputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;$r(x===0,"input layer has >1 nodes"),$r(b===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;A<this.inputLayers.length;A++){let y=this.inputLayers[A];if(!(y instanceof Fu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${A} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let A of this.outputLayers)this.outputNames.push(A.name);this.internalInputShapes=this.inputs.map(A=>A.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},s={},r={},a={},o=[],i=(A,y,x,b,w,k)=>{(b==null||w==null||k==null)&&(b=A.sourceLayer,w=A.nodeIndex,k=A.tensorIndex);let S=b.inboundNodes[w];if(x.indexOf(S)!==-1)throw new dr(`The tensor ${A.name} at layer "${b.name}" is part of a cycle.`);if(y.indexOf(S)!==-1)return;this.containerNodes.add(Pr.nodeKey(b,w)),b.id in a||(a[b.id]=Object.keys(a).length),x.indexOf(S)===-1&&x.push(S);let E=S.inboundLayers.length;for(let P=0;P<E;P++){let F=S.inputTensors[P],R=S.inboundLayers[P],_=S.nodeIndices[P],T=S.tensorIndices[P];i(F,y,x,R,_,T)}for(y.push(S);x.indexOf(S)>=0;)x.splice(x.indexOf(S),1);o.push(S)},l=[],c=[];for(let A of this.outputs)i(A,l,c);let u=o.slice().reverse();for(let A of u){n[A.id]=A,A.id in t||(t[A.id]=0);let y=t[A.id],x=s[A.outboundLayer.id]==null?0:s[A.outboundLayer.id];y=Math.max(y,x),s[A.outboundLayer.id]=y,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=y;for(let b=0;b<A.inboundLayers.length;b++){let w=A.inboundLayers[b],k=A.nodeIndices[b],S=w.inboundNodes[k],E=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(y+1,E),n[S.id]=S}}let d={};for(let A in t){let y=t[A];y in d||(d[y]=[]),d[y].push(n[A])}let p={};for(let A in s){let y=s[A];y in p||(p[y]=[]),p[y].push(r[A])}let h=Object.keys(p).map(A=>parseInt(A,10)).sort(bf);this.layers=[];for(let A of h){let y=p[A];y.sort((x,b)=>{let w=a[x.id],k=a[b.id];return w<k?-1:w>k?1:0});for(let x of y)x instanceof Pr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=p,h=Object.keys(d).map(A=>parseInt(A,10)).sort(bf);let f=this.inputs.slice(),m=[];for(let A of h)for(let y of d[A]){let x=y.outboundLayer;if(x!=null){for(let b of y.inputTensors)if(f.indexOf(b)===-1)throw new dr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of y.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(A=>A.name);for(let A of g){let y=g.filter(x=>x===A).length;if(y!==1)throw new dr(`The name "${A}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Ff({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new q("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new q(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new q(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new q(`${a.length} of ${s} weights are not set: ${a}`)}P1(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${U1}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=V1(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return j(()=>{e=Ct(e);let n=new ll;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return Nd(this.outputs,n,t)})}computeMask(e,t){return j(()=>{e=Ct(e);let n;return t==null?n=nl(null,e.length):n=Ct(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=_f(e);if(t.length!==this.inputLayers.length)throw new q(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],c=i.name+"_0_0";n[c]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(bf);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],A=l.tensorIndices[f],y=`${m.name}_${g}_${A}`,x=n[y];u.push(x)}let d=c.computeOutputShape(os(u)),p=_f(d),h=c.inboundNodes.indexOf(l);for(let f=0;f<p.length;f++){let m=`${c.name}_${h}_${f}`;n[m]=p[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],c=this.outputLayersTensorIndices[o],u=`${i.name}_${l}_${c}`;a.push(u)}for(let o=0;o<a.length;o++){let i=a[o];$r(i in n),r.push(n[i])}return os(r)}runInternalGraph(e,t){t==null&&(t=nl(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],c=e[i],u=t[i];n[l.id]=[c,u]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(bf);for(let i of s){let l=this.nodesByDepth[i];for(let c of l){let u=c.outboundLayer,d=c.inputTensors,p=c.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,A,y;if(c.callArgs!=null&&(f=c.callArgs),h.length===1){let[x,b]=h[0];f.mask==null&&(f.mask=b),A=Ct(u.call(x,f)),y=Ct(u.computeMask(x,b)),m=[x],g=[b]}else m=h.map(x=>x[0]),g=h.map(x=>x[1]),f.mask==null&&(f.mask=g),A=Ct(u.call(m,f)),y=Ct(u.computeMask(m,g));if(u.activityRegularizer)throw new Be("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<p.length;++x){let b=p[x],w=A[x],k=y[x];n[b.id]=[w,k]}}}}let r=[],a=[],o=[];for(let i of this.outputs){$r(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,c]=n[i.id];o.push(l.shape),r.push(l),a.push(c)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof Pr?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=Pr.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new q(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new q("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new q(`No such layer: ${e}`)}calculateLosses(){return j(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=Pr.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let u=0;u<a.inboundNodes.length;u++){let d=a.inboundNodes[u],p=Pr.nodeKey(a,u),h={};if(this.containerNodes.has(p)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let g=d.inboundLayers[m],A=d.nodeIndices[m],y=d.tensorIndices[m],x=Pr.nodeKey(g,A),b=t[x];b==null&&(b=0),f.push([g.name,b,y,h])}l.push(f)}}}let c={};c.name=a.name,c.className=o,c.config=i,c.inboundNodes=l,n.push(c)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=Pr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[a];s.push([o.name,c,u])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=Pr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[a];r.push([o.name,c,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let A=[],y;for(let x of g){let b=x[0],w=x[1],k=x[2];if(y=x[3]==null?{}:x[3],!(b in r)){o(m,g);return}let S=r[b];if(S.inboundNodes.length<=w){o(m,g);return}let E=S.inboundNodes[w];A.push(E.outputTensors[k])}A.length>0&&m.apply(os(A),y)}function l(m){let g=m.name,A=mr(m,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(s),r[g]=A,m.inboundNodes.forEach(x=>{if(!(x instanceof Array))throw new q(`Corrupted configuration, expected array for nodeData: ${x}`);o(A,x)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!Bz(a);)for(let m of u){let g=r[m.name];if(g.name in a){let A=a[g.name];delete a[g.name];for(let y of A)i(g,y)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],A=m[1],y=m[2];$r(g in r);let b=r[g].inboundNodes[A].outputTensors;d.push(b[y])}let f=t.outputLayers;for(let m of f){let g=m[0],A=m[1],y=m[2];$r(g in r);let b=r[g].inboundNodes[A].outputTensors;p.push(b[y])}return new e({inputs:d,outputs:p,name:c})}get stateful(){if(this._stateful)throw new q("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){j(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function cB(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function Rw(e,t){return cB(e,t,"classWeight")}async function $w(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=j(()=>{if(e.shape.length===1)return or(e);if(e.shape.length===2){if(e.shape[1]>1)return Hs(e,1);if(e.shape[1]===1)return G(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());Q(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Zt(o,"float32")}else return null}function dB(e,t){return W(e,t)}var pB=32;function Dw(e,t){let n,s,r=t;n=r.xs,s=r.ys,v.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=_w("input",e.inputNames,n),o=_w("output",e.outputNames,s),i=a[0].shape[0];v.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)v.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)v.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function _w(e,t,n){if(n instanceof Ye)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new q(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function hB(e){if(e.length===3)throw new Be("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function fB(e,t,n){let s=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(Pw(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=hB(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;r?c=l.slice().concat(l.map(g=>"val_"+g)):c=l.slice();let u=yw(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=xw(u,d,n.epochs,null,null,mB(t,n),null,r,c);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await p.onEpochBegin(f);let A=0,y=0;for(s||(m=await t.iterator());s?A<n.batchesPerEpoch:!0;){let x=await m.next();if(s&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${A} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:b,ys:w}=Dw(e,x.value),k={};k.batch=y,k.size=b[0].shape[0],await p.onBatchBegin(y,k);let S=[];if(n.classWeight!=null){let F=Rw(n.classWeight,e.outputNames);for(let R=0;R<F.length;++R)S.push(await $w(w[R],null,F[R]))}let E=b.concat(w).concat(S),P=i(E);Q(E);for(let F=0;F<l.length;++F){let R=l[F],_=P[F];k[R]=_,yn(_)}await p.onBatchEnd(y,k),hw(k),y++,A++}if(s?A>=n.batchesPerEpoch:x.done){if(r){let b;Pw(n.validationData)?b=Ct(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=Ct(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?pB:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function mB(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function Pw(e){return typeof e.iterator=="function"}function gB(e){return typeof e.next=="function"}async function AB(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Be("Verbose mode is not implemented yet.");v.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=gB(t)?t:await t.iterator(),i=0,l=0;for(;s?l<n.batches:!0;){let c=await o.next();if(a=j(()=>{if(c.value){let{xs:u,ys:d}=Dw(e,c.value),p=u.concat(d),h=j(()=>r(p));if(Q(p),l===0)for(let m=0;m<h.length;++m)a.push(Ee(0));let f=p[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],A=a[m];a[m]=j(()=>ie(a[m],W(f,g))),l>0&&Q(A)}Q(h),i+=f,++l}return a}),c.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<a.length;++c){let u=a[c];a[c]=he(a[c],i),Q(u)}return os(a)}function H1(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Ed(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>ol(s,t,n-t)):ol(e,t,n-t)}function j1(e,t){return j(()=>e==null?null:Array.isArray(e)?e.map(n=>j1(n,t)):sw(e,t.dtype==="int32"?t:de(t,"int32")))}function q1(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function yB(e,t,n,s,r,a,o,i,l,c,u,d,p,h,f){r==null&&(r=32),a==null&&(a=1),u==null&&(u=!0),p==null&&(p=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new q("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),A;g!=null&&(A=pr(0,g)),o==null&&(o=1);let{callbackList:y,history:x}=xw(i,o,a,p,g,h,r,m,d);y.setModel(e),e.history=x,await y.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<a;++b){await y.onEpochBegin(b);let w={};if(h!=null)throw new Be("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Be("batch shuffling is not implemneted yet");u&&v.shuffle(A);let k=Zt(A),S=q1(g,r);for(let E=0;E<S.length;++E){let P={};if(await y.onBatchBegin(E,P),j(()=>{let F=S[E][0],R=S[E][1],_=ol(k,F,R-F);P.batch=E,P.size=R-F;let T=j1(n,_),M=t(T);for(let U=0;U<s.length;++U){let H=s[U],z=M[U];P[H]=z,yn(z)}if(E===S.length-1&&m){let U=e.testLoop(l,c,r);for(let H=0;H<s.length;++H){let z=s[H],X=U[H];yn(X),w["val_"+z]=X}}}),await y.onBatchEnd(E,P),hw(P),e.stopTraining_)break}k.dispose()}if(await y.onEpochEnd(b,w),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function xB(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,c,u;try{let d=s.batchSize==null?32:s.batchSize;H1(d);let p=!1,h=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,p,d);r=h[0],a=h[1],u=h[2];let f=!1,m;if(s.validationData!=null&&s.validationData.length>0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new Be("validationData including sample weights is not supported yet."):new q(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let S=!0,E=await e.standardizeUserData(o,i,null,null,S,d);l=E[0],c=E[1],m=l.concat(c)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let S=Math.floor(r[0].shape[0]*(1-s.validationSplit)),E=r[0].shape[0];l=Ed(r,S,E),r=Ed(r,0,S),c=Ed(a,S,E),a=Ed(a,0,S),m=l.concat(c)}else s.validationSteps!=null&&(f=!0);let g=r.concat(a).concat(u);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),x,b;f?(e.makeTestFunction(),x=e.testFunction,b=y.slice().concat(y.map(S=>"val_"+S))):(x=null,m=[],b=y.slice());let w=yw(s.callbacks,s.yieldEvery);return await yB(e,A,g,y,d,s.epochs,s.verbose,w,x,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,ul(r,t),ul(a,n),ul(l,o),ul(c,i),u!=null&&Q(u)}}function Fw(e){let t=[];e instanceof Ye&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(kd(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function ul(e,t){if(e==null)return;let n=[];if(t instanceof Ye)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof Ye)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function bB(e){return e instanceof Ye}function X1(e){return Array.isArray(e)}function Ow(e){return!bB(e)&&!X1(e)}function Mw(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(X1(e)&&e.length>0)o=!0;else if(Ow(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new q(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(Ow(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new q(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(X1(e)){if(e=e,e.length!==t.length)throw new q(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new q(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=Fw(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new q(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u>=0&&c!==u)throw new q(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function vB(e,t,n){let s=Co(e.map(a=>a.shape[0]));s.sort();let r=Co(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new q(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new q(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!v.arraysEqual(s,r))throw new q(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function wB(e,t,n){let s=[il,Lf,Cd];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===Cd&&a.shape[a.shape.length-1]===1)throw new q(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),c=i.slice(1);for(let u=0;u<l.length;++u){let d=l[u],p=c[u];if(p!=null&&d!==p)throw new q(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function zw(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new q(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new q(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new q(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let c=i.shape[l],u=n[o][l];if(u!=null&&u!==c)throw new q(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function kB(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var IB="layers-model",na=class extends Pr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new q("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");tB(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=eB(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Qr))throw new q("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new q(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(M1(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new q(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>M1(o))}else{let a=M1(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],al("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=kB(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};al("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let c="",u,d,p;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===Lf?["accuracy","acc"].indexOf(h)!==-1?d=z1:["crossentropy","ce"].indexOf(h)!==-1&&(d=ww):this.lossFunctions[a]===zf?["accuracy","acc"].indexOf(h)!==-1?d=kw:["crossentropy","ce"].indexOf(h)!==-1&&(d=Iw):["accuracy","acc"].indexOf(h)!==-1?d=L1:["crossentropy","ce"].indexOf(h)!==-1&&(d=B1);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,u=c+g}else p=QL(h),u=c+Vf(h);let f;al(u,()=>{f=p}),r(a,u,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;H1(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return os(l)}finally{ul(a[0],e),ul(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),AB(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new q(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new q(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new q("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new ll;if(e instanceof Ye&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new q(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new q(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=Nd(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=nl(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new q(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return j(()=>{let s=this.checkNumSamples(e);if(n)throw new Be("Verbose predictLoop() is not implemented yet.");let r=q1(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)j(()=>{let l=r[o][0],c=r[o][1],u=Ed(e,l,c),d=[];if(Array.isArray(u))for(let h=0;h<u.length;++h)d.push({key:this.inputs[h],value:u[h]});else d.push({key:this.inputs[0],value:u});let p=new ll(d);return Nd(this.outputs,p)}).forEach((l,c)=>a[c].push(l));return os(a.map(o=>It(o,0)))})}predict(e,t={}){let n=Fw(e);zw(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return H1(s),this.predictLoop(n,s)}finally{ul(n,e)}}predictOnBatch(e){zw(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new dr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===zf?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=Mw(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=Mw(t,this.feedOutputNames,r,!1,"target"),vB(e,t,null),wB(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!=0)throw new q(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let c=Rw(s,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await $w(i[u],null,c[u]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return j(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Be("Verbose mode is not implemented yet.");if(r!=null)throw new Be("steps mode in testLoop() is not implemented yet");{let i=q1(a,n),l=Zt(pr(0,a));for(let c=0;c<i.length;++c){let u=i[c][0],d=i[c][1],p=ol(l,u,d-u),h=j1(t,p),f=e(h);if(c===0)for(let m=0;m<f.length;++m)o.push(Ee(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=ie(o[m],W(d-u,g))}}for(let c=0;c<o.length;++c)o[c]=he(o[c],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;Hv(e,s)>1&&(r+=`_${Hv(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let u=[];for(let f=0;f<this.inputs.length;++f)u.push({key:this.inputs[f],value:n[f]});let d=new ll(u),p=Nd(this.outputs,d,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],p[f]);r[f]!=null&&(g=dB(g,r[f]));let A=Wt(g);t.push(A),f===0?h=g:h=ie(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],A=this.metricsTensors[f][1];m=Wt(g(s[A],p[A]))}yn(m),a.push(m)}return h=Wt(h),this.calculateLosses().forEach(f=>{h=ie(h,f)}),h},i=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>j(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new ll(a),i=Nd(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=Wt(c(r[l],i[l]));l===0?n=u:n=ie(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],d=Wt(c(r[u],i[u]));t.push(d)}return t})}async fit(e,t,n={}){return xB(this,e,t,n)}async fitDataset(e,t){return fB(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let c=await l.data();i.push(c[0])}return Q(o),os(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Bh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Bh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ta(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ta(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=ta(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ta(Vf(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ta(Vf(e)));{let e={};for(let t in this.metrics)e[t]=ta(Vf(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Td(e.optimizer_config),n=mr(t),s;if(typeof e.loss=="string")s=sl(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>sl(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=sl(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>sl(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=sl(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=ns.getSaveHandlers(e);if(l.length===0)throw new q(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new q(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new q("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await ns.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:IB,generatedBy:`TensorFlow.js tfjs-layers v${U1}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:c,specs:u}=await ns.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...u),n.data=ns.concatenateArrayBuffers([n.data,c])}if(this.userDefinedMetadata!=null){let l=!0;Cw(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){Cw(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};na.className="Model";le.registerClass(na);var Lw=class extends na{};Lw.className="Functional";le.registerClass(Lw);async function SB(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=Td(n),r=mr(s,t);if(e.weightsManifest!=null){let a=await ns.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),Q(a)}return r}async function CB(e,t){if(t==null&&(t={}),typeof e=="string"){let n=ns.getLoadHandlers(e,t);if(n.length===0)n.push(ns.browserHTTPRequest(e,t));else if(n.length>1)throw new q(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return TB(e,void 0,t)}async function TB(e,t,n){if(n==null&&(n={}),e.load==null)throw new q("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=mr(Td(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new q("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=NB(s.weightData,s.weightSpecs);i.loadWeights(c,a),i.optimizer!=null&&u.length>0&&await i.optimizer.setWeights(u),Q(c),Q(u.map(d=>d.tensor))}return i}function NB(e,t){let n=ns.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var K1=class extends na{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Df("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new q(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof K1||e instanceof na,n;if(t){if(n=e,n.outputs.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new q("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new q("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=pw({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new q(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new q("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=dw(this.outputs[0])}this.inboundNodes=[],new Ff({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:nl(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(mt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new na({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new dr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new dr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new dr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new dr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new q("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof K1))throw new Be(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let c=mr(i,void 0,s);s&&c.setFastWeightInitDuringBuild(!0),o.add(c)}return o}set stopTraining(e){if(this.model==null)throw new q("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new q("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}},Gf=K1;Gf.className="Sequential";le.registerClass(Gf);function EB(e){return new na(e)}function RB(e){return new Gf(e)}function $B(e,t){return t==null&&(t={}),CB(e,t)}function Bw(e){return pw(e)}function DB(e,t){F1.registerCallbackConstructor(e,t)}var ls=class extends le.Serializable{getConfig(){return{}}},Ww=class extends ls{apply(e,t=1){return rL(e,t)}};Ww.className="elu";le.registerClass(Ww);var Vw=class extends ls{apply(e){return Y2(e)}};Vw.className="selu";le.registerClass(Vw);var Uw=class extends ls{apply(e){return Rr(e)}};Uw.className="relu";le.registerClass(Uw);var Gw=class extends ls{apply(e){return j(()=>hd(6,Rr(e)))}};Gw.className="relu6";le.registerClass(Gw);var Hw=class extends ls{apply(e){return e}};Hw.className="linear";le.registerClass(Hw);var jw=class extends ls{apply(e){return hs(e)}};jw.className="sigmoid";le.registerClass(jw);var qw=class extends ls{apply(e){return oL(e)}};qw.className="hardSigmoid";le.registerClass(qw);var Xw=class extends ls{apply(e){return Cu(e)}};Xw.className="softplus";le.registerClass(Xw);var Kw=class extends ls{apply(e){return aL(e)}};Kw.className="softsign";le.registerClass(Kw);var Zw=class extends ls{apply(e){return vu(e)}};Zw.className="tanh";le.registerClass(Zw);var Z1=class extends ls{apply(e,t=-1){return $u(e,t)}};Z1.className="softmax";le.registerClass(Z1);var Yw=class extends ls{apply(e,t=-1){return B2(e,t)}};Yw.className="logSoftmax";le.registerClass(Yw);var Jw=class extends ls{apply(e,t=1){return j(()=>W(hs(W(e,t)),e))}};Jw.className="swish";le.registerClass(Jw);var Qw=class extends ls{apply(e){return j(()=>W(e,vu(Cu(e))))}};Qw.className="mish";le.registerClass(Qw);function Ro(e){return e.getClassName()}function Y1(e,t={}){return bd(e,le.SerializationMap.getMap().classNameMap,t,"activation")}function $o(e){if(e==null){let t={};return t.className="linear",t.config={},Y1(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Y1(t)}else return e instanceof ls?e:Y1(e)}function J1(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var ek=class extends le.Serializable{},Rd=class extends ek{constructor(e){super();J1(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return j(()=>{let t=Ht([1]);return this.hasL1&&(t=ie(t,Ie(W(this.l1,rn(e))))),this.hasL2&&(t=ie(t,Ie(W(this.l2,Id(e))))),G(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Rd.className="L1L2";le.registerClass(Rd);function _B(e){return J1(e),new Rd({l1:e!=null?e.l1:null,l2:0})}function PB(e){return J1(e),new Rd({l2:e!=null?e.l2:null,l1:0})}var tk={l1l2:"L1L2"};function bt(e){return h1(e)}function nk(e,t={}){return bd(e,le.SerializationMap.getMap().classNameMap,t,"regularizer")}function Dt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in tk?tk[e]:e,config:{}};return nk(n)}else return e instanceof ek?e:nk(e)}var Q1=class extends nt{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Ve(e);let n=Rr(e);return this.maxValue!=null&&(n=fs(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Q1.className="ReLU";le.registerClass(Q1);var eA=class extends nt{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ve(e);return Kh(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};eA.className="LeakyReLU";le.registerClass(eA);var tA=class extends nt{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=$t(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Dt(e.alphaRegularizer),this.alphaConstraint=un(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new q(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=mt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Yt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Ve(e),sf(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Mt(this.alphaInitializer),alphaRegularizer:bt(this.alphaRegularizer),alphaConstraint:ln(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};tA.className="PReLU";le.registerClass(tA);var nA=class extends nt{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Be(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ve(e);return dd(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};nA.className="ELU";le.registerClass(nA);var sA=class extends nt{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Ve(e);return W(n,de(ms(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};sA.className="ThresholdedReLU";le.registerClass(sA);var rA=class extends nt{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Z1().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Ve(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};rA.className="Softmax";le.registerClass(rA);function zu(e,t,n){if(typeof e=="number")return nl(e,t);if(e.length!==t)throw new q(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!eL(r))throw new q(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function gr(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function Fr(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+No([n-t,0]);else if(s==="same")e=e*t;else throw new q(`Unsupport padding mode: ${s}.`);return e}function aA(e,t){return j(()=>(jt(t),t==="channelsFirst"?et(e,[0,2,3,1]):e))}function sk(e,t){return j(()=>(jt(t),t==="channelsFirst"?et(e,[0,2,3,4,1]):e))}function FB(e,t,n,s=1,r="valid",a,o=1){return j(()=>{if(a==null&&(a=cr()),jt(a),e.shape.length!==3)throw new q(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new q(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new q(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=et(e,[0,2,1])),r==="causal")throw new Be("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=D2(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=hr(i,n)),i})}function rk(e,t,n,s=[1,1],r="valid",a,o,i=null){return j(()=>{if(a==null&&(a=cr()),jt(a),e.rank!==3&&e.rank!==4)throw new q(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new q(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=aA(e,a);if(r==="causal")throw new Be("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=So.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=et(l,[0,3,1,2])),l})}function OB(e,t,n,s=[1,1,1],r="valid",a,o){return j(()=>{if(a==null&&(a=cr()),jt(a),e.rank!==4&&e.rank!==5)throw new q(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new q(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=sk(e,a);if(r==="causal")throw new Be("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=F2(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=hr(i,n)),a==="channelsFirst"&&(i=et(i,[0,4,1,2,3])),i})}var oA=class extends nt{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",oA.verifyArgs(t),this.rank=e,xn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Be(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=zu(t.kernelSize,e,"kernelSize"),this.strides=zu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,$s(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,jt(this.dataFormat),this.activation=$o(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=$t(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=un(t.biasConstraint),this.biasRegularizer=Dt(t.biasRegularizer),this.activityRegularizer=Dt(t.activityRegularizer),this.dilationRate=zu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new q(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new q(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new q(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if($r("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!m1(e.kernelSize,"number",1,3))throw new q(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ro(this.activation),useBias:this.useBias,biasInitializer:Mt(this.biasInitializer),biasRegularizer:bt(this.biasRegularizer),activityRegularizer:bt(this.activityRegularizer),biasConstraint:ln(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},$d=class extends oA{constructor(e,t){super(e,t);this.kernel=null,$d.verifyArgs(t),this.filters=t.filters,xn(this.filters,"filters"),this.kernelInitializer=$t(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=un(t.kernelConstraint),this.kernelRegularizer=Dt(t.kernelRegularizer)}build(e){e=mt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return j(()=>{e=Ve(e);let n,s=this.bias==null?null:this.bias.read(),r=qv(this.activation.getClassName());if(r!=null&&this.rank===2)n=rk(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=FB(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=rk(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=OB(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Be("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=mt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=gr(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Mt(this.kernelInitializer),kernelRegularizer:bt(this.kernelRegularizer),kernelConstraint:ln(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new q(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},ak=class extends $d{constructor(e){super(2,e);ak.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!m1(e.kernelSize,"number",1,2))throw new q(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},Hf=ak;Hf.className="Conv2D";le.registerClass(Hf);var ok=class extends $d{constructor(e){super(3,e);ok.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new q(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},jf=ok;jf.className="Conv3D";le.registerClass(jf);var iA=class extends Hf{constructor(e){super(e);if(this.inputSpec=[new Yt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=mt(e),e.length!==4)throw new q("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Yt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{let n=Ve(e);if(n.shape.length!==4)throw new q(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],c=this.kernelSize[0],u=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=Fr(i,d,c,this.padding),f=Fr(l,p,u,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=et(n,[0,2,3,1]));let g=P2(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=et(g,[0,3,1,2])),this.bias!=null&&(g=hr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=mt(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Fr(t[s],i,a,this.padding),t[r]=Fr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};iA.className="Conv2DTranspose";le.registerClass(iA);var lA=class extends jf{constructor(e){super(e);if(this.inputSpec=[new Yt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new q(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=mt(e),e.length!==5)throw new q("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new q("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Yt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{let n=Ve(e);if(n.shape.length!==5)throw new q(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],c=s[a],u=s[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],A=Fr(l,f,d,this.padding),y=Fr(c,m,p,this.padding),x=Fr(u,g,h,this.padding),b=[r,A,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=et(n,[0,2,3,4,1]));let w=M3(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=et(w,[0,4,1,2,3])),this.bias!==null&&(w=hr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=mt(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],c=this.strides[0],u=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=Fr(t[s],c,o,this.padding),t[r]=Fr(t[r],u,i,this.padding),t[a]=Fr(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};lA.className="Conv3DTranspose";le.registerClass(lA);var ik=class extends $d{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new q("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new q("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new q(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=$t(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Dt(t.depthwiseRegularizer),this.depthwiseConstraint=un(t.depthwiseConstraint),this.pointwiseInitializer=$t(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Dt(t.pointwiseRegularizer),this.pointwiseConstraint=un(t.pointwiseConstraint)}build(e){if(e=mt(e),e.length<this.rank+2)throw new q(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Yt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return j(()=>{e=Ve(e);let n;if(this.rank===1)throw new Be("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=et(e,[0,2,3,1])),n=av(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=hr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=et(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Mt(this.depthwiseInitializer),e.pointwiseInitializer=Mt(this.pointwiseInitializer),e.depthwiseRegularizer=bt(this.depthwiseRegularizer),e.pointwiseRegularizer=bt(this.pointwiseRegularizer),e.depthwiseConstraint=ln(this.depthwiseConstraint),e.pointwiseConstraint=ln(this.pointwiseConstraint),e}};ik.className="SeparableConv";var uA=class extends ik{constructor(e){super(2,e)}};uA.className="SeparableConv2D";le.registerClass(uA);var lk=class extends $d{constructor(e){super(1,e);lk.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!m1(e.kernelSize,"number",1,1))throw new q(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},cA=lk;cA.className="Conv1D";le.registerClass(cA);var dA=class extends nt{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return j(()=>{if(e=Ve(e),this.dataFormat==="channelsLast"){let n=wf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return wf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=wf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return wf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};dA.className="Cropping2D";le.registerClass(dA);var pA=class extends nt{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Yz(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return j(()=>{let n=Ve(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=et(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?$e.resizeNearestNeighbor(n,[r,a]):$e.resizeBilinear(n,[r,a]);return et(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?$e.resizeNearestNeighbor(n,[r,a]):$e.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};pA.className="UpSampling2D";le.registerClass(pA);function MB(e,t,n=[1,1],s="valid",r,a){return j(()=>{r==null&&(r=cr()),jt(r);let o=aA(e,r);if(e.rank!==4)throw new q(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new q(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=cd(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=et(o,[0,3,1,2])),o})}var hA=class extends oA{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=$t(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=un(e.depthwiseConstraint),this.depthwiseRegularizer=Dt(e.depthwiseRegularizer)}build(e){if(e=mt(e),e.length<4)throw new q(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new q(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{e=Ve(e);let n=MB(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=hr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=mt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=gr(t,this.kernelSize[0],this.padding,this.strides[0]),a=gr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Mt(this.depthwiseInitializer),e.depthwiseRegularizer=bt(this.depthwiseRegularizer),e.depthwiseConstraint=ln(this.depthwiseRegularizer),e}};hA.className="DepthwiseConv2D";le.registerClass(hA);function uk(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new q("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function ck(e,t,n,s=!1,r,a,o=!1,i=!1){return j(()=>{let l=t.shape.length;if(l<3)throw new q(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(pr(2,l));if(t=et(t,c),a!=null)throw new Be("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=de(de(r,"bool"),"float32"),r.rank===l-1&&(r=Kt(r,-1)),r=et(r,c)),s&&(t=Rs(t,0),r!=null&&(r=Rs(r,0)));let u=[],d,p=n,h=t.shape[0],f=as(t),m;r!=null&&(m=as(r));for(let A=0;A<h;++A){let y=f[A],x=j(()=>e(y,p));if(r==null)d=x[0],p=x[1];else{let b=j(()=>{let w=m[A],k=ye(Es(w),w),S=ie(W(x[0],w),W(p[0],k)),E=p.map((P,F)=>ie(W(x[1][F],w),W(P,k)));return{output:S,newStates:E}});d=b.output,p=b.newStates}i&&u.push(d)}let g;return i&&(g=Pn(u,1)),[d,g,p]})}var dk=class extends nt{constructor(e){super(e);let t;if(e.cell==null)throw new q("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Kf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new q("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Yt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return pr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){D1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return j(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Be("Constants support is not implemented in RNN yet.");D1(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Yt({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Be("Constants support is not implemented in RNN yet.");this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new q(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Yt({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){j(()=>{if(!this.stateful)throw new ea("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ht([n,s])):this.states_=[Ht([n,this.cell.stateSize])];else if(e==null)Q(this.states_),this.keptStates!=null&&(Q(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ht([n,s])):this.states_[0]=Ht([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Q(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!v.arraysEqual(r.shape,o))throw new q(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>yn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=uk(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Yt({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof fr){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return j(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Ve(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new q(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=ck((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),c=l[0],u=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let p=this.returnSequences?u:c;return this.returnState?[p].concat(d):p})}getInitialState(e){return j(()=>{let t=Ht(e.shape);return t=Ie(t,[1,2]),t=kd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?k1(t,[1,n]):t):this.cell.stateSize>1?[k1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===dk.className&&(t.cell={className:this.cell.getClassName(),config:n}),{...n,...e,...t}}static fromConfig(e,t,n={}){let s=t.cell,r=mr(s,n);return new e(Object.assign(t,{cell:r}))}},sa=dk;sa.className="RNN";le.registerClass(sa);var Dd=class extends nt{},qf=class extends Dd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,xn(this.units,"units"),this.activation=$o(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=$t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=$t(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=$t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Dt(e.kernelRegularizer),this.recurrentRegularizer=Dt(e.recurrentRegularizer),this.biasRegularizer=Dt(e.biasRegularizer),this.kernelConstraint=un(e.kernelConstraint),this.recurrentConstraint=un(e.recurrentConstraint),this.biasConstraint=un(e.biasConstraint),this.dropout=Pu([1,No([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Pu([1,No([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=mt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{if(e=e,e.length!==2)throw new q(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Do({ones:()=>Es(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Do({ones:()=>Es(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=Dr(W(e,a),this.kernel.read()):r=Dr(e,this.kernel.read()),this.bias!=null&&(r=hr(r,this.bias.read())),o!=null&&(n=W(n,o));let i=ie(r,Dr(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ro(this.activation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),recurrentInitializer:Mt(this.recurrentInitializer),biasInitializer:Mt(this.biasInitializer),kernelRegularizer:bt(this.kernelRegularizer),recurrentRegularizer:bt(this.recurrentRegularizer),biasRegularizer:bt(this.biasRegularizer),activityRegularizer:bt(this.activityRegularizer),kernelConstraint:ln(this.kernelConstraint),recurrentConstraint:ln(this.recurrentConstraint),biasConstraint:ln(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};qf.className="SimpleRNNCell";le.registerClass(qf);var fA=class extends sa{constructor(e){e.cell=new qf(e);super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(Q(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Q(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};fA.className="SimpleRNN";le.registerClass(fA);var Xf=class extends Dd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new q("GRUCell does not support reset_after parameter set to true.");this.units=e.units,xn(this.units,"units"),this.activation=$o(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=$o(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=$t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=$t(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=$t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Dt(e.kernelRegularizer),this.recurrentRegularizer=Dt(e.recurrentRegularizer),this.biasRegularizer=Dt(e.biasRegularizer),this.kernelConstraint=un(e.kernelConstraint),this.recurrentConstraint=un(e.recurrentConstraint),this.biasConstraint=un(e.biasConstraint),this.dropout=Pu([1,No([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Pu([1,No([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=mt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return j(()=>{if(e=e,e.length!==2)throw new q(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Do({ones:()=>Es(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Do({ones:()=>Es(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=W(e,r[0]));let c=Dr(e,this.kernel.read());this.useBias&&(c=hr(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=W(s,a[0]));let u=this.recurrentKernel.read(),[d,p]=Sn(u,[2*this.units,this.units],u.rank-1),h=Dr(s,d),[f,m,g]=Sn(c,3,c.rank-1),[A,y]=Sn(h,2,h.rank-1);o=this.recurrentActivation.apply(ie(f,A)),i=this.recurrentActivation.apply(ie(m,y));let x=Dr(W(i,s),p);l=this.activation.apply(ie(g,x));let b=ie(W(o,s),W(ie(1,Ot(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ro(this.activation),recurrentActivation:Ro(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),recurrentInitializer:Mt(this.recurrentInitializer),biasInitializer:Mt(this.biasInitializer),kernelRegularizer:bt(this.kernelRegularizer),recurrentRegularizer:bt(this.recurrentRegularizer),biasRegularizer:bt(this.biasRegularizer),activityRegularizer:bt(this.activityRegularizer),kernelConstraint:ln(this.kernelConstraint),recurrentConstraint:ln(this.recurrentConstraint),biasConstraint:ln(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return{...e,...t}}};Xf.className="GRUCell";le.registerClass(Xf);var mA=class extends sa{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Xf(e);super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(Q(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Q(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};mA.className="GRU";le.registerClass(mA);var _d=class extends Dd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,xn(this.units,"units"),this.activation=$o(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=$o(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=$t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=$t(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=$t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Dt(e.kernelRegularizer),this.recurrentRegularizer=Dt(e.recurrentRegularizer),this.biasRegularizer=Dt(e.biasRegularizer),this.kernelConstraint=un(e.kernelConstraint),this.recurrentConstraint=un(e.recurrentConstraint),this.biasConstraint=un(e.biasConstraint),this.dropout=Pu([1,No([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Pu([1,No([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=mt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Zs{apply(o,i){let l=r.apply([a]),c=new If().apply([a]),u=r.apply([a*2]);return nw(nw(l,c),u)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return j(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new q(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Do({ones:()=>Es(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Do({ones:()=>Es(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,c,u;0<this.dropout&&this.dropout<1&&(e=W(e,a[0]));let d=Dr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=W(s,o[0])),d=ie(d,Dr(s,this.recurrentKernel.read())),this.useBias&&(d=hr(d,this.bias.read()));let[p,h,f,m]=Sn(d,4,d.rank-1);i=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(h),c=ie(W(l,r),W(i,this.activation.apply(f))),u=this.recurrentActivation.apply(m);let g=W(u,this.activation.apply(c));return[g,g,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ro(this.activation),recurrentActivation:Ro(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),recurrentInitializer:Mt(this.recurrentInitializer),biasInitializer:Mt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:bt(this.kernelRegularizer),recurrentRegularizer:bt(this.recurrentRegularizer),biasRegularizer:bt(this.biasRegularizer),activityRegularizer:bt(this.activityRegularizer),kernelConstraint:ln(this.kernelConstraint),recurrentConstraint:ln(this.recurrentConstraint),biasConstraint:ln(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return{...e,...t}}};_d.className="LSTMCell";le.registerClass(_d);var gA=class extends sa{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new _d(e);super(e)}call(e,t){return j(()=>{this.cell.dropoutMask!=null&&(Q(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Q(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};gA.className="LSTM";le.registerClass(gA);var Kf=class extends Dd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return j(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){D1(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{al(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return{...e,...s}}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(mr(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return _1(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}P1(t)}};Kf.className="StackedRNNCells";le.registerClass(Kf);function Do(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):rw(t(),n),i=()=>Sd(o,t,s);return!r||r<=1?yn(i().clone()):Array(r).fill(void 0).map(i).map(c=>yn(c.clone()))}var pk=class extends sa{constructor(e){if(e.unroll)throw new Be("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Be("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Yt({ndim:5})]}call(e,t){return j(()=>{if(this.cell.dropoutMask!=null&&(Q(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Q(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new q("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return j(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Ht(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){j(()=>{if(!this.stateful)throw new ea("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new q("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ht(r)):this.states_=[Ht(r)];else if(e==null)Q(this.states_),this.keptStates!=null&&(Q(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ht(r)):this.states_[0]=Ht(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new q(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Q(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!v.arraysEqual(i.shape,l))throw new q(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>yn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],c=e[i?4:3],u=gr(l,s[0],r,a[0],o[0]),d=gr(c,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,u,d]:[u,d,n]]}};pk.className="ConvRNN2D";var Zf=class extends _d{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super({...e,units:t});this.filters=t,xn(this.filters,"filters"),this.kernelSize=zu(n,2,"kernelSize"),this.kernelSize.forEach(i=>xn(i,"kernelSize")),this.strides=zu(s||1,2,"strides"),this.strides.forEach(i=>xn(i,"strides")),this.padding=r||"valid",$s(this.padding),this.dataFormat=a||"channelsLast",jt(this.dataFormat),this.dilationRate=zu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>xn(i,"dilationRate"))}build(e){var t;e=mt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new q(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;i=new(t=class extends Zs{apply(u,d){let p=l.apply([c]),h=gs([c]),f=l.apply([c*2]);return w1([p,h,f])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return j(()=>{if(e.length!==3)throw new q(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Do({ones:()=>Es(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(ee,Y,se)=>!Y||!Y[se]?ee:W(Y[se],ee),c=l(s,i,0),u=l(s,i,1),d=l(s,i,2),p=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Do({ones:()=>Es(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),A=l(r,h,3),y=3,[x,b,w,k]=Sn(this.kernel.read(),o,y),[S,E,P,F]=this.useBias?Sn(this.bias.read(),o):[null,null,null,null];c=this.inputConv(c,x,S,this.padding),u=this.inputConv(u,b,E,this.padding),d=this.inputConv(d,w,P,this.padding),p=this.inputConv(p,k,F,this.padding);let[R,_,T,M]=Sn(this.recurrentKernel.read(),o,y);f=this.recurrentConv(f,R),m=this.recurrentConv(m,_),g=this.recurrentConv(g,T),A=this.recurrentConv(A,M);let U=this.recurrentActivation.apply(ie(c,f)),H=this.recurrentActivation.apply(ie(u,m)),z=ie(W(H,a),W(U,this.activation.apply(ie(d,g)))),X=W(this.recurrentActivation.apply(ie(p,A)),this.activation.apply(z));return[X,X,z]})}getConfig(){let{units:e,...t}=super.getConfig(),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...n}}inputConv(e,t,n,s){let r=ko(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?hr(r,n,this.dataFormat):r}recurrentConv(e,t){return ko(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Zf.className="ConvLSTM2DCell";le.registerClass(Zf);var AA=class extends pk{constructor(e){let t=new Zf(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};AA.className="ConvLSTM2D";le.registerClass(AA);var Yf=class extends nt{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ve(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Sd(()=>rw(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Yf.className="Dropout";le.registerClass(Yf);var yA=class extends Yf{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};yA.className="SpatialDropout1D";le.registerClass(yA);var xA=class extends nt{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,xn(this.units,"units"),this.activation=$o(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=$t(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=$t(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=un(e.kernelConstraint),this.biasConstraint=un(e.biasConstraint),this.kernelRegularizer=Dt(e.kernelRegularizer),this.biasRegularizer=Dt(e.biasRegularizer),this.activityRegularizer=Dt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=mt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=mt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ve(e),s=qv(this.activation.getClassName()),r;return s!=null?r=Dr(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=Dr(n,this.kernel.read()),this.bias!=null&&(r=hr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Ro(this.activation),useBias:this.useBias,kernelInitializer:Mt(this.kernelInitializer),biasInitializer:Mt(this.biasInitializer),kernelRegularizer:bt(this.kernelRegularizer),biasRegularizer:bt(this.biasRegularizer),activityRegularizer:bt(this.activityRegularizer),kernelConstraint:ln(this.kernelConstraint),biasConstraint:ln(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};xA.className="Dense";le.registerClass(xA);var bA=class extends nt{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=mt(e);for(let t of e.slice(1))if(t==null)throw new q(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],To(e,1)]}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ve(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=et(n,s)}return sL(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};bA.className="Flatten";le.registerClass(bA);var vA=class extends nt{constructor(e){super(e);this.supportsMasking=!0,this.activation=$o(e.activation)}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ve(e);return this.activation.apply(n)})}getConfig(){let e={activation:Ro(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};vA.className="Activation";le.registerClass(vA);var wA=class extends nt{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return j(()=>(e=Ve(e),tL(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};wA.className="RepeatVector";le.registerClass(wA);var kA=class extends nt{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new q("Can only specifiy one unknown dimension.");else r*=l}let o=To(e);if(a!==null){if(r===0||o%r!=0)throw new q(n);s[a]=o/r}else if(o!==r)throw new q(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ve(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return G(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};kA.className="Reshape";le.registerClass(kA);var IA=class extends nt{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=pr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Yt({ndim:this.dims.length+1})]}computeOutputShape(e){e=mt(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return et(Ve(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};IA.className="Permute";le.registerClass(IA);var SA=class extends nt{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Ve(e),s=-1;return Uh(Tu(n,this.maskValue),s)}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ve(e),s=-1,r=!0,a=Uh(Tu(n,this.maskValue),s,r);return W(n,de(a,n.dtype))})}};SA.className="Masking";le.registerClass(SA);var CA=class extends nt{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(Ct(e.inputLength))}this.inputDim=e.inputDim,xn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,xn(this.outputDim,"outputDim"),this.embeddingsInitializer=$t(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Dt(e.embeddingsRegularizer),this.activityRegularizer=Dt(e.activityRegularizer),this.embeddingsConstraint=un(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return j(()=>this.maskZero?(e=Ve(e),Tu(e,tt(e))):null)}computeOutputShape(e){if(e=mt(e),this.inputLength==null)return[...e,this.outputDim];let t=Ct(this.inputLength);if(t.length!==e.length-1)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new q(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ve(e);n.dtype!=="int32"&&(n=vf(n,"int32"));let s=sw(this.embeddings.read(),G(n,[n.size]));return G(s,mt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Mt(this.embeddingsInitializer),embeddingsRegularizer:bt(this.embeddingsRegularizer),activityRegularizer:bt(this.activityRegularizer),embeddingsConstraint:ln(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};CA.className="Embedding";le.registerClass(CA);var cl=class extends nt{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Be}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new q("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[mt(e)]),e=e,e.length<2)throw new q(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Co(t),t.length>1)throw new q(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&Co(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return j(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=No(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=kd(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let c=i.shape,u=c[0],d=c.slice(1).concat([u]),p=G(i,[u].concat(To(c.slice(1))));p=et(p,[1,0]),p=G(p,d),n.push(p),r=!0}else if(l>1){let c=pr(1,l).concat([0]);n.push(et(i,c)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,c=i[l-1],u=[c].concat(i.slice(0,i.length-1));a=G(et(G(a,[-1,c]),[1,0]),u)}else if(o>1){let i=[o-1].concat(pr(0,o-1));a=et(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=Co(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return j(()=>{if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an Array");if(!Array.isArray(e))throw new q("`inputs` should be an Array");if(t.length!==e.length)throw new q(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Kt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=lr(n,t[s]);return n})}},TA=class extends cl{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return t})}};TA.className="Add";le.registerClass(TA);var NA=class extends cl{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=W(t,e[n]);return t})}};NA.className="Multiply";le.registerClass(NA);var EA=class extends cl{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return W(1/e.length,t)})}};EA.className="Average";le.registerClass(EA);var RA=class extends cl{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Yr(t,e[n]);return t})}};RA.className="Maximum";le.registerClass(RA);var $A=class extends cl{constructor(e){super(e)}mergeFunction(e){return j(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=hd(t,e[n]);return t})}};$A.className="Minimum";le.registerClass($A);var DA=class extends cl{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new q("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(v.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new q("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return j(()=>w1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new q("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new q("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new q("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new q(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return j(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(de(Es(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Kt(t[a],-1)):s.push(t[a]);let r=It(s,this.axis);return T2(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};DA.className="Concatenate";le.registerClass(DA);function Pd(e,t){for(;e<0;)e+=t;return e}function zB(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Be("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Be("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return j(()=>{let o;if(s>r){o=s-r;let l=[];for(let c=0;c<o;++c)l.push(1);t=G(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let c=0;c<o;++c)l.push(1);e=G(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=Ie(W(e,t),a[0]):i=Ie(W(et(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,c=a[1]===t.shape.length-1;i=He(e,t,l,c)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let c=[];for(let u=l;u<l+o;++u)c.push(u);i=pt(i,c)}return i.shape.length===1&&(i=Kt(i,1)),i})}var _A=class extends cl{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Be("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new q(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new q(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>Pd(r,e[a].shape.length)):s=[Pd(this.axes,t.shape.length),Pd(this.axes,n.shape.length)],this.normalize&&(t=Of(t,s[0]),n=Of(n,s[1])),zB(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Pd(this.axes,e.length),Pd(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Be("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};_A.className="Dot";le.registerClass(_A);var PA=class extends nt{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ve(e);return Sd(()=>ie(kf(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};PA.className="GaussianNoise";le.registerClass(PA);var FA=class extends nt{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return j(()=>{this.invokeCallHook(e,t);let n=Ve(e);return this.rate>0&&this.rate<1?Sd(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return W(n,kf(n.shape,1,r))},()=>n,t.training||!1):n})}};FA.className="GaussianDropout";le.registerClass(FA);var OA=class extends nt{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Ve(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return j(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Sd(()=>{let r=Ve(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=Yi(Nu(n),this.rate);l=vf(l,"float32");let c=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-c*i*this.rate,d=ie(W(r,l),W(ie(l,-1),i));return ie(W(d,c),u)},()=>Ve(e),t.training||!1)}return e})}};OA.className="AlphaDropout";le.registerClass(OA);function Fd(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=N3(e,t,n,s,r,a);else if(e.rank===3)o=E3(e,t,n,s,r,a);else if(e.rank===4)o=R3(e,t,n,s,r,a);else throw new Be(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function LB(e,t,n,s,r=.001){return j(()=>{let a=tf(e,s),o=a.mean,i=a.variance;return[Fd(e,o,i,n,t,r),o,i]})}function BB(e,t,n,s,r=.001){return j(()=>{let a=tf(e,s),o=a.mean,i=a.variance,l=[];for(let f of pr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let c=G(o,l),u=G(i,l),d=t==null?null:G(t,l),p=n==null?null:G(n,l);return[Fd(e,c,u,p,d,r),o,i]})}function WB(e,t,n,s,r=.001){return v.arraysEqual(s.slice().sort(),pr(0,e.rank-1))?LB(e,t,n,s,r):BB(e,t,n,s,r)}var MA=class extends nt{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=$t(e.betaInitializer||"zeros"),this.gammaInitializer=$t(e.gammaInitializer||"ones"),this.movingMeanInitializer=$t(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=$t(e.movingVarianceInitializer||"ones"),this.betaConstraint=un(e.betaConstraint),this.gammaConstraint=un(e.gammaConstraint),this.betaRegularizer=Dt(e.betaRegularizer),this.gammaRegularizer=Dt(e.gammaRegularizer)}build(e){e=mt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new q(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Yt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return j(()=>{let n=t.training==null?!1:t.training,s=Ve(e),r=s.shape,a=r.length,o=pr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=nl(1,a);l[i]=r[i];let c=o.slice();c.sort();let u=!v.arraysEqual(c,pr(0,a).slice(0,a-1)),d=()=>{if(u){let A=G(this.movingMean.read(),l),y=G(this.movingVariance.read(),l),x=this.center?G(this.beta.read(),l):null,b=this.scale?G(this.gamma.read(),l):null;return Fd(s,A,y,x,b,this.epsilon)}else return Fd(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=WB(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(A,y,x)=>{j(()=>{let b=1-x,w=A.read(),k=W(ye(w,y),b);A.write(ye(w,k))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Mt(this.betaInitializer),gammaInitializer:Mt(this.gammaInitializer),movingMeanInitializer:Mt(this.movingMeanInitializer),movingVarianceInitializer:Mt(this.movingVarianceInitializer),betaRegularizer:bt(this.betaRegularizer),gammaRegularizer:bt(this.gammaRegularizer),betaConstraint:ln(this.betaConstraint),gammaConstraint:ln(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};MA.className="BatchNormalization";le.registerClass(MA);var zA=class extends nt{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=$t(e.betaInitializer||"zeros"),this.gammaInitializer=$t(e.gammaInitializer||"ones"),this.betaRegularizer=Dt(e.betaRegularizer),this.gammaRegularizer=Dt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=mt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Co(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Ve(e),s=n.shape,r=s.length;return j(()=>{let a=!0,{mean:o,variance:i}=tf(n,this.axis,a),l=nl(1,r);for(let f of this.axis)l[f]=s[f];let c=f=>f!=null&&f.shape.length!==r?G(f,l):f,u=c(this.gamma.read()),d=c(this.beta.read()),p=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(p.push(s[f]),h.push(1)):(p.push(1),h.push(s[f]));return o=js(o,p),i=js(i,p),u=js(u,h),d=js(d,h),Fd(n,o,i,d,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Mt(this.betaInitializer),gammaInitializer:Mt(this.gammaInitializer),betaRegularizer:bt(this.betaRegularizer),gammaRegularizer:bt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};zA.className="LayerNormalization";le.registerClass(zA);function VB(e,t,n){return j(()=>{if(e.rank!==4)throw new q(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new q("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=cr()),n!=="channelsLast"&&n!=="channelsFirst")throw new q(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],qs(e,s)})}var LA=class extends nt{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?cr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new q(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new q(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new q(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){e=mt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return j(()=>VB(Ve(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};LA.className="ZeroPadding2D";le.registerClass(LA);function Jf(e,t,n,s,r,a){return j(()=>{jt(r),Yv(a),$s(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=cr()),a==null&&(a="max"),e=aA(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Qh(e,t,n,i):o=Hh(e,t,n,i),r==="channelsFirst"&&(o=et(o,[0,3,1,2])),o})}function hk(e,t,n,s,r,a){return j(()=>{jt(r),Yv(a),$s(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=cr()),a==null&&(a="max"),e=sk(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=G2(e,t,n,i):o=R2(e,t,n,i),r==="channelsFirst"&&(o=et(o,[0,4,1,2,3])),o})}var fk=class extends nt{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new q(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(xn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new q(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);xn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,$s(this.padding),this.inputSpec=[new Yt({ndim:3})]}computeOutputShape(e){e=mt(e);let t=gr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return j(()=>{this.invokeCallHook(e,t),e=kd(Ve(e),2);let n=this.poolingFunction(Ve(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return pt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},BA=class extends fk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),$s(s),Jf(e,t,n,s,r,"max")}};BA.className="MaxPooling1D";le.registerClass(BA);var WA=class extends fk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),$s(s),Jf(e,t,n,s,r,"avg")}};WA.className="AveragePooling1D";le.registerClass(WA);var mk=class extends nt{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new q(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];xn(this.poolSize,"poolSize"),xn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),$s(this.padding),this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){e=mt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=gr(t,this.poolSize[0],this.padding,this.strides[0]),n=gr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return j(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ve(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},VA=class extends mk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),$s(s),Jf(e,t,n,s,r,"max")}};VA.className="MaxPooling2D";le.registerClass(VA);var UA=class extends mk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),$s(s),Jf(e,t,n,s,r,"avg")}};UA.className="AveragePooling2D";le.registerClass(UA);var gk=class extends nt{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new q(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];xn(this.poolSize,"poolSize"),xn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),$s(this.padding),this.inputSpec=[new Yt({ndim:5})]}computeOutputShape(e){e=mt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=gr(t,this.poolSize[0],this.padding,this.strides[0]),n=gr(n,this.poolSize[1],this.padding,this.strides[1]),s=gr(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return j(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ve(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},GA=class extends gk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),$s(s),hk(e,t,n,s,r,"max")}};GA.className="MaxPooling3D";le.registerClass(GA);var HA=class extends gk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return jt(r),$s(s),hk(e,t,n,s,r,"avg")}};HA.className="AveragePooling3D";le.registerClass(HA);var Ak=class extends nt{constructor(e){super(e);this.inputSpec=[new Yt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Be}},jA=class extends Ak{constructor(e){super(e||{})}call(e,t){return j(()=>{let n=Ve(e);return Wt(n,1)})}};jA.className="GlobalAveragePooling1D";le.registerClass(jA);var qA=class extends Ak{constructor(e){super(e||{})}call(e,t){return j(()=>{let n=Ve(e);return rs(n,1)})}};qA.className="GlobalMaxPooling1D";le.registerClass(qA);var yk=class extends nt{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,jt(this.dataFormat),this.inputSpec=[new Yt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Be}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},XA=class extends yk{call(e,t){return j(()=>{let n=Ve(e);return this.dataFormat==="channelsLast"?Wt(n,[1,2]):Wt(n,[2,3])})}};XA.className="GlobalAveragePooling2D";le.registerClass(XA);var KA=class extends yk{call(e,t){return j(()=>{let n=Ve(e);return this.dataFormat==="channelsLast"?rs(n,[1,2]):rs(n,[2,3])})}};KA.className="GlobalMaxPooling2D";le.registerClass(KA);var xk=class extends nt{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=mr(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},ZA=class extends xk{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=mt(e),e.length<3)throw new q(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=mt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return j(()=>(e=Ve(e),ck((a,o)=>[Ve(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};ZA.className="TimeDistributed";le.registerClass(ZA);function UB(e){rl(Zz,"BidirectionalMergeMode",e)}var GB="concat",YA=class extends xk{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=mr(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=mr(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?GB:e.mergeMode,UB(this.mergeMode),e.weights)throw new Be("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):os(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=uk(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new q("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let c=n.map(u=>new Yt({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),o.push(...c)}if(s!=null)throw new Be("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof fr;for(let l of a)if(l instanceof fr!==i)throw new q("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),c=this.inputSpec.concat(o),u=this.inputSpec;this.inputSpec=c;let d=super.apply(l,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return j(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=Rs(r,1));let o;return this.mergeMode==="concat"?o=w1([s,r]):this.mergeMode==="sum"?o=ie(s,r):this.mergeMode==="ave"?o=W(.5,ie(s,r)):this.mergeMode==="mul"?o=W(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){al(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),al(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=mr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Be("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};YA.className="Bidirectional";le.registerClass(YA);function HB(e){return new Fu(e)}function jB(e){return new nA(e)}function qB(e){return new Q1(e)}function XB(e){return new eA(e)}function KB(e){return new tA(e)}function ZB(e){return new rA(e)}function YB(e){return new sA(e)}function JB(e){return new cA(e)}function QB(e){return new Hf(e)}function eW(e){return new iA(e)}function tW(e){return new jf(e)}function nW(e){return new lA(e)}function sW(e){return new uA(e)}function rW(e){return new dA(e)}function aW(e){return new pA(e)}function oW(e){return new hA(e)}function iW(e){return new vA(e)}function lW(e){return new xA(e)}function uW(e){return new Yf(e)}function cW(e){return new yA(e)}function dW(e){return new bA(e)}function pW(e){return new wA(e)}function hW(e){return new kA(e)}function fW(e){return new IA(e)}function mW(e){return new CA(e)}function gW(e){return new TA(e)}function AW(e){return new EA(e)}function yW(e){return new DA(e)}function xW(e){return new RA(e)}function bW(e){return new $A(e)}function vW(e){return new NA(e)}function wW(e){return new _A(e)}function kW(e){return new MA(e)}function IW(e){return new zA(e)}function SW(e){return new LA(e)}function JA(e){return new WA(e)}function CW(e){return JA(e)}function TW(e){return JA(e)}function QA(e){return new UA(e)}function NW(e){return QA(e)}function EW(e){return QA(e)}function ey(e){return new HA(e)}function RW(e){return ey(e)}function $W(e){return ey(e)}function DW(e){return new jA(e)}function _W(e){return new XA(e)}function bk(e){return new qA(e)}function vk(e){return new KA(e)}function wk(e){return new BA(e)}function kk(e){return new VA(e)}function PW(e){return new GA(e)}function FW(e){return new mA(e)}function OW(e){return new Xf(e)}function MW(e){return new gA(e)}function zW(e){return new _d(e)}function LW(e){return new fA(e)}function BW(e){return new qf(e)}function WW(e){return new AA(e)}function VW(e){return new Zf(e)}function UW(e){return new sa(e)}function GW(e){return new Kf(e)}function HW(e){return new YA(e)}function jW(e){return new ZA(e)}var qW=bk,XW=vk,KW=wk,ZW=kk;function YW(e){return new PA(e)}function JW(e){return new FA(e)}function QW(e){return new OA(e)}function eV(e){return new SA(e)}var Ik={};ze(Ik,{MAPE:()=>dV,MSE:()=>fV,binaryAccuracy:()=>tV,binaryCrossentropy:()=>nV,categoricalAccuracy:()=>rV,categoricalCrossentropy:()=>aV,cosineProximity:()=>lV,mape:()=>pV,meanAbsoluteError:()=>uV,meanAbsolutePercentageError:()=>cV,meanSquaredError:()=>hV,mse:()=>mV,precision:()=>oV,recall:()=>iV,sparseCategoricalAccuracy:()=>sV});function tV(e,t){return z1(e,t)}function nV(e,t){return ww(e,t)}function sV(e,t){return kw(e,t)}function rV(e,t){return L1(e,t)}function aV(e,t){return B1(e,t)}function oV(e,t){return vw(e,t)}function iV(e,t){return HL(e,t)}function lV(e,t){return O1(e,t)}function uV(e,t){return Mf(e,t)}function cV(e,t){return Mu(e,t)}function dV(e,t){return Mu(e,t)}function pV(e,t){return Mu(e,t)}function hV(e,t){return il(e,t)}function fV(e,t){return il(e,t)}function mV(e,t){return il(e,t)}var Sk={};ze(Sk,{modelFromJSON:()=>SB});var Ck={};ze(Ck,{l1:()=>AV,l1l2:()=>gV,l2:()=>yV});function gV(e){return new Rd(e)}function AV(e){return _B(e)}function yV(e){return PB(e)}var Tk=class extends Ou{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof na))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Qf(e,t){return e<t}function Nk(e,t){return e>t}var Ek=class extends Tk{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Be("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Qf:this.mode==="max"?this.monitorFunc=Nk:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Nk:this.monitorFunc=Qf,this.monitorFunc===Qf&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Qf?1/0:-1/0}async onEpochEnd(e,t){await Eo(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function xV(e){return new Ek(e)}var bV={earlyStopping:xV},Ar;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Ar||(Ar={}));var Rk;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Rk||(Rk={}));var ty={};function vV(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};ty[e]=n}function $k(e){return ty[e]}function wV(e){delete ty[e]}function I(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Un(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(p=>Un(p,n,s,r));let c=Un(t.inputNames.slice(i)[0],n,s,r),u=c.dataSync();return a.type==="number"?u[0]:v.toNestedArray(c.shape,u)}let o=t.attrParams[e];return o&&o.value}function Un(e,t,n,s){let[r,a]=As(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[em(r,i)]);return o!==void 0?t[em(r,o)][a]:void 0}function kV(e,t,n){return t[em(e,n.currentContextId)]}function ra(e,t){let[n,s,r]=As(e);return[em(n,t&&t.currentContextId),s,r]}function em(e,t){return t?`${e}-${t}`:e}function As(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function tm(e,t,n){let s=I("pad",e,t,n);if(s==="explicit"){s=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function aa(e){return e.kept?e:or(e)}var Dk={};ze(Dk,{json:()=>IV});var IV=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],_k={};ze(_k,{json:()=>SV});var SV=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Pk={};ze(Pk,{json:()=>CV});var CV=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Fk={};ze(Fk,{json:()=>TV});var TV=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Ok={};ze(Ok,{json:()=>NV});var NV=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Mk={};ze(Mk,{json:()=>EV});var EV=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],zk={};ze(zk,{json:()=>RV});var RV=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],Lk={};ze(Lk,{json:()=>$V});var $V=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Bk={};ze(Bk,{json:()=>DV});var DV=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Wk={};ze(Wk,{json:()=>_V});var _V=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],Vk={};ze(Vk,{json:()=>PV});var PV=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Uk={};ze(Uk,{json:()=>FV});var FV=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],Gk={};ze(Gk,{json:()=>OV});var OV=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],Hk={};ze(Hk,{json:()=>MV});var MV=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],jk={};ze(jk,{json:()=>zV});var zV=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],qk={};ze(qk,{json:()=>LV});var LV=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],Xk={};ze(Xk,{json:()=>BV});var BV=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],Kk={};ze(Kk,{json:()=>WV});var WV=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],Zk={};ze(Zk,{json:()=>VV});var VV=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],Yk=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Dk,_k,Pk,Fk,Ok,Mk,zk,Lk,Bk,Wk,Vk,Uk,Gk,Hk,jk,qk,Xk,Kk,Zk],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,A)=>{let[y,,x]=ra(g),b=o[y];if(b.outputs!=null){let w=b.outputs.indexOf(x);if(w!==-1){let k=`${y}:${w}`;m.inputNames[A]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(u).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=ra(f),g=o[m];g!=null&&(g.signatureKey=u[f],l.push(g))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=ra(f),g=o[m];g&&(g.signatureKey=c[f],i.push(g))}):i=s;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=$k(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=ny(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ny(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=cy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=cy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=ry(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=ry(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=uy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=uy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=sy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=sy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=py(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=py(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=ly(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ly(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=dy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=dy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=oy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=oy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=iy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=iy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=Qk(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Qk(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&s.push(u[d.name]),u),{}));let a=[],o=[];e.signature.inputArg.forEach(u=>{let[d]=ra(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:ay(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,a.push(p),r[d]=p}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach((p,h)=>{let[f,,m]=ra(p),g=r[f];if(g.outputs!=null){let A=g.outputs.indexOf(m);if(A!==-1){let y=`${f}:${A}`;d.inputNames[h]=y}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=ra(l[u.name]),h=r[d];h!=null&&(h.defaultOutput=p,o.push(h))});let c=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function UV(e){let t=K().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function Jk(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):UV(e);return t?n:n.toLowerCase()}function ny(e,t,n,s=!1){let r=e[t];return r!=null?Jk(r.s,s):n}function sy(e,t,n){let s=e[t];return s?s.b:n}function ry(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function ay(e){switch(typeof e=="string"&&(e=Ar[e]),e){case Ar.DT_FLOAT:return"float32";case Ar.DT_INT32:case Ar.DT_INT64:case Ar.DT_INT8:case Ar.DT_UINT8:return"int32";case Ar.DT_BOOL:return"bool";case Ar.DT_DOUBLE:return"float32";case Ar.DT_STRING:return"string";default:return null}}function Qk(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function oy(e,t,n){let s=e[t];return s&&s.type?ay(s.type):n}function iy(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>ay(r)):n}function e7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function ly(e,t,n){let s=e[t];return s&&s.shape?e7(s.shape):n}function uy(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function cy(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>Jk(a,s)):n}function dy(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>e7(r)):n}function py(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var GV=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return Un(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Un(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return ry(this.node.rawAttrs,e,t);if(n.s!=null)return ny(this.node.rawAttrs,e,t);if(n.b!=null)return sy(this.node.rawAttrs,e,t);if(n.shape!=null)return ly(this.node.rawAttrs,e,t);if(n.type!=null)return oy(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return uy(this.node.rawAttrs,e,t);if(n.list.s!=null)return cy(this.node.rawAttrs,e,t);if(n.list.shape!=null)return dy(this.node.rawAttrs,e,t);if(n.list.b!=null)return py(this.node.rawAttrs,e,t);if(n.list.type!=null)return iy(this.node.rawAttrs,e,t)}return t}},HV=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ie(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[Vh(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[tv(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[W(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[he(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[W3(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[C2(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ye(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[hd(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Yr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[Io(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[n1(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},jV=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[rn(I("x",e,t,n))];case"Acos":return[A3(I("x",e,t,n))];case"Acosh":return[y3(I("x",e,t,n))];case"Asin":return[b3(I("x",e,t,n))];case"Asinh":return[v3(I("x",e,t,n))];case"Atan":return[w3(I("x",e,t,n))];case"Atan2":return[k3(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[I3(I("x",e,t,n))];case"Ceil":return[D3(I("x",e,t,n))];case"Complex":return[yo(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[qh(I("x",e,t,n))];case"Cosh":return[O2(I("x",e,t,n))];case"Elu":return[dd(I("x",e,t,n))];case"Erf":return[U3(I("x",e,t,n))];case"Exp":return[Ts(I("x",e,t,n))];case"Expm1":return[G3(I("x",e,t,n))];case"Floor":return[pd(I("x",e,t,n))];case"Log":return[Ns(I("x",e,t,n))];case"Log1p":return[Zh(I("x",e,t,n))];case"Imag":return[Xh(I("x",e,t,n))];case"Neg":return[Ot(I("x",e,t,n))];case"Reciprocal":return[rv(I("x",e,t,n))];case"Real":return[fd(I("x",e,t,n))];case"Relu":return[Rr(I("x",e,t,n))];case"Round":return[K2(I("x",e,t,n))];case"Selu":return[Y2(I("x",e,t,n))];case"Sigmoid":return[hs(I("x",e,t,n))];case"Sin":return[J2(I("x",e,t,n))];case"Sign":return[iv(I("x",e,t,n))];case"Sinh":return[Q2(I("x",e,t,n))];case"Softplus":return[Cu(I("x",e,t,n))];case"Sqrt":return[_n(I("x",e,t,n))];case"Square":return[xt(I("x",e,t,n))];case"Tanh":return[vu(I("x",e,t,n))];case"Tan":return[uv(I("x",e,t,n))];case"ClipByValue":return[fs(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[X2(I("x",e,t,n))];case"Rsqrt":return[Z2(Un(e.inputNames[0],t,n))];case"Prod":return[H2(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Kh(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[sf(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[H3(Un(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ys(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];v.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function t7(e){return!(typeof e=="number"||e.some(t=>t<0))}function Od(e,t,n){let s=hy(e,n),r=!t7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=hy(a.shape,s)}),!t7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function hy(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var qV=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ee(0),yn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Ys(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,yn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return Gt([],[0].concat(this.elementShape));let n=this.readMany(e);return Ys(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Pn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Gt([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return Ys(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),It(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,as(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];j(()=>{t=G(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],c=[0,l,0],u=[1,e[i],r];a[i]=G(_e(t,c,u),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},Md=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Ys(t,r.shape,"TensorList shape mismatch: "),yn(r)}),this.idTensor=Ee(0),this.maxNumElements=s,yn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Md([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Ys(e,this.elementShape,"TensorList shape mismatch: ");let s=Od(this.elementShape,this.tensors,e);return j(()=>{let r=this.tensors.map(a=>G(a,s));return Pn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Od(this.elementShape,this.tensors,e),s=this.tensors.pop();return Ys(s.shape,e,"TensorList shape mismatch: "),G(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Ys(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");yn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Ys(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=Od(this.elementShape,this.tensors,t);return G(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Ys(this.elementShape,t.shape,"TensorList shape mismatch: "),yn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Ys(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=Od(this.elementShape,this.tensors,n);return e.length===0?Gt([],[0].concat(s)):j(()=>{let r=e.map(a=>G(this.tensors[a],s));return Pn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Ys(this.elementShape,t,"TensorList shape mismatch: ");let n=Od(this.elementShape,this.tensors,t);return this.size()===0?Gt([],[0].concat(n)):j(()=>{let s=this.tensors.map(r=>G(r,n));return It(s,0)})}};function XV(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Ys(r,t,"TensorList shape mismatch: ");let a=as(e);return new Md(a,t,s)}function KV(e,t,n){return new Md([],e,t,n)}function ZV(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new Md([],n,e.dtype,s),o=as(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function YV(e,t,n){let s=0,r=t.map(u=>(s+=u,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=hy(a,n),i=s===0?0:e.size/s,l=j(()=>{let u=[];e=G(e,[1,s,i]);for(let d=0;d<t.length;++d){let p=d===0?0:r[d-1],h=[0,p,0],f=[1,t[d],i];u[d]=G(_e(e,h,f),o)}return e.dispose(),u}),c=new Md([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)c.setItem(u,l[u]);return c}var JV=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=I("body",e,t,n),r=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(u=>u.id),l=await o[0].data();o.forEach(u=>{!u.kept&&i.indexOf(u.id)===-1&&u.dispose()});let c=a;for(;l[0];){let u=c;c=await n.functionMap[s].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let d=c.map(h=>h.id);u.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return c}case"LoopCond":{let s=I("pred",e,t,n);return[aa(s)]}case"Switch":{let s=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=aa(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>Un(r,t,n)!==void 0);if(s){let r=Un(s,t,n);return[aa(r)]}return}case"Enter":{let s=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(s),[aa(r)]}case"Exit":{let s=I("tensor",e,t,n);return n.exitFrame(),[aa(s)]}case"NextIteration":{let s=I("tensor",e,t,n);return n.nextIteration(),[aa(s)]}case"TensorArrayV3":{let s=I("size",e,t,n),r=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new qV(c,r,s,a,l,o,i);return n.addTensorArray(u),[u.idTensor,Ee(1)]}case"TensorArrayWriteV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=I("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ee(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=I("indices",e,t,n),r=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=ZV(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=I("elementShape",e,t,n),r=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=KV(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=I("tensorListId",e,t,n),r=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=XV(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=I("tensorListId",e,t,n),r=I("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=YV(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function n7(e,t,n){let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",c=I("numArgs",e,t,n);if(a){if(i&&c!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&c!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let u=I("strides",e,t,n),d=tm(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:u,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var QV=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=I("stride",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilation",e,t,n);return[D2(I("x",e,t,n),I("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=I("strides",e,t,n),r=tm(e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[ko(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=n7(e,t,n);return[So.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:c,leakyreluAlpha:u}=n7(e,t,n);return[So.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=I("outputShape",e,t,n),r=I("strides",e,t,n),a=tm(e,t,n);return[P2(I("x",e,t,n),I("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=I("strides",e,t,n),r=tm(e,t,n),a=I("dilations",e,t,n),o=I("dataFormat",e,t,n).toUpperCase();return[cd(I("input",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[F2(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Hh(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Qh(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n),o=I("includeBatchInIndex",e,t,n),{result:i,indexes:l}=Q3(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[R2(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[G2(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dilations",e,t,n),o=s[1],i=s[2],l=a[1],c=a[2];return[B3(I("x",e,t,n),I("filter",e,t,n),[o,i],r,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},eU=(e,t,n)=>{switch(e.op){case"Fill":{let s=I("shape",e,t,n),r=I("dtype",e,t,n),a=I("value",e,t,n);return[Iu(s,a,r)]}case"LinSpace":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("num",e,t,n);return[j3(s,r,a)]}case"Multinomial":{let s=I("logits",e,t,n),r=I("numSamples",e,t,n),a=I("seed",e,t,n);return[nv(s,r,a)]}case"OneHot":{let s=I("indices",e,t,n),r=I("depth",e,t,n),a=I("onValue",e,t,n),o=I("offValue",e,t,n);return[id(s,r,a,o)]}case"Ones":return[gs(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Es(I("x",e,t,n))];case"RandomUniform":return[Nu(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("step",e,t,n);return[Eu(s,r,a,I("dtype",e,t,n))]}case"TruncatedNormal":{let s=I("shape",e,t,n),r=I("mean",e,t,n),a=I("stdDev",e,t,n),o=I("seed",e,t,n);return[lf(s,r,a,I("dtype",e,t,n),o)]}case"Zeros":return[Ht(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[tt(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function fy(e,t,n){let s=I("boxes",e,t,n),r=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var tU=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=fy(e,t,n),c=await $e.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=fy(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await $e.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=fy(e,t,n);return[await $e.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=de(I("condition",e,t,n),"bool"),r=[await r1(s)];return s.dispose(),r}case"ListDiff":return ov(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},nU=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=I("x",e,t,n),r=I("k",e,t,n),a=I("sorted",e,t,n),o=cv(s,r,a);return[o.values,o.indices]}case"Unique":{let s=I("x",e,t,n),r=s1(s);return[r.values,r.indices]}case"UniqueV2":{let s=I("x",e,t,n),r=I("axis",e,t,n),a=s1(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},sU=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=I("default",e,t,n);return[Un(e.name,t,n)||s];case"Placeholder":return[Un(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[aa(c)]}case"IdentityN":return I("x",e,t,n).map(c=>aa(c));case"Snapshot":let r=I("x",e,t,n);return[aa(r)];case"Shape":return[Zt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>Zt(c.shape));case"Size":return[Ee(I("x",e,t,n).size,"int32")];case"Rank":return[Ee(I("x",e,t,n).rank,"int32")];case"NoOp":return[Ee(1)];case"Print":let a=I("x",e,t,n),o=I("data",e,t,n),i=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let c=0;c<o.length;c++)console.log(Array.prototype.slice.call(o[c].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},rU=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ee(0),this.tensorMap=new Map,yn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ee(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),j(()=>{let s=as(t),r=n.length,a=s.length;v.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];yn(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return j(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return Pn(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},aU=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new rU(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},oU=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[$e.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[$e.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=I("image",e,t,n),r=I("boxes",e,t,n),a=I("boxInd",e,t,n),o=I("cropSize",e,t,n),i=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[$e.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},iU=(e,t,n)=>{switch(e.op){case"Equal":return[Cs(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Tu(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[ms(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[Yi(I("a",e,t,n),I("b",e,t,n))];case"Less":return[L2(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Ji(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[lr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Jh(I("a",e,t,n))];case"LogicalOr":return[U2(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[Wn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},lU=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[He(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[V3(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[et(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[So.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},uU=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[wu(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[wu(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[q3(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[$u(I("x",e,t,n))];case"LogSoftmax":return[B2(I("x",e,t,n))];case"SparseToDense":return[o1(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},cU=(e,t,n)=>{switch(e.op){case"Max":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[rs(I("x",e,t,n),o,i)]}case"Mean":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Wt(I("x",e,t,n),o,i)]}case"Min":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ef(I("x",e,t,n),o,i)]}case"Sum":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Ie(I("x",e,t,n),o,i)]}case"All":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[T2(I("x",e,t,n),o,i)]}case"Any":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Uh(I("x",e,t,n),o,i)]}case"ArgMax":{let o=I("axis",e,t,n);return[Hs(I("x",e,t,n),o)]}case"ArgMin":{let o=I("axis",e,t,n);return[x3(I("x",e,t,n),o)]}case"Prod":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[H2(I("x",e,t,n),o,i)]}case"Cumsum":{let o=I("axis",e,t,n),i=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[M2(I("x",e,t,n),o,i,l)]}case"Bincount":let s=I("x",e,t,n),r=I("weights",e,t,n),a=I("size",e,t,n);return[$2(s,r,a)];case"DenseBincount":{let o=I("x",e,t,n),i=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[z3(o,i,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},dU=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=I("n",e,t,n),r=I("axis",e,t,n),a=I("tensors",e,t,n);return a=a.slice(0,s),[It(a,r)]}case"Gather":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[Su(s,de(r,"int32"),0)]}case"GatherV2":{let s=I("axis",e,t,n),r=I("batchDims",e,t,n),a=I("x",e,t,n),o=I("indices",e,t,n);return[Su(a,de(o,"int32"),s,r)]}case"Reverse":{let s=I("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=I("x",e,t,n);return[Rs(a,r)]}case"ReverseV2":{let s=I("axis",e,t,n),r=I("x",e,t,n);return[Rs(r,s)]}case"Slice":{let s=I("begin",e,t,n),r=I("size",e,t,n);return[_e(I("x",e,t,n),s,r)]}case"StridedSlice":{let s=I("begin",e,t,n),r=I("end",e,t,n),a=I("strides",e,t,n),o=I("beginMask",e,t,n),i=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),c=I("newAxisMask",e,t,n),u=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[lv(d,s,r,a,o,i,l,c,u)]}case"Pack":return j(()=>{let s=I("axis",e,t,n),r=I("tensors",e,t,n),a=r[0].shape,o=pt(r[0]).shape,i=r.map(l=>{let c=v.arraysEqual(l.shape,a);if(!c&&!v.arraysEqual(pt(l).shape,o))throw new Error("the input tensors shape does not match");return c?l:G(l,a)});return[Pn(i,s)]});case"Unpack":{let s=I("axis",e,t,n),r=I("tensor",e,t,n);return as(r,s)}case"Tile":{let s=I("reps",e,t,n);return[js(I("x",e,t,n),s)]}case"Split":case"SplitV":{let s=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),a=I("x",e,t,n);return Sn(a,r,s)}case"ScatterNd":{let s=I("indices",e,t,n),r=I("values",e,t,n),a=I("shape",e,t,n);return[mv(s,r,a)]}case"GatherNd":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[gv(s,r)]}case"SparseToDense":{let s=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),a=I("sparseValues",e,t,n),o=I("defaultValue",e,t,n);return[o1(s,a,r,a.dtype===o.dtype?o:de(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},pU=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=yd.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=yd.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[yd.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[yd.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},hU=(e,t,n)=>{switch(e.op){case"FFT":return[af(I("x",e,t,n))];case"IFFT":return[gd(I("x",e,t,n))];case"RFFT":return[of(I("x",e,t,n))];case"IRFFT":return[t1(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},fU=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=hf.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=hf.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[hf.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},mU=(e,t,n)=>{switch(e.op){case"Cast":return[de(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let s=I("axis",e,t,n);return[Kt(I("x",e,t,n),s)]}case"Squeeze":{let s=I("axis",e,t,n);return[pt(I("x",e,t,n),s)]}case"Reshape":return[G(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[ev(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[qs(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let s=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[nf(I("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=I("blockShape",e,t,n),r=I("crops",e,t,n);return[jh(I("x",e,t,n),s,r)]}case"DepthToSpace":{let s=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[L3(I("x",e,t,n),s,r)]}case"BroadcastTo":return[ud(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[$3(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function s7(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return j(()=>HV(a,o,i));case"basic_math":return j(()=>jV(a,o,i));case"control":return JV(a,o,i);case"convolution":return j(()=>QV(a,o,i));case"creation":return j(()=>eU(a,o,i));case"dynamic":return tU(a,o,i);case"evaluation":return j(()=>nU(a,o,i));case"image":return j(()=>oU(a,o,i));case"graph":return j(()=>sU(a,o,i));case"logical":return j(()=>iU(a,o,i));case"matrices":return j(()=>lU(a,o,i));case"normalization":return j(()=>uU(a,o,i));case"reduction":return j(()=>cU(a,o,i));case"slice_join":return j(()=>dU(a,o,i));case"sparse":return j(()=>pU(a,o,i));case"spectral":return j(()=>hU(a,o,i));case"string":return j(()=>fU(a,o,i));case"transformation":return j(()=>mU(a,o,i));case"hash_table":return aU(a,o,i,s);case"custom":let l=$k(a.op);if(l&&l.customExecutor)return l.customExecutor(new GV(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var r7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function a7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,c=Object.keys(e).map(p=>As(p)[0]),u=[];s!=null&&(u=s.map(p=>As(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((o7(p)||bU(p)||vU(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(p.name),n[p.name]==null&&c.indexOf(p.name)===-1&&u.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function gU(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(u=>As(u)[0]).map(u=>e.nodes[u]),i=e.initNodes;o.forEach(u=>{s.has(u.name)&&a.push(u)}),e.weights.forEach(u=>{s.has(u.name)&&a.push(u)}),i!=null&&i.forEach(u=>{s.has(u.name)&&a.push(u)});let l=new Set,c=[];for(;a.length>0;){let u=a.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(p=>l.has(p.name))&&a.push(d)})}return c}var AU=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],yU=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],xU=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function o7(e){return AU.indexOf(e.op)>=0}function bU(e){return yU.indexOf(e.op)>=0}function vU(e){return xU.indexOf(e.op)>=0}var my=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new my(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=a7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return gU(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(u=>this.graph.nodes[As(u)[0]]),r=t.map(u=>As(u)[0]),a=r.map(u=>this.graph.nodes[u]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},c={};return j(()=>{let u=new r7(this.weightMap,l,c,this.functionExecutorMap),d={...this.weightMap};Object.keys(e).forEach(f=>{let[m,g]=As(f),A=[];A[g]=e[f],d[m]=A});let p=this.getFrozenTensorIds(d),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let g=s7(m,d,u,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=g,this.checkTensorForDisposal(m.name,m,d,u,p,r,h)}}return this.parent==null&&u.dispose(p),t.map(f=>Un(f,d,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=kV(i.name,n,s);l!=null&&l.forEach(c=>{if(c&&!c.kept&&!r.has(c.id)){let u=o[c.id];u===1?(c.dispose(),delete o[c.id]):u!=null&&o[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new r7(this.weightMap,s,r,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>Un(d,o,a)),l=i.map(d=>d.id),c=Object.keys(e).map(d=>e[d].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(h=>{h&&!h.kept&&!h.isDisposed&&!u.has(h.id)&&h.dispose()})}),this.parent==null&&a.dispose(u),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(y=>this.graph.nodes[As(y)[0]]),o=n.map(y=>As(y)[0]),i=o.map(y=>this.graph.nodes[y]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:d}=a7(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h={...this.weightMap};Object.keys(e).forEach(y=>{let[x,b]=As(y),w=[];w[b]=e[y],h[x]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let y=this.processStack(a,p,t,h,g,m,o,f,l);await Promise.all(y)}u==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=i.filter(y=>!o7(y)&&!Un(y.name,h,t)).map(y=>y.name);if(A.length>0){let y="";throw u!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${c}]. ${y}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let d="";if(u.node.op==="Enter"&&I("isConstant",u.node,s,n)&&([d]=ra(u.node.name,n)),s[u.node.name]==null){let p=s7(u.node,s,n,this._resourceManager);d||([d]=ra(u.node.name,n));let h=n.currentContext;v.isPromise(p)?c.push(p.then(f=>(s[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l),f))):(s[d]=p,this.checkTensorForDisposal(d,u.node,s,n,a,o,i),this.processChildNodes(u.node,t,n,s,r,l))}else this.processChildNodes(u.node,t,n,s,r,l)}return c}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=ra(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Un(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Un(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=As(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);v.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=As(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=As(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},wU=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},kU="?tfjs-format=file",IU="model.json",i7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new wU}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=ns.browserHTTPRequest(e,this.loadOptions);else{let t=ns.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(ns.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=ns.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new my(Yk.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Yk.Instance.transformGraph(e.modelInitializer);this.initializer=new my(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=ns.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ye)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function st(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${IU}${kU}`);let n=new i7(e,t);return await n.load(),n}var SU="0.0.0",l7={};ze(l7,{CSVDataset:()=>w7,Dataset:()=>Bu,FileDataSource:()=>E7,TextLineDataset:()=>x7,URLDataSource:()=>R7,array:()=>XU,csv:()=>aG,func:()=>oG,generator:()=>iG,microphone:()=>uG,version_data:()=>cG,webcam:()=>lG,zip:()=>KU});function CU(e,t){return nm(e,t)}function nm(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Lu(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=nm(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function TU(e,t=c7){return u7(e,t)}function u7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Lu(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(c=>c[o]),l=u7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function c7(e){return e===null?null:Lu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function d7(e,t){let n=new Map;nm(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let o=await a;n.set(r,o)}}return nm(e,t,n)}function Lu(e){let t=!1;if(K().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=t5();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ye)&&!(e instanceof Promise)&&!t)}function NU(e){return e==null||EU(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ye||v.isTypedArray(e)}function EU(e){return e===null||typeof e!="object"&&typeof e!="function"}function RU(e){return CU(e,$U)}function $U(e){return e instanceof Ye?{value:e.clone(),recurse:!1}:Lu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var p7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},h7=class extends p7{constructor(){super(h7.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}},f7=h7;f7.INITIAL_CAPACITY=32;var DU=Qo(Kp());function m7(e){return new FU(e)}function gy(e){return new OU(e)}function _U(e,t){return new A7(e,t)}function PU(e,t=sm.FAIL){return new HU(e,t)}var bn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new UU(this,e)}filter(e){return new WU(this,e)}map(e){return new VU(this,e)}mapAsync(e){return new g7(this,e)}serialMapAsync(e){return new g7(this,e).serial()}flatmap(e){return new GU(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new BU(this,e,t)}columnMajorBatch(e,t=!0,n=c7){return this.rowMajorBatch(e,t).map(r=>TU(r,n))}concatenate(e,t){return new A7(m7([this,e]),t)}take(e){return e<0||e==null?this:new LU(this,e)}skip(e){return e<0||e==null?this:new zU(this,e)}prefetch(e){return new y7(this,e)}shuffle(e,t){return new jU(this,e,t)}serial(){return new MU(this)}},FU=class extends bn{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:RU(e),done:!1}}},OU=class extends bn{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},MU=class extends bn{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},zU=class extends bn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Q(e.value)}return this.upstream.next()}},LU=class extends bn{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},BU=class extends bn{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},WU=class extends bn{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Q(e.value)}}},VU=class extends bn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=rr.getTensorsInContainer(e.value),n=this.transform(e.value),s=rr.getTensorsInContainer(n);for(let r of t)rr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},UU=class extends bn{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},g7=class extends bn{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=rr.getTensorsInContainer(e.value),n=await this.transform(e.value),s=rr.getTensorsInContainer(n);for(let r of t)rr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},Ay=class extends bn{constructor(){super();this.outputQueue=new f7,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},GU=class extends Ay{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=rr.getTensorsInContainer(e.value),n=this.transform(e.value),s=rr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)rr.isTensorInList(r,s)||r.dispose();return!0}},A7=class extends bn{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},sm;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(sm||(sm={}));var HU=class extends bn{constructor(e,t=0){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof bn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await d7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},y7=class extends bn{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new p7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},jU=class extends y7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=DU.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},qU=Qo(Kp()),Bu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),ys(async()=>(await n.iterator()).columnMajorBatch(e,t,ZU),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,ys(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,ys(async()=>(await t.iterator()).filter(s=>j(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return ys(async()=>(await t.iterator()).map(n=>j(()=>e(n))),this.size)}mapAsync(e){let t=this;return ys(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return ys(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,ys(async()=>{let s=gy(async()=>({value:await t.iterator(),done:!1}));return _U(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,ys(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=qU.alea(t||v.now().toString());return ys(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,ys(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Bu.MAX_BUFFER_SIZE=1e4;function ys(e,t=null){return new class extends Bu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function XU(e){return ys(async()=>m7(e),e.length)}function KU(e){if(!Lu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return ys(async()=>{let n=await d7(e,s=>{if(s instanceof Bu)return{value:s.iterator(),recurse:!1};if(Lu(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return PU(n,sm.SHORTEST)},t)}function ZU(e){if(e===null)return null;let t=e[0];return NU(t)?{value:YU(e),recurse:!1}:{value:null,recurse:!0}}function YU(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ye?Pn(e):Gt(e)}var x7=class extends Bu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},rm='"',zd=Symbol("out"),b7=Symbol("field"),am=Symbol("quote"),yy=Symbol("quoteafterquote"),v7=Symbol("quoteinquote"),w7=class extends Bu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new x7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let c=Number(i);if(isNaN(c))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=c;else switch(o.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(i);break;default:l=c}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=zd;for(let o=0;o<r;o++)switch(a){case zd:switch(e.charAt(o)){case rm:s=o+1,a=am;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=zd;break;default:a=b7,s=o;break}break;case b7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=zd,s=o+1;break;default:}break;case am:switch(e.charAt(o)){case rm:a=yy;break;default:}break;case yy:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=zd,s=o+1;break;case rm:a=am;break;default:a=v7;break}break;case v7:switch(e.charAt(o)){case rm:a=am;break;default:}break;default:}if(a===yy?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},k7=class extends bn{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(K().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new k7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),Gt(n,t)}},I7=class extends bn{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Zt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=ur([a,r,i,o],[1,4])}else this.cropBox=ur([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(K().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new I7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Gs.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return j(()=>{let t=Kt(de(e,"float32"),0),n;n=$e.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return G(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},S7=class{},C7=class extends bn{split(e){return new JU(this,e)}},JU=class extends C7{constructor(e,t){super();this.upstream=e,this.impl=new QU(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},QU=class extends Ay{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},eG=class extends bn{decodeUTF8(){return new tG(this)}},tG=class extends C7{constructor(e){super();this.upstream=e,this.impl=new nG(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},nG=class extends Ay{constructor(e){super();if(this.upstream=e,K().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=t5();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return K().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},T7=class extends eG{constructor(e,t={}){super();this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(K().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function sG(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=rG(e));let a=await(n||v.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new T7(o,t)}else throw new Error(a.statusText)}var rG=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function N7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var E7=class extends S7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(N7(this.input)&&K().get("IS_NODE")){let e=Ws("fs");this.input=e.readFileSync(this.input.substr(7))}return new T7(this.input,this.options)}},R7=class extends S7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return N7(this.url)?new E7(this.url,this.fileOptions).iterator():sG(this.url,this.fileOptions)}};function aG(e,t={}){return new w7(new R7(e),t)}function oG(e){let t=gy(e);return ys(async()=>t)}function iG(e){return ys(async()=>{let t=await e();return gy(()=>t.next())})}async function lG(e,t){return I7.create(e,t)}async function uG(e){return k7.create(e)}var cG="0.0.0";function Ne(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var dG=Xs.whereImpl,$7=class extends Ll{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Dc(this,ss())}nextDataId(){return $7.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,K().get("IS_NODE")&&N.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return N.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return ss().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ne([e],"where");let t=this.readSync(e.dataId);return dG(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},xy=$7;xy.nextDataId=0;var om={};ze(om,{addImpl:()=>_7,bincountImpl:()=>vy,bincountReduceImpl:()=>P7,ceilImpl:()=>F7,concatImpl:()=>wy,equalImpl:()=>O7,expImpl:()=>z7,expm1Impl:()=>B7,floorImpl:()=>W7,gatherNdImpl:()=>V7,gatherV2Impl:()=>U7,greaterEqualImpl:()=>H7,greaterImpl:()=>G7,lessEqualImpl:()=>q7,lessImpl:()=>j7,linSpaceImpl:()=>X7,logImpl:()=>K7,maxImpl:()=>Z7,maximumImpl:()=>Y7,minimumImpl:()=>J7,multiplyImpl:()=>ky,negImpl:()=>Q7,notEqualImpl:()=>eI,prodImpl:()=>tI,rangeImpl:()=>Sy,rsqrtImpl:()=>nI,sigmoidImpl:()=>QG,simpleAbsImpl:()=>D7,sliceImpl:()=>um,sparseFillEmptyRowsImpl:()=>rI,sparseReshapeImpl:()=>aI,sparseSegmentReductionImpl:()=>Cy,sqrtImpl:()=>nH,squaredDifferenceImpl:()=>oI,stridedSliceImpl:()=>iI,stringNGramsImpl:()=>lI,stringSplitImpl:()=>uI,stringToHashBucketFastImpl:()=>cI,subImpl:()=>dI,tileImpl:()=>pI,topKImpl:()=>fI,transposeImpl:()=>Iy,uniqueImpl:()=>mI});function D7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var pG=e=>{let{x:t}=e.inputs,n=e.backend;Ne(t,"abs");let s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=D7(r),n.makeOutput(s,t.shape,t.dtype)},hG={kernelName:ni,backendName:"cpu",kernelFunc:pG};function Jt(e){return(t,n,s,r,a)=>{let o=N.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),c=v.sizeFromShape(o),u=v.getTypedArrayFromDType(a,c),d=t.length,p=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=N.getBroadcastDims(t,o),g=N.getBroadcastDims(n,o);if(m.length+g.length===0)for(let A=0;A<u.length;++A)u[A]=e(s[A%s.length],r[A%r.length]);else for(let A=0;A<u.length;++A){let y=v.indexToLoc(A,i,l),x=y.slice(-d);m.forEach(S=>x[S]=0);let b=v.locToIndex(x,d,h),w=y.slice(-p);g.forEach(S=>w[S]=0);let k=v.locToIndex(w,p,f);u[A]=e(s[b],r[k])}return[u,o]}}function xs(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var fG={kernelName:Oc,backendName:"cpu",kernelFunc:xs};function im(e,t,n="float32"){if(n==="complex64"){let r=im(e,t,"float32"),a=im(e,t,"float32");return xs({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function Or(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var mG={kernelName:Ba,backendName:"cpu",kernelFunc:Or};function dl(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var gG={kernelName:Hc,backendName:"cpu",kernelFunc:dl};function _o(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Or({inputs:{x:r},backend:n});let o=im(n,r.shape,r.dtype),i=_o({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=xs({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=dl({inputs:{input:r},backend:n}),i=_o({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Or({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=v.toTypedArray([0],r.dtype),[l,c]=Jt((u,d)=>u!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var AG={kernelName:Ca,backendName:"cpu",kernelFunc:_o};function vn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Ne([o,i],e);let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=o.dtype==="string"?N.fromUint8ToStringArray(c):c,p=o.dtype==="string"?N.fromUint8ToStringArray(u):u,h=s||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let c=_o({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag,h=l.data.get(d.dataId).values,f=l.data.get(p.dataId).values,m=_o({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),A=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,x=l.data.get(A.dataId).values,b=l.data.get(y.dataId).values,[w,k,S]=n(o.shape,i.shape,h,f,x,b),E=l.makeTensorInfo(S,"float32",w),P=l.makeTensorInfo(S,"float32",k),F=xs({inputs:{real:E,imag:P},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(P),F}else{let c=l.data.get(o.dataId).values,u=l.data.get(i.dataId).values,d=s||o.dtype,[p,h]=t(o.shape,i.shape,c,u,d);return l.makeTensorInfo(h,d,p)}}}function by(e){return(t,n,s,r,a,o)=>{let i=N.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),c=i.length,u=v.computeStrides(i),d=v.getTypedArrayFromDType("float32",l),p=v.getTypedArrayFromDType("float32",l),h=N.getBroadcastDims(t,i),f=N.getBroadcastDims(n,i),m=N.mergeRealAndImagArrays(s,r),g=N.mergeRealAndImagArrays(a,o),A=t.length,y=v.computeStrides(t),x=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;w<d.length;w++){let k=w%m.length,S=w%g.length,E=e(m[k*2],m[k*2+1],g[S*2],g[S*2+1]);d[w]=E.real,p[w]=E.imag}else for(let w=0;w<d.length;w++){let k=v.indexToLoc(w,c,u),S=k.slice(-A);h.forEach(_=>S[_]=0);let E=v.locToIndex(S,A,y),P=k.slice(-x);f.forEach(_=>P[_]=0);let F=v.locToIndex(P,x,b),R=e(m[E*2],m[E*2+1],g[F*2],g[F*2+1]);d[w]=R.real,p[w]=R.imag}return[d,p,i]}}var _7=Jt((e,t)=>e+t),yG=by((e,t,n,s)=>({real:e+n,imag:t+s})),Ld=vn(Hr,_7,yG),xG={kernelName:Hr,backendName:"cpu",kernelFunc:Ld};function vy(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function P7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=Le([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let c=e.get(i,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(s?o.set(1,i,c):t.size>0?o.set(o.get(i,c)+t.get(i,l),i,c):o.set(o.get(i,c)+1,i,c))}return o}function Po(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function gt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ne(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=v.sizeFromShape(o.shape),u=n||o.dtype,d=v.getArrayFromDType(u,c);for(let p=0;p<c;++p)d[p]=t(l[p],r);return i.makeTensorInfo(o.shape,u,d)}}function Wu(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ne(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,c=n||o.dtype,u=t(l,c,r);return i.makeTensorInfo(o.shape,c,u)}}var F7=Po(e=>Math.ceil(e)),bG=Wu(Ta,F7),vG={kernelName:Ta,backendName:"cpu",kernelFunc:bG};function wy(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?N.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let c=0;c<o.shape[0];++c){let u=c*t[1]+a;for(let d=0;d<o.shape[1];++d)r[u+d]=i[l++]}a+=o.shape[1]})}return r}var O7=Jt((e,t)=>e===t?1:0),M7=vn(li,O7,null,"bool"),wG={kernelName:li,backendName:"cpu",kernelFunc:M7},z7=Po(e=>Math.exp(e)),L7=Wu(Fa,z7,"float32"),kG={kernelName:Fa,backendName:"cpu",kernelFunc:L7},B7=Po(e=>Math.expm1(e)),IG=Wu(ci,B7),SG={kernelName:ci,backendName:"cpu",kernelFunc:IG},W7=Po(e=>Math.floor(e)),CG=Wu(Oa,W7),TG={kernelName:Oa,backendName:"cpu",kernelFunc:CG};function V7(e,t,n,s,r,a,o,i,l){let c=Le([s,a],n);for(let u=0;u<s;u++){let d=[],p=0;for(let h=0;h<r;h++){let f=e[u*r+h];p+=f*o[h],d.push(f)}if(p<0||p>=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;h<a;h++)c.values[u*a+h]=t.get(...t.indexToLoc(p*a+h))}return c}function U7(e,t,n){let s=Le(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],c=t.locToIndex([i,l]);o[2]=t.values[c];let u=e.locToIndex(o);s.values[r]=e.values[u]}return s}var G7=Jt((e,t)=>e>t?1:0),NG=vn(fi,G7,null,"bool"),EG={kernelName:fi,backendName:"cpu",kernelFunc:NG},H7=Jt((e,t)=>e>=t?1:0),RG=vn(La,H7,null,"bool"),$G={kernelName:La,backendName:"cpu",kernelFunc:RG},j7=Jt((e,t)=>e<t?1:0),DG=vn(gi,j7,null,"bool"),_G={kernelName:gi,backendName:"cpu",kernelFunc:DG},q7=Jt((e,t)=>e<=t?1:0),PG=vn(Ai,q7,null,"bool"),FG={kernelName:Ai,backendName:"cpu",kernelFunc:PG};function X7(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var K7=Po(e=>Math.log(e)),OG=Wu(Wa,K7),MG={kernelName:Wa,backendName:"cpu",kernelFunc:OG};function Z7(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let c=e[o+l];(Number.isNaN(c)||c>i)&&(i=c)}r[a]=i}return r}var Y7=Jt((e,t)=>Math.max(e,t)),zG=vn(Ua,Y7),LG={kernelName:Ua,backendName:"cpu",kernelFunc:zG},J7=Jt((e,t)=>Math.min(e,t)),BG=vn(qa,J7),WG={kernelName:qa,backendName:"cpu",kernelFunc:BG},ky=Jt((e,t)=>e*t),VG=by((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),lm=vn(Ka,ky,VG),UG={kernelName:Ka,backendName:"cpu",kernelFunc:lm};function Q7(e,t,n){let s=v.createScalarValue(-1,n);return ky([],t,s,e,n)}function GG(e){let{inputs:t,backend:n}=e,{x:s}=t;Ne(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=Q7(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var HG={kernelName:xi,backendName:"cpu",kernelFunc:GG},eI=Jt((e,t)=>e!==t?1:0),jG=vn(bi,eI,null,"bool"),qG={kernelName:bi,backendName:"cpu",kernelFunc:jG};function Iy(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),c=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let u=0;u<o;++u){let d=v.indexToLoc(u,a,i),p=new Array(d.length);for(let f=0;f<p.length;f++)p[f]=d[s[f]];let h=v.locToIndex(p,a,l);c[h]=e[u]}return c}function Ds(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Ne(r,"transpose");let o=r.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=r.shape[a[d]];let l=s.data.get(r.dataId).values,c=Iy(l,r.shape,r.dtype,a,i);return{dataId:s.write(c,i,r.dtype),shape:i,dtype:r.dtype}}var XG={kernelName:po,backendName:"cpu",kernelFunc:Ds};function tI(e,t,n,s){let[r,a]=N.computeOutAndReduceShapes(e,s),o=Bn(t,"int32"),i=v.makeZerosTypedArray(v.sizeFromShape(r),o),l=v.sizeFromShape(a);for(let c=0;c<i.length;++c){let u=c*l,d=1;for(let p=0;p<l;++p)d*=n[u+p];i[c]=d}return{outVals:i,outShape:r,outDtype:o}}function KG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"prod");let i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=N.getAxesPermutation(l,i),u=l,d=r,p=[];c!=null&&(d=Ds({inputs:{x:r},backend:n,attrs:{perm:c}}),p.push(d),u=N.getInnerMostAxes(u.length,i));let h=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:g}=tI(d.shape,d.dtype,h,u),A=m;return o&&(A=N.expandShapeToKeepDim(m,l)),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(A,g,f)}var ZG={kernelName:Ci,backendName:"cpu",kernelFunc:KG};function Sy(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var nI=Po(e=>1/Math.sqrt(e)),YG=Wu(no,nI),JG={kernelName:no,backendName:"cpu",kernelFunc:YG},QG=Po(e=>1/(1+Math.exp(-e))),sI=gt(ro,e=>1/(1+Math.exp(-e))),eH={kernelName:ro,backendName:"cpu",kernelFunc:sI};function um(e,t,n,s,r){let a=An.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let d=An.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?N.fromUint8ToStringArray(e):e,c=Le(s,r,l),u=Le(n,r);for(let d=0;d<u.size;++d){let p=u.indexToLoc(d),h=p.map((f,m)=>f+t[m]);u.set(c.get(...h),...p)}return r==="string"?N.fromStringArrayToUint8(u.values):u.values}function pl(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Ne(r,"slice");let[i,l]=An.parseSliceParams(r,a,o);An.assertParamsValid(r,i,l);let c=n.data.get(r.dataId).values,u=um(c,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var tH={kernelName:Di,backendName:"cpu",kernelFunc:pl};function rI(e,t,n,s,r,a,o){let i=t[0],l=a[0],c=new Array(l),u=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${i}`);let g=v.getArrayFromDType(n,0),A=v.getArrayFromDType(r,0);return[g,[0,d],A,c,u]}let p=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let A=e[g*d];if(A<0)throw new Error(`indices(${g}, 0) is invalid: ${A} < 0`);if(A>=l)throw new Error(`indices(${g}, 0) is invalid: ${A} >= ${l}`);++f[A],p=p&&A>=h,h=A}let m=!0;for(let g=0;g<l;++g){let A=f[g]===0;c[g]=A,m=m&&!A,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,A=s;for(let y=0;y<i;++y)u[y]=y;return[g,[i,d],A,c,u]}else{let g=f[l-1],A=v.getArrayFromDType(n,g*d),y=v.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let b=0;b<i;++b){let w=e[b*d],k=x[w],S=(w===0?0:f[w-1])+k;x[w]++;for(let E=0;E<d;++E)A[S*d+E]=e[b*d+E];y[S]=s[b],u[b]=S}for(let b=0;b<l;++b)if(x[b]===0){let k=b===0?0:f[b-1];A[k*d+0]=b;for(let S=1;S<d;++S)A[k*d+S]=0;y[k]=o}return[A,[g,d],y,c,u]}}function aI(e,t,n,s,r){let a=v.sizeFromShape(s),o=t[0],i=r.length,l=[],c=1,u=-1;for(let g=0;g<i;++g){let A=r[g];if(A===-1){if(u!==-1)throw new Error(`only one output dimension may be -1, not both ${u} and ${g}`);u=g,l.push(1)}else{if(A<0)throw new Error(`size ${g} must be non-negative, not ${A}`);c*=A,l.push(A)}}if(u!==-1){if(c<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(a/c);if(c*g!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
|
|
dense values, but the requested shape requires a multiple of ${c}. inputShape=${s} outputShape= ${l}`);l[u]=g}let d=v.sizeFromShape(l);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${s} outputShape=${l}`);let p=s.length,h=[];if(p>0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let A=0;for(let y=0;y<p;++y)A+=e[g*p+y]*h[y];for(let y=0;y<i;++y)m[g*i+y]=Math.trunc(A/f[y]),A%=f[y]}return[m,[o,i],l]}function Cy(e,t,n,s,r,a=!1,o=0){let i=s.length;if(i!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],c=l[1],d=i>0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let h=p.reduce((x,b)=>x*b,1),f=v.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,A=0,y=r[m];for(;;){let x=0;if(g<i){if(x=r[g],y===x){++g;continue}if(y>=x)throw new Error("segment ids are not increasing")}if(y<0||y>=d)throw new Error(`Segment id ${y} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);y>A&&f.fill(o,A*c,y*c);for(let b=m;b<g;++b){let w=s[b];if(w<0||w>=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let k=0;k<c;k++)f[y*c+k]+=e[w*c+k]}if(a)for(let b=0;b<c;b++)f[y*c+b]/=g-m;if(m=g,++g,A=y+1,y=x,g>i)break}return A<d&&f.fill(o,A*c,d*c),[f,p]}var nH=Po(e=>Math.sqrt(e)),sH=gt(ao,e=>Math.sqrt(e)),rH={kernelName:ao,backendName:"cpu",kernelFunc:sH},oI=Jt((e,t)=>{let n=e-t;return n*n}),aH=vn(lo,oI),oH={kernelName:lo,backendName:"cpu",kernelFunc:aH};function iI(e,t,n,s){let r=Le(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var iH=class{constructor(e,t,n,s,r,a){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),c=Math.max(0,i-(r-(o+1))),u=a-(l+c),d=t+(l>0?0:o-i),p=0;p+=l*this.leftPad.length;for(let A=0;A<u;++A)p+=e[d+A].length;p+=c*this.rightPad.length,p+=(l+c+u-1)*this.separator.length,n[s+o]=new Uint8Array(p);let f=n[s+o],m=0,g=A=>A.forEach(y=>f[m++]=y);for(let A=0;A<l;++A)g(this.leftPad),g(this.separator);for(let A=0;A<u-1;++A)g(e[d+A]),g(this.separator);if(u>0){g(e[d+u-1]);for(let A=0;A<c;++A)g(this.separator),g(this.rightPad)}else{for(let A=0;A<c-1;++A)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let c=t[l]>=i;if(c=c&&t[l]<=n,!c)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],c=0;this.nGramWidths.forEach(u=>{c+=this.getNumNGrams(l,u)}),this.preserveShort&&l>0&&c===0&&(c=1),a[i]=a[i-1]+c}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],c=a[i];if(this.nGramWidths.forEach(u=>{let d=t[i+1]-t[i],p=this.getNumNGrams(d,u);this.createNGrams(e,l,o,c,p,u),c+=p}),this.preserveShort&&c===a[i]){let u=t[i+1]-t[i];if(u===0)continue;let d=u+2*this.padWidth,p=1;this.createNGrams(e,l,o,c,p,d)}}return[o,a]}};function lI(e,t,n,s,r,a,o,i){return new iH(n,s,r,a,o,i).compute(e,t)}function lH(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function uI(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let p=0;p<s;++p){let h=r.length;lH(e[p],t,n,r);let f=r.length-h;i[p]=f,a+=f,o=Math.max(o,f)}let l=v.getArrayFromDType("int32",a*2),c=new Array(a),u=[s,o],d=0;for(let p=0;p<s;++p)for(let h=0;h<i[p];++h)l[d*2]=p,l[d*2+1]=h,c[d]=r[d],++d;return[l,c,u]}function cI(e,t){let n=v.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=v.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var dI=Jt((e,t)=>e-t),uH=by((e,t,n,s)=>({real:e-n,imag:t-s})),Ty=vn(uo,dI,uH),cH={kernelName:uo,backendName:"cpu",kernelFunc:Ty};function pI(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=Le(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var Bd=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function hI(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,c=Math.log(i),u=.5*Math.exp(2*c/3),d=.5*Math.sqrt(c*u*(i-u)/i)*Math.sign(l-i/2),p=Math.max(n,Math.floor(t-l*u/i+d)),h=Math.min(s,Math.floor(t+(i-l)*u/i+d));hI(e,t,p,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),Bd(e[s],r)>0&&v.swap(e,n,s);a<o;){for(v.swap(e,a,o),a++,o--;Bd(e[a],r)<0;)a=a+1;for(;Bd(e[o],r)>0;)o=o-1}Bd(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function fI(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),c=v.getTypedArrayFromDType("int32",o*s);for(let d=0;d<o;d++){let p=d*i,h=e.subarray(p,p+i),f=new Array(h.length);h.forEach((y,x)=>f[x]={value:y,index:x}),s<f.length&&(hI(f,s),f=f.slice(0,s)),r&&f.sort(Bd);let m=d*s,g=l.subarray(m,m+s),A=c.subarray(m,m+s);for(let y=0;y<s;y++)g[y]=f[y].value,A[y]=f[y].index}let u=t.slice();return u[u.length-1]=s,[Le(u,n,l),Le(u,"int32",c)]}function mI(e,t,n,s){let r=v.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new sn(a,s,e),c=[],u=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(u)m=e[f].toString();else{let g=[];for(let A=0;A<a[0];A++)for(let y=0;y<a[2];y++)g.push(l.get(A,f,y));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,c.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let p=new sn(d,s);c.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let A=0;A<a[2];A++)p.set(l.get(g,f,A),g,m,A)});let h=n.slice();return h[r]=d[1],{outputValues:p.values,outputShape:h,indices:i}}var dH="0.0.0";Ki("cpu",()=>new xy,1);var gI=gt(Pa,e=>e>=0?e:Math.exp(e)-1),pH={kernelName:Pa,backendName:"cpu",kernelFunc:gI};function AI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Ne([r],"leakyRelu");let o=v.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",o);for(let c=0;c<i.length;c++)l[c]=i[c]<0?a*i[c]:i[c];return n.makeTensorInfo(r.shape,"float32",l)}var hH={kernelName:mi,backendName:"cpu",kernelFunc:AI},fH=Jt((e,t)=>e<0?t*e:e);function yI(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Ne([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=fH(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var mH={kernelName:Ja,backendName:"cpu",kernelFunc:yI},xI=gt(Qa,e=>Math.max(0,e)),gH={kernelName:Qa,backendName:"cpu",kernelFunc:xI},bI=gt(to,e=>Math.min(Math.max(0,e),6)),AH={kernelName:to,backendName:"cpu",kernelFunc:bI};function Ny(e,t,n,s,r){if(n==="linear")return Or({inputs:{x:t},backend:e});if(n==="relu")return xI({inputs:{x:t},backend:e});if(n==="elu")return gI({inputs:{x:t},backend:e});if(n==="relu6")return bI({inputs:{x:t},backend:e});if(n==="prelu")return yI({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return AI({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return sI({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Tt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,o),l=v.sizeFromShape(i);v.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let c=n.data.get(r.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,d=c.complexTensorInfos.imag;u.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var yH={kernelName:Ti,backendName:"cpu",kernelFunc:Tt};function vI(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Ne([r,a],"matMul");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),A=v.sizeFromShape(m),y=g===A||g===1||A===1;v.assert(l>=2&&c>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);v.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let w=o?[g,u,p]:[g,p,u],k=i?[A,h,d]:[A,d,h],S=Tt({inputs:{x:r},backend:n,attrs:{shape:w}}),E=Tt({inputs:{x:a},backend:n,attrs:{shape:k}}),P=o?S.shape[1]:S.shape[2],F=o?S.shape[2]:S.shape[1],R=i?E.shape[1]:E.shape[2],_=Math.max(g,A),T=n.data.get(S.dataId).values,M=n.data.get(E.dataId).values,U=v.computeStrides(S.shape),H=v.computeStrides(E.shape),[z,X,ee]=o?[U[0],1,U[1]]:[U[0],U[1],1],[Y,se,ne]=i?[1,H[1],H[0]]:[H[1],1,H[0]],J=F*R,te=Le([_,F,R],S.dtype),ue=te.values,ce=n.blockSize;for(let xe=0;xe<_;xe++)for(let we=0;we<F;we+=ce)for(let Ce=0;Ce<R;Ce+=ce)for(let Oe=0;Oe<P;Oe+=ce){let Ue=Math.min(we+ce,F),Xe=Math.min(Ce+ce,R),rt=Math.min(Oe+ce,P);for(let ft=we;ft<Ue;ft++)for(let ut=Ce;ut<Xe;ut++){let ct=0;for(let At=Oe;At<rt;At++){let yt=Math.min(xe,g-1)*z,Et=Math.min(xe,A-1)*ne,Pt=T[yt+ft*X+At*ee],Jn=M[At*Y+ut*se+Et];ct+=Pt*Jn}ue[xe*J+(ft*R+ut)]+=ct}}return n.disposeIntermediateTensorInfo(S),n.disposeIntermediateTensorInfo(E),n.makeTensorInfo(b,te.dtype,te.values)}var xH={kernelName:Sa,backendName:"cpu",kernelFunc:vI};function bH(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p,h,f,m=[];p=vI({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:c},backend:n}),o&&(h=Ld({inputs:{a:p,b:o},backend:n}),m.push(p),p=h),u&&(f=Ny(n,p,u,i,d),m.push(p),p=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return p}var vH={kernelName:fo,backendName:"cpu",kernelFunc:bH},wH=gt(Vl,e=>Math.acos(e)),kH={kernelName:Vl,backendName:"cpu",kernelFunc:wH},IH=gt(Ul,e=>Math.acosh(e)),SH={kernelName:Ul,backendName:"cpu",kernelFunc:IH};function CH(e){let{inputs:t,backend:n}=e,s=t;Ne(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=Le(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let c=0;c<o.length;c++)o[c]+=l[c]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var TH={kernelName:wa,backendName:"cpu",kernelFunc:CH};function NH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"all");let i=v.parseAxisParam(a,r.shape),l=i,c=N.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ds({inputs:{x:r},backend:n,attrs:{perm:c}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("all",l,u.shape.length);let[d,p]=N.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let w=m[y+b];x=x&&w}f[A]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=N.expandShapeToKeepDim(d,i),y=Tt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var EH={kernelName:Gl,backendName:"cpu",kernelFunc:NH};function RH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"any");let i=v.parseAxisParam(a,r.shape),l=i,c=N.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ds({inputs:{x:r},backend:n,attrs:{perm:c}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("any",l,u.shape.length);let[d,p]=N.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let w=m[y+b];x=x||w}f[A]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=N.expandShapeToKeepDim(d,i),y=Tt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var $H={kernelName:Hl,backendName:"cpu",kernelFunc:RH};function DH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ne(r,"argMax");let o=v.parseAxisParam(a,r.shape),i=N.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ds({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=N.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],N.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[u,d]=N.computeOutAndReduceShapes(l.shape,o),p=v.sizeFromShape(u),h=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,y=m[A],x=0;for(let b=0;b<f;++b){let w=m[A+b];w>y&&(y=w,x=b)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var _H={kernelName:ka,backendName:"cpu",kernelFunc:DH};function PH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ne(r,"argMin");let o=v.parseAxisParam(a,r.shape),i=N.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=Ds({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=N.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],N.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[u,d]=N.computeOutAndReduceShapes(l.shape,o),p=v.sizeFromShape(u),h=v.makeZerosTypedArray(p,"int32"),f=v.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,y=m[A],x=0;for(let b=0;b<f;++b){let w=m[A+b];w<y&&(y=w,x=b)}h[g]=x}return c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(u,"int32",h)}var FH={kernelName:jl,backendName:"cpu",kernelFunc:PH},OH=gt(ql,e=>Math.asin(e)),MH={kernelName:ql,backendName:"cpu",kernelFunc:OH},zH=gt(Xl,e=>Math.asinh(e)),LH={kernelName:Xl,backendName:"cpu",kernelFunc:zH},BH=gt(Kl,e=>Math.atan(e)),WH={kernelName:Kl,backendName:"cpu",kernelFunc:BH},VH=Jt((e,t)=>Math.atan2(e,t)),UH=vn(Yl,VH),GH={kernelName:Yl,backendName:"cpu",kernelFunc:UH},HH=gt(Zl,e=>Math.atanh(e)),jH={kernelName:Zl,backendName:"cpu",kernelFunc:HH};function Ey(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,c=r.dilationWidth,u=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Le(r.outShape,n),g=m.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let b=0;b<r.batchSize;++b){let w=b*A,k=b*s[0];for(let S=0;S<r.inChannels;++S)for(let E=0;E<r.outHeight;++E){let P=E*o-p,F=Math.max(0,P),R=Math.min(r.inHeight,u+P),_=w+E*y;for(let T=0;T<r.outWidth;++T){let M=T*i-h,U=Math.max(0,M),H=Math.min(r.inWidth,d+M),z=f,X=0,ee=0;for(let se=F;se<R;se+=l){let ne=k+se*s[1];for(let J=U;J<H;J+=c){let te=ne+J*s[2],ue=e[te+S];a==="max"&&ue>z?z=ue:a==="avg"&&(X+=ue,ee++)}if(isNaN(z))break}let Y=_+T*x+S;g[Y]=a==="avg"?X/ee:z}}}return m}function wI(e,t,n,s,r=!1,a=!1){let o=Le(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,c=s.dilationHeight,u=s.dilationWidth,d=s.effectiveFilterHeight,p=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=Le(t,n,e);for(let g=0;g<s.batchSize;++g)for(let A=0;A<s.inChannels;++A)for(let y=0;y<s.outHeight;++y){let x=y*i-h,b=x;for(;b<0;)b+=c;let w=Math.min(s.inHeight,d+x);for(let k=0;k<s.outWidth;++k){let S=k*l-f,E=S;for(;E<0;)E+=u;let P=Math.min(s.inWidth,p+S),F=Number.NEGATIVE_INFINITY,R=-1;for(let _=b;_<w;_+=c){let T=_-x;for(let M=E;M<P;M+=u){let U=M-S,H=m.get(g,_,M,A);H>F&&(F=H,r?R=a?((g*s.inHeight+_)*s.inWidth+M)*s.inChannels+A:(_*s.inWidth+M)*s.inChannels+A:R=T*p+U)}}o.set(R,g,y,k,A)}}return o}function kI(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,c=r.dilationDepth,u=r.dilationHeight,d=r.dilationWidth,p=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,A=r.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Le(r.outShape,n),b=x.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let P=0;P<r.batchSize;++P){let F=P*w,R=P*s[0];for(let _=0;_<r.inChannels;++_)for(let T=0;T<r.outDepth;++T){let M=T*o-m,U=M;for(;U<0;)U+=c;let H=Math.min(r.inDepth,p+M),z=F+T*k;for(let X=0;X<r.outHeight;++X){let ee=X*i-g,Y=ee;for(;Y<0;)Y+=u;let se=Math.min(r.inHeight,h+ee),ne=z+X*S;for(let J=0;J<r.outWidth;++J){let te=J*l-A,ue=te;for(;ue<0;)ue+=d;let ce=Math.min(r.inWidth,f+te),xe=ne+J*E,we=y,Ce=0,Oe=0;for(let Xe=U;Xe<H;Xe+=c){let rt=R+Xe*s[1];for(let ft=Y;ft<se;ft+=u){let ut=rt+ft*s[2];for(let ct=ue;ct<ce;ct+=d){let At=ut+ct*s[3],yt=e[At+_];if(a==="max"&&yt>we?we=yt:a==="avg"&&(Ce+=yt,Oe++),isNaN(we))break}if(isNaN(we))break}if(isNaN(we))break}let Ue=xe+_;b[Ue]=a==="avg"?Ce/Oe:we}}}}return x}function qH(e,t){let n=Le(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let A=0;A<t.outDepth;++A){let y=A*s-p,x=y;for(;x<0;)x+=o;let b=Math.min(t.inDepth,c+y);for(let w=0;w<t.outHeight;++w){let k=w*r-h,S=k;for(;S<0;)S+=i;let E=Math.min(t.inHeight,u+k);for(let P=0;P<t.outWidth;++P){let F=P*a-f,R=F;for(;R<0;)R+=l;let _=Math.min(t.inWidth,d+F),T=Number.NEGATIVE_INFINITY,M=-1;for(let U=x;U<b;U+=o){let H=U-y;for(let z=S;z<E;z+=i){let X=z-k;for(let ee=R;ee<_;ee+=l){let Y=ee-F,se=e.get(m,U,z,ee,g);se>=T&&(T=se,M=H*u*d+X*u+Y)}}}n.set(M,m,A,w,P,g)}}}return n}function XH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ne(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(N.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=N.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))d=Or({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Ey(p,r.shape,r.dtype,h,u,"avg");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var KH={kernelName:Ia,backendName:"cpu",kernelFunc:XH};function ZH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ne(r,"avgPool3d");let u=N.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=kI(d,r.shape,r.dtype,v.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var YH={kernelName:Fc,backendName:"cpu",kernelFunc:ZH};function JH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ne([r,a],"avgPool3DGrad");let u=N.computePool3DInfo(a.shape,o,i,1,l,c),d=u.strideDepth,p=u.strideHeight,h=u.strideWidth,f=u.filterDepth,m=u.filterHeight,g=u.filterWidth,A=u.dilationDepth,y=u.dilationHeight,x=u.dilationWidth,b=u.effectiveFilterDepth,w=u.effectiveFilterHeight,k=u.effectiveFilterWidth,S=b-1-u.padInfo.front,E=k-1-u.padInfo.left,P=w-1-u.padInfo.top,F=Le(a.shape,"float32"),R=1/(f*m*g),_=n.bufferSync(r);for(let T=0;T<u.batchSize;++T)for(let M=0;M<u.inChannels;++M)for(let U=0;U<u.inDepth;++U)for(let H=0;H<u.inHeight;++H)for(let z=0;z<u.inWidth;++z){let X=U-S,ee=H-P,Y=z-E,se=0;for(let ne=0;ne<b;ne+=A){let J=(X+ne)/d;if(!(J<0||J>=u.outDepth||Math.floor(J)!==J))for(let te=0;te<w;te+=y){let ue=(ee+te)/p;if(!(ue<0||ue>=u.outHeight||Math.floor(ue)!==ue))for(let ce=0;ce<k;ce+=x){let xe=(Y+ce)/h;if(xe<0||xe>=u.outWidth||Math.floor(xe)!==xe)continue;se+=_.get(T,J,ue,xe,M)}}}F.set(se*R,T,U,H,z,M)}return n.makeTensorInfo(F.shape,F.dtype,F.values)}var QH={kernelName:th,backendName:"cpu",kernelFunc:JH};function ej(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Ne([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=N.computePool2DInfo(o.shape,i,l,1,c),d=u.strideHeight,p=u.strideWidth,h=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,g=u.dilationWidth,A=u.effectiveFilterHeight,y=u.effectiveFilterWidth,x=y-1-u.padInfo.left,b=A-1-u.padInfo.top,w=Le(o.shape,"float32"),k=1/(h*f),S=n.data.get(r.dataId).values,E=Le(r.shape,"float32",S);for(let P=0;P<u.batchSize;++P)for(let F=0;F<u.inChannels;++F)for(let R=0;R<u.inHeight;++R)for(let _=0;_<u.inWidth;++_){let T=R-b,M=_-x,U=0;for(let H=0;H<A;H+=m){let z=(T+H)/d;if(!(z<0||z>=u.outHeight||Math.floor(z)!==z))for(let X=0;X<y;X+=g){let ee=(M+X)/p;if(ee<0||ee>=u.outWidth||Math.floor(ee)!==ee)continue;U+=E.get(P,z,ee,F)}}w.set(U*k,P,R,_,F)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var tj={kernelName:eh,backendName:"cpu",kernelFunc:ej};function nj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;v.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ne([r,i,l,a,o],"batchNorm");let{varianceEpsilon:c}=s;c==null&&(c=.001);let u=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),g=f.length,A=h.length,y=p.length,x=d.length,b=0,w=0,k=0,S=0;for(let E=0;E<u.length;++E)m[E]=f[b++]+(u[E]-d[w++])*h[k++]/Math.sqrt(p[S++]+c),b>=g&&(b=0),w>=x&&(w=0),k>=A&&(k=0),S>=y&&(S=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var sj={kernelName:za,backendName:"cpu",kernelFunc:nj};function rj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Ne([r],"batchToSpaceND");let i=a.reduce((A,y)=>A*y),l=N.getReshaped(r.shape,a,i),c=N.getPermuted(l.length,a.length),u=N.getReshapedPermuted(r.shape,a,i),d=N.getSliceBeginCoords(o,a.length),p=N.getSliceSize(u,o,a.length),h=Tt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Ds({inputs:{x:h},backend:n,attrs:{perm:c}}),m=Tt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=pl({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var aj={kernelName:si,backendName:"cpu",kernelFunc:rj};function oj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=vy(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var ij={kernelName:nh,backendName:"cpu",kernelFunc:oj};function lj(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=N.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var uj={kernelName:sh,backendName:"cpu",kernelFunc:lj},cj=gt(jr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),dj={kernelName:jr,backendName:"cpu",kernelFunc:cj},pj=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let c=0;c<i.length;c++){let u=i[c],d=l[c];s[c]=Math.hypot(u,d)}return n.makeOutput(s,t.shape,"float32")},hj={kernelName:Mc,backendName:"cpu",kernelFunc:pj};function Vu(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var fj={kernelName:Wc,backendName:"cpu",kernelFunc:Vu};function Uu(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=N.computeOutShape(t.map(m=>m.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>v.sizeFromShape(m.shape)>0);if(i.length===1)return Or({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(N.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>dl({inputs:{input:b},backend:n})),g=i.map(b=>Vu({inputs:{input:b},backend:n})),A=Uu({inputs:m,backend:n,attrs:{axis:a}}),y=Uu({inputs:g,backend:n,attrs:{axis:a}}),x=xs({inputs:{real:A,imag:y},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),x}let c=i.map(m=>{let g=v.sizeFromShape(m.shape.slice(a));return Tt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=N.computeOutShape(c.map(m=>m.shape),1);let d=c[0].shape[0]===1,p=wy(u,o,t[0].dtype,d),h=N.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var mj={kernelName:ri,backendName:"cpu",kernelFunc:Uu};function II(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s;Ne([r,a],"conv2d");let d=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,A=p.padInfo.left,y=p.padInfo.top,x=p.dataFormat==="channelsLast",b=new sn(p.outShape,r.dtype),w=v.computeStrides(r.shape),k=v.computeStrides(a.shape),S=w[0],E=x?w[1]:w[2],P=x?w[2]:1,F=x?1:w[1],R=b.strides[0],_=x?b.strides[1]:b.strides[2],T=x?b.strides[2]:1,M=x?1:b.strides[1],U=n.data.get(r.dataId).values,H=n.data.get(a.dataId).values,z=b.values;for(let X=0;X<p.batchSize;++X){let ee=X*S,Y=X*R;for(let se=0;se<p.outHeight;++se){let ne=Y+se*_,J=se*p.strideHeight-y;for(let te=0;te<h;++te){let ue=J+te*m;if(ue<0||ue>=p.inHeight)continue;let ce=te*k[0],xe=ee+ue*E;for(let we=0;we<p.outWidth;++we){let Ce=ne+we*T,Oe=we*p.strideWidth-A;for(let Ue=0;Ue<f;++Ue){let Xe=Oe+Ue*g;if(Xe<0||Xe>=p.inWidth)continue;let rt=ce+Ue*k[1],ft=xe+Xe*P,ut=rt;for(let ct=0;ct<p.inChannels;++ct){let At=U[ft+ct*F];for(let yt=0;yt<p.outChannels;++yt)z[Ce+yt*M]+=At*H[ut+yt];ut+=p.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,z)}var gj={kernelName:Na,backendName:"cpu",kernelFunc:II};function Aj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s;Ne([r,a],"conv2dBackpropFilter");let d=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=p,A=p.dataFormat==="channelsLast",y=new sn(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,w=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=new sn(r.shape,r.dtype,w),E=new sn(a.shape,a.dtype,k);for(let P=0;P<m;++P){let F=Math.max(0,Math.ceil((b-P)/h)),R=Math.min(p.outHeight,(p.inHeight+b-P)/h);for(let _=0;_<g;++_){let T=Math.max(0,Math.ceil((x-_)/f)),M=Math.min(p.outWidth,(p.inWidth+x-_)/f);for(let U=0;U<p.inChannels;++U)for(let H=0;H<p.outChannels;++H){let z=0;for(let X=0;X<p.batchSize;++X)for(let ee=F;ee<R;++ee){let Y=P+ee*h-b;for(let se=T;se<M;++se){let ne=_+se*f-x;A?z+=S.get(X,Y,ne,U)*E.get(X,ee,se,H):z+=S.get(X,U,Y,ne)*E.get(X,H,ee,se)}}y.set(z,P,_,U,H)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var yj={kernelName:rh,backendName:"cpu",kernelFunc:Aj};function xj(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s;Ne([r,a],"conv2dBackpropInput");let d=v.computeStrides(a.shape),p=v.computeStrides(r.shape),h=N.convertConv2DDataFormat(c),f=N.computeConv2DInfo(o,a.shape,i,1,l,u,!1,h),m=new sn(f.inShape,"float32"),g=m.values,A=n.data.get(r.dataId).values,y=n.data.get(a.dataId).values,[x,b,w]=d,{batchSize:k,filterHeight:S,filterWidth:E,inChannels:P,inHeight:F,inWidth:R,outChannels:_,outHeight:T,outWidth:M,strideHeight:U,strideWidth:H}=f;h=f.dataFormat;let z=S-1-f.padInfo.top,X=E-1-f.padInfo.left,ee=h==="channelsLast",Y=m.strides[0],se=ee?m.strides[1]:m.strides[2],ne=ee?m.strides[2]:1,J=ee?1:m.strides[1],te=p[0],ue=ee?p[1]:p[2],ce=ee?p[2]:1,xe=ee?1:p[1];for(let we=0;we<k;++we)for(let Ce=0;Ce<P;++Ce)for(let Oe=0;Oe<F;++Oe){let Ue=Oe-z,Xe=Math.max(0,Math.ceil(Ue/U)),rt=Math.min(T,(S+Ue)/U);for(let ft=0;ft<R;++ft){let ut=ft-X,ct=Math.max(0,Math.ceil(ut/H)),At=Math.min(M,(E+ut)/H),yt=0;for(let Pt=Xe;Pt<rt;++Pt){let Jn=Pt*U-Ue;for(let wn=ct;wn<At;++wn){let nr=wn*H-ut,On=te*we+ue*Pt+ce*wn,ds=x*(S-1-Jn)+b*(E-1-nr)+w*Ce;for(let Ls=0;Ls<_;++Ls){let Is=A[On+xe*Ls],kn=y[ds+Ls];yt+=Is*kn}}}let Et=Y*we+se*Oe+ne*ft+J*Ce;g[Et]=yt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var bj={kernelName:Ea,backendName:"cpu",kernelFunc:xj};function vj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Ne([r,a],"conv3d");let c=N.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:u,filterHeight:d,filterWidth:p,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=c,A=g.front,y=g.left,x=g.top,b=new sn(c.outShape,r.dtype),w=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=b.values,E=v.computeStrides(r.shape),P=v.computeStrides(a.shape);for(let F=0;F<c.batchSize;++F){let R=F*E[0],_=F*b.strides[0];for(let T=0;T<c.outDepth;++T){let M=_+T*b.strides[1],U=T*c.strideDepth-A;for(let H=0;H<u;++H){let z=U+H*h;if(z<0||z>=c.inDepth)continue;let X=H*P[0],ee=R+z*E[1];for(let Y=0;Y<c.outHeight;++Y){let se=M+Y*b.strides[2],ne=Y*c.strideHeight-x;for(let J=0;J<d;++J){let te=ne+J*f;if(te<0||te>=c.inHeight)continue;let ue=X+J*P[1],ce=ee+te*E[2];for(let xe=0;xe<c.outWidth;++xe){let we=se+xe*c.outChannels,Ce=xe*c.strideWidth-y;for(let Oe=0;Oe<p;++Oe){let Ue=Ce+Oe*m;if(Ue<0||Ue>=c.inWidth)continue;let Xe=ue+Oe*P[2],rt=ce+Ue*c.inChannels,ft=Xe;for(let ut=0;ut<c.inChannels;++ut){let ct=w[rt+ut];for(let At=0;At<c.outChannels;++At)S[we+At]+=ct*k[ft+At];ft+=c.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var wj={kernelName:zc,backendName:"cpu",kernelFunc:vj};function kj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Ne([r,a],"conv3dBackpropFilterV2");let c=v.computeStrides(r.shape),u=v.computeStrides(a.shape),d=N.computeConv3DInfo(r.shape,l,o,1,i),p=d.strideDepth,h=d.strideHeight,f=d.strideWidth,m=d.filterDepth,g=d.filterHeight,A=d.filterWidth,y=new sn(d.filterShape,"float32"),x=y.values,[b,w,k,S]=y.strides,E=n.data.get(a.dataId).values,[P,F,R,_]=u,T=n.data.get(r.dataId).values,[M,U,H,z]=c,X=d.padInfo.front,ee=d.padInfo.left,Y=d.padInfo.top;for(let se=0;se<m;++se){let ne=Math.max(0,Math.ceil((X-se)/p)),J=Math.min(d.outDepth,(d.inDepth+X-se)/p),te=se*b;for(let ue=0;ue<g;++ue){let ce=Math.max(0,Math.ceil((Y-ue)/h)),xe=Math.min(d.outHeight,(d.inHeight+Y-ue)/h),we=ue*w+te;for(let Ce=0;Ce<A;++Ce){let Oe=Math.max(0,Math.ceil((ee-Ce)/f)),Ue=Math.min(d.outWidth,(d.inWidth+ee-Ce)/f),Xe=Ce*k+we;for(let rt=0;rt<d.inChannels;++rt){let ft=rt*S+Xe;for(let ut=0;ut<d.outChannels;++ut){let ct=0;for(let At=0;At<d.batchSize;++At){let yt=At*M,Et=At*P;for(let Pt=ne;Pt<J;++Pt){let wn=(se+Pt*p-X)*U+yt,nr=Pt*F+Et;for(let On=ce;On<xe;++On){let Ls=(ue+On*h-Y)*H+wn,Is=On*R+nr;for(let kn=Oe;kn<Ue;++kn){let Rn=(Ce+kn*f-ee)*z+Ls,vr=kn*_+Is;ct+=T[Rn+rt]*E[vr+ut]}}}}x[ft+ut]=ct}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var Ij={kernelName:ah,backendName:"cpu",kernelFunc:kj};function Sj(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Ne([r],"conv3dBackpropInputV2");let c=v.computeStrides(r.shape),u=v.computeStrides(a.shape),d=N.computeConv3DInfo(l,a.shape,i,1,o),p=new sn(d.inShape,"float32"),h=p.values,[f,m,g,A]=p.strides,y=n.data.get(r.dataId).values,[x,b,w,k]=c,S=n.data.get(a.dataId).values,[E,P,F,R]=u,{batchSize:_,filterDepth:T,filterHeight:M,filterWidth:U,inChannels:H,inDepth:z,inHeight:X,inWidth:ee,outChannels:Y,outDepth:se,outHeight:ne,outWidth:J,strideDepth:te,strideHeight:ue,strideWidth:ce}=d,xe=T-1-d.padInfo.front,we=M-1-d.padInfo.top,Ce=U-1-d.padInfo.left;for(let Oe=0;Oe<_;++Oe)for(let Ue=0;Ue<H;++Ue)for(let Xe=0;Xe<z;++Xe){let rt=Xe-xe,ft=Math.max(0,Math.ceil(rt/te)),ut=Math.min(se,(T+rt)/te);for(let ct=0;ct<X;++ct){let At=ct-we,yt=Math.max(0,Math.ceil(At/ue)),Et=Math.min(ne,(M+At)/ue);for(let Pt=0;Pt<ee;++Pt){let Jn=Pt-Ce,wn=Math.max(0,Math.ceil(Jn/ce)),nr=Math.min(J,(U+Jn)/ce),On=0;for(let ds=ft;ds<ut;++ds){let Ls=ds*te-rt;for(let Is=yt;Is<Et;++Is){let kn=Is*ue-At;for(let br=wn;br<nr;++br){let Rn=br*ce-Jn,vr=x*Oe+b*ds+w*Is+k*br,wr=E*(T-1-Ls)+P*(M-1-kn)+F*(U-1-Rn)+R*Ue;for(let pa=0;pa<Y;++pa){let Ac=y[vr+pa],sr=S[wr+pa];On+=Ac*sr}}}}h[f*Oe+m*Xe+g*ct+A*Pt+Ue]=On}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var Cj={kernelName:oh,backendName:"cpu",kernelFunc:Sj},Tj=gt(Ra,e=>Math.cos(e)),Nj={kernelName:Ra,backendName:"cpu",kernelFunc:Tj},Ej=gt($a,e=>Math.cosh(e)),Rj={kernelName:$a,backendName:"cpu",kernelFunc:Ej};function $j(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,[u,d,p,h]=r.shape,f=a.shape[0],[m,g]=i,A=Le([f,m,g,h],"float32"),y=n.data.get(a.dataId).values,x=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,w=v.computeStrides(r.shape),k=v.computeStrides(A.shape);for(let S=0;S<f;S++){let E=S*4,P=y[E],F=y[E+1],R=y[E+2],_=y[E+3],T=x[S];if(T>=u)continue;let M=m>1?(R-P)*(d-1)/(m-1):0,U=g>1?(_-F)*(p-1)/(g-1):0;for(let H=0;H<m;H++){let z=m>1?P*(d-1)+H*M:.5*(P+R)*(d-1);if(z<0||z>d-1){for(let X=0;X<g;X++)for(let ee=0;ee<h;ee++){let Y=ee+X*k[2]+H*k[1]+S*k[0];A.values[Y]=c}continue}if(l==="bilinear"){let X=Math.floor(z),ee=Math.ceil(z),Y=z-X;for(let se=0;se<g;se++){let ne=g>1?F*(p-1)+se*U:.5*(F+_)*(p-1);if(ne<0||ne>p-1){for(let ce=0;ce<h;ce++){let xe=ce+se*k[2]+H*k[1]+S*k[0];A.values[xe]=c}continue}let J=Math.floor(ne),te=Math.ceil(ne),ue=ne-J;for(let ce=0;ce<h;ce++){let xe=ce+J*w[2]+X*w[1]+T*w[0],we=b[xe];xe=ce+te*w[2]+X*w[1]+T*w[0];let Ce=b[xe];xe=ce+J*w[2]+ee*w[1]+T*w[0];let Oe=b[xe];xe=ce+te*w[2]+ee*w[1]+T*w[0];let Ue=b[xe],Xe=we+(Ce-we)*ue,rt=Oe+(Ue-Oe)*ue;xe=ce+se*k[2]+H*k[1]+S*k[0],A.values[xe]=Xe+(rt-Xe)*Y}}}else for(let X=0;X<g;++X){let ee=g>1?F*(p-1)+X*U:.5*(F+_)*(p-1);if(ee<0||ee>p-1){for(let ne=0;ne<h;ne++){let J=ne+X*k[2]+H*k[1]+S*k[0];A.values[J]=c}continue}let Y=Math.round(ee),se=Math.round(z);for(let ne=0;ne<h;ne++){let J=ne+Y*w[2]+se*w[1]+T*w[0],te=ne+X*k[2]+H*k[1]+S*k[0];A.values[te]=b[J]}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var Dj={kernelName:oi,backendName:"cpu",kernelFunc:$j};function _j(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Ne(r,"cumsum");let l=N.getAxesPermutation([a],r.shape.length),c=r;l!=null&&(c=Ds({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=N.getInnerMostAxes(1,r.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let d=Bn(c.dtype,"int32"),p=v.makeZerosTypedArray(v.sizeFromShape(c.shape),d),h=n.data.get(c.dataId).values,f=c.shape[c.shape.length-1],m=i?(A,y)=>A+f-y-1:(A,y)=>A+y;for(let A=0;A<h.length;A+=f)for(let y=0;y<f;y++){let x=m(A,y);if(y===0)p[x]=o?0:h[x];else{let b=m(A,y-1);p[x]=o?h[b]+p[b]:h[x]+p[b]}}let g=n.makeTensorInfo(c.shape,d,p);if(l!=null){let A=N.getUndoAxesPermutation(l),y=Ds({inputs:{x:g},backend:n,attrs:{perm:A}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(c),y}return g}var Pj={kernelName:ai,backendName:"cpu",kernelFunc:_j};function Fj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=vy(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=P7(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Oj={kernelName:ih,backendName:"cpu",kernelFunc:Fj};function Mj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;v.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],c=r.shape[2],u=r.shape[3],d=l*a,p=c*a,h=u/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let A=0;A<i;++A)for(let y=0;y<d;++y){let x=Math.floor(y/a),b=y%a;for(let w=0;w<p;++w){let k=Math.floor(w/a),S=w%a,E=(b*a+S)*h;for(let P=0;P<h;++P){let R=P+E+u*(k+c*(x+l*A));m[g++]=f[R]}}}return n.makeTensorInfo([i,d,p,h],r.dtype,m)}var zj={kernelName:ii,backendName:"cpu",kernelFunc:Mj};function SI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s;Ne([r,a],"depthwiseConv2DNative");let u=v.computeStrides(r.shape),d=v.computeStrides(a.shape),p=l;p==null&&(p=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(o,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=N.computeConv2DInfo(r.shape,a.shape,o,p,i,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:A,padInfo:y}=h,x=y.left,b=y.top,w=h.outChannels/h.inChannels,k=new sn(h.outShape,r.dtype),S=n.data.get(r.dataId).values,E=n.data.get(a.dataId).values,P=k.values;for(let F=0;F<h.batchSize;++F){let R=F*u[0],_=F*k.strides[0];for(let T=0;T<h.outHeight;++T){let M=_+T*k.strides[1],U=T*h.strideHeight-b;for(let H=0;H<f;++H){let z=U+H*g;if(z<0||z>=h.inHeight)continue;let X=H*d[0],ee=R+z*u[1];for(let Y=0;Y<h.outWidth;++Y){let se=M+Y*k.strides[2],ne=Y*h.strideWidth-x;for(let J=0;J<m;++J){let te=ne+J*A;if(te<0||te>=h.inWidth)continue;let ue=X+J*d[1],ce=ee+te*h.inChannels,xe=se,we=ue;for(let Ce=0;Ce<h.inChannels;++Ce){let Oe=S[ce+Ce];for(let Ue=0;Ue<w;++Ue)P[xe+Ue]+=Oe*E[we+Ue];xe+=w,we+=w}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var Lj={kernelName:Da,backendName:"cpu",kernelFunc:SI};function Bj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s;Ne([r,a],"depthwiseConv2dNativeBackpropFilter");let d=N.computeConv2DInfo(r.shape,u,o,i,l,c,!0),{strideHeight:p,strideWidth:h,filterHeight:f,filterWidth:m}=d,g=new sn(d.filterShape,"float32"),A=d.padInfo.left,y=d.padInfo.top,x=d.outChannels/d.inChannels,b=n.data.get(r.dataId).values,w=new sn(r.shape,r.dtype,b),k=n.data.get(a.dataId).values,S=new sn(a.shape,a.dtype,k);for(let E=0;E<f;++E){let P=Math.max(0,Math.ceil((y-E)/p)),F=Math.min(d.outHeight,(d.inHeight+y-E)/p);for(let R=0;R<m;++R){let _=Math.max(0,Math.ceil((A-R)/h)),T=Math.min(d.outWidth,(d.inWidth+A-R)/h);for(let M=0;M<d.outChannels;++M){let U=Math.trunc(M/x),H=M%x,z=0;for(let X=0;X<d.batchSize;++X)for(let ee=P;ee<F;++ee){let Y=E+ee*p-y;for(let se=_;se<T;++se){let ne=R+se*h-A;z+=w.get(X,Y,ne,U)*S.get(X,ee,se,M)}}g.set(z,E,R,U,H)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var Wj={kernelName:lh,backendName:"cpu",kernelFunc:Bj};function Vj(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s;Ne([r,a],"depthwiseConv2DNativeBackpropInput");let d=v.computeStrides(r.shape),p=v.computeStrides(a.shape),h=N.computeConv2DInfo(u,a.shape,o,i,l,c,!0),f=new sn(h.inShape,"float32"),m=f.values,[g,A,y]=f.strides,x=n.data.get(r.dataId).values,[b,w,k]=d,S=n.data.get(a.dataId).values,[E,P,F]=p,{batchSize:R,filterHeight:_,filterWidth:T,inChannels:M,inHeight:U,inWidth:H,outChannels:z,outHeight:X,outWidth:ee,strideHeight:Y,strideWidth:se}=h,ne=_-1-h.padInfo.top,J=T-1-h.padInfo.left,te=z/M;for(let ue=0;ue<R;++ue)for(let ce=0;ce<M;++ce)for(let xe=0;xe<U;++xe){let we=xe-ne,Ce=Math.max(0,Math.ceil(we/Y)),Oe=Math.min(X,(_+we)/Y);for(let Ue=0;Ue<H;++Ue){let Xe=Ue-J,rt=Math.max(0,Math.ceil(Xe/se)),ft=Math.min(ee,(T+Xe)/se),ut=0;for(let ct=Ce;ct<Oe;++ct){let At=ct*Y-we;for(let yt=rt;yt<ft;++yt){let Et=yt*se-Xe,Pt=b*ue+w*ct+k*yt,Jn=E*(_-1-At)+P*(T-1-Et)+F*ce;for(let wn=0;wn<te;++wn){let nr=ce*te+wn,On=x[Pt+nr],ds=S[Jn+wn];ut+=On*ds}}}m[g*ue+A*xe+y*Ue+ce]=ut}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var Uj={kernelName:uh,backendName:"cpu",kernelFunc:Vj};function Gj(e){let{inputs:t,backend:n}=e,{x:s}=t,r=v.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=Le([r,r],s.dtype),i=o.values;for(let c=0;c<a.length;c++)i[c*r+c]=a[c];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var Hj={kernelName:ch,backendName:"cpu",kernelFunc:Gj},jj={kernelName:Lc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,c=l.data.get(s.dataId).values,u=s.shape.length,d=l.data.get(r.dataId).values,p=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:A,outWidth:y,padInfo:x,strideHeight:b,strideWidth:w,filterHeight:k,filterWidth:S,dilationHeight:E,dilationWidth:P,outShape:F}=N.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),R=v.sizeFromShape(F),_=F.length,T=v.getArrayFromDType(s.dtype,R);for(let U=0;U<h;++U)for(let H=0;H<A;++H){let z=H*b-x.top;for(let X=0;X<y;++X){let ee=X*w-x.left;for(let Y=0;Y<g;++Y){let se=Number.MIN_SAFE_INTEGER;for(let J=0;J<k;++J){let te=z+J*E;if(te>=0&&te<f)for(let ue=0;ue<S;++ue){let ce=ee+ue*P;if(ce>=0&&ce<m){let xe=v.locToIndex([U,te,ce,Y],u,v.computeStrides(s.shape)),we=v.locToIndex([J,ue,Y],p,v.computeStrides(r.shape)),Ce=c[xe]+d[we];Ce>se&&(se=Ce)}}}let ne=v.locToIndex([U,H,X,Y],_,v.computeStrides(F));T[ne]=se}}}return{dataId:l.write(v.toTypedArray(T,s.dtype),F,s.dtype),shape:F,dtype:s.dtype}}},qj={kernelName:ph,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=v.toNestedArray(s.shape,c.data.get(s.dataId).values),d=v.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:S,dilationWidth:E,outShape:P}=N.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===P.length,()=>`Error in ${ph}, dy must have the same rank as output ${P.length}, but got ${a.rank}`);let F=v.toNestedArray(P,c.data.get(a.dataId).values),R=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<p;++T)for(let M=0;M<g;++M){let U=M*x-y.top;for(let H=0;H<A;++H){let z=H*b-y.left;for(let X=0;X<m;++X){let ee=Number.MIN_SAFE_INTEGER,Y=0,se=0;for(let ne=0;ne<w;++ne){let J=U+ne*S;if(J>=0&&J<h)for(let te=0;te<k;++te){let ue=z+te*E;if(ue>=0&&ue<f){let ce=u[T][J][ue][X]+d[ne][te][X];ce>ee&&(ee=ce,Y=ne,se=te)}}}R[Y][se][X]+=F[T][M][H][X]}}}return{dataId:c.write(v.toTypedArray(R,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},Xj={kernelName:dh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,c=t,u=v.toNestedArray(s.shape,c.data.get(s.dataId).values),d=v.toNestedArray(r.shape,c.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:S,dilationWidth:E,outShape:P}=N.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===P.length,()=>`Error in ${dh}, dy must have the same rank as output ${P.length}, but got ${a.rank}`);let F=v.toNestedArray(P,c.data.get(a.dataId).values),R=v.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<p;++T)for(let M=0;M<g;++M){let U=M*x-y.top;for(let H=0;H<A;++H){let z=H*b-y.left;for(let X=0;X<m;++X){let ee=Number.MIN_SAFE_INTEGER,Y=U<0?0:U,se=z<0?0:z;for(let ne=0;ne<w;++ne){let J=U+ne*S;if(J>=0&&J<h)for(let te=0;te<k;++te){let ue=z+te*E;if(ue>=0&&ue<f){let ce=u[T][J][ue][X]+d[ne][te][X];ce>ee&&(ee=ce,Y=J,se=ue)}}}R[T][Y][se][X]+=F[T][M][H][X]}}}return{dataId:c.write(v.toTypedArray(R,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Wd(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"sum");let i;r.dtype==="bool"?i=_o({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=Or({inputs:{x:r},backend:n});let l=i.shape.length,c=v.parseAxisParam(a,i.shape),u=N.getAxesPermutation(c,l),d=c,p=i;u!=null&&(p=Ds({inputs:{x:i},backend:n,attrs:{perm:u}}),d=N.getInnerMostAxes(d.length,l)),N.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=N.computeOutAndReduceShapes(p.shape,d),m=N.upcastType(p.dtype,"int32"),g=im(n,h,m),A=v.sizeFromShape(f),y=n.data.get(g.dataId).values,x=n.data.get(p.dataId).values;for(let b=0;b<y.length;++b){let w=b*A,k=0;for(let S=0;S<A;++S)k+=x[w+S];y[b]=k}if(o){let b=N.expandShapeToKeepDim(g.shape,c),w=g;g=Tt({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(i),u!=null&&n.disposeIntermediateTensorInfo(p),g}var Kj={kernelName:oo,backendName:"cpu",kernelFunc:Wd};function Zj(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=N.decodeEinsumEquation(r,a.length);N.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=N.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:y}=N.getEinsumPermutation(h,l[g]),x;N.isIdentityPermutation(A)?x=a[g]:(x=Ds({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(x));let b=x.shape.slice();for(let w=0;w<y.length;++w)b.splice(y[w],0,1);v.arraysEqual(x.shape,b)||(x=Tt({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=lm({inputs:{a:x,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=Wd({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var Yj={kernelName:Bc,backendName:"cpu",kernelFunc:Zj};function Jj(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Ne([s,r],"eluGrad");let a=new Float32Array(v.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let c=o[l];c>=1?a[l]=i[l]:a[l]=i[l]*(c+1)}return n.makeTensorInfo(r.shape,"float32",a)}var Qj={kernelName:hh,backendName:"cpu",kernelFunc:Jj},eq=N.ERF_P,tq=N.ERF_A1,nq=N.ERF_A2,sq=N.ERF_A3,rq=N.ERF_A4,aq=N.ERF_A5,oq=gt(Jl,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+eq*n);return t*(1-((((aq*s+rq)*s+sq)*s+nq)*s+tq)*s*Math.exp(-n*n))}),iq={kernelName:Jl,backendName:"cpu",kernelFunc:oq};function cm(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Tt({inputs:{x:r},backend:n,attrs:{shape:i}})}var lq={kernelName:ui,backendName:"cpu",kernelFunc:cm},uq=Jt((e,t)=>e/t),Ry=vn(_a,uq),$y={kernelName:_a,backendName:"cpu",kernelFunc:Ry};function CI(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,c=[r,a],u=v.sizeFromShape(c),d=v.getTypedArrayFromDType("float32",u),p=v.getTypedArrayFromDType("float32",u);for(let g=0;g<r;g++){let A=pl({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=pl({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=xs({inputs:{real:A,imag:y},backend:n}),{real:b,imag:w}=cq(x,t,n),k=N.mergeRealAndImagArrays(b,w);for(let S=0;S<a;S++){let E=N.getComplexWithIndex(k,S);d[g*a+S]=E.real,p[g*a+S]=E.imag}n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(c,"float32",d),f=n.makeTensorInfo(c,"float32",p),m=xs({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function cq(e,t,n){let s=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(dq(s)){let i=Dy(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",i.real),u=n.makeTensorInfo(l,"float32",i.imag),d=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),p=Or({inputs:{x:d},backend:n}),h=$y.kernelFunc({inputs:{a:c,b:d},backend:n}),f=$y.kernelFunc({inputs:{a:u,b:p},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=N.mergeRealAndImagArrays(a,o),l=pq(i,s,t);return N.splitRealAndImagArrays(l)}}function dq(e){return(e&e-1)==0}function Dy(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=N.mergeRealAndImagArrays(e,t),o=n/2,i=N.complexWithEvenIndex(a),l=i.real,c=i.imag,u=[l.length],d=r.makeTensorInfo(u,"float32",l),p=r.makeTensorInfo(u,"float32",c),h=xs({inputs:{real:d,imag:p},backend:r}),f=N.complexWithOddIndex(a),m=f.real,g=f.imag,A=[m.length],y=r.makeTensorInfo(A,"float32",m),x=r.makeTensorInfo(A,"float32",g),b=xs({inputs:{real:y,imag:x},backend:r}),w=Dy(l,c,o,s,r),k=w.real,S=w.imag,E=[k.length],P=r.makeTensorInfo(E,"float32",k),F=r.makeTensorInfo(E,"float32",S),R=xs({inputs:{real:P,imag:F},backend:r}),_=Dy(m,g,o,s,r),T=_.real,M=_.imag,U=[T.length],H=r.makeTensorInfo(U,"float32",T),z=r.makeTensorInfo(U,"float32",M),X=xs({inputs:{real:H,imag:z},backend:r}),ee=N.exponents(n,s),Y=[ee.real.length],se=r.makeTensorInfo(Y,"float32",ee.real),ne=r.makeTensorInfo(Y,"float32",ee.imag),J=xs({inputs:{real:se,imag:ne},backend:r}),te=lm({inputs:{a:J,b:X},backend:r}),ue=Ld({inputs:{a:R,b:te},backend:r}),ce=Ty({inputs:{a:R,b:te},backend:r}),xe=dl({inputs:{input:ue},backend:r}),we=dl({inputs:{input:ce},backend:r}),Ce=Vu({inputs:{input:ue},backend:r}),Oe=Vu({inputs:{input:ce},backend:r}),Ue=Uu({inputs:[xe,we],backend:r,attrs:{axis:0}}),Xe=Uu({inputs:[Ce,Oe],backend:r,attrs:{axis:0}}),rt=r.data.get(Ue.dataId).values,ft=r.data.get(Xe.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo(F),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(H),r.disposeIntermediateTensorInfo(z),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(J),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(ce),r.disposeIntermediateTensorInfo(xe),r.disposeIntermediateTensorInfo(Ce),r.disposeIntermediateTensorInfo(we),r.disposeIntermediateTensorInfo(Oe),r.disposeIntermediateTensorInfo(Ue),r.disposeIntermediateTensorInfo(Xe),{real:rt,imag:ft}}function pq(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=N.exponent(r*i,t,n),c=N.getComplexWithIndex(e,i);a+=c.real*l.real-c.imag*l.imag,o+=c.real*l.imag+c.imag*l.real}n&&(a/=t,o/=t),N.assignToTypedArray(s,a,o,r)}return s}function hq(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Tt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=CI(i,!1,n),c=Tt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var fq={kernelName:fh,backendName:"cpu",kernelFunc:hq};function _y(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||v.inferDtype(r),i=v.getArrayFromDType(o,v.sizeFromShape(s));return gq(i,r,o),t.makeTensorInfo(s,o,i)}var mq={kernelName:Ql,backendName:"cpu",kernelFunc:_y};function gq(e,t,n){e.fill(t)}var Aq={kernelName:di,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[o,i,l,c]=s.shape,u=r.data.get(s.dataId).values;for(let p=0;p<o;p++){let h=p*l*i*c;for(let f=0;f<i;f++){let m=f*(l*c);for(let g=0;g<l;g++){let A=g*c;for(let y=0;y<c;y++){let x=Math.round(l-g-1),b=h+m+A+y,w=u[b];if(x>=0&&x<l){let k=x*c,S=h+m+k+y;w=u[S]}a[b]=w}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},yq=Jt((e,t)=>Math.floor(e/t)),xq=vn(Ma,yq,null,"int32"),bq={kernelName:Ma,backendName:"cpu",kernelFunc:xq};function vq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=II({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Ld({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Ny(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var wq={kernelName:mo,backendName:"cpu",kernelFunc:vq};function kq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=SI({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=Ld({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Ny(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var Iq={kernelName:go,backendName:"cpu",kernelFunc:kq};function Sq(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=v.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,c,u,d]=N.prepareAndValidate(s,r);if(c===0)return n.makeTensorInfo(l,s.dtype,[]);let p=n.data.get(r.dataId).values,h=n.bufferSync(s),f=V7(p,h,s.dtype,c,i,u,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var Cq={kernelName:hi,backendName:"cpu",kernelFunc:Sq};function Tq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Ne([r,a],"gatherV2");let l=v.parseAxisParam(o,r.shape)[0],c=n.data.get(a.dataId).values,u=r.shape[l];for(let b=0;b<c.length;++b){let w=c[b];v.assert(w<=u-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${u-1}]`)}let d=i;i==null&&(d=0);let p=v.sizeFromShape(a.shape),h=N.segment_util.collectGatherOpShapeInfo(r,a,l,d),f=Tt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=Tt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,p/h.batchSize]}}),g=[h.batchSize,h.outerSize,p/h.batchSize,h.sliceSize],A=n.bufferSync(m),y=n.bufferSync(f),x=U7(y,A,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,x.dtype,x.values)}var Nq={kernelName:pi,backendName:"cpu",kernelFunc:Tq};function Eq(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Tt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=CI(i,!0,n),c=Tt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var Rq={kernelName:mh,backendName:"cpu",kernelFunc:Eq},$q=gt(eu,e=>Number.isFinite(e)?1:0,"bool"),Dq={kernelName:eu,backendName:"cpu",kernelFunc:$q},_q=gt(tu,e=>Math.abs(e)===1/0?1:0,"bool"),Pq={kernelName:tu,backendName:"cpu",kernelFunc:_q},Fq=gt(nu,e=>Number.isNaN(e)?1:0,"bool"),Oq={kernelName:nu,backendName:"cpu",kernelFunc:Fq};function Mq(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=X7(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var zq={kernelName:gh,backendName:"cpu",kernelFunc:Mq},Lq=gt(su,e=>Math.log1p(e)),Bq={kernelName:su,backendName:"cpu",kernelFunc:Lq},Wq=Jt((e,t)=>e&&t),Vq=vn(yi,Wq,null,"bool"),Uq={kernelName:yi,backendName:"cpu",kernelFunc:Vq},Gq=gt(ru,e=>e?0:1,"bool"),Hq={kernelName:ru,backendName:"cpu",kernelFunc:Gq},jq=Jt((e,t)=>e||t),qq=vn(Vc,jq,null,"bool"),Xq={kernelName:Vc,backendName:"cpu",kernelFunc:qq};function Kq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Ne(r,"LRN");let c=r.shape[3],u=c-1,d=n.data.get(r.dataId).values,p=v.sizeFromShape(r.shape),h=new Float32Array(p);function f(m){let g=m%c,A=m-g+Math.max(0,g-a),y=m-g+Math.min(g+a,u),x=0;for(;A<=y;A++){let b=d[A];x+=b*b}return x}for(let m=0;m<p;m++){let g=f(m),A=d[m]*Math.pow(o+i*g,-l);h[m]=A}return n.makeTensorInfo(r.shape,r.dtype,h)}var Zq={kernelName:Uc,backendName:"cpu",kernelFunc:Kq};function Yq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s;Ne(o,"LRNGrad");let d=v.sizeFromShape(o.shape),p=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(d),A=d;for(let y=0;y<A;y++){let x=y%p,b=y-x+Math.max(0,x-i),w=y-x+Math.min(p,x+i+1),k=0;for(let S=b;S<w;S++)k+=Math.pow(f[S],2);k=c*k+l;for(let S=b;S<w;S++){let E=-2*c*u*f[S]*m[y]/k;y===S&&(E+=Math.pow(k,-u)),E*=h[y],g[S]+=E}}return n.makeTensorInfo(o.shape,r.dtype,g)}var Jq={kernelName:Ah,backendName:"cpu",kernelFunc:Yq};function TI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,c=l.length,u=v.parseAxisParam(a,l),d=u,p=N.getAxesPermutation(d,c),h=i.data.get(r.dataId).values;if(p!=null){let b=new Array(c);for(let w=0;w<b.length;w++)b[w]=l[p[w]];h=Iy(h,l,r.dtype,p,b),d=N.getInnerMostAxes(d.length,c),l=b}Ne(r,"max"),N.assertAxesAreInnerMostDims("max",d,c);let[f,m]=N.computeOutAndReduceShapes(l,d),g=v.sizeFromShape(m),A=Z7(h,g,f,r.dtype),y=i.write(A,f,r.dtype),x=f;return o&&(x=N.expandShapeToKeepDim(f,u)),{dataId:y,shape:x,dtype:r.dtype}}var Qq={kernelName:Va,backendName:"cpu",kernelFunc:TI};function eX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ne(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(N.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=N.computePool2DInfo(r.shape,a,o,c,i,l),d;if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))d=Or({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Ey(p,r.shape,r.dtype,h,u,"max");d=n.makeTensorInfo(u.outShape,r.dtype,f.values)}return d}var tX={kernelName:Ga,backendName:"cpu",kernelFunc:eX};function nX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s;Ne(r,"maxPool3d");let u=N.computePool3DInfo(r.shape,a,o,1,i,l,c),d=n.data.get(r.dataId).values,p=kI(d,r.shape,r.dtype,v.computeStrides(r.shape),u,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var sX={kernelName:Gc,backendName:"cpu",kernelFunc:nX};function rX(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=s;Ne([r,a],"maxPool3DGrad");let u=N.computePool3DInfo(a.shape,o,i,1,l,c),d=n.bufferSync(a),p=qH(d,u),h=u.strideDepth,f=u.strideHeight,m=u.strideWidth,g=u.dilationDepth,A=u.dilationHeight,y=u.dilationWidth,x=u.effectiveFilterDepth,b=u.effectiveFilterHeight,w=u.effectiveFilterWidth,k=x-1-u.padInfo.front,S=w-1-u.padInfo.left,E=b-1-u.padInfo.top,P=Le(a.shape,"float32"),F=n.bufferSync(r);for(let R=0;R<u.batchSize;++R)for(let _=0;_<u.inChannels;++_)for(let T=0;T<u.inDepth;++T)for(let M=0;M<u.inHeight;++M)for(let U=0;U<u.inWidth;++U){let H=T-k,z=M-E,X=U-S,ee=0;for(let Y=0;Y<x;Y+=g){let se=(H+Y)/h;if(!(se<0||se>=u.outDepth||Math.floor(se)!==se))for(let ne=0;ne<b;ne+=A){let J=(z+ne)/f;if(!(J<0||J>=u.outHeight||Math.floor(J)!==J))for(let te=0;te<w;te+=y){let ue=(X+te)/m;if(ue<0||ue>=u.outWidth||Math.floor(ue)!==ue)continue;let ce=x*b*w-1-p.get(R,se,J,ue,_),xe=Y*b*w+ne*w+te,we=ce===xe?1:0;if(we===0)continue;ee+=F.get(R,se,J,ue,_)*we}}}P.set(ee,R,T,M,U,_)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var aX={kernelName:xh,backendName:"cpu",kernelFunc:rX};function oX(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Ne([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=N.computePool2DInfo(i.shape,l,c,1,u,d),h=n.data.get(i.dataId).values,f=Le(p.outShape,i.dtype,wI(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,A=p.dilationHeight,y=p.dilationWidth,x=p.effectiveFilterHeight,b=p.effectiveFilterWidth,w=b-1-p.padInfo.left,k=x-1-p.padInfo.top,S=Le(i.shape,"float32"),E=n.data.get(r.dataId).values,P=Le(r.shape,"float32",E);for(let F=0;F<p.batchSize;++F)for(let R=0;R<p.inChannels;++R)for(let _=0;_<p.inHeight;++_)for(let T=0;T<p.inWidth;++T){let M=_-k,U=T-w,H=0;for(let z=0;z<x;z+=A){let X=(M+z)/m;if(!(X<0||X>=p.outHeight||Math.floor(X)!==X))for(let ee=0;ee<b;ee+=y){let Y=(U+ee)/g;if(Y<0||Y>=p.outWidth||Math.floor(Y)!==Y)continue;let se=x*b-1-f.get(F,X,Y,R),ne=z*b+ee,J=se===ne?1:0;if(J===0)continue;H+=P.get(F,X,Y,R)*J}}S.set(H,F,_,T,R)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var iX={kernelName:yh,backendName:"cpu",kernelFunc:oX};function lX(e,t,n,s,r){let a=v.computeStrides(t),o=Ey(e,t,n,a,r,"max"),i=wI(e,t,n,r,!0,s);return[o.values,i.values]}var uX={kernelName:bh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Ne(s,"MaxPoolWithArgmax");let c=l.data.get(s.dataId).values,u=N.computePool2DInfo(s.shape,r,a,[1,1],o),[d,p]=lX(c,s.shape,s.dtype,i,u),h=l.write(d,u.outShape,s.dtype),f=l.write(p,u.outShape,s.dtype);return[{dataId:h,shape:u.outShape,dtype:s.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function cX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=v.parseAxisParam(a,r.shape),c=N.computeOutAndReduceShapes(r.shape,i)[1],u=v.sizeFromShape(c),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let h=_o({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=Ry({inputs:{a:h,b:p},backend:n});d.push(f);let m=Wd({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var dX={kernelName:Ha,backendName:"cpu",kernelFunc:cX};function pX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ne(r,"min");let i=v.parseAxisParam(a,r.shape),l=i,c=N.getAxesPermutation(l,r.shape.length),u=r;c!=null&&(u=Ds({inputs:{x:r},backend:n,attrs:{perm:c}}),l=N.getInnerMostAxes(l.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",l,u.shape.length);let[d,p]=N.computeOutAndReduceShapes(u.shape,l),h=v.sizeFromShape(p),f=v.makeZerosTypedArray(v.sizeFromShape(d),u.dtype),m=n.data.get(u.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let w=m[y+b];(Number.isNaN(w)||w<x)&&(x=w)}f[A]=x}c!=null&&n.disposeIntermediateTensorInfo(u);let g=n.makeTensorInfo(d,u.dtype,f);if(o){let A=N.expandShapeToKeepDim(d,i),y=Tt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var hX={kernelName:ja,backendName:"cpu",kernelFunc:pX};function fX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Ne(r,"mirrorPad");let i=a.map((x,b)=>x[0]+r.shape[b]+x[1]),l=a.map(x=>x[0]),c=a.map((x,b)=>x[0]+r.shape[b]),u=o==="reflect"?0:1,d=n.data.get(r.dataId).values,p=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(i),m=i.length,g=v.computeStrides(i),A=v.getTypedArrayFromDType(r.dtype,f);for(let x=0;x<f;x++){let b=v.indexToLoc(x,m,g);for(let k=0;k<m;k++)b[k]<l[k]?b[k]=l[k]*2-b[k]-u:b[k]>=c[k]&&(b[k]=(c[k]-1)*2-b[k]+u);b=b.map((k,S)=>k-l[S]);let w=v.locToIndex(b,p,h);A[x]=d[w]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var mX={kernelName:Xa,backendName:"cpu",kernelFunc:fX},gX=Jt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),AX=vn(au,gX),yX={kernelName:au,backendName:"cpu",kernelFunc:AX};function NI(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=v.parseAxisParam([i],r.shape),c=TI({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=N.expandShapeToKeepDim(c.shape,l),d=Tt({inputs:{x:c},backend:n,attrs:{shape:u}}),p=Ty({inputs:{a:r,b:d},backend:n}),h=L7({inputs:{x:p},backend:n}),f=Wd({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=Tt({inputs:{x:f},backend:n,attrs:{shape:u}}),g=Ry({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var xX={kernelName:io,backendName:"cpu",kernelFunc:NI},bX=Qo(Kp());function vX(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Ne(r,"multinomial");let l=i?r:NI({inputs:{logits:r},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],d=n.data.get(l.dataId).values,p=[c,a],h=v.makeZerosTypedArray(v.sizeFromShape(p),"int32");for(let f=0;f<c;++f){let m=f*u,g=new Float32Array(u-1);g[0]=d[m];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[m+x];let A=bX.alea(o.toString()),y=f*a;for(let x=0;x<a;++x){let b=A();h[y+x]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){h[y+x]=w;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(p,"int32",h)}var wX={kernelName:vh,backendName:"cpu",kernelFunc:vX},kX=Xs.nonMaxSuppressionV3Impl;function IX(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Ne(r,"NonMaxSuppression");let c=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,{selectedIndices:d}=kX(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var SX={kernelName:vi,backendName:"cpu",kernelFunc:IX},CX=Xs.nonMaxSuppressionV4Impl;function TX(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s;Ne(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:p,validOutputs:h}=CX(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var NX={kernelName:ou,backendName:"cpu",kernelFunc:TX},EX=Xs.nonMaxSuppressionV5Impl;function RX(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s;Ne(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=EX(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var $X={kernelName:wi,backendName:"cpu",kernelFunc:RX};function DX(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;Ne(r,"oneHot");let l=v.sizeFromShape(r.shape),c=new Float32Array(l*a);c.fill(i);let u=n.data.get(r.dataId).values;for(let d=0;d<l;++d)u[d]>=0&&u[d]<a&&(c[d*a+u[d]]=o);return n.makeTensorInfo([...r.shape,a],"int32",c)}var _X={kernelName:Ii,backendName:"cpu",kernelFunc:DX};function dm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=dl({inputs:{input:s},backend:n}),a=dm({inputs:{x:r},backend:n}),o=Vu({inputs:{input:s},backend:n}),i=dm({inputs:{x:o},backend:n}),l=xs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return _y({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var PX={kernelName:Wi,backendName:"cpu",kernelFunc:dm};function EI(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=dl({inputs:{input:s},backend:n}),a=EI({inputs:{x:r},backend:n}),o=Vu({inputs:{input:s},backend:n}),i=dm({inputs:{x:o},backend:n}),l=xs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return _y({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var FX={kernelName:ki,backendName:"cpu",kernelFunc:EI};function RI(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return cm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=cm({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=Uu({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var OX={kernelName:Si,backendName:"cpu",kernelFunc:RI};function MX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Ne(r,"pad");let i=a.map((y,x)=>y[0]+r.shape[x]+y[1]),l=a.map(y=>y[0]),c=n.data.get(r.dataId).values,u=v.sizeFromShape(r.shape),d=r.shape.length,p=v.computeStrides(r.shape),h=v.sizeFromShape(i),f=i.length,m=v.computeStrides(i),g=v.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let y=0;y<u;y++){let b=v.indexToLoc(y,d,p).map((k,S)=>k+l[S]),w=v.locToIndex(b,f,m);g[w]=c[y]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var $I={kernelName:Za,backendName:"cpu",kernelFunc:MX},zX=Jt((e,t)=>Math.pow(e,t)),LX=vn(Ya,zX),BX={kernelName:Ya,backendName:"cpu",kernelFunc:LX};function WX(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=Sy(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var VX={kernelName:iu,backendName:"cpu",kernelFunc:WX},UX=gt(lu,e=>1/e),GX={kernelName:lu,backendName:"cpu",kernelFunc:UX};function HX(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ne(r,"resizeBilinear");let l=v.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([d,c,u,f])),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],y=[a&&c>1?c-1:c,a&&u>1?u-1:u],x=0,b=A[0]/y[0],w=A[1]/y[1];for(let k=0;k<d;k++)for(let S=0;S<c;S++){let E;o?E=b*(S+.5)-.5:E=b*S;let P=Math.max(0,Math.floor(E)),F=E-P,R=Math.min(p-1,Math.ceil(E)),_=k*l[0]+P*l[1],T=k*l[0]+R*l[1];for(let M=0;M<u;M++){let U;o?U=w*(M+.5)-.5:U=w*M;let H=Math.max(0,Math.floor(U)),z=U-H,X=Math.min(h-1,Math.ceil(U)),ee=_+H*l[2],Y=T+H*l[2],se=_+X*l[2],ne=T+X*l[2];for(let J=0;J<f;J++){let te=m[ee+J],ue=m[Y+J],ce=m[se+J],xe=m[ne+J],we=te+(ce-te)*z,Ce=ue+(xe-ue)*z,Oe=we+(Ce-we)*F;g[x++]=Oe}}}return n.makeTensorInfo([d,c,u,f],"float32",g)}var jX={kernelName:eo,backendName:"cpu",kernelFunc:HX};function qX(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ne([a,r],"resizeBilinearGrad");let i=v.computeStrides(r.shape),[l,c,u,d]=r.shape,[,p,h]=a.shape,f=new Float32Array(l*c*u*d),m=[o&&p>1?c-1:c,o&&h>1?u-1:u],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],A=m[0]/g[0],y=m[1]/g[1],x=n.data.get(a.dataId).values,b=0;for(let w=0;w<l;w++){let k=w*i[0];for(let S=0;S<p;S++){let E=S*A,P=Math.floor(E),F=Math.min(Math.ceil(E),c-1),R=k+P*i[1],_=k+F*i[1],T=E-P,M=1-T;for(let U=0;U<h;U++){let H=U*y,z=Math.floor(H),X=Math.min(Math.ceil(H),u-1),ee=H-z,Y=1-ee,se=R+z*i[2],ne=R+X*i[2],J=_+z*i[2],te=_+X*i[2],ue=M*Y,ce=M*ee,xe=T*Y,we=T*ee;for(let Ce=0;Ce<d;Ce++){let Oe=x[b++];f[se+Ce]+=Oe*ue,f[ne+Ce]+=Oe*ce,f[J+Ce]+=Oe*xe,f[te+Ce]+=Oe*we}}}}return n.makeTensorInfo([l,u,c,d],"float32",f)}var XX={kernelName:kh,backendName:"cpu",kernelFunc:qX};function KX(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ne(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[c,u]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(d*c*u*f),A=[a&&c>1?p-1:p,a&&u>1?h-1:h],y=[a&&c>1?c-1:c,a&&u>1?u-1:u],x=A[0]/y[0],b=A[1]/y[1],w=0;for(let k=0;k<d;k++){let S=k*l[0];for(let E=0;E<c;E++){let P=o?x*(E+.5):x*E,F=Math.min(p-1,a?Math.round(P):Math.floor(P));o&&(F=Math.max(0,F));let R=S+F*l[1];for(let _=0;_<u;_++){let T=o?b*(_+.5):b*_,M=Math.min(h-1,a?Math.round(T):Math.floor(T));o&&(M=Math.max(0,M));let U=R+M*l[2];for(let H=0;H<f;H++){let z=m[U+H];g[w++]=z}}}}return n.makeTensorInfo([d,c,u,f],r.dtype,g)}var ZX={kernelName:uu,backendName:"cpu",kernelFunc:KX};function YX(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ne([a,r],"resizeNearestNeighborGrad");let i=v.computeStrides(r.shape),l=v.computeStrides(a.shape),[c,u,d,p]=r.shape,[,h,f]=a.shape,m=new Float32Array(c*u*d*p),g=n.data.get(a.dataId).values,A=[o&&h>1?u-1:u,o&&f>1?d-1:d],y=[o&&h>1?h-1:h,o&&f>1?f-1:f],x=A[0]/y[0],b=A[1]/y[1],w=1/x,k=1/b,S=Math.ceil(w)*2+2,E=Math.ceil(k)*2+2;for(let P=0;P<c;P++){let F=P*i[0];for(let R=0;R<u;R++){let _=F+R*i[1],T=Math.floor(R*w),M=Math.floor(T-S/2);for(let U=0;U<d;U++){let H=_+U*i[2],z=Math.floor(U*k),X=Math.floor(z-E/2);for(let ee=0;ee<p;ee++){let Y=0;for(let se=0;se<S;se++){let ne=se+M;if(ne<0||ne>=h)continue;let J=F+ne*l[1],te=ne*x,ue=Math.min(u-1,o?Math.round(te):Math.floor(te));if(R===ue)for(let ce=0;ce<E;ce++){let xe=ce+X;if(xe<0||xe>=f)continue;let we=J+xe*l[2],Ce=xe*b,Oe=Math.min(d-1,o?Math.round(Ce):Math.floor(Ce));U===Oe&&(Y+=g[we+ee])}}m[H+ee]=Y}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var JX={kernelName:wh,backendName:"cpu",kernelFunc:YX};function QX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Ne(r,"reverse");let o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return Or({inputs:{x:r},backend:n});let l=new sn(r.shape,r.dtype),c=n.bufferSync(r);for(let u=0;u<l.size;u++){let d=l.indexToLoc(u),p=d.slice();i.forEach(h=>p[h]=r.shape[h]-1-p[h]),l.set(c.get(...p),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var eK={kernelName:Ni,backendName:"cpu",kernelFunc:QX},tK={kernelName:Vi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[c,u,d,p]=s.shape,[h,f]=N.getImageCenter(o,u,d),m=255,g=Math.sin(r),A=Math.cos(r),y=i.data.get(s.dataId).values;for(let b=0;b<c;b++){let w=b*d*u*p;for(let k=0;k<u;k++){let S=k*(d*p);for(let E=0;E<d;E++){let P=E*p;for(let F=0;F<p;F++){let R=[c,k,E,F],_=R[2],T=R[1],M=(_-h)*A-(T-f)*g,U=(_-h)*g+(T-f)*A;M=Math.round(M+h),U=Math.round(U+f);let H=a;if(typeof a!="number"&&(F===3?H=m:H=a[F]),M>=0&&M<d&&U>=0&&U<u){let X=U*(d*p),ee=M*p,Y=w+X+ee+F;H=y[Y]}let z=w+S+P+F;l[z]=H}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},nK=gt(Ei,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),sK={kernelName:Ei,backendName:"cpu",kernelFunc:nK};function DI(e,t,n,s,r,a,o,i,l,c){let u=[s/r,r],d=e.values,p=t.values;if(s===0)return Le(n,t.dtype);let h=Le(u,t.dtype);h.values.fill(l);for(let f=0;f<a;f++){let m=[],g=0;for(let A=0;A<o;A++){let y=d[f*o+A];m.push(y),g+=y*i[A]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let A=0;A<r;A++)c?h.values[g*r+A]+=p[f*r+A]:h.values[g*r+A]=t.rank===0?p[0]:p[f*r+A]}return h}function rK(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=N.calculateShapes(a,r,o),p=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=DI(h,f,o,d,c,l,i,u,0,p);return n.makeTensorInfo(o,m.dtype,m.values)}var aK={kernelName:Ri,backendName:"cpu",kernelFunc:rK};function oK(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Ne([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=Bn(r.dtype,a.dtype),d=v.makeZerosTypedArray(v.sizeFromShape(r.shape),u),p=0,h=o===0||o>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?d[p++]=l[f]:d[p++]=c[f];return n.makeTensorInfo(r.shape,u,d)}var iK={kernelName:$i,backendName:"cpu",kernelFunc:oK},lK=N.SELU_SCALEALPHA,uK=N.SELU_SCALE,cK=gt(cu,e=>e>=0?uK*e:lK*(Math.exp(e)-1)),dK={kernelName:cu,backendName:"cpu",kernelFunc:cK},pK=gt(du,e=>e<0?-1:e>0?1:0),hK={kernelName:du,backendName:"cpu",kernelFunc:pK},fK=gt(so,e=>Math.sin(e)),mK={kernelName:so,backendName:"cpu",kernelFunc:fK},gK=gt(_i,e=>Math.sinh(e)),AK={kernelName:_i,backendName:"cpu",kernelFunc:gK},yK=11920928955078125e-23,_I=Math.log(yK)+2,xK=gt(pu,e=>{let t=e>-_I,n=e<_I,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),bK={kernelName:pu,backendName:"cpu",kernelFunc:xK};function vK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Ne([r],"spaceToBatchND");let i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let c=$I.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=N.getReshaped(c.shape,a,i,!1),d=N.getPermuted(u.length,a.length,!1),p=N.getReshapedPermuted(c.shape,a,i,!1),m=Tt({inputs:{x:c},backend:n,attrs:{shape:u}}),y=Ds({inputs:{x:m},backend:n,attrs:{perm:d}}),w=Tt({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),w}var wK={kernelName:Pi,backendName:"cpu",kernelFunc:vK};function kK(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,u=n.data.get(o.dataId).values[0],[d,p,h,f,m]=rI(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var IK={kernelName:Ih,backendName:"cpu",kernelFunc:kK};function SK(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[c,u,d]=aI(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var CK={kernelName:Sh,backendName:"cpu",kernelFunc:SK};function TK(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=Cy(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var NK={kernelName:Ch,backendName:"cpu",kernelFunc:TK};function EK(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[c,u]=Cy(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var RK={kernelName:Th,backendName:"cpu",kernelFunc:EK};function $K(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=N.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],A=DI(f,m,i,p,u,c,l,d,g,h);return n.makeTensorInfo(i,A.dtype,A.values)}var DK={kernelName:jc,backendName:"cpu",kernelFunc:$K};function _K(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=N.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=pl({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});return c[i]+=d,h})}var PK={kernelName:Fi,backendName:"cpu",kernelFunc:_K},FK={kernelName:hu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Ne(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},OK=gt(ho,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),MK={kernelName:ho,backendName:"cpu",kernelFunc:OK};function zK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s;Ne(r,"stridedSlice");let{nonStrided:h,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=An.sliceInfo(r.shape,a,o,i,l,c,u,d,p),x=Tt({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(h){let k=pl({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=Tt({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else{let k=n.bufferSync(x),S=iI(y,k,m,f);b=n.makeTensorInfo(S.shape,S.dtype,S.values)}let w=Tt({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),w}var LK={kernelName:Oi,backendName:"cpu",kernelFunc:zK};function BK(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.data.get(u.dataId).values,h=n.data.get(d.dataId).values,[f,m]=lI(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var WK={kernelName:qc,backendName:"cpu",kernelFunc:BK};function VK(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[c,u,d]=uI(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var UK={kernelName:Nh,backendName:"cpu",kernelFunc:VK};function GK(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=cI(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var HK={kernelName:Eh,backendName:"cpu",kernelFunc:GK},jK=gt(Mi,e=>Math.tan(e)),qK={kernelName:Mi,backendName:"cpu",kernelFunc:jK},XK=gt(co,e=>Math.tanh(e)),KK={kernelName:co,backendName:"cpu",kernelFunc:XK};function ZK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Ne(r,"tile");let o=pI(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var YK={kernelName:qr,backendName:"cpu",kernelFunc:ZK};function JK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Ne(r,"topk");let i=n.data.get(r.dataId).values,[l,c]=fI(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var QK={kernelName:zi,backendName:"cpu",kernelFunc:JK};function eZ(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=n,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=v.computeStrides(r.shape),y=A[0],x=A[1],b=A[2],w=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));w.fill(l);let k=s.data.get(r.dataId).values,S=s.data.get(a.dataId).values;for(let P=0;P<u;++P){let F=a.shape[0]===1?S:S.subarray(P*8,P*8+8);for(let R=0;R<f;++R)for(let _=0;_<m;++_)for(let T=0;T<h;++T){let M,U=F[6]*_+F[7]*R+1;if(U===0)continue;let H=(F[0]*_+F[1]*R+F[2])/U,z=(F[3]*_+F[4]*R+F[5])/U,X=PI(H,p,i),ee=PI(z,d,i);switch(o){case"nearest":M=oZ(k,d,p,y,x,b,P,ee,X,T,l);break;case"bilinear":M=iZ(k,d,p,y,x,b,P,ee,X,T,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let Y=P*y+R*x+_*b+T;w[Y]=M}return s.makeTensorInfo(g,r.dtype,w)}return{dataId:s.write(w,g,r.dtype),shape:r.shape,dtype:r.dtype}}var tZ={kernelName:Li,backendName:"cpu",kernelFunc:eZ};function PI(e,t,n){switch(n){case"reflect":return nZ(e,t);case"wrap":return sZ(e,t);case"nearest":return aZ(e,t);case"constant":default:return rZ(e,t)}}function nZ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return v.clamp(0,n,t-1)}function sZ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return v.clamp(0,n,t-1)}function rZ(e,t){return e}function aZ(e,t){return v.clamp(0,e,t-1)}function Vd(e,t,n,s,r,a,o,i,l,c,u){let d=o*s+i*r+l*a+c;return 0<=i&&i<t&&0<=l&&l<n?e[d]:u}function oZ(e,t,n,s,r,a,o,i,l,c,u){let d=Math.round(i),p=Math.round(l);return Vd(e,t,n,s,r,a,o,d,p,c,u)}function iZ(e,t,n,s,r,a,o,i,l,c,u){let d=Math.floor(i),p=Math.floor(l),h=d+1,f=p+1,m=(f-l)*Vd(e,t,n,s,r,a,o,d,p,c,u)+(l-p)*Vd(e,t,n,s,r,a,o,d,f,c,u),g=(f-l)*Vd(e,t,n,s,r,a,o,h,p,c,u)+(l-p)*Vd(e,t,n,s,r,a,o,h,f,c,u);return(h-i)*m+(i-d)*g}function lZ(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Ne(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:c}=mI(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var uZ={kernelName:Rh,backendName:"cpu",kernelFunc:lZ};function cZ(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),c=0;for(let h=0;h<o;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o).fill(0),d=r.shape.slice();d[a]=1;let p=new Array(i);for(let h=0;h<p.length;h++){u[a]=h;let f=pl({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});p[h]=Tt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return p}var dZ={kernelName:Bi,backendName:"cpu",kernelFunc:cZ};function pZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Ne(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,c=[],u=[],d=i-l,p=a;for(let f=0;f<d;++f){let m=cm({inputs:{input:p},backend:n,attrs:{dim:f+1}});p=m,u.push(m)}for(let f=0;f<o;++f){let m=v.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),A=M7({inputs:{a:g,b:p},backend:n}),y=_o({inputs:{x:A},backend:n,attrs:{dtype:"float32"}}),x=lm({inputs:{a:y,b:r},backend:n}),b=Wd({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});c.push(b),u.push(g),u.push(A),u.push(y),u.push(x),u.push(b)}let h=RI({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var hZ={kernelName:Xc,backendName:"cpu",kernelFunc:pZ},fZ=[vH,hG,kH,SH,xG,TH,EH,$H,_H,FH,MH,LH,WH,GH,jH,KH,YH,QH,tj,xH,sj,aj,ij,uj,AG,vG,dj,fG,hj,mj,yj,bj,gj,Ij,Cj,wj,Nj,Rj,Dj,Pj,Oj,zj,Lj,Wj,Uj,Hj,jj,Xj,qj,$y,Yj,pH,Qj,wG,iq,kG,lq,SG,fq,mq,Aq,TG,bq,wq,Iq,Cq,Nq,EG,$G,mG,Rq,fj,Dq,Pq,Oq,hH,_G,FG,zq,MG,Bq,Uq,Hq,Xq,Zq,Jq,LG,tX,sX,aX,iX,uX,Qq,dX,hX,WG,mX,yX,wX,UG,HG,SX,NX,$X,qG,_X,FX,OX,$I,BX,mH,ZG,VX,gG,GX,gH,AH,yH,jX,XX,ZX,JX,eK,tK,sK,JG,aK,iK,dK,eH,hK,mK,AK,tH,xX,bK,wK,IK,CK,NK,RK,DK,PK,rH,FK,oH,MK,LK,WK,UK,HK,cH,Kj,qK,KK,YK,QK,XG,tZ,uZ,dZ,hZ,PX];for(let e of fZ)Kr(e);var FI={};ze(FI,{assertNotComplex:()=>Hu,bindCanvasToFramebuffer:()=>CZ,bindColorTextureToFramebuffer:()=>mm,bindTextureToProgramUniformSampler:()=>ZI,bindTextureUnit:()=>qI,bindVertexBufferToProgramAttribute:()=>Oy,callAndCheck:()=>Se,canBeRepresented:()=>OI,createFragmentShader:()=>LI,createFramebuffer:()=>jI,createProgram:()=>BI,createStaticIndexBuffer:()=>UI,createStaticVertexBuffer:()=>VI,createTexture:()=>GI,createVertexShader:()=>zI,getBatchDim:()=>fl,getExtensionOrThrow:()=>Hd,getFramebufferErrorMessage:()=>YI,getMaxTexturesInShader:()=>tS,getNumChannels:()=>IZ,getProgramUniformLocation:()=>KI,getProgramUniformLocationOrThrow:()=>XI,getRowsCols:()=>ml,getShapeAs3D:()=>gm,getTextureShapeFromLogicalShape:()=>QI,getWebGLDisjointQueryTimerVersion:()=>nS,getWebGLErrorMessage:()=>MI,getWebGLMaxTextureSize:()=>eS,hasExtension:()=>Ps,isCapableOfRenderingToFloatTexture:()=>sS,isDownloadFloatTextureEnabled:()=>rS,isReshapeFree:()=>qd,isWebGLFenceEnabled:()=>aS,isWebGLVersionEnabled:()=>zy,linkProgram:()=>WI,resetMaxTextureSize:()=>TZ,resetMaxTexturesInShader:()=>NZ,unbindColorTextureFromFramebuffer:()=>My,unbindTextureUnit:()=>SZ,validateFramebuffer:()=>jd,validateProgram:()=>fm,validateTextureSize:()=>HI});var hl={},Py={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function pm(e,t){hl[e]=t}function Mr(e){if(!(e in hl)){let n=gZ(e);if(n!==null)hl[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=hl[e];return t.isContextLost()?(delete hl[e],Mr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),hl[e])}function mZ(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function gZ(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=mZ(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete hl[e]},!1),e===1?t.getContext("webgl",Py)||t.getContext("experimental-webgl",Py):t.getContext("webgl2",Py)}var Ud;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Ud||(Ud={}));var _s;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(_s||(_s={}));var Cn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Cn||(Cn={}));function Gd(e,t){return[t,e]}function AZ(e,t){return e*t}function hm(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function Gu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function yZ(e,t){let[n,s]=Gu(e,t);return n*s*4}function Fy(e,t){let n=e,s,r,a,o,i,l,c,u,d,p;return K().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,c=4,u=1,d=n.HALF_FLOAT,p=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,c=4,u=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:d,textureTypeFloat:p}}function Se(e,t){let n=t();return K().getBool("DEBUG")&&xZ(e),n}function xZ(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+MI(e,t))}var bZ=596e-10,vZ=65504;function OI(e){return!!(K().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||bZ<Math.abs(e)&&Math.abs(e)<vZ)}function MI(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Hd(e,t){return oa(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function zI(e,t){let n=oa(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Se(e,()=>e.shaderSource(n,t)),Se(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function LI(e,t){let n=oa(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Se(e,()=>e.shaderSource(n,t)),Se(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw kZ(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var wZ=/ERROR: [0-9]+:([0-9]+):/g;function kZ(e,t){let n=wZ.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,o=r.map((d,p)=>v.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let l=o.slice(0,s-1),c=o.slice(s-1,s),u=o.slice(s);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${v.rightPad(c[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
|
|
`))}function BI(e){return oa(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function WI(e,t){if(Se(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function fm(e,t){if(Se(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function VI(e,t){let n=oa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Se(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function UI(e,t){let n=oa(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Se(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Se(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function IZ(){return K().getNumber("WEBGL_VERSION")===2?1:4}function GI(e){return oa(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function HI(e,t){let n=K().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function jI(e){return oa(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Oy(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Se(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Se(e,()=>e.enableVertexAttribArray(i)),!0)}function qI(e,t,n){JI(e,n),Se(e,()=>e.activeTexture(e.TEXTURE0+n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function SZ(e,t){JI(e,t),Se(e,()=>e.activeTexture(e.TEXTURE0+t)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function XI(e,t,n){return oa(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function KI(e,t,n){return e.getUniformLocation(t,n)}function ZI(e,t,n,s){Se(e,()=>qI(e,t,s)),Se(e,()=>e.uniform1i(n,s))}function CZ(e){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Se(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Se(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function mm(e,t,n){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Se(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function My(e,t){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Se(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function jd(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+YI(e,t))}function YI(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function oa(e,t,n){let s=Se(e,()=>t());if(s==null)throw new Error(n);return s}function JI(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function fl(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function ml(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function gm(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[fl(e),...ml(e)]),t}function QI(e,t=!1){let n=K().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?v.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let s=v.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=fl(e),a=2,o=2;return e.length&&([a,o]=ml(e)),s=r*(a/2)*(o/2),v.sizeToSquarishShape(s).map(i=>i*2)}return v.sizeToSquarishShape(s)}function Am(e){return e%2==0}function qd(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||Am(n)&&Am(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Am(e[0])&&Am(t[0])}var ym,xm;function eS(e){if(ym==null){let t=Mr(e);ym=t.getParameter(t.MAX_TEXTURE_SIZE)}return ym}function TZ(){ym=null}function NZ(){xm=null}function tS(e){if(xm==null){let t=Mr(e);xm=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,xm)}function nS(e){if(e===0)return 0;let t,n=Mr(e);return Ps(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ps(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ps(e,t){return e.getExtension(t)!=null}function zy(e){try{if(Mr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function sS(e){if(e===0)return!1;let t=Mr(e);if(e===1){if(!Ps(t,"OES_texture_float"))return!1}else if(!Ps(t,"EXT_color_buffer_float"))return!1;return Ly(t)}function rS(e){if(e===0)return!1;let t=Mr(e);if(e===1){if(!Ps(t,"OES_texture_float")||!Ps(t,"WEBGL_color_buffer_float"))return!1}else{if(Ps(t,"EXT_color_buffer_float"))return Ly(t);let s="EXT_color_buffer_half_float";if(Ps(t,s)){let r=t.getExtension(s);return EZ(t,r)}return!1}return Ly(t)}function Ly(e){let t=Fy(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function EZ(e,t){let n=Fy(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function aS(e){return e!==2?!1:Mr(e).fenceSync!=null}function Hu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var De=K();De.registerFlag("HAS_WEBGL",()=>De.getNumber("WEBGL_VERSION")>0);De.registerFlag("WEBGL_VERSION",()=>zy(2)?2:zy(1)?1:0);De.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);De.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>De.get("WEBGL_VERSION")===2);De.registerFlag("WEBGL_CPU_FORWARD",()=>!0);De.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);De.registerFlag("WEBGL_PACK",()=>De.getBool("HAS_WEBGL"));De.registerFlag("WEBGL_PACK_NORMALIZATION",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_CLIP",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_REDUCE",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_LAZILY_UNPACK",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_CONV_IM2COL",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>eS(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>tS(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=De.getNumber("WEBGL_VERSION");return e===0?0:nS(e)});De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>De.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!gu.isMobile());De.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>sS(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>De.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:De.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));De.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>rS(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_FENCE_API_ENABLED",()=>aS(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>De.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);De.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});De.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>gu.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});De.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);De.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);De.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);De.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Gn(){let e,t,n,s,r,a,o,i,l,c;return K().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",c=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,c=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:c}}function gl(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function bm(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function RZ(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function $Z(e,t,n="index"){let s=e.map((a,o)=>o),r=RZ(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function By(e){let t=v.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function Wy(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var oS=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:iS}=N;function DZ(e,t,n){let s=[];if(e.forEach(h=>{let f=v.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=Vy(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(h=>_Z(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),o=t.texShape,i=Gn(),l=OZ(i),c,u,d=LZ(i);return t.isPacked?(c=PZ(t.logicalShape,o,n.enableShapeUniforms),u=zZ(i)):(c=FZ(t.logicalShape,o,n.enableShapeUniforms),u=MZ(i)),n.packedInputs&&(d+=UZ),[d,l,u,r,c,a,n.userCode].join(`
|
|
`)}function ju(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return tY(e,t);case 1:return sY(e,t);case 2:return aY(e,t);case 3:return iY(e,t);case 4:return uY(e,t);case 5:return cY(e);case 6:return dY(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function lS(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return eY(e);case 1:return nY(e,t);case 2:return rY(e,t);case 3:return oY(e,t);default:return lY(e,t)}}function _Z(e,t,n=!1,s){let r="";n?r+=lS(e,s):r+=ju(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=pY(e,t):r+=hY(e,t)),r}function PZ(e,t,n){switch(e.length){case 0:return uS();case 1:return GZ(e,t,n);case 2:return JZ(e,t,n);case 3:return jZ(e,t,n);default:return XZ(e,t,n)}}function FZ(e,t,n){switch(e.length){case 0:return uS();case 1:return HZ(e,t,n);case 2:return QZ(e,t,n);case 3:return qZ(e,t,n);case 4:return KZ(e,t,n);case 5:return ZZ(e,t);case 6:return YZ(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function OZ(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function MZ(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function zZ(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function LZ(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${BZ}
|
|
${WZ}
|
|
${VZ}
|
|
`}var BZ=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,WZ=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,VZ=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,UZ=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function uS(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function GZ(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function HZ(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function jZ(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function qZ(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${bm(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=gl(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function XZ(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let c=2;c<e.length-1;c++)o*=e[e.length-c-1],i=`
|
|
int b${c} = index / ${o};
|
|
index -= b${c} * ${o};
|
|
`+i,l=`b${c}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function KZ(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${bm(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=gl(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function ZZ(e,t){let n=gl(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function YZ(e,t){let n=gl(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function JZ(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function QZ(e,t,n){return v.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Al(e){return`offset${e}`}function eY(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=Gn();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function tY(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=Al(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[i,l]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function nY(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=Gn();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function sY(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${qu(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=Al(n);return o===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function rY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=Gn();if(a!=null&&v.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;let c=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${c[0]}, ${c[1]}, row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`}function aY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let p=a[0],h=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:o,keptDims:i}=v.squeezeShape(n),l=o;if(l.length<n.length){let p=Xu(e,l),h=["row","col"];return`
|
|
${ju(p,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${Ku(h,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${qu(e)}
|
|
}
|
|
`;let c=a[0],u=a[1],d=Al(s);return u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${c}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${c}, ${u}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function oY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let p=n.slice(1),h=[1,2],f=Xu(e,p),m=["b","row","col"];return`
|
|
${lS(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${Ku(m,h)});
|
|
}
|
|
`}let i=Gn();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=o[0],c=o[1],u=Math.ceil(n[2]/2),d=u*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${c}, ${d}, ${u}, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`}function iY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=v.squeezeShape(n),c=i;if(c.length<n.length){let m=Xu(e,c),g=["row","col","depth"];return`
|
|
${ju(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${Ku(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${o}, 1)));
|
|
${qu(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,d=u[0],p=u[1],h=e.shapeInfo.flatOffset;if(p===a&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(p===o&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=Al(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function lY(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=Gn();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],c=l[0],u=l[1],d=Math.ceil(a[o-1]/2),p=d*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${p} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,p*=a[o-m-1],f=`b${m} * ${p} + `+f;return`
|
|
vec4 ${s}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${u};
|
|
int texC = index - texR * ${u};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${u}, ${c});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function uY(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:c}=v.squeezeShape(n);if(l.length<n.length){let y=Xu(e,l),x=["row","col","depth","depth2"];return`
|
|
${ju(y,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${Ku(x,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, 1)));
|
|
${qu(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&u==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===a&&u==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let A=Al(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function cY(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:c}=v.squeezeShape(t);if(l.length<t.length){let m=Xu(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${ju(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${Ku(g,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, ${r})) +
|
|
depth3;
|
|
${qu(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1];if(h===i&&u==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${o}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&u==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Al(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function dY(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=v.squeezeShape(t);if(r.length<t.length){let g=Xu(e,r),A=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${ju(g)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${Ku(A,a)});
|
|
}
|
|
`}let o=t[5],i=t[4]*o,l=t[3]*i,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${u}, ${c}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${o}, 1)));
|
|
${qu(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,h=p[0],f=p[1];if(f===u&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${c}, ${l}, ${i}, ${o})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===o&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Al(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${u} + col * ${c} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function qu(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function pY(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=iS(e.shapeInfo.logicalShape,t.logicalShape),l=vt(o),c=o-a,u,d=["x","y","z","w","u","v"];a===0?u="":o<2&&i.length>=1?u="coords = 0;":u=i.map(y=>`coords.${d[y+c]} = 0;`).join(`
|
|
`);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((y,x)=>`coords.${d[x+c]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,A=v.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!A)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!A)o===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let y=a-2,x=a-1;i.indexOf(y)>-1&&i.indexOf(x)>-1?h="return vec4(outputValue.x);":i.indexOf(y)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(x)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${u}
|
|
vec4 outputValue = get${s}(${p});
|
|
${h}
|
|
}
|
|
`}function hY(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(o,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let c=vt(l),u=iS(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,p,h=["x","y","z","w","u","v"];i===0?p="":l<2&&u.length>=1?p="coords = 0;":p=u.map(m=>`coords.${h[m+d]} = 0;`).join(`
|
|
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${c} coords = getOutputCoords();
|
|
${p}
|
|
return get${s}(${f});
|
|
}
|
|
`}function vt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Vy(e,t,n){let{newShape:s,keptDims:r}=v.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!v.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function Xu(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Ku(e,t){return t.map(n=>e[n]).join(", ")}function fY(e,t,n,s){let r=n.map((x,b)=>{let w={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(w.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:w}}),a=r.map(x=>x.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=DZ(r,o,t),l=e.createProgram(i),c=null,u=e.getUniformLocation(l,"NAN",!1);K().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(l,"INFINITY",!1));let d=!1,p={},h={},f={};for(let x=0;x<t.variableNames.length;x++){let b=t.variableNames[x];p[b]=e.getUniformLocation(l,b,d),p[`offset${b}`]=e.getUniformLocation(l,`offset${b}`,d),t.enableShapeUniforms&&(h[`${b}Shape`]=e.getUniformLocation(l,`${b}Shape`,d),f[`${b}TexShape`]=e.getUniformLocation(l,`${b}TexShape`,d))}let m,g,A;t.enableShapeUniforms&&(m=e.getUniformLocation(l,"outShape",d),A=e.getUniformLocation(l,"outShapeStrides",d),g=e.getUniformLocation(l,"outTexShape",d));let y=[];return t.customUniforms&&t.customUniforms.forEach((x,b)=>{y[b]=e.getUniformLocation(l,x.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:p,customUniformLocations:y,inShapeInfos:a,outShapeInfo:o,infLoc:c,nanLoc:u,inShapesLocations:h,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:A,outTexShapeLocation:g}}function cS(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!v.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!v.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function mY(e,t,n,s,r){t.program.enableShapeUniforms||(cS(t.inShapeInfos,n),cS([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),K().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,c)=>{let u=t.program.variableNames[c],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`],h=t.inShapesLocations[`${u}Shape`],f=t.inTexShapesLocations[`${u}TexShape`];if(h){let{uniformShape:m}=Vy(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,c)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,c)=>{let u=t.customUniformLocations[c],d=r[c];if(l.type==="float")e.gl.uniform1fv(u,d);else if(l.type==="vec2")e.gl.uniform2fv(u,d);else if(l.type==="vec3")e.gl.uniform3fv(u,d);else if(l.type==="vec4")e.gl.uniform4fv(u,d);else if(l.type==="int")e.gl.uniform1iv(u,d);else if(l.type==="ivec2")e.gl.uniform2iv(u,d);else if(l.type==="ivec3")e.gl.uniform3iv(u,d);else if(l.type==="ivec4")e.gl.uniform4iv(u,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function gY(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:c,uniformShape:u,keptDims:d}=Vy(e.packedInputs,o.shape,l),p="",h="",f="";if(u.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${w[0]>1}_${w[1]>1}`}else if(u.length===2&&!e.packedInputs)h=`${u[0]>1}_${u[1]>1}`;else if(u.length>2&&!e.packedInputs){let w=v.computeStrides(u);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=o.shape.length,g=u.length===2&&v.arraysEqual(o.shape,l),A=v.sizeFromShape(o.shape)===1,y=N.getBroadcastDims(o.shape,n.shape),x=!e.packedInputs&&m===n.shape.length&&v.arraysEqual(l,n.texData.texShape),b=e.packedInputs||u.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${x}_${c?d:""}_${u.length}_${A}_${y}_${g}_${p}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${K().getNumber("WEBGL_VERSION")}`,a}function Fs(e){return K().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var AY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Ud.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Gn();this.outputShape=e,this.enableShapeUniforms=Fs(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?bm(["r","c","d"],e):gl(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},yY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Ud.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Gn();this.outputShape=e,this.enableShapeUniforms=Fs(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?bm(["r","c","d"],e):gl(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},xY=class{constructor(e){this.variableNames=["A"],this.outTexUsage=_s.DOWNLOAD;let t=Gn();this.outputShape=e,this.userCode=`
|
|
${oS}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},bY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=_s.DOWNLOAD;let t=Gn();this.outputShape=e,this.userCode=`
|
|
${oS}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},vY=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Gn();this.outputShape=e,this.enableShapeUniforms=Fs(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?Wy():By(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}},wY=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Gn();this.outputShape=e,this.enableShapeUniforms=Fs(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${o};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${i}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${i}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${i}] = values[2];
|
|
} else {
|
|
result[${i}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?Wy():By(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${s}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},dS={};ze(dS,{bindVertexProgramAttributeStreams:()=>bS,createBufferFromOutputTexture:()=>kS,createFloat16MatrixTexture:()=>gS,createFloat16PackedMatrixTexture:()=>xS,createFloat32MatrixTexture:()=>mS,createIndexBuffer:()=>fS,createPackedMatrixTexture:()=>yS,createUnsignedBytesMatrixTexture:()=>AS,createVertexBuffer:()=>hS,createVertexShader:()=>pS,downloadByteEncodedFloatMatrixFromOutputTexture:()=>SS,downloadFloat32MatrixFromBuffer:()=>IS,downloadMatrixFromPackedOutputTexture:()=>TS,downloadPackedMatrixFromBuffer:()=>CS,getInternalFormatForFloat16MatrixTexture:()=>Gy,getInternalFormatForFloat16PackedMatrixTexture:()=>qy,getInternalFormatForFloat32MatrixTexture:()=>Uy,getInternalFormatForPackedMatrixTexture:()=>jy,getInternalFormatForUnsignedBytesMatrixTexture:()=>Hy,uploadDenseMatrixToTexture:()=>vS,uploadPixelDataToTexture:()=>wS});function pS(e){let t=Gn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return zI(e,n)}function hS(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return VI(e,t)}function fS(e){let t=new Uint16Array([0,1,2,2,1,3]);return UI(e,t)}function Xd(e,t,n,s,r,a){HI(t,n);let o=GI(e),i=e.TEXTURE_2D;return Se(e,()=>e.bindTexture(i,o)),Se(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Se(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Se(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Se(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),Se(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function Uy(e){return e.internalFormatFloat}function mS(e,t,n,s){let[r,a]=Gd(t,n);return Xd(e,r,a,Uy(s),s.textureFormatFloat,e.FLOAT)}function Gy(e){return e.internalFormatHalfFloat}function gS(e,t,n,s){let[r,a]=Gd(t,n);return Xd(e,r,a,Gy(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function Hy(e){return e.downloadTextureFormat}function AS(e,t,n,s){let[r,a]=Gd(t,n);return Xd(e,r,a,Hy(s),e.RGBA,e.UNSIGNED_BYTE)}function jy(e){return e.internalFormatPackedFloat}function yS(e,t,n,s){let[r,a]=Gu(t,n);return Xd(e,r,a,jy(s),e.RGBA,e.FLOAT)}function qy(e){return e.internalFormatPackedHalfFloat}function xS(e,t,n,s){let[r,a]=Gu(t,n);return Xd(e,r,a,qy(s),e.RGBA,s.textureTypeHalfFloat)}function bS(e,t,n){let s=0,r=3*4,a=3*4+2*4;return Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Oy(e,t,"clipSpacePos",n,3,a,s)&&Oy(e,t,"uv",n,2,a,r)}function vS(e,t,n,s,r,a){Se(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function wS(e,t,n){Se(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function kS(e,t,n,s){let r=e.createBuffer();Se(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Se(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Se(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Se(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function IS(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function SS(e,t,n,s){let[r,a]=Gd(t,n),o=4,i=new Uint8Array(AZ(t*n,o));return Se(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function CS(e,t,n,s,r,a,o,i){let l=e,c=new Float32Array(yZ(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function TS(e,t,n){let s=new Float32Array(t*n*4);return Se(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var vm=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=K().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,pm(t,e)):this.gl=Mr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(K().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=Hd(this.gl,r),Ps(this.gl,a))this.textureHalfFloatExtension=Hd(this.gl,a);else if(K().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ps(this.gl,s))this.colorBufferHalfFloatExtension=Hd(this.gl,s);else if(K().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ps(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ps(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=hS(this.gl),this.indexBuffer=fS(this.gl),this.framebuffer=jI(this.gl),this.textureConfig=Fy(this.gl,this.textureHalfFloatExtension)}get debug(){return K().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Se(e,()=>e.finish()),Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Se(e,()=>e.deleteFramebuffer(this.framebuffer)),Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Se(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Se(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),mS(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),gS(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),AS(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),wS(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),vS(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),xS(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),yS(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(My(this.gl,this.framebuffer),this.outputTexture=null),Se(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>SS(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return CS(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return IS(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=kS(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(K().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>TS(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=LI(t,e);this.vertexShader==null&&(this.vertexShader=pS(t));let s=BI(t);return Se(t,()=>t.attachShader(s,this.vertexShader)),Se(t,()=>t.attachShader(s,n)),WI(t,s),this.debug&&fm(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=bS(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Se(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&fm(this.gl,this.program),Se(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?XI(this.gl,e,t):KI(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Se(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),ZI(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=Gu(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&fm(this.gl,this.program),jd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Se(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Se(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Hd(this.gl,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=kY(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),mm(this.gl,e,this.framebuffer),this.debug&&jd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(mm(this.gl,this.outputTexture,this.framebuffer),this.debug&&jd(this.gl)):My(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;mm(s,e,this.framebuffer),this.debug&&jd(s),this.outputTexture=e,Se(s,()=>s.viewport(0,0,t,n)),Se(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Se(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function kY(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:IY,bincountImpl:NS,bincountReduceImpl:SY,ceilImpl:CY,concatImpl:TY,equalImpl:NY,expImpl:EY,expm1Impl:RY,floorImpl:$Y,gatherNdImpl:DY,gatherV2Impl:_Y,greaterImpl:PY,greaterEqualImpl:FY,lessImpl:OY,lessEqualImpl:MY,linSpaceImpl:zY,logImpl:LY,maxImpl:BY,maximumImpl:WY,minimumImpl:VY,multiplyImpl:UY,negImpl:GY,notEqualImpl:HY,prodImpl:jY,rangeImpl:qY,rsqrtImpl:XY,sigmoidImpl:KY,simpleAbsImpl:ES,sliceImpl:ZY,sparseFillEmptyRowsImpl:YY,sparseReshapeImpl:JY,sparseSegmentReductionImpl:RS,sqrtImpl:QY,stridedSliceImpl:eJ,stringNGramsImpl:tJ,stringSplitImpl:nJ,stringToHashBucketFastImpl:sJ,subImpl:rJ,tileImpl:aJ,topKImpl:oJ,transposeImpl:Xy,uniqueImpl:iJ}=om;function $S(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Hn(e,t){return t===1?[e]:$S(e,t)}function lJ(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var uJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=Hn("rc",t),s=vt(t),r=dJ(t,e,n),a=pJ(t,e[e.length-1],e[e.length-2],n),o=hJ(e,n);this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${o}));
|
|
}
|
|
}
|
|
`}}};function cJ(e,t){let n=[];for(let s=0;s<=1;s++)for(let r=0;r<=1;r++){let a=`${s===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function dJ(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let r=e-2;r<e;r++)s+=`${n[r]} >= ${t[r]}`,r<e-1&&(s+="||");return s}function pJ(e,t,n,s){if(e===1)return"";let r=s.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function hJ(e,t){let n=e.length,s=cJ(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${s[0]}),
|
|
cEdge ? 0. : getA(${s[1]}),
|
|
rEdge ? 0. : getA(${s[2]}),
|
|
rEdge || cEdge ? 0. : getA(${s[3]})`}var DS=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Fs(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${fJ(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?Wy():By(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function fJ(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?$Z(["r","c","d"],"inputShape"):gl(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var mJ=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=PS(t,n),r=FS(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=_S(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===Cn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===Cn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===Cn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===Cn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===Cn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=PS(n,s),a=FS(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=_S(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=K().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function gJ(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function _S(e,t,n,s,r){let a=AJ(t,s),o;if(r){let[l,c]=Gu(e[0],e[1]);o=l*c}else{let[l,c]=Gd(e[0],e[1]);o=l*c}let i=gJ(n,a);return o*i}function AJ(e,t){switch(e){case Cn.PACKED_2X2_FLOAT32:return jy(t);case Cn.PACKED_2X2_FLOAT16:return qy(t);case Cn.UNPACKED_FLOAT32:return Uy(t);case Cn.UNPACKED_FLOAT16:return Gy(t);case Cn.PACKED_4X1_UNSIGNED_BYTE:return Hy(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function yJ(e){return K().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Cn.PACKED_2X2_FLOAT32:Cn.UNPACKED_FLOAT32:e?Cn.PACKED_2X2_FLOAT16:Cn.UNPACKED_FLOAT16}function PS(e,t){if(e===_s.UPLOAD)return Cn.PACKED_2X2_FLOAT32;if(e===_s.RENDER||e==null)return yJ(t);if(e===_s.DOWNLOAD||e===_s.PIXELS)return Cn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function FS(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Fo=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Fs(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},yr="if (isnan(x)) return x;",xJ="return x;",OS="return abs(x);",bJ="return (x >= 0.0) ? x : (exp(x) - 1.0);",vJ=yr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,wJ=yr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,wm="return x;",kJ="return 1.0 / (1.0 + exp(-1.0 * x));",IJ="return x;",SJ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,CJ=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,TJ=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,NJ="return 1.0 / (1.0 + exp(-1.0 * x));",Zu=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Fs(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},EJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=Hn("rc",t),s=vt(t),r=lJ(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${o}));
|
|
}
|
|
`}},RJ=Xs.whereImpl,$J=1e-7,DJ=1e-4,km={};function _J(e){return e in km||(km[e]={}),km[e]}var PJ=K().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),FJ=600;function OJ(){return K().global.screen==null?1024:K().global.screen.height*K().global.screen.width*window.devicePixelRatio*FJ/1024/1024}var MS=class extends Ll{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!K().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Mr(K().getNumber("WEBGL_VERSION"));this.binaryCache=_J(K().getNumber("WEBGL_VERSION")),this.gpgpu=new vm(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new mJ(this.gpgpu),this.numMBBeforeWarning=OJ(),this.texData=new Dc(this,ss())}nextDataId(){return MS.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((K().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||K().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:_s.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(K().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:_s.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new Zu(o,wm):d=new Fo(o,wm);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,c;l&&(c=v.now());let u;if(s==="complex64"){let d=this.readSync(r.real.dataId),p=this.readSync(r.imag.dataId);u=N.mergeRealAndImagArrays(d,p)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new Zu(s,wm):h=new Fo(s,wm);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!K().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&K().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(a!=="complex64"&&K().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let h=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...hm(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];u=N.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(s);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(c!=null&&this.disposeIntermediateTensorInfo(c),l!=null){let h=this.gpgpu.gl;Se(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,u),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ss().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!OI(n))throw K().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=v.sizeFromShape(t);if(K().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),p=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...hm(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let a=K().getBool("WEBGL_PACK")&&s===!0,o=a?gm(t):t,i=a?new bY(o):new xY(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=v.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=PJ){return K().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){N.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return RJ(e.shape,t)}packedUnaryOp(e,t,n){let s=new Zu(e.shape,t),r=this.compileAndRun(s,[e],n);return ss().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=ES(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(K().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,OS,e.dtype);let t=new Fo(e.shape,OS),n=this.compileAndRun(t,[e]);return ss().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return ss().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new EJ(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new uJ(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[fl(e.shape),...ml(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[fl(t),...ml(t)],a=new DS(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=gm(s),o,i=hm(a);n?o=new yY(a):o=new AY(a);let l=!0,c=[i],u=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,c,l);return{dtype:r,shape:s,dataId:u.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===Ud.DENSE){let m=hm(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),v.sizeFromShape(a.shape)===0)return o.values=v.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&v.sizeFromShape(m.shape)<=K().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!qd(g.shape,m.shape)){let A=m,y=m.shape;m.shape=g.shape,m=this.packedReshape(m,y),i.push(m),g=this.texData.get(m.dataId),A.shape=y}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:o,isUniform:!1},u=gY(e,l,c),d=this.getAndSaveBinary(u,()=>fY(this.gpgpu,e,l,c)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),mY(this.gpgpu,d,l,c,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let f=K().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=v.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!K().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(K().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=j(()=>{if(!K().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=K().getBool("DEBUG");K().set("DEBUG",!1);let t=this.abs(Ee(1e-8)).dataSync()[0];if(K().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?$J:DJ}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,c;l&&(c=v.now());let u=t.texShape;if(u==null&&(u=QI(n,i),t.texShape=u),r!=null){let d=gm(n),p,h=u[1],f=u[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;i?([h,f]=Gu(u[0],u[1]),p=new wY(d,m)):p=new vY(d,m);let g=this.makeTensorInfo([f,h],s);m?this.texData.get(g.dataId).usage=_s.PIXELS:this.texData.get(g.dataId).usage=_s.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,f,r);let A=[[f,h]],y=!0,x=this.runWebGLProgram(p,[g],s,A,y),b=this.texData.get(x.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(x.dataId),t.values=null,l&&(this.uploadWaitMs+=v.now()-c)}else{let d=this.acquireTexture(u,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=MJ(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}},Kd=MS;Kd.nextDataId=0;function MJ(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var zJ="0.0.0";function zS(){K().set("WEBGL_FORCE_F16_TEXTURES",!0)}gu.isBrowser()&&Ki("webgl",()=>new Kd,2);var LJ={forceHalfFloat:zS},LS=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Yu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Fs(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Im=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Zd=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Fs(r);let a="";if(s)if(r===0||v.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${vt(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Hn("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function bs(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var BJ={kernelName:Ba,backendName:"webgl",kernelFunc:bs};function Oo(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=bs({inputs:{x:s},backend:n}),l=bs({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var WJ={kernelName:Oc,backendName:"webgl",kernelFunc:Oo},BS="return (a < 0.) ? b * a : a;",WS=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function VJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),i=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Zd(WS,r.shape,o.shape):new Yu(BS,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var UJ={kernelName:mi,backendName:"webgl",kernelFunc:VJ},VS="return (a < 0.) ? b * a : a;",US=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function GJ(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Zd(US,s.shape,r.shape):new Yu(VS,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var HJ={kernelName:Ja,backendName:"webgl",kernelFunc:GJ},GS="if (isnan(x)) return x;",jJ=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,qJ=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function ot({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,l);return i.makeTensorInfo(o.shape,l,p)}let c=K().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new Zu(o.shape,t):u=new Fo(o.shape,e),i.runWebGLProgram(u,[o],l)}}function Tn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:c}=o,u=i;if(s&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[g,A]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,w]=x,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},S={dataId:w.dataId,dtype:w.dtype,shape:c.shape},E=new Yu(e,l.shape,c.shape);return u.runWebGLProgram(E,[k,S],Bn(b.dtype,w.dtype))}),y=Oo({inputs:{real:g,imag:A},backend:u});return u.disposeIntermediateTensorInfo(g),u.disposeIntermediateTensorInfo(A),y}let d=a||Bn(l.dtype,c.dtype);if((l.dtype==="string"||c.dtype==="string"||u.shouldExecuteOnCPU([l,c]))&&r!=null){let f=u.texData.get(l.dataId).values,m=u.texData.get(c.dataId).values,g=l.dtype==="string"?N.fromUint8ToStringArray(f):f,A=l.dtype==="string"?N.fromUint8ToStringArray(m):m,[y,x]=r(l.shape,c.shape,g,A,d),b=u.makeTensorInfo(x,d),w=u.texData.get(b.dataId);return w.values=y,b}let p=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new Zd(t,l.shape,c.shape,n):h=new Yu(e,l.shape,c.shape),u.runWebGLProgram(h,[l,c],d)}}function Sm(e,t=!1){if(e==="linear")return t?IJ:xJ;if(e==="relu")return t?CJ:vJ;if(e==="elu")return t?SJ:bJ;if(e==="relu6")return t?TJ:wJ;if(e==="prelu")return t?US:VS;if(e==="leakyrelu")return t?WS:BS;if(e==="sigmoid")return t?NJ:kJ;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var HS=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Fs(this.outputShape.length);let c=s?e[1]:e[2],u=Math.ceil(c/2),d=s?"i * 2, rc.y":"rc.y, i * 2",p=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,g="result = activation(result);");let A=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${u}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${u}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${p});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${A}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},jS={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},qS=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},XS="return a * b;";function Ky(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=N.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),c=new qS(jS.REAL,s.shape,r.shape),u=new qS(jS.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Oo({inputs:{real:p,imag:h},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[c,u]=UY(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(u,a),p=n.texData.get(d.dataId);return p.values=c,d}let o;return K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Zd(XS,s.shape,r.shape):o=new Yu(XS,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var XJ={kernelName:Ka,backendName:"webgl",kernelFunc:Ky};function KJ(e,t,n){let s=[fl(e.shape),...ml(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[fl(t),...ml(t)],o=new DS(a,s),i=!0,l=[s],c=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:c.dataId,shape:t,dtype:c.dtype}}function ve(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(a,i),c=v.sizeFromShape(l);v.assert(i===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let u=o.texData.get(r.dataId);return u.isPacked&&!qd(r.shape,l)&&!(u.texture!==null&&qd(u.shape,l))?KJ(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var ZJ={kernelName:Ti,backendName:"webgl",kernelFunc:ve},KS=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${v.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${o};
|
|
if (${i===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},YJ=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,p="vec4";t==="all"?(o="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,p="bvec4"):t==="any"&&(o="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,p="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${o});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===2}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===3}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function JJ(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=N.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function yl(e,t,n,s){let r=JJ(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:c}=r[o],u,d;n==="mean"?u=o===0?new KS({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},i):new KS({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c}):u=new YJ({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:c},n),d=a,a=s.runWebGLProgram(u,[a],t),d.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(d)}return a}var QJ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=vt(this.rank),r=eQ(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function eQ(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var tQ=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=vt(this.rank),r=$S("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=r[c];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${i}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${i}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Cm(e,t,n){let s=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new tQ(e.shape,t):new QJ(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function nQ(e,t,n,s){let r=t,a=e.shape.length,o=v.parseAxisParam(r,e.shape),i=o,l=N.getAxesPermutation(i,a),c=l!=null,u=e;c&&(u=Cm(e,l,s),i=N.getInnerMostAxes(i.length,a)),N.assertAxesAreInnerMostDims("sum",i,a);let[d,p]=N.computeOutAndReduceShapes(u.shape,i),h=d;n&&(h=N.expandShapeToKeepDim(d,o));let f=v.sizeFromShape(p),g=v.sizeFromShape(e.shape)/f,A=ve({inputs:{x:u},attrs:{shape:[g,f]},backend:s}),y=rd(e.dtype),x=yl(A,y,"sum",s),b=ve({inputs:{x},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(A),s.disposeIntermediateTensorInfo(x),c&&s.disposeIntermediateTensorInfo(u),b}function Tm(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return nQ(r,a,o,n)}var sQ={kernelName:oo,backendName:"webgl",kernelFunc:Tm};function jn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let u=0;u<l.length;u++)l[u]=r.shape[a[u]];let c;if(o.shouldExecuteOnCPU([r])){let d=o.texData.get(r.dataId).values,p=Xy(d,r.shape,r.dtype,a,l);c=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(c.dataId);h.values=p}else c=Cm(r,a,o);return c}var rQ={kernelName:po,backendName:"webgl",kernelFunc:jn},ZS=1e3;function Nm({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=v.sizeFromShape(m),y=v.sizeFromShape(g),x=A===y||A===1||y===1;v.assert(c>=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let w=(A>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,f]);v.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[A,d,h]:[A,h,d],S=s?[y,f,p]:[y,p,f],E=ve({inputs:{x:e},backend:r,attrs:{shape:k}}),P=ve({inputs:{x:t},backend:r,attrs:{shape:S}}),F=[E,P],R=Math.max(A,y),_=n?E.shape[1]:E.shape[2],T=a!=null,M=o!=null,U=l==="leakyrelu",H=l!=null?Sm(l,!0):null,z=T||M||U||H!=null,X;if((h===1||f===1)&&_>ZS&&z===!1){let Y=E,se=P;n&&(Y=jn({inputs:{x:E},backend:r,attrs:{perm:[0,2,1]}}),F.push(Y)),s&&(se=jn({inputs:{x:P},backend:r,attrs:{perm:[0,2,1]}}),F.push(se));let ne=f!==1,J=f===1,te=Y;ne&&(te=ve({inputs:{x:Y},backend:r,attrs:{shape:[R,_,1]}}),F.push(te));let ue=f===1?2:1,ce=se;J&&(ce=ve({inputs:{x:se},backend:r,attrs:{shape:[R,1,_]}}),F.push(ce));let xe=Ky({inputs:{a:te,b:ce},backend:r});X=Tm({inputs:{x:xe},backend:r,attrs:{axis:ue,keepDims:!0}}),F.push(xe)}else{let Y=Bn(e.dtype,t.dtype),se=new HS(k,S,[R,h,f],n,s,T,H,M,U),ne=[E,P];if(a!=null&&ne.push(a),M&&ne.push(o),U){let J=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));ne.push(J),F.push(J)}X=r.runWebGLProgram(se,ne,Y)}let ee=ve({inputs:{x:X},backend:r,attrs:{shape:w}});F.push(X);for(let Y of F)r.disposeIntermediateTensorInfo(Y);return ee}function aQ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return Nm({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var oQ={kernelName:fo,backendName:"webgl",kernelFunc:aQ},YS="return abs(x);";function iQ(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=ES(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return K().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Zu(s.shape,YS):r=new Fo(s.shape,YS),n.runWebGLProgram(r,[s],s.dtype)}var lQ={kernelName:ni,backendName:"webgl",kernelFunc:iQ},uQ=yr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,cQ=ot({opSnippet:uQ}),dQ={kernelName:Vl,backendName:"webgl",kernelFunc:cQ},pQ=yr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,hQ=ot({opSnippet:pQ}),fQ={kernelName:Ul,backendName:"webgl",kernelFunc:hQ},JS="return a + b;",mQ=Tn({opSnippet:JS,packedOpSnippet:JS,supportsComplex:!0,cpuKernelImpl:IY}),gQ={kernelName:Hr,backendName:"webgl",kernelFunc:mQ},AQ=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},yQ=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function Em(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return bs({inputs:{x:s[0]},backend:n});if(s.length>K().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),c=Em({inputs:s.slice(0,l),backend:n}),u=Em({inputs:s.slice(l),backend:n});return Em({inputs:[c,u],backend:n})}let r=s.map(l=>l.dtype).reduce((l,c)=>Bn(l,c)),a=s.map(l=>l.shape),i=K().getBool("WEBGL_PACK")?new yQ(s[0].shape,a):new AQ(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var xQ={kernelName:wa,backendName:"webgl",kernelFunc:Em};function bQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=N.getAxesPermutation(c,i),d=r;u!=null&&(d=jn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=N.getInnerMostAxes(c.length,i)),N.assertAxesAreInnerMostDims("all",c,i);let[p,h]=N.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=yl(m,m.dtype,"all",n),A;if(o){let y=N.expandShapeToKeepDim(p,l);A=ve({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=ve({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var vQ={kernelName:Gl,backendName:"webgl",kernelFunc:bQ};function wQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=N.getAxesPermutation(c,i),d=r;u!=null&&(d=jn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=N.getInnerMostAxes(c.length,i)),N.assertAxesAreInnerMostDims("any",c,i);let[p,h]=N.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=yl(m,m.dtype,"any",n),A;if(o){let y=N.expandShapeToKeepDim(p,l);A=ve({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=ve({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var kQ={kernelName:Hl,backendName:"webgl",kernelFunc:wQ},IQ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${i};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${o} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},SQ=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=vt(i),c=Hn("coords",i),u,d;if(a===1){d=i+1;let S=vt(d);u=`
|
|
${S} sourceLocR = ${S}(${c.join()}, 0);
|
|
++${c[i-1]};
|
|
${S} sourceLocG = ${S}(${c.join()}, 0);
|
|
++${c[i-2]};
|
|
${S} sourceLocA = ${S}(${c.join()}, 0);
|
|
--${c[i-1]};
|
|
${S} sourceLocB = ${S}(${c.join()}, 0);
|
|
--${c[i-2]};`}else d=i,u=`
|
|
${l} sourceLocR = coords;
|
|
++${c[i-1]};
|
|
${l} sourceLocG = coords;
|
|
++${c[i-2]};
|
|
${l} sourceLocA = coords;
|
|
--${c[i-1]};
|
|
${l} sourceLocB = coords;
|
|
--${c[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(S=>"int "+S),m=Hn("sourceLocR",d-1).concat("inIdx.r"),g=Hn("sourceLocG",d-1).concat("inIdx.g"),A=Hn("sourceLocB",d-1).concat("inIdx.b"),y=Hn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",b=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,w=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,k=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}
|
|
${k}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${c[i-1]} < ${o[i-1]-1};
|
|
bool hasNextRow = ${c[i-2]} < ${o[i-2]-1};
|
|
${u}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${w};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${w};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function QS(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=N.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new IQ(i,n,s==null),c=[t];s!=null&&c.push(s);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let d=QS(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}function e4(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=N.computeOptimalWindowSize(a),i=new SQ(r,o,n,s==null),l=s==null?[t]:[t,s],c=e.runWebGLProgram(i,l,"int32");if(c.shape.length===t.shape.length){let u=e4(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function t4(e,t,n,s){let r=[n];if(N.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!K().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[c,u]=N.computeOutAndReduceShapes(l.shape,r),d=v.sizeFromShape(u),p=ve({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=QS(e,p,s);a.push(h);let f=ve({inputs:{x:h},backend:e,attrs:{shape:c}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return e4(e,t,s)}function CQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=N.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=jn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=N.getInnerMostAxes(o.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=t4(n,l,o[0],"max");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var TQ={kernelName:ka,backendName:"webgl",kernelFunc:CQ};function NQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=N.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=jn({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=N.getInnerMostAxes(o.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=t4(n,l,o[0],"min");return c.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var EQ={kernelName:jl,backendName:"webgl",kernelFunc:NQ},RQ=yr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,$Q=ot({opSnippet:RQ}),DQ={kernelName:ql,backendName:"webgl",kernelFunc:$Q},_Q=yr+"return log(x + sqrt(x * x + 1.0));",PQ=ot({opSnippet:_Q}),FQ={kernelName:Xl,backendName:"webgl",kernelFunc:PQ},OQ=yr+`
|
|
return atan(x);
|
|
`,MQ=ot({opSnippet:OQ}),zQ={kernelName:Kl,backendName:"webgl",kernelFunc:MQ},LQ=jJ+`
|
|
return atan(a, b);
|
|
`,BQ=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+qJ+`
|
|
return result;
|
|
`,WQ=Tn({opSnippet:LQ,packedOpSnippet:BQ}),VQ={kernelName:Yl,backendName:"webgl",kernelFunc:WQ},UQ=yr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,GQ=ot({opSnippet:UQ}),HQ={kernelName:Zl,backendName:"webgl",kernelFunc:GQ},Yd=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(f||(A="-1.0 / 1e-20"),n){let S=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${c}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${S} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:g:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(a/4)*4,w=a%4,k=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
const float initializationValue = ${A};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${A});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
getValue(batch, xR, xC + 3 * ${c}, d)
|
|
);
|
|
|
|
${k}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${w===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${w===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${w===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},Zy=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let P=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${P} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let k=Math.floor(a/4)*4,S=a%4,E=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${k}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${E}
|
|
}
|
|
|
|
int xC = xCCorner + ${k};
|
|
if (${S===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${S===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
} else if (${S===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${E}
|
|
}
|
|
}
|
|
setOutput(${w});
|
|
}
|
|
}
|
|
`}};function jQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Hu(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(N.eitherStridesOrDilationsAreOne(o,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=N.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return bs({inputs:{x:r},backend:n});let d=new Yd(u,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var qQ={kernelName:Ia,backendName:"webgl",kernelFunc:jQ};function XQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:c}=s,u=[1,1,1],d=N.computePool3DInfo(r.shape,a,o,u,i,l,c),p=new Zy(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var KQ={kernelName:Fc,backendName:"webgl",kernelFunc:XQ},ZQ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=i-1-e.padInfo.top,u=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${c}, ${u});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},YQ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=u-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${u};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${c}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function JQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=N.computePool3DInfo(o.shape,i,l,d,c,u),h=new YQ(p);return n.runWebGLProgram(h,[r],o.dtype)}var QQ={kernelName:th,backendName:"webgl",kernelFunc:JQ};function eee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Hu([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:c}=s,u=N.computePool2DInfo(o.shape,i,l,1,c),d=new ZQ(u);return n.runWebGLProgram(d,[r],o.dtype)}var tee={kernelName:eh,backendName:"webgl",kernelFunc:eee};function nee(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Nm({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var see={kernelName:Sa,backendName:"webgl",kernelFunc:nee},ree=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${o};
|
|
float scale = ${i};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},aee=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${o};
|
|
vec4 scale = ${i};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},oee=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;v.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[s,r,a],u=null;o!=null&&(u=o.shape,c.push(o));let d=null;i!=null&&(d=i.shape,c.push(i));let p=K().getBool("WEBGL_PACK_NORMALIZATION")?new aee(s.shape,r.shape,a.shape,u,d,l):new ree(s.shape,r.shape,a.shape,u,d,l);return t.runWebGLProgram(p,c,c[0].dtype)},iee={kernelName:za,backendName:"webgl",kernelFunc:oee},lee=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=vt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=uee(this.rank),s,r=e.map((a,o)=>`sourceLoc.${Yy[o]} = start[${o}] + coords.${Yy[o]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},Yy=["x","y","z","w","u","v"];function uee(e){if(e===1)return"sourceLoc";if(e<=6)return Yy.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var cee=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=vt(this.rank),n=Hn("coords",this.rank),s=Hn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,i=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${s[u]} = ${n[u]} + start[${u}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${o}
|
|
${i}
|
|
setOutput(result);
|
|
}
|
|
`}};function dee(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=An.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function Ju(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=An.parseSliceParams(r,a,o);if(An.assertParamsValid(r,i,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),p=ZY(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}let{isPacked:c}=n.texData.get(r.dataId),u=An.isSliceContinous(r.shape,i,l);if(c||!u){let d=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new cee(l):new lee(l),p=[i];return n.runWebGLProgram(d,[r],r.dtype,p)}return n.uploadToGPU(r.dataId),dee(r,i,l,n)}var pee={kernelName:Di,backendName:"webgl",kernelFunc:Ju},hee=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=N.getReshaped(r.shape,a,i),c=N.getPermuted(l.length,a.length),u=N.getReshapedPermuted(r.shape,a,i),d=N.getSliceBeginCoords(o,a.length),p=N.getSliceSize(u,o,a.length),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:l}}),m=jn({inputs:{x:f},backend:n,attrs:{perm:c}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:u}}),A=Ju({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},fee={kernelName:si,backendName:"webgl",kernelFunc:hee};function mee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),c=NS(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}var gee={kernelName:nh,backendName:"webgl",kernelFunc:mee};function Aee(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=N.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var yee={kernelName:sh,backendName:"webgl",kernelFunc:Aee},xee="return float(a != b);",n4=Tn({opSnippet:xee,cpuKernelImpl:HY,dtype:"bool"}),bee={kernelName:bi,backendName:"webgl",kernelFunc:n4};function Jd(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return bs({inputs:{x:r.complexTensorInfos.real},backend:n})}var vee={kernelName:Hc,backendName:"webgl",kernelFunc:Jd},wee="return float(int(x));";function kee(e,t){let n=new Fo(e.shape,wee),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function Jy(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return bs({inputs:{x:r},backend:n});let o=Ht(r.shape),i=Jy({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Oo({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=Jd({inputs:{input:r},backend:n}),i=Jy({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=bs({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return kee(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=n4({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var Iee={kernelName:Ca,backendName:"webgl",kernelFunc:Jy},s4="return ceil(x);",See=ot({opSnippet:s4,packedOpSnippet:s4,cpuKernelImpl:CY}),Cee={kernelName:Ta,backendName:"webgl",kernelFunc:See},Tee=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},Nee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function Eee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;K().getBool("WEBGL_PACK_CLIP")?i=new Nee(r.shape):i=new Tee(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var Ree={kernelName:jr,backendName:"webgl",kernelFunc:Eee},$ee=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function r4(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function Dee(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new $ee(s.shape),o=[r4(s,r.complexTensorInfos.real),r4(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var _ee={kernelName:Mc,backendName:"webgl",kernelFunc:Dee},Pee=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},Fee=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=N.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=vt(s),a=Hn("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],c=o.slice(-2),u=o.join(),d=`if (${l} < ${i[0]}) {
|
|
return getChannel(
|
|
getT0(${u}), vec2(${c.join()}));
|
|
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
|
|
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${Rm(o,l,m)}),
|
|
vec2(${Rm(c,l,m)}));
|
|
}`}let p=i.length,h=i[i.length-1];d+=`
|
|
return getChannel(
|
|
getT${p}(${Rm(o,l,h)}),
|
|
vec2(${Rm(c,l,h)}));`,this.userCode=`
|
|
float getValue(${o.map(f=>"int "+f)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Rm(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function $m(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return bs({inputs:{x:r.complexTensorInfos.imag},backend:n})}var Oee={kernelName:Wc,backendName:"webgl",kernelFunc:$m};function Qu(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>Jd({inputs:{input:m},backend:n})),d=e.map(m=>$m({inputs:{input:m},backend:n})),p=Qu(u,t,n),h=Qu(d,t,n),f=Oo({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(A=>{let y=v.sizeFromShape(A.shape.slice(t));return ve({inputs:{x:A},backend:n,attrs:{shape:[-1,y]}})}),d=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=N.computeOutShape(u.map(A=>A.shape),1),h=u[0].shape[0]===1,f=TY(d,p,s,h),m=N.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),g}if(e.length>K().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),d=Qu(e.slice(0,u),t,n),p=Qu(e.slice(u),t,n),h=Qu([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new Fee(e.map(d=>d.shape),t);return n.runWebGLProgram(u,e,s)}let{tensors2D:a,outShape:o}=Mee(e,t,n),i=new Pee(a.map(u=>u.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let c=ve({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),c}function Mee(e,t,n){let s=N.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function a4(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=N.computeOutShape(t.map(c=>c.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>v.sizeFromShape(c.shape)>0);if(i.length===1)return bs({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return N.assertParamsConsistent(l,a),Qu(i,a,n)}var zee={kernelName:ri,backendName:"webgl",kernelFunc:a4},o4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,A=m?2:3,y=m?3:1,x="",b="";n&&(s?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${A}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${c};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${w}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},Lee=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${o});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${u}; wF++) {
|
|
int xF = xFCorner + wF * ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Bee=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Fs(this.outputShape.length);let{dataFormat:n}=t,s=Gn(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let c=0;c<=1;c++)for(let u=0;u<=1;u++)l+=`
|
|
blockIndex = rc.y + ${u};
|
|
pos = rc.x + ${c};
|
|
|
|
${i}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${o}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${c*2+u}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${c*2+u}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${s.output} = result;
|
|
}
|
|
`}};function i4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=s.texData.get(e.dataId),u=n.inChannels,d=l[0]*l[1]*l[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,A=[];if(!((d===1||p===1)&&u>ZS)&&c.isPacked&&h&&c.texture!=null&&l[2]%2!=0&&v.arraysEqual(c.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,v.assert(qd(c.shape,w.shape),()=>`packed reshape ${c.shape} to ${w.shape} isn't free`);let S=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(S);let E=Nm({a:w,b:S,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),P=s.texData.get(E.dataId);v.assert(P.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=k,P.shape=n.outShape,g=bs({inputs:{x:E},backend:s}),g.shape=n.outShape,A.push(E)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=ve({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),k=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=Nm({a:w,b:k,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ve({inputs:{x:S},backend:s,attrs:{shape:n.outShape}}),A.push(w),A.push(k),A.push(S)}for(let b of A)s.disposeIntermediateTensorInfo(b);return g}function l4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=l*c*u,g=p*d,A=[m,g],y=!0,x=!1,b=[],w=ve({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=ve({inputs:{x:t},backend:s,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w),b.push(k);let S=new Bee(A,n),E=[w.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],P=s.runWebGLProgram(S,[w],"float32",E),F=ve({inputs:{x:P},backend:s,attrs:{shape:[1,A[0],A[1]]}});b.push(P),b.push(F);let R=r!=null,_=a!=null,T=i==="leakyrelu",M=i?Sm(i,!0):null,U=new HS(F.shape,k.shape,[1,g,n.outChannels],y,x,R,M,_,T),H=[F,k];if(r&&H.push(r),_&&H.push(a),T){let Y=s.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));H.push(Y),b.push(Y)}let z=s.runWebGLProgram(U,H,"float32"),X=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],ee=ve({inputs:{x:z},backend:s,attrs:{shape:X}});b.push(z);for(let Y of b)s.disposeIntermediateTensorInfo(Y);return ee}function Wee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=s,d=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=i4({x:r,filter:a,convInfo:p,backend:n});else if(K().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=l4({x:r,filter:a,convInfo:p,backend:n});else{let m=new o4(p);h=n.runWebGLProgram(m,[r,a],"float32")}let f=ve({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var Vee={kernelName:Na,backendName:"webgl",kernelFunc:Wee},Uee=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Gee=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,c=a?2:3,u=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${u}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Hee=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${o};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},jee=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${i}, ${l}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function qee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,filterShape:u}=s,d=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(r.shape,u,o,1,i,c,!1,d),h=new Uee(p);return n.runWebGLProgram(h,[r,a],"float32")}var Xee={kernelName:rh,backendName:"webgl",kernelFunc:qee};function Kee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=N.convertConv2DDataFormat(c),p=N.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=new Gee(p);return n.runWebGLProgram(h,[r,a],"float32")}var Zee={kernelName:Ea,backendName:"webgl",kernelFunc:Kee};function Yee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=N.computeConv3DInfo(r.shape,a.shape,o,l,i),u=new Lee(c);return n.runWebGLProgram(u,[r,a],"float32")}var Jee={kernelName:zc,backendName:"webgl",kernelFunc:Yee};function Qee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,c=N.computeConv3DInfo(r.shape,l,o,1,i),u=new Hee(c);return n.runWebGLProgram(u,[r,a],"float32")}var ete={kernelName:ah,backendName:"webgl",kernelFunc:Qee};function tte(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,c=N.computeConv3DInfo(l,a.shape,i,1,o),u=new jee(c);return n.runWebGLProgram(u,[r,a],"float32")}var nte={kernelName:oh,backendName:"webgl",kernelFunc:tte},ste=GS+`
|
|
return cos(x);
|
|
`,rte=ot({opSnippet:ste}),ate={kernelName:Ra,backendName:"webgl",kernelFunc:rte},ote=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,ite=ot({opSnippet:ote}),lte={kernelName:$a,backendName:"webgl",kernelFunc:ite},ute=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[c]=t,[u,d]=n;this.outputShape=[c,u,d,l];let p=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,A]=u>1?[`${(o-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,x,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${A};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${p} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},cte=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new ute(r.shape,a.shape,i,l,c);return n.runWebGLProgram(u,[r,a,o],"float32")},dte={kernelName:oi,backendName:"webgl",kernelFunc:cte},u4=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${c4(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${vt(s)} coords = getOutputCoords();
|
|
int end = ${d4(s,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${o}) {
|
|
int idx = ${i};
|
|
${d4(s,"coords")} = idx;
|
|
val += getX(${c4(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function c4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function d4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function pte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,c=N.getAxesPermutation([a],l),u=r;c!=null&&(u=jn({inputs:{x:r},backend:n,attrs:{perm:c}}));let d=N.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let p=u.shape[d],h=bs({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new u4(u.shape,!1,i),g=[[f]],A=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(A)}if(o){let f=new u4(u.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=N.getUndoAxesPermutation(c),m=jn({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),m}return h}var hte={kernelName:ai,backendName:"webgl",kernelFunc:pte};function fte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=NS(l,c,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),c=n.bufferSync(a),u=SY(l,c,o,i);return n.makeTensorInfo(u.shape,a.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var mte={kernelName:ih,backendName:"webgl",kernelFunc:fte},gte=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Ate(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new gte(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var yte={kernelName:ii,backendName:"webgl",kernelFunc:Ate},p4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Fs(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",c="";n&&(s?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,c="result = activation(result);");let u=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${i};
|
|
int q = d2 - d1 * ${i};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${u}
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},h4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Fs(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,c=e.filterHeight,u=e.filterWidth,d=u,p=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<u;g++)p+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;p+=`
|
|
for (int r = 0; r < ${c}; r++) {
|
|
`;for(let g=0;g<u;g++)p+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;p+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(d+1)/2;g++){let A=g*2;if(p+=`
|
|
xC = xCCorner + ${A*l};
|
|
`,i===1){if(A<u&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
`,l===1&&A>0?p+=`
|
|
xC${A} = vec4(xTexelC${A-2}.zw, xTexelC${A}.xy);
|
|
`:p+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${A} = vec4(previous.zw, xTexelC${A}.xy);
|
|
} else {
|
|
xC${A} = vec4(0.0, 0.0, xTexelC${A}.xy);
|
|
}
|
|
`):p+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
xC${A} = xTexelC${A};
|
|
`,A+1<u)){let y=o%2==0?v.nearestLargerEven(l):l;l%2==0&&o%2==1||l%2!=0&&o%2!=1?(p+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
`,l>1&&(p+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
`),p+=`
|
|
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.xy);
|
|
`):y===1?p+=`
|
|
xC${A+1} = xTexelC${A};
|
|
`:p+=`
|
|
xCOffset = xC + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A+1} = xTexelC${A+1};
|
|
`}}else A<u&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
|
|
`,A+1<u&&(p+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${A+1} = vec4(xTexelC${A+1}.xy, final.xy);
|
|
`)):(p+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${A}Ready == 0) {
|
|
xTexelC${A} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${A}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${A}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${A+1}Ready == 0) {
|
|
xTexelC${A+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${A+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${A+1}Ready = 1;
|
|
}
|
|
|
|
xC${A} = vec4(
|
|
xTexelC${A}.xy, xTexelC${A+1}.xy);
|
|
`,A+1<u&&(p+=`
|
|
xC${A+1} = vec4(xTexelC${A}.zw, xTexelC${A+1}.zw);
|
|
`)));A<u&&(p+=`
|
|
wTexel = getW(r, ${A}, d1, q);
|
|
dotProd += xC${A} * vec4(wTexel.xz, wTexel.xz);
|
|
`,A+1<u&&(p+=`
|
|
wTexel = getW(r, ${A+1}, d1, q);
|
|
dotProd += xC${A+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}p+=`
|
|
}
|
|
`,p+=`
|
|
}
|
|
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${p}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function xte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(o,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let d=N.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;K().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new h4(d):p=new p4(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[r,a],"float32",h)}var bte={kernelName:Da,backendName:"webgl",kernelFunc:xte},vte=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},wte=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${i}; dm++) {
|
|
int d2 = d1 * ${i} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function kte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,filterShape:u}=s,d=N.computeConv2DInfo(r.shape,u,o,i,l,c,!0),p=new vte(d);return n.runWebGLProgram(p,[r,a],"float32")}var Ite={kernelName:lh,backendName:"webgl",kernelFunc:kte};function Ste(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:c,inputShape:u}=s,d=N.computeConv2DInfo(u,a.shape,o,i,l,c,!0),p=new wte(d);return n.runWebGLProgram(p,[r,a],"float32")}var Cte={kernelName:uh,backendName:"webgl",kernelFunc:Ste},Tte=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function Nte(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=v.sizeFromShape(s.shape),o=ve({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new Tte(a),l=n.runWebGLProgram(i,[o],o.dtype),c=ve({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var Ete={kernelName:ch,backendName:"webgl",kernelFunc:Nte},Rte=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:c}=e,{top:u,left:d}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${o}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${i}; w++) {
|
|
int wIn = wBeg + w * ${c};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function $te(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,c=N.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),u,d=new Rte(c);u=n.runWebGLProgram(d,[r,a],"float32");let p=ve({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),p}var Dte={kernelName:Lc,backendName:"webgl",kernelFunc:$te};function _te(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=N.decodeEinsumEquation(r,a.length);N.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=N.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:y}=N.getEinsumPermutation(h,l[g]),x;N.isIdentityPermutation(A)?x=a[g]:(x=jn({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(x));let b=x.shape.slice();for(let w=0;w<y.length;++w)b.splice(y[w],0,1);v.arraysEqual(x.shape,b)||(x=ve({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=Ky({inputs:{a:x,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=Tm({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var Pte={kernelName:Bc,backendName:"webgl",kernelFunc:_te},Fte="return (x >= 0.0) ? x : (exp(x) - 1.0);",Ote=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,Mte=ot({opSnippet:Fte,packedOpSnippet:Ote}),zte={kernelName:Pa,backendName:"webgl",kernelFunc:Mte},Lte="return (b >= 1.0) ? a : a * (b + 1.0);",Bte=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,Wte=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Zd(Bte,s.shape,r.shape):new Yu(Lte,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},Vte={kernelName:hh,backendName:"webgl",kernelFunc:Wte},Ute=`
|
|
return vec4(equal(a, b));
|
|
`,Gte="return float(a == b);",Hte=Tn({opSnippet:Gte,packedOpSnippet:Ute,dtype:"bool",cpuKernelImpl:NY}),jte={kernelName:li,backendName:"webgl",kernelFunc:Hte},qte=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${N.ERF_P};
|
|
float a1 = ${N.ERF_A1};
|
|
float a2 = ${N.ERF_A2};
|
|
float a3 = ${N.ERF_A3};
|
|
float a4 = ${N.ERF_A4};
|
|
float a5 = ${N.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,Xte=ot({opSnippet:qte}),Kte={kernelName:Jl,backendName:"webgl",kernelFunc:Xte},f4="return exp(x);",m4=ot({opSnippet:f4,packedOpSnippet:f4,cpuKernelImpl:EY,dtype:"float32"}),Zte={kernelName:Fa,backendName:"webgl",kernelFunc:m4};function Qy(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ve({inputs:{x:a},backend:s,attrs:{shape:i}})}var Yte={kernelName:ui,backendName:"webgl",kernelFunc:Qy},g4="return exp(x) - 1.0;",Jte=ot({opSnippet:g4,packedOpSnippet:g4,cpuKernelImpl:RY}),Qte={kernelName:ci,backendName:"webgl",kernelFunc:Jte},A4=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${o}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function y4(e,t,n){let s=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ve({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,c=new A4("real",l,t),u=new A4("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],p=n.runWebGLProgram(c,d,"float32"),h=n.runWebGLProgram(u,d,"float32"),f=Oo({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=ve({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function ene(e){let{inputs:t,backend:n}=e,{input:s}=t;return y4(s,!1,n)}var tne={kernelName:fh,backendName:"webgl",kernelFunc:ene},nne=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function Qd(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new nne(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var sne={kernelName:Ql,backendName:"webgl",kernelFunc:Qd},rne=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},ane={kernelName:di,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new rne(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},x4="return floor(x);",one=ot({opSnippet:x4,packedOpSnippet:x4,cpuKernelImpl:$Y}),ine={kernelName:Oa,backendName:"webgl",kernelFunc:one},lne=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,une=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,cne=Tn({opSnippet:lne,packedOpSnippet:une,dtype:"int32"}),dne={kernelName:Ma,backendName:"webgl",kernelFunc:cne},pne=class{constructor(e){this.variableNames=["A"];let t=Gn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},hne=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Gn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},fne={kernelName:Kc,backendName:"webgl",kernelFunc:mne},ec;function mne(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,c]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],u=[c,l],d=[c,l,a];(i||o)&&(ec==null&&(ec=document.createElement("canvas").getContext("2d")),ec.canvas.width=l,ec.canvas.height=c,ec.drawImage(r,0,0,l,c),r=ec.canvas);let p=n.makeTensorInfo(u,"int32");n.texData.get(p.dataId).usage=_s.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),r);let h=K().getBool("WEBGL_PACK")?new hne(d):new pne(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function gne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=N.convertConv2DDataFormat(u),g=N.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),A,y=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))A=i4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(K().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=l4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,w=i!=null,k=h==="leakyrelu",S=h?Sm(h,!1):null,E=new o4(g,b,S,w,k),P=[r,a];if(o&&P.push(o),i&&P.push(i),k){let F=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));P.push(F),y.push(F)}A=n.runWebGLProgram(E,P,"float32")}let x=ve({inputs:{x:A},backend:n,attrs:{shape:g.outShape}});return y.push(A),y.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var Ane={kernelName:mo,backendName:"webgl",kernelFunc:gne};function yne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=s,f=[],m=u;m==null&&(m=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=N.computeConv2DInfo(r.shape,a.shape,l,m,c,d,!0),A=K().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,y=p?Sm(p,A):null,x=[r,a],b=o!=null,w=i!=null,k=p==="leakyrelu";if(b&&x.push(o),w&&x.push(i),k){let F=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));x.push(F),f.push(F)}let S;A?S=new h4(g,b,y,w,k):S=new p4(g,b,y,w,k);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],P=n.runWebGLProgram(S,x,"float32",E);return f.forEach(F=>n.disposeIntermediateTensorInfo(F)),P}var xne={kernelName:go,backendName:"webgl",kernelFunc:yne},bne=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=vt(t.length),r=vt(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function vne(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,c,u,d]=N.prepareAndValidate(s,r),p=ve({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=ve({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let A=n.readSync(r.dataId),y=n.bufferSync(s),x=DY(A,y,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,x.values)}let f=new bne(o,d,[c,u]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var wne={kernelName:hi,backendName:"webgl",kernelFunc:vne},kne=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=vt(this.rank),s=Ine(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function Ine(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("int(getIndices(resRC.x, resRC.z))"):s.push(`${n[r]}`);return s.join()}function b4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=n.readSync(a.dataId),u=r.shape[l];for(let b=0;b<c.length;++b){let w=c[b];v.assert(w<=u-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${u-1}]`)}let d=N.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=v.sizeFromShape(a.shape),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),m=ve({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,p/d.batchSize]}});h.push(f),h.push(m);let g=[d.batchSize,d.outerSize,p/d.batchSize,d.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let b=n.bufferSync(m),w=n.bufferSync(f),k=_Y(w,b,g);return h.forEach(S=>n.disposeIntermediateTensorInfo(S)),n.makeTensorInfo(d.outputShape,k.dtype,k.values)}let A=new kne(f.shape,g),y=n.runWebGLProgram(A,[f,m],f.dtype);h.push(y);let x=ve({inputs:{x:y},backend:n,attrs:{shape:d.outputShape}});return h.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var Sne={kernelName:pi,backendName:"webgl",kernelFunc:b4},Cne="return float(a > b);",Tne=`
|
|
return vec4(greaterThan(a, b));
|
|
`,Nne=Tn({opSnippet:Cne,packedOpSnippet:Tne,cpuKernelImpl:PY,dtype:"bool"}),Ene={kernelName:fi,backendName:"webgl",kernelFunc:Nne},Rne="return float(a >= b);",$ne=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,Dne=Tn({opSnippet:Rne,packedOpSnippet:$ne,dtype:"bool",cpuKernelImpl:FY}),_ne={kernelName:La,backendName:"webgl",kernelFunc:Dne};function Pne(e){let{inputs:t,backend:n}=e,{input:s}=t;return y4(s,!0,n)}var Fne={kernelName:mh,backendName:"webgl",kernelFunc:Pne},One="return float(!isnan(x) && !isinf(x));",Mne=ot({opSnippet:One,dtype:"bool"}),zne={kernelName:eu,backendName:"webgl",kernelFunc:Mne},Lne="return float(isinf(x));",Bne=ot({opSnippet:Lne,dtype:"bool"}),Wne={kernelName:tu,backendName:"webgl",kernelFunc:Bne},Vne="return float(isnan(x));",Une=ot({opSnippet:Vne,dtype:"bool"}),Gne={kernelName:nu,backendName:"webgl",kernelFunc:Une},Hne="return float(a < b);",jne=`
|
|
return vec4(lessThan(a, b));
|
|
`,qne=Tn({opSnippet:Hne,packedOpSnippet:jne,cpuKernelImpl:OY,dtype:"bool"}),Xne={kernelName:gi,backendName:"webgl",kernelFunc:qne},Kne="return float(a <= b);",Zne=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,Yne=Tn({opSnippet:Kne,packedOpSnippet:Zne,cpuKernelImpl:MY,dtype:"bool"}),Jne={kernelName:Ai,backendName:"webgl",kernelFunc:Yne};function Qne(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=zY(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var ese={kernelName:gh,backendName:"webgl",kernelFunc:Qne},tse=`if (x < 0.0) return NAN;
|
|
return log(x);`,nse=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,sse=ot({opSnippet:tse,packedOpSnippet:nse,cpuKernelImpl:LY}),rse={kernelName:Wa,backendName:"webgl",kernelFunc:sse},ase="return log(1.0 + x);",ose=ot({opSnippet:ase}),ise={kernelName:su,backendName:"webgl",kernelFunc:ose},lse="return float(a >= 1.0 && b >= 1.0);",use=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,cse=Tn({opSnippet:lse,packedOpSnippet:use,dtype:"bool"}),dse={kernelName:yi,backendName:"webgl",kernelFunc:cse},pse="return float(!(x >= 1.0));",hse=ot({opSnippet:pse}),fse={kernelName:ru,backendName:"webgl",kernelFunc:hse},mse="return float(a >= 1.0 || b >= 1.0);",gse=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,Ase=Tn({opSnippet:mse,packedOpSnippet:gse,dtype:"bool"}),yse={kernelName:Vc,backendName:"webgl",kernelFunc:Ase},xse=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${o}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${i};
|
|
setOutput(val);
|
|
}
|
|
`}},bse=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${i};
|
|
setOutput(result);
|
|
}
|
|
`}},vse=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,c=K().getBool("WEBGL_PACK_NORMALIZATION")?new bse(r.shape,a,o,i,l):new xse(r.shape,a,o,i,l);return n.runWebGLProgram(c,[r],r.dtype)},wse={kernelName:Uc,backendName:"webgl",kernelFunc:vse},kse=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},Ise=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:c,beta:u}=s,d=new kse(r.shape,i,l,c,u);return n.runWebGLProgram(d,[r,a,o],r.dtype)},Sse={kernelName:Ah,backendName:"webgl",kernelFunc:Ise};function Cse(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=yl(i,e.dtype,"max",s),c=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}function v4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=N.getAxesPermutation(c,i),d=u!=null,p=n.shouldExecuteOnCPU([r]),h=r;if(d){if(p){let x=n.texData.get(h.dataId).values,b=new Array(i);for(let S=0;S<b.length;S++)b[S]=r.shape[u[S]];let w=Xy(x,r.shape,r.dtype,u,b);h=n.makeTensorInfo(b,r.dtype);let k=n.texData.get(h.dataId);k.values=w}else h=Cm(r,u,n);c=N.getInnerMostAxes(c.length,i)}N.assertAxesAreInnerMostDims("max",c,i);let[f,m]=N.computeOutAndReduceShapes(h.shape,c),g=f;o&&(g=N.expandShapeToKeepDim(f,l));let A;if(p){let x=n.texData.get(h.dataId).values,b=BY(x,v.sizeFromShape(m),g,r.dtype);A=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(A.dataId);w.values=b}else A=Cse(h,m,g,n);return d&&n.disposeIntermediateTensorInfo(h),A}var Tse={kernelName:Va,backendName:"webgl",kernelFunc:v4},Nse=LS+`
|
|
return max(a, b);
|
|
`,Ese=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Im+`
|
|
return result;
|
|
`,Rse=Tn({opSnippet:Nse,packedOpSnippet:Ese,cpuKernelImpl:WY}),$se={kernelName:Ua,backendName:"webgl",kernelFunc:Rse};function Dse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Hu(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1;v.assert(N.eitherStridesOrDilationsAreOne(o,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let u=N.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return bs({inputs:{x:r},backend:n});let d=new Yd(u,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var _se={kernelName:Ga,backendName:"webgl",kernelFunc:Dse};function Pse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:c}=s,u=[1,1,1],d=N.computePool3DInfo(r.shape,a,o,u,i,c,l),p=new Zy(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var Fse={kernelName:Gc,backendName:"webgl",kernelFunc:Pse},Ose=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Mse=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=i-1-e.padInfo.front,d=l-1-e.padInfo.top,p=c-1-e.padInfo.left,h=i*l*c-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${u}, ${d}, ${p});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${i};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${c} +
|
|
wR * ${c} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function zse(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:c,dimRoundingMode:u}=s,d=[1,1,1],p=N.computePool3DInfo(o.shape,i,l,d,c,u),h=new Zy(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new Mse(p),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var Lse={kernelName:xh,backendName:"webgl",kernelFunc:zse};function Bse(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Hu([a,o],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:d}=s,p=N.computePool2DInfo(i.shape,l,c,1,u,d),h=!0,f=new Yd(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new Ose(p),A=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var Wse={kernelName:yh,backendName:"webgl",kernelFunc:Bse};function Vse(e,t,n,s){let r=new Yd(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new Yd(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var Use={kernelName:bh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;v.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let c=[1,1];v.assert(N.eitherStridesOrDilationsAreOne(a,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let u=N.computePool2DInfo(s.shape,r,a,c,o),[d,p]=Vse(s,i,u,l);return[d,p]}};function Gse(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=yl(i,"float32","mean",s),c=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),c}var Hse={kernelName:Ha,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=v.parseAxisParam(a,s.shape),c=l,u=N.getAxesPermutation(c,i),d=u!=null,p=o.shouldExecuteOnCPU([s]),h=[],f=s;if(d){if(p){let b=o.texData.get(f.dataId).values,w=new Array(i);for(let E=0;E<w.length;E++)w[E]=s.shape[u[E]];let k=Xy(b,s.shape,s.dtype,u,w);f=o.makeTensorInfo(w,s.dtype);let S=o.texData.get(f.dataId);S.values=k}else f=Cm(s,u,o);h.push(f),c=N.getInnerMostAxes(c.length,i)}N.assertAxesAreInnerMostDims("sum",c,i);let[m,g]=N.computeOutAndReduceShapes(f.shape,c),A=m;r&&(A=N.expandShapeToKeepDim(m,l));let y=Gse(f,g,A,o);for(let x of h)o.disposeIntermediateTensorInfo(x);return y}};function jse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),c=l,u=N.getAxesPermutation(c,i),d=r;u!=null&&(d=jn({inputs:{x:r},backend:n,attrs:{perm:u}}),c=N.getInnerMostAxes(c.length,r.shape.length)),N.assertAxesAreInnerMostDims("min",c,i);let[p,h]=N.computeOutAndReduceShapes(d.shape,c),f=v.sizeFromShape(h),m=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=yl(m,m.dtype,"min",n),A;if(o){let y=N.expandShapeToKeepDim(p,l);A=ve({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=ve({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),u!=null&&n.disposeIntermediateTensorInfo(d),A}var qse={kernelName:ja,backendName:"webgl",kernelFunc:jse},Xse=LS+`
|
|
return min(a, b);
|
|
`,Kse=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Im+`
|
|
return result;
|
|
`,Zse=Tn({opSnippet:Xse,packedOpSnippet:Kse,cpuKernelImpl:VY}),Yse={kernelName:qa,backendName:"webgl",kernelFunc:Zse},Jse=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let s=e.length,r=vt(s),a=t.map(c=>c[0]).join(","),o=t.map((c,u)=>c[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}},Qse=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=vt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=Hn("rc",s),l=Hn("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(s===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${u});
|
|
${i[s-1]} += 1;
|
|
if(${c}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},ere=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Qse(s.shape,r,a):new Jse(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},tre={kernelName:Xa,backendName:"webgl",kernelFunc:ere},nre=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,sre=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Im+`
|
|
return result;
|
|
`,rre=Tn({opSnippet:nre,packedOpSnippet:sre}),are={kernelName:au,backendName:"webgl",kernelFunc:rre},ore=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},ire=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,lre=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,w4=Tn({opSnippet:ire,packedOpSnippet:lre,checkOutOfBounds:!0}),ure={kernelName:_a,backendName:"webgl",kernelFunc:w4},k4="return a - b;",I4=Tn({opSnippet:k4,packedOpSnippet:k4,supportsComplex:!0,cpuKernelImpl:rJ}),cre={kernelName:uo,backendName:"webgl",kernelFunc:I4};function S4(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=v4({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=N.expandShapeToKeepDim(i.shape,o),c=ve({inputs:{x:i},backend:n,attrs:{shape:l}}),u=I4({inputs:{a:r,b:c},backend:n}),d=m4({inputs:{x:u},backend:n}),p=Tm({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=ve({inputs:{x:p},backend:n,attrs:{shape:l}}),f=w4({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var dre={kernelName:io,backendName:"webgl",kernelFunc:S4};function pre(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:S4({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),c=l.shape[0],u=l.shape[1],d=new ore(c,u,a),p=[[o]],h=n.runWebGLProgram(d,[l],"int32",p);return i||n.disposeIntermediateTensorInfo(l),h}var hre={kernelName:vh,backendName:"webgl",kernelFunc:pre},C4="return -x;";function fre(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=GY(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return K().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Zu(s.shape,C4):r=new Fo(s.shape,C4),n.runWebGLProgram(r,[s],s.dtype)}var mre={kernelName:xi,backendName:"webgl",kernelFunc:fre},gre=Xs.nonMaxSuppressionV3Impl;function Are(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=gre(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var yre={kernelName:vi,backendName:"webgl",kernelFunc:Are},xre=Xs.nonMaxSuppressionV4Impl;function bre(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=xre(u,d,o,i,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var vre={kernelName:ou,backendName:"webgl",kernelFunc:bre},wre=Xs.nonMaxSuppressionV5Impl;function kre(e){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=wre(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var Ire={kernelName:wi,backendName:"webgl",kernelFunc:kre},Sre=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},Cre=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=v.sizeFromShape(r.shape),c=new Sre(l,a,o,i),u=ve({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(c,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let p=[...r.shape,a],h=ve({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},Tre={kernelName:Ii,backendName:"webgl",kernelFunc:Cre};function Dm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Jd({inputs:{input:s},backend:n}),a=Dm({inputs:{x:r},backend:n}),o=$m({inputs:{input:s},backend:n}),i=Dm({inputs:{x:o},backend:n}),l=Oo({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Qd({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Nre={kernelName:Wi,backendName:"webgl",kernelFunc:Dm};function T4(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Jd({inputs:{input:s},backend:n}),a=T4({inputs:{x:r},backend:n}),o=$m({inputs:{input:s},backend:n}),i=Dm({inputs:{x:o},backend:n}),l=Oo({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Qd({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Ere={kernelName:ki,backendName:"webgl",kernelFunc:T4};function Rre(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Qy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=Qy({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=a4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var $re={kernelName:Si,backendName:"webgl",kernelFunc:Rre},Dre=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let s=e.length,r=vt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,c)=>l[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
}
|
|
`}},_re=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=vt(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Hn("rc",s),l=Hn("source",s),c=`${i[s-1]} < ${this.outputShape[s-1]}`,u=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
|
|
if(${c}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
|
|
if(${c}) {`],p=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
|
|
${d[f]}
|
|
if (${p}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`;h+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},N4=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(v.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return Qd({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new _re(r.shape,a,o):new Dre(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},Pre={kernelName:Za,backendName:"webgl",kernelFunc:N4},Fre=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,Ore=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Im+`
|
|
return result;
|
|
`,Mre=Tn({opSnippet:Fre,packedOpSnippet:Ore}),zre={kernelName:Ya,backendName:"webgl",kernelFunc:Mre};function Lre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],c=v.parseAxisParam(a,r.shape),u=c,d=N.getAxesPermutation(u,i),p=r;d!=null&&(p=jn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=N.getInnerMostAxes(u.length,i),l.push(p)),N.assertAxesAreInnerMostDims("prod",u,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:A}=jY(p.shape,p.dtype,f,u);h=n.makeTensorInfo(g,A,m)}else{let[f,m]=N.computeOutAndReduceShapes(p.shape,u),g=v.sizeFromShape(m),A=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),y=rd(r.dtype),x=yl(A,y,"prod",n);h=ve({inputs:{x},backend:n,attrs:{shape:f}}),l.push(A),l.push(x)}if(o){l.push(h);let f=N.expandShapeToKeepDim(h.shape,c);h=ve({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var Bre={kernelName:Ci,backendName:"webgl",kernelFunc:Lre},E4=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=qY(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},Wre={kernelName:iu,backendName:"webgl",kernelFunc:E4},Vre="return 1.0 / x;",Ure=ot({opSnippet:Vre}),Gre={kernelName:lu,backendName:"webgl",kernelFunc:Ure},Hre=yr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,jre=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,qre=ot({opSnippet:Hre,packedOpSnippet:jre}),Xre={kernelName:Qa,backendName:"webgl",kernelFunc:qre},Kre=yr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Zre=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Yre=ot({opSnippet:Kre,packedOpSnippet:Zre}),Jre={kernelName:to,backendName:"webgl",kernelFunc:Yre},Qre=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},eae=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]},
|
|
${c[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function tae(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=K().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new eae(r.shape,l,c,a,o):new Qre(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],"float32")}var nae={kernelName:eo,backendName:"webgl",kernelFunc:tae},sae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function rae(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new sae(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var aae={kernelName:kh,backendName:"webgl",kernelFunc:rae},oae=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},iae=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let c=[s&&t>1?o-1:o,s&&n>1?i-1:i],u=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]},
|
|
${c[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function lae(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=K().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new iae(r.shape,l,c,a,o):new oae(r.shape,l,c,a,o);return n.runWebGLProgram(u,[r],r.dtype)}var uae={kernelName:uu,backendName:"webgl",kernelFunc:lae},cae=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],c=i[0]/l[0],u=i[1]/l[1],d=1/c,p=1/u,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${i[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${i[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function dae(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new cae(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var pae={kernelName:wh,backendName:"webgl",kernelFunc:dae},hae=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=vt(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},fae=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=Hn("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=vt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${i(s.slice())};
|
|
if(${r}){
|
|
result.g = ${l(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${c(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${u(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function i(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function c(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((A,y)=>p(y,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function mae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return bs({inputs:{x:r},backend:n});let l=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new fae(r.shape,i):new hae(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var gae={kernelName:Ni,backendName:"webgl",kernelFunc:mae},Aae=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},yae={kernelName:Vi,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Aae(s.shape,a),[c,u]=N.getImageCenter(o,s.shape[1],s.shape[2]),d=[[c,u,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},xae=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,bae=ot({opSnippet:xae}),vae={kernelName:Ei,backendName:"webgl",kernelFunc:bae},wae="return inversesqrt(x);",kae=ot({opSnippet:wae,cpuKernelImpl:XY}),Iae={kernelName:no,backendName:"webgl",kernelFunc:kae},R4=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=vt(r.length),l=vt(a.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${i} strides = ${i}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${u});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${p};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function Sae(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=N.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=ve({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=ve({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new R4(l,i,h.shape.length,f.shape.length,u,p),A=n.runWebGLProgram(g,[f,h,m],f.dtype),y=ve({inputs:{x:A},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(m),y}var Cae={kernelName:Ri,backendName:"webgl",kernelFunc:Sae},Tae=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let c=0;c<t.length;c++)l.push(`${o[c]}`),c<e&&i.push(`${o[c]}`);s=i.join(),r=l.join()}let a=vt(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function Nae(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Tae(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Bn(r.dtype,a.dtype))}var Eae={kernelName:$i,backendName:"webgl",kernelFunc:Nae},Rae=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${N.SELU_SCALEALPHA};
|
|
float scale = ${N.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,$ae=ot({opSnippet:Rae}),Dae={kernelName:cu,backendName:"webgl",kernelFunc:$ae},$4="return 1.0 / (1.0 + exp(-1.0 * x));",_ae=ot({opSnippet:$4,packedOpSnippet:$4,cpuKernelImpl:KY}),Pae={kernelName:ro,backendName:"webgl",kernelFunc:_ae},Fae=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Oae=ot({opSnippet:Fae}),Mae={kernelName:du,backendName:"webgl",kernelFunc:Oae},zae=GS+`
|
|
return sin(x);
|
|
`,Lae=ot({opSnippet:zae}),Bae={kernelName:so,backendName:"webgl",kernelFunc:Lae},Wae=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Vae=ot({opSnippet:Wae}),Uae={kernelName:_i,backendName:"webgl",kernelFunc:Vae},Gae=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Hae=ot({opSnippet:Gae}),jae={kernelName:pu,backendName:"webgl",kernelFunc:Hae},qae=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,y)=>A*y),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let c=[],u=N4({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=N.getReshaped(u.shape,a,i,!1),p=N.getPermuted(d.length,a.length,!1),h=N.getReshapedPermuted(u.shape,a,i,!1),f=ve({inputs:{x:u},backend:n,attrs:{shape:d}}),m=jn({inputs:{x:f},backend:n,attrs:{perm:p}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:h}});return c.push(u),c.push(f),c.push(m),c.forEach(A=>n.disposeIntermediateTensorInfo(A)),g},Xae={kernelName:Pi,backendName:"webgl",kernelFunc:qae};function Kae(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),c=n.readSync(a.dataId),u=n.readSync(o.dataId)[0],[d,p,h,f,m]=YY(i,s.shape,s.dtype,l,r.dtype,c,u);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Zae={kernelName:Ih,backendName:"webgl",kernelFunc:Kae};function Yae(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[c,u,d]=JY(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(u,s.dtype,c),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var Jae={kernelName:Sh,backendName:"webgl",kernelFunc:Yae};function Qae(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=RS(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(u,s.dtype,c)}var eoe={kernelName:Ch,backendName:"webgl",kernelFunc:Qae};function toe(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[c,u]=RS(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(u,s.dtype,c)}var noe={kernelName:Th,backendName:"webgl",kernelFunc:toe};function soe(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=N.calculateShapes(a,r,i),p=!1,h=new R4(c,l,r.shape.length,a.shape.length,u,[d,1],p),f=n.runWebGLProgram(h,[a,r,o],a.dtype),m=ve({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var roe={kernelName:jc,backendName:"webgl",kernelFunc:soe};function aoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=N.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=Ju({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var ooe={kernelName:Fi,backendName:"webgl",kernelFunc:aoe},D4="return sqrt(x);",ioe=ot({opSnippet:D4,packedOpSnippet:D4,cpuKernelImpl:QY}),loe={kernelName:ao,backendName:"webgl",kernelFunc:ioe},uoe="return x * x;",coe=ot({opSnippet:uoe}),doe={kernelName:hu,backendName:"webgl",kernelFunc:coe},_4="return (a - b) * (a - b);",poe=Tn({opSnippet:_4,packedOpSnippet:_4}),hoe={kernelName:lo,backendName:"webgl",kernelFunc:poe};function foe({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=yr+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new Fo(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var moe={kernelName:ho,backendName:"webgl",kernelFunc:foe},goe=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=vt(n.length),a=vt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,c)=>(i++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${i-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}};function Aoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{nonStrided:h,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=An.sliceInfo(r.shape,a,o,i,l,c,u,d,p),x=ve({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(h){let k=Ju({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=ve({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let E=n.texData.get(x.dataId).values,P=Le(x.shape,x.dtype,E),F=eJ(y,P,m,f);b=n.makeTensorInfo(y,x.dtype,F.values)}else{let S=new goe(f,m,y);b=n.runWebGLProgram(S,[x],x.dtype)}let w=ve({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),w}var yoe={kernelName:Oi,backendName:"webgl",kernelFunc:Aoe};function xoe(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=tJ(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var boe={kernelName:qc,backendName:"webgl",kernelFunc:xoe};function voe(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[c,u,d]=nJ(i,l,r),p=u.length;return[n.makeTensorInfo([p,2],"int32",c),n.makeTensorInfo([p],"string",u),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var woe={kernelName:Nh,backendName:"webgl",kernelFunc:voe};function koe(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=sJ(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Ioe={kernelName:Eh,backendName:"webgl",kernelFunc:koe},Soe="return tan(x);",Coe=ot({opSnippet:Soe}),Toe={kernelName:Mi,backendName:"webgl",kernelFunc:Coe},Noe=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Eoe=ot({opSnippet:Noe}),Roe={kernelName:co,backendName:"webgl",kernelFunc:Eoe},$oe=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=vt(this.rank),r=Doe(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function Doe(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function P4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>v.decodeString(p)):l,u=Le(r.shape,r.dtype,c),d=aJ(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new $oe(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var _oe={kernelName:qr,backendName:"webgl",kernelFunc:P4},Poe=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},Foe=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function xl(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function F4(e){let t=1;for(;t<e;)t*=2;return t}function Ooe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=K().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=K().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),c=r.shape,u=c[c.length-1];if(n.shouldExecuteOnCPU([r])||u<i||a>l){let F=n.readSync(r.dataId),[R,_]=oJ(F,c,r.dtype,a,o);return[n.makeTensorInfo(R.shape,R.dtype,R.values),n.makeTensorInfo(_.shape,_.dtype,_.values)]}if(a===0)return c[c.length-1]=0,[n.makeTensorInfo(c,r.dtype,[]),n.makeTensorInfo(c,"int32",[])];if(u===1)return[r,Qd({attrs:{shape:c,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(r):r,m=v.sizeFromShape(c)/u,g=ve({inputs:{x:h},attrs:{shape:[m,u]},backend:n});p&&xl(n,h);let A=F4(a),y=F4(u),x=null,b=()=>x===null?[g,g]:[g,x],w=(F,R,_)=>{let T=b(),M=new Poe(_),H=[[u],[x===null?1:0],[Number.NEGATIVE_INFINITY],[F],[R]],z=x;x=n.runWebGLProgram(M,T,"int32",H),xl(n,z)};for(let F=1;F<A;F*=2){let R=F*2;for(let _=F;_>=1;_/=2)w(R,_,[m,y])}for(let F=y;F>A;F/=2){let R=b(),_=new Foe([m,F/2]),M=[[u],[x===null?1:0],[A]],U=x;x=n.runWebGLProgram(_,R,"int32",M),xl(n,U);let H=A/2,z=H*2;for(let X=H;X>=1;X/=2)w(z,X,x.shape)}let k=x;x=Ju({inputs:{x},backend:n,attrs:{begin:0,size:[m,a]}}),xl(n,k);let S=b4({inputs:{x:g,indices:x},backend:n,attrs:{axis:1,batchDims:1}});xl(n,g);let E=c.slice(0,-1);E.push(a),k=x,x=ve({inputs:{x},attrs:{shape:E},backend:n}),xl(n,k);let P=S;return S=ve({inputs:{x:S},attrs:{shape:E},backend:n}),xl(n,P),[S,x]}var Moe={kernelName:zi,backendName:"webgl",kernelFunc:Ooe},zoe=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${i} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${o} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function Loe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new zoe(d,p,o,i,l,g);return n.runWebGLProgram(A,[r,a],"float32")}var Boe={kernelName:Li,backendName:"webgl",kernelFunc:Loe};function Woe(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Hu(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:c}=iJ(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([c.length],"int32",c)]}var Voe={kernelName:Rh,backendName:"webgl",kernelFunc:Woe};function Uoe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(c[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=Ju({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=ve({inputs:{x:g},backend:n,attrs:{shape:c}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var Goe={kernelName:Bi,backendName:"webgl",kernelFunc:Uoe},Hoe=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,p="";r%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${u===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function joe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],c=0,u=N.getAxesPermutation([c],i),d=r;u!=null&&(d=jn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(d),c=N.getInnerMostAxes(1,i)[0]);let p=N.segment_util.computeOutShape(d.shape,c,o),h=v.sizeFromShape([d.shape[c]]),f=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=rd(r.dtype),g=(b,w,k,S,E)=>{let P=b.shape[0],F=b.shape[1],R=N.segment_util.segOpComputeOptimalWindowSize(F,E),_={windowSize:R,inSize:F,batchSize:P,numSegments:E},T=new Hoe(_,w),M=n.compileAndRun(T,[b,k],S);if(l.push(M),M.shape[1]===E)return M;let U=E4({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),H=P4({inputs:{x:U},backend:n,attrs:{reps:[F/R]}});return l.push(U),l.push(H),g(M,w,H,S,E)},A=g(f,"unsortedSegmentSum",a,m,o),y=ve({inputs:{x:A},backend:n,attrs:{shape:p}}),x=y;if(u!=null){l.push(y);let b=N.getUndoAxesPermutation(u);x=jn({inputs:{x},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var qoe={kernelName:Xc,backendName:"webgl",kernelFunc:joe},Xoe=[wse,Sse,oQ,lQ,dQ,fQ,gQ,xQ,vQ,kQ,TQ,EQ,DQ,FQ,VQ,zQ,HQ,KQ,qQ,QQ,tee,see,iee,fee,gee,yee,Iee,Cee,Ree,_ee,WJ,zee,Xee,Zee,Vee,ete,nte,Jee,ate,lte,dte,hte,mte,yte,Ite,Cte,bte,Ete,Dte,Pte,zte,Vte,jte,Kte,Zte,Yte,Qte,tne,sne,ane,ine,dne,fne,Ane,xne,wne,Sne,Ene,_ne,BJ,Fne,Oee,zne,Wne,Gne,UJ,Xne,Jne,ese,ise,rse,dse,fse,yse,Tse,Fse,_se,Lse,Wse,Use,$se,Hse,qse,Yse,tre,are,hre,XJ,mre,yre,vre,Ire,bee,Tre,Ere,$re,Pre,zre,HJ,Bre,Wre,vee,ure,Gre,Jre,Xre,ZJ,nae,aae,uae,pae,gae,yae,vae,Iae,Cae,Eae,Dae,Pae,Mae,Bae,Uae,pee,dre,jae,Xae,Zae,Jae,eoe,noe,roe,ooe,loe,doe,hoe,moe,yoe,boe,woe,Ioe,cre,sQ,Toe,Roe,_oe,Moe,Boe,rQ,Voe,Goe,qoe,Nre];for(let e of Xoe)Kr(e);var zr=K();zr.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);zr.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);zr.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);zr.registerFlag("WEBGPU_USE_NAIVE_CONV2D",()=>!1);zr.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);zr.registerFlag("WEBGPU_CONV_SEPARATE_IM2COL_SHADER",()=>!1);zr.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);zr.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);zr.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);zr.registerFlag("WEBGPU_USE_IMPORT",()=>!1);function Koe(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function Qt(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";throw Error(`GPU for rank ${e} is not yet supported`)}function _m(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function We(){return`
|
|
let index = getGlobalIndex(globalId, localId);
|
|
`}function Fe(){return`
|
|
[[stage(compute), workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)]]
|
|
fn main([[builtin(local_invocation_id)]] localId : vec3<u32>, [[builtin(global_invocation_id)]] globalId : vec3<u32>)
|
|
`}function Zoe(e,t,n,s=!1){let r=`
|
|
let workGroupSizeX = ${n.workGroupSize[0]}u;
|
|
let workGroupSizeY = ${n.workGroupSize[1]}u;
|
|
let workGroupSizeZ = ${n.workGroupSize[2]}u;`;if(s===!0){let h=z4(t.shape),f=`
|
|
[[block]] struct Matrix0 {
|
|
numbers: array<${_m(t.dtype,n.isVec4)}>;
|
|
};
|
|
[[block]] struct Uniform {
|
|
size : i32;
|
|
numChannels : i32;
|
|
outShapeStrides : vec2<i32>;
|
|
dispatchSize : vec3<u32>;
|
|
};
|
|
|
|
[[group(0), binding(0)]] var<storage, write> result : Matrix0;
|
|
[[group(0), binding(2)]] var<uniform> uniforms: Uniform;
|
|
`;return[O4,f,r,M4,h,n.getUserCode()].join(`
|
|
`)}let a=[],o="[[block]] struct Uniforms { NAN : f32; ";n.variableNames.forEach((h,f)=>{o+=`${h.charAt(0).toLowerCase()+h.slice(1)}Shape : ${Qt(e[f].shape.length)}; `}),o+=`outShape : ${Qt(t.shape.length)} ; `;let i=t.shape.length-1;o+=`
|
|
outShapeStrides: ${Qt(i)}; `,n.size!=null&&(o+="size : i32; "),o+="dispatchSize : vec3<u32>; ",n.uniforms&&(o+=n.uniforms),o+="};",a.push(o),n.atomic?a.push(`
|
|
[[block]] struct Matrix0 {
|
|
numbers: array<atomic<i32>>;
|
|
};
|
|
|
|
[[group(0), binding(0)]] var<storage, read_write> result : Matrix0;
|
|
`):a.push(`
|
|
[[block]] struct Matrix0 {
|
|
numbers: array<${_m(t.dtype,n.isVec4)}>;
|
|
};
|
|
|
|
[[group(0), binding(0)]] var<storage, write> result : Matrix0;
|
|
`),n.variableNames.forEach((h,f)=>{a.push(`
|
|
[[block]] struct Matrix${1+f} {
|
|
numbers: array<${_m(e[f].dtype,n.isVec4)}>;
|
|
};
|
|
[[group(0), binding(${1+f})]] var<storage, read> ${h} : Matrix${1+f};
|
|
`)}),o!==""&&a.push(`
|
|
[[group(0), binding(${1+n.variableNames.length})]] var<uniform> uniforms : Uniforms;
|
|
`),a.push(r);let[l,c]=nie(t.shape,n.dispatchLayout),u=z4(t.shape),d=[O4,a.join(`
|
|
`),M4,u,l,Yoe(t.shape.length)];if(n.atomic||d.push(Joe(t.shape,t.dtype,n.isVec4)),c===t.shape.length){let h=e.map(f=>Qoe(f,t.shape,n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(`
|
|
`);d.push(h)}return d.push(n.getUserCode()),d.join(`
|
|
`)}var O4=`
|
|
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
|
|
var res: i32 = a / b;
|
|
let mod: i32 = a % b;
|
|
if (sign < 0. && mod != 0) {
|
|
res = res - 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
fn isNanCustom(val : f32) -> bool {
|
|
if (val > 0.0) {
|
|
return false;
|
|
}
|
|
if (val < 0.0) {
|
|
return false;
|
|
}
|
|
if (val == 0.0) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
fn isNanCustomVec4F32(val : vec4<f32>) -> vec4<f32> {
|
|
var res = vec4<f32> (0.0);
|
|
for (var i = 0u; i < 4u; i = i + 1u) {
|
|
if (isNanCustom(val[i])) {
|
|
res[i] = 1.0;
|
|
} else {
|
|
res[i] = 0.0;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// Checks whether coordinates lie within the bounds of the shape.
|
|
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
|
|
return all(coord >= vec4<i32>(0)) &&
|
|
all(coord < shape);
|
|
}
|
|
|
|
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
|
|
return all(coord >= vec3<i32>(0)) &&
|
|
all(coord < shape);
|
|
}
|
|
|
|
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
|
|
return all(coord >= vec2<i32>(0)) &&
|
|
all(coord < shape);
|
|
}
|
|
`,M4=`
|
|
fn getFlatIndex1D(coord : i32, shape : i32) -> i32 {
|
|
return coord;
|
|
}
|
|
|
|
fn getFlatIndex2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
|
|
return i32(dot(vec2<f32>(coords), vec2<f32>(f32(shape.y), 1.0)));
|
|
}
|
|
|
|
fn getFlatIndex3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
|
|
return i32(dot(vec3<f32>(coords), vec3<f32>(f32(shape.y) * f32(shape.z), f32(shape.z), 1.0)));
|
|
}
|
|
|
|
fn getFlatIndex4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
|
|
return i32(dot(vec4<f32>(coords), vec4<f32>(
|
|
f32(shape.y) * f32(shape.z) * f32(shape.w), f32(shape.z) * f32(shape.w), f32(shape.w), 1.0)));
|
|
}
|
|
|
|
// Only used when the y/z dimension of workgroup size is 1.
|
|
fn getGlobalIndex(globalId : vec3<u32>, localId : vec3<u32>) -> i32 {
|
|
if (uniforms.dispatchSize.y == 1u && uniforms.dispatchSize.z == 1u) {
|
|
return i32(globalId.x);
|
|
}
|
|
let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
|
|
localId.y * workGroupSizeX + localId.x;
|
|
let workGroupID = (globalId - localId)/vec3<u32>(
|
|
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
|
|
return i32((workGroupID.z * uniforms.dispatchSize.x * uniforms.dispatchSize.y +
|
|
workGroupID.y * uniforms.dispatchSize.x + workGroupID.x) *
|
|
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
|
|
localInvocationIndex);
|
|
}
|
|
`;function Yoe(e){let t="";switch(e){case 0:case 1:t+=`
|
|
fn getOutputFlatIndex(coords : i32) -> i32 {
|
|
return coords;
|
|
}
|
|
`;break;case 2:t+=`
|
|
fn getOutputFlatIndex(coords : vec2<i32>) -> i32 {
|
|
return i32(dot(vec2<f32>(coords), vec2<f32>(f32(uniforms.outShapeStrides), 1.0)));
|
|
}
|
|
`;break;case 3:t+=`
|
|
fn getOutputFlatIndex(coords : vec3<i32>) -> i32 {
|
|
return i32(dot(vec3<f32>(coords), vec3<f32>(f32(uniforms.outShapeStrides.x), f32(uniforms.outShapeStrides.y), 1.0)));
|
|
}
|
|
`;break;case 4:t+=`
|
|
fn getOutputFlatIndex(coords : vec4<i32>) -> i32 {
|
|
return i32(dot(vec4<f32>(coords), vec4<f32>(
|
|
f32(uniforms.outShapeStrides.x), f32(uniforms.outShapeStrides.y), f32(uniforms.outShapeStrides.z), 1.0)));
|
|
}
|
|
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function Joe(e,t,n){let s=e.length,r=_m(t,n),a;if(n?a=`fn setOutputFlat(flatIndex : i32, value : vec4<f32>) {
|
|
result.numbers[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputFlatI32(flatIndex : i32, value : vec4<i32>) {
|
|
result.numbers[flatIndex] = ${r}(value);
|
|
}`:a=`fn setOutputFlat(flatIndex : i32, value : f32) {
|
|
result.numbers[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputFlatI32(flatIndex : i32, value : i32) {
|
|
result.numbers[flatIndex] = ${r}(value);
|
|
}`,s>=2){let o=["d0","d1","d2","d3"].slice(0,s),i=Qt(s);n?a+=`
|
|
fn setOutput(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
|
|
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
|
|
setOutputFlat(flatIndex / 4, value);
|
|
}
|
|
fn setOutputI32(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
|
|
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
|
|
setOutputFlatI32(flatIndex / 4, value);
|
|
}
|
|
`:a+=`
|
|
fn setOutput(${o.map(l=>`${l} : i32`).join(", ")}, value : f32) {
|
|
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
|
|
setOutputFlat(flatIndex, value);
|
|
}
|
|
fn setOutputI32(${o.map(l=>`${l} : i32`).join(", ")}, value : i32) {
|
|
let flatIndex = getOutputFlatIndex(${i}(${o.join(", ")}));
|
|
setOutputFlatI32(flatIndex, value);
|
|
}
|
|
`}return a}function Qoe(e,t,n,s){let r=eie(e,n);return e.shape.length<=t.length&&(r+=tie(e,t,n,s)),r}function eie(e,t){let n=e.name,s=e.shape.length,r=Qt(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),o=["d0","d1","d2","d3"].slice(0,s),i=o.map(u=>`${u} : i32`).join(", ");if(s<1)return t?`
|
|
fn ${a}() -> vec4<f32> {
|
|
return vec4<f32>(${n}.numbers[0]);
|
|
}
|
|
`:`
|
|
fn ${a}() ->f32 {
|
|
return f32(${n}.numbers[0]);
|
|
}
|
|
`;let l=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,c=`${s}D`;return s===0&&(c="1D"),t?`
|
|
fn ${a}(${i}) -> vec4<f32> {
|
|
return vec4<f32>(${n}.numbers[getFlatIndex${c}(${r}(${o.join(",")}),
|
|
${l}) / 4]);
|
|
}
|
|
`:`
|
|
fn ${a}(${i}) -> f32 {
|
|
return f32(${n}.numbers[getFlatIndex${c}(${r}(${o.join(",")}),
|
|
${l})]);
|
|
}
|
|
`}function tie(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),o="get"+a+"AtOutCoords",i=e.shape.length,l=t.length,c=Qt(l);if(v.arraysEqual(e.shape,t)&&s)return n?`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> vec4<f32> {
|
|
return vec4<f32>(${r}.numbers[globalIndex]);
|
|
}
|
|
|
|
fn ${o}ByCoords(coords : ${c}) -> vec4<f32> {
|
|
return vec4<f32>(${r}.numbers[${l>1?"getOutputFlatIndex(coords)":"coords"} / 4]);
|
|
}
|
|
`:`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> f32 {
|
|
return f32(${r}.numbers[globalIndex]);
|
|
}
|
|
|
|
fn ${o}ByCoords(coords : ${c}) -> f32 {
|
|
return f32(${r}.numbers[${l>1?"getOutputFlatIndex(coords)":"coords"}]);
|
|
}
|
|
`;let u=N.getBroadcastDims(e.shape,t),d=l-i,p="";if(i===0)return n?`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${o}ByCoords(coords : ${c}) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
`:`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> f32{
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${o}ByCoords(coords : ${c}) -> f32{
|
|
return get${a}();
|
|
}
|
|
`;l<2&&u.length>=1?p="coords = 0;":p=u.map(g=>`coords[${g+d}] = 0;`).join(`
|
|
`);let h="";if(l<2&&i>0)h="coords";else if(l>1){let g=Qt(i),A=e.shape.map((y,x)=>`coords[${x+d}]`).join(", ");h=`${g}(${A})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${i}D`;return n?`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> vec4<f32> {
|
|
var coords = getOutputCoords(globalId, globalIndex);
|
|
${p}
|
|
return ${r}.numbers[getFlatIndex${m}(${h}, ${f}) / 4];
|
|
}
|
|
|
|
fn ${o}ByCoords(coordsIn : ${c}) -> vec4<f32> {
|
|
var coords = coordsIn;
|
|
${p}
|
|
return ${r}.numbers[getFlatIndex${m}(${h}, ${f}) / 4];
|
|
}
|
|
`:`
|
|
fn ${o}ByGlobalId(globalId : vec3<u32>, globalIndex : i32) -> f32 {
|
|
var coords = getOutputCoords(globalId, globalIndex);
|
|
${p}
|
|
return f32(${r}.numbers[getFlatIndex${m}(${h}, ${f})]);
|
|
}
|
|
|
|
fn ${o}ByCoords(coordsIn : ${c}) -> f32 {
|
|
var coords = coordsIn;
|
|
${p}
|
|
return f32(${r}.numbers[getFlatIndex${m}(${h}, ${f})]);
|
|
}
|
|
`}function nie(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return[`fn getOutputCoords(globalId : vec3<u32>, globalIndex : i32) -> ${Qt(a)}{
|
|
return getCoordsFromFlatIndex(i32(globalIndex));
|
|
}
|
|
`,a];let o="",i=[n,s,r],l=0;for(let p=0;p<i.length;p++){let h=i[p];if(h.length!==0)if(l+=h.length,h.length===1)o+=`let d${h[0]} = i32(globalId[${p}]);`;else{let f=Koe(h,"uniforms.outShape");o+=`var index${p} = i32(globalId[${p}]);`;for(let m=0;m<f.length;m++)o+=`let d${h[m]} = index${p} / ${f[m]};`,m===f.length-1?o+=`let d${h[m+1]} = index${p} - d${h[m]} * ${f[m]};`:o+=`index${p} = index${p} - d${h[m]} * ${f[m]};`}}let c=[];for(let p=0;p<l;p++)c.push(`d${p}`);let u=Qt(l),d=`fn getOutputCoords(globalId : vec3<u32>, globalIndex : i32) -> ${u} {
|
|
${o}
|
|
`;return c.length===0?d+=`return ${u}(0); }`:d+=`return ${u}(${c.join(",")}); }`,[d,l]}function z4(e){let t=e.length;if(t<=1)return"fn getCoordsFromFlatIndex(index : i32) -> i32 { return index; }";let n=v.computeStrides(e),s=Qt(t),r=[];for(let o=0;o<t;o++)r.push(`d${o}`);if(n.length===1)return` fn getCoordsFromFlatIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
|
|
return vec2<i32>(d0, d1);
|
|
}`;let a="var index2 = index;"+n.map((o,i)=>{let l=`let ${r[i]} = index2 / uniforms.outShapeStrides[${i}]`,c=i===n.length-1?`let ${r[i+1]} = index2 - ${r[i]} * uniforms.outShapeStrides[${i}]`:`index2 = index2 - ${r[i]} * uniforms.outShapeStrides[${i}]`;return`${l}; ${c};`}).join("");return`
|
|
fn getCoordsFromFlatIndex(index : i32) -> ${s} {
|
|
${a}
|
|
return ${s}(${r.join(",")});
|
|
}
|
|
`}var L4={};ze(L4,{ArrayBufferToTypedArray:()=>B4,GPUBytesPerElement:()=>sx,computeDispatch:()=>Me,computeWorkGroupSizeForConv2d:()=>ex,computeWorkGroupSizeForMatMul:()=>tx,computeWorkPerThreadForConv2d:()=>nx,flatDispatchLayout:()=>Ke,isWebGPUSupported:()=>rx,tilesFitEvenlyIntoShape:()=>ia});var tc=65535,bl=e=>{let t=1;for(let n=0;n<e.length;n++)t*=e[n];return t};function ia(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((n,s)=>n%e[s]==0)}function Me(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,o]=[Math.ceil(bl(e.x.map(l=>t[l]))/(n[0]*s[0])),e.y?Math.ceil(bl(e.y.map(l=>t[l]))/(n[1]*s[1])):1,e.z?Math.ceil(bl(e.z.map(l=>t[l]))/(n[2]*s[2])):1];if(r<=tc&&a<=tc&&o<=tc)return[r,a,o];v.assert(r>tc&&e.y===void 0&&e.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let i=Math.ceil(Math.sqrt(r));return i>tc?(i=Math.ceil(Math.cbrt(r)),v.assert(i<=tc,()=>"Total dispatch size exceeds WebGPU maximum."),[i,i,i]):[i,i,1]}function ex(e,t){let n=bl(e.x.map(r=>t[r])),s=bl(e.y.map(r=>t[r]));return n<=4?[4,16,1]:s<=4?[16,4,1]:[16,16,1]}function tx(e,t,n){return e===1?[32,1,1]:n===1?[1,32,1]:[8,8,1]}function nx(e,t){let n=bl(e.x.map(r=>t[r])),s=bl(e.y.map(r=>t[r]));return n<=4?[1,2,1]:s<=4?[2,1,1]:[2,2,1]}function Ke(e){return{x:e.map((t,n)=>n)}}function sx(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function B4(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string"){let n=new Int32Array(e),s=new ArrayBuffer(n.length),r=new Uint8Array(s);for(let a=0;a<n.length;a++)r[a]=n[a];return r}else throw new Error(`Unknown dtype ${t}`)}function rx(){return!!navigator.gpu}var Vt;(function(e){e[e.MUL=0]="MUL",e[e.ADD=1]="ADD",e[e.SUB=2]="SUB",e[e.DIV=3]="DIV",e[e.EQUAL=4]="EQUAL",e[e.GREATER=5]="GREATER",e[e.GREATER_EQUAL=6]="GREATER_EQUAL",e[e.LESS=7]="LESS",e[e.LESS_EQUAL=8]="LESS_EQUAL",e[e.LOGICAL_AND=9]="LOGICAL_AND",e[e.NOT_EQUAL=10]="NOT_EQUAL",e[e.SQUARED_DIFFERENCE=11]="SQUARED_DIFFERENCE",e[e.INT_DIV=12]="INT_DIV",e[e.POW=13]="POW",e[e.PRELU=14]="PRELU",e[e.MAX=15]="MAX",e[e.MIN=16]="MIN",e[e.COMPLEX_MULTIPLY_REAL=17]="COMPLEX_MULTIPLY_REAL",e[e.COMPLEX_MULTIPLY_IMAG=18]="COMPLEX_MULTIPLY_IMAG"})(Vt||(Vt={}));var sie="return a + b;",rie="return areal * breal - aimag * bimag;",aie="return areal * bimag + aimag * breal;",oie="return a / b;",iie="return a * b;",lie="return (a - b) * (a - b);",uie="return a - b;",cie="return f32(a == b);",die="return vec4<f32>(a == b);",pie="return f32(a > b);",hie="return vec4<f32>(a > b);",fie="return f32(a >= b);",mie="return vec4<f32>(a >= b);",gie="return f32(a < b);",Aie="return vec4<f32>(a < b);",yie="return f32(a <= b);",xie="return vec4<f32>(a <= b);",bie="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",vie=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
|
|
vec4<f32>(b >= vec4<f32>(1.0)));`,wie=`
|
|
if (isNanCustom(a)) { return a; }
|
|
if (isNanCustom(b)) { return b; }
|
|
`,W4=`
|
|
if (isNaN.r > 0.) {
|
|
resultTemp.r = uniforms.NAN;
|
|
}
|
|
if (isNaN.g > 0.) {
|
|
resultTemp.g = uniforms.NAN;
|
|
}
|
|
if (isNaN.b > 0.) {
|
|
resultTemp.b = uniforms.NAN;
|
|
}
|
|
if (isNaN.a > 0.) {
|
|
resultTemp.a = uniforms.NAN;
|
|
}
|
|
`,kie=`
|
|
let s = sign(a) * sign(b);
|
|
let ia = i32(round(a));
|
|
let ib = i32(round(b));
|
|
return f32(idiv(ia, ib, s));
|
|
`,Iie=`
|
|
let ia = vec4<i32>(round(a));
|
|
let ib = vec4<i32>(round(b));
|
|
let cond = ib != vec4<i32>(0);
|
|
var resultTemp = vec4<i32>(0);
|
|
let s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4<f32>(resultTemp);
|
|
`,Sie="return f32(a != b);",Cie="return vec4<f32>(a != b);",Tie=`
|
|
if(a < 0.0 && floor(b) < b) {
|
|
return uniforms.NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
if (round(abs(b) % 2.0) != 1.0) {
|
|
return pow(abs(a), b);
|
|
}
|
|
return sign(a) * pow(abs(a), b);
|
|
`,Nie=`
|
|
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
|
|
let isModRound1 = vec4<f32>(isModRound1Bool);
|
|
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
|
|
var resultTemp = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
let isExpZero = b == vec4<f32>(0.0);
|
|
if (isExpZero.r) {
|
|
resultTemp.r = 1.0;
|
|
}
|
|
if (isExpZero.g) {
|
|
resultTemp.g = 1.0;
|
|
}
|
|
if (isExpZero.b) {
|
|
resultTemp.b = 1.0;
|
|
}
|
|
if (isExpZero.a) {
|
|
resultTemp.a = 1.0;
|
|
}
|
|
let isNaN = vec4<f32>(a < vec4<f32>(0.0)) * vec4<f32>(floor(b) < b);
|
|
${W4}
|
|
return resultTemp;
|
|
`,Eie="if (a < 0.0) { return b * a; } return a;",Rie=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`;function V4(e,t){let n=t?W4:wie;return t?`
|
|
var resultTemp = vec4<f32>(${e}(a, b));
|
|
let isNaN = min(vec4<f32>(isNanCustomVec4F32(a)) + vec4<f32>(isNanCustomVec4F32(b)), vec4<f32>(1.0));
|
|
`+n+`
|
|
return resultTemp;
|
|
`:n+`
|
|
return ${e}(a, b);
|
|
`}function ep(e,t){switch(e){case 0:return iie;case 1:return sie;case 2:return uie;case 3:return oie;case 4:return t?die:cie;case 5:return t?hie:pie;case 6:return t?mie:fie;case 7:return t?Aie:gie;case 8:return t?xie:yie;case 9:return t?vie:bie;case 10:return t?Cie:Sie;case 11:return lie;case 12:return t?Iie:kie;case 14:return t?Rie:Eie;case 15:return V4("max",t);case 16:return V4("min",t);case 13:return t?Nie:Tie;case 17:return rie;case 18:return aie;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var wt;(function(e){e[e.ABS=0]="ABS",e[e.CEIL=1]="CEIL",e[e.COS=2]="COS",e[e.COSH=3]="COSH",e[e.ELU=4]="ELU",e[e.EXP=5]="EXP",e[e.EXPM1=6]="EXPM1",e[e.FLOOR=7]="FLOOR",e[e.LINEAR=8]="LINEAR",e[e.LOG=9]="LOG",e[e.LOGICAL_NOT=10]="LOGICAL_NOT",e[e.NEG=11]="NEG",e[e.PRELU=12]="PRELU",e[e.RELU=13]="RELU",e[e.RELU6=14]="RELU6",e[e.RSQRT=15]="RSQRT",e[e.SIN=16]="SIN",e[e.SINH=17]="SINH",e[e.SIGMOID=18]="SIGMOID",e[e.SQRT=19]="SQRT",e[e.SQUARE=20]="SQUARE",e[e.TANH=21]="TANH",e[e.TO_INT=22]="TO_INT"})(wt||(wt={}));var $ie="return abs(a);",Die="return ceil(a);",_ie="return cos(a);",Pie=`
|
|
let e2x = exp(-a);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,Fie="return exp(a) - 1.0;",Oie="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",Mie=`
|
|
var resFloat = exp(a) - vec4<f32>(1.0);
|
|
if (a.r >= 0.0) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (a.g >= 0.0) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (a.b >= 0.0) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (a.a >= 0.0) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,zie="return exp(a);",Lie="return floor(a);",Bie="return a;",Wie=`if (a < 0.0) { return 1.0/0.0; }
|
|
return log(a);`,Vie="return f32(!(a >= 1.0));",Uie="return -a;",Gie="return (a < 0.0) ? b * a : a;",Hie="return max(a, 0.0);",jie="return clamp(a, 0.0, 6.0);",qie="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",Xie=`
|
|
var resFloat = a * vec4<f32>(a >= vec4<f32>(0.0));
|
|
let isNaN = isNan(a);
|
|
|
|
if (isNaN.r) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (isNaN.g) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (isNaN.b) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (isNaN.a) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,Kie="return 1.0/sqrt(a);",Zie="return 1.0 / (1.0 + exp(-1.0 * a));",Yie="return sin(a);",Jie=`
|
|
let e2x = exp(a);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Qie="return sqrt(a);",ele="return a * a;",tle=`
|
|
let e2x = exp(-2.0 * abs(a));
|
|
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,nle="return f32(i32((a)));";function nc(e,t){switch(e){case 0:return $ie;case 2:return _ie;case 3:return Pie;case 1:return Die;case 4:return t?Mie:Oie;case 5:return zie;case 6:return Fie;case 7:return Lie;case 8:return Bie;case 9:return Wie;case 10:return Vie;case 11:return Uie;case 12:return Gie;case 13:return t?Xie:Hie;case 14:return t?qie:jie;case 15:return Kie;case 18:return Zie;case 16:return Yie;case 17:return Jie;case 19:return Qie;case 20:return ele;case 21:return tle;case 22:return nle;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function Mo(e,t=!1){if(e===null)return null;if(e==="linear")return nc(wt.LINEAR);if(e==="relu")return nc(wt.RELU,t);if(e==="elu")return nc(wt.ELU,t);if(e==="relu6")return nc(wt.RELU6,t);if(e==="prelu")return ep(Vt.PRELU,t);if(e==="sigmoid")return nc(wt.SIGMOID);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function U4(e,t){let n={RowPerThread:e[1],ColPerThread:e[0],TileAOuter:t[1]*e[1],TileBOuter:t[0]*e[0],TileInner:t[0]*e[0]};return`
|
|
var<workgroup> mm_Asub : array<array<vec4<f32>, ${n.TileInner/n.ColPerThread}>, ${n.TileAOuter}>;
|
|
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${n.TileBOuter/n.ColPerThread}>, ${n.TileInner}>;
|
|
|
|
let RowPerThread = ${n.RowPerThread};
|
|
let ColPerThread = ${n.ColPerThread}; // only support ColPerThread = 4
|
|
let TileAOuter = ${n.TileAOuter};
|
|
let TileBOuter = ${n.TileBOuter};
|
|
let TileInner = ${n.TileInner};
|
|
|
|
${Fe()} {
|
|
|
|
let tileRow = i32(localId.y) * RowPerThread;
|
|
let tileCol = i32(localId.x);
|
|
|
|
let globalRow = i32(globalId.y) * RowPerThread;
|
|
let globalCol = i32(globalId.x);
|
|
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
|
|
|
|
var acc: array<vec4<f32>, ${n.RowPerThread}>;
|
|
var ACached : vec4<f32>;
|
|
var BCached : array<vec4<f32>, 4>;
|
|
|
|
// Loop over shared dimension.
|
|
var globalColA = tileCol;
|
|
let RowPerThreadB = TileInner / ${t[1]};
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId);
|
|
}
|
|
globalColA = globalColA + TileInner / ColPerThread;
|
|
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileInner / ColPerThread; k = k + 1) {
|
|
BCached[0] = mm_Bsub[k * ColPerThread][tileCol];
|
|
BCached[1] = mm_Bsub[k * ColPerThread + 1][tileCol];
|
|
BCached[2] = mm_Bsub[k * ColPerThread + 2][tileCol];
|
|
BCached[3] = mm_Bsub[k * ColPerThread + 3][tileCol];
|
|
|
|
for (var i = 0; i < RowPerThread; i = i + 1) {
|
|
ACached = mm_Asub[tileRow + i][k];
|
|
acc[i] = BCached[0] * ACached.x + acc[i];
|
|
acc[i] = BCached[1] * ACached.y + acc[i];
|
|
acc[i] = BCached[2] * ACached.z + acc[i];
|
|
acc[i] = BCached[3] * ACached.w + acc[i];
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol,
|
|
acc[innerRow], globalId);
|
|
}
|
|
}`}function sle(e){return`
|
|
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
|
|
let tileSize = ${e[0]*4};
|
|
${Fe()} {
|
|
let tileCol = i32(localId.x);
|
|
let globalCol = i32(globalId.x);
|
|
let globalRow = i32(globalId.y);
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / tileSize + 1;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
var acc = vec4<f32>(0.0);
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
let colA = t * tileSize / 4 + tileCol;
|
|
mm_Asub[tileCol] = mm_readA(globalRow, colA, globalId);
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < tileSize / 4; k = k + 1) {
|
|
let rowB = t * tileSize + k * 4;
|
|
let BCached0 = mm_readB(rowB, globalCol, globalId);
|
|
let BCached1 = mm_readB(rowB + 1, globalCol, globalId);
|
|
let BCached2 = mm_readB(rowB + 2, globalCol, globalId);
|
|
let BCached3 = mm_readB(rowB + 3, globalCol, globalId);
|
|
|
|
let ACached = mm_Asub[k];
|
|
acc = acc + BCached0 * ACached.x;
|
|
acc = acc + BCached1 * ACached.y;
|
|
acc = acc + BCached2 * ACached.z;
|
|
acc = acc + BCached3 * ACached.w;
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
|
|
mm_write(globalRow, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var rle=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.isVec4=!0,this.vecSize=4,this.outputShape=t,this.workGroupSize=tx(t[1],e[2],t[2]),this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1&&(n=1),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.vecSize,n,1]);let o=s!=null,i=a!=null;o&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${n}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],n=[this.outputShape[0],e,t],s=this.workGroupSize[1]*this.workPerThread,r=this.workGroupSize[0]*this.vecSize,a=r,o=[s,a],i=[a,r];return[ia(o,this.aShape.slice(1)),ia(i,n.slice(1))]}getUserCode(){let e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A.numbers[batch * batchASize + row * uniforms.dimInner / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,n="",s="";if(this.activation){let o=Mo(this.activation,this.isVec4);this.hasPreluActivationWeights?n=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${o}
|
|
}`:n=`
|
|
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
${o}
|
|
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${n}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / ${this.vecSize};
|
|
let batch = i32(globalId.z);
|
|
${e};
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / ${this.vecSize};
|
|
let batch = i32(globalId.z);
|
|
${t};
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
|
|
if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2])
|
|
{
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col * 4);
|
|
${r}
|
|
${s}
|
|
setOutput(outCoord[0], outCoord[1], outCoord[2], value);
|
|
}
|
|
}
|
|
${this.outputShape[1]>1?U4([this.vecSize,this.workPerThread,1],this.workGroupSize):sle(this.workGroupSize)}
|
|
|
|
`}};function ax(e,t){let n=t[1]*e[1],s=t[0]*e[0],r=n>s?n:s;return`
|
|
var<workgroup> mm_Asub : array<array<f32, ${r}>, ${n}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${s}>, ${r}>;
|
|
${Fe()} {
|
|
let tileRow = i32(localId.y) * ${e[1]};
|
|
let tileCol = i32(localId.x) * ${e[0]};
|
|
|
|
let globalRow = i32(globalId.y) * ${e[1]};
|
|
let globalCol = i32(globalId.x) * ${e[0]};
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / ${r} + 1;
|
|
|
|
var acc : array<array<f32, ${e[0]}>, ${e[1]}>;
|
|
var ACached : f32;
|
|
var BCached : array<f32, ${e[0]}>;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = 0.0;
|
|
}
|
|
}
|
|
|
|
let ColPerThreadA = ${r} / ${t[0]};
|
|
let tileColA = i32(localId.x) * ColPerThreadA;
|
|
let RowPerThreadB = ${r} / ${t[1]};
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ColPerThreadA; innerCol = innerCol + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileColA + innerCol;
|
|
|
|
mm_Asub[inputRow][inputCol] = mm_readA(
|
|
globalRow + innerRow,
|
|
t * ${r} + inputCol, globalId);
|
|
}
|
|
}
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol + innerCol;
|
|
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(
|
|
t * ${r} + inputRow,
|
|
globalCol + innerCol, globalId);
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${r}; k = k + 1) {
|
|
for (var inner = 0; inner < ${e[0]}; inner = inner + 1) {
|
|
BCached[inner] = mm_Bsub[k][tileCol + inner];
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
ACached = mm_Asub[tileRow + innerRow][k];
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
|
|
}
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < ${e[1]}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${e[0]}; innerCol = innerCol + 1) {
|
|
|
|
if ((globalCol + innerCol) < uniforms.dimBOuter &&
|
|
(globalRow + innerRow) < uniforms.dimAOuter) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol + innerCol,
|
|
acc[innerRow][innerCol], globalId);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`}function ale(e){return`
|
|
let TileSize = ${e[0]*4};
|
|
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
|
|
|
|
${Fe()} {
|
|
let tileCol = i32(localId.x);
|
|
let globalCol = i32(globalId.x);
|
|
let globalRow = i32(globalId.y);
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
var acc = 0.0;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
let colA = t * TileSize + tileCol * 4;
|
|
mm_Asub[tileCol] = vec4<f32>(mm_readA(globalRow, colA, globalId),
|
|
mm_readA(globalRow, colA + 1, globalId),
|
|
mm_readA(globalRow, colA + 2, globalId),
|
|
mm_readA(globalRow, colA + 3, globalId));
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileSize / 4; k = k + 1) {
|
|
let rowB = t * TileSize + k * 4;
|
|
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
|
|
mm_readB(rowB + 1, globalCol, globalId),
|
|
mm_readB(rowB + 2, globalCol, globalId),
|
|
mm_readB(rowB + 3, globalCol, globalId));
|
|
|
|
let ACached = mm_Asub[k];
|
|
acc = acc + dot(ACached, BCached);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
|
|
mm_write(globalRow, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var G4=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let l=s?e[1]:e[2];this.workGroupSize=tx(t[1],l,t[2]),(t[1]===1||t[2]===1)&&(n=1),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]),v.arraysEqual(this.dispatch,[1,1,1])&&(n=1,this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]));let c=a!=null,u=i!=null;c&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.aShape=e,this.transposeA=s,this.transposeB=r,this.addBias=c,this.activation=o,this.hasPreluActivationWeights=u;let d=this.outputShape[2],p=this.transposeB?[this.outputShape[0],d,l]:[this.outputShape[0],l,d];[this.fitA,this.fitB]=this.getShapeFit(p),this.shaderKey=`matMulPacked_${this.workPerThread}_${s}_${r}_${this.activation}_${this.fitA}_${this.fitB}_${this.outputShape[1]>1}`}getShapeFit(e){let t=this.workGroupSize[1]*this.workPerThread,n=this.workGroupSize[0]*this.workPerThread,s=t>n?t:n;this.outputShape[1]===1&&(s*=4),v.assert(s%this.workGroupSize[0]==0&&s%this.workGroupSize[1]==0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let r=[t,s],a=[s,n];return[ia(r,this.aShape.slice(1)),ia(a,e.slice(1))]}getUserCode(){let e;this.transposeA===!1?e=this.fitA?"return A.numbers[batch * batchASize + row * uniforms.dimInner + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A.numbers[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`:e=this.fitA?"return A.numbers[batch * batchASize + col * uniforms.dimAOuter + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A.numbers[batch* batchASize + col * uniforms.dimAOuter + row];
|
|
}
|
|
return 0.0;`;let t;this.transposeB===!1?t=this.fitB?"return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`:t=this.fitB?"return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B.numbers[batch * batchBSize + col * uniforms.dimInner + row];
|
|
}
|
|
return 0.0;`;let n="",s="";if(this.activation){let o=Mo(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${o}
|
|
}`:n=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${o}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${r}
|
|
${s}
|
|
setOutput(batch, row, col, value);
|
|
}
|
|
${this.outputShape[1]>1?ax([this.workPerThread,this.workPerThread,1],this.workGroupSize):ale(this.workGroupSize)}
|
|
`}};function ole(e){let t=e[1]/2,n=e[0],s=t>n?t:n;return`
|
|
var<workgroup> mm_Asub1 : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub1 : array<array<f32, ${n}>, ${s}>;
|
|
var<workgroup> mm_Asub2 : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub2 : array<array<f32, ${n}>, ${s}>;
|
|
|
|
// If the output size is small for matrix multiplication, avoid to use vec4
|
|
// and handle some elements per thread to optimally utilize the ALU.
|
|
// Introduces two shared memory buffers, some logical threads could handle
|
|
// arithmetic operations and others handle IO operations between barrier api,
|
|
// makes ALUs and load/store units work simultaneously, could improves
|
|
// the performance.
|
|
${Fe()} {
|
|
let tileRow = i32(localId.y);
|
|
let tileCol = i32(localId.x);
|
|
let globalRow = i32(globalId.y);
|
|
let globalCol = i32(globalId.x);
|
|
|
|
// uniforms.dimInner should be greater than 0.
|
|
let numTiles = (uniforms.dimInner - 1) / ${s} + 1;
|
|
var acc = 0.0;
|
|
|
|
var globalColA = tileCol;
|
|
var globalRowB = tileRow;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
if (t == 0) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
}
|
|
} else {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
if (t != 0) {
|
|
t = t + 1;
|
|
}
|
|
|
|
if (t < numTiles) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub2[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
|
|
if (tileRow >= ${t} && writeCol >= 0) {
|
|
mm_write(writeCol, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var ile=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.workGroupSize=[8,16,1],v.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]*2/this.workGroupSize[1]),n[0]];let o=s!=null;o&&this.variableNames.push("bias");let i=a!=null;i&&this.variableNames.push("preluActivationWeights"),this.addBias=o,this.activation=r,this.hasPreluActivationWeights=i,this.shaderKey=`matMulSmallOutputSize_${this.activation}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A.numbers[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B.numbers[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`,n="",s="";if(this.activation){let o=Mo(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${o}
|
|
}`:n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${o}
|
|
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
${e}
|
|
}
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
${t}
|
|
}
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
var value = valueIn;
|
|
${r}
|
|
${s}
|
|
setOutput(batch, row, col, value);
|
|
}
|
|
}
|
|
${ole(this.workGroupSize)}
|
|
`}};function je(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a),i=v.sizeFromShape(o);return v.assert(a===i,()=>`The new shape (${o}) has ${i} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var lle={kernelName:Ti,backendName:"webgpu",kernelFunc:je};function ox({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,d=n?e.shape[c-2]:e.shape[c-1],p=s?t.shape[u-1]:t.shape[u-2],h=n?e.shape[c-1]:e.shape[c-2],f=s?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=v.sizeFromShape(m),y=v.sizeFromShape(g),x=A===y||A===1||y===1;v.assert(c>=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let w=(A>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,f]);v.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[A,d,h]:[A,h,d],S=s?[y,f,p]:[y,p,f],E=je({inputs:{x:e},backend:r,attrs:{shape:k}}),P=je({inputs:{x:t},backend:r,attrs:{shape:S}}),F=[E,P],R=Math.max(A,y),_=d%4==0&&f%4==0&&!n&&!s&&f>=32,T;!n&&!s&&(h<=16&&(f<=512||p>=2*f)||f<=16&&(h<=512||d>=2*h))?T=new ile(k,S,[R,h,f],a,l,o):_?T=new rle(k,[R,h,f],K().get("WEBGPU_MATMUL_WORK_PER_THREAD"),a,l,o):T=new G4(k,[R,h,f],K().get("WEBGPU_MATMUL_WORK_PER_THREAD"),n,s,a,l,o);let M=[E,P];a&&M.push(a),o&&M.push(o);let U=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[d]}],H=r.runWebGPUProgram(T,M,e.dtype,U),z=je({inputs:{x:H},backend:r,attrs:{shape:w}});F.push(H);for(let X of F)r.disposeData(X.dataId);return z}function ule(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s;return ox({a:r,b:a,transposeA:l,transposeB:c,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:u})}var cle={kernelName:fo,backendName:"webgpu",kernelFunc:ule},H4=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return`
|
|
fn binaryOpComplex(
|
|
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
|
|
${ep(this.op,!1)}
|
|
}
|
|
|
|
${Fe()} {
|
|
${We()}
|
|
if(index < uniforms.size) {
|
|
let areal = getARealAtOutCoordsByGlobalId(globalId, index);
|
|
let aimag = getAImagAtOutCoordsByGlobalId(globalId, index);
|
|
let breal = getBRealAtOutCoordsByGlobalId(globalId, index);
|
|
let bimag = getBImagAtOutCoordsByGlobalId(globalId, index);
|
|
setOutputFlat(index, binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
}
|
|
`}},dle=class{constructor(e,t,n,s){this.variableNames=["A","B"];let r=256;this.workGroupSize=[r,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Ke(this.outputShape),this.lastDimensionSize=s?n[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=s,this.op=e,this.size=v.sizeFromShape(this.outputShape),this.sizeFit=this.size%(this.workGroupSize[0]*this.workPerThread)==0,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}_${this.sizeFit}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAAtOutCoordsByCoords(coords);
|
|
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
|
|
let b = getBAtOutCoordsByCoords(coords);`,n=this.sizeFit?`let coords = getCoordsFromFlatIndex(flatIndex);
|
|
|
|
${t}
|
|
setOutputFlat(flatIndex, binaryOperation(a, b));`:`if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromFlatIndex(flatIndex);
|
|
|
|
${t}
|
|
setOutputFlat(flatIndex, binaryOperation(a, b));
|
|
}`;return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${ep(this.op,!1)}
|
|
}
|
|
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
|
|
${Fe()} {
|
|
${We()}
|
|
|
|
// Fill in the shared memory buffer. Here we need a loop to make sure
|
|
// that all data in A|B are uploaded when |sharedMemorySize| is larger
|
|
// than work group size.
|
|
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
|
|
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}.numbers[localIndex]);
|
|
}
|
|
workgroupBarrier();
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
|
|
${n}
|
|
}
|
|
}
|
|
`}},ple=class{constructor(e,t,n){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.fitShape=this.size%this.workGroupSize[0]==0,this.shaderKey=`binaryVec4_${e}_${this.fitShape}`,this.size=v.sizeFromShape(this.outputShape)/this.workPerThread}getUserCode(){let e,n=`fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
|
|
${ep(this.op,this.isVec4)}
|
|
}`;return this.fitShape?e=`
|
|
${n}
|
|
${Fe()} {
|
|
${We()}
|
|
let a = vec4<f32>(A.numbers[index]);
|
|
let b = vec4<f32>(B.numbers[index]);
|
|
setOutputFlat(index, binaryOperation(a, b));
|
|
}
|
|
`:e=`
|
|
${n}
|
|
${Fe()} {
|
|
${We()}
|
|
if (index < uniforms.size) {
|
|
let a = vec4<f32>(A.numbers[index]);
|
|
let b = vec4<f32>(B.numbers[index]);
|
|
setOutputFlat(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`,e}},j4=class{constructor(e,t,n){this.variableNames=["A","B"];let s=128;this.workGroupSize=[s,1,1],this.outputShape=N.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Ke(this.outputShape),this.size=v.sizeFromShape(this.outputShape),this.sizeFit=this.size%s==0,this.shapesFit=v.arraysEqual(t,n)&&this.sizeFit,this.workPerThread=this.sizeFit||this.shapesFit?1:2,this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey=`binary_${e}_${this.sizeFit}_${this.shapesFit}`,this.op=e}getUserCode(){let e,n=` fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${ep(this.op,!1)}
|
|
}`;return this.shapesFit?e=`
|
|
${n}
|
|
${Fe()} {
|
|
${We()}
|
|
|
|
let a = f32(A[index]);
|
|
let b = f32(B[index]);
|
|
setOutputFlat(index, binaryOperation(a, b));
|
|
}
|
|
`:this.sizeFit?e=`
|
|
${n}
|
|
${Fe()} {
|
|
${We()}
|
|
|
|
let coords = getCoordsFromFlatIndex(index);
|
|
|
|
let a = getAAtOutCoordsByCoords(coords);
|
|
let b = getBAtOutCoordsByCoords(coords);
|
|
setOutputFlat(index, binaryOperation(a, b));
|
|
}
|
|
`:e=`
|
|
${n}
|
|
${Fe()} {
|
|
${We()}
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1 ) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromFlatIndex(flatIndex);
|
|
|
|
let a = getAAtOutCoordsByCoords(coords);
|
|
let b = getBAtOutCoordsByCoords(coords);
|
|
setOutputFlat(flatIndex, binaryOperation(a, b));
|
|
}
|
|
}
|
|
}
|
|
`,e}};function q4(e,t,n){if(v.arraysEqual(t,n)&&v.sizeFromShape(t)%4==0)return new ple(e,t,n);let r=t.length===1&&n.length>1&&t[0]<1024,a=n.length===1&&t.length>1&&n[0]<1024;return r||a?new dle(e,t,n,a):new j4(e,t,n)}function Js(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var hle={kernelName:Ba,backendName:"webgpu",kernelFunc:Js};function sc(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.tensorMap.get(a.dataId),i=Js({inputs:{x:s},backend:n}),l=Js({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var fle={kernelName:Oc,backendName:"webgpu",kernelFunc:sc},Pm=class{constructor(e,t){this.variableNames=["A"];let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.size=v.sizeFromShape(this.outputShape),this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
|
|
fn unaryOperation(a : f32) -> f32 {
|
|
${nc(this.op,!1)}
|
|
}
|
|
${Fe()} {
|
|
${We()}
|
|
if (index < uniforms.size) {
|
|
let a = getAAtOutCoordsByGlobalId(globalId, index);
|
|
setOutputFlat(index, unaryOperation(a));
|
|
}
|
|
}
|
|
`}};function Nn({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,o=r,i=n||a.dtype;if(o.shouldExecuteOnCPU([a])&&t!=null){let c=o.tensorMap.get(a.dataId),u=t(c.values,i);return o.makeTensorInfo(a.shape,i,u)}let l=new Pm(a.shape,e);return o.runWebGPUProgram(l,[a],i)}}function qn({opSnippet:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(n&&o.dtype==="complex64"){let d=l.tensorMap.get(o.dataId),p=l.tensorMap.get(i.dataId),h,f;if(e!==Vt.MUL)[h,f]=[[d.complexTensorInfos.real,p.complexTensorInfos.real],[d.complexTensorInfos.imag,p.complexTensorInfos.imag]].map(g=>{let[A,y]=g,x={dataId:A.dataId,dtype:A.dtype,shape:o.shape},b={dataId:y.dataId,dtype:y.dtype,shape:i.shape},w=q4(e,o.shape,i.shape);return l.runWebGPUProgram(w,[x,b],Bn(A.dtype,y.dtype))});else{let g=new H4(Vt.COMPLEX_MULTIPLY_REAL,o.shape,i.shape),A=new H4(Vt.COMPLEX_MULTIPLY_IMAG,o.shape,i.shape),y=[{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:o.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:i.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:i.shape}];h=l.runWebGPUProgram(g,y,"float32"),f=l.runWebGPUProgram(A,y,"float32")}let m=sc({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let c=s||Bn(o.dtype,i.dtype);if((o.dtype==="string"||i.dtype==="string"||l.shouldExecuteOnCPU([o,i]))&&t!=null){let d=l.tensorMap.get(o.dataId).values,p=l.tensorMap.get(i.dataId).values,h=o.dtype==="string"?N.fromUint8ToStringArray(d):d,f=o.dtype==="string"?N.fromUint8ToStringArray(p):p,[m,g]=t(o.shape,i.shape,h,f,c);return l.makeTensorInfo(g,c,m)}let u=q4(e,o.shape,i.shape);return l.runWebGPUProgram(u,[o,i],c)}}var{addImpl:mle,ceilImpl:gle,concatImpl:Ale,equalImpl:yle,expImpl:xle,expm1Impl:ble,floorImpl:vle,gatherNdImpl:wle,gatherV2Impl:kle,greaterEqualImpl:Ile,greaterImpl:Sle,lessEqualImpl:Cle,lessImpl:Tle,logImpl:Nle,maxImpl:Ele,maximumImpl:Rle,minimumImpl:$le,multiplyImpl:Dle,negImpl:_le,notEqualImpl:Ple,prodImpl:Fle,rangeImpl:Ole,rsqrtImpl:Mle,simpleAbsImpl:zle,sliceImpl:Lle,stridedSliceImpl:Ble,stringNGramsImpl:Wle,subImpl:Vle,tileImpl:Ule,topKImpl:Gle,transposeImpl:Hle,uniqueImpl:Jge}=om,jle=Nn({opType:wt.ABS,cpuKernelImpl:zle}),qle={kernelName:ni,backendName:"webgpu",kernelFunc:jle},Xle=qn({opSnippet:Vt.ADD,cpuKernelImpl:mle,supportsComplex:!0}),Kle={kernelName:Hr,backendName:"webgpu",kernelFunc:Xle},Zle=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}AtOutCoordsByCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return`
|
|
${Fe()} {
|
|
${We()}
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromFlatIndex(flatIndex);
|
|
${e.join(`
|
|
`)}
|
|
setOutputFlat(flatIndex, ${t});
|
|
}
|
|
}
|
|
}
|
|
`}};function Yle(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Js({inputs:{x:s[0]},backend:n});let r=s.map(i=>i.dtype).reduce((i,l)=>Bn(i,l)),a=s.map(i=>i.shape),o=new Zle(a);return n.runWebGPUProgram(o,s,r)}var Jle={kernelName:wa,backendName:"webgpu",kernelFunc:Yle},X4=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="axis : i32;";let s=[t];N.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.length),this.op=n==="min"?"<":">";let[r,a]=N.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r;let o=v.sizeFromShape(a);this.reductionFactor=2;let i=256,l=Math.min(Math.ceil(o/this.reductionFactor),i);this.workGroupSize=[l,1,1],this.dispatchLayout={x:[],y:this.outputShape.map((c,u)=>u)},this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=this.workGroupSize[0]>1,t=`
|
|
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`,n=`
|
|
xBestIndices[localId.x] = bestIndex;
|
|
xBestValues[localId.x] = bestValue;
|
|
|
|
for(var currentSize = WorkGroupSize; currentSize > 1; currentSize = DIV_CEIL(currentSize, ${this.reductionFactor})) {
|
|
workgroupBarrier();
|
|
|
|
for (var w = 0; w < ${this.reductionFactor}; w = w + 1) {
|
|
let i = i32(localId.x) * ${this.reductionFactor} + w;
|
|
if (i < currentSize) {
|
|
let candidateIndex = xBestIndices[i];
|
|
let candidate = xBestValues[i];
|
|
if(candidate ${this.op} bestValue && !isNanCustom(candidate)) {
|
|
bestValue = candidate;
|
|
bestIndex = candidateIndex;
|
|
}
|
|
}
|
|
}
|
|
|
|
xBestIndices[localId.x] = bestIndex;
|
|
xBestValues[localId.x] = bestValue;
|
|
}
|
|
|
|
if (localId.x == 0u) {
|
|
setOutputFlatI32(flatOutputIndex, i32(bestIndex));
|
|
}
|
|
`,s=Qt(this.outputShape.length),r=(i,l)=>this.outputShape.length===1?i:`${i}[${l}]`,a=i=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape[${i}]`;return`
|
|
fn DIV_CEIL(a : i32, b : i32) -> i32 {
|
|
return ((a - 1) / b + 1);
|
|
}
|
|
|
|
let WorkGroupSize = ${this.workGroupSize[0]};
|
|
|
|
${e?t:""}
|
|
|
|
// In order to get a flattened index into the input tensor, we need to
|
|
// add back the index along the reduced dimension to |outputCoords|.
|
|
// This function outputs the offset to the first value along
|
|
// |axis| and the stride to get the next value of the input along |axis|.
|
|
fn getInputCoordInfo(globalId : vec3<u32>, globalIndex : i32) -> vec2<i32>{
|
|
let outputCoords : ${s} = getOutputCoords(globalId, globalIndex);
|
|
var i = ${this.outputShape.length-1};
|
|
|
|
var stride = 1;
|
|
var inputStride = 1;
|
|
var offset = 0;
|
|
|
|
for (var r = 1; r <= ${this.inputShape.length}; r = r + 1) {
|
|
let length = ${a(`${this.inputShape.length} - r`)};
|
|
if (${this.inputShape.length} - r == uniforms.axis) {
|
|
inputStride = stride;
|
|
} else {
|
|
offset = offset + ${r("outputCoords","i")} * stride;
|
|
i = i - 1;
|
|
}
|
|
stride = stride * length;
|
|
}
|
|
|
|
return vec2<i32>(offset, inputStride);
|
|
}
|
|
|
|
fn getInputIndex(coordInfo : vec2<i32>, index : i32) -> i32{
|
|
return coordInfo[0] + coordInfo[1] * index;
|
|
}
|
|
|
|
${Fe()} {
|
|
${We()}
|
|
let coordInfo = getInputCoordInfo(globalId, index);
|
|
|
|
var bestIndex = 0;
|
|
var bestValue = x.numbers[getInputIndex(coordInfo, bestIndex)];
|
|
|
|
let Length = ${a("uniforms.axis")};
|
|
let WorkPerThread = DIV_CEIL(Length, WorkGroupSize);
|
|
|
|
for (var w = 0; w < WorkPerThread; w = w + 1) {
|
|
let i = i32(globalId.x) * WorkPerThread + w;
|
|
if (i < Length) {
|
|
let candidate = x.numbers[getInputIndex(coordInfo, i)];
|
|
if (candidate ${this.op} bestValue && !isNanCustom(f32(candidate))) {
|
|
bestValue = candidate;
|
|
bestIndex = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
let flatOutputIndex = i32(globalId.y);
|
|
${e?n:"setOutputFlatI32(flatOutputIndex, bestIndex);"}
|
|
}
|
|
`}},Qle=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
|
|
let TILE_DIM = ${this.workGroupSize[0]};
|
|
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
|
|
${Fe()} {
|
|
${We()}
|
|
let workGroupID = (globalId - localId)/vec3<u32>(${this.workGroupSize[0]}u, ${this.workGroupSize[1]}u, ${this.workGroupSize[2]}u);
|
|
var x = i32(workGroupID.x) * TILE_DIM + i32(localId.x);
|
|
var y = i32(workGroupID.y) * TILE_DIM + i32(localId.y);
|
|
let width = uniforms.outShape[0];
|
|
let height = uniforms.outShape[1];
|
|
if (x < width && y < height) {
|
|
tile[localId.y][localId.x] =
|
|
A.numbers[y * width + x];
|
|
}
|
|
workgroupBarrier();
|
|
|
|
x = i32(workGroupID.y) * TILE_DIM + i32(localId.x);
|
|
y = i32(workGroupID.x) * TILE_DIM + i32(localId.y);
|
|
if (x < height && y < width) {
|
|
setOutputFlat((y * height + x), tile[localId.x]
|
|
[localId.y]);
|
|
}
|
|
}
|
|
`}},eue=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=Qt(this.outputShape.length),t=tue(this.newDim);return`
|
|
${Fe()} {
|
|
${We()}
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let resRC = getCoordsFromFlatIndex(flatIndex);
|
|
setOutputFlat(flatIndex, A.numbers[getFlatIndex${this.outputShape.length}D(
|
|
${e}(${t}), uniforms.aShape)]);
|
|
}
|
|
}
|
|
}
|
|
`}};function tue(e){let t=e.length;if(t>4)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;s<e.length;s++)n[e[s]]=`resRC[${s}]`;return n.join()}function vl(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let u=0;u<l.length;u++)l[u]=r.shape[a[u]];if(n.shouldExecuteOnCPU([r])){let d=o.tensorMap.get(r.dataId).values,p=Hle(d,r.shape,r.dtype,a,l);return n.makeTensorInfo(l,r.dtype,p)}if(r.shape.length===2&&v.arraysEqual(a,[1,0])){let u=new Qle(r.shape,a);return o.runWebGPUProgram(u,[r],r.dtype)}let c=new eue(r.shape,a);return o.runWebGPUProgram(c,[r],r.dtype)}var nue={kernelName:po,backendName:"webgpu",kernelFunc:vl};function sue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=N.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=vl({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=N.getInnerMostAxes(o.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let u=new X4(l.shape,o[0],"max"),d=[{type:"int32",data:[o[0]]}],p=n.runWebGPUProgram(u,[l],"int32",d);return c.forEach(h=>n.disposeData(h.dataId)),p}var rue={kernelName:ka,backendName:"webgpu",kernelFunc:sue};function aue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=N.getAxesPermutation(o,r.shape.length),l=r,c=[];i!=null&&(l=vl({inputs:{x:r},backend:n,attrs:{perm:i}}),c.push(l),o=N.getInnerMostAxes(o.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let u=new X4(l.shape,o[0],"min"),d=[{type:"int32",data:[o[0]]}],p=n.runWebGPUProgram(u,[l],"int32",d);return c.forEach(h=>n.disposeData(h.dataId)),p}var oue={kernelName:jl,backendName:"webgpu",kernelFunc:aue},K4=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>; pad : vec2<i32>; dilation : vec2<i32>; convDims : vec2<i32>; filterDims : vec2<i32>;",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
|
|
${Fe()} {
|
|
${We()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
|
|
var count = 0.0;
|
|
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
|
|
let xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= uniforms.convDims.x) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
|
|
let xC = xCCorner + wC;
|
|
if (xC < 0 || xC >= uniforms.convDims.y) {
|
|
continue;
|
|
}
|
|
|
|
let value = getX(batch, xR, xC, coords[3]);
|
|
${e}
|
|
}
|
|
}
|
|
|
|
setOutput(batch, coords[1], coords[2], coords[3], ${t});
|
|
}
|
|
}
|
|
`}},Z4=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>;",this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
|
|
${Fe()} {
|
|
${We()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
let batch = coords[0];
|
|
let d = coords[3];
|
|
|
|
if (all(coords < uniforms.outShape)) {
|
|
let xRCCorner = coords.yz * uniforms.stride;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
let value = getX(batch, xRCorner, xCCorner, d);
|
|
setOutput(batch, coords[1], coords[2], d, value);
|
|
}
|
|
}
|
|
`}};function iue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1,u=N.computePool2DInfo(r.shape,a,o,c,i,l);if(u.filterWidth===1&&u.filterHeight===1&&v.arraysEqual(u.inShape,u.outShape))return Js({inputs:{x:r},backend:n});let d,p=[{type:"int32",data:[u.strideHeight,u.strideWidth]}];return u.filterHeight===1&&u.filterWidth===1?d=new Z4(u):(d=new K4(u,"avg"),p.push({type:"int32",data:[u.padInfo.top,u.padInfo.left]},{type:"int32",data:[u.dilationHeight,u.dilationWidth]},{type:"int32",data:[u.inHeight,u.inWidth]},{type:"int32",data:[u.effectiveFilterHeight,u.effectiveFilterWidth]})),n.runWebGPUProgram(d,[r],r.dtype,p)}var lue={kernelName:Ia,backendName:"webgpu",kernelFunc:iue};function uue(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return ox({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var cue={kernelName:Sa,backendName:"webgpu",kernelFunc:uue},due=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.outputShape=t,this.rank=t.length,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${Qt(e.length)}; `,this.shaderKey="slice",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=Qt(this.rank),t=pue(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${ix[a]} = uniforms.start[${a}] + coords.${ix[a]};`),`
|
|
${Fe()} {
|
|
${We()}
|
|
if (index < uniforms.size) {
|
|
var sourceLoc : ${e};
|
|
let coords = getOutputCoords(globalId, index);
|
|
${n.join(`
|
|
`)}
|
|
setOutputFlat(index, getSource(${t}));
|
|
}
|
|
}
|
|
`}},ix=["x","y","z","w","u","v"];function pue(e){if(e===1)return"sourceLoc";if(e<=6)return ix.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function rc(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=An.parseSliceParams(r,a,o);if(An.assertParamsValid(r,i,l),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.tensorMap.get(r.dataId),p=Lle(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}if(v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);let c=new due(i,l),u=[{type:"int32",data:i}];return n.runWebGPUProgram(c,[r],r.dtype,u)}var hue={kernelName:Di,backendName:"webgpu",kernelFunc:rc},fue=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=N.getReshaped(r.shape,a,i),c=N.getPermuted(l.length,a.length),u=N.getReshapedPermuted(r.shape,a,i),d=N.getSliceBeginCoords(o,a.length),p=N.getSliceSize(u,o,a.length),h=[],f=je({inputs:{x:r},backend:n,attrs:{shape:l}}),m=vl({inputs:{x:f},backend:n,attrs:{perm:c}}),g=je({inputs:{x:m},backend:n,attrs:{shape:u}}),A=rc({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeData(y.dataId)),A},mue={kernelName:si,backendName:"webgpu",kernelFunc:fue},Y4=qn({opSnippet:Vt.NOT_EQUAL,dtype:"bool",cpuKernelImpl:Ple}),gue={kernelName:bi,backendName:"webgpu",kernelFunc:Y4};function tp(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Js({inputs:{x:r.complexTensorInfos.real},backend:n})}var Aue={kernelName:Hc,backendName:"webgpu",kernelFunc:tp};function yue(e,t){let n=new Pm(e.shape,wt.TO_INT),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function lx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Js({inputs:{x:r},backend:n});let o=Ht(r.shape),i=lx({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=sc({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeData(i.dataId),l}if(r.dtype==="complex64"){let o=tp({inputs:{input:r},backend:n}),i=lx({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeData(o.dataId),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Js({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return yue(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=Y4({inputs:{a:r,b:o},backend:n});return n.disposeData(o.dataId),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var xue={kernelName:Ca,backendName:"webgpu",kernelFunc:lx},bue=Nn({opType:wt.CEIL,cpuKernelImpl:gle}),vue={kernelName:Ta,backendName:"webgpu",kernelFunc:bue},wue=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4",this.size=v.sizeFromShape(this.outputShape)/4}getUserCode(){return`
|
|
${Fe()} {
|
|
${We()}
|
|
if(index < uniforms.size) {
|
|
let value = getAAtOutCoordsByGlobalId(globalId, index);
|
|
var clampedValue : vec4<f32>;
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
if (isNanCustom(value[i])) {
|
|
clampedValue[i] = value[i];
|
|
} else {
|
|
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
|
|
}
|
|
}
|
|
|
|
setOutputFlat(index, clampedValue);
|
|
}
|
|
}
|
|
`}},kue=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32; maxVal : f32;",this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return`
|
|
${Fe()} {
|
|
${We()}
|
|
if(index < uniforms.size) {
|
|
let value = getAAtOutCoordsByGlobalId(globalId, index);
|
|
if (isNanCustom(value)) {
|
|
setOutputFlat(index, value);
|
|
return;
|
|
}
|
|
setOutputFlat(index, clamp(value, uniforms.minVal, uniforms.maxVal));
|
|
}
|
|
}
|
|
`}};function Iue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i,l=[{type:"float32",data:[a]},{type:"float32",data:[o]}];return v.sizeFromShape(r.shape)%4==0?i=new wue(r.shape):i=new kue(r.shape),n.runWebGPUProgram(i,[r],r.dtype,l)}var Sue={kernelName:jr,backendName:"webgpu",kernelFunc:Iue},Cue=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shapes=e,this.shaderKey=`concat${e}`,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=new Array(this.shapes.length-1),t=[];if(e.length>0){e[0]=this.shapes[0][1];for(let a=1;a<e.length;a++)e[a]=e[a-1]+this.shapes[a][1];t.push(`if (yC < ${e[0]}){ setOutput(coords.x, coords.y, getT0(yR, yC)); }`);for(let a=1;a<e.length;a++){let o=e[a-1];t.push(`elseif (yC < ${e[a]}){ setOutput(coords.x, coords.y, getT${a}(yR, yC - ${o})); }`)}let s=e.length,r=e[e.length-1];t.push(`else { setOutput(coords.x, coords.y, getT${s}(yR, yC - ${r})); }`)}else t.push("setOutput(coords.x, coords.y, getT0(yR, yC));");return`
|
|
${Fe()} {
|
|
${We()}
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromFlatIndex(flatIndex);
|
|
let yR = coords.x;
|
|
let yC = coords.y;
|
|
|
|
${t.join(`
|
|
`)}
|
|
}
|
|
}
|
|
}
|
|
`}};function Fm(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Js({inputs:{x:r.complexTensorInfos.imag},backend:n})}var Tue={kernelName:Wc,backendName:"webgpu",kernelFunc:Fm};function ux(e,t,n){let s=e[0].dtype;if(s==="complex64"){let u=e.map(m=>tp({inputs:{input:m},backend:n})),d=e.map(m=>Fm({inputs:{input:m},backend:n})),p=ux(u,t,n),h=ux(d,t,n),f=sc({inputs:{real:p,imag:h},backend:n});return u.forEach(m=>n.disposeData(m.dataId)),d.forEach(m=>n.disposeData(m.dataId)),n.disposeData(p.dataId),n.disposeData(h.dataId),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let u=e.map(A=>{let y=v.sizeFromShape(A.shape.slice(t));return je({inputs:{x:A},backend:n,attrs:{shape:[-1,y]}})}),d=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=N.computeOutShape(u.map(A=>A.shape),1),h=u[0].shape[0]===1,f=Ale(d,p,s,h),m=N.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return u.forEach(A=>n.disposeData(A.dataId)),g}let{tensors2D:a,outShape:o}=Nue(e,t,n),i=new Cue(a.map(u=>u.shape)),l=n.runWebGPUProgram(i,a,a[0].dtype);a.forEach(u=>n.disposeData(u.dataId));let c=je({inputs:{x:l},backend:n,attrs:{shape:o}});return n.disposeData(l.dataId),c}function Nue(e,t,n){let s=N.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>je({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function J4(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=N.computeOutShape(t.map(c=>c.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(c=>v.sizeFromShape(c.shape)>0);if(i.length===1)return Js({inputs:{x:i[0]},backend:n});let l=i.map(c=>c.shape);return N.assertParamsConsistent(l,a),ux(i,a,n)}var Eue={kernelName:ri,backendName:"webgpu",kernelFunc:J4},Rue=class{constructor(e,t){this.variableNames=["A"],this.uniforms=`pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; outWidth : i32; itemsPerBlockRow : i32;
|
|
inChannels : i32;`,this.workPerThread=4,this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.isChannelsLast=t,this.shaderKey=`im2col_${this.isChannelsLast}`,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=this.isChannelsLast?0:1,t=this.isChannelsLast?1:2;return`
|
|
${Fe()} {
|
|
${We()}
|
|
|
|
for(var i = 0; i<${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
|
|
let rc = getCoordsFromFlatIndex(flatIndex);
|
|
|
|
if(flatIndex < uniforms.size) {
|
|
let blockIndex = rc[0];
|
|
let pos = rc[1];
|
|
|
|
let offsetY = blockIndex / uniforms.outWidth * uniforms.stride[1] - uniforms.pad[1];
|
|
let d0 = offsetY + uniforms.dilation[1] * pos / uniforms.itemsPerBlockRow;
|
|
var value = 0.0;
|
|
if(d0 < uniforms.aShape[${e}] && d0 >= 0) {
|
|
let offsetX = (blockIndex % uniforms.outWidth) * uniforms.stride[0] -
|
|
uniforms.pad[0];
|
|
let d1 = offsetX + uniforms.dilation[0] * ((pos %
|
|
uniforms.itemsPerBlockRow) / uniforms.inChannels);
|
|
let ch = pos % uniforms.inChannels;
|
|
if(d1 < uniforms.aShape[${t}] && d1 >= 0) {
|
|
value = getA(d0, d1, ch);
|
|
}
|
|
}
|
|
setOutputFlat(flatIndex, value);
|
|
}
|
|
}
|
|
}
|
|
`}};function Q4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,c=n.dataFormat==="channelsLast",u=!1,d=!1,p=c?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],h=je({inputs:{x:e},backend:s,attrs:{shape:[1,p,n.inChannels]}}),f=je({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),m=ox({a:h,b:f,transposeA:u,transposeB:d,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),g=je({inputs:{x:m},backend:s,attrs:{shape:n.outShape}});return s.disposeData(h.dataId),s.disposeData(f.dataId),s.disposeData(m.dataId),g}function $ue({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:c,inChannels:u,strideWidth:d,strideHeight:p,padInfo:h,outWidth:f,outHeight:m,dilationWidth:g,dilationHeight:A,dataFormat:y}=n,x=y==="channelsLast",b=l*c*u,w=m*f,k=[w,b],S=!1,E=!1,P=[],F=je({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),R=je({inputs:{x:t},backend:s,attrs:{shape:[1,b,-1]}});P.push(F),P.push(R);let _=new Rue(k,x),T=[{type:"int32",data:[h.left,h.top]},{type:"int32",data:[d,p]},{type:"int32",data:[g,A]},{type:"int32",data:[f]},{type:"int32",data:[u*l]},{type:"int32",data:[u]}],M=s.runWebGPUProgram(_,[F],F.dtype,T),U=je({inputs:{x:M},backend:s,attrs:{shape:[1,k[0],k[1]]}});P.push(M),P.push(U);let H=[1,k[0],k[1]],z=new G4(H,[1,w,n.outChannels],K().get("WEBGPU_MATMUL_WORK_PER_THREAD"),S,E),X=H[1],ee=H[2],Y=n.outChannels,se=[{type:"int32",data:[X]},{type:"int32",data:[Y]},{type:"int32",data:[ee]}],ne=s.runWebGPUProgram(z,[U,R],U.dtype,se),J=x?[1,m,f,n.outChannels]:[1,n.outChannels,m,f],te=je({inputs:{x:ne},backend:s,attrs:{shape:J}});P.push(ne);for(let ue of P)s.disposeData(ue.dataId);return te}var eC=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;
|
|
dimAOuter : i32; dimBOuter : i32; dimInner : i32;`,this.isVec4=!0,this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=[8,8,1];let a=[4,4,1];this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,a),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.hasLeakyreluAlpha=r,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.hasLeakyreluAlpha&&this.variableNames.push("leakyreluAlpha"),[this.fitA,this.fitB]=this.getShapeFit(a),this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(e){let t=this.workGroupSize[1]*e[1],n=this.workGroupSize[0]*e[0],s=n,r=[t,s],a=[s,n],o=this.outputShape[1]*this.outputShape[2],i=this.outputShape[3],l=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[ia(r,[o,l]),ia(a,[l,i])]}getSampleAWithRemainder(e){return`let flatIndex${e} = getFlatIndex4D(coord, uniforms.xShape);
|
|
let divBy4Remainder${e} = flatIndex${e} % 4;
|
|
let divBy4Index${e} = flatIndex${e} / 4;
|
|
let curData${e} = x.numbers[divBy4Index${e}];
|
|
if (divBy4Remainder${e} == 0) {
|
|
temp = curData${e};
|
|
} else {
|
|
// TODO: This could end up being a redundant load with another one in
|
|
// the same shader invocation. Perhaps there's an opportunity for
|
|
// optimization
|
|
let nextData${e} = x.numbers[divBy4Index${e} + 1];
|
|
if (divBy4Remainder${e} == 1) {
|
|
temp = vec4<f32>(curData${e}.yzw, nextData${e}.x);
|
|
} elseif (divBy4Remainder${e} == 2) {
|
|
temp = vec4<f32>(curData${e}.zw, nextData${e}.xy);
|
|
} elseif (divBy4Remainder${e} == 3) {
|
|
temp = vec4<f32>(curData${e}.w, nextData${e}.xyz);
|
|
}
|
|
}
|
|
`}getUserCode(){let t=U4([4,4,1],this.workGroupSize),r=`let outRow = r / uniforms.outShape[2];
|
|
let outCol = r % uniforms.outShape[2];
|
|
let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let inChCoord = c % uniforms.xShape[3];
|
|
var coord = vec4<i32>(
|
|
batch,
|
|
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
|
|
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
|
|
inChCoord);
|
|
var resData = vec4<f32>(0.0);
|
|
${this.convInfo.inChannels%4===0?`// The bounds checking is always needed since we use it to pad zero for
|
|
// the 'same' padding type.
|
|
if (coordsInBounds4D(coord, uniforms.xShape)) {
|
|
resData = x.numbers[getFlatIndex4D(coord, uniforms.xShape) / 4];
|
|
} else {
|
|
resData = vec4<f32>(0.0); }`:`var temp = vec4<f32>(0.0);
|
|
${this.getSampleAWithRemainder(1)}
|
|
resData = temp;
|
|
if (WCol == (uniforms.filterDims[1] - 1)) {
|
|
coord = vec4<i32>(
|
|
coord.x, coord.y + 1, coord.z + 1 - uniforms.filterDims[1], 0);
|
|
${this.getSampleAWithRemainder(2)}
|
|
if (inChCoord == 0) {
|
|
resData = vec4<f32>(resData.xyz, temp.x);
|
|
} elseif (inChCoord == 1) {
|
|
resData = vec4<f32>(resData.xy, temp.xy);
|
|
} else {
|
|
resData = vec4<f32>(resData.x, temp.xyz);
|
|
}
|
|
}
|
|
`}
|
|
return resData;`,a=this.fitA?`${r}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) {
|
|
${r}
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,o=this.fitB?"return W.numbers[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W.numbers[row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,i="",l="";if(this.activation){let d=Mo(this.activation,this.isVec4);if(this.hasPreluActivationWeights)i=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${d}
|
|
}`;else{if(this.hasLeakyreluAlpha)throw i=`fn activation(a: vec4<f32>) -> vec4<f32> {
|
|
let b = getLeakyreluAlphaAtOutCoords();
|
|
${d}
|
|
}`,new Error("Leakyrelu is not supported.");i=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${d}
|
|
}`}l="value = activation(value, outCoord);"}let c=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${i}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
let r = row;
|
|
let c = col * 4;
|
|
var batch = i32(globalId.z);
|
|
${a}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${o}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : vec4<f32>, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
|
|
{
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col * 4);
|
|
${c}
|
|
${l}
|
|
setOutput(outCoord[0], outCoord[1], outCoord[2], outCoord[3],
|
|
value);
|
|
}
|
|
}
|
|
${t}
|
|
`}},tC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.outShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=ex(this.dispatchLayout,this.outputShape),this.elementsPerThread=nx(this.dispatchLayout,this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}_${this.fitA}_${this.fitB}`}getShapeFit(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],n=e>t?e:t;v.assert(n%this.workGroupSize[0]==0&&n%this.workGroupSize[1]==0,()=>"tileInner must be multiple of workgroupsize.x and workgroupsize.y");let s=[e,n],r=[n,t],a=this.outputShape[1]*this.outputShape[2],o=this.outputShape[3],i=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[ia(s,[a,i]),ia(r,[i,o])]}getUserCode(){let e=ax(this.elementsPerThread,this.workGroupSize),t=`
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = col / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0],
|
|
outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1],
|
|
col % uniforms.xShape[3]);
|
|
// The bounds checking is always needed since we use it to pad zero for the
|
|
// 'same' padding type.
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return x.numbers[getFlatIndex4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;`,n=this.fitA?`${t}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
${t}
|
|
}
|
|
return 0.0;
|
|
`,s=this.fitB?"return W.numbers[row * uniforms.dimBOuter + col];":`if(coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W.numbers[row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;
|
|
`,r="",a="";if(this.activation){let l=Mo(this.activation,!1);this.hasPreluActivationWeights?r=`fn activation(a: f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${l}
|
|
}`:r=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${l}
|
|
}
|
|
`,a="value = activation(value, outCoord);"}let o=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${r}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
${n}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${s}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
${o}
|
|
${a}
|
|
result.numbers[getFlatIndex4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
${e}
|
|
`}},nC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>;",this.workGroupSize=[128,1,1],this.outputShape=e.outShape,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.shaderKey=`conv2DNaive_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let r=Mo(this.activation);this.hasPreluActivationWeights?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32{
|
|
let b = getPreluActivationWeightsAtOutCoordsByCoords(outCoord);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32{
|
|
${r}
|
|
}
|
|
`,t="value = activation(value, outCoord);"}let n=this.addBias?"value = value + getBiasAtOutCoordsByCoords(outCoord);":"";return`
|
|
${e}
|
|
fn readInp(batch : i32, row : i32, col : i32, chan : i32) -> f32 {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return getX(batch, row, col, chan);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn readFilt(row : i32, col : i32, xChannel : i32, outChannel : i32) -> f32{
|
|
let coord = vec4<i32>(row, col, xChannel, outChannel);
|
|
if(coordsInBounds4D(coord, uniforms.wShape)) {
|
|
return getW(row, col, xChannel, outChannel);
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
${n}
|
|
${t}
|
|
setOutput(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Fe()} {
|
|
${We()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
let batch = coords[0];
|
|
let outChannel = coords[3];
|
|
|
|
var acc = 0.0;
|
|
|
|
for (var row = 0; row < uniforms.filterDims[0]; row = row + 1) {
|
|
for (var col = 0; col < uniforms.filterDims[1]; col = col + 1) {
|
|
for (var xChannel = 0; xChannel < uniforms.xShape[3]; xChannel = xChannel + 1) {
|
|
let coordRow = coords[1] * uniforms.stride[0] + uniforms.dilation[0] * row - uniforms.pad[0];
|
|
let coordCol = coords[2] * uniforms.stride[1] + uniforms.dilation[1] * col - uniforms.pad[1];
|
|
let v = readInp(batch, coordRow, coordCol, xChannel);
|
|
let f = readFilt(row, col, xChannel, outChannel);
|
|
acc = acc + v * f;
|
|
}
|
|
}
|
|
}
|
|
|
|
writeResult(batch, coords[1], coords[2], outChannel, acc);
|
|
}
|
|
`}};function Due(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:c,dimRoundingMode:u}=n,d=N.convertConv2DDataFormat(l),p=N.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!1,d);if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))return Q4({x:r,filter:a,convInfo:p,backend:s});if(K().getBool("WEBGPU_CONV_SEPARATE_IM2COL_SHADER")&&r.shape[0]===1)return $ue({x:r,filter:a,convInfo:p,backend:s});let h,f=[p.padInfo.top,p.padInfo.left],m=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[...f]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.dilationHeight,p.dilationWidth]}],g=K().getBool("WEBGPU_USE_NAIVE_CONV2D");if(g?h=new nC(p):(p.inChannels%4==0||p.inChannels===3&&p.padInfo.type==="VALID")&&p.outChannels%4==0&&p.outChannels>=64?h=new eC(p):h=new tC(p),!g){let A=p.outShape[1]*p.outShape[2],y=p.outShape[3],x=p.filterHeight*p.filterWidth*p.inShape[3];m.push({type:"int32",data:[A]},{type:"int32",data:[y]},{type:"int32",data:[x]})}return s.runWebGPUProgram(h,[r,a],r.dtype,m)}var _ue={kernelName:Na,backendName:"webgpu",kernelFunc:Due},Pue=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>; pads : vec2<i32>; stride : vec2<i32>; outBackprop : vec4<i32>; dimAOuter : i32; dimBOuter : i32; dimInner : i32;",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=ex(this.dispatchLayout,this.outputShape),this.elementsPerThread=nx(this.dispatchLayout,this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
|
|
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
|
|
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
|
|
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
i32(xR),
|
|
i32(xC),
|
|
col % uniforms.outBackprop[3]);
|
|
return x.numbers[getFlatIndex4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let coordX = uniforms.filterDims.x - 1 -
|
|
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let coordY = uniforms.filterDims.y - 1 -
|
|
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
|
|
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
|
|
coordX >= 0 && coordY >= 0) {
|
|
let coord = vec4<i32>(coordX, coordY, col,
|
|
row % uniforms.outBackprop[3]);
|
|
return W.numbers[getFlatIndex4D(coord, uniforms.wShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
result.numbers[getFlatIndex4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
|
|
${ax(this.elementsPerThread,this.workGroupSize)}
|
|
`}},Fue=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>; pads : vec2<i32>; stride : vec2<i32>; outBackprop : vec4<i32>;",this.workGroupSize=[64,1,1],this.outputShape=e.inShape,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return`
|
|
${Fe()} {
|
|
${We()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
let batch = coords[0];
|
|
let d1 = coords[${n}];
|
|
|
|
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
|
|
let dyRCorner = dyCorner.x;
|
|
let dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
|
|
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
|
|
let wRPerm = uniforms.filterDims.x - 1 - wR;
|
|
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
|
|
wRPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyR = dyR;
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
|
|
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
|
|
let wCPerm = uniforms.filterDims.y - 1 - wC;
|
|
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
|
|
fract(dyC) > 0.0 || wCPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyC = dyC;
|
|
|
|
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
|
|
if (${this.isChannelsLast}) {
|
|
let xValue = getDy(batch, idyR, idyC, d2);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
} else {
|
|
let xValue = getDy(batch, d2, idyR, idyC);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(coords[0], coords[1], coords[2], coords[3], dotProd);
|
|
}
|
|
}
|
|
`}};function Oue(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:c,dimRoundingMode:u}=s,d=N.convertConv2DDataFormat(c),p=N.computeConv2DInfo(o,a.shape,i,1,l,u,!1,d),h=[{type:"int32",data:[p.filterHeight,p.filterWidth]},{type:"int32",data:[p.filterHeight-1-p.padInfo.top,p.filterWidth-1-p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.batchSize,p.outHeight,p.outWidth,p.outChannels]}],f;if(K().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new Fue(p);else{f=new Pue(p);let m=p.inShape[1]*p.inShape[2],g=p.inShape[3],A=p.filterHeight*p.filterWidth*p.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[A]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var Mue={kernelName:Ea,backendName:"webgpu",kernelFunc:Oue},zue=Nn({opType:wt.COS}),Lue={kernelName:Ra,backendName:"webgpu",kernelFunc:zue},Bue=Nn({opType:wt.COSH}),Wue={kernelName:$a,backendName:"webgpu",kernelFunc:Bue},Vue=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32;",this.workGroupSize=[64,1,1];let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,o,i]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
|
|
fn writeResult(coords : vec4<i32>, value : f32) {
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
setOutput(coords[0], coords[1], coords[2], coords[3], value);
|
|
}
|
|
}
|
|
${Fe()} {
|
|
${We()}
|
|
let height_ratio = f32(${n});
|
|
let width_ratio = f32(${a});
|
|
let coords = getOutputCoords(globalId, index);
|
|
let b = coords[0];
|
|
let y = coords[1];
|
|
let x = coords[2];
|
|
let d = coords[3];
|
|
// get box vals
|
|
let y1 = getBoxes(b, 0);
|
|
let x1 = getBoxes(b, 1);
|
|
let y2 = getBoxes(b, 2);
|
|
let x2 = getBoxes(b, 3);
|
|
// get image in batch index
|
|
let bInd = i32(round(getBoxInd(b)));
|
|
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
|
|
return;
|
|
}
|
|
let height_scale = ${s};
|
|
let width_scale = ${o};
|
|
let in_y = ${r};
|
|
if( in_y < 0.0 || in_y > ${e} ) {
|
|
writeResult(coords, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let in_x = ${i};
|
|
if( in_x < 0.0 || in_x > ${t} ) {
|
|
writeResult(coords, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
|
|
if(${this.methodId} == 1) {
|
|
// Compute the four integer indices.
|
|
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
|
|
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
|
|
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
|
|
let top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
let newValue = top + (bottom - top) * fracCR.y;
|
|
writeResult(coords, newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let sourceNearestCR = vec2<i32>(floor(
|
|
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
|
|
let newValue = getImage(
|
|
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
writeResult(coords,newValue);
|
|
}
|
|
}
|
|
`}},Uue=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:c}=s,u=new Vue(r.shape[3],a.shape,i,l),d=[{type:"float32",data:[c]}];return n.runWebGPUProgram(u,[r,a,o],"float32",d)},Gue={kernelName:oi,backendName:"webgpu",kernelFunc:Uue},Hue=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.uniforms="blockSize : i32;",this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.size=v.sizeFromShape(this.outputShape),this.dataFormat=t}getUserCode(){return`
|
|
${Fe()} {
|
|
${We()}
|
|
if (index < uniforms.size) {
|
|
let coords = getOutputCoords(globalId, index);
|
|
let b = coords[0];
|
|
let h = ${this.getHeightCoordString()};
|
|
let w = ${this.getWidthCoordString()};
|
|
let d = ${this.getDepthCoordString()};
|
|
|
|
let in_h = h / uniforms.blockSize;
|
|
let offset_h = h % uniforms.blockSize;
|
|
let in_w = w / uniforms.blockSize;
|
|
let offset_w = w % uniforms.blockSize;
|
|
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
let in_d = d + offset_d;
|
|
|
|
let rlt = ${this.getInputSamplingString()};
|
|
setOutputFlat(index, rlt);
|
|
}
|
|
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function jue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=[{type:"int32",data:[a]}],g=new Hue(f,o);return n.runWebGPUProgram(g,[r],r.dtype,m)}var que={kernelName:ii,backendName:"webgpu",kernelFunc:jue},sC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; inDims : vec2<i32>;",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise3x3_${n}`}getUserCode(){let e="",t="";if(this.activation){let r=Mo(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, globalId : vec3<u32>, globalIndex : i32) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsAtOutCoordsByGlobalId(globalId, globalIndex);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : vec4<f32>, globalId : vec3<u32>, globalIndex : i32) -> vec4<f32> {
|
|
${r}
|
|
}
|
|
`,t="dotProd[i] = activation(dotProd[i], globalId, index);"}let n=this.addBias?"dotProd[i] = dotProd[i] + getBiasAtOutCoordsByCoords(coords);":"";return`
|
|
${e}
|
|
|
|
${Fe()} {
|
|
${We()}
|
|
let batch = 0;
|
|
let r = i32(globalId.x);
|
|
let c = i32(globalId.y) * 4;
|
|
let d2 = i32(globalId.z) * 4;
|
|
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
|
|
let d1 = d2;
|
|
let q = 0;
|
|
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var wVals : array<vec4<f32>, 9>;
|
|
wVals[0] = getW(0, 0, d1, q);
|
|
wVals[1] = getW(0, 1, d1, q);
|
|
wVals[2] = getW(0, 2, d1, q);
|
|
wVals[3] = getW(1, 0, d1, q);
|
|
wVals[4] = getW(1, 1, d1, q);
|
|
wVals[5] = getW(1, 2, d1, q);
|
|
wVals[6] = getW(2, 0, d1, q);
|
|
wVals[7] = getW(2, 1, d1, q);
|
|
wVals[8] = getW(2, 2, d1, q);
|
|
|
|
var xVals : array<array<vec4<f32>, 6>, 3>;
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
let xR = xRCorner + wR * uniforms.dilation[0];
|
|
for (var wC = 0; wC < 6; wC = wC + 1) {
|
|
let xC = xCCorner + wC * uniforms.dilation[1];
|
|
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
|
|
xVals[wR][wC] = vec4<f32>(0.0);
|
|
} else {
|
|
xVals[wR][wC] = getX(batch, xR, xC, d1);
|
|
}
|
|
}
|
|
}
|
|
|
|
var dotProd : array<vec4<f32>, 4>;
|
|
dotProd[0] = vec4<f32>(0.0);
|
|
dotProd[1] = vec4<f32>(0.0);
|
|
dotProd[2] = vec4<f32>(0.0);
|
|
dotProd[3] = vec4<f32>(0.0);
|
|
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
for (var wC = 0; wC < 3; wC = wC + 1) {
|
|
let indexW = wR * 3 + wC;
|
|
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
|
|
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
|
|
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
|
|
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
let coords = vec4<i32>(batch, r, c + i, d2);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
${n}
|
|
${t}
|
|
setOutput(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
|
|
}
|
|
}
|
|
}
|
|
`}},rC=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>; stride : vec2<i32>; dilation : vec2<i32>; inDims : vec2<i32>;",this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}_${this.activation}_${this.convInfo.outChannels/this.convInfo.inChannels}`}getUserCode(){let e=this.convInfo.outChannels/this.convInfo.inChannels,t="",n="";if(this.activation){let a=Mo(this.activation,!1);this.hasPreluActivation?t=`fn activation(a : f32, globalId : vec3<u32>, index : i32) -> f32 {
|
|
let b = getPreluActivationWeightsAtOutCoordsByGlobalId(globalId, index);
|
|
${a}
|
|
}`:t=`
|
|
fn activation(a : f32, globalId : vec3<u32>, index : i32) -> f32 {
|
|
${a}
|
|
}
|
|
`,n="dotProd = activation(dotProd, globalId, index);"}let s=this.addBias?"dotProd = dotProd + getBiasAtOutCoordsByGlobalId(globalId, index);":"";return`
|
|
${t}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32, value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
setOutput(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${Fe()} {
|
|
${We()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let d2 = coords[3];
|
|
let d1 = d2 / ${e};
|
|
let q = d2 - d1 * ${e};
|
|
|
|
let inputRowStart = xRCCorner.x;
|
|
let inputColStart = xRCCorner.y;
|
|
let inputRowEnd = inputRowStart + ${this.convInfo.filterHeight} * uniforms.dilation[0];
|
|
let inputColEnd = inputColStart + ${this.convInfo.filterWidth} * uniforms.dilation[1];
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
|
|
// Extract if checking out of for loop for performance.
|
|
if (inputRowStart >= 0 && inputColStart >= 0 &&
|
|
inputRowEnd < uniforms.inDims[0] && inputColEnd < uniforms.inDims[1]) {
|
|
// Here using a constant value |this.convInfo.filterHeight| instead
|
|
// of uniform value is in order to loop unrolling.
|
|
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
} else {
|
|
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
if (xR < 0 || xR >= uniforms.inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
if (xC < 0 || xC >= uniforms.inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
}
|
|
|
|
${s}
|
|
${n}
|
|
writeResult(batch, coords[1], coords[2], d2, dotProd);
|
|
}
|
|
`}};function Xue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:c}=s,u=l;u==null&&(u=[1,1]);let d=N.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!0),p;d.batchSize===1&&d.inHeight===d.outHeight&&d.inWidth===d.outWidth&&d.strideHeight===1&&d.strideWidth===1&&d.filterHeight===d.filterWidth&&d.inChannels===d.outChannels&&d.filterHeight===3&&d.inChannels%4==0?p=new sC(d):p=new rC(d);let h=[{type:"int32",data:[d.padInfo.top,d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.dilationHeight,d.dilationWidth]},{type:"int32",data:[d.inHeight,d.inWidth]}];return n.runWebGPUProgram(p,[r,a],r.dtype,h)}var Kue={kernelName:Da,backendName:"webgpu",kernelFunc:Xue},aC=qn({opSnippet:Vt.MUL,cpuKernelImpl:Dle,supportsComplex:!0}),Zue={kernelName:Ka,backendName:"webgpu",kernelFunc:aC},Yue=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="reduceSize : i32;",this.inputShape=[e.batchSize,e.inSize];let[s]=N.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=s.length===0?[1]:s,this.reductionFactor=2;let r=256,a=Math.min(Math.ceil(e.inSize/this.reductionFactor),r);this.workGroupSize=[a,1,1],this.dispatchLayout={x:[],y:this.outputShape.map((o,i)=>i)},this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.reduceType=t,this.shaderKey=`reduce_${t}_${n}`}getUserCode(){let e=this.workGroupSize[0]>1,t="",n="0.0";this.reduceType==="min"||this.reduceType==="max"?(t=`
|
|
if (isNanCustom(candidate)) {
|
|
bestValue = uniforms.NAN;
|
|
} elseif (candidate ${this.reduceType==="min"?"<":">"}
|
|
bestValue)
|
|
{ bestValue = candidate; }`,n="f32(x.numbers[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?t=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(t=" bestValue = bestValue * candidate; ",n="1.0");let s=this.reduceType==="mean"?"setOutputFlat(flatOutputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputFlat(flatOutputIndex, bestValue);",r=`
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`,a=`
|
|
xBestValues[localId.x] = bestValue;
|
|
${this.reduceType==="sum"||this.reduceType==="mean"||this.reduceType==="prod"?`bestValue = ${n};`:" "}
|
|
var currentSize = WorkGroupSize;
|
|
for(; currentSize > 1;) {
|
|
workgroupBarrier();
|
|
for (var w = 0; w < ${this.reductionFactor}; w = w + 1) {
|
|
let i = i32(localId.x) * ${this.reductionFactor} + w;
|
|
if (i < currentSize) {
|
|
let candidate = xBestValues[i];
|
|
${t}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
xBestValues[localId.x] = bestValue;
|
|
currentSize = DIV_CEIL(currentSize, ${this.reductionFactor});
|
|
${this.reduceType==="sum"||this.reduceType==="mean"||this.reduceType==="prod"?`if(currentSize > 1) { bestValue = ${n}; }`:""}
|
|
}
|
|
if (localId.x == 0u) {
|
|
${s}
|
|
}
|
|
`;return`
|
|
fn DIV_CEIL(a : i32, b : i32) -> i32 {
|
|
return ((a - 1) / b + 1);
|
|
}
|
|
let WorkGroupSize = ${this.workGroupSize[0]};
|
|
${e?r:""}
|
|
fn getOffset(globalId : vec3<u32>, index : i32) -> i32 {
|
|
let outputCoords = getOutputCoords(globalId, index);
|
|
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
|
|
return offset;
|
|
}
|
|
${Fe()} {
|
|
${We()}
|
|
let offset= getOffset(globalId, index);
|
|
var bestValue = ${n};
|
|
let Length = uniforms.reduceSize;
|
|
let WorkPerThread = DIV_CEIL(Length, WorkGroupSize);
|
|
for (var w = 0; w < WorkPerThread; w = w + 1) {
|
|
let i = i32(globalId.x) * WorkPerThread + w;
|
|
if (i < Length) {
|
|
let candidate = f32(x.numbers[offset + i]);
|
|
${t}
|
|
}
|
|
}
|
|
let flatOutputIndex = i32(globalId.y);
|
|
${e?a:s}
|
|
}
|
|
`}};function np(e,t,n,s,r){let a=e.shape.length,o=[],i=v.parseAxisParam(t,e.shape),l=i,c=N.getAxesPermutation(l,a),u=e;c!=null&&(u=vl({inputs:{x:e},attrs:{perm:c},backend:r}),l=N.getInnerMostAxes(l.length,a),o.push(u)),N.assertAxesAreInnerMostDims(s,l,a);let[d,p]=N.computeOutAndReduceShapes(u.shape,l),h=d;n&&(h=N.expandShapeToKeepDim(d,i));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([u])){let m=r.tensorMap.get(u.dataId).values;switch(s){case"max":let g=Ele(m,v.sizeFromShape(p),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:A,outShape:y,outDtype:x}=Fle(u.shape,u.dtype,m,l);f=r.makeTensorInfo(y,x,A);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(p),A=v.sizeFromShape(u.shape)/m,y={windowSize:m,inSize:m,batchSize:A,outSize:1},x=s==="mean"?"float32":rd(e.dtype),b=[{type:"int32",data:[m]}],w=new Yue(y,s,x),k=r.runWebGPUProgram(w,[u],x,b);o.push(k),f=je({inputs:{x:k},attrs:{shape:h},backend:r})}return o.forEach(m=>r.disposeData(m.dataId)),f}function cx(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return np(r,a,o,"sum",n)}var Jue={kernelName:oo,backendName:"webgpu",kernelFunc:cx};function Que(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=N.decodeEinsumEquation(r,a.length);N.checkEinsumDimSizes(o.length,l,a);let{path:c,steps:u}=N.getEinsumComputePath(i,l),d=u.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of u[m]){let{permutationIndices:A,expandDims:y}=N.getEinsumPermutation(h,l[g]),x;N.isIdentityPermutation(A)?x=a[g]:(x=vl({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(x));let b=x.shape.slice();for(let w=0;w<y.length;++w)b.splice(y[w],0,1);v.arraysEqual(x.shape,b)||(x=je({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=aC({inputs:{a:x,b:p},backend:n}),f.push(p))}m<d-1&&(c[m]>=0&&(p=cx({inputs:{x:p},backend:n,attrs:{axis:c[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeData(m.dataId);return p}var ece={kernelName:Bc,backendName:"webgpu",kernelFunc:Que},tce=Nn({opType:wt.ELU}),nce={kernelName:Pa,backendName:"webgpu",kernelFunc:tce},sce=qn({opSnippet:Vt.EQUAL,dtype:"bool",cpuKernelImpl:yle}),rce={kernelName:li,backendName:"webgpu",kernelFunc:sce},oC=Nn({opType:wt.EXP,cpuKernelImpl:xle,dtype:"float32"}),ace={kernelName:Fa,backendName:"webgpu",kernelFunc:oC};function dx(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),je({inputs:{x:a},backend:s,attrs:{shape:i}})}var oce={kernelName:ui,backendName:"webgpu",kernelFunc:dx},ice=Nn({opType:wt.EXPM1,cpuKernelImpl:ble}),lce={kernelName:ci,backendName:"webgpu",kernelFunc:ice},uce=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32;",this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return`
|
|
${Fe()} {
|
|
${We()}
|
|
if (index < uniforms.size) {
|
|
setOutputFlat(index, uniforms.value);
|
|
}
|
|
}
|
|
`}};function ac(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new uce(s),i=[{type:"float32",data:[r]}];return t.runWebGPUProgram(o,[],a,i)}}var cce={kernelName:Ql,backendName:"webgpu",kernelFunc:ac},dce=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return`
|
|
${Fe()} {
|
|
${We()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getOutputCoords(globalId, index);
|
|
let coordX = uniforms.xShape[2] - coords[2] - 1;
|
|
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
|
|
setOutputFlat(index, outputValue);
|
|
}
|
|
}
|
|
`}},pce={kernelName:di,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new dce(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},hce=Nn({opType:wt.FLOOR,cpuKernelImpl:vle}),fce={kernelName:Oa,backendName:"webgpu",kernelFunc:hce},mce=qn({opSnippet:Vt.INT_DIV,dtype:"int32"}),gce={kernelName:Ma,backendName:"webgpu",kernelFunc:mce},Ace=(e,t,n,s,r)=>{let a=[s,...n];return r&&a.push(r),e.createBindGroup({layout:t,entries:a.map((o,i)=>({binding:i,resource:o}))})},iC=(e,t,n,s,r,a=!1)=>{let o={dtype:r.dtype,shape:r.shape},i=Zoe(s,o,t,a),l=e.createShaderModule({code:i});return e.createComputePipeline({layout:n,compute:{module:l,entryPoint:"main"}})};function lC(e,t,n,s="",r=""){return(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(o=>o.length).join(",")+n.join(",")+e.variableNames.join(",")+s+r+e.shaderKey}function uC(e){let{externalImage:t,backend:n,attrs:s,outShape:r,useImport:a}=e,{numChannels:o}=s,i=v.sizeFromShape(r),l=v.computeStrides(r),c=n.makeTensorInfo(r,"int32"),u=n.getFromPixelsProgram(a?"import":"copyExternal");u.updateOutputShape(r);let d=[c.shape],p=[c.dtype,a?"import":"copyExternal"],h=lC(u,d,p),f=u.getLayout(n.device),m=n.getAndSavePipeline(h,()=>iC(n.device,u,f.pipelineLayout,[],c,!0));u.setPipeline(m),a||n.queue.copyExternalImageToTexture({source:t,origin:{x:0,y:0}},{texture:u.makeInputTexture(n.device,r[1],r[0])},[r[1],r[0]]);let g=n.tensorMap.get(c.dataId);g.bufferInfo.buffer=n.acquireBuffer(g.bufferInfo.byteSize);let A=[i,o,...l,...u.dispatch];u.setUniform(n.device,A);let y;if(a){let x={source:t};y=n.device.importExternalTexture(x)}else y=u.inputTexture.createView();return n.runFromPixelsProgram(u,g.bufferInfo.buffer,f,y,c.dataId),c}var yce={kernelName:Kc,backendName:"webgpu",kernelFunc:xce},oc;function xce(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,c=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[u,d]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],p=[d,u,a];if(K().getBool("WEBGPU_USE_IMPORT")&&o)return uC({externalImage:r,backend:n,attrs:s,outShape:p,useImport:!0});if((o||i)&&(oc==null&&(oc=document.createElement("canvas").getContext("2d")),oc.canvas.width=u,oc.canvas.height=d,oc.drawImage(r,0,0,u,d),r=oc.canvas),c||l||o||i)return uC({externalImage:r,backend:n,attrs:s,outShape:p,useImport:!1});let h=r.data,f=h;if(a!=null&&a!==4){f=new Uint8Array(r.width*r.height*a);let A=h.length,y=0;for(let x=0;x<A;x++)x%4<a&&(f[y++]=h[x])}let m=n.makeTensorInfo(p,"int32"),g=n.tensorMap.get(m.dataId);return g.values=new Int32Array(f),n.maybeReleaseBuffer(m.dataId),n.uploadToGPU(m.dataId),m}var bce=class{constructor(e,t,n,s,r){this.uniforms="varianceEpsilon : f32;",this.workGroupSize=[128,1,1],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,n),this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset")),r!=null&&(N.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=s,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetAtOutCoordsByGlobalId(globalId, index)");let t="1.0";this.scaleShape!=null&&(t="getScaleAtOutCoordsByGlobalId(globalId, index)");let n=this.outputShape.length,s=Qt(n),r="setOutput(coords[0], coords[1], coords[2], coords[3], value);";return n===2&&(r="setOutput(coords[0], coords[1], value);"),n===3&&(r="setOutput(coords[0], coords[1], coords[2], value);"),`
|
|
fn writeResult(coords : ${s}, value : f32) {
|
|
if (coordsInBounds${n}D(coords, uniforms.outShape)) {
|
|
${r}
|
|
}
|
|
}
|
|
${Fe()} {
|
|
${We()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
let xValue = getXAtOutCoordsByGlobalId(globalId, index);
|
|
let meanValue = getMeanAtOutCoordsByGlobalId(globalId, index);
|
|
let varianValue = getVarianceAtOutCoordsByGlobalId(globalId, index);
|
|
let offsetValue = ${e};
|
|
let scaleValue = ${t};
|
|
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
|
|
writeResult(coords,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
|
|
}
|
|
`}},vce={kernelName:za,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:o,variance:i}=e,{varianceEpsilon:l}=t,c=n,u=[s,o,i],d=null;a!=null&&(d=a.shape,u.push(a));let p=null;r!=null&&(p=r.shape,u.push(r));let h=new bce(s.shape,o.shape,i.shape,d,p),f=[{type:"float32",data:[l]}];return c.runWebGPUProgram(h,u,s.dtype,f)}};function wce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dataFormat:u,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=N.convertConv2DDataFormat(u),g=N.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!1,m),A=o!=null,y=i!=null,x;if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))return Q4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});let b=K().getBool("WEBGPU_USE_NAIVE_CONV2D"),w=g.inChannels%4==0&&g.outChannels%4==0,k=[g.padInfo.top,g.padInfo.left],S=[{type:"int32",data:[g.filterHeight,g.filterWidth]},{type:"int32",data:[...k]},{type:"int32",data:[g.strideHeight,g.strideWidth]},{type:"int32",data:[g.dilationHeight,g.dilationWidth]}];if(b)x=new nC(g,A,h,y);else{w?x=new eC(g,A,h,y):x=new tC(g,A,h,y);let P=g.outShape[1]*g.outShape[2],F=g.outShape[3],R=g.filterHeight*g.filterWidth*g.inShape[3];S.push({type:"int32",data:[P]},{type:"int32",data:[F]},{type:"int32",data:[R]})}let E=[r,a];return A&&E.push(o),y&&E.push(i),n.runWebGPUProgram(x,E,r.dtype,S)}var kce={kernelName:mo,backendName:"webgpu",kernelFunc:wce};function Ice(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:d,activation:p}=s,h=u;h==null&&(h=[1,1]),v.assert(N.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let f=N.computeConv2DInfo(r.shape,a.shape,l,h,c,d,!0),m=[r,a],g=o!=null,A=i!=null;g&&m.push(o),A&&m.push(i);let y;f.batchSize===1&&f.inHeight===f.outHeight&&f.inWidth===f.outWidth&&f.strideHeight===1&&f.strideWidth===1&&f.filterHeight===f.filterWidth&&f.inChannels===f.outChannels&&f.filterHeight===3&&f.inChannels%4==0?y=new sC(f,g,p,A):y=new rC(f,g,p,A);let x=[{type:"int32",data:[f.padInfo.top,f.padInfo.left]},{type:"int32",data:[f.strideHeight,f.strideWidth]},{type:"int32",data:[f.dilationHeight,f.dilationWidth]},{type:"int32",data:[f.inHeight,f.inWidth]}];return n.runWebGPUProgram(y,m,"float32",x)}var Sce={kernelName:go,backendName:"webgpu",kernelFunc:Ice},Cce=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.outputShape=t,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.size=v.sizeFromShape(this.outputShape),this.sliceDim=e,this.uniforms=`sliceDim : i32; strides : ${Qt(e)};`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
|
|
${Fe()} {
|
|
${We()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
var flattenIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexTemp = i32(round(getIndices(coords[0], j)));
|
|
let strideNum = ${e};
|
|
flattenIndex = flattenIndex + indexTemp * strideNum;
|
|
}
|
|
if (index < uniforms.size) {
|
|
setOutputFlat(index, getA(flattenIndex, coords[1]));
|
|
}
|
|
}
|
|
`}};function Tce(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,c,u,d]=N.prepareAndValidate(s,r),p=je({inputs:{x:r},backend:n,attrs:{shape:[c,o]}}),h=je({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/u,u]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let y=n.readSync(r.dataId),x=n.bufferSync(s),b=wle(y,x,s.dtype,c,o,u,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,b.values)}let f=new Cce(o,[c,u]),m=[{type:"int32",data:[o]},{type:"int32",data:d}],g=n.runWebGPUProgram(f,[h,p],h.dtype,m),A=je({inputs:{x:g},backend:n,attrs:{shape:l}});return n.disposeData(p.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),A}var Nce={kernelName:hi,backendName:"webgpu",kernelFunc:Tce},Ece=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=Rce(this.aShape,"i32");return`
|
|
${Fe()} {
|
|
${We()}
|
|
let resRC = getOutputCoords(globalId, index);
|
|
if (index < uniforms.size) {
|
|
setOutputFlat(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function Rce(e,t="int"){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push(`${t}(getIndices(resRC.x, resRC.z))`):s.push(`${n[r]}`);return s.join()}function cC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=N.segment_util.collectGatherOpShapeInfo(r,a,l,i),u=v.sizeFromShape(a.shape),d=[],p=je({inputs:{x:r},backend:n,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),h=je({inputs:{x:a},backend:n,attrs:{shape:[c.batchSize,u/c.batchSize]}});d.push(p),d.push(h);let f=[c.batchSize,c.outerSize,u/c.batchSize,c.sliceSize];if(n.shouldExecuteOnCPU([r,a])){let x=n.tensorMap.get(h.dataId).values,b=Le(h.shape,h.dtype,x),k=n.tensorMap.get(p.dataId).values,S=Le(p.shape,p.dtype,k),E=kle(S,b,f);return d.forEach(P=>n.disposeData(P.dataId)),n.makeTensorInfo(c.outputShape,E.dtype,E.values)}let m=new Ece(p.shape,f),g=n.runWebGPUProgram(m,[p,h],p.dtype);d.push(g);let A=je({inputs:{x:g},backend:n,attrs:{shape:c.outputShape}});return d.forEach(y=>n.disposeData(y.dataId)),A}var $ce={kernelName:pi,backendName:"webgpu",kernelFunc:cC},Dce=qn({opSnippet:Vt.GREATER,cpuKernelImpl:Sle,dtype:"bool"}),_ce={kernelName:fi,backendName:"webgpu",kernelFunc:Dce},Pce=qn({opSnippet:Vt.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:Ile}),Fce={kernelName:La,backendName:"webgpu",kernelFunc:Pce},Oce=qn({opSnippet:Vt.LESS,dtype:"bool",cpuKernelImpl:Tle}),Mce={kernelName:gi,backendName:"webgpu",kernelFunc:Oce},zce=qn({opSnippet:Vt.LESS_EQUAL,dtype:"bool",cpuKernelImpl:Cle}),Lce={kernelName:Ai,backendName:"webgpu",kernelFunc:zce},Bce=Nn({opType:wt.LOG,cpuKernelImpl:Nle}),Wce={kernelName:Wa,backendName:"webgpu",kernelFunc:Bce},Vce=qn({opSnippet:Vt.LOGICAL_AND,dtype:"bool"}),Uce={kernelName:yi,backendName:"webgpu",kernelFunc:Vce},Gce=Nn({opType:wt.LOGICAL_NOT}),Hce={kernelName:ru,backendName:"webgpu",kernelFunc:Gce};function dC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s;return np(r,a,o,"max",n)}var jce={kernelName:Va,backendName:"webgpu",kernelFunc:dC},qce=qn({opSnippet:Vt.MAX,cpuKernelImpl:Rle}),Xce={kernelName:Ua,backendName:"webgpu",kernelFunc:qce};function Kce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,c=1,u=N.computePool2DInfo(r.shape,a,o,c,i,l),d,p=[];if(u.filterHeight===1&&u.filterWidth===1){if(v.arraysEqual(u.inShape,u.outShape))return Js({inputs:{x:r},backend:n});d=new Z4(u),p.push({type:"int32",data:[u.strideHeight,u.strideWidth]})}else d=new K4(u,"max"),p.push({type:"int32",data:[u.strideHeight,u.strideWidth]},{type:"int32",data:[u.padInfo.top,u.padInfo.left]},{type:"int32",data:[u.dilationHeight,u.dilationWidth]},{type:"int32",data:[u.inHeight,u.inWidth]},{type:"int32",data:[u.effectiveFilterHeight,u.effectiveFilterWidth]});return n.runWebGPUProgram(d,[r],r.dtype,p)}var Zce={kernelName:Ga,backendName:"webgpu",kernelFunc:Kce};function Yce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:o}=s;return np(r,o,a,"mean",n)}var Jce={kernelName:Ha,backendName:"webgpu",kernelFunc:Yce};function Qce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return np(r,a,o,"min",n)}var ede={kernelName:ja,backendName:"webgpu",kernelFunc:Qce},tde=qn({opSnippet:Vt.MIN,cpuKernelImpl:$le}),nde={kernelName:qa,backendName:"webgpu",kernelFunc:tde},sde=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2<i32>;`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`,this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,c)=>`uniforms.pad${c}[0]`).join(","),n=this.xShape.map((l,c)=>`uniforms.pad${c}[0] + uniforms.xShape${e>1?`[${c}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",o=Qt(e),i=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${Fe()} {
|
|
${We()}
|
|
let start = ${o}(${t});
|
|
let end = ${o}(${n});
|
|
var outC = getOutputCoords(globalId, index);
|
|
if (index < uniforms.size) {
|
|
for (var i = 0; i < ${e}; i = i + 1) {
|
|
if (${a} < ${s}) {
|
|
${a} = ${s} * 2 - ${a} - ${this.offset};
|
|
} elseif(${a} >= ${r}) {
|
|
${a} = (${r} - 1) * 2 - ${a} + ${this.offset};
|
|
}
|
|
}
|
|
let coords = outC - start;
|
|
setOutputFlat(index, getX(${i}));
|
|
}
|
|
}
|
|
`}},rde={kernelName:Xa,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,o=n,i=r.map(u=>({type:"int32",data:[u[0],u[1]]})),l=new sde(s.shape,r,a);return o.runWebGPUProgram(l,[s],s.dtype,i)}};function ade(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[o,i]=_le(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r=new Pm(s.shape,wt.NEG);return n.runWebGPUProgram(r,[s],s.dtype)}var ode={kernelName:xi,backendName:"webgpu",kernelFunc:ade};function ide(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,c=n.readSync(r.dataId),u=n.readSync(a.dataId),{selectedIndices:d}=Xs.nonMaxSuppressionV3Impl(c,u,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var lde={kernelName:vi,backendName:"webgpu",kernelFunc:ide};function ude(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:c}=s,u=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=c,{selectedIndices:g,selectedScores:A}=Xs.nonMaxSuppressionV5Impl(u,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var cde={kernelName:wi,backendName:"webgpu",kernelFunc:ude};function Om(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=tp({inputs:{input:s},backend:n}),a=Om({inputs:{x:r},backend:n}),o=Fm({inputs:{input:s},backend:n}),i=Om({inputs:{x:o},backend:n}),l=sc({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return ac({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var dde={kernelName:Wi,backendName:"webgpu",kernelFunc:Om};function pC(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=tp({inputs:{input:s},backend:n}),a=pC({inputs:{x:r},backend:n}),o=Fm({inputs:{input:s},backend:n}),i=Om({inputs:{x:o},backend:n}),l=sc({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return ac({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var pde={kernelName:ki,backendName:"webgpu",kernelFunc:pC};function hde(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return dx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=dx({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=J4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var fde={kernelName:Si,backendName:"webgpu",kernelFunc:hde},mde=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32;",this.workGroupSize=[64,1,1],this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2<i32>;`}),this.xShape=e,this.shaderKey="pad",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=this.xShape.length,t=Qt(e),n=this.xShape.map((u,d)=>`uniforms.pad${d}[0]`).join(","),s=this.xShape.map((u,d)=>`uniforms.pad${d}[0] + uniforms.xShape${e>1?`[${d}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,o=e>1?"any(outC < start)":"outC < start",i=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${Fe()} {
|
|
${We()}
|
|
let start = ${r};
|
|
let end = ${a};
|
|
if (index < uniforms.size) {
|
|
let outC = getOutputCoords(globalId, index);
|
|
|
|
if (${o} || ${i}) {
|
|
setOutputFlat(index, uniforms.constantValue);
|
|
} else {
|
|
let coords = outC - start;
|
|
setOutputFlat(index, getX(${l}));
|
|
}
|
|
}
|
|
}
|
|
`}},hC=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(a.every(c=>v.arraysEqual(c,[0,0])))return Js({inputs:{x:r},backend:n});if(v.sizeFromShape(r.shape)===0){let c=a.map((u,d)=>u[0]+r.shape[d]+u[1]);return ac({backend:n,attrs:{shape:c,value:o,dtype:r.dtype}})}let i=[{type:"float32",data:[o]}];a.map(c=>i.push({type:"int32",data:[c[0],c[1]]}));let l=new mde(r.shape,a);return n.runWebGPUProgram(l,[r],r.dtype,i)},gde={kernelName:Za,backendName:"webgpu",kernelFunc:hC},Ade=qn({opSnippet:Vt.POW}),yde={kernelName:Ya,backendName:"webgpu",kernelFunc:Ade};function xde(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new j4(Vt.PRELU,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var bde={kernelName:Ja,backendName:"webgpu",kernelFunc:xde};function vde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return np(r,a,o,"prod",n)}var wde={kernelName:Ci,backendName:"webgpu",kernelFunc:vde},kde=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=Ole(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},Ide={kernelName:iu,backendName:"webgpu",kernelFunc:kde},fC=qn({opSnippet:Vt.DIV}),Sde={kernelName:_a,backendName:"webgpu",kernelFunc:fC},Cde=Nn({opType:wt.RELU}),Tde={kernelName:Qa,backendName:"webgpu",kernelFunc:Cde},Nde=Nn({opType:wt.RELU6}),Ede={kernelName:to,backendName:"webgpu",kernelFunc:Nde},Rde=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.alignCorners=s,this.halfPixelCenters=r,this.shaderKey=`resizeBilinear_${s}_${r}_${this.outputShape[1]>1}_${this.outputShape[2]>1}`}getUserCode(){let e=this.alignCorners&&this.outputShape[1]>1,t=this.alignCorners&&this.outputShape[2]>1;return`
|
|
${Fe()} {
|
|
${We()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
if (all(coords < uniforms.outShape)) {
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
${e?"f32(uniforms.xShape.y) - 1.0":"f32(uniforms.xShape.y)"},
|
|
${t?"f32(uniforms.xShape.z) - 1.0":"f32(uniforms.xShape.z)"});
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
${e?"f32(uniforms.outShape.y) - 1.0":"f32(uniforms.outShape.y)"},
|
|
${t?"f32(uniforms.outShape.z) - 1.0":"f32(uniforms.outShape.z)"});
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC = ${this.halfPixelCenters?"(vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC - vec2<f32>(0.5)":"vec2<f32>(rc) * effectiveInputOverOutputRatioRC"};
|
|
|
|
// Compute the four integer indices.
|
|
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
|
|
let sourceCeilRC = vec2<i32>(
|
|
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
|
|
|
|
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
|
|
|
|
let top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
let newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(b, coords[1], coords[2], d, newValue);
|
|
}
|
|
}
|
|
`}};function $de(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:o,halfPixelCenters:i}=s,[l,c]=o,u=new Rde(r.shape,l,c,a,i);return n.runWebGPUProgram(u,[r],"float32")}var Dde={kernelName:eo,backendName:"webgpu",kernelFunc:$de},_de=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.alignCorners=s,this.halfPixelCenters=r,this.shaderKey=`resizeNearest_${s}_${this.outputShape[1]>1}_${this.outputShape[2]>1}_${r}`}getUserCode(){let e=this.alignCorners?"0.5":"0.0",t;this.halfPixelCenters?t="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":t="vec2<f32>(rc) * effectiveInputOverOutputRatioRC";let n=this.alignCorners&&this.outputShape[1]>1,s=this.alignCorners&&this.outputShape[2]>1;return`
|
|
${Fe()} {
|
|
${We()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
if (all(coords < uniforms.outShape)) {
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
${n?"f32(uniforms.xShape.y) - 1.0":"f32(uniforms.xShape.y)"},
|
|
${s?"f32(uniforms.xShape.z) - 1.0":"f32(uniforms.xShape.z)"});
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
${n?"f32(uniforms.outShape.y) - 1.0":"f32(uniforms.outShape.y)"},
|
|
${s?"f32(uniforms.outShape.z) - 1.0":"f32(uniforms.outShape.z)"});
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC = ${t};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
|
|
let sourceNearestRC = vec2<i32>(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${e})));
|
|
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(b, coords[1], coords[2], d, newValue);
|
|
}
|
|
}
|
|
`}};function Pde(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,u=new _de(r.shape,l,c,a,o);return n.runWebGPUProgram(u,[r],r.dtype)}var Fde={kernelName:uu,backendName:"webgpu",kernelFunc:Pde},Ode=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32; centerY : f32; sinRadians : f32;
|
|
cosRadians : f32;`,this.shaderKey="rotate",this.size=v.sizeFromShape(this.outputShape),this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32;",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>;",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
|
|
${Fe()} {
|
|
${We()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getOutputCoords(globalId, index);
|
|
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.sinRadians;
|
|
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.cosRadians;
|
|
let coordX = i32(round(coordXFloat + uniforms.centerX));
|
|
let coordY = i32(round(coordYFloat + uniforms.centerY));
|
|
${this.fillSnippet}
|
|
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
|
|
coordY < uniforms.xShape[1]) {
|
|
outputValue = getX(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutputFlat(index, outputValue);
|
|
}
|
|
}
|
|
`}},Mde={kernelName:Vi,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Ode(s.shape,a),[c,u]=N.getImageCenter(o,s.shape[1],s.shape[2]),d=[{type:"float32",data:[c]},{type:"float32",data:[u]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?d.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):d.push({type:"float32",data:a}),i.runWebGPUProgram(l,[s],s.dtype,d)}},zde=Nn({opType:wt.RSQRT,cpuKernelImpl:Mle}),Lde={kernelName:no,backendName:"webgpu",kernelFunc:zde},Bde=class{constructor(e,t,n,s,r,a,o){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=o,this.dispatchLayout=Ke(e),this.dispatch=Me(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${s}_${this.sliceDimGreaterThanOne}_${o}`,this.size=v.sizeFromShape(e);let i=Qt(r.length);this.uniforms=`sliceDim : i32; strides: ${i};`,this.updatesRank=s,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",s="",r="",a="";this.updatesRank===1?(s="coords[0]",r="flattenedIndex",a=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
|
|
return index;
|
|
}
|
|
`):this.updatesRank===2&&(s="coords[0], coords[1]",r="vec2<i32>(flattenedIndex, coords[1])",a=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.updatesShape[1];
|
|
let d1 = index - d0 * uniforms.updatesShape[1];
|
|
return vec2<i32>(d0, d1);
|
|
}
|
|
`);let o=`getUpdates(${s})`,i=this.type==="int32"?"ignore(atomicAdd(&(result.numbers[flatIndex]), i32(updateValue)));":`
|
|
var oldI32 = atomicLoad(&(result.numbers[flatIndex]));
|
|
var assumed = oldI32 - 1;
|
|
for (; assumed != oldI32;) {
|
|
assumed = oldI32;
|
|
let new = bitcast<f32>(assumed) + updateValue;
|
|
let newI32 = bitcast<i32>(new);
|
|
oldI32 = atomicCompareExchangeWeak(&(result.numbers[flatIndex]), assumed, newI32)[0];
|
|
}
|
|
`;return`
|
|
${a}
|
|
|
|
${Fe()} {
|
|
${We()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getUpdatesCoordsFromFlatIndex(index);
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${t}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${n};
|
|
}
|
|
let updateValue = ${o};
|
|
let flatIndex = getOutputFlatIndex(${r});
|
|
|
|
${i}
|
|
}
|
|
}`}};function Wde(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:c,strides:u,outputSize:d}=N.calculateShapes(a,r,o),p=[d/c,c];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=je({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=je({inputs:{x:a},backend:n,attrs:{shape:[l,c]}}),m=f.dtype,g=ac({backend:n,attrs:{shape:p,value:0,dtype:m}}),A=[{type:"int32",data:[i]},{type:"int32",data:u}],y=new Bde(f.shape,i,h.shape.length,f.shape.length,u,p,m),x=n.runWebGPUProgram(y,[f,h],m,A,g),b=je({inputs:{x},backend:n,attrs:{shape:o}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(x.dataId),b}var Vde={kernelName:Ri,backendName:"webgpu",kernelFunc:Wde},Ude=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.outputShape=t,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let o=0;o<this.outputShape.length;o++)a.push(`${s[o]}`),o<this.cRank&&r.push(`${s[o]}`);e=r.join(),t=a.join()}return`
|
|
${Fe()} {
|
|
${We()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getOutputCoords(globalId, index);
|
|
let cVal = getC(${e});
|
|
if (cVal >= 1.0) {
|
|
setOutputFlat(index, getA(${t}));
|
|
} else {
|
|
setOutputFlat(index, getB(${t}));
|
|
}
|
|
}
|
|
}
|
|
`}};function Gde(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Ude(s.shape.length,r.shape,r.shape.length);return n.runWebGPUProgram(o,[s,r,a],Bn(r.dtype,a.dtype))}var Hde={kernelName:$i,backendName:"webgpu",kernelFunc:Gde},jde=Nn({opType:wt.SIGMOID}),qde={kernelName:ro,backendName:"webgpu",kernelFunc:jde},Xde=Nn({opType:wt.SIN}),Kde={kernelName:so,backendName:"webgpu",kernelFunc:Xde},Zde=Nn({opType:wt.SINH}),Yde={kernelName:_i,backendName:"webgpu",kernelFunc:Zde},mC=qn({opSnippet:Vt.SUB,cpuKernelImpl:Vle,supportsComplex:!0}),Jde={kernelName:uo,backendName:"webgpu",kernelFunc:mC};function Qde(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=dC({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=N.expandShapeToKeepDim(i.shape,o),c=je({inputs:{x:i},backend:n,attrs:{shape:l}}),u=mC({inputs:{a:r,b:c},backend:n}),d=oC({inputs:{x:u},backend:n}),p=cx({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=je({inputs:{x:p},backend:n,attrs:{shape:l}}),f=fC({inputs:{a:d,b:h},backend:n});return n.disposeData(i.dataId),n.disposeData(c.dataId),n.disposeData(u.dataId),n.disposeData(d.dataId),n.disposeData(p.dataId),n.disposeData(h.dataId),f}var epe={kernelName:io,backendName:"webgpu",kernelFunc:Qde},tpe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((A,y)=>A*y),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let c=[],u=hC({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=N.getReshaped(u.shape,a,i,!1),p=N.getPermuted(d.length,a.length,!1),h=N.getReshapedPermuted(u.shape,a,i,!1),f=je({inputs:{x:u},backend:n,attrs:{shape:d}}),m=vl({inputs:{x:f},backend:n,attrs:{perm:p}}),g=je({inputs:{x:m},backend:n,attrs:{shape:h}});return c.push(u),c.push(f),c.push(m),c.forEach(A=>n.disposeData(A.dataId)),g},npe={kernelName:Pi,backendName:"webgpu",kernelFunc:tpe},spe=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.outputShape=a,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let i=t>1;this.shaderKey=`scatter_${n}_${s}_${i}`,this.size=v.sizeFromShape(this.outputShape);let l=Qt(r.length);this.uniforms=`updateSize : i32; sliceDim : i32; strides: ${l};`;let c="";n===1?c="i":n===2&&(c="i, j"),this.indicesSnippet=`getIndices(${c})`;let u="";s===1?u="i":s===2&&(u="i, coords[1]"),this.updatesSnippet=`getUpdates(${u})`,this.strideString=i?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
|
|
${Fe()} {
|
|
${We()}
|
|
|
|
let globalIndex = index * ${this.workPerThread};
|
|
if (globalIndex < uniforms.size) {
|
|
var sum = vec4<f32>(0.0);
|
|
var found = vec4<bool>(false);
|
|
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${this.indicesSnippet}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
let coords = getCoordsFromFlatIndex(curIndex);
|
|
if (flattenedIndex == coords[0]) {
|
|
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
|
|
found[innerIndex] = true;
|
|
}
|
|
}
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
if (curIndex < uniforms.size)
|
|
{
|
|
setOutputFlat(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
|
|
}
|
|
}
|
|
}
|
|
}`}};function rpe(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:c,strides:u,outputSize:d}=N.calculateShapes(a,r,i),p=!1,h=[{type:"int32",data:[c]},{type:"int32",data:[l]},{type:"int32",data:u}],f=new spe(c,l,r.shape.length,a.shape.length,u,[d,1],p),m=n.runWebGPUProgram(f,[a,r,o],a.dtype,h),g=je({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeData(m.dataId),g}var ape={kernelName:jc,backendName:"webgpu",kernelFunc:rpe};function ope(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=N.prepareSplitSize(r,a,i),c=r.shape.length,u=new Array(c).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=rc({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[i]+=p,f})}var ipe={kernelName:Fi,backendName:"webgpu",kernelFunc:ope},lpe=Nn({opType:wt.SQRT}),upe={kernelName:ao,backendName:"webgpu",kernelFunc:lpe},cpe={kernelName:hu,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new Pm(n.shape,wt.SQUARE);return s.runWebGPUProgram(r,[n],n.dtype)}},dpe=qn({opSnippet:Vt.SQUARED_DIFFERENCE}),ppe={kernelName:lo,backendName:"webgpu",kernelFunc:dpe},hpe=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=Qt(this.outputShape.length);this.uniforms=`begin : ${t}; strides : ${t}; `,this.shaderKey="stridedSlice",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
|
|
${Fe()} {
|
|
${We()}
|
|
if (index < uniforms.size) {
|
|
let coords = getOutputCoords(globalId, index);
|
|
setOutputFlat(index, getX(${t}));
|
|
}
|
|
}
|
|
`}};function fpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,{nonStrided:h,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=An.sliceInfo(r.shape,a,o,i,l,c,u,d,p),x=je({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(h){let k=rc({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=je({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeData(k.dataId)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let E=n.tensorMap.get(x.dataId).values,P=Le(x.shape,x.dtype,E),F=Ble(y,P,m,f);b=n.makeTensorInfo(y,x.dtype,F.values)}else{let S=new hpe(y),E=[{type:"int32",data:f},{type:"int32",data:m}];b=n.runWebGPUProgram(S,[x],x.dtype,E)}let w=je({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeData(x.dataId),n.disposeData(b.dataId),w}var mpe={kernelName:Oi,backendName:"webgpu",kernelFunc:fpe};function gpe(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:c}=s,{data:u,dataSplits:d}=t,p=n.readSync(u.dataId),h=n.readSync(d.dataId),[f,m]=Wle(p,h,r,a,o,i,l,c);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Ape={kernelName:qc,backendName:"webgpu",kernelFunc:gpe},ype=Nn({opType:wt.TANH}),xpe={kernelName:co,backendName:"webgpu",kernelFunc:ype},bpe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.size=v.sizeFromShape(this.outputShape),this.shaderKey="tile"}getUserCode(){let e=vpe(this.rank,"uniforms.");return`
|
|
${Fe()} {
|
|
${We()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getOutputCoords(globalId, index);
|
|
setOutputFlat(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function vpe(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e;r++)s.push(`(${n[r]} % ${t}aShape[${r}])`);return s.join()}function wpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(n.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let l=n.readSync(r.dataId),c=r.dtype==="string"?l.map(p=>v.decodeString(p)):l,u=Le(r.shape,r.dtype,c),d=Ule(u,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new bpe(r.shape,a);return n.runWebGPUProgram(o,[r],r.dtype)}var kpe={kernelName:qr,backendName:"webgpu",kernelFunc:wpe},Ipe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32; firstPass : i32; negativeInf : f32;
|
|
dir : i32; inc : i32;`,this.shaderKey="swap",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return`
|
|
${Fe()} {
|
|
${We()}
|
|
if (index < uniforms.size) {
|
|
let outC = getOutputCoords(globalId, index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced
|
|
// above, Figure5(a) shows that element[1] is in the second half of
|
|
// the group when group size is 2, but it is in the first half of
|
|
// the group when group size is 4.
|
|
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
|
|
var i = 0;
|
|
if (isFirstInPair) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx - uniforms.inc;
|
|
}
|
|
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.inc;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.inc));
|
|
}
|
|
|
|
var x0 = f32(0.0);
|
|
var x1 = f32(0.0);
|
|
if (i0 < uniforms.inputSize) {
|
|
x0 = getX(batch, i0);
|
|
} else {
|
|
x0 = uniforms.negativeInf;
|
|
}
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = uniforms.negativeInf;
|
|
}
|
|
|
|
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
|
|
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) {
|
|
// Elements in opposite order of direction
|
|
let iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutputFlat(index, f32(i0));
|
|
} else {
|
|
setOutputFlat(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}},Spe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32; firstPass : i32; k : i32;",this.shaderKey="merge",this.size=v.sizeFromShape(this.outputShape)}getUserCode(){return`
|
|
${Fe()} {
|
|
${We()}
|
|
if (index < uniforms.size) {
|
|
let outC = getOutputCoords(globalId, index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
|
|
// (k=4), we only need to output the indices at positions |, the
|
|
// indices at positions _ can be thrown away, see Figure5(b) After
|
|
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
|
|
// above.
|
|
// For example, the paper shows we only need to output the orange
|
|
// bars. The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back to
|
|
// the previous sequence to find the corresponding value, we need
|
|
// to double the index. When we double the index, we basically
|
|
// interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
|
|
// position of each 2k positions by - elemIdx % k. E.g. for output
|
|
// at index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
var i = 0;
|
|
if (elemIdx < uniforms.k) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx * 2 - elemIdx % uniforms.k;
|
|
}
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.k;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.k));
|
|
}
|
|
|
|
let x0 = getX(batch, i0);
|
|
var x1 = f32(0.0);
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = x0;
|
|
}
|
|
|
|
if (x0 >= x1) {
|
|
setOutputFlat(index, f32(i0));
|
|
} else {
|
|
setOutputFlat(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}};function ic(e,t){t!==null&&e.disposeData(t.dataId)}function gC(e){let t=1;for(;t<e;)t*=2;return t}function Cpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=r.shape,l=i[i.length-1];if(n.shouldExecuteOnCPU([r])){let w=n.readSync(r.dataId),[k,S]=Gle(w,i,r.dtype,a,o);return[n.makeTensorInfo(k.shape,k.dtype,k.values),n.makeTensorInfo(S.shape,S.dtype,S.values)]}if(a===0)return i[i.length-1]=0,[n.makeTensorInfo(i,r.dtype,[]),n.makeTensorInfo(i,"int32",[])];if(l===1)return[r,ac({attrs:{shape:i,dtype:"int32",value:0},backend:n})];let u=v.sizeFromShape(i)/l,d=je({inputs:{x:r},attrs:{shape:[u,l]},backend:n}),p=gC(a),h=gC(l),f=null,m=()=>f===null?[d,d]:[d,f],g=(w,k,S)=>{let E=m(),P=new Ipe(S),R=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[w]},{type:"int32",data:[k]}],_=f;f=n.runWebGPUProgram(P,E,"int32",R),ic(n,_)};for(let w=1;w<p;w*=2){let k=w*2;for(let S=w;S>=1;S/=2)g(k,S,[u,h])}for(let w=h;w>p;w/=2){let k=m(),S=new Spe([u,w/2]),P=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[p]}],F=f;f=n.runWebGPUProgram(S,k,"int32",P),ic(n,F);let R=p/2,_=R*2;for(let T=R;T>=1;T/=2)g(_,T,f.shape)}let A=f;f=rc({inputs:{x:f},backend:n,attrs:{begin:0,size:[u,a]}}),ic(n,A);let y=cC({inputs:{x:d,indices:f},backend:n,attrs:{axis:1,batchDims:1}});ic(n,d);let x=i.slice(0,-1);x.push(a),A=f,f=je({inputs:{x:f},attrs:{shape:x},backend:n}),ic(n,A);let b=y;return y=je({inputs:{x:y},attrs:{shape:x},backend:n}),ic(n,b),[y,f]}var Tpe={kernelName:zi,backendName:"webgpu",kernelFunc:Cpe},Npe=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32; fillModeId : i32; fillValue : f32;",this.workGroupSize=[64,1,1],this.outputShape=e,this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
|
|
fn mapCoord(outCoord : f32, len : f32) -> f32{
|
|
var inCoord = outCoord;
|
|
if(uniforms.fillModeId == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
if (inCoord < -len) {
|
|
inCoord = inCoord + sz2;
|
|
} else {
|
|
inCoord = -inCoord - 1.0;
|
|
}
|
|
}
|
|
} elseif (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} elseif (uniforms.fillModeId == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
|
|
}
|
|
} elseif (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} elseif (uniforms.fillModeId == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
}
|
|
return outCoord;
|
|
}
|
|
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
|
|
channel : i32) -> f32 {
|
|
var outputValue : f32;
|
|
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = uniforms.fillValue;
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
${Fe()} {
|
|
${We()}
|
|
let coords = getOutputCoords(globalId, index);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
var outputValue : f32;
|
|
let batch = coords[0];
|
|
let x = coords[2];
|
|
let y = coords[1];
|
|
let channel = coords[3];
|
|
let xf = f32(x);
|
|
let yf = f32(y);
|
|
let a1 = getTransforms(batch, 0);
|
|
let a2 = getTransforms(batch, 1);
|
|
let a3 = getTransforms(batch, 2);
|
|
let b1 = getTransforms(batch, 3);
|
|
let b2 = getTransforms(batch, 4);
|
|
let b3 = getTransforms(batch, 5);
|
|
let c1 = getTransforms(batch, 6);
|
|
let c2 = getTransforms(batch, 7);
|
|
let projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = uniforms.fillValue;
|
|
} else {
|
|
let inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
let inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
|
|
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
|
|
|
|
if (uniforms.interpolationModeId == 1) {
|
|
let coordY = i32(round(mapY));
|
|
let coordX = i32(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
let yFloor = floor(mapY);
|
|
let xFloor = floor(mapX);
|
|
let yCeil = yFloor + 1.0;
|
|
let xCeil = xFloor + 1.0;
|
|
let valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
|
|
let valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(coords[0], coords[1], coords[2], coords[3], outputValue);
|
|
}
|
|
}
|
|
`}};function Epe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new Npe(g),y=o==="nearest"?1:2,x;switch(i){case"constant":x=1;break;case"reflect":x=2;break;case"wrap":x=3;break;case"nearest":x=4;break;default:x=1;break}let b=[{type:"int32",data:[y]},{type:"int32",data:[x]},{type:"float32",data:[l]}];return n.runWebGPUProgram(A,[r,a],"float32",b)}var Rpe={kernelName:Li,backendName:"webgpu",kernelFunc:Epe};function $pe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],c=new Array(i-1),u=0;for(let m=0;m<i;m++)m!==a&&(c[u++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=rc({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=je({inputs:{x:g},backend:n,attrs:{shape:c}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeData(m.dataId)),f}var Dpe={kernelName:Bi,backendName:"webgpu",kernelFunc:$pe},_pe=[cle,qle,Kle,Jle,rue,oue,lue,cue,mue,xue,vue,Sue,fle,Eue,_ue,Mue,Lue,Wue,Gue,que,Kue,ece,nce,rce,oce,ace,lce,cce,pce,yce,fce,gce,vce,kce,Sce,Nce,$ce,_ce,Fce,hle,Tue,Mce,Lce,Wce,Uce,Hce,jce,Xce,Zce,Jce,ede,nde,rde,Zue,ode,lde,cde,gue,pde,fde,gde,bde,wde,yde,Ide,Aue,Sde,Tde,Ede,lle,Dde,Fde,Mde,Lde,Vde,Hde,qde,Kde,Yde,hue,mpe,Ape,epe,npe,ipe,ape,upe,cpe,ppe,Jde,Jue,xpe,kpe,Tpe,Rpe,nue,Dpe,dde];for(let e of _pe)Kr(e);var Ppe=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireBuffer(e,t){let n=AC(e,t);if(this.freeBuffers.has(n)||this.freeBuffers.set(n,[]),this.usedBuffers.has(n)||this.usedBuffers.set(n,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(n).length>0){this.numFreeBuffers--;let r=this.freeBuffers.get(n).shift();return this.usedBuffers.get(n).push(r),r}this.numBytesAllocated+=e;let s=this.device.createBuffer({size:e,usage:t});return this.usedBuffers.get(n).push(s),s}releaseBuffer(e,t,n){if(this.freeBuffers==null)return;let s=AC(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}reset(){this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}dispose(){this.freeBuffers==null&&this.usedBuffers==null||(this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=null,this.usedBuffers=null,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0)}};function AC(e,t){return`${e}_${t}`}var yC=class{constructor(){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.lastUniformData=[],this.inputTexture=null,this.layout=null,this.lastPixelSize={width:0,height:0},this.disposed=!1,this.shaderKey="fromPixels",this.useImport=!1}updateOutputShape(e){v.arraysEqual(this.outputShape,e)||(this.outputShape=e,this.workPerThread=e[2],this.dispatchLayout=Ke(this.outputShape),this.dispatch=Me(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]))}makeFromPixelsSource(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
|
|
[[binding(1), group(0)]] var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
|
|
|
|
${Fe()} {
|
|
${We()}
|
|
let flatIndexBase = index * uniforms.numChannels;
|
|
let coords = getCoordsFromFlatIndex(flatIndexBase);
|
|
let values = ${e};
|
|
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
|
|
let flatIndex = flatIndexBase + i;
|
|
if (flatIndex < uniforms.size) {
|
|
result.numbers[flatIndex] = i32(floor(255.0 * values[i]));
|
|
}
|
|
}
|
|
}
|
|
`}getUserCode(){return this.makeFromPixelsSource()}setPipeline(e){this.pipeline=e}setUniform(e,t){if(!this.uniform){let n=e.createBuffer({size:t.length*4,usage:GPUBufferUsage.UNIFORM|GPUBufferUsage.COPY_DST});this.uniform=n}!t||t.length===this.lastUniformData.length&&t.every((n,s)=>n===this.lastUniformData[s])||(e.queue.writeBuffer(this.uniform,0,new Uint32Array(t)),this.lastUniformData=t)}makeInputTexture(e,t,n){return(!this.inputTexture||this.lastPixelSize.width!==t||this.lastPixelSize.height!==n)&&(this.inputTexture&&this.inputTexture.destroy(),this.inputTexture=e.createTexture({size:[t,n],format:"rgba8unorm",usage:GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING}),this.lastPixelSize.width=t,this.lastPixelSize.height=n),this.inputTexture}dispose(){this.disposed||(this.uniform&&this.uniform.destroy(),this.inputTexture&&this.inputTexture.destroy(),this.disposed=!0)}getLayout(e){return this.layout===null&&(this.layout=this.createTextureLayout(e)),this.layout}createTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},Fpe=class extends yC{constructor(){super(...arguments);this.layout=null,this.useImport=!0}getUserCode(){return this.makeFromPixelsSource()}getLayout(e){return this.layout===null&&(this.layout=this.createTextureImportLayout(e)),this.layout}createTextureImportLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=e.createBindGroupLayout({entries:t}),s=e.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}},Ope=K().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),xC=class extends Ll{constructor(e,t=!1){super();if(this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,!rx())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new Ppe(this.device),this.tensorMap=new Dc(this,ss()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),K().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return xC.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let n=this.tensorMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:s}=this.tensorMap.get(e);s!=null&&(this.disposeData(s.real.dataId,!0),this.disposeData(s.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()},r=v.sizeFromShape(t)*sx(n);return n==="bool"&&e instanceof Uint8Array&&(e=Int32Array.from(e)),this.tensorMap.set(s,{dtype:n,values:e,bufferInfo:{byteSize:r,usage:this.defaultGpuBufferUsage()},refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a=v.sizeFromShape(n)*sx(s);this.tensorMap.set(e,{dtype:s,values:t,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}getFromPixelsProgram(e){switch(e){case"copyExternal":return this.fromPixelProgram||(this.fromPixelProgram=new yC),this.fromPixelProgram;case"import":return this.fromPixelImportProgram||(this.fromPixelImportProgram=new Fpe),this.fromPixelImportProgram;default:v.assert(!1,()=>"Unsupported fromPixels shape");return}}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.endPass(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e){if(e.values!=null)return e.values;let t=this.acquireBuffer(e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e.bufferInfo.buffer,0,t,0,e.bufferInfo.byteSize),this.submitQueue(),await t.mapAsync(GPUMapMode.READ);let n=t.getMappedRange().slice(0);return t.unmap(),t!=null&&this.bufferManager.releaseBuffer(t,e.bufferInfo.byteSize,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),K().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),n}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],o=r[1];s=N.mergeRealAndImagArrays(a,o)}else{let r=await this.getBufferData(t);s=B4(r,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>v.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},i=await Promise.all(r);return o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,c)=>({name:a[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,o}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values&&this.queue.writeBuffer(t.bufferInfo.buffer,0,t.values))}makeUniformsDataView(e){let t=this.acquireBuffer(e.byteLength,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);return this.queue.writeBuffer(t,0,e),{offset:0,size:e.byteLength,buffer:t}}arrayToDataView(e,t){let n=4,s=new DataView(new ArrayBuffer(t*n)),r=0;return e.forEach(a=>{let o=a.data;if(a.type!=="int32"&&a.type!=="float32"&&a.type!=="uint32")throw new Error(`${a.type} not supported!`);a.type==="int32"?o.forEach(i=>{s.setInt32(r*n,i,!0),r++}):a.type==="uint32"?o.forEach(i=>{s.setUint32(r*n,i,!0),r++}):o.forEach(i=>{s.setFloat32(r*n,i,!0),r++})}),s}computePadding(e){let t=0,n=0,s=0,r=[];return e.forEach((a,o)=>{a.data.length===0&&(a.data=[1]);let i;switch(a.data.length){case 0:i=1;break;case 1:i=1;break;case 2:i=2;break;case 3:i=4;break;case 4:i=4;break;default:v.assert(!1,()=>`Unsupported ${a.data.length}D shape`)}n=Math.ceil(t/i)*i-t;for(let l=0;l<n;++l)r.push({type:a.type,data:[0]}),s++;r.push({type:a.type,data:a.data}),s=s+a.data.length,t+=a.data.length+n}),this.arrayToDataView(r,s)}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let r=0;r<e;r++)t.push({binding:r+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let n=this.device.createBindGroupLayout({entries:t}),s=this.device.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}runWebGPUProgram(e,t,n,s,r){if(!r){if(r=this.makeTensorInfo(e.outputShape,n),v.sizeFromShape(r.shape)===0){let E=this.tensorMap.get(r.dataId);return E.values=v.getTypedArrayFromDType(r.dtype,0),r}this.uploadToGPU(r.dataId)}let a=[{type:"float32",data:[NaN]}],o=t.concat(r).map(E=>E.shape),i="int32";o.map(E=>{a.push({type:i,data:E})});let l=v.computeStrides(r.shape);a.push({type:i,data:l}),e.size!=null&&a.push({type:i,data:[e.size]}),a.push({type:"uint32",data:e.dispatch}),s&&(a=[...a,...s]);let c=null,u=this.computePadding(a),d=u.byteLength;c=this.makeUniformsDataView(u);let p=t.map((E,P)=>{if(E.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(E.dataId),{dtype:this.tensorMap.get(E.dataId).dtype,shape:E.shape,name:e.variableNames[P]}}),h=p.map(E=>E.dtype).concat(r.dtype),f=p.map(E=>N.getBroadcastDims(E.shape,r.shape)),m=p.map(E=>v.arraysEqual(E.shape,r.shape)).join("_"),g=f.map(E=>E.join("_")).join(";"),A=lC(e,o,h,g,m),{bindGroupLayout:y,pipelineLayout:x}=this.getCachedOrCreateLayout(e.variableNames.length),b=this.getAndSavePipeline(A,()=>iC(this.device,e,x,p,r)),w=this.activeTimers!=null,k=Ace(this.device,y,t.map(E=>this.tensorToBinding(E)),this.tensorToBinding(r),c);this.ensureCommandEncoderReady();let S=this.getComputePass();if(w&&this.supportTimeQuery&&S.writeTimestamp(this.querySet,0),S.setPipeline(b),S.setBindGroup(0,k),S.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),w&&this.supportTimeQuery&&S.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(E=>{this.commandQueueOwnedIds.add(E.dataId)}),this.commandQueueOwnedIds.add(r.dataId),c){let E={byteSize:d,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:c.buffer};this.uniformDisposalQueue.push(E)}return K().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),w&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}runFromPixelsProgram(e,t,n,s,r){let a=this.device.createBindGroup({layout:n.bindGroupLayout,entries:[{binding:0,resource:{buffer:t}},{binding:1,resource:s},{binding:2,resource:{buffer:e.uniform}}]});this.ensureCommandEncoderReady();let o=this.getComputePass(),i=this.activeTimers!=null;i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,0),o.setPipeline(e.pipeline),o.setBindGroup(0,a),o.dispatch(e.dispatch[0],e.dispatch[1],e.dispatch[2]),i&&this.supportTimeQuery&&o.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(r),this.submitQueue(),i&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)})}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=Ope){return K().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).bufferInfo.buffer==null&&v.sizeFromShape(n.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.fromPixelProgram&&this.fromPixelProgram.dispose(),this.fromPixelImportProgram&&this.fromPixelImportProgram.dispose(),this.disposed=!0)}},px=xC;px.nextDataId=0;var bC={};ze(bC,{WebGPUBackend:()=>px,webgpu_util:()=>L4});gu.isBrowser()&&rx()&&Ki("webgpu",async()=>{K().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:K().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n={},s=t.features.has("timestamp-query");s?n={requiredFeatures:["timestamp-query"]}:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let r=await t.requestDevice(n);return new px(r,s)},3);var en;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(en||(en={}));var sp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(sp||(sp={}));var vC;function Mpe(e){vC=e.wasm.cwrap(fo,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function zpe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:d}=s,p=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let E=n.dataIdMap.get(o.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=sp[u];if(g==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let A=l?r.shape[2]:r.shape[1],y=c?a.shape[1]:a.shape[2],x=r.shape[0],b=n.makeOutput([x,A,y],r.dtype),w=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),S=new Uint8Array(new Int32Array(a.shape).buffer);return vC(p,k,r.shape.length,h,S,a.shape.length,l,c,g,f,m,d||0,w),b}var Lpe={kernelName:fo,backendName:"wasm",setupFunc:Mpe,kernelFunc:zpe};function En(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,c=o.makeOutput(i.shape,t||i.dtype),u=o.dataIdMap.get(c.dataId).id;return v.sizeFromShape(c.shape)===0||n(l,en[i.dtype],u),c}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var Bpe=En(ni);function Xn(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:c,b:u}=l,d=i.dataIdMap.get(c.dataId).id,p=i.dataIdMap.get(u.dataId).id,h=n!=null?n:c.dtype,f=N.assertAndGetBroadcastShape(c.shape,u.shape),m=i.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(c.shape).buffer),A=new Uint8Array(new Int32Array(u.shape).buffer),y=i.dataIdMap.get(m.dataId).id,x=()=>s(d,g,c.shape.length,p,A,u.shape.length,en[c.dtype],y);if(t&&c.dtype==="float32")return x(),m;let b=N.getBroadcastDims(c.shape,f),w=N.getBroadcastDims(u.shape,f),k=b.every((E,P)=>E===P),S=w.every((E,P)=>E===P);if(k&&S)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var Wpe=!0,Vpe=Xn(Hr,Wpe),wC;function Upe(e){wC=e.wasm.cwrap(wa,null,["array","number","number","number"])}function Gpe(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return wC(a,r.length,en[s.dtype],o),s}var Hpe={kernelName:wa,backendName:"wasm",setupFunc:Upe,kernelFunc:Gpe};function Mm(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var jpe={kernelName:Ba,backendName:"wasm",kernelFunc:Mm},kC;function qpe(e){kC=e.wasm.cwrap(po,null,["number","array","number","number","number","array","number"])}function lc(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Kpe(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=Xpe(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=Mm({inputs:t,backend:n});return f.shape=i,f}let c=n.makeOutput(i,l.dtype),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(c.dataId).id,p=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return kC(u,h,l.shape.length,en[l.dtype],d,p,a.length),c}function Xpe(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Kpe(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var Zpe={kernelName:po,backendName:"wasm",kernelFunc:lc,setupFunc:qpe};function zo(e,t,n){let s=e.shape,r=e.shape.length,a=v.parseAxisParam(t,s),o=a,i=N.getAxesPermutation(o,r),l=null,c=!1;if(i!=null){let u=new Array(r);for(let h=0;h<u.length;h++)u[h]=s[i[h]];o=N.getInnerMostAxes(o.length,r),l=lc({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(c=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:c}}var IC;function Ype(e){IC=e.wasm.cwrap(Gl,null,["number, number, number"])}function Jpe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;c=u,l=x}let f=c.shape.length;N.assertAxesAreInnerMostDims("all",d,f);let[m,g]=N.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;IC(l,A,x)}if(h&&t.disposeData(u.dataId),a){let x=N.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Qpe={kernelName:Gl,backendName:"wasm",setupFunc:Ype,kernelFunc:Jpe},SC;function ehe(e){SC=e.wasm.cwrap(Hl,null,["number, number, number"])}function the(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;c=u,l=x}let f=c.shape.length;N.assertAxesAreInnerMostDims("any",d,f);let[m,g]=N.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;SC(l,A,x)}if(h&&t.disposeData(u.dataId),a){let x=N.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var nhe={kernelName:Hl,backendName:"wasm",setupFunc:ehe,kernelFunc:the},CC;function she(e){CC=e.wasm.cwrap(ka,null,["number","number","number","number","number"])}function rhe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:c,axes:u,inputWasTransposed:d}=zo(a,r,t);if(d){let A=t.dataIdMap.get(c.dataId).id;A!==o&&(l=c,i=A)}let p=l.shape.slice(0,-1),h=t.makeOutput(p,"int32"),f=t.dataIdMap.get(h.dataId).id,m=v.sizeFromShape(h.shape),g=l.shape[u[0]];return CC(i,en[l.dtype],m,g,f),d&&t.disposeData(c.dataId),h}var ahe={kernelName:ka,backendName:"wasm",kernelFunc:rhe,setupFunc:she},TC;function ohe(e){TC=e.wasm.cwrap(Ia,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ihe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=N.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.strideHeight,y=u.strideWidth,x=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let b=s.makeOutput(u.outShape,"float32"),w=s.dataIdMap.get(b.dataId).id;return TC(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,y,x,w),b}var lhe={kernelName:Ia,backendName:"wasm",setupFunc:ohe,kernelFunc:ihe};function us(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a);return v.assert(a===v.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var uhe={kernelName:Ti,backendName:"wasm",kernelFunc:us},NC;function che(e){NC=e.wasm.cwrap(Sa,null,["number","array","number","number","array","number","number","number","number"])}function dhe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,c=a.shape.length,u=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[c-1]:a.shape[c-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[c-2]:a.shape[c-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),A=v.sizeFromShape(m),y=g===A||g===1||A===1;v.assert(l>=2&&c>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);v.assert(u===d,()=>`Error in matMul: inner shapes (${u}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let w=o?[g,u,p]:[g,p,u],k=i?[A,h,d]:[A,d,h],S=us({inputs:{x:r},backend:n,attrs:{shape:w}}),E=us({inputs:{x:a},backend:n,attrs:{shape:k}}),P=n.dataIdMap.get(S.dataId).id,F=n.dataIdMap.get(E.dataId).id,R=o?S.shape[2]:S.shape[1],_=i?E.shape[1]:E.shape[2],T=Math.max(g,A),M=n.makeOutput([T,R,_],S.dtype),U=n.dataIdMap.get(M.dataId).id,H=new Uint8Array(new Int32Array(S.shape).buffer),z=new Uint8Array(new Int32Array(E.shape).buffer);return NC(P,H,S.shape.length,F,z,E.shape.length,o,i,U),n.disposeData(S.dataId),n.disposeData(E.dataId),M.shape=b,M}var phe={kernelName:Sa,backendName:"wasm",setupFunc:che,kernelFunc:dhe};function rp(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=An.parseSliceParams(t,n,s),i=An.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),c=r.makeOutput(o,t.dtype),u=v.computeStrides(t.shape),d=r.dataIdMap.get(c.dataId);if(i){let f=An.computeFlatOffset(a,u);return t.dtype==="string"?d.stringBytes=l.slice(f,f+v.sizeFromShape(o)):r.typedArrayFromHeap(c).set(l.subarray(f,f+v.sizeFromShape(o))),c}if(t.dtype==="string"){let f=um(l,a,o,t.shape,t.dtype);return d.stringBytes=f,c}let p=r.typedArrayFromHeap(c),h=t.shape.length;if(h===2)hhe(l,u[0],p,a,o);else if(h===3)fhe(l,u[0],u[1],p,a,o);else if(h===4)mhe(l,u[0],u[1],u[2],p,a,o);else{let f=um(l,a,o,t.shape,t.dtype);p.set(f)}return c}function hhe(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let c=o;c<l;c++){let u=c*t+i;n.set(e.subarray(u,u+r[1]),a),a+=r[1]}}function fhe(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],c=r[2],u=i+a[0],d=l+a[1];for(let p=i;p<u;p++)for(let h=l;h<d;h++){let f=p*t+h*n+c;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function mhe(e,t,n,s,r,a,o){let i=0,l=a[0],c=a[1],u=a[2],d=l+o[0],p=c+o[1],h=u+o[2],f=a[3];for(let m=l;m<d;m++)for(let g=c;g<p;g++)for(let A=u;A<h;A++){let y=m*t+g*n+A*s+f;r.set(e.subarray(y,y+o[3]),i),i+=o[3]}}var ghe={kernelName:Di,backendName:"wasm",kernelFunc:rp};function Ahe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((A,y)=>A*y),l=N.getReshaped(r.shape,a,i),c=N.getPermuted(l.length,a.length),u=N.getReshapedPermuted(r.shape,a,i),d=N.getSliceBeginCoords(o,a.length),p=N.getSliceSize(u,o,a.length),h=us({inputs:{x:r},backend:n,attrs:{shape:l}}),f=lc({inputs:{x:h},backend:n,attrs:{perm:c}}),m=us({inputs:{x:f},backend:n,attrs:{shape:u}}),g=rp({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var yhe={kernelName:si,backendName:"wasm",kernelFunc:Ahe};function ap(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var xhe={kernelName:Ca,backendName:"wasm",kernelFunc:ap},bhe=En(Ta),EC;function vhe(e){EC=e.wasm.cwrap(jr,null,["number","number","number","number"])}function whe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id;return EC(i,a,o,c),l}var khe={kernelName:jr,backendName:"wasm",setupFunc:vhe,kernelFunc:whe};function RC(e){let{inputs:t,backend:n}=e,s=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=N.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>v.sizeFromShape(h.shape)>0);if(a.length===1)return Mm({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(v.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(N.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(x=>{let b=v.sizeFromShape(x.shape.slice(s));return us({inputs:{x},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=N.computeOutShape(h.map(x=>x.shape),1);let m=h[0].shape[0]===1,g=wy(f,r,t[0].dtype,m),A=N.computeOutShape(a.map(x=>x.shape),s);o.shape=A;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=N.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=v.sizeFromShape(a[0].shape.slice(0,s)),c=0,u=a.map(h=>{let f=v.sizeFromShape(h.shape.slice(s));return c+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*c;for(let m=0;m<d.length;m++){let g=u[m],A=h*g,y=d[m].subarray(A,A+g);p.set(y,f),f+=g}}return o}var Ihe={kernelName:ri,backendName:"wasm",kernelFunc:RC},$C;function She(e){$C=e.wasm.cwrap(Na,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Che(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d,dataFormat:p}=n,h=N.convertConv2DDataFormat(p),f=N.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!1,h),m=f.filterHeight,g=f.filterWidth,A=f.padInfo.top,y=f.padInfo.right,x=f.padInfo.bottom,b=f.padInfo.left,w=f.dilationHeight,k=f.dilationWidth,S=f.strideHeight,E=f.strideWidth,P=f.inChannels,F=f.outChannels,R=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let _=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get(_.dataId).id;return $C(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,A,y,x,b,R,w,k,S,E,P,F,T),_}var The={kernelName:Na,backendName:"wasm",setupFunc:She,kernelFunc:Che},DC;function Nhe(e){DC=e.wasm.cwrap(Ea,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ehe(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:c,inputShape:u}=s,d=1,p=N.convertConv2DDataFormat(l),h=N.computeConv2DInfo(u,a.shape,o,d,i,c,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:A,inHeight:y,inWidth:x,outChannels:b,outHeight:w,outWidth:k,strideHeight:S,strideWidth:E}=h,P=m-1-h.padInfo.top,F=g-1-h.padInfo.left,R=h.dataFormat==="channelsLast",_=v.computeStrides(h.inShape),T=v.computeStrides(r.shape),[M,U,H]=v.computeStrides(a.shape),z=_[0],X=R?_[1]:_[2],ee=R?_[2]:1,Y=R?1:_[1],se=T[0],ne=R?T[1]:T[2],J=R?T[2]:1,te=R?1:T[1],ue=t.makeOutput(h.inShape,"float32"),ce=t.dataIdMap.get(ue.dataId).id,xe=t.dataIdMap.get(r.dataId).id,we=t.dataIdMap.get(a.dataId).id;return DC(xe,we,f,m,g,y,x,A,w,k,b,S,E,P,F,M,U,H,z,X,ee,Y,se,ne,J,te,ce),ue}var Rhe={kernelName:Ea,backendName:"wasm",setupFunc:Nhe,kernelFunc:Ehe},$he=En(Ra),Dhe=En($a),hx;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(hx||(hx={}));var _C;function _he(e){_C=e.wasm.cwrap(oi,null,["number","number","number","number","array","number","number","number","number","number"])}function Phe(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:c}=n,u=l.shape[0],[d,p]=o,h=[u,d,p,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=ap({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,A=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(c.dataId).id,x=t.makeOutput(h,"float32"),b=t.dataIdMap.get(x.dataId).id,w=new Uint8Array(new Int32Array(i.shape).buffer);return _C(g,A,y,u,w,d,p,hx[r],a,b),m!=null&&t.disposeData(m.dataId),x}var Fhe={kernelName:oi,backendName:"wasm",setupFunc:_he,kernelFunc:Phe},PC;function Ohe(e){PC=e.wasm.cwrap(ai,null,["number","number","number","number","number","number"])}function Mhe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let c=N.getAxesPermutation([a],l),u=r;c!==null&&(u=lc({inputs:{x:r},attrs:{perm:c},backend:n}));let d=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumsum",[d],l);let p=n.makeOutput(u.shape,u.dtype),h=u.shape[d],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(p.dataId).id;PC(f,o?1:0,i?1:0,h,m,en[r.dtype]);let g=p;if(c!==null){let A=N.getUndoAxesPermutation(c);g=lc({inputs:{x:p},attrs:{perm:A},backend:n}),n.disposeData(u.dataId),n.disposeData(p.dataId)}return g}var zhe={kernelName:ai,backendName:"wasm",setupFunc:Ohe,kernelFunc:Mhe},FC;function Lhe(e){FC=e.wasm.cwrap(ii,null,["number","number","number","array","number","array","array","number","number"])}function Bhe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],c=o==="NHWC"?r.shape[2]:r.shape[3],u=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=c*a,h=u/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return FC(A,a,o==="NHWC"?1:0,y,r.shape.length-1,x,b,f.length,w),m}var Whe={kernelName:ii,backendName:"wasm",setupFunc:Lhe,kernelFunc:Bhe},OC;function Vhe(e){OC=e.wasm.cwrap(Da,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Uhe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:d}=n,p=c==null?[1,1]:c,h=N.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,A=h.padInfo.right,y=h.padInfo.bottom,x=h.padInfo.left,b=h.dilationHeight,w=h.dilationWidth,k=h.strideHeight,S=h.strideWidth,E=h.inChannels,P=h.outChannels,F=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(h.outShape,"float32"),_=s.dataIdMap.get(R.dataId).id;return OC(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,A,y,x,F,b,w,k,S,E,P,_),R}var Ghe={kernelName:Da,backendName:"wasm",setupFunc:Vhe,kernelFunc:Uhe},Hhe=En(Pa),jhe=!1,qhe=Xn(li,jhe,"bool"),Xhe=En(Fa,"float32");function fx(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),us({inputs:{x:r},backend:s,attrs:{shape:i}})}var Khe={kernelName:ui,backendName:"wasm",kernelFunc:fx};function MC(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var Zhe={kernelName:Ql,backendName:"wasm",kernelFunc:MC},zC;function Yhe(e){zC=e.wasm.cwrap(di,null,["number","number","number","number","number","number"])}function Jhe(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,c,u]=s.shape;return zC(a,i,l,c,u,o),r}var Qhe={kernelName:di,backendName:"wasm",kernelFunc:Jhe,setupFunc:Yhe},efe=En(Oa),tfe=!1,nfe=Xn(Ma,tfe),LC;function sfe(e){LC=e.wasm.cwrap(za,null,["number","number","number","number","number","number","number"])}function rfe(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:c}=n,u=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return LC(u,d,p,h,f,r,g),m}var afe={kernelName:za,backendName:"wasm",setupFunc:sfe,kernelFunc:rfe},BC;function ofe(e){BC=e.wasm.cwrap(mo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ife(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=N.computeConv2DInfo(r.shape,a.shape,l,u,c,p),g=sp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let w=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,E=m.padInfo.right,P=m.padInfo.bottom,F=m.padInfo.left,R=m.dilationHeight,_=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,U=m.inChannels,H=m.padInfo.type==="SAME"?1:0,z=m.batchSize,X=m.inHeight,ee=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let Y=s.makeOutput(m.outShape,"float32"),se=s.dataIdMap.get(Y.dataId).id,ne=i==null?0:s.dataIdMap.get(i.dataId).id;return BC(A,z,X,ee,y,w,k,b,S,E,P,F,H,R,_,T,M,U,x,g,ne,f||0,se),Y}var lfe={kernelName:mo,backendName:"wasm",setupFunc:ofe,kernelFunc:ife},WC;function ufe(e){WC=e.wasm.cwrap(go,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function cfe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:c,dilations:u,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=N.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!0),g=sp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let J=s.dataIdMap.get(o.dataId);if(J.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${J.shape.length}.`);if(J.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${J.shape}) does not match the number of output channels (${x})`);b=J.id}let w=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,E=m.padInfo.right,P=m.padInfo.bottom,F=m.padInfo.left,R=m.dilationHeight,_=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,U=m.inChannels,H=m.padInfo.type==="SAME"?1:0,z=m.batchSize,X=m.inHeight,ee=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let Y=s.makeOutput(m.outShape,"float32"),se=s.dataIdMap.get(Y.dataId).id,ne=i==null?0:s.dataIdMap.get(i.dataId).id;return WC(A,z,X,ee,y,w,k,b,S,E,P,F,H,R,_,T,M,U,x,g,ne,f||0,se),Y}var dfe={kernelName:go,backendName:"wasm",setupFunc:ufe,kernelFunc:cfe},VC;function pfe(e){VC=e.wasm.cwrap(hi,null,["number","number","number","number","number","number","array","number"])}function hfe(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=A2.prepareAndValidate(s,r),c=t.makeOutput(a,s.dtype);if(o===0)return c;let u=r.shape,d=u[u.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),A=t.dataIdMap.get(c.dataId).id;return VC(h,en[s.dtype],m,o,d,i,g,A),c}var ffe={kernelName:hi,backendName:"wasm",setupFunc:pfe,kernelFunc:hfe},UC;function mfe(e){UC=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function gfe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],c=t.readSync(a.dataId),u=r.shape[l];for(let P=0;P<c.length;++P){let F=c[P];v.assert(F<=u-1&&F>=0,()=>`GatherV2: the index value ${F} is not in [0, ${u-1}]`)}let d=N.segment_util.collectGatherOpShapeInfo(r,a,l,i),p=us({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),h=v.sizeFromShape(a.shape),f=us({inputs:{x:a},attrs:{shape:[d.batchSize,h/d.batchSize]},backend:t}),m=[d.batchSize,d.outerSize,h/d.batchSize,d.sliceSize],g=t.makeOutput(m,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let A=p.shape.length-1,x=t.dataIdMap.get(p.dataId).id,w=t.dataIdMap.get(f.dataId).id,k=t.dataIdMap.get(g.dataId).id,S=new Uint8Array(new Int32Array(v.computeStrides(p.shape)).buffer),E=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return UC(x,en[r.dtype],S,A,w,d.batchSize,E,k),t.disposeData(p.dataId),t.disposeData(f.dataId),g.shape=d.outputShape,g}var Afe={kernelName:pi,backendName:"wasm",setupFunc:mfe,kernelFunc:gfe},yfe=!1,xfe=Xn(fi,yfe,"bool"),bfe=!1,vfe=Xn(La,bfe,"bool"),GC;function wfe(e){GC=e.wasm.cwrap(mi,null,["number","number","number","number"])}function kfe(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;GC(r,en[t.dtype],n,o)}return a}var Ife={kernelName:mi,backendName:"wasm",setupFunc:wfe,kernelFunc:kfe},Sfe=!1,Cfe=Xn(gi,Sfe,"bool"),Tfe=!1,Nfe=Xn(Ai,Tfe,"bool"),Efe=En(Wa),Rfe=!1,$fe=Xn(yi,Rfe,"bool"),HC;function Dfe(e){HC=e.wasm.cwrap(Va,null,["number","number","number","number"])}function _fe(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;c=u,l=x}let f=c.shape.length;N.assertAxesAreInnerMostDims("max",d,f);let[m,g]=N.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(v.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;HC(l,en[o.dtype],A,x)}if(h&&t.disposeData(u.dataId),a){let x=N.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Pfe={kernelName:Va,backendName:"wasm",setupFunc:Dfe,kernelFunc:_fe},Ffe=!1,Ofe=Xn(Ua,Ffe),jC;function Mfe(e){jC=e.wasm.cwrap(Ga,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function zfe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:c}=n,u=N.computePool2DInfo(r.shape,o,i,1,l,c),d=u.filterHeight,p=u.filterWidth,h=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,g=u.padInfo.left,A=u.dilationHeight,y=u.dilationWidth,x=u.strideHeight,b=u.strideWidth,w=u.inChannels,k=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let S=s.makeOutput(u.outShape,"float32"),E=s.dataIdMap.get(S.dataId).id;return jC(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,y,x,b,w,k,E),S}var Lfe={kernelName:Ga,backendName:"wasm",setupFunc:Mfe,kernelFunc:zfe},qC;function Bfe(e){qC=e.wasm.cwrap(Ha,null,["number, number, number"])}function Wfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t),f=d;if(h){let b=t.dataIdMap.get(u.dataId).id;b!==i&&(c=u,l=b,f=N.getInnerMostAxes(f.length,c.shape.length))}N.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,g]=N.computeOutAndReduceShapes(c.shape,f),A=v.sizeFromShape(g),y=c;c.dtype!=="float32"&&(y=ap({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(m,"float32");if(v.sizeFromShape(c.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;qC(l,A,b)}if(h&&t.disposeData(u.dataId),a){let b=N.expandShapeToKeepDim(x.shape,p);x.shape=b}return c.dtype!=="float32"&&t.disposeData(y.dataId),x}var Vfe={kernelName:Ha,backendName:"wasm",setupFunc:Bfe,kernelFunc:Wfe},XC;function Ufe(e){XC=e.wasm.cwrap(ja,null,["number","number","number","number"])}function Gfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x)}let f=c.shape.length;N.assertAxesAreInnerMostDims("min",d,f);let[m,g]=N.computeOutAndReduceShapes(c.shape,d),A=v.sizeFromShape(g),y=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;XC(l,en[o.dtype],A,x)}if(h&&t.disposeData(u.dataId),a){let x=N.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Hfe={kernelName:ja,backendName:"wasm",setupFunc:Ufe,kernelFunc:Gfe},jfe=!1,qfe=Xn(qa,jfe),mx;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(mx||(mx={}));var KC;function Xfe(e){KC=e.wasm.cwrap(Xa,null,["number","array","number","number","array","array","number","number"])}function Kfe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=s.map(f=>f[0]),d=s.map(f=>f[1]),p=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(d).buffer);return KC(o,c,t.shape.length,en[t.dtype],p,h,mx[r],l),i}var Zfe={kernelName:Xa,backendName:"wasm",kernelFunc:Kfe,setupFunc:Xfe},Yfe=!0,Jfe=Xn(Ka,Yfe),Qfe=En(xi);function gx(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var ZC;function eme(e){ZC=e.wasm.cwrap(vi,"number",["number","number","number","number","number"])}function tme(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,c=t.dataIdMap.get(i.dataId).id,u=t.dataIdMap.get(l.dataId).id,d=ZC(c,u,a,r,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=gx(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var nme={kernelName:vi,backendName:"wasm",setupFunc:eme,kernelFunc:tme},YC;function sme(e){YC=e.wasm.cwrap(ou,"number",["number","number","number","number","number","bool"])}function rme(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=YC(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=gx(t,p);t.wasm._free(m);let A=t.makeOutput([f],"int32",h),y=t.makeOutput([],"int32",g);return[A,y]}var ame={kernelName:ou,backendName:"wasm",setupFunc:sme,kernelFunc:rme},JC;function ome(e){JC=e.wasm.cwrap(wi,"number",["number","number","number","number","number","number"])}function ime(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(c.dataId).id,p=JC(u,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=gx(t,p);t.wasm._free(g);let A=t.makeOutput([f],"int32",h),y=t.makeOutput([f],"float32",m);return[A,y]}var lme={kernelName:wi,backendName:"wasm",setupFunc:ome,kernelFunc:ime},ume=!1,cme=Xn(bi,ume,"bool"),QC;function dme(e){QC=e.wasm.cwrap(Ii,null,["number","number","number","number","number"])}function pme(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return QC(d,a,o,i,c),l}var hme={kernelName:Ii,backendName:"wasm",setupFunc:dme,kernelFunc:pme};function fme(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var mme={kernelName:ki,backendName:"wasm",kernelFunc:fme};function gme(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return fx({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(u=>{v.assertShapesMatch(a,u.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(u=>{let d=fx({inputs:{input:u},backend:n,attrs:{dim:r}});return i.push(d),d}),c=RC({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(u=>n.disposeData(u.dataId)),c}var Ame={kernelName:Si,backendName:"wasm",kernelFunc:gme},e6;function yme(e){e6=e.wasm.cwrap(Za,null,["number","array","number","number","array","array","number","number"])}function xme(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(v.sizeFromShape(t.shape)===0)return MC({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=s.map(m=>m[0]),p=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return e6(o,u,t.shape.length,en[t.dtype],h,f,r,c),i}var t6={kernelName:Za,backendName:"wasm",kernelFunc:xme,setupFunc:yme},bme=!1,vme=Xn(Ya,bme),n6;function wme(e){n6=e.wasm.cwrap(Ja,null,["number","number","number"])}function kme(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,c=l;l.dtype!=="float32"&&(c=ap({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(c.dataId).id);let u=n.makeOutput(s.shape,"float32"),d=n.dataIdMap.get(u.dataId).id;return n6(i,o,d),l.dtype!=="float32"&&n.disposeData(c.dataId),u}var Ime={kernelName:Ja,backendName:"wasm",setupFunc:wme,kernelFunc:kme},s6;function Sme(e){s6=e.wasm.cwrap(Ci,null,["number","number","number","number"])}function Cme(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t),f=d;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x,f=N.getInnerMostAxes(f.length,c.shape.length))}N.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,g]=N.computeOutAndReduceShapes(c.shape,f),A=v.sizeFromShape(g),y=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;s6(l,A,en[y.dtype],x)}if(h&&t.disposeData(u.dataId),a){let x=N.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Tme={kernelName:Ci,backendName:"wasm",setupFunc:Sme,kernelFunc:Cme},Nme=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=Sy(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},Eme={kernelName:iu,backendName:"wasm",kernelFunc:Nme},Rme=!0,$me=Xn(_a,Rme),Dme=En(Qa),_me=En(to),r6;function Pme(e){r6=e.wasm.cwrap(eo,null,["number","number","number","number","number","number","number","number","number","number"])}function Fme(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,c]=i,[u,d,p,h]=r.shape,f=[u,l,c,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=ap({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let A=m.id,y=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return r6(A,u,d,p,h,l,c,a?1:0,o?1:0,x),g!=null&&t.disposeData(g.dataId),y}var Ome={kernelName:eo,backendName:"wasm",setupFunc:Pme,kernelFunc:Fme},a6;function Mme(e){a6=e.wasm.cwrap(Ni,null,["number","array","number","array","number","number"])}function zme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=v.parseAxisParam(a,r.shape);if(r.shape.length===0)return Mm({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);a6(l,u,o.length,d,r.shape.length,c);let p=us({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),p}var Lme={kernelName:Ni,backendName:"wasm",kernelFunc:zme,setupFunc:Mme},o6;function Bme(e){o6=e.wasm.cwrap(Vi,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Wme(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[d,p,h,f]=r.shape,[m,g]=N.getImageCenter(i,p,h),A=o===0,y=255,x=typeof o=="number"?[o,o,o,A?0:y]:[...o,y],b=new Uint8Array(new Int32Array(x).buffer);return o6(c,d,p,h,f,a,m,g,b,x.length,u),l}var Vme={kernelName:Vi,backendName:"wasm",kernelFunc:Wme,setupFunc:Bme},Ume=En(Ei),Gme=En(no),i6;function Hme(e){i6=e.wasm.cwrap(Ri,null,["number","number","number","number","number","number","array","number","number"])}function jme(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(v.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:d,outputSize:p}=y2.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,A=new Uint8Array(new Int32Array(d).buffer),y=t.dataIdMap.get(i.dataId).id;return i6(f,g,en[a.dtype],l,c,u,A,p,y),i}var qme={kernelName:Ri,backendName:"wasm",setupFunc:Hme,kernelFunc:jme},l6;function Xme(e){l6=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function Kme(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,c=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(c.dataId).id,d=s.shape.length,p=r.shape.length,h=d===0||d>1||p===1?1:v.sizeFromShape(r.shape.slice(1));return l6(o,i,l,h,u),c}var Zme={kernelName:$i,backendName:"wasm",kernelFunc:Kme,setupFunc:Xme},u6;function Yme(e){u6=e.wasm.cwrap(ro,null,["number","number"])}function Jme(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||u6(s,a),r}var Qme={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Yme,kernelFunc:Jme},e0e=En(so),c6;function t0e(e){c6=e.wasm.cwrap(io,null,["number","number","number","number"])}function n0e(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=v.sizeFromShape(n.shape)/i;return v.sizeFromShape(a.shape)===0||c6(r,o,i,l),a}var s0e={kernelName:io,backendName:"wasm",setupFunc:t0e,kernelFunc:n0e};function r0e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let c=t6.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=N.getReshaped(c.shape,a,i,!1),d=N.getPermuted(u.length,a.length,!1),p=N.getReshapedPermuted(c.shape,a,i,!1),m=us({inputs:{x:c},backend:n,attrs:{shape:u}}),y=lc({inputs:{x:m},backend:n,attrs:{perm:d}}),w=us({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeData(c.dataId),n.disposeData(m.dataId),n.disposeData(y.dataId),w}var a0e={kernelName:Pi,backendName:"wasm",kernelFunc:r0e};function o0e(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=v.parseAxisParam(o,r.shape)[0],l=N.prepareSplitSize(r,a,i),c=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(d=>{let p=[...u];p[i]=d;let h=rp({inputs:{x:r},attrs:{begin:c,size:p},backend:s});return c[i]+=d,h})}var i0e={kernelName:Fi,backendName:"wasm",kernelFunc:o0e},l0e=En(ao),u0e=En(hu),c0e=!0,d0e=Xn(lo,c0e),d6;function p0e(e){d6=e.wasm.cwrap(ho,null,["number","number","number","number"])}function h0e(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return d6(o,r,en[a.dtype],l),i}var f0e={kernelName:ho,backendName:"wasm",setupFunc:p0e,kernelFunc:h0e},p6;function m0e(e){p6=e.wasm.cwrap(Oi,null,["number","array","number","array","array","array","array","array","number","number"])}function g0e(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i}=s;i==null&&(i=new Array(a.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:d,shrinkAxisMask:p}=s,h=N.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.shape.length-a.length,m=N.slice_util.maskToAxes(d),g=r.shape.slice();m.forEach(R=>{a[R]=0,o[R]=1,g.splice(R,0,1)});let A=us({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:y,end:x,strides:b}=N.slice_util.getNormalizedAxes(A.shape,h,f,a,o,i,l,c,u);a=y,o=x,i=b;let w=N.slice_util.maskToAxes(p);w.forEach(R=>{o[R]=a[R]+1,i[R]=1});let k=N.slice_util.computeOutShape(a,o,i),S=k.filter((R,_)=>w.indexOf(_)===-1);if(i.every(R=>R===1)){let R=rp({inputs:{x:A},attrs:{begin:a,size:k},backend:t});t.disposeData(A.dataId);let _=us({inputs:{x:R},attrs:{shape:S},backend:t});return t.disposeData(R.dataId),_}let P=t.makeOutput(S,"float32");if(!S.some(R=>R===0)){let R=t.dataIdMap.get(A.dataId).id,_=new Uint8Array(new Int32Array(v.computeStrides(A.shape)).buffer),T=new Uint8Array(new Int32Array(a).buffer),M=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(i).buffer),H=new Uint8Array(new Int32Array(S).buffer),z=new Uint8Array(new Int32Array(v.computeStrides(S)).buffer),X=t.dataIdMap.get(P.dataId).id;p6(R,_,A.shape.length,T,M,U,H,z,S.length,X)}t.disposeData(A.dataId);let F=us({inputs:{x:P},attrs:{shape:S},backend:t});return t.disposeData(P.dataId),F}var A0e={kernelName:Oi,backendName:"wasm",setupFunc:m0e,kernelFunc:g0e},y0e=!0,x0e=Xn(uo,y0e),h6;function b0e(e){h6=e.wasm.cwrap(oo,null,["number","number","number","number"])}function v0e(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,c=o,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:h}=zo(o,r,t),f=d;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==i&&(c=u,l=x,f=N.getInnerMostAxes(f.length,c.shape.length))}N.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,g]=N.computeOutAndReduceShapes(c.shape,f),A=v.sizeFromShape(g),y=t.makeOutput(m,c.dtype);if(v.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;h6(l,A,en[y.dtype],x)}if(h&&t.disposeData(u.dataId),a){let x=N.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var w0e={kernelName:oo,backendName:"wasm",setupFunc:b0e,kernelFunc:v0e},k0e=En(Mi),I0e=En(co),f6;function S0e(e){f6=e.wasm.cwrap(qr,null,["number","array","number","array","number","number"])}function C0e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let p=0;p<i.length;p++)i[p]=r.shape[p]*o[p];let l=new Uint8Array(new Int32Array(r.shape).buffer),c=new Uint8Array(new Int32Array(i).buffer),u=n.makeOutput(i,r.dtype),d=n.dataIdMap.get(u.dataId).id;return f6(a,l,r.shape.length,c,i.length,en[u.dtype],d),u}var T0e={kernelName:qr,backendName:"wasm",setupFunc:S0e,kernelFunc:C0e},m6;function N0e(e){m6=e.wasm.cwrap(zi,null,["number","array","number","number","number","bool","number","number"])}var E0e=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let c=t.makeOutput(l,s.dtype),u=t.dataIdMap.get(c.dataId).id,d=t.makeOutput(l,"int32"),p=t.dataIdMap.get(d.dataId).id;return m6(o,i,s.shape.length,en[s.dtype],r,a,u,p),[c,d]},R0e={kernelName:zi,backendName:"wasm",setupFunc:N0e,kernelFunc:E0e},g6;function $0e(e){g6=e.wasm.cwrap(Li,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function D0e(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:c}=s,[u,d,p,h]=r.shape,[f,m]=c!=null?c:[d,p],g=[u,f,m,h],A=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),y=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(y.dataId).id,w=t.dataIdMap.get(r.dataId).id,S=t.dataIdMap.get(a.dataId).id,E=o==="nearest"?1:2,P;switch(i){case"constant":P=1;break;case"reflect":P=2;break;case"wrap":P=3;break;case"nearest":P=4;break;default:P=1;break}return g6(w,S,a.shape[0]>1,u,f,m,h,p,d,A,r.shape.length-1,E,P,l,x),y}var _0e={kernelName:Li,backendName:"wasm",setupFunc:$0e,kernelFunc:D0e};function P0e(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==a&&(l[c++]=r.shape[h]);let u=new Array(o),d=new Array(i).fill(0),p=r.shape.slice();p[a]=1;for(let h=0;h<u.length;h++)d[a]=h,u[h]=rp({inputs:{x:r},attrs:{begin:d,size:p},backend:n});return u.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var F0e={kernelName:Bi,backendName:"wasm",kernelFunc:P0e};function O0e(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var M0e={kernelName:Wi,backendName:"wasm",kernelFunc:O0e},z0e=[Bpe,Vpe,Hpe,Qpe,nhe,ahe,lhe,phe,yhe,xhe,bhe,khe,Ihe,The,Rhe,$he,Dhe,Fhe,zhe,Whe,Ghe,Hhe,qhe,Xhe,Khe,Zhe,Qhe,efe,nfe,Lpe,afe,lfe,dfe,ffe,Afe,xfe,vfe,jpe,Ife,Cfe,Nfe,Efe,$fe,Pfe,Ofe,Lfe,Vfe,Hfe,qfe,Zfe,Jfe,Qfe,nme,ame,lme,cme,hme,mme,Ame,t6,vme,Ime,Tme,Eme,$me,Dme,_me,uhe,Ome,Lme,Vme,Gme,Ume,qme,Zme,Qme,e0e,ghe,s0e,a0e,i0e,l0e,u0e,d0e,f0e,A0e,x0e,w0e,k0e,I0e,T0e,R0e,_0e,Zpe,F0e,M0e];for(let e of z0e)Kr(e);var Ax=K();Ax.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Ax.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Ax.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var L0e='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',A6=Qo(BN()),B0e=Qo(WN()),y6=class extends Ll{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(v6),xx=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Dc(this,ss())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=v.sizeFromShape(n),i=o*v.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+v.sizeFromShape(s)*v.bytesPerElement(n));return U0e(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function W0e(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function x6(e,t,n){if(zm!=null)return zm;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),ip!=null&&ip[s]!=null?ip[s]:n+s}async function V0e(){let[e,t]=await Promise.all([K().getAsync("WASM_HAS_SIMD_SUPPORT"),K().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let c=L0e,u=new Blob([c],{type:"application/javascript"});return URL.createObjectURL(u)}return i.endsWith(".wasm")?x6(e,t,op!=null?op:l):l+i},yx&&(r.instantiateWasm=W0e(x6(e,t,op!=null?op:"")));let a=!1;r.onAbort=()=>{if(a||lp)return;lp=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&zm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+A6.default.toString()],{type:"text/javascript"}),o=(0,A6.default)(r)):o=(0,B0e.default)(r),o.then(i=>{a=!0,lp=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function U0e(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var G0e=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],zm=null,op=null,ip={},lp=!1,yx=!1;function H0e(e,t=!1){if(I2("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),lp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");zm=e,yx=t}function b6(e,t=!1){if(lp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")op=e;else{ip=e;let n=G0e.filter(s=>ip[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}yx=t}var v6=-1,xx=-1;function j0e(e){v6=e}function q0e(){if(xx===-1)throw new Error("WASM backend not initialized.");return xx}var X0e="0.0.0",K0e=2;Ki("wasm",async()=>{let{wasm:e}=await V0e();return new y6(e)},K0e);var Lo="3.10.0-20211022",w6={tfjs:Lo,"tfjs-core":Lo,"tfjs-data":Lo,"tfjs-layers":Lo,"tfjs-converter":Lo,"tfjs-backend-cpu":Lo,"tfjs-backend-webgl":Lo,"tfjs-backend-wasm":Lo},up=w6["tfjs-core"];var k6=`
|
|
precision highp float;
|
|
attribute vec2 pos;
|
|
attribute vec2 uv;
|
|
varying vec2 vUv;
|
|
uniform float flipY;
|
|
void main(void) {
|
|
vUv = uv;
|
|
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
|
|
}
|
|
`;var I6=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
|
|
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
|
|
}
|
|
`,S6=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform float m[20];
|
|
void main(void) {
|
|
vec4 c = texture2D(texture, vUv);
|
|
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
|
|
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
|
|
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
|
|
gl_FragColor.a = c.a;
|
|
}
|
|
`,C6=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform vec2 size;
|
|
uniform sampler2D texture;
|
|
vec2 pixelate(vec2 coord, vec2 size) {
|
|
return floor( coord / size ) * size;
|
|
}
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
vec2 coord = pixelate(vUv, size);
|
|
gl_FragColor += texture2D(texture, coord);
|
|
}
|
|
`,T6=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
void main(void) {
|
|
gl_FragColor = vec4(0.0);
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
|
|
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
|
|
}
|
|
`,N6=`
|
|
precision highp float;
|
|
varying vec2 vUv;
|
|
uniform sampler2D texture;
|
|
uniform vec2 px;
|
|
uniform float m[9];
|
|
void main(void) {
|
|
vec4 c11 = texture2D(texture, vUv - px); // top left
|
|
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
|
|
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
|
|
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
|
|
vec4 c22 = texture2D(texture, vUv); // mid center
|
|
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
|
|
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
|
|
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
|
|
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
|
|
gl_FragColor =
|
|
c11 * m[0] + c12 * m[1] + c22 * m[2] +
|
|
c21 * m[3] + c22 * m[4] + c23 * m[5] +
|
|
c31 * m[6] + c32 * m[7] + c33 * m[8];
|
|
gl_FragColor.a = c22.a;
|
|
}
|
|
`;var bx=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},E6=class{constructor(t,n,s){pe(this,"uniform",{});pe(this,"attribute",{});pe(this,"gl");pe(this,"id");pe(this,"compile",(t,n)=>{let s=this.gl.createShader(n);if(this.gl.shaderSource(s,t),this.gl.compileShader(s),!this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS))throw new Error(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)}`);return s});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS))throw new Error(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);this.gl.useProgram(this.id),bx(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);bx(n,"uniform",this.uniform),bx(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}};function R6(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=Kn(100,100),c={},u={INTERMEDIATE:1},d=l.getContext("webgl");if(!d)throw new Error("filter: cannot get webgl context");function p(y,x){if(!(y===l.width&&x===l.height)){if(l.width=y,l.height=x,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=d.createBuffer(),d.bindBuffer(d.ARRAY_BUFFER,o),d.bufferData(d.ARRAY_BUFFER,b,d.STATIC_DRAW),d.pixelStorei(d.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}d.viewport(0,0,l.width,l.height),r=[null,null]}}function h(y,x){let b=d.createFramebuffer();d.bindFramebuffer(d.FRAMEBUFFER,b);let w=d.createRenderbuffer();d.bindRenderbuffer(d.RENDERBUFFER,w);let k=d.createTexture();return d.bindTexture(d.TEXTURE_2D,k),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,y,x,0,d.RGBA,d.UNSIGNED_BYTE,null),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.framebufferTexture2D(d.FRAMEBUFFER,d.COLOR_ATTACHMENT0,d.TEXTURE_2D,k,0),d.bindTexture(d.TEXTURE_2D,null),d.bindFramebuffer(d.FRAMEBUFFER,null),{fbo:b,texture:k}}function f(y){return r[y]=r[y]||h(l.width,l.height),r[y]}function m(y=0){var k,S;if(!i)return;let x=null,b=null,w=!1;e===0?x=t:x=((k=f(s))==null?void 0:k.texture)||null,e++,n&&!(y&u.INTERMEDIATE)?(b=null,w=e%2==0):(s=(s+1)%2,b=((S=f(s))==null?void 0:S.fbo)||null),d.bindTexture(d.TEXTURE_2D,x),d.bindFramebuffer(d.FRAMEBUFFER,b),d.uniform1f(i.uniform.flipY,w?-1:1),d.drawArrays(d.TRIANGLES,0,6)}function g(y){if(c[y])return i=c[y],d.useProgram((i==null?void 0:i.id)||null),i;i=new E6(d,k6,y);let x=Float32Array.BYTES_PER_ELEMENT,b=4*x;return d.enableVertexAttribArray(i.attribute.pos),d.vertexAttribPointer(i.attribute.pos,2,d.FLOAT,!1,b,0*x),d.enableVertexAttribArray(i.attribute.uv),d.vertexAttribPointer(i.attribute.uv,2,d.FLOAT,!1,b,2*x),c[y]=i,i}let A={colorMatrix:y=>{let x=new Float32Array(y);x[4]/=255,x[9]/=255,x[14]/=255,x[19]/=255;let b=x[18]===1&&x[3]===0&&x[8]===0&&x[13]===0&&x[15]===0&&x[16]===0&&x[17]===0&&x[19]===0?S6:I6,w=g(b);d.uniform1fv(w==null?void 0:w.uniform.m,x),m()},brightness:y=>{let x=(y||0)+1;A.colorMatrix([x,0,0,0,0,0,x,0,0,0,0,0,x,0,0,0,0,0,1,0])},saturation:y=>{let x=(y||0)*2/3+1,b=(x-1)*-.5;A.colorMatrix([x,b,b,0,0,b,x,b,0,0,b,b,x,0,0,0,0,0,1,0])},desaturate:()=>{A.saturation(-1)},contrast:y=>{let x=(y||0)+1,b=-128*(x-1);A.colorMatrix([x,0,0,0,b,0,x,0,0,b,0,0,x,0,b,0,0,0,1,0])},negative:()=>{A.contrast(-2)},hue:y=>{y=(y||0)/180*Math.PI;let x=Math.cos(y),b=Math.sin(y),w=.213,k=.715,S=.072;A.colorMatrix([w+x*(1-w)+b*-w,k+x*-k+b*-k,S+x*-S+b*(1-S),0,0,w+x*-w+b*.143,k+x*(1-k)+b*.14,S+x*-S+b*-.283,0,0,w+x*-w+b*-(1-w),k+x*-k+b*k,S+x*(1-S)+b*S,0,0,0,0,0,1,0])},desaturateLuminance:()=>{A.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{A.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{A.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{A.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{A.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{A.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{A.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{A.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:y=>{let x=new Float32Array(y),b=1/l.width,w=1/l.height,k=g(N6);d.uniform1fv(k==null?void 0:k.uniform.m,x),d.uniform2f(k==null?void 0:k.uniform.px,b,w),m()},detectEdges:()=>{A.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{A.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{A.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:y=>{let x=y||1;A.convolution.call(this,[0,-1*x,0,-1*x,1+4*x,-1*x,0,-1*x,0])},emboss:y=>{let x=y||1;A.convolution.call(this,[-2*x,-1*x,0,-1*x,1,1*x,0,1*x,2*x])},blur:y=>{let x=y/7/l.width,b=y/7/l.height,w=g(T6);d.uniform2f(w==null?void 0:w.uniform.px,0,b),m(u.INTERMEDIATE),d.uniform2f(w==null?void 0:w.uniform.px,x,0),m()},pixelate:y=>{let x=y/l.width,b=y/l.height,w=g(C6);d.uniform2f(w==null?void 0:w.uniform.size,x,b),m()}};this.add=function(y){let x=Array.prototype.slice.call(arguments,1),b=A[y];a.push({func:b,args:x})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(y){p(y.width,y.height),e=0,t||(t=d.createTexture()),d.bindTexture(d.TEXTURE_2D,t),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.NEAREST),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.NEAREST),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,d.RGBA,d.UNSIGNED_BYTE,y);for(let x=0;x<a.length;x++){n=x===a.length-1;let b=a[x];b.func.apply(this,b.args||[])}return l},this.draw=function(y){return this.add("brightness",0),this.apply(y)}}var Lm=2048,lt=null,qt=null,Bo=null,_t;function Kn(e,t){let n;if(be.browser)if(be.offscreen)n=new OffscreenCanvas(e,t);else{if(typeof document=="undefined")throw new Error("attempted to run in web worker but offscreenCanvas is not supported");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof be.Canvas!="undefined"?n=new be.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function vx(e,t){let n=t||Kn(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}function uc(e,t,n=!0){if(!e)return t.debug&&ae("input is missing"),{tensor:null,canvas:null};if(!(e instanceof Ye)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof be.Canvas!="undefined"&&e instanceof be.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input type is not recognized");if(e instanceof Ye){if(e.isDisposedInternal)throw new Error("input tensor is disposed");if(!e.shape||e.shape.length!==4||e.shape[0]!==1||e.shape[3]!==3)throw new Error(`input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);return{tensor:or(e),canvas:t.filter.return?qt:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&ae("input stream is not ready"),{tensor:null,canvas:lt};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&ae("cannot determine input dimensions"),{tensor:null,canvas:lt};let a=s,o=r;if(a>Lm&&(a=Lm,o=Math.trunc(a*r/s)),o>Lm&&(o=Lm,a=Math.trunc(o*s/r)),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input cannot determine dimension");(!lt||(lt==null?void 0:lt.width)!==a||(lt==null?void 0:lt.height)!==o)&&(lt=Kn(a,o));let i=lt.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,lt==null?void 0:lt.width,lt==null?void 0:lt.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,lt==null?void 0:lt.width,lt==null?void 0:lt.height),(!qt||lt.width!==qt.width||(lt==null?void 0:lt.height)!==(qt==null?void 0:qt.height))&&(qt=Kn(lt.width,lt.height)),t.filter.enabled&&be.webgl.supported){if(_t||(_t=be.browser?new R6:null),be.filter=!!_t,!_t)return{tensor:null,canvas:lt};_t.reset(),t.filter.brightness!==0&&_t.add("brightness",t.filter.brightness),t.filter.contrast!==0&&_t.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&_t.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&_t.add("blur",t.filter.blur),t.filter.saturation!==0&&_t.add("saturation",t.filter.saturation),t.filter.hue!==0&&_t.add("hue",t.filter.hue),t.filter.negative&&_t.add("negative"),t.filter.sepia&&_t.add("sepia"),t.filter.vintage&&_t.add("brownie"),t.filter.sepia&&_t.add("sepia"),t.filter.kodachrome&&_t.add("kodachrome"),t.filter.technicolor&&_t.add("technicolor"),t.filter.polaroid&&_t.add("polaroid"),t.filter.pixelate!==0&&_t.add("pixelate",t.filter.pixelate),_t.get()>0?qt=_t.apply(lt):qt=_t.draw(lt)}else vx(lt,qt),_t&&(_t=null),be.filter=!!_t;if(!n)return{tensor:null,canvas:qt};if(!qt)throw new Error("cannot create output canvas");let l,c=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(be.browser&&Gs)l=Gs?Gs.fromPixels(e):null;else{c=e.data.length/e.height/e.width;let p=new Uint8Array(e.data.buffer);l=Gt(p,[e.height,e.width,c],"int32")}else if((!Bo||qt.width!==Bo.width||(qt==null?void 0:qt.height)!==(Bo==null?void 0:Bo.height))&&(Bo=Kn(qt.width,qt.height)),Gs&&be.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Gs.fromPixels(qt):(Bo=vx(qt),l=Gs.fromPixels(Bo));else{let f=vx(qt).getContext("2d").getImageData(0,0,a,o);c=f.data.length/a/o;let m=new Uint8Array(f.data.buffer);l=Gt(m,[a,o,c])}if(c===4){let p=Ru(l,[0,0,0],[-1,-1,3]);Q(l),l=p}if(!l)throw new Error("cannot create tensor from input");let u=de(l,"float32"),d=Kt(u,0);return Q([l,u]),{tensor:d,canvas:t.filter.return?qt:null}}}var wx=0,kx=1,Ix=0,Z0e=async e=>{let t=48,n=$e.resizeBilinear(e,[Math.trunc((e.shape[1]||1)/t),Math.trunc((e.shape[2]||1)/t)]),s=async()=>{let o=Ie(n),i=await o.data();return Q(o),i[0]},r=async()=>{let o=await n.data(),i=0;for(let l=0;l<o.length/3;l++)i+=o[3*l+2];return i};if(Ix===0){let o=Ae();await r();let i=Ae();await s();let l=Ae();Ix=i-o<l-i?1:2}let a=Ix===1?await r():await s();return Q(n),a};async function $6(e,t){if(e.cacheSensitivity===0)return!1;let n=await Z0e(t),s=100*(Math.max(n,wx)/Math.min(n,wx)-1);wx=n;let r=s<Math.max(e.cacheSensitivity,kx);return kx=s>10*e.cacheSensitivity?0:s,r=r&&kx>0,r}var Sx=class{constructor(){pe(this,"browser");pe(this,"node");pe(this,"worker");pe(this,"platform","");pe(this,"agent","");pe(this,"backends",[]);pe(this,"initial");pe(this,"filter");pe(this,"tfjs");pe(this,"offscreen");pe(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});pe(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});pe(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});pe(this,"cpu",{model:void 0,flags:[]});pe(this,"kernels",[]);pe(this,"Canvas");pe(this,"Image");pe(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined",this.tfjs={version:up},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){var s;this.backends=Object.keys(ss().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&ir()==="wasm"&&(this.wasm.simd=await K().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await K().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=Kn(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(ir()==="webgl"||ir()==="humangl")){let r=Tr().gpgpu!=="undefined"?await Tr().getGPGPUContext().gl:null;r&&(this.webgl.version=r.getParameter(r.VERSION),this.webgl.renderer=r.getParameter(r.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu"),this.webgpu.supported&&(this.webgpu.adapter=(s=await navigator.gpu.requestAdapter())==null?void 0:s.name),this.kernels=Xr(ir()).map(r=>r.kernelName.toLowerCase())}async updateCPU(){var n;let t={model:"",flags:[]};if(this.node&&((n=this.platform)==null?void 0:n.startsWith("linux"))){let s=xa("fs");try{let r=s.readFileSync("/proc/cpuinfo").toString();for(let a of r.split(`
|
|
`))a.startsWith("model name")&&(t.model=a.match(/:(.*)/g)[0].replace(":","").trim()),a.startsWith("flags")&&(t.flags=a.match(/:(.*)/g)[0].replace(":","").trim().split(" ").sort())}catch(r){}}this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},be=new Sx;var Cx="2.4.0";var Wo;var m2e=Number.MAX_SAFE_INTEGER;async function D6(e){return be.initial&&(Wo=null),Wo?e.debug&&ae("cached model:",Wo.modelUrl):(Wo=await st(at(e.modelBasePath,e.face.agegenderrace.modelPath)),!Wo||!Wo.modelUrl?ae("load model failed:",e.face.agegenderrace.modelPath):e.debug&&ae("load model:",Wo.modelUrl)),Wo}var cn,Bm=[],Tx=Number.MAX_SAFE_INTEGER,_6=0,P6=0;async function F6(e){var t,n;return be.initial&&(cn=null),cn?e.debug&&ae("cached model:",cn.modelUrl):(cn=await st(at(e.modelBasePath,((t=e.face.antispoof)==null?void 0:t.modelPath)||"")),!cn||!cn.modelUrl?ae("load model failed:",(n=e.face.antispoof)==null?void 0:n.modelPath):e.debug&&ae("load model:",cn.modelUrl)),cn}async function Nx(e,t,n,s){var r,a;return cn?Tx<(((r=t.face.antispoof)==null?void 0:r.skipFrames)||0)&&(((a=t.face.antispoof)==null?void 0:a.skipTime)||0)<=Ae()-P6&&t.skipFrame&&_6===s&&Bm[n]?(Tx++,Bm[n]):(Tx=0,new Promise(async o=>{let i=$e.resizeBilinear(e,[(cn==null?void 0:cn.inputs[0].shape)?cn.inputs[0].shape[2]:0,(cn==null?void 0:cn.inputs[0].shape)?cn.inputs[0].shape[1]:0],!1),l=cn==null?void 0:cn.predict(i),c=(await l.data())[0];Bm[n]=Math.round(100*c)/100,_6=s,P6=Ae(),Q([i,l]),o(Bm[n])})):null}var Lr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Ex={count:468,mouth:13,symmetryLine:[13,Lr.midwayBetweenEyes[0]]},cp={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Rx=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],dp=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],kl=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var J0e=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Q0e=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],ege=[33,133,362,263,1,78,308],v2e=J0e.map(e=>dp[e]),w2e=Q0e.map(e=>dp[e]),k2e=ege.map(e=>dp[e]);var O6=e=>({startPoint:_e(e,[0,0],[-1,2]),endPoint:_e(e,[0,2],[-1,2])});var pp=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],Wm=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2],$x=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],Dx=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],M6=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s}},_x=(e,t,n)=>{let s=t.shape[1],r=t.shape[2];return $e.cropAndResize(t,[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]],[0],n)},hp=(e,t=1.5)=>{let n=Wm(e),s=pp(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks}},fp=e=>{let t=Wm(e),n=pp(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks}},Vm=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},Um=[[1,0,0],[0,1,0],[0,0,1]],tge=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),nge=(e,t)=>tge(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var z6=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],Il=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},sge=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},L6=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Il(e[r],sge(t,a)))}return n},B6=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=z6(t[0],t[1]),o=L6(a,r),i=z6(-t[0],-t[1]);return L6(o,i)},rge=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Il(t[0],n),-Il(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},age=(e,t)=>[Il(e,t[0]),Il(e,t[1])];function W6(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let c=r*(l+.5);for(let u=0;u<o;u++){let d=r*(u+.5);for(let p=0;p<i;p++)n.push([d,c])}}}return n}function V6(e,t,n,s,r){let a=pp({startPoint:t.startPoint,endPoint:t.endPoint}),o=e.map(d=>[a[0]/r*(d[0]-r/2),a[1]/r*(d[1]-r/2),d[2]||0]),i=n!==0?B6(n,[0,0]):Um,l=n!==0?o.map(d=>[...age(d,i),d[2]]):o,c=n!==0?rge(s):Um,u=[...Wm({startPoint:t.startPoint,endPoint:t.endPoint}),1];return l.map(d=>[Math.round(d[0]+Il(u,c[0])),Math.round(d[1]+Il(u,c[1])),Math.round(d[2]||0)])}function Px(e,t,n){let s=e.landmarks.length>=Ex.count?Ex.symmetryLine:cp.symmetryLine,r=nge(e.landmarks[s[0]],e.landmarks[s[1]]),a=Wm({startPoint:e.startPoint,endPoint:e.endPoint}),o=[a[0]/t.shape[2],a[1]/t.shape[1]],i=$e.rotateWithOffset(t,r,0,o),l=B6(-r,a),c=_x({startPoint:e.startPoint,endPoint:e.endPoint},i,[n,n]),u=he(c,255);return Q(c),Q(i),[r,l,u]}var U6=6,Os,Fx=[],G6=null,Ms=0,mp=()=>Ms;async function H6(e){var t,n;return be.initial&&(Os=null),Os?e.debug&&ae("cached model:",Os.modelUrl):(Os=await st(at(e.modelBasePath,((t=e.face.detector)==null?void 0:t.modelPath)||"")),!Os||!Os.modelUrl?ae("load model failed:",(n=e.face.detector)==null?void 0:n.modelPath):e.debug&&ae("load model:",Os.modelUrl)),Ms=Os.inputs[0].shape?Os.inputs[0].shape[2]:0,Ms===-1&&(Ms=64),Fx=W6(Ms),G6=ur(Fx),Os}function oge(e){let t=_e(e,[0,1],[-1,2]),n=ie(t,G6),s=_e(e,[0,3],[-1,2]),r=he(s,Ms),a=he(n,Ms),o=he(r,2),i=ye(a,o),l=ie(a,o),c=W(i,Ms),u=W(l,Ms);return ku([c,u],1)}async function j6(e,t){var c,u,d,p;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return{boxes:[]};let[n,s,r]=j(()=>{let h=$e.resizeBilinear(e,[Ms,Ms]),f=ye(he(h,127.5),.5),m=Os==null?void 0:Os.execute(f),g;if(Array.isArray(m)){let b=m.sort((E,P)=>E.size-P.size),w=It([b[0],b[2]],2),k=It([b[1],b[3]],2),S=It([k,w],1);g=pt(S,0)}else g=pt(m);let A=oge(g),y=_e(g,[0,0],[-1,1]),x=pt(hs(y));return[g,A,x]}),a=await $e.nonMaxSuppressionAsync(s,r,((c=t.face.detector)==null?void 0:c.maxDetected)||0,((u=t.face.detector)==null?void 0:u.iouThreshold)||0,((d=t.face.detector)==null?void 0:d.minConfidence)||0),o=await a.array();Q(a);let i=[],l=await r.data();for(let h=0;h<o.length;h++){let f=l[o[h]];if(f>(((p=t.face.detector)==null?void 0:p.minConfidence)||0)){let m=_e(s,[o[h],0],[1,-1]),g=j(()=>G(pt(_e(n,[o[h],U6-1],[1,-1])),[U6,-1]));i.push({box:O6(m),landmarks:g,anchor:Fx[o[h]],confidence:f}),Q(m)}}return Q(n),Q(s),Q(r),{boxes:i,scaleFactor:[e.shape[2]/Ms,e.shape[1]/Ms]}}var zx={};qp(zx,{connected:()=>Mx,kpt:()=>Ox});var Ox=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftThumb","leftHand","rightThumb","rightHand"],Mx={leftLeg:["leftHip","leftKnee","leftAnkle","leftHeel","leftFoot"],rightLeg:["rightHip","rightKnee","rightAnkle","rightHeel","rightFoot"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist","leftPalm"],rightArm:["rightShoulder","rightElbow","rightWrist","rightPalm"],leftHand:[],rightHand:[],head:[]};var q6={initial:!0},dn=[null,null],Vo=[[0,0],[0,0]],Lx=Number.MAX_SAFE_INTEGER,Bx,Gm=null,Uo=[[0,0],[0,0],[0,0],[0,0]],X6=0;async function K6(e){var t,n,s;if(q6.initial&&(dn[0]=null),!dn[0]&&((t=e.body.detector)==null?void 0:t.modelPath)){dn[0]=await st(at(e.modelBasePath,((n=e.body.detector)==null?void 0:n.modelPath)||""));let r=Object.values(dn[0].modelSignature.inputs);Vo[0][0]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[1].size):0,Vo[0][1]=Array.isArray(r)?parseInt(r[0].tensorShape.dim[2].size):0,!dn[0]||!dn[0].modelUrl?ae("load model failed:",(s=e.body.detector)==null?void 0:s.modelPath):e.debug&&ae("load model:",dn[0].modelUrl)}else e.debug&&dn[0]&&ae("cached model:",dn[0].modelUrl);return dn[0]}async function Z6(e){var t;if(q6.initial&&(dn[1]=null),dn[1])e.debug&&ae("cached model:",dn[1].modelUrl);else{dn[1]=await st(at(e.modelBasePath,e.body.modelPath||""));let n=Object.values(dn[1].modelSignature.inputs);Vo[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Vo[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0,((t=e.body.modelPath)==null?void 0:t.includes("lite"))?Bx=["ld_3d","output_segmentation","output_heatmap","world_3d","output_poseflag"]:Bx=["Identity","Identity_2","Identity_3","Identity_4","Identity_1"],!dn[1]||!dn[1].modelUrl?ae("load model failed:",e.body.modelPath):e.debug&&ae("load model:",dn[1].modelUrl)}return dn[1]}function ige(e,t){let n=e.map(o=>o.position[0]),s=e.map(o=>o.position[1]),r=[Math.min(...n),Math.min(...s),Math.max(...n)-Math.min(...n),Math.max(...s)-Math.min(...s)],a=[r[0]/t[0],r[1]/t[1],r[2]/t[0],r[3]/t[1]];return{keypointsBox:r,keypointsBoxRaw:a}}async function lge(e){let t={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;Uo=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],t.pad=qs(e,Uo),t.resize=$e.resizeBilinear(t.pad,[Vo[1][0],Vo[1][1]]);let n=he(t.resize,255);return Object.keys(t).forEach(s=>Q(t[s])),n}function uge(e,t){for(let n of e)n.position=[n.position[0]*(t[0]+Uo[2][0]+Uo[2][1])/t[0]-Uo[2][0],n.position[1]*(t[1]+Uo[1][0]+Uo[1][1])/t[1]-Uo[1][0],n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],n.position[2]];return e}var Y6=e=>1-1/(1+Math.exp(e));async function cge(e,t,n){var h;let s={};s.input=await lge(e),[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=await((h=dn[1])==null?void 0:h.execute(s.input,Bx));let r=(await s.poseflag.data())[0],a=Math.max(0,(r-.8)/(1-.8)),o=await s.ld.data(),i=[],l=5;for(let f=0;f<o.length/l;f++){let m=Y6(o[l*f+3]),g=Y6(o[l*f+4]),A=Math.trunc(100*m*g*a)/100,y=[o[l*f+0]/Vo[1][0],o[l*f+1]/Vo[1][1],o[l*f+2]+0],x=[Math.trunc(n[0]*y[0]),Math.trunc(n[1]*y[1]),y[2]];i.push({part:Ox[f],positionRaw:y,position:x,score:A})}if(a<(t.body.minConfidence||0))return null;let c=uge(i,n),u=ige(c,[n[0],n[1]]);Object.keys(s).forEach(f=>Q(s[f]));let d={};for(let[f,m]of Object.entries(Mx)){let g=[];for(let A=0;A<m.length-1;A++){let y=c.find(b=>b.part===m[A]),x=c.find(b=>b.part===m[A+1]);y&&x&&y.score>(t.body.minConfidence||0)&&x.score>(t.body.minConfidence||0)&&g.push([y.position,x.position])}d[f]=g}return{id:0,score:Math.trunc(100*a)/100,box:u.keypointsBox,boxRaw:u.keypointsBoxRaw,keypoints:c,annotations:d}}async function Wx(e,t){let n=[e.shape[2]||0,e.shape[1]||0];return Lx<(t.body.skipFrames||0)&&(t.body.skipTime||0)<=Ae()-X6&&t.skipFrame&&Gm!==null?Lx++:(Gm=await cge(e,t,n),X6=Ae(),Lx=0),Gm?[Gm]:[]}var cc=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Qs,Sl=0,Hm=[],J6=0,Vx=Number.MAX_SAFE_INTEGER;async function Q6(e){if(be.initial&&(Qs=null),Qs)e.debug&&ae("cached model:",Qs.modelUrl);else{dc(["floormod"],e),Qs=await st(at(e.modelBasePath,e.object.modelPath||""));let t=Object.values(Qs.modelSignature.inputs);Sl=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0,!Qs||!Qs.modelUrl?ae("load model failed:",e.object.modelPath):e.debug&&ae("load model:",Qs.modelUrl)}return Qs}async function dge(e,t,n){if(!e)return[];let s=[],r=await e.array(),a=pt(e);Q(e);let o=Sn(a,6,1);Q(a);let i=Pn([o[1],o[0],o[3],o[2]],1),l=pt(i);Q(i);let c=pt(o[4]),u=pt(o[5]);o.forEach(f=>Q(f));let d=await $e.nonMaxSuppressionAsync(l,c,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);Q(l),Q(c),Q(u);let p=await d.data();Q(d);let h=0;for(let f of p){let m=Math.trunc(100*r[0][f][4])/100,g=r[0][f][5],A=cc[g].label,[y,x]=[r[0][f][0]/Sl,r[0][f][1]/Sl],b=[y,x,r[0][f][2]/Sl-y,r[0][f][3]/Sl-x],w=[Math.trunc(b[0]*t[0]),Math.trunc(b[1]*t[1]),Math.trunc(b[2]*t[0]),Math.trunc(b[3]*t[1])];s.push({id:h++,score:m,class:g,label:A,box:w,boxRaw:b})}return s}async function Ux(e,t){return Vx<(t.object.skipFrames||0)&&(t.object.skipTime||0)<=Ae()-J6&&t.skipFrame&&Hm.length>0?(Vx++,Hm):(Vx=0,!be.kernels.includes("mod")||!be.kernels.includes("sparsetodense")?Hm:new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=$e.resizeBilinear(e,[Sl,Sl]),a=t.object.enabled?Qs==null?void 0:Qs.execute(r,["tower_0/detections"]):null;J6=Ae(),Q(r);let o=await dge(a,s,t);Hm=o,n(o)}))}var jx={};qp(jx,{connected:()=>Hx,kpt:()=>Gx});var Gx=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],Hx={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var pn,e8=0,Zn={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},qx=Number.MAX_SAFE_INTEGER;async function Xx(e){return be.initial&&(pn=null),pn?e.debug&&ae("cached model:",pn.modelUrl):(pn=await st(at(e.modelBasePath,e.body.modelPath||"")),!pn||!pn.modelUrl?ae("load model failed:",e.body.modelPath):e.debug&&ae("load model:",pn.modelUrl)),pn}function pge(e,t){let[n,s]=e.shape;return j(()=>{let r=(i,l)=>ye(i,W(he(i,Ee(l,"int32")),Ee(l,"int32"))),a=G(e,[s*n]),o=rs(a,0).dataSync()[0];if(o>t){let i=Hs(a,0),l=r(i,n).dataSync()[0],c=he(i,Ee(n,"int32")).dataSync()[0];return[l,c,o]}return[0,0,o]})}async function Kx(e,t){var n;return qx<(((n=t.body)==null?void 0:n.skipFrames)||0)&&t.skipFrame&&Object.keys(Zn.keypoints).length>0&&(t.body.skipTime||0)<=Ae()-e8?(qx++,[Zn]):(qx=0,new Promise(async s=>{var u;let r=j(()=>{if(!(pn==null?void 0:pn.inputs[0].shape))return null;let d=$e.resizeBilinear(e,[pn.inputs[0].shape[2],pn.inputs[0].shape[1]],!1);return W(d,2).sub(1)}),a;if(t.body.enabled&&(a=await(pn==null?void 0:pn.predict(r))),e8=Ae(),Q(r),a){Zn.keypoints.length=0;let d=a.squeeze();Q(a);let p=d.unstack(2);Q(d);for(let h=0;h<p.length;h++){let[f,m,g]=pge(p[h],t.body.minConfidence);g>(((u=t.body)==null?void 0:u.minConfidence)||0)&&Zn.keypoints.push({score:Math.round(100*g)/100,part:Gx[h],positionRaw:[f/pn.inputs[0].shape[2],m/pn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/pn.inputs[0].shape[2]),Math.round(e.shape[1]*m/pn.inputs[0].shape[1])]})}p.forEach(h=>Q(h))}Zn.score=Zn.keypoints.reduce((d,p)=>p.score>d?p.score:d,0);let o=Zn.keypoints.map(d=>d.position[0]),i=Zn.keypoints.map(d=>d.position[1]);Zn.box=[Math.min(...o),Math.min(...i),Math.max(...o)-Math.min(...o),Math.max(...i)-Math.min(...i)];let l=Zn.keypoints.map(d=>d.positionRaw[0]),c=Zn.keypoints.map(d=>d.positionRaw[1]);Zn.boxRaw=[Math.min(...l),Math.min(...c),Math.max(...l)-Math.min(...l),Math.max(...c)-Math.min(...c)];for(let[d,p]of Object.entries(Hx)){let h=[];for(let f=0;f<p.length-1;f++){let m=Zn.keypoints.find(A=>A.part===p[f]),g=Zn.keypoints.find(A=>A.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}Zn.annotations[d]=h}s([Zn])}))}var hge=["angry","disgust","fear","happy","sad","surprise","neutral"],hn,jm=[],t8=0,n8=0,Zx=Number.MAX_SAFE_INTEGER,Yx=[.2989,.587,.114];async function s8(e){var t,n;return be.initial&&(hn=null),hn?e.debug&&ae("cached model:",hn.modelUrl):(hn=await st(at(e.modelBasePath,((t=e.face.emotion)==null?void 0:t.modelPath)||"")),!hn||!hn.modelUrl?ae("load model failed:",(n=e.face.emotion)==null?void 0:n.modelPath):e.debug&&ae("load model:",hn.modelUrl)),hn}async function Jx(e,t,n,s){var r,a;return hn?Zx<(((r=t.face.emotion)==null?void 0:r.skipFrames)||0)&&(((a=t.face.emotion)==null?void 0:a.skipTime)||0)<=Ae()-n8&&t.skipFrame&&t8===s&&jm[n]&&jm[n].length>0?(Zx++,jm[n]):(Zx=0,new Promise(async o=>{var l,c;let i=[];if((l=t.face.emotion)==null?void 0:l.enabled){let u=$e.resizeBilinear(e,[(hn==null?void 0:hn.inputs[0].shape)?hn.inputs[0].shape[2]:0,(hn==null?void 0:hn.inputs[0].shape)?hn.inputs[0].shape[1]:0],!1),[d,p,h]=Sn(u,3,3);Q(u);let f=W(d,Yx[0]),m=W(p,Yx[1]),g=W(h,Yx[2]);Q(d),Q(p),Q(h);let A=Vh([f,m,g]);Q(f),Q(m),Q(g);let y=j(()=>W(ye(A,.5),2));Q(A);let x=await(hn==null?void 0:hn.predict(y));n8=Ae();let b=await x.data();Q(x);for(let w=0;w<b.length;w++)b[w]>(((c=t.face.emotion)==null?void 0:c.minConfidence)||0)&&i.push({score:Math.min(.99,Math.trunc(100*b[w])/100),emotion:hge[w]});i.sort((w,k)=>k.score-w.score),Q(y)}jm[n]=i,t8=s,o(i)})):null}var er,Go=0,fge=2.3,Qx=Lr.leftEyeLower0,eb=Lr.rightEyeLower0,pc={leftBounds:[Qx[0],Qx[Qx.length-1]],rightBounds:[eb[0],eb[eb.length-1]]},hc={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function r8(e){var t,n;return be.initial&&(er=null),er?e.debug&&ae("cached model:",er.modelUrl):(er=await st(at(e.modelBasePath,((t=e.face.iris)==null?void 0:t.modelPath)||"")),!er||!er.modelUrl?ae("load model failed:",(n=e.face.iris)==null?void 0:n.modelPath):e.debug&&ae("load model:",er.modelUrl)),Go=er.inputs[0].shape?er.inputs[0].shape[2]:0,Go===-1&&(Go=64),er}function qm(e,t,n,s){for(let r=0;r<Rx.length;r++){let{key:a,indices:o}=Rx[r],i=Lr[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let c=o[l];e[i[l]]=[t[c][0],t[c][1],(t[c][2]+e[i[l]][2])/2]}}}var mge=e=>{let t=e[pc.leftBounds[0]][2],n=e[pc.rightBounds[0]][2];return t-n},a8=(e,t,n,s,r=!1,a)=>{let o=fp(hp(Vm([e[n],e[s]]),fge)),i=pp(o),l=$e.cropAndResize(t,[[o.startPoint[1]/a,o.startPoint[0]/a,o.endPoint[1]/a,o.endPoint[0]/a]],[0],[Go,Go]);if(r&&be.kernels.includes("flipleftright")){let c=$e.flipLeftRight(l);Q(l),l=c}return{box:o,boxSize:i,crop:l}},o8=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<hc.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/Go:o/Go)*n[0]+t.startPoint[0],i/Go*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(hc.index)}},i8=(e,t,n)=>{let s=e[Lr[`${n}EyeUpper0`][hc.upperCenter]][2],r=e[Lr[`${n}EyeLower0`][hc.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function l8(e,t,n,s){if(!er)return n.debug&&ae("face mesh iris detection requested, but model is not loaded"),e;let{box:r,boxSize:a,crop:o}=a8(e,t,pc.leftBounds[0],pc.leftBounds[1],!0,s),{box:i,boxSize:l,crop:c}=a8(e,t,pc.rightBounds[0],pc.rightBounds[1],!0,s),u=It([o,c]);Q(o),Q(c);let d=er.predict(u);Q(u);let p=await d.data();Q(d);let h=p.slice(0,hc.numCoordinates*3),{rawCoords:f,iris:m}=o8(h,r,a,!0),g=p.slice(hc.numCoordinates*3),{rawCoords:A,iris:y}=o8(g,i,l),x=mge(e);Math.abs(x)<30?(qm(e,f,"left",null),qm(e,A,"right",null)):x<1?qm(e,f,"left",["EyeUpper0","EyeLower0"]):qm(e,A,"right",["EyeUpper0","EyeLower0"]);let b=i8(e,m,"left"),w=i8(e,y,"right");return e.concat(b).concat(w)}var Br=[],tr=null,xr=0,tb=Number.MAX_SAFE_INTEGER,u8=0,c8=0;async function d8(e,t){var a,o,i,l,c,u,d,p,h,f,m,g,A;if(!t.skipFrame||(c8!==((a=t.face.detector)==null?void 0:a.maxDetected)||!((o=t.face.mesh)==null?void 0:o.enabled))&&tb>(((i=t.face.detector)==null?void 0:i.skipFrames)||0)&&(((l=t.face.description)==null?void 0:l.skipTime)||0)<=Ae()-u8){let y=await j6(e,t);u8=Ae(),Br=[];for(let x of y.boxes){let b=await x.box.startPoint.data(),w=await x.box.endPoint.data(),k=await x.landmarks.array();Br.push({startPoint:b,endPoint:w,landmarks:k,confidence:x.confidence})}y.boxes.forEach(x=>Q([x.box.startPoint,x.box.endPoint,x.landmarks]));for(let x=0;x<Br.length;x++){let b=M6({startPoint:Br[x].startPoint,endPoint:Br[x].endPoint},y.scaleFactor),w=hp(b),k=fp(w);Br[x]={...k,confidence:Br[x].confidence,landmarks:Br[x].landmarks}}tb=0}else tb++;let n=[],s=[],r=0;for(let y of Br){let x=0,b,w={id:r++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if(((c=t.face.detector)==null?void 0:c.rotation)&&((u=t.face.mesh)==null?void 0:u.enabled)&&be.kernels.includes("rotatewithoffset"))[x,b,w.tensor]=Px(y,e,xr);else{b=Um;let k=_x({startPoint:y.startPoint,endPoint:y.endPoint},e,((d=t.face.mesh)==null?void 0:d.enabled)?[xr,xr]:[mp(),mp()]);w.tensor=he(k,255),Q(k)}if(w.boxScore=Math.round(100*y.confidence)/100,(p=t.face.mesh)==null?void 0:p.enabled)if(!tr)t.debug&&ae("face mesh detection requested, but model is not loaded");else{let[k,S,E]=tr.execute(w.tensor);Q(k);let P=(await S.data())[0];Q(S);let F=G(E,[-1,3]),R=await F.array();if(Q(E),Q(F),P<(((h=t.face.detector)==null?void 0:h.minConfidence)||1))y.confidence=P;else{((f=t.face.iris)==null?void 0:f.enabled)&&(R=await l8(R,w.tensor,t,xr)),w.mesh=V6(R,y,x,b,xr),w.meshRaw=w.mesh.map(_=>[_[0]/(e.shape[2]||0),_[1]/(e.shape[1]||0),(_[2]||0)/xr]),y={...hp(Vm(w.mesh),1.5),confidence:y.confidence};for(let _ of Object.keys(Lr))w.annotations[_]=Lr[_].map(T=>w.mesh[T]);((m=t.face.detector)==null?void 0:m.rotation)&&t.face.mesh.enabled&&((g=t.face.description)==null?void 0:g.enabled)&&be.kernels.includes("rotatewithoffset")&&(Q(w.tensor),[x,b,w.tensor]=Px(y,e,xr)),w.box=$x(y,e),w.boxRaw=Dx(y,e),w.score=Math.round(100*P||100*y.confidence||0)/100,w.faceScore=Math.round(100*P)/100,y={...fp(y),confidence:y.confidence,faceConfidence:P}}}else{w.box=$x(y,e),w.boxRaw=Dx(y,e),w.score=Math.round(100*y.confidence||0)/100,w.mesh=y.landmarks.map(k=>[(y.startPoint[0]+y.endPoint[0])/2+(y.endPoint[0]+y.startPoint[0])*k[0]/mp(),(y.startPoint[1]+y.endPoint[1])/2+(y.endPoint[1]+y.startPoint[1])*k[1]/mp()]),w.meshRaw=w.mesh.map(k=>[k[0]/(e.shape[2]||0),k[1]/(e.shape[1]||0),(k[2]||0)/xr]);for(let k of Object.keys(cp))w.annotations[k]=[w.mesh[cp[k]]]}n.push(w),s.push(y)}return((A=t.face.mesh)==null?void 0:A.enabled)&&(Br=s.filter(y=>{var x;return y.confidence>(((x=t.face.detector)==null?void 0:x.minConfidence)||0)})),c8=n.length,n}async function p8(e){var t,n;return be.initial&&(tr=null),tr?e.debug&&ae("cached model:",tr.modelUrl):(tr=await st(at(e.modelBasePath,((t=e.face.mesh)==null?void 0:t.modelPath)||"")),!tr||!tr.modelUrl?ae("load model failed:",(n=e.face.mesh)==null?void 0:n.modelPath):e.debug&&ae("load model:",tr.modelUrl)),xr=tr.inputs[0].shape?tr.inputs[0].shape[2]:0,xr===-1&&(xr=64),tr}var h8=kl,f8=dp;var Yn,Xm=[],m8=0,g8=0,nb=Number.MAX_SAFE_INTEGER;async function A8(e){var n,s;let t=at(e.modelBasePath,((n=e.face.description)==null?void 0:n.modelPath)||"");return be.initial&&(Yn=null),Yn?e.debug&&ae("cached model:",t):(Yn=await st(t),Yn?e.debug&&ae("load model:",t):ae("load model failed:",((s=e.face.description)==null?void 0:s.modelPath)||"")),Yn}function sb(e){return j(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Ye))return null;let s=[[.05,.15,.85,.85]];if(!(Yn==null?void 0:Yn.inputs[0].shape))return null;let r=n.shape.length===3?$e.cropAndResize(Kt(n,0),s,[0],[Yn.inputs[0].shape[2],Yn.inputs[0].shape[1]]):$e.cropAndResize(n,s,[0],[Yn.inputs[0].shape[2],Yn.inputs[0].shape[1]]);return W(r,255)})}async function rb(e,t,n,s){var r,a,o,i;return Yn?nb<(((r=t.face.description)==null?void 0:r.skipFrames)||0)&&(((a=t.face.description)==null?void 0:a.skipTime)||0)<=Ae()-m8&&t.skipFrame&&g8===s&&((o=Xm[n])==null?void 0:o.age)&&((i=Xm[n])==null?void 0:i.age)>0?(nb++,Xm[n]):(nb=0,new Promise(async l=>{var u,d;let c={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((u=t.face.description)==null?void 0:u.enabled){let p=sb(e),h=await(Yn==null?void 0:Yn.predict(p));m8=Ae(),Q(p);let m=await(await h.find(S=>S.shape[1]===1)).data(),g=Math.trunc(200*Math.abs(m[0]-.5))/100;g>(((d=t.face.description)==null?void 0:d.minConfidence)||0)&&(c.gender=m[0]<=.5?"female":"male",c.genderScore=Math.min(.99,g));let A=Hs(h.find(S=>S.shape[1]===100),1),y=(await A.data())[0];Q(A);let b=await h.find(S=>S.shape[1]===100).data();c.age=Math.round(b[y-1]>b[y+1]?10*y-100*b[y-1]:10*y+100*b[y+1])/10;let w=h.find(S=>S.shape[1]===1024),k=w?await w.data():[];c.descriptor=Array.from(k),h.forEach(S=>Q(S))}Xm[n]=c,g8=s,l(c)})):null}function Km(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function gp(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function y8(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return $e.cropAndResize(t,a,[0],n)}function x8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function Zm(e,t=1.5){let n=gp(e),s=Km(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Ym(e){let t=gp(e),n=Km(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function gge(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function b8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return gge(n)}var v8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Ho(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function Age(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function w8(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Ho(e[r],Age(t,a)))}return n}function ab(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=v8(t[0],t[1]),o=w8(a,r),i=v8(-t[0],-t[1]);return w8(o,i)}function k8(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Ho(t[0],n),-Ho(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function ob(e,t){return[Ho(e,t[0]),Ho(e,t[1])]}var I8=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var ib=class{constructor(t){pe(this,"model");pe(this,"anchors");pe(this,"anchorsTensor");pe(this,"inputSize");pe(this,"inputSizeTensor");pe(this,"doubleInputSizeTensor");this.model=t,this.anchors=I8.map(n=>[n.x,n.y]),this.anchorsTensor=ur(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Zt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Zt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return j(()=>{let n=_e(t,[0,0],[-1,2]),s=_e(t,[0,2],[-1,2]),r=ie(he(n,this.inputSizeTensor),this.anchorsTensor),a=he(s,this.doubleInputSizeTensor),o=W(ye(r,a),this.inputSizeTensor),i=W(ie(r,a),this.inputSizeTensor);return ku([o,i],1)})}normalizeLandmarks(t,n){return j(()=>{let s=ie(he(G(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return W(s,this.inputSizeTensor)})}async getBoxes(t,n){let s={};s.batched=this.model.predict(t),s.predictions=pt(s.batched),s.scores=j(()=>pt(hs(_e(s.predictions,[0,0],[-1,1]))));let r=await s.scores.data();s.boxes=_e(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await $e.nonMaxSuppressionAsync(s.norm,s.scores,3*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l=_e(s.norm,[i,0],[1,-1]),c=j(()=>G(this.normalizeLandmarks(_e(s.predictions,[i,5],[1,14]),i),[-1,2]));o.push({box:l,palmLandmarks:c,confidence:r[i]})}for(let i of Object.keys(s))Q(s[i]);return o}async estimateHandBounds(t,n){let s=t.shape[1],r=t.shape[2],a=j(()=>ye(he($e.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),o=await this.getBoxes(a,n);Q(a);let i=[];if(!o||o.length===0)return i;for(let l of o){let c=await l.box.data(),u=c.slice(0,2),d=c.slice(2,4),p=await l.palmLandmarks.array();Q(l.box),Q(l.palmLandmarks),i.push(x8({startPoint:u,endPoint:d,palmLandmarks:p,confidence:l.confidence},[r/this.inputSize,s/this.inputSize]))}return i}};var yge=5,S8=1.65,C8=[0,5,9,13,17,1,2],xge=0,bge=2,T8=0,lb=class{constructor(t,n){pe(this,"handDetector");pe(this,"handPoseModel");pe(this,"inputSize");pe(this,"storedBoxes");pe(this,"skipped");pe(this,"detectedHands");this.handDetector=t,this.handPoseModel=n,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>ob([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return Zm(Ym(r),yge)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=Zm(Ym(n),S8);s.palmLandmarks=[];for(let r=0;r<C8.length;r++)s.palmLandmarks.push(t[C8[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=Km(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=ab(s,[0,0]),c=i.map(h=>[...ob(h,l),h[2]]),u=k8(r),d=[...gp(n),1],p=[Ho(d,u[0]),Ho(d,u[1])];return c.map(h=>[Math.trunc(h[0]+p[0]),Math.trunc(h[1]+p[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames&&(n.hand.skipTime||0)<=Ae()-T8||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let a=[];for(let o=0;o<this.storedBoxes.length;o++){let i=this.storedBoxes[o];if(!!i)if(n.hand.landmarks){let l=n.hand.rotation?b8(i.palmLandmarks[xge],i.palmLandmarks[bge]):0,c=gp(i),u=[c[0]/t.shape[2],c[1]/t.shape[1]],d=n.hand.rotation&&be.kernels.includes("rotatewithoffset")?$e.rotateWithOffset(t,l,0,u):t.clone(),p=ab(-l,c),h=s?this.getBoxForPalmLandmarks(i.palmLandmarks,p):i,f=y8(h,d,[this.inputSize,this.inputSize]),m=he(f,255);Q(f),Q(d);let[g,A]=await this.handPoseModel.predict(m);T8=Ae(),Q(m);let y=(await g.data())[0];if(Q(g),y>=n.hand.minConfidence/4){let x=G(A,[-1,3]),b=await x.array();Q(A),Q(x);let w=this.transformRawCoords(b,h,l,p),k=this.getBoxForHandLandmarks(w);this.storedBoxes[o]={...k,confidence:y};let S={landmarks:w,confidence:y,boxConfidence:i.confidence,fingerConfidence:y,box:{topLeft:k.startPoint,bottomRight:k.endPoint}};a.push(S)}else this.storedBoxes[o]=null;Q(A)}else{let l=Zm(Ym(i),S8),c={confidence:i.confidence,boxConfidence:i.confidence,fingerConfidence:0,box:{topLeft:l.startPoint,bottomRight:l.endPoint},landmarks:[]};a.push(c)}}return this.storedBoxes=this.storedBoxes.filter(o=>o!==null),this.detectedHands=a.length,a.length>n.hand.maxDetected&&(a.length=n.hand.maxDetected),a}};var Ze={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>Ze.nameMapping[e],getPoints:e=>Ze.pointsMapping[e]},cs={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>cs.nameMapping[e]},qe={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>qe.nameMapping[e]},Jm=class{constructor(t){pe(this,"name");pe(this,"curls");pe(this,"directions");pe(this,"weights");pe(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}addCurl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}addDirection(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}setWeight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var jo=new Jm("thumbs up");jo.addCurl(Ze.thumb,cs.none,1);jo.addDirection(Ze.thumb,qe.verticalUp,1);jo.addDirection(Ze.thumb,qe.diagonalUpLeft,.25);jo.addDirection(Ze.thumb,qe.diagonalUpRight,.25);for(let e of[Ze.index,Ze.middle,Ze.ring,Ze.pinky])jo.addCurl(e,cs.full,1),jo.addDirection(e,qe.horizontalLeft,1),jo.addDirection(e,qe.horizontalRight,1);var tn=new Jm("victory");tn.addCurl(Ze.thumb,cs.half,.5);tn.addCurl(Ze.thumb,cs.none,.5);tn.addDirection(Ze.thumb,qe.verticalUp,1);tn.addDirection(Ze.thumb,qe.diagonalUpLeft,1);tn.addCurl(Ze.index,cs.none,1);tn.addDirection(Ze.index,qe.verticalUp,.75);tn.addDirection(Ze.index,qe.diagonalUpLeft,1);tn.addCurl(Ze.middle,cs.none,1);tn.addDirection(Ze.middle,qe.verticalUp,1);tn.addDirection(Ze.middle,qe.diagonalUpLeft,.75);tn.addCurl(Ze.ring,cs.full,1);tn.addDirection(Ze.ring,qe.verticalUp,.2);tn.addDirection(Ze.ring,qe.diagonalUpLeft,1);tn.addDirection(Ze.ring,qe.horizontalLeft,.2);tn.addCurl(Ze.pinky,cs.full,1);tn.addDirection(Ze.pinky,qe.verticalUp,.2);tn.addDirection(Ze.pinky,qe.diagonalUpLeft,1);tn.addDirection(Ze.pinky,qe.horizontalLeft,.2);tn.setWeight(Ze.index,2);tn.setWeight(Ze.middle,2);var N8=[jo,tn];var vge=.7,Cl={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function E8(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function R8(e,t){if(!e||!t)return[0,0];let n=E8(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=E8(e[1],e[2],t[1],t[2]);return[n,s]}function $8(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function wge(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],c=e[2]-t[2],u=e[2]-n[2],d=t[2]-n[2],p=Math.sqrt(s*s+o*o+c*c),h=Math.sqrt(r*r+i*i+u*u),f=Math.sqrt(a*a+l*l+d*d),m=(f*f+p*p-h*h)/(2*f*p);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let A;return g>Cl.NO_CURL_START_LIMIT?A=cs.none:g>Cl.HALF_CURL_START_LIMIT?A=cs.half:A=cs.full,A}function D8(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=qe.horizontalLeft:r=qe.horizontalRight:s===Math.abs(t)?t>0?r=qe.horizontalLeft:r=qe.horizontalRight:n>0?r=qe.horizontalLeft:r=qe.horizontalRight,r}function _8(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=qe.verticalDown:r=qe.verticalUp:s===Math.abs(t)?t<0?r=qe.verticalDown:r=qe.verticalUp:n<0?r=qe.verticalDown:r=qe.verticalUp,r}function kge(e,t,n,s,r,a,o,i){let l,c=_8(e,t,n,s),u=D8(r,a,o,i);return c===qe.verticalUp?u===qe.horizontalLeft?l=qe.diagonalUpLeft:l=qe.diagonalUpRight:u===qe.horizontalLeft?l=qe.diagonalDownLeft:l=qe.diagonalDownRight,l}function Ige(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],c=t[1]-n[1],u=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),d=Math.max(Math.abs(i),Math.abs(l),Math.abs(c)),p=0,h=0,f=0,m=d/(u+1e-5);m>1.5?p+=Cl.DISTANCE_VOTE_POWER:m>.66?h+=Cl.DISTANCE_VOTE_POWER:f+=Cl.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),A=Math.sqrt(a*a+l*l),y=Math.sqrt(o*o+c*c),x=Math.max(g,A,y),b=e[0],w=e[1],k=n[0],S=n[1];x===g?(k=n[0],S=n[1]):x===y&&(b=t[0],w=t[1]);let F=R8([b,w],[k,S]),R=$8(F,Cl.TOTAL_ANGLE_VOTE_POWER);p+=R[0],h+=R[1],f+=R[2];for(let T of s){let M=$8(T,Cl.SINGLE_ANGLE_VOTE_POWER);p+=M[0],h+=M[1],f+=M[2]}let _;return p===Math.max(p,h,f)?_=_8(l,i,c,d):f===Math.max(h,f)?_=D8(a,r,o,u):_=kge(l,i,c,d,a,r,o,u),_}function P8(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of Ze.all){let o=Ze.getPoints(a),i=[],l=[];for(let c of o){let u=e[c[0]],d=e[c[1]],p=R8(u,d),h=p[0],f=p[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of Ze.all){let o=a===Ze.thumb?1:0,i=Ze.getPoints(a),l=e[i[o][0]],c=e[i[o+1][1]],u=e[i[3][1]],d=wge(l,c,u),p=Ige(l,c,u,t[a].slice(o));s[a]=d,r[a]=p}return{curls:s,directions:r}}function Qm(e){if(!e||e.length===0)return null;let t=P8(e),n={};for(let s of Ze.all)n[Ze.getName(s)]={curl:cs.getName(t.curls[s]),direction:qe.getName(t.directions[s])};return n}function F8(e){let t=[];if(!e||e.length===0)return t;let n=P8(e);for(let s of N8){let r=s.matchAgainst(n.curls,n.directions);r>=vge&&t.push({name:s.name,confidence:r})}return t}var O8={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},la,ua,M8;async function ub(e,t){let n=await M8.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let u of Object.keys(O8))a[u]=O8[u].map(d=>n[r].landmarks[d]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let u of o)u[0]<i[0]&&(i[0]=u[0]),u[1]<i[1]&&(i[1]=u[1]),u[0]>i[2]&&(i[2]=u[0]),u[1]>i[3]&&(i[3]=u[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let c=Qm(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:c})}return s}async function cb(e){var n,s,r,a,o,i;be.initial&&(la=null,ua=null),!la||!ua?([la,ua]=await Promise.all([e.hand.enabled?st(at(e.modelBasePath,((n=e.hand.detector)==null?void 0:n.modelPath)||""),{fromTFHub:(((s=e.hand.detector)==null?void 0:s.modelPath)||"").includes("tfhub.dev")}):null,e.hand.landmarks?st(at(e.modelBasePath,((r=e.hand.skeleton)==null?void 0:r.modelPath)||""),{fromTFHub:(((a=e.hand.skeleton)==null?void 0:a.modelPath)||"").includes("tfhub.dev")}):null]),e.hand.enabled&&(!la||!la.modelUrl?ae("load model failed:",((o=e.hand.detector)==null?void 0:o.modelPath)||""):e.debug&&ae("load model:",la.modelUrl),!ua||!ua.modelUrl?ae("load model failed:",((i=e.hand.skeleton)==null?void 0:i.modelPath)||""):e.debug&&ae("load model:",ua.modelUrl))):(e.debug&&ae("cached model:",la.modelUrl),e.debug&&ae("cached model:",ua.modelUrl));let t=new ib(la);return M8=new lb(t,ua),[la,ua]}function Tl(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function z8(e,t=[1,1]){let n=[e.map(c=>c[0]),e.map(c=>c[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function e0(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}function db(e){return[Math.max(0,e[1]),Math.max(0,e[0]),Math.min(1,e[3]+e[1]),Math.min(1,e[2]+e[0])]}var Nt=[null,null],Sge=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],qo=[[0,0],[0,0]],Cge=["hand","fist","pinch","point","face","tip","pinchtip"],L8=4,B8=1.6,Tge=512,Nge=1.4,t0=0,pb=0,ca=[0,0],Xt={boxes:[],hands:[]},W8={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]};async function V8(e){var t,n;if(be.initial&&(Nt[0]=null),Nt[0])e.debug&&ae("cached model:",Nt[0].modelUrl);else{dc(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),Nt[0]=await st(at(e.modelBasePath,((t=e.hand.detector)==null?void 0:t.modelPath)||""));let s=Object.values(Nt[0].modelSignature.inputs);qo[0][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,qo[0][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!Nt[0]||!Nt[0].modelUrl?ae("load model failed:",(n=e.hand.detector)==null?void 0:n.modelPath):e.debug&&ae("load model:",Nt[0].modelUrl)}return Nt[0]}async function U8(e){var t,n;if(be.initial&&(Nt[1]=null),Nt[1])e.debug&&ae("cached model:",Nt[1].modelUrl);else{Nt[1]=await st(at(e.modelBasePath,((t=e.hand.skeleton)==null?void 0:t.modelPath)||""));let s=Object.values(Nt[1].modelSignature.inputs);qo[1][0]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[1].size):0,qo[1][1]=Array.isArray(s)?parseInt(s[0].tensorShape.dim[2].size):0,!Nt[1]||!Nt[1].modelUrl?ae("load model failed:",(n=e.hand.skeleton)==null?void 0:n.modelPath):e.debug&&ae("load model:",Nt[1].modelUrl)}return Nt[1]}async function Ege(e,t){let n=[];if(!e||!Nt[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,Tge),o=Math.round(a*r/8)*8;s.resize=$e.resizeBilinear(e,[a,o]),s.cast=de(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await Nt[0].executeAsync(s.cast,Sge),s.boxes=pt(s.rawBoxes,[0,2]),s.scores=pt(s.rawScores,[0]);let i=as(s.scores,1);Q(i[L8]),i.splice(L8,1),s.filtered=Pn(i,1),Q(i),s.max=rs(s.filtered,1),s.argmax=Hs(s.filtered,1);let l=0;s.nms=await $e.nonMaxSuppressionAsync(s.boxes,s.max,t.hand.maxDetected,t.hand.iouThreshold,t.hand.minConfidence);let c=await s.nms.data(),u=await s.max.data(),d=await s.argmax.data();for(let p of Array.from(c)){let h=_e(s.boxes,p,1),f=await h.data();Q(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=e0(m,Nge),A=db(g),y=[Math.trunc(m[0]*ca[0]),Math.trunc(m[1]*ca[1]),Math.trunc(m[2]*ca[0]),Math.trunc(m[3]*ca[1])],x=u[p],b=Cge[d[p]],w={id:l++,score:x,box:y,boxRaw:g,boxCrop:A,label:b};n.push(w)}return Object.keys(s).forEach(p=>Q(s[p])),n.sort((p,h)=>h.score-p.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function hb(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&Nt[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={};r.crop=$e.cropAndResize(e,[t.boxCrop],[0],[qo[1][0],qo[1][1]],"bilinear"),r.cast=de(r.crop,"float32"),r.div=he(r.cast,255),[r.score,r.keypoints]=Nt[1].execute(r.div);let a=(await r.score.data())[0],o=(100-Math.trunc(100/(1+Math.exp(a))))/100;if(o>=(n.hand.minConfidence||0)){s.fingerScore=o,r.reshaped=G(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(u=>[u[0]/qo[1][1],u[1]/qo[1][0],u[2]||0]).map(u=>[u[0]*t.boxRaw[2],u[1]*t.boxRaw[3],u[2]||0]);s.keypoints=c.map(u=>[ca[0]*(u[0]+t.boxRaw[0]),ca[1]*(u[1]+t.boxRaw[1]),u[2]||0]),s.landmarks=Qm(s.keypoints);for(let u of Object.keys(W8))s.annotations[u]=W8[u].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(i=>Q(r[i]))}return s}async function fb(e,t){var n,s;return!Nt[0]||!Nt[1]||!((n=Nt[0])==null?void 0:n.inputs[0].shape)||!((s=Nt[1])==null?void 0:s.inputs[0].shape)?[]:(ca=[e.shape[2]||0,e.shape[1]||0],t0++,t.skipFrame&&t0<=(t.hand.skipFrames||0)&&(t.hand.skipTime||0)<=Ae()-pb?Xt.hands:new Promise(async r=>{t.skipFrame&&Xt.hands.length===t.hand.maxDetected?Xt.hands=await Promise.all(Xt.boxes.map(o=>hb(e,o,t))):t.skipFrame&&t0<3*(t.hand.skipFrames||0)&&(t.hand.skipTime||0)<=3*(Ae()-pb)&&Xt.hands.length>0?Xt.hands=await Promise.all(Xt.boxes.map(o=>hb(e,o,t))):(Xt.boxes=await Ege(e,t),pb=Ae(),Xt.hands=await Promise.all(Xt.boxes.map(o=>hb(e,o,t))),t0=0);let a=[...Xt.boxes];if(Xt.boxes.length=0,t.cacheSensitivity>0)for(let o=0;o<Xt.hands.length;o++){let i=z8(Xt.hands[o].keypoints,ca);if(i.box[2]/(e.shape[2]||1)>.05&&i.box[3]/(e.shape[1]||1)>.05&&Xt.hands[o].fingerScore&&Xt.hands[o].fingerScore>(t.hand.minConfidence||0)){let l=e0(i.box,B8),c=e0(i.boxRaw,B8),u=db(c);Xt.boxes.push({...a[o],box:l,boxRaw:c,boxCrop:u})}}for(let o=0;o<Xt.hands.length;o++){let i=Tl(Xt.hands[o].keypoints,ca);Xt.hands[o].box=i.box,Xt.hands[o].boxRaw=i.boxRaw}r(Xt.hands)}))}var yb={};qp(yb,{connected:()=>s0,horizontal:()=>mb,kpt:()=>n0,relative:()=>Ab,vertical:()=>gb});var n0=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],mb=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],gb=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],Ab=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],s0={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var G8=.005,vs={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function xb(e){for(let t of mb){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]<e.keypoints[s].position[0]){let r=e.keypoints[n];e.keypoints[n]=e.keypoints[s],e.keypoints[s]=r}}for(let t of gb){let n=e.keypoints.findIndex(r=>r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]<e.keypoints[s].position[1]&&e.keypoints.splice(n,1)}for(let[t,n]of Ab){let s=e.keypoints.findIndex(c=>c&&c.part===t[0]),r=e.keypoints.findIndex(c=>c&&c.part===t[1]),a=e.keypoints.findIndex(c=>c&&c.part===n[0]),o=e.keypoints.findIndex(c=>c&&c.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let c=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=c}}}function H8(e){for(let t=0;t<e.length;t++)if(e[t]&&vs.keypoints[t]){let n=[Math.abs(e[t].positionRaw[0]-vs.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-vs.keypoints[t].positionRaw[1])];n[0]<G8&&n[1]<G8?e[t]=vs.keypoints[t]:vs.keypoints[t]=e[t]}else vs.keypoints[t]=e[t];return e}function j8(e,t){let n={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;vs.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=qs(e,vs.padding),n.resize=$e.resizeBilinear(n.pad,[t,t]);let s=de(n.resize,"int32");return Object.keys(n).forEach(r=>Q(n[r])),s}function q8(e,t){e.keypoints=e.keypoints.filter(s=>s&&s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+vs.padding[2][0]+vs.padding[2][1])/t[0]-vs.padding[2][0],s.position[1]*(t[1]+vs.padding[1][0]+vs.padding[1][1])/t[1]-vs.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=Tl(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var Fn,r0=0,bb=Number.MAX_SAFE_INTEGER,Nl={boxes:[],bodies:[],last:0};async function X8(e){return be.initial&&(Fn=null),Fn?e.debug&&ae("cached model:",Fn.modelUrl):(dc(["size"],e),Fn=await st(at(e.modelBasePath,e.body.modelPath||"")),!Fn||!Fn.modelUrl?ae("load model failed:",e.body.modelPath):e.debug&&ae("load model:",Fn.modelUrl)),r0=Fn.inputs[0].shape?Fn.inputs[0].shape[2]:0,r0===-1&&(r0=256),Fn}async function Rge(e,t,n,s){let r=e[0][0],a=[],o=0;for(let d=0;d<r.length;d++)if(o=r[d][2],o>t.body.minConfidence){let p=[(s[3]-s[1])*r[d][1]+s[1],(s[2]-s[0])*r[d][0]+s[0]];a.push({score:Math.round(100*o)/100,part:n0[d],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}o=a.reduce((d,p)=>p.score>d?p.score:d,0);let i=[],l=Tl(a.map(d=>d.position),[n.shape[2],n.shape[1]]),c={};for(let[d,p]of Object.entries(s0)){let h=[];for(let f=0;f<p.length-1;f++){let m=a.find(A=>A.part===p[f]),g=a.find(A=>A.part===p[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}c[d]=h}let u={id:0,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:a,annotations:c};return xb(u),i.push(u),i}async function $ge(e,t,n,s){let r=[];for(let a=0;a<e[0].length;a++){let o=e[0][a],i=Math.round(100*o[51+4])/100;if(i>t.body.minConfidence){let l=[];for(let p=0;p<17;p++){let h=o[3*p+2];if(h>t.body.minConfidence){let f=[(s[3]-s[1])*o[3*p+1]+s[1],(s[2]-s[0])*o[3*p+0]+s[0]];l.push({part:n0[p],score:Math.round(100*h)/100,positionRaw:f,position:[Math.round((n.shape[2]||0)*f[0]),Math.round((n.shape[1]||0)*f[1])]})}}let c=Tl(l.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,h]of Object.entries(s0)){let f=[];for(let m=0;m<h.length-1;m++){let g=l.find(y=>y.part===h[m]),A=l.find(y=>y.part===h[m+1]);g&&A&&g.score>(t.body.minConfidence||0)&&A.score>(t.body.minConfidence||0)&&f.push([g.position,A.position])}u[p]=f}let d={id:a,score:i,box:c.box,boxRaw:c.boxRaw,keypoints:[...l],annotations:u};xb(d),r.push(d)}}return r.sort((a,o)=>o.score-a.score),r.length>t.body.maxDetected&&(r.length=t.body.maxDetected),r}async function vb(e,t){return!Fn||!(Fn==null?void 0:Fn.inputs[0].shape)?[]:(t.skipFrame||(Nl.boxes.length=0),bb++,t.skipFrame&&bb<=(t.body.skipFrames||0)&&(t.body.skipTime||0)<=Ae()-Nl.last?Nl.bodies:new Promise(async n=>{let s={};bb=0,s.input=j8(e,r0),s.res=await(Fn==null?void 0:Fn.predict(s.input)),Nl.last=Ae();let r=await s.res.array();Nl.bodies=s.res.shape[2]===17?await Rge(r,t,e,[0,0,1,1]):await $ge(r,t,e,[0,0,1,1]);for(let a of Nl.bodies)q8(a,[e.shape[2]||1,e.shape[1]||1]),H8(a.keypoints);Object.keys(s).forEach(a=>Q(s[a])),n(Nl.bodies)}))}var ws,a0=[],K8=0,wb=Number.MAX_SAFE_INTEGER,o0=2.5;async function Z8(e){if(!ws||be.initial){ws=await st(at(e.modelBasePath,e.object.modelPath||""));let t=Object.values(ws.modelSignature.inputs);if(ws.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!ws.inputSize)throw new Error(`cannot determine model inputSize: ${e.object.modelPath}`);!ws||!ws.modelUrl?ae("load model failed:",e.object.modelPath):e.debug&&ae("load model:",ws.modelUrl)}else e.debug&&ae("cached model:",ws.modelUrl);return ws}async function Dge(e,t,n,s){let r=0,a=[];for(let c of[1,2,4])j(async()=>{var g,A;let u=c*13,d=(g=e.find(y=>y.shape[1]===u**2&&y.shape[2]===cc.length))==null?void 0:g.squeeze(),p=(A=e.find(y=>y.shape[1]===u**2&&y.shape[2]<cc.length))==null?void 0:A.squeeze(),f=await p.reshape([-1,4,p.shape[1]/4]).argMax(2).array(),m=await d.array();for(let y=0;y<d.shape[0];y++)for(let x=0;x<d.shape[1];x++){let b=m[y][x];if(b>s.object.minConfidence&&x!==61){let w=(.5+Math.trunc(y%u))/u,k=(.5+Math.trunc(y/u))/u,S=f[y].map(U=>U*(u/c/t)),[E,P]=[w-o0/c*S[0],k-o0/c*S[1]],[F,R]=[w+o0/c*S[2]-E,k+o0/c*S[3]-P],_=[E,P,F,R];_=_.map(U=>Math.max(0,Math.min(U,1)));let T=[_[0]*n[0],_[1]*n[1],_[2]*n[0],_[3]*n[1]],M={id:r++,score:Math.round(100*b)/100,class:x+1,label:cc[x].label,box:T.map(U=>Math.trunc(U)),boxRaw:_};a.push(M)}}});e.forEach(c=>Q(c));let o=a.map(c=>[c.boxRaw[1],c.boxRaw[0],c.boxRaw[3],c.boxRaw[2]]),i=a.map(c=>c.score),l=[];if(o&&o.length>0){let c=await $e.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await c.data(),Q(c)}return a=a.filter((c,u)=>l.includes(u)).sort((c,u)=>u.score-c.score),a}async function kb(e,t){return wb<(t.object.skipFrames||0)&&(t.object.skipTime||0)<=Ae()-K8&&t.skipFrame&&a0.length>0?(wb++,a0):(wb=0,!be.kernels.includes("mod")||!be.kernels.includes("sparsetodense")?a0:new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=$e.resizeBilinear(e,[ws.inputSize,ws.inputSize],!1),a=he(r,255),o=a.transpose([0,3,1,2]);Q(a),Q(r);let i;t.object.enabled&&(i=await ws.predict(o)),K8=Ae(),Q(o);let l=await Dge(i,ws.inputSize,s,t);a0=l,n(l)}))}var Ap=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],_ge=Ap.length,yp=Ap.reduce((e,t,n)=>(e[t]=n,e),{}),Pge=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],hAe=Pge.map(([e,t])=>[yp[e],yp[t]]),Y8=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function J8(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Q8(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(c,u)=>({id:u,score:c.score,boxRaw:[c.box[0]/r,c.box[1]/s,c.box[2]/r,c.box[3]/s],box:[Math.trunc(c.box[0]*o),Math.trunc(c.box[1]*a),Math.trunc(c.box[2]*o),Math.trunc(c.box[3]*a)],keypoints:c.keypoints.map(({score:d,part:p,position:h})=>({score:d,part:p,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]}))});return e.map((c,u)=>i(c,u))}var Ib=class{constructor(t,n){pe(this,"priorityQueue");pe(this,"numberOfElements");pe(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function Sb(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+_ge)}}function Cb(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=Sb(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function Tb(e,t,n){return e<t?t:e>n?n:e}function eT(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function Nb(e,t){return{x:e.x+t.x,y:e.y+t.y}}var ks,Fge=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],i0=1,fc=16,Oge=50**2;function tT(e,t,n,s,r,a,o=2){let i=A=>({y:a.get(A.y,A.x,e),x:a.get(A.y,A.x,a.shape[2]/2+e)}),l=(A,y,x)=>({y:Tb(Math.round(A.y/fc),0,y-1),x:Tb(Math.round(A.x/fc),0,x-1)}),[c,u]=s.shape,d=l(t.position,c,u),p=i(d),f=Nb(t.position,p);for(let A=0;A<o;A++){let y=l(f,c,u),x=Sb(y.y,y.x,n,r);f=Nb({x:y.x*fc,y:y.y*fc},{x:x.x,y:x.y})}let m=l(f,c,u),g=s.get(m.y,m.x,n);return{position:f,part:Ap[n],score:g}}function Mge(e,t,n,s,r){let a=Y8.map(([p,h])=>[yp[p],yp[h]]),o=a.map(([,p])=>p),i=a.map(([p])=>p),l=t.shape[2],c=o.length,u=new Array(l),d=Cb(e.part,fc,n);u[e.part.id]={score:e.score,part:Ap[e.part.id],position:d};for(let p=c-1;p>=0;--p){let h=o[p],f=i[p];u[h]&&!u[f]&&(u[f]=tT(p,u[h],f,t,n,r))}for(let p=0;p<c;++p){let h=i[p],f=o[p];u[h]&&!u[f]&&(u[f]=tT(p,u[h],f,t,n,s))}return u}function zge(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-i0,0),c=Math.min(n+i0+1,a);for(let u=l;u<c;++u){let d=Math.max(s-i0,0),p=Math.min(s+i0+1,o);for(let h=d;h<p;++h)if(r.get(u,h,e)>t){i=!1;break}if(!i)break}return i}function Lge(e,t){let[n,s,r]=t.shape,a=new Ib(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let c=t.get(o,i,l);c<e||zge(l,c,o,i,t)&&a.enqueue({score:c,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function nT(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?eT(n,t,a.y,a.x)<=Oge:!1})}function Bge(e,t){return t.reduce((s,{position:r,score:a},o)=>(nT(e,r,o)||(s+=a),s),0)/t.length}function Wge(e,t,n,s,r,a){let o=[],i=Lge(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),c=Cb(l.part,fc,e);if(nT(o,c,l.part.id))continue;let u=Mge(l,t,e,n,s);u=u.filter(h=>h.score>a);let d=Bge(o,u),p=J8(u);d>a&&o.push({keypoints:u,box:p,score:Math.round(100*d)/100})}return o}async function Eb(e,t){let n=j(()=>{if(!ks.inputs[0].shape)return[];let o=$e.resizeBilinear(e,[ks.inputs[0].shape[2],ks.inputs[0].shape[1]]),i=ye(he(de(o,"float32"),127.5),1),c=ks.execute(i,Fge).map(u=>pt(u,[0]));return c[1]=c[1].sigmoid(),c}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)Q(o);let r=await Wge(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return ks.inputs[0].shape?Q8(r,[e.shape[1],e.shape[2]],[ks.inputs[0].shape[2],ks.inputs[0].shape[1]]):[]}async function sT(e){return!ks||be.initial?(ks=await st(at(e.modelBasePath,e.body.modelPath||"")),!ks||!ks.modelUrl?ae("load model failed:",e.body.modelPath):e.debug&&ae("load model:",ks.modelUrl)):e.debug&&ae("cached model:",ks.modelUrl),ks}var zs,Rb=!1;async function $b(e){return!zs||be.initial?(zs=await st(at(e.modelBasePath,e.segmentation.modelPath||"")),!zs||!zs.modelUrl?ae("load model failed:",e.segmentation.modelPath):e.debug&&ae("load model:",zs.modelUrl)):e.debug&&ae("cached model:",zs.modelUrl),zs}async function rT(e,t,n){var m,g;if(Rb)return{data:[],canvas:null,alpha:null};Rb=!0,zs||await $b(n);let s=uc(e,n),r=((m=s.canvas)==null?void 0:m.width)||0,a=((g=s.canvas)==null?void 0:g.height)||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=$e.resizeBilinear(s.tensor,[zs.inputs[0].shape?zs.inputs[0].shape[1]:0,zs.inputs[0].shape?zs.inputs[0].shape[2]:0],!1),Q(s.tensor),o.norm=he(o.resize,255),o.res=zs.predict(o.norm),o.squeeze=pt(o.res,0),o.squeeze.shape[2]===2?(o.softmax=$u(o.squeeze),[o.bg,o.fg]=as(o.softmax,2),o.expand=Kt(o.fg,2),o.pad=Kt(o.expand,0),o.crop=$e.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=pt(o.crop,0)):o.data=$e.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(be.node&&!be.Canvas&&typeof ImageData=="undefined")return n.debug&&ae("canvas support missing"),Object.keys(o).forEach(A=>Q(o[A])),{data:i,canvas:null,alpha:null};let l=Kn(r,a);await Gs.toPixels(o.data,l);let c=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(c.filter=`blur(${n.segmentation.blur}px)`);let u=c.getImageData(0,0,r,a),d=Kn(r,a),p=d.getContext("2d");s.canvas&&p.drawImage(s.canvas,0,0),p.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(p.filter=`blur(${n.segmentation.blur}px)`),p.drawImage(l,0,0),p.globalCompositeOperation="source-over",p.filter="none";let h=p.getImageData(0,0,r,a);for(let A=0;A<r*a;A++)h.data[4*A+3]=u.data[4*A+0];p.putImageData(h,0,0);let f=null;if(t&&d){f=Kn(r,a);let A=uc(t,n);Q(A.tensor);let y=f.getContext("2d");y.drawImage(A.canvas,0,0,f.width,f.height),y.drawImage(d,0,0)}return Object.keys(o).forEach(A=>Q(o[A])),Rb=!1,{data:i,canvas:f||d,alpha:l}}var l0=class{constructor(){pe(this,"age",null);pe(this,"agegenderrace",null);pe(this,"blazeposedetect",null);pe(this,"blazepose",null);pe(this,"centernet",null);pe(this,"efficientpose",null);pe(this,"embedding",null);pe(this,"emotion",null);pe(this,"facedetect",null);pe(this,"faceiris",null);pe(this,"facemesh",null);pe(this,"faceres",null);pe(this,"gender",null);pe(this,"handpose",null);pe(this,"handskeleton",null);pe(this,"handtrack",null);pe(this,"movenet",null);pe(this,"nanodet",null);pe(this,"posenet",null);pe(this,"segmentation",null);pe(this,"antispoof",null)}};function Db(e){for(let t of Object.keys(e.models))e.models[t]=null}async function aT(e){var t,n,s,r,a,o,i,l,c,u,d,p,h,f,m,g,A,y,x,b,w,k,S,E,P,F,R,_,T,M,U;be.initial&&Db(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await cb(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await cb(e.config))),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=H6(e.config)),e.config.face.enabled&&((a=e.config.face.mesh)==null?void 0:a.enabled)&&!e.models.facemesh&&(e.models.facemesh=p8(e.config)),e.config.face.enabled&&((o=e.config.face.iris)==null?void 0:o.enabled)&&!e.models.faceiris&&(e.models.faceiris=r8(e.config)),e.config.face.enabled&&((i=e.config.face.antispoof)==null?void 0:i.enabled)&&!e.models.antispoof&&(e.models.antispoof=F6(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((c=(l=e.config.hand.detector)==null?void 0:l.modelPath)==null?void 0:c.includes("handtrack"))&&(e.models.handtrack=V8(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((d=(u=e.config.hand.detector)==null?void 0:u.modelPath)==null?void 0:d.includes("handtrack"))&&(e.models.handskeleton=U8(e.config)),e.config.body.enabled&&!e.models.posenet&&((h=(p=e.config.body)==null?void 0:p.modelPath)==null?void 0:h.includes("posenet"))&&(e.models.posenet=sT(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((m=(f=e.config.body)==null?void 0:f.modelPath)==null?void 0:m.includes("efficientpose"))&&(e.models.efficientpose=Xx(e.config)),e.config.body.enabled&&!e.models.blazepose&&((A=(g=e.config.body)==null?void 0:g.modelPath)==null?void 0:A.includes("blazepose"))&&(e.models.blazepose=Z6(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&((y=e.config.body.detector)==null?void 0:y.modelPath)&&((b=(x=e.config.body)==null?void 0:x.modelPath)==null?void 0:b.includes("blazepose"))&&(e.models.blazeposedetect=K6(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((k=(w=e.config.body)==null?void 0:w.modelPath)==null?void 0:k.includes("efficientpose"))&&(e.models.efficientpose=Xx(e.config)),e.config.body.enabled&&!e.models.movenet&&((E=(S=e.config.body)==null?void 0:S.modelPath)==null?void 0:E.includes("movenet"))&&(e.models.movenet=X8(e.config)),e.config.object.enabled&&!e.models.nanodet&&((F=(P=e.config.object)==null?void 0:P.modelPath)==null?void 0:F.includes("nanodet"))&&(e.models.nanodet=Z8(e.config)),e.config.object.enabled&&!e.models.centernet&&((_=(R=e.config.object)==null?void 0:R.modelPath)==null?void 0:_.includes("centernet"))&&(e.models.centernet=Q6(e.config)),e.config.face.enabled&&((T=e.config.face.emotion)==null?void 0:T.enabled)&&!e.models.emotion&&(e.models.emotion=s8(e.config)),e.config.face.enabled&&((M=e.config.face.description)==null?void 0:M.enabled)&&!e.models.faceres&&(e.models.faceres=A8(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=$b(e.config)),e.config.face.enabled&&((U=e.config.face.agegenderrace)==null?void 0:U.enabled)&&!e.models.agegenderrace&&(e.models.agegenderrace=D6(e.config));for await(let H of Object.keys(e.models))e.models[H]&&typeof e.models[H]!="undefined"&&(e.models[H]=await e.models[H])}async function oT(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models))if(e.models[n]){let s=[];Array.isArray(e.models[n])?s=e.models[n].filter(r=>r!==null).map(r=>r&&r.executor?r:r.model):s=[e.models[n]];for(let r of s){if(!r){e.config.debug&&ae("model marked as loaded but not defined:",n);continue}let a=[],o=r==null?void 0:r.executor;if(o&&o.graph.nodes)for(let l of Object.values(o.graph.nodes)){let c=l.op.toLowerCase();a.includes(c)||a.push(c)}else!o&&e.config.debug&&ae("model signature not determined:",n);let i=[];for(let l of a)!t.includes(l)&&!e.env.kernels.includes(l)&&!e.env.kernels.includes(l.replace("_",""))&&!e.env.kernels.includes(l.replace("native",""))&&!e.env.kernels.includes(l.replace("v2",""))&&i.push(l);i.length>0&&e.config.debug&&ae("model validation:",n,i)}}}var zt={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Vge(){let e=zt.gl;!e||(zt.extensions=e.getSupportedExtensions())}async function iT(e){var t;if(e.config.backend==="humangl"&&(zt.name in ss().registry&&(!zt.gl||!zt.gl.getParameter(zt.gl.VERSION))&&(ae("error: humangl backend invalid context"),Db(e)),!S2(zt.name))){try{zt.canvas=await Kn(100,100)}catch(s){ae("error: cannot create canvas:",s);return}try{zt.gl=(t=zt.canvas)==null?void 0:t.getContext("webgl2",zt.webGLattr),zt.canvas&&(zt.canvas.addEventListener("webglcontextlost",async s=>{throw ae("error: humangl:",s.type),ae("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("browser webgl error")}),zt.canvas.addEventListener("webglcontextrestored",s=>{ae("error: humangl context restored:",s)}),zt.canvas.addEventListener("webglcontextcreationerror",s=>{ae("error: humangl context create:",s)}))}catch(s){ae("error: cannot get WebGL context:",s);return}try{pm(2,zt.gl)}catch(s){ae("error: cannot set WebGL context:",s);return}try{let s=new vm(zt.gl);Ki(zt.name,()=>new Kd(s),zt.priority)}catch(s){ae("error: cannot register WebGL backend:",s);return}try{Xr("webgl").forEach(r=>{let a={...r,backendName:zt.name};Kr(a)})}catch(s){ae("error: cannot update WebGL backend registration:",s);return}let n=Tr().getGPGPUContext?Tr().getGPGPUContext().gl:null;if(n)ae(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{ae("error: no current gl context:",n,zt.gl);return}try{Ir.set("WEBGL_VERSION",2)}catch(s){ae("error: cannot set WebGL backend flags:",s);return}Vge(),ae("backend registered:",zt.name)}}async function u0(e,t=!1){if(e.state="backend",t||be.initial||e.config.backend&&e.config.backend.length>0&&ir()!==e.config.backend){let n=Ae();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&ae("running inside web worker"),be.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&ae("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),be.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&ae(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),be.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ae("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();e.config.debug&&ae("enumerated webgpu adapter:",r)}e.config.backend==="humangl"&&await iT(e);let s=Object.keys(ss().registryFactory);if(e.config.debug&&ae("available backends:",s),s.includes(e.config.backend)||(ae(`error: backend ${e.config.backend} not found in registry`),e.config.backend=be.node?"tensorflow":"webgl",e.config.debug&&ae(`override: setting backend ${e.config.backend}`)),e.config.debug&&ae("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&ae("wasm path:",e.config.wasmPath),typeof(wl==null?void 0:wl.setWasmPaths)!="undefined")await b6(e.config.wasmPath);else throw new Error("wasm backend is not loaded");let r=await K().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await K().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&ae(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),e.config.debug&&!r&&ae("warning: wasm simd support is not enabled")}try{await g3(e.config.backend),await Wh()}catch(r){return ae("error: cannot set backend:",e.config.backend,r),!1}}if(ir()==="humangl"&&(Ir.set("CHECK_COMPUTATION_FOR_ERRORS",!1),Ir.set("WEBGL_CPU_FORWARD",!0),Ir.set("WEBGL_USE_SHAPES_UNIFORMS",!0),Ir.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(ae("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),Ir.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Tr().getGPGPUContext)){let s=await Tr().getGPGPUContext().gl;e.config.debug&&ae(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}ir()==="webgpu",m3(),await Wh(),e.performance.backend=Math.trunc(Ae()-n),e.config.backend=ir(),be.updateBackend()}return!0}function dc(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&ae("kernelFunc",n,t.backend)}};Kr(s)}be.kernels=Xr(ir()).map(n=>n.kernelName.toLowerCase())}var da={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},El=e=>{if(e&&e.getContext)return e.getContext("2d");throw new Error("invalid canvas")},mc=e=>Math.round(e*180/Math.PI);function _b(e,t,n,s=0,r){e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function xp(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function lT(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function Uge(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){lT(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function uT(e,t,n,s=5){let r,a,o;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(n[0],n[1]),r=Math.atan2(n[1]-t[1],n[0]-t[0]),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.moveTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),e.closePath(),e.stroke(),e.fill()}async function Pb(e,t,n){let s=$n(da,n);if(!(!t||!e)&&s.drawGestures){let r=El(e);r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let c=i[1]>0?`#${i[1]}`:"",u=`${i[0]} ${c}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(u,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(u,6,0+a*s.lineHeight),a+=1}}}}async function Fb(e,t,n){var a,o,i,l,c;let s=$n(da,n);if(!t||!e)return;let r=El(e);for(let u of t){if(r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&xp(r,u.box[0],u.box[1],u.box[2],u.box[3],s),s.drawLabels){let d=[];if(d.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&d.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&d.push(`age: ${u.age||""}`),u.iris&&d.push(`distance: ${u.iris}`),u.real&&d.push(`real: ${Math.trunc(100*u.real)}%`),u.emotion&&u.emotion.length>0){let p=u.emotion.map(h=>`${Math.trunc(100*h.score)}% ${h.emotion}`);p.length>3&&(p.length=3),d.push(p.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&d.push(`roll: ${mc(u.rotation.angle.roll)}\xB0 yaw:${mc(u.rotation.angle.yaw)}\xB0 pitch:${mc(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&d.push(`gaze: ${mc(u.rotation.gaze.bearing)}\xB0`)),d.length===0&&d.push("face"),r.fillStyle=s.color;for(let p=d.length-1;p>=0;p--){let h=Math.max(u.box[0],0),f=p*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(d[p],h+5,f+16)),r.fillStyle=s.labelColor,r.fillText(d[p],h+4,f+15)}}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let d of u.mesh)_b(r,d[0],d[1],d[2],s);if(s.drawPolygons){if(r.lineWidth=1,u.mesh.length>450)for(let d=0;d<kl.length/3;d++){let p=[kl[d*3+0],kl[d*3+1],kl[d*3+2]].map(h=>u.mesh[h]);lT(r,p,s)}if(u.annotations&&u.annotations.leftEyeIris&&u.annotations.leftEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,p=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris&&u.annotations.rightEyeIris[0]){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,p=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((a=u.rotation)==null?void 0:a.angle)){r.strokeStyle="pink";let d=u.box[0]+u.box[2]/2-u.box[3]*mc(u.rotation.angle.yaw)/90,p=u.box[1]+u.box[3]/2+u.box[2]*mc(u.rotation.angle.pitch)/90,h=new Path2D(`
|
|
M ${u.box[0]+u.box[2]/2} ${u.box[1]}
|
|
C
|
|
${d} ${u.box[1]},
|
|
${d} ${u.box[1]+u.box[3]},
|
|
${u.box[0]+u.box[2]/2} ${u.box[1]+u.box[3]}
|
|
`),f=new Path2D(`
|
|
M ${u.box[0]} ${u.box[1]+u.box[3]/2}
|
|
C
|
|
${u.box[0]} ${p},
|
|
${u.box[0]+u.box[2]} ${p},
|
|
${u.box[0]+u.box[2]} ${u.box[1]+u.box[3]/2}
|
|
`);r.stroke(f),r.stroke(h)}if(s.drawGaze&&((i=(o=u.rotation)==null?void 0:o.gaze)==null?void 0:i.strength)&&((c=(l=u.rotation)==null?void 0:l.gaze)==null?void 0:c.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.fillStyle="pink";let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];uT(r,[u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]],[d[0],d[1]],4);let p=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];uT(r,[u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]],[p[0],p[1]],4)}}}}}async function Ob(e,t,n){var a;let s=$n(da,n);if(!t||!e)return;let r=El(e);r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&(xp(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints&&t[o].keypoints)for(let i=0;i<t[o].keypoints.length;i++)r.fillStyle=s.useDepth&&t[o].keypoints[i].position[2]?`rgba(${127.5+2*(t[o].keypoints[i].position[2]||0)}, ${127.5-2*(t[o].keypoints[i].position[2]||0)}, 255, 0.5)`:s.color,_b(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s);if(s.drawLabels&&t[o].keypoints){r.font=s.font;for(let i of t[o].keypoints)r.fillStyle=s.useDepth&&i.position[2]?`rgba(${127.5+2*i.position[2]}, ${127.5-2*i.position[2]}, 255, 0.5)`:s.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4)}if(s.drawPolygons&&t[o].keypoints&&t[o].annotations)for(let i of Object.values(t[o].annotations))for(let l of i)Uge(r,l,s)}}async function Mb(e,t,n){let s=$n(da,n);if(!t||!e)return;let r=El(e);r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,xp(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*(o[2]||0)}, ${127.5-2*(o[2]||0)}, 255, 0.5)`:s.color,_b(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{!i||i.length===0||!i[0]||(r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4))};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++)r.beginPath(),r.strokeStyle=s.useDepth?`rgba(${127.5+2*i[l][2]}, ${127.5-2*i[l][2]}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}async function zb(e,t,n){let s=$n(da,n);if(!t||!e)return;let r=El(e);r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,xp(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}async function cT(e,t,n){let s=$n(da,n);if(!t||!e)return;let r=El(e);r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,xp(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}async function dT(e,t){if(!e||!t)return;El(t).drawImage(e,0,0)}async function pT(e,t,n){if(!t||!t.performance||!t||!e)return null;let s=Ae(),r=$n(da,n),a=Promise.all([Fb(e,t.face,r),Ob(e,t.body,r),Mb(e,t.hand,r),zb(e,t.object,r),Pb(e,t.gesture,r)]);return t.performance.draw=Math.trunc(Ae()-s),a}var Gge=e=>{let t=(d,p)=>Math.atan2(d[1]-p[1],d[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],c=Math.sqrt(l[0]**2+l[1]**2);return c=Math.min(c,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:c}},hT=(e,t)=>{let n=g=>{let A=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=A,g[1]/=A,g[2]/=A,g},s=(g,A)=>{let y=g[0]-A[0],x=g[1]-A[1],b=g[2]-A[2];return[y,x,b]},r=(g,A)=>{let y=g[1]*A[2]-g[2]*A[1],x=g[2]*A[0]-g[0]*A[2],b=g[0]*A[1]-g[1]*A[0];return[y,x,b]},a=g=>{let[A,y,x,b,w,k,S,E,P]=g,F,R,_;return b<1?b>-1?(_=Math.asin(b),R=Math.atan2(-S,A),F=Math.atan2(-k,w)):(_=-Math.PI/2,R=-Math.atan2(E,P),F=0):(_=Math.PI/2,R=Math.atan2(E,P),F=0),isNaN(F)&&(F=0),isNaN(R)&&(R=0),isNaN(_)&&(_=0),{pitch:2*-F,yaw:2*-R,roll:2*-_}},o=g=>{let A=(x,b,w,k)=>Math.atan2(k-b,w-x);return{pitch:A(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:A(g[33][0],g[33][2],g[263][0],g[263][2]),roll:A(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,c=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),u=n(s(c[1],c[0])),d=n(s(c[3],c[2])),p=n(r(d,u));d=r(u,p);let h=[d[0],d[1],d[2],u[0],u[1],u[2],p[0],p[1],p[2]],f=a(h),m=i.length===478?Gge(e):{bearing:0,strength:0};return{angle:f,matrix:h,gaze:m}};var Lb=async(e,t)=>{var p,h,f,m;let n,s,r,a,o,i,l,c,u=[];e.state="run:face",n=Ae();let d=await d8(t,e.config);if(e.performance.face=Math.trunc(Ae()-n),!t.shape||t.shape.length!==4)return[];if(!d)return[];for(let g=0;g<d.length;g++){if(e.analyze("Get Face"),!d[g].tensor||d[g].tensor.isDisposedInternal){ae("Face object is disposed:",d[g].tensor);continue}let A=hT(d[g],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?o=e.config.face.emotion.enabled?Jx(d[g].tensor||Gt([]),e.config,g,d.length):null:(e.state="run:emotion",n=Ae(),o=e.config.face.emotion.enabled?await Jx(d[g].tensor||Gt([]),e.config,g,d.length):null,e.performance.emotion=Math.trunc(Ae()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=e.config.face.antispoof.enabled?Nx(d[g].tensor||Gt([]),e.config,g,d.length):null:(e.state="run:antispoof",n=Ae(),l=e.config.face.antispoof.enabled?await Nx(d[g].tensor||Gt([]),e.config,g,d.length):null,e.performance.antispoof=Math.trunc(Ae()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Description:"),e.config.async?c=e.config.face.description.enabled?rb(d[g].tensor||Gt([]),e.config,g,d.length):null:(e.state="run:description",n=Ae(),c=e.config.face.description.enabled?await rb(d[g].tensor||Gt([]),e.config,g,d.length):null,e.performance.embedding=Math.trunc(Ae()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,c,r,l]=await Promise.all([s,a,o,i,c,r,l])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((h=(p=d[g])==null?void 0:p.annotations)==null?void 0:h.leftEyeIris)&&((m=(f=d[g])==null?void 0:f.annotations)==null?void 0:m.rightEyeIris)&&(delete d[g].annotations.leftEyeIris,delete d[g].annotations.rightEyeIris);let y=d[g].annotations&&d[g].annotations.leftEyeIris&&d[g].annotations.leftEyeIris[0]&&d[g].annotations.rightEyeIris&&d[g].annotations.rightEyeIris[0]&&d[g].annotations.leftEyeIris.length>0&&d[g].annotations.rightEyeIris.length>0&&d[g].annotations.leftEyeIris[0]!==null&&d[g].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(d[g].annotations.leftEyeIris[3][0]-d[g].annotations.leftEyeIris[1][0]),Math.abs(d[g].annotations.rightEyeIris[4][1]-d[g].annotations.rightEyeIris[2][1]))/t.shape[2]:0,x=e.config.face.detector.return?pt(d[g].tensor):null;Q(d[g].tensor),d[g].tensor&&delete d[g].tensor,u.push({...d[g],id:g,age:c==null?void 0:c.age,gender:c==null?void 0:c.gender,genderScore:c==null?void 0:c.genderScore,embedding:c==null?void 0:c.descriptor,emotion:o,real:l,iris:y!==0?Math.trunc(500/y/11.7)/100:0,rotation:A,tensor:x}),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),u};var fT=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]<a.position[1]&&r.position[1]<a.position[1]?t.push({body:n,gesture:"i give up"}):a&&s&&s.position[1]<a.position[1]?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position[1]<a.position[1]&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},mT=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},gT=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.leftEyeIris[0]||!e[n].annotations.rightEyeIris||!e[n].annotations.rightEyeIris[0])continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),c=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(c=!0,t.push({iris:n,gesture:"facing center"}));let d=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],p=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(p>.06||d>.06)&&(c=!1),p>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||h<.01||f>.022||h>.022)&&(c=!1),(f<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),c&&t.push({iris:n,gesture:"looking center"})}return t},AT=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>o.position[2]<i.position[2]?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=F8(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var Pe={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function yT(e,t){var o,i,l,c,u,d,p,h,f,m,g,A,y,x,b,w,k,S,E,P,F,R,_,T,M,U,H;let n=Ae();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let s=Date.now()-e.timestamp,r=s<1e3?8-Math.log(s+1):1;if(Pe.canvas=e.canvas,!Pe.body||e.body.length!==Pe.body.length)Pe.body=JSON.parse(JSON.stringify(e.body));else for(let z=0;z<e.body.length;z++){let X=e.body[z].box.map((J,te)=>((r-1)*Pe.body[z].box[te]+J)/r),ee=e.body[z].boxRaw.map((J,te)=>((r-1)*Pe.body[z].boxRaw[te]+J)/r),Y=e.body[z].keypoints.map((J,te)=>({score:J.score,part:J.part,position:[Pe.body[z].keypoints[te]?((r-1)*Pe.body[z].keypoints[te].position[0]+J.position[0])/r:J.position[0],Pe.body[z].keypoints[te]?((r-1)*Pe.body[z].keypoints[te].position[1]+J.position[1])/r:J.position[1]],positionRaw:[Pe.body[z].keypoints[te]?((r-1)*Pe.body[z].keypoints[te].positionRaw[0]+J.positionRaw[0])/r:J.position[0],Pe.body[z].keypoints[te]?((r-1)*Pe.body[z].keypoints[te].positionRaw[1]+J.positionRaw[1])/r:J.position[1]]})),se={},ne={connected:{}};((i=(o=t.body)==null?void 0:o.modelPath)==null?void 0:i.includes("efficientpose"))?ne=jx:((c=(l=t.body)==null?void 0:l.modelPath)==null?void 0:c.includes("blazepose"))?ne=zx:((d=(u=t.body)==null?void 0:u.modelPath)==null?void 0:d.includes("movenet"))&&(ne=yb);for(let[J,te]of Object.entries(ne.connected)){let ue=[];for(let ce=0;ce<te.length-1;ce++){let xe=Y.find(Ce=>Ce.part===te[ce]),we=Y.find(Ce=>Ce.part===te[ce+1]);xe&&we&&xe.score>(t.body.minConfidence||0)&&we.score>(t.body.minConfidence||0)&&ue.push([xe.position,we.position])}se[J]=ue}Pe.body[z]={...e.body[z],box:X,boxRaw:ee,keypoints:Y,annotations:se}}if(!Pe.hand||e.hand.length!==Pe.hand.length)Pe.hand=JSON.parse(JSON.stringify(e.hand));else for(let z=0;z<e.hand.length;z++){let X=e.hand[z].box.map((ne,J)=>((r-1)*Pe.hand[z].box[J]+ne)/r),ee=e.hand[z].boxRaw.map((ne,J)=>((r-1)*Pe.hand[z].boxRaw[J]+ne)/r);Pe.hand[z].keypoints.length!==e.hand[z].keypoints.length&&(Pe.hand[z].keypoints=e.hand[z].keypoints);let Y=e.hand[z].keypoints&&e.hand[z].keypoints.length>0?e.hand[z].keypoints.map((ne,J)=>ne.map((te,ue)=>((r-1)*(Pe.hand[z].keypoints[J][ue]||1)+(te||0))/r)):[],se={};if(Object.keys(Pe.hand[z].annotations).length!==Object.keys(e.hand[z].annotations).length)Pe.hand[z].annotations=e.hand[z].annotations,se=Pe.hand[z].annotations;else if(e.hand[z].annotations)for(let ne of Object.keys(e.hand[z].annotations))se[ne]=e.hand[z].annotations[ne]&&e.hand[z].annotations[ne][0]?e.hand[z].annotations[ne].map((J,te)=>J.map((ue,ce)=>((r-1)*Pe.hand[z].annotations[ne][te][ce]+ue)/r)):null;Pe.hand[z]={...e.hand[z],box:X,boxRaw:ee,keypoints:Y,annotations:se}}if(!Pe.face||e.face.length!==Pe.face.length)Pe.face=JSON.parse(JSON.stringify(e.face));else for(let z=0;z<e.face.length;z++){let X=e.face[z].box.map((se,ne)=>((r-1)*Pe.face[z].box[ne]+se)/r),ee=e.face[z].boxRaw.map((se,ne)=>((r-1)*Pe.face[z].boxRaw[ne]+se)/r),Y={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};Y.matrix=(p=e.face[z].rotation)==null?void 0:p.matrix,Y.angle={roll:((r-1)*(((f=(h=Pe.face[z].rotation)==null?void 0:h.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[z].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/r,yaw:((r-1)*(((y=(A=Pe.face[z].rotation)==null?void 0:A.angle)==null?void 0:y.yaw)||0)+(((b=(x=e.face[z].rotation)==null?void 0:x.angle)==null?void 0:b.yaw)||0))/r,pitch:((r-1)*(((k=(w=Pe.face[z].rotation)==null?void 0:w.angle)==null?void 0:k.pitch)||0)+(((E=(S=e.face[z].rotation)==null?void 0:S.angle)==null?void 0:E.pitch)||0))/r},Y.gaze={bearing:((r-1)*(((F=(P=Pe.face[z].rotation)==null?void 0:P.gaze)==null?void 0:F.bearing)||0)+(((_=(R=e.face[z].rotation)==null?void 0:R.gaze)==null?void 0:_.bearing)||0))/r,strength:((r-1)*(((M=(T=Pe.face[z].rotation)==null?void 0:T.gaze)==null?void 0:M.strength)||0)+(((H=(U=e.face[z].rotation)==null?void 0:U.gaze)==null?void 0:H.strength)||0))/r},Pe.face[z]={...e.face[z],rotation:Y,box:X,boxRaw:ee}}if(!Pe.object||e.object.length!==Pe.object.length)Pe.object=JSON.parse(JSON.stringify(e.object));else for(let z=0;z<e.object.length;z++){let X=e.object[z].box.map((Y,se)=>((r-1)*Pe.object[z].box[se]+Y)/r),ee=e.object[z].boxRaw.map((Y,se)=>((r-1)*Pe.object[z].boxRaw[se]+Y)/r);Pe.object[z]={...e.object[z],box:X,boxRaw:ee}}if(e.persons){let z=e.persons;if(!Pe.persons||z.length!==Pe.persons.length)Pe.persons=JSON.parse(JSON.stringify(z));else for(let X=0;X<z.length;X++)Pe.persons[X].box=z[X].box.map((ee,Y)=>((r-1)*Pe.persons[X].box[Y]+ee)/r)}e.gesture&&(Pe.gesture=e.gesture);let a=Ae();return e.performance&&(Pe.performance={...e.performance,interpolate:Math.round(a-n)}),Pe}function c0(e,t,n={order:2}){let s=0;for(let r=0;r<e.length;r++){let a=n.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);s+=n.order===2?a*a:a**n.order}return s}function xT(e,t,n={order:2}){let s=c0(e,t,n),r=n.order===2?Math.sqrt(s):s**(1/n.order);return Math.max(0,100-r)/100}function bT(e,t,n={order:2,threshold:0}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let a=0;a<t.length;a++){let o=c0(e,t[a],{order:n.order});if(o<s&&(s=o,r=a),s<n.threshold)break}return s=n.order===2?Math.sqrt(s):s**(1/n.order),{index:r,distance:s,similarity:Math.max(0,100-s)/100}}function vT(e,t,n,s,r){var i,l,c,u,d,p,h,f,m,g,A,y,x,b,w,k;let a=0,o=[];for(let S of e){let E={id:a++,face:S,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let M of t)S.box[0]>M.box[0]&&S.box[0]<M.box[0]+M.box[2]&&S.box[1]+S.box[3]>M.box[1]&&S.box[1]+S.box[3]<M.box[1]+M.box[3]&&(E.body=M);if(E.body)for(let M of n)M.box[0]+M.box[2]>E.body.box[0]&&M.box[0]+M.box[2]<E.body.box[0]+E.body.box[2]&&M.box[1]+M.box[3]>E.body.box[1]&&M.box[1]+M.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.left=M),M.box[0]<E.body.box[0]+E.body.box[2]&&M.box[0]>E.body.box[0]&&M.box[1]+M.box[3]>E.body.box[1]&&M.box[1]+M.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.right=M);for(let M of s)M.face!==void 0&&M.face===S.id?(i=E.gestures)==null||i.push(M):M.iris!==void 0&&M.iris===S.id?(l=E.gestures)==null||l.push(M):M.body!==void 0&&M.body===((c=E.body)==null?void 0:c.id)?(u=E.gestures)==null||u.push(M):M.hand!==void 0&&M.hand===((p=(d=E.hands)==null?void 0:d.left)==null?void 0:p.id)?(h=E.gestures)==null||h.push(M):M.hand!==void 0&&M.hand===((m=(f=E.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=E.gestures)==null||g.push(M));let P=[],F=[],R=M=>{M&&M.length===4&&(P.push(M[0],M[0]+M[2]),F.push(M[1],M[1]+M[3]))};R((A=E.face)==null?void 0:A.box),R((y=E.body)==null?void 0:y.box),R((b=(x=E.hands)==null?void 0:x.left)==null?void 0:b.box),R((k=(w=E.hands)==null?void 0:w.right)==null?void 0:k.box);let _=Math.min(...P),T=Math.min(...F);E.box=[_,T,Math.max(...P)-_,Math.max(...F)-T],r&&r[1]&&r[2]&&(E.boxRaw=[E.box[0]/r[2],E.box[1]/r[1],E.box[2]/r[2],E.box[3]/r[1]]),o.push(E)}return o}var d0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,p0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;async function Hge(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(d0);break;case"body":case"full":n=await t(p0);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function jge(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+d0;break;case"full":case"body":n="data:image/jpeg;base64,"+p0;break;default:n=null}let s;typeof Image!="undefined"?s=new Image:be.Image&&(s=new be.Image),s.onload=async()=>{let r=Kn(s.naturalWidth,s.naturalHeight);if(!r)ae("Warmup: Canvas not found"),t({});else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(null)})}async function qge(e){let t=r=>Buffer.from(r,"base64"),n;if(e.config.warmup==="face"&&(n=t(d0)),(e.config.warmup==="body"||e.config.warmup==="full")&&(n=t(p0)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&ae("Warmup tfjs-node not loaded");return s}async function wT(e,t){let n=Ae();if(e.state="warmup",t&&(e.config=$n(e.config,t)),!e.config.warmup||e.config.warmup==="none")return{error:"null"};let s;return new Promise(async r=>{typeof createImageBitmap=="function"?s=await Hge(e):typeof Image!="undefined"||be.Canvas!==void 0?s=await jge(e):s=await qge(e);let a=Ae();e.config.debug&&ae("Warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),r(s)})}var gc,bp,vp,h0,Xge=class{constructor(t){pe(this,"version");pe(this,"config");pe(this,"result");pe(this,"state");pe(this,"process");pe(this,"tf");pe(this,"env");pe(this,"draw");pe(this,"models");pe(this,"events");pe(this,"faceTriangulation");pe(this,"faceUVMap");pe(this,"performance");Rc(this,gc,void 0);Rc(this,bp,void 0);Rc(this,vp,void 0);pe(this,"gl");pe(this,"analyze",(...t)=>{if(!Ec(this,bp))return;let n=this.tf.engine().state.numTensors,s=Ec(this,gc);$c(this,gc,n);let r=n-s;r!==0&&ae(...t,r)});Rc(this,h0,t=>{if(!Ec(this,vp))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof Ye))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});pe(this,"similarity",xT);pe(this,"distance",c0);pe(this,"match",bT);pe(this,"emit",t=>{var n;this.events&&this.events.dispatchEvent&&((n=this.events)==null||n.dispatchEvent(new Event(t)))});this.env=be,Jo.wasmPath=up.includes("-")?"https://vladmandic.github.io/tfjs/dist/":`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${up}/dist/`,Jo.modelBasePath=be.browser?"../models/":"file://models/",Jo.backend=be.browser?"humangl":"tensorflow",this.version=Cx,Object.defineProperty(this,"version",{value:Cx}),this.config=JSON.parse(JSON.stringify(Jo)),Object.seal(this.config),t&&(this.config=$n(this.config,t)),this.tf=wl,this.state="idle",$c(this,gc,0),$c(this,bp,!1),$c(this,vp,!1),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new l0,this.draw={options:da,canvas:(n,s)=>dT(n,s),face:(n,s,r)=>Fb(n,s,r),body:(n,s,r)=>Ob(n,s,r),hand:(n,s,r)=>Mb(n,s,r),gesture:(n,s,r)=>Pb(n,s,r),object:(n,s,r)=>zb(n,s,r),person:(n,s,r)=>cT(n,s,r),all:(n,s,r)=>pT(n,s,r)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.process={tensor:null,canvas:null},this.faceTriangulation=h8,this.faceUVMap=f8,this.gl=zt,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(Jo)),this.config.backend=t}validate(t){return Mg(Jo,t||this.config)}now(){return Ae()}image(t,n=!0){return uc(t,this.config,n)}async segmentation(t,n){return rT(t,n,this.config)}enhance(t){return sb(t)}async init(){await u0(this,!0),await this.tf.ready()}async load(t){this.state="load";let n=Ae(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=$n(this.config,t)),be.initial&&(this.config.debug&&ae(`version: ${this.version}`),this.config.debug&&ae(`tfjs version: ${this.tf.version_core}`),await u0(this)||ae("error: backend check failed"),await Wh(),this.env.browser&&(this.config.debug&&ae("configuration:",this.config),this.config.debug&&ae("tf flags:",this.tf.ENV.flags))),await aT(this),be.initial&&this.config.debug&&ae("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),be.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await oT(this),this.emit("load"));let a=Math.trunc(Ae()-n);a>(this.performance.load||0)&&(this.performance.load=a)}next(t=this.result){return yT(t,this.config)}async warmup(t){return wT(this,t)}async detect(t,n){return this.state="detect",new Promise(async s=>{var A,y,x,b,w,k,S,E,P,F,R,_,T,M,U,H,z,X,ee,Y,se,ne;this.state="config";let r,a;this.config=$n(this.config,n),this.state="check";let o=Ec(this,h0).call(this,t);o&&(ae(o,t),s({error:o}));let i=Ae();await u0(this),await this.load(),r=Ae(),this.state="image";let l=uc(t,this.config);if(this.process=l,this.performance.image=Math.trunc(Ae()-r),this.analyze("Get Image:"),!l.tensor){this.config.debug&&ae("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}this.emit("image"),r=Ae(),this.config.skipFrame=await $6(this.config,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(Ae()-r),this.analyze("Check Changed:");let c=[],u=[],d=[],p=[];this.state="detect:face",this.config.async?(c=this.config.face.enabled?Lb(this,l.tensor):[],this.performance.face&&delete this.performance.face):(r=Ae(),c=this.config.face.enabled?await Lb(this,l.tensor):[],a=Math.trunc(Ae()-r),a>0&&(this.performance.face=a)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(c=await c),this.analyze("Start Body:"),this.state="detect:body";let h=this.config.body.maxDetected===-1?$n(this.config,{body:{maxDetected:this.config.face.enabled?1*c.length:1}}):this.config;this.config.async?(((A=this.config.body.modelPath)==null?void 0:A.includes("posenet"))?u=this.config.body.enabled?Eb(l.tensor,h):[]:((y=this.config.body.modelPath)==null?void 0:y.includes("blazepose"))?u=this.config.body.enabled?Wx(l.tensor,h):[]:((x=this.config.body.modelPath)==null?void 0:x.includes("efficientpose"))?u=this.config.body.enabled?Kx(l.tensor,h):[]:((b=this.config.body.modelPath)==null?void 0:b.includes("movenet"))&&(u=this.config.body.enabled?vb(l.tensor,h):[]),this.performance.body&&delete this.performance.body):(r=Ae(),((w=this.config.body.modelPath)==null?void 0:w.includes("posenet"))?u=this.config.body.enabled?await Eb(l.tensor,h):[]:((k=this.config.body.modelPath)==null?void 0:k.includes("blazepose"))?u=this.config.body.enabled?await Wx(l.tensor,h):[]:((S=this.config.body.modelPath)==null?void 0:S.includes("efficientpose"))?u=this.config.body.enabled?await Kx(l.tensor,h):[]:((E=this.config.body.modelPath)==null?void 0:E.includes("movenet"))&&(u=this.config.body.enabled?await vb(l.tensor,h):[]),a=Math.trunc(Ae()-r),a>0&&(this.performance.body=a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let f=this.config.hand.maxDetected===-1?$n(this.config,{hand:{maxDetected:this.config.face.enabled?2*c.length:1}}):this.config;this.config.async?(((F=(P=this.config.hand.detector)==null?void 0:P.modelPath)==null?void 0:F.includes("handdetect"))?d=this.config.hand.enabled?ub(l.tensor,f):[]:((_=(R=this.config.hand.detector)==null?void 0:R.modelPath)==null?void 0:_.includes("handtrack"))&&(d=this.config.hand.enabled?fb(l.tensor,f):[]),this.performance.hand&&delete this.performance.hand):(r=Ae(),((M=(T=this.config.hand.detector)==null?void 0:T.modelPath)==null?void 0:M.includes("handdetect"))?d=this.config.hand.enabled?await ub(l.tensor,f):[]:((H=(U=this.config.hand.detector)==null?void 0:U.modelPath)==null?void 0:H.includes("handtrack"))&&(d=this.config.hand.enabled?await fb(l.tensor,f):[]),a=Math.trunc(Ae()-r),a>0&&(this.performance.hand=a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?(((z=this.config.object.modelPath)==null?void 0:z.includes("nanodet"))?p=this.config.object.enabled?kb(l.tensor,this.config):[]:((X=this.config.object.modelPath)==null?void 0:X.includes("centernet"))&&(p=this.config.object.enabled?Ux(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=Ae(),((ee=this.config.object.modelPath)==null?void 0:ee.includes("nanodet"))?p=this.config.object.enabled?await kb(l.tensor,this.config):[]:((Y=this.config.object.modelPath)==null?void 0:Y.includes("centernet"))&&(p=this.config.object.enabled?await Ux(l.tensor,this.config):[]),a=Math.trunc(Ae()-r),a>0&&(this.performance.object=a)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([c,u,d,p]=await Promise.all([c,u,d,p])),this.state="detect:gesture";let m=[];this.config.gesture.enabled&&(r=Ae(),m=[...mT(c),...fT(u),...AT(d),...gT(c)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(Ae()-r)),this.performance.total=Math.trunc(Ae()-i);let g=((ne=(se=this.process)==null?void 0:se.tensor)==null?void 0:ne.shape)||[];this.result={face:c,body:u,hand:d,gesture:m,object:p,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),get persons(){return vT(c,u,d,m,g)}},Q(l.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};gc=new WeakMap,bp=new WeakMap,vp=new WeakMap,h0=new WeakMap;export{Sx as Env,Xge as Human,l0 as Models,Xge as default,Jo as defaults,be as env};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use backend file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=human.custom.esm.js.map
|