human/dist/tfjs.esm.js

4342 lines
1.0 MiB

/*
Human library
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var $V=Object.create,jh=Object.defineProperty,RV=Object.getPrototypeOf,FV=Object.prototype.hasOwnProperty,OV=Object.getOwnPropertyNames,PV=Object.getOwnPropertyDescriptor;var MV=r=>jh(r,"__esModule",{value:!0});var Ht=(r,e)=>()=>(e||r((e={exports:{}}).exports,e),e.exports),Ge=(r,e)=>{for(var t in e)jh(r,t,{get:e[t],enumerable:!0})},LV=(r,e,t)=>{if(e&&typeof e=="object"||typeof e=="function")for(let o of OV(e))!FV.call(r,o)&&o!=="default"&&jh(r,o,{get:()=>e[o],enumerable:!(t=PV(e,o))||t.enumerable});return r},ac=r=>LV(MV(jh(r!=null?$V(RV(r)):{},"default",r&&r.__esModule&&"default"in r?{get:()=>r.default,enumerable:!0}:{value:r,enumerable:!0})),r);var BS=Ht(()=>{});var _T=Ht((wT,Xw)=>{(function(r,e,t){function o(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function n(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new o(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&n(c,u),p.state=function(){return n(u,{})}),p}function a(){var i=4022871197,l=function(u){u=u.toString();for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(wT,typeof Xw=="object"&&Xw,typeof define=="function"&&define)});var vT=Ht((kT,Yw)=>{(function(r,e,t){function o(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(kT,typeof Yw=="object"&&Yw,typeof define=="function"&&define)});var IT=Ht((CT,Zw)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(CT,typeof Zw=="object"&&Zw,typeof define=="function"&&define)});var ST=Ht((NT,Jw)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function n(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(NT,typeof Jw=="object"&&Jw,typeof define=="function"&&define)});var AT=Ht((TT,Qw)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function n(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(TT,typeof Qw=="object"&&Qw,typeof define=="function"&&define)});var DT=Ht((ET,e_)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(ET,typeof e_=="object"&&e_,typeof define=="function"&&define)});var t_=Ht(()=>{});var $T=Ht((Zbe,mg)=>{(function(r,e){var t=this,o=256,n=6,s=52,a="random",i=e.pow(o,n),l=e.pow(2,s),u=l*2,c=o-1,p;function m(w,_,k){var D=[];_=_==!0?{entropy:!0}:_||{};var T=g(h(_.entropy?[w,b(r)]:w==null?x():w,3),D),R=new f(D),O=function(){for(var M=R.g(n),G=i,j=0;M<l;)M=(M+j)*o,G*=o,j=R.g(1);for(;M>=u;)M/=2,G/=2,j>>>=1;return(M+j)/G};return O.int32=function(){return R.g(4)|0},O.quick=function(){return R.g(4)/4294967296},O.double=O,g(b(R.S),r),(_.pass||k||function(M,G,j,U){return U&&(U.S&&d(U,R),M.state=function(){return d(R,{})}),j?(e[a]=M,G):M})(O,T,"global"in _?_.global:this==e,_.state)}e["seed"+a]=m;function f(w){var _,k=w.length,D=this,T=0,R=D.i=D.j=0,O=D.S=[];for(k||(w=[k++]);T<o;)O[T]=T++;for(T=0;T<o;T++)O[T]=O[R=c&R+w[T%k]+(_=O[T])],O[R]=_;(D.g=function(M){for(var G,j=0,U=D.i,H=D.j,q=D.S;M--;)G=q[U=c&U+1],j=j*o+q[c&(q[U]=q[H=c&H+G])+(q[H]=G)];return D.i=U,D.j=H,j})(o)}function d(w,_){return _.i=w.i,_.j=w.j,_.S=w.S.slice(),_}function h(w,_){var k=[],D=typeof w,T;if(_&&D=="object")for(T in w)try{k.push(h(w[T],_-1))}catch(R){}return k.length?k:D=="string"?w:w+"\0"}function g(w,_){for(var k=w+"",D,T=0;T<k.length;)_[c&T]=c&(D^=_[c&T]*19)+k.charCodeAt(T++);return b(_)}function x(){try{var w;return p&&(w=p.randomBytes)?w=w(o):(w=new Uint8Array(o),(t.crypto||t.msCrypto).getRandomValues(w)),b(w)}catch(D){var _=t.navigator,k=_&&_.plugins;return[+new Date,t,k,t.screen,b(r)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(e.random(),r),typeof mg=="object"&&mg.exports){mg.exports=m;try{p=t_()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)});var r_=Ht((Jbe,RT)=>{var rU=_T(),oU=vT(),nU=IT(),sU=ST(),iU=AT(),aU=DT(),iu=$T();iu.alea=rU;iu.xor128=oU;iu.xorwow=nU;iu.xorshift7=sU;iu.xor4096=iU;iu.tychei=aU;RT.exports=iu});var Ap=Ht(()=>{});var JP=Ht(()=>{});var QP=Ht(()=>{});var eM=Ht((bx,dC)=>{var hC=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};function t(){return J.buffer!=Ue&&nr(J.buffer),ut}function o(){return J.buffer!=Ue&&nr(J.buffer),mt}function n(){return J.buffer!=Ue&&nr(J.buffer),Xt}function s(){return J.buffer!=Ue&&nr(J.buffer),io}function a(){return J.buffer!=Ue&&nr(J.buffer),jo}var i=typeof e!="undefined"?e:{},l,u;i.ready=new Promise(function(I,$){l=I,u=$});var c={},p;for(p in i)i.hasOwnProperty(p)&&(c[p]=i[p]);var m=[],f="./this.program",d=function(I,$){throw $},h=!1,g=!1,x=!1,b=!1;h=typeof window=="object",g=typeof importScripts=="function",x=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!h&&!x&&!g;var w=i.ENVIRONMENT_IS_PTHREAD||!1;w&&(Ue=i.buffer);var _="";function k(I){return i.locateFile?i.locateFile(I,_):_+I}var D,T,R,O,M,G;if(x){g?_=Ap().dirname(_)+"/":_=__dirname+"/",D=function($,B){return M||(M=require("fs")),G||(G=Ap()),$=G.normalize($),M.readFileSync($,B?null:"utf8")},R=function($){var B=D($,!0);return B.buffer||(B=new Uint8Array(B)),fe(B.buffer),B},process.argv.length>1&&(f=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof fm))throw I}),process.on("unhandledRejection",hi),d=function(I){process.exit(I)},i.inspect=function(){return"[Emscripten Module object]"};var j;try{j=JP()}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}global.Worker=j.Worker}else b?(typeof read!="undefined"&&(D=function($){return read($)}),R=function($){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer($)):(B=read($,"binary"),fe(typeof B=="object"),B)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(d=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||g)&&(g?_=self.location.href:typeof document!="undefined"&&document.currentScript&&(_=document.currentScript.src),typeof r!="undefined"&&r&&(_=r),_.indexOf("blob:")!==0?_=_.substr(0,_.lastIndexOf("/")+1):_="",x?(D=function($,B){return M||(M=require("fs")),G||(G=Ap()),$=G.normalize($),M.readFileSync($,B?null:"utf8")},R=function($){var B=D($,!0);return B.buffer||(B=new Uint8Array(B)),fe(B.buffer),B}):(D=function(I){var $=new XMLHttpRequest;return $.open("GET",I,!1),$.send(null),$.responseText},g&&(R=function(I){var $=new XMLHttpRequest;return $.open("GET",I,!1),$.responseType="arraybuffer",$.send(null),new Uint8Array($.response)}),T=function(I,$,B){var K=new XMLHttpRequest;K.open("GET",I,!0),K.responseType="arraybuffer",K.onload=function(){if(K.status==200||K.status==0&&K.response){$(K.response);return}B()},K.onerror=B,K.send(null)}),O=function(I){document.title=I});x&&typeof performance=="undefined"&&(global.performance=QP().performance);var U=i.print||console.log.bind(console),H=i.printErr||console.warn.bind(console);for(p in c)c.hasOwnProperty(p)&&(i[p]=c[p]);c=null,i.arguments&&(m=i.arguments),i.thisProgram&&(f=i.thisProgram),i.quit&&(d=i.quit);var q=Atomics.load,X=Atomics.store,oe=Atomics.compareExchange,Y;i.wasmBinary&&(Y=i.wasmBinary);var re=i.noExitRuntime||!0;typeof WebAssembly!="object"&&hi("no native wasm support detected");var J,ie,ue=!1,ae;function fe(I,$){I||hi("Assertion failed: "+$)}function de(I){var $=i["_"+I];return fe($,"Cannot call unknown function "+I+", make sure it is exported"),$}function xe(I,$,B,K,be){var he={string:function(Ur){var ic=0;if(Ur!=null&&Ur!==0){var vI=(Ur.length<<2)+1;ic=oc(vI),qe(Ur,ic,vI)}return ic},array:function(Ur){var ic=oc(Ur.length);return St(Ur,ic),ic}};function ye(Ur){return $==="string"?Ne(Ur):$==="boolean"?Boolean(Ur):Ur}var Te=de(I),wt=[],_r=0;if(K)for(var dr=0;dr<K.length;dr++){var Ba=he[B[dr]];Ba?(_r===0&&(_r=mm()),wt[dr]=Ba(K[dr])):wt[dr]=K[dr]}var sc=Te.apply(null,wt);return sc=ye(sc),_r!==0&&rc(_r),sc}function we(I,$,B,K){B=B||[];var be=B.every(function(ye){return ye==="number"}),he=$!=="string";return he&&be&&!K?de(I):function(){return xe(I,$,B,arguments,K)}}function De(I,$,B){for(var K=$+B,be="";!($>=K);){var he=I[$++];if(!he)return be;if(!(he&128)){be+=String.fromCharCode(he);continue}var ye=I[$++]&63;if((he&224)==192){be+=String.fromCharCode((he&31)<<6|ye);continue}var Te=I[$++]&63;if((he&240)==224?he=(he&15)<<12|ye<<6|Te:he=(he&7)<<18|ye<<12|Te<<6|I[$++]&63,he<65536)be+=String.fromCharCode(he);else{var wt=he-65536;be+=String.fromCharCode(55296|wt>>10,56320|wt&1023)}}return be}function Ne(I,$){return I?De(o(),I,$):""}function ze(I,$,B,K){if(!(K>0))return 0;for(var be=B,he=B+K-1,ye=0;ye<I.length;++ye){var Te=I.charCodeAt(ye);if(Te>=55296&&Te<=57343){var wt=I.charCodeAt(++ye);Te=65536+((Te&1023)<<10)|wt&1023}if(Te<=127){if(B>=he)break;$[B++]=Te}else if(Te<=2047){if(B+1>=he)break;$[B++]=192|Te>>6,$[B++]=128|Te&63}else if(Te<=65535){if(B+2>=he)break;$[B++]=224|Te>>12,$[B++]=128|Te>>6&63,$[B++]=128|Te&63}else{if(B+3>=he)break;$[B++]=240|Te>>18,$[B++]=128|Te>>12&63,$[B++]=128|Te>>6&63,$[B++]=128|Te&63}}return $[B]=0,B-be}function qe(I,$,B){return ze(I,o(),$,B)}function it(I){for(var $=0,B=0;B<I.length;++B){var K=I.charCodeAt(B);K>=55296&&K<=57343&&(K=65536+((K&1023)<<10)|I.charCodeAt(++B)&1023),K<=127?++$:K<=2047?$+=2:K<=65535?$+=3:$+=4}return $}function St(I,$){t().set(I,$)}function Tt(I,$){return I%$>0&&(I+=$-I%$),I}var Ue,ut,mt,Pt,_o,Xt,io,Or,jo;function nr(I){Ue=I,i.HEAP8=ut=new Int8Array(I),i.HEAP16=Pt=new Int16Array(I),i.HEAP32=Xt=new Int32Array(I),i.HEAPU8=mt=new Uint8Array(I),i.HEAPU16=_o=new Uint16Array(I),i.HEAPU32=io=new Uint32Array(I),i.HEAPF32=Or=new Float32Array(I),i.HEAPF64=jo=new Float64Array(I)}var ko=i.INITIAL_MEMORY||16777216;if(w)J=i.wasmMemory,Ue=i.buffer;else if(i.wasmMemory)J=i.wasmMemory;else if(J=new WebAssembly.Memory({initial:ko/65536,maximum:2147483648/65536,shared:!0}),!(J.buffer instanceof SharedArrayBuffer))throw H("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),x&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");J&&(Ue=J.buffer),ko=Ue.byteLength,nr(Ue);var jr,wr=[],ao=[],$o=[],$l=[],Oa=[],bn=!1,fi=!1;w||ao.push({func:function(){Mh()}}),w&&(bn=!0);function nm(){if(!w){if(i.preRun)for(typeof i.preRun=="function"&&(i.preRun=[i.preRun]);i.preRun.length;)Ch(i.preRun.shift());Zu(wr)}}function Xu(){bn=!0,Zu(ao)}function _y(){w||Zu($o)}function vh(){w||(fi=!0)}function lo(){if(!w){if(i.postRun)for(typeof i.postRun=="function"&&(i.postRun=[i.postRun]);i.postRun.length;)ky(i.postRun.shift());Zu(Oa)}}function Ch(I){wr.unshift(I)}function ky(I){Oa.unshift(I)}var di=0,Pa=null,Rl=null;function vy(I){fe(!w,"addRunDependency cannot be used in a pthread worker"),di++,i.monitorRunDependencies&&i.monitorRunDependencies(di)}function Cy(I){if(di--,i.monitorRunDependencies&&i.monitorRunDependencies(di),di==0&&(Pa!==null&&(clearInterval(Pa),Pa=null),Rl)){var $=Rl;Rl=null,$()}}i.preloadedImages={},i.preloadedAudios={};function hi(I){i.onAbort&&i.onAbort(I),w&&console.error("Pthread aborting at "+new Error().stack),I+="",H(I),ue=!0,ae=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.";var $=new WebAssembly.RuntimeError(I);throw u($),$}function Ih(I,$){return String.prototype.startsWith?I.startsWith($):I.indexOf($)===0}var Yu="data:application/octet-stream;base64,";function Nh(I){return Ih(I,Yu)}var Iy="file://";function Sh(I){return Ih(I,Iy)}var uo="tfjs-backend-wasm-threaded-simd.wasm";Nh(uo)||(uo=k(uo));function Ny(I){try{if(I==uo&&Y)return new Uint8Array(Y);if(R)return R(I);throw"both async and sync fetching of the wasm failed"}catch($){hi($)}}function Th(){if(!Y&&(h||g)){if(typeof fetch=="function"&&!Sh(uo))return fetch(uo,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+uo+"'";return I.arrayBuffer()}).catch(function(){return Ny(uo)});if(T)return new Promise(function(I,$){T(uo,function(B){I(new Uint8Array(B))},$)})}return Promise.resolve().then(function(){return Ny(uo)})}function Sy(){var I={a:xb};function $(ye,Te){var wt=ye.exports;if(i.asm=wt,jr=i.asm.F,ie=Te,!w){var _r=Ee.unusedWorkers.length;Ee.unusedWorkers.forEach(function(dr){Ee.loadWasmModuleToWorker(dr,function(){--_r||Cy("wasm-instantiate")})})}}w||vy("wasm-instantiate");function B(ye){$(ye.instance,ye.module)}function K(ye){return Th().then(function(Te){return WebAssembly.instantiate(Te,I)}).then(ye,function(Te){H("failed to asynchronously prepare wasm: "+Te),hi(Te)})}function be(){return!Y&&typeof WebAssembly.instantiateStreaming=="function"&&!Nh(uo)&&!Sh(uo)&&typeof fetch=="function"?fetch(uo,{credentials:"same-origin"}).then(function(ye){var Te=WebAssembly.instantiateStreaming(ye,I);return Te.then(B,function(wt){return H("wasm streaming compile failed: "+wt),H("falling back to ArrayBuffer instantiation"),K(B)})}):K(B)}if(i.instantiateWasm)try{var he=i.instantiateWasm(I,$);return he}catch(ye){return H("Module.instantiateWasm callback failed with error: "+ye),!1}return be().catch(u),{}}var Ah={8991:function(I,$){setTimeout(function(){xI(I,$)},0)}};function Ty(){Ee.initRuntime()}function Zu(I){for(;I.length>0;){var $=I.shift();if(typeof $=="function"){$(i);continue}var B=$.func;typeof B=="number"?$.arg===void 0?jr.get(B)():jr.get(B)($.arg):B($.arg===void 0?null:$.arg)}}function Ju(I,$){if(I<=0||I>t().length||I&!0||$<0)return-28;if($==0)return 0;$>=2147483647&&($=Infinity);var B=Atomics.load(n(),nc>>2),K=0;if(B==I){var be=Atomics.compareExchange(n(),nc>>2,B,0);if(be==B&&(--$,K=1,$<=0))return 1}var he=Atomics.notify(n(),I>>2,$);if(he>=0)return he+K;throw"Atomics.notify returned an unexpected value "+he}i._emscripten_futex_wake=Ju;function Ay(I){if(w)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in killThread!";n()[I+12>>2]=0;var $=Ee.pthreads[I];$.worker.terminate(),Ee.freeThreadData($),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf($.worker),1),$.worker.pthread=void 0}function Ey(I){if(w)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cancelThread!";var $=Ee.pthreads[I];$.worker.postMessage({cmd:"cancel"})}function Dy(I){if(w)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cleanupThread!";n()[I+12>>2]=0;var $=Ee.pthreads[I];if($){var B=$.worker;Ee.returnWorkerToPool(B)}}var Ee={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var I=8,$=0;$<I;++$)Ee.allocateUnusedWorker()},initRuntime:function(){for(var I=Ol(228),$=0;$<228/4;++$)s()[I/4+$]=0;n()[I+12>>2]=I;var B=I+152;n()[B>>2]=B;for(var K=Ol(512),$=0;$<128;++$)s()[K/4+$]=0;Atomics.store(s(),I+100>>2,K),Atomics.store(s(),I+40>>2,I),Gh(I,!g,1),gI(I)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Ee.threadExitHandlers.length>0;)Ee.threadExitHandlers.pop()();w&&tc()&&hI()},threadExit:function(I){var $=tc();$&&(Atomics.store(s(),$+4>>2,I),Atomics.store(s(),$+0>>2,1),Atomics.store(s(),$+56>>2,1),Atomics.store(s(),$+60>>2,0),Ee.runExitHandlers(),Ju($+0,2147483647),Gh(0,0,0),w&&postMessage({cmd:"exit"}))},threadCancel:function(){Ee.runExitHandlers();var I=tc();Atomics.store(s(),I+4>>2,-1),Atomics.store(s(),I+0>>2,1),Ju(I+0,2147483647),Gh(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in Ee.pthreads){var $=Ee.pthreads[I];$&&$.worker&&Ee.returnWorkerToPool($.worker)}Ee.pthreads={};for(var B=0;B<Ee.unusedWorkers.length;++B){var K=Ee.unusedWorkers[B];K.terminate()}Ee.unusedWorkers=[];for(var B=0;B<Ee.runningWorkers.length;++B){var K=Ee.runningWorkers[B],$=K.pthread;Ee.freeThreadData($),K.terminate()}Ee.runningWorkers=[]},freeThreadData:function(I){if(!!I){if(I.threadInfoStruct){var $=n()[I.threadInfoStruct+100>>2];n()[I.threadInfoStruct+100>>2]=0,pm($),pm(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&pm(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){Ee.runWithoutMainThreadQueuedCalls(function(){delete Ee.pthreads[I.pthread.threadInfoStruct],Ee.unusedWorkers.push(I),Ee.runningWorkers.splice(Ee.runningWorkers.indexOf(I),1),Ee.freeThreadData(I.pthread),I.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(I){n()[kI>>2]=0;try{I()}finally{n()[kI>>2]=1}},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,$){I.onmessage=function(B){var K=B.data,be=K.cmd;if(I.pthread&&(Ee.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),K.targetThread&&K.targetThread!=tc()){var he=Ee.pthreads[K.targetThread];he?he.worker.postMessage(B.data,K.transferList):console.error('Internal error! Worker sent a message "'+be+'" to target pthread '+K.targetThread+", but that thread no longer exists!"),Ee.currentProxiedOperationCallerThread=void 0;return}if(be==="processQueuedMainThreadWork")$b();else if(be==="spawnThread")Oh(B.data);else if(be==="cleanupThread")Dy(K.thread);else if(be==="killThread")Ay(K.thread);else if(be==="cancelThread")Ey(K.thread);else if(be==="loaded")I.loaded=!0,$&&$(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(be==="print")U("Thread "+K.threadId+": "+K.text);else if(be==="printErr")H("Thread "+K.threadId+": "+K.text);else if(be==="alert")alert("Thread "+K.threadId+": "+K.text);else if(be==="exit"){var ye=I.pthread&&Atomics.load(s(),I.pthread.threadInfoStruct+64>>2);ye&&Ee.returnWorkerToPool(I)}else if(be==="exitProcess")try{DV(K.returnCode)}catch(Te){if(Te instanceof fm)return;throw Te}else be==="cancelDone"?Ee.returnWorkerToPool(I):be==="objectTransfer"?Ee.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?I.postMessage(B.data):H("worker sent an unknown command "+be);Ee.currentProxiedOperationCallerThread=void 0},I.onerror=function(B){H("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},x&&(I.on("message",function(B){I.onmessage({data:B})}),I.on("error",function(B){I.onerror(B)}),I.on("exit",function(B){})),I.postMessage({cmd:"load",urlOrBlob:i.mainScriptUrlOrBlob||r,wasmMemory:J,wasmModule:ie})},allocateUnusedWorker:function(){var I=k("tfjs-backend-wasm-threaded-simd.worker.js");Ee.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return Ee.unusedWorkers.length==0&&(Ee.allocateUnusedWorker(),Ee.loadWasmModuleToWorker(Ee.unusedWorkers[0])),Ee.unusedWorkers.length>0?Ee.unusedWorkers.pop():null},busySpinWait:function(I){for(var $=performance.now()+I;performance.now()<$;);}};function $y(I,$){wI(I,$),rc(I)}i.establishStackSpace=$y;function Ry(){return re}i.getNoExitRuntime=Ry;function Fy(I,$){return jr.get(I)($)}i.invokeEntryPoint=Fy;function Oy(I,$,B,K){hi("Assertion failed: "+Ne(I)+", at: "+[$?Ne($):"unknown filename",B,K?Ne(K):"unknown function"])}function Py(I,$){var B=_main(I,$)}var Fl;x?Fl=function(){var I=process.hrtime();return I[0]*1e3+I[1]/1e6}:w?Fl=function(){return performance.now()-i.__performance_now_clock_drift}:typeof dateNow!="undefined"?Fl=dateNow:Fl=function(){return performance.now()};function My(I){return n()[fI()>>2]=I,I}function Ly(I,$){if(w)return Ma(1,1,I,$)}function zy(I,$){if(I==$)postMessage({cmd:"processQueuedMainThreadWork"});else if(w)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var B=Ee.pthreads[I],K=B&&B.worker;if(!K)return;K.postMessage({cmd:"processThreadQueue"})}return 1}function By(){hi()}function Vy(I,$,B){var K=Hy($,B);return Ah[I].apply(null,K)}function Gy(I,$){}function Wy(I,$,B){if(I<=0||I>t().length||I&!0)return-28;if(h){if(Atomics.load(n(),I>>2)!=$)return-6;for(var be=performance.now(),he=be+B,ye=Atomics.exchange(n(),nc>>2,I);;){if(be=performance.now(),be>he)return ye=Atomics.exchange(n(),nc>>2,0),-73;if(ye=Atomics.exchange(n(),nc>>2,0),ye==0)break;if($b(),Atomics.load(n(),I>>2)!=$)return-6;ye=Atomics.exchange(n(),nc>>2,I)}return 0}else{var K=Atomics.wait(n(),I>>2,$,B);if(K==="timed-out")return-73;if(K==="not-equal")return-6;if(K==="ok")return 0;throw"Atomics.wait returned an unexpected value "+K}}function jy(I,$,B){o().copyWithin(I,$,$+B)}function Uy(){return x?require("os").cpus().length:navigator.hardwareConcurrency}function Ma(I,$){for(var B=arguments.length-2,K=mm(),be=B,he=oc(be*8),ye=he>>3,Te=0;Te<B;Te++){var wt=arguments[2+Te];a()[ye+Te]=wt}var _r=bI(I,be,he,$);return rc(K),_r}var sm=[],im=[];function Hy(I,$){im.length=0;var B;for($>>=2;B=o()[I++];){var K=B<105;K&&$&1&&$++,im.push(K?a()[$++>>1]:n()[$]),++$}return im}function qy(I,$,B){sm.length=$;for(var K=B>>3,be=0;be<$;be++)sm[be]=a()[K+be];var he=I<0,ye=he?Ah[-I-1]:gb[I];return ye.apply(null,sm)}function Ky(){return o().length}function Xy(I){try{return J.grow(I-Ue.byteLength+65535>>>16),nr(J.buffer),1}catch($){}}function Yy(I){var $=Ky();if(I<=$)return!1;var B=2147483648;if(I>B)return!1;for(var K=1;K<=4;K*=2){var be=$*(1+.2/K);be=Math.min(be,I+100663296);var he=Math.min(B,Tt(Math.max(I,be),65536)),ye=Xy(he);if(ye)return!0}return!1}var Ye={inEventHandler:0,removeAllEventListeners:function(){for(var I=Ye.eventHandlers.length-1;I>=0;--I)Ye._removeHandler(I);Ye.eventHandlers=[],Ye.deferredCalls=[]},registerRemoveEventListeners:function(){Ye.removeEventListenersRegistered||($l.push(Ye.removeAllEventListeners),Ye.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,$,B){function K(ye,Te){if(ye.length!=Te.length)return!1;for(var wt in ye)if(ye[wt]!=Te[wt])return!1;return!0}for(var be in Ye.deferredCalls){var he=Ye.deferredCalls[be];if(he.targetFunction==I&&K(he.argsList,B))return}Ye.deferredCalls.push({targetFunction:I,precedence:$,argsList:B}),Ye.deferredCalls.sort(function(ye,Te){return ye.precedence<Te.precedence})},removeDeferredCalls:function(I){for(var $=0;$<Ye.deferredCalls.length;++$)Ye.deferredCalls[$].targetFunction==I&&(Ye.deferredCalls.splice($,1),--$)},canPerformEventHandlerRequests:function(){return Ye.inEventHandler&&Ye.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Ye.canPerformEventHandlerRequests())for(var I=0;I<Ye.deferredCalls.length;++I){var $=Ye.deferredCalls[I];Ye.deferredCalls.splice(I,1),--I,$.targetFunction.apply(null,$.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(I,$){for(var B=0;B<Ye.eventHandlers.length;++B)Ye.eventHandlers[B].target==I&&(!$||$==Ye.eventHandlers[B].eventTypeString)&&Ye._removeHandler(B--)},_removeHandler:function(I){var $=Ye.eventHandlers[I];$.target.removeEventListener($.eventTypeString,$.eventListenerFunc,$.useCapture),Ye.eventHandlers.splice(I,1)},registerOrRemoveHandler:function(I){var $=function(be){++Ye.inEventHandler,Ye.currentEventHandler=I,Ye.runDeferredCalls(),I.handlerFunc(be),Ye.runDeferredCalls(),--Ye.inEventHandler};if(I.callbackfunc)I.eventListenerFunc=$,I.target.addEventListener(I.eventTypeString,$,I.useCapture),Ye.eventHandlers.push(I),Ye.registerRemoveEventListeners();else for(var B=0;B<Ye.eventHandlers.length;++B)Ye.eventHandlers[B].target==I.target&&Ye.eventHandlers[B].eventTypeString==I.eventTypeString&&Ye._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(I,$,B,K,be){var he=mm(),ye=oc(12);n()[ye>>2]=B,n()[ye+4>>2]=K,n()[ye+8>>2]=be,Rb(0,I,637534208,$,K,ye),rc(he)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return Ee.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Zy(I){var $=it(I)+1,B=Ol($);return qe(I,B,$),B}function Jy(I,$,B,K){var be=mm(),he=oc(12),ye=0;$&&(ye=Zy($)),n()[he>>2]=ye,n()[he+4>>2]=B,n()[he+8>>2]=K,Rb(0,I,657457152,0,ye,he),rc(be)}function Qy(I,$,B,K){$=$?Ne($):"",Jy(I,$,B,K)}function eb(I){return I>2?Ne(I):I}var tb=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function rb(I){I=eb(I);var $=tb[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return $}function am(I){return rb(I)}function Eh(I,$,B){var K=am(I);if(!K)return-4;if(K.canvasSharedPtr&&(n()[K.canvasSharedPtr>>2]=$,n()[K.canvasSharedPtr+4>>2]=B),K.offscreenCanvas||!K.controlTransferredOffscreen){K.offscreenCanvas&&(K=K.offscreenCanvas);var be=!1;if(K.GLctxObject&&K.GLctxObject.GLctx){var he=K.GLctxObject.GLctx.getParameter(2978);be=he[0]===0&&he[1]===0&&he[2]===K.width&&he[3]===K.height}K.width=$,K.height=B,be&&K.GLctxObject.GLctx.viewport(0,0,$,B)}else if(K.canvasSharedPtr){var ye=n()[K.canvasSharedPtr+8>>2];return Qy(ye,I,$,B),1}else return-4;return 0}function Dh(I,$,B){return w?Ma(2,1,I,$,B):Eh(I,$,B)}function ob(I,$,B){var K=am(I);return K?Eh(I,$,B):Dh(I,$,B)}function nb(I){}function sb(I,$){}function ib(I){var $=I.getExtension("ANGLE_instanced_arrays");if($)return I.vertexAttribDivisor=function(B,K){$.vertexAttribDivisorANGLE(B,K)},I.drawArraysInstanced=function(B,K,be,he){$.drawArraysInstancedANGLE(B,K,be,he)},I.drawElementsInstanced=function(B,K,be,he,ye){$.drawElementsInstancedANGLE(B,K,be,he,ye)},1}function ab(I){var $=I.getExtension("OES_vertex_array_object");if($)return I.createVertexArray=function(){return $.createVertexArrayOES()},I.deleteVertexArray=function(B){$.deleteVertexArrayOES(B)},I.bindVertexArray=function(B){$.bindVertexArrayOES(B)},I.isVertexArray=function(B){return $.isVertexArrayOES(B)},1}function lb(I){var $=I.getExtension("WEBGL_draw_buffers");if($)return I.drawBuffers=function(B,K){$.drawBuffersWEBGL(B,K)},1}function ub(I){return!!(I.multiDrawWebgl=I.getExtension("WEBGL_multi_draw"))}var ft={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function($){ft.lastError||(ft.lastError=$)},getNewId:function(I){for(var $=ft.counter++,B=I.length;B<$;B++)I[B]=null;return $},getSource:function(I,$,B,K){for(var be="",he=0;he<$;++he){var ye=K?n()[K+he*4>>2]:-1;be+=Ne(n()[B+he*4>>2],ye<0?void 0:ye)}return be},createContext:function(I,$){var B=I.getContext("webgl",$);if(!B)return 0;var K=ft.registerContext(B,$);return K},registerContext:function(I,$){var B=Ol(8);n()[B+4>>2]=tc();var K={handle:B,attributes:$,version:$.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=K),ft.contexts[B]=K,(typeof $.enableExtensionsByDefault=="undefined"||$.enableExtensionsByDefault)&&ft.initExtensions(K),B},makeContextCurrent:function(I){return ft.currentContext=ft.contexts[I],i.ctx=La=ft.currentContext&&ft.currentContext.GLctx,!(I&&!La)},getContext:function(I){return ft.contexts[I]},deleteContext:function(I){ft.currentContext===ft.contexts[I]&&(ft.currentContext=null),typeof Ye=="object"&&Ye.removeAllHandlersOnTarget(ft.contexts[I].GLctx.canvas),ft.contexts[I]&&ft.contexts[I].GLctx.canvas&&(ft.contexts[I].GLctx.canvas.GLctxObject=void 0),pm(ft.contexts[I].handle),ft.contexts[I]=null},initExtensions:function(I){if(I||(I=ft.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var $=I.GLctx;ib($),ab($),lb($),$.disjointTimerQueryExt=$.getExtension("EXT_disjoint_timer_query"),ub($);var B=$.getSupportedExtensions()||[];B.forEach(function(K){K.indexOf("lose_context")<0&&K.indexOf("debug")<0&&$.getExtension(K)})}},populateUniformTable:function(I){for(var $=ft.programs[I],B=ft.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},K=B.uniforms,be=La.getProgramParameter($,35718),he=0;he<be;++he){var ye=La.getActiveUniform($,he),Te=ye.name;B.maxUniformLength=Math.max(B.maxUniformLength,Te.length+1),Te.slice(-1)=="]"&&(Te=Te.slice(0,Te.lastIndexOf("[")));var wt=La.getUniformLocation($,Te);if(wt){var _r=ft.getNewId(ft.uniforms);K[Te]=[ye.size,_r],ft.uniforms[_r]=wt;for(var dr=1;dr<ye.size;++dr){var Ba=Te+"["+dr+"]";wt=La.getUniformLocation($,Ba),_r=ft.getNewId(ft.uniforms),ft.uniforms[_r]=wt}}}}},cb=["default","low-power","high-performance"];function pb(I,$){var B=$>>2,K=n()[B+(24>>2)],be={alpha:!!n()[B+(0>>2)],depth:!!n()[B+(4>>2)],stencil:!!n()[B+(8>>2)],antialias:!!n()[B+(12>>2)],premultipliedAlpha:!!n()[B+(16>>2)],preserveDrawingBuffer:!!n()[B+(20>>2)],powerPreference:cb[K],failIfMajorPerformanceCaveat:!!n()[B+(28>>2)],majorVersion:n()[B+(32>>2)],minorVersion:n()[B+(36>>2)],enableExtensionsByDefault:n()[B+(40>>2)],explicitSwapControl:n()[B+(44>>2)],proxyContextToMainThread:n()[B+(48>>2)],renderViaOffscreenBackBuffer:n()[B+(52>>2)]},he=am(I);if(!he||be.explicitSwapControl)return 0;var ye=ft.createContext(he,be);return ye}function mb(I,$){return pb(I,$)}var Qu={mappings:{},buffers:[null,[],[]],printChar:function(I,$){var B=Qu.buffers[I];$===0||$===10?((I===1?U:H)(De(B,0)),B.length=0):B.push($)},varargs:void 0,get:function(){Qu.varargs+=4;var I=n()[Qu.varargs-4>>2];return I},getStr:function(I){var $=Ne(I);return $},get64:function(I,$){return I}};function $h(I){return w?Ma(3,1,I):0}function Rh(I,$,B,K,be){if(w)return Ma(4,1,I,$,B,K,be)}function Fh(I,$,B,K){if(w)return Ma(5,1,I,$,B,K);for(var be=0,he=0;he<B;he++){for(var ye=n()[$+he*8>>2],Te=n()[$+(he*8+4)>>2],wt=0;wt<Te;wt++)Qu.printChar(I,o()[ye+wt]);be+=Te}return n()[K>>2]=be,0}function fb(I){var $=Ee.threadExitHandlers.pop();I&&$()}function db(I,$){Ee.threadExitHandlers.push(function(){jr.get(I)($)})}function Oh(I){if(w)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var $=Ee.getNewWorker();if($.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";Ee.runningWorkers.push($);for(var B=Ol(128*4),K=0;K<128;++K)n()[B+K*4>>2]=0;var be=I.stackBase+I.stackSize,he=Ee.pthreads[I.pthread_ptr]={worker:$,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,threadInfoStruct:I.pthread_ptr},ye=he.threadInfoStruct>>2;Atomics.store(s(),ye+(64>>2),I.detached),Atomics.store(s(),ye+(100>>2),B),Atomics.store(s(),ye+(40>>2),he.threadInfoStruct),Atomics.store(s(),ye+(80>>2),I.stackSize),Atomics.store(s(),ye+(76>>2),be),Atomics.store(s(),ye+(104>>2),I.stackSize),Atomics.store(s(),ye+(104+8>>2),be),Atomics.store(s(),ye+(104+12>>2),I.detached);var Te=dI(),wt=Te+40;Atomics.store(s(),ye+(172>>2),wt),$.pthread=he;var _r={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};$.runPthread=function(){_r.time=performance.now(),$.postMessage(_r,I.transferList)},$.loaded&&($.runPthread(),delete $.runPthread)}function hb(I,$,B,K){if(typeof SharedArrayBuffer=="undefined")return H("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return H("pthread_create called with a null thread pointer!"),28;var be=[],he=0;if(w&&(be.length===0||he))return yI(687865856,I,$,B,K);if(he)return he;var ye=0,Te=0,wt=0;$&&$!=-1?(ye=n()[$>>2],ye+=81920,Te=n()[$+8>>2],wt=n()[$+12>>2]!==0):ye=2097152;var _r=Te==0;_r?Te=_I(16,ye):(Te-=ye,fe(Te>0));for(var dr=Ol(228),Ba=0;Ba<228>>2;++Ba)s()[(dr>>2)+Ba]=0;n()[I>>2]=dr,n()[dr+12>>2]=dr;var sc=dr+152;n()[sc>>2]=sc;var Ur={stackBase:Te,stackSize:ye,allocatedOwnStack:_r,detached:wt,startRoutine:B,pthread_ptr:dr,arg:K,transferList:be};return w?(Ur.cmd="spawnThread",postMessage(Ur,be)):Oh(Ur),0}function Ph(I){if(w)return Ma(6,1,I);switch(I){case 30:return 16384;case 85:var $=2147483648;return $/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return My(28),-1}w||Ee.initMainThreadBlock();var La,gb=[null,Ly,Dh,$h,Rh,Fh,Ph],xb={e:Oy,r:Py,x:zy,b:By,y:Vy,j:Gy,c:Wy,d:Ju,f:Fl,p:jy,z:Uy,u:qy,q:Yy,v:ob,i:nb,t:sb,w:mb,m:$h,n:Rh,g:Fh,o:Ty,a:J||i.wasmMemory,k:fb,l:db,h:hb,s:Ph},mI=Sy(),Mh=i.___wasm_call_ctors=function(){return(Mh=i.___wasm_call_ctors=i.asm.A).apply(null,arguments)},yb=i._init=function(){return(yb=i._init=i.asm.B).apply(null,arguments)},bb=i._register_tensor=function(){return(bb=i._register_tensor=i.asm.C).apply(null,arguments)},wb=i._dispose_data=function(){return(wb=i._dispose_data=i.asm.D).apply(null,arguments)},_b=i._dispose=function(){return(_b=i._dispose=i.asm.E).apply(null,arguments)},kb=i._Abs=function(){return(kb=i._Abs=i.asm.G).apply(null,arguments)},vb=i._Add=function(){return(vb=i._Add=i.asm.H).apply(null,arguments)},Cb=i._AddN=function(){return(Cb=i._AddN=i.asm.I).apply(null,arguments)},Ib=i._ArgMax=function(){return(Ib=i._ArgMax=i.asm.J).apply(null,arguments)},Nb=i._AvgPool=function(){return(Nb=i._AvgPool=i.asm.K).apply(null,arguments)},Sb=i._BatchMatMul=function(){return(Sb=i._BatchMatMul=i.asm.L).apply(null,arguments)},Tb=i._Ceil=function(){return(Tb=i._Ceil=i.asm.M).apply(null,arguments)},Ab=i._ClipByValue=function(){return(Ab=i._ClipByValue=i.asm.N).apply(null,arguments)},Eb=i._Conv2D=function(){return(Eb=i._Conv2D=i.asm.O).apply(null,arguments)},Lh=i._Conv2DBackpropInput=function(){return(Lh=i._Conv2DBackpropInput=i.asm.P).apply(null,arguments)},zh=i._Cos=function(){return(zh=i._Cos=i.asm.Q).apply(null,arguments)},lm=i._CropAndResize=function(){return(lm=i._CropAndResize=i.asm.R).apply(null,arguments)},ec=i._Cumsum=function(){return(ec=i._Cumsum=i.asm.S).apply(null,arguments)},Db=i._DepthToSpace=function(){return(Db=i._DepthToSpace=i.asm.T).apply(null,arguments)},um=i._DepthwiseConv2dNative=function(){return(um=i._DepthwiseConv2dNative=i.asm.U).apply(null,arguments)},Z=i._Equal=function(){return(Z=i._Equal=i.asm.V).apply(null,arguments)},se=i._Exp=function(){return(se=i._Exp=i.asm.W).apply(null,arguments)},ke=i._FlipLeftRight=function(){return(ke=i._FlipLeftRight=i.asm.X).apply(null,arguments)},at=i._Floor=function(){return(at=i._Floor=i.asm.Y).apply(null,arguments)},Yt=i._FloorDiv=function(){return(Yt=i._FloorDiv=i.asm.Z).apply(null,arguments)},zt=i._FusedBatchNorm=function(){return(zt=i._FusedBatchNorm=i.asm._).apply(null,arguments)},tt=i._FusedConv2D=function(){return(tt=i._FusedConv2D=i.asm.$).apply(null,arguments)},rt=i._FusedDepthwiseConv2D=function(){return(rt=i._FusedDepthwiseConv2D=i.asm.aa).apply(null,arguments)},Cr=i._Gather=function(){return(Cr=i._Gather=i.asm.ba).apply(null,arguments)},gi=i._GatherNd=function(){return(gi=i._GatherNd=i.asm.ca).apply(null,arguments)},xi=i._Greater=function(){return(xi=i._Greater=i.asm.da).apply(null,arguments)},Bh=i._GreaterEqual=function(){return(Bh=i._GreaterEqual=i.asm.ea).apply(null,arguments)},cm=i._LeakyRelu=function(){return(cm=i._LeakyRelu=i.asm.fa).apply(null,arguments)},vo=i._Less=function(){return(vo=i._Less=i.asm.ga).apply(null,arguments)},za=i._LessEqual=function(){return(za=i._LessEqual=i.asm.ha).apply(null,arguments)},Vh=i._Log=function(){return(Vh=i._Log=i.asm.ia).apply(null,arguments)},BB=i._LogicalAnd=function(){return(BB=i._LogicalAnd=i.asm.ja).apply(null,arguments)},VB=i._Max=function(){return(VB=i._Max=i.asm.ka).apply(null,arguments)},GB=i._MaxPool=function(){return(GB=i._MaxPool=i.asm.la).apply(null,arguments)},WB=i._Maximum=function(){return(WB=i._Maximum=i.asm.ma).apply(null,arguments)},jB=i._Mean=function(){return(jB=i._Mean=i.asm.na).apply(null,arguments)},UB=i._Min=function(){return(UB=i._Min=i.asm.oa).apply(null,arguments)},HB=i._Minimum=function(){return(HB=i._Minimum=i.asm.pa).apply(null,arguments)},qB=i._Multiply=function(){return(qB=i._Multiply=i.asm.qa).apply(null,arguments)},KB=i._Neg=function(){return(KB=i._Neg=i.asm.ra).apply(null,arguments)},XB=i._NonMaxSuppressionV3=function(){return(XB=i._NonMaxSuppressionV3=i.asm.sa).apply(null,arguments)},YB=i._NonMaxSuppressionV4=function(){return(YB=i._NonMaxSuppressionV4=i.asm.ta).apply(null,arguments)},ZB=i._NonMaxSuppressionV5=function(){return(ZB=i._NonMaxSuppressionV5=i.asm.ua).apply(null,arguments)},JB=i._NotEqual=function(){return(JB=i._NotEqual=i.asm.va).apply(null,arguments)},QB=i._OneHot=function(){return(QB=i._OneHot=i.asm.wa).apply(null,arguments)},eV=i._PadV2=function(){return(eV=i._PadV2=i.asm.xa).apply(null,arguments)},tV=i._Pow=function(){return(tV=i._Pow=i.asm.ya).apply(null,arguments)},rV=i._Prelu=function(){return(rV=i._Prelu=i.asm.za).apply(null,arguments)},oV=i._Prod=function(){return(oV=i._Prod=i.asm.Aa).apply(null,arguments)},nV=i._RealDiv=function(){return(nV=i._RealDiv=i.asm.Ba).apply(null,arguments)},sV=i._Relu=function(){return(sV=i._Relu=i.asm.Ca).apply(null,arguments)},iV=i._Relu6=function(){return(iV=i._Relu6=i.asm.Da).apply(null,arguments)},aV=i._ResizeBilinear=function(){return(aV=i._ResizeBilinear=i.asm.Ea).apply(null,arguments)},lV=i._Reverse=function(){return(lV=i._Reverse=i.asm.Fa).apply(null,arguments)},uV=i._RotateWithOffset=function(){return(uV=i._RotateWithOffset=i.asm.Ga).apply(null,arguments)},cV=i._Round=function(){return(cV=i._Round=i.asm.Ha).apply(null,arguments)},pV=i._Rsqrt=function(){return(pV=i._Rsqrt=i.asm.Ia).apply(null,arguments)},mV=i._ScatterNd=function(){return(mV=i._ScatterNd=i.asm.Ja).apply(null,arguments)},fV=i._SelectV2=function(){return(fV=i._SelectV2=i.asm.Ka).apply(null,arguments)},dV=i._Sigmoid=function(){return(dV=i._Sigmoid=i.asm.La).apply(null,arguments)},hV=i._Sin=function(){return(hV=i._Sin=i.asm.Ma).apply(null,arguments)},gV=i._Softmax=function(){return(gV=i._Softmax=i.asm.Na).apply(null,arguments)},xV=i._Sqrt=function(){return(xV=i._Sqrt=i.asm.Oa).apply(null,arguments)},yV=i._Square=function(){return(yV=i._Square=i.asm.Pa).apply(null,arguments)},bV=i._SquaredDifference=function(){return(bV=i._SquaredDifference=i.asm.Qa).apply(null,arguments)},wV=i._Step=function(){return(wV=i._Step=i.asm.Ra).apply(null,arguments)},_V=i._StridedSlice=function(){return(_V=i._StridedSlice=i.asm.Sa).apply(null,arguments)},kV=i._Sub=function(){return(kV=i._Sub=i.asm.Ta).apply(null,arguments)},vV=i._Sum=function(){return(vV=i._Sum=i.asm.Ua).apply(null,arguments)},CV=i._Tanh=function(){return(CV=i._Tanh=i.asm.Va).apply(null,arguments)},IV=i._Tile=function(){return(IV=i._Tile=i.asm.Wa).apply(null,arguments)},NV=i._TopK=function(){return(NV=i._TopK=i.asm.Xa).apply(null,arguments)},SV=i._Transpose=function(){return(SV=i._Transpose=i.asm.Ya).apply(null,arguments)},TV=i.__FusedMatMul=function(){return(TV=i.__FusedMatMul=i.asm.Za).apply(null,arguments)},Ol=i._malloc=function(){return(Ol=i._malloc=i.asm._a).apply(null,arguments)},pm=i._free=function(){return(pm=i._free=i.asm.$a).apply(null,arguments)},fI=i.___errno_location=function(){return(fI=i.___errno_location=i.asm.ab).apply(null,arguments)},dI=i._emscripten_get_global_libc=function(){return(dI=i._emscripten_get_global_libc=i.asm.bb).apply(null,arguments)},tc=i._pthread_self=function(){return(tc=i._pthread_self=i.asm.cb).apply(null,arguments)},hI=i.___pthread_tsd_run_dtors=function(){return(hI=i.___pthread_tsd_run_dtors=i.asm.db).apply(null,arguments)},$b=i._emscripten_main_thread_process_queued_calls=function(){return($b=i._emscripten_main_thread_process_queued_calls=i.asm.eb).apply(null,arguments)},AV=i._emscripten_current_thread_process_queued_calls=function(){return(AV=i._emscripten_current_thread_process_queued_calls=i.asm.fb).apply(null,arguments)},gI=i._emscripten_register_main_browser_thread_id=function(){return(gI=i._emscripten_register_main_browser_thread_id=i.asm.gb).apply(null,arguments)},xI=i.__emscripten_do_dispatch_to_thread=function(){return(xI=i.__emscripten_do_dispatch_to_thread=i.asm.hb).apply(null,arguments)},yI=i._emscripten_sync_run_in_main_thread_4=function(){return(yI=i._emscripten_sync_run_in_main_thread_4=i.asm.ib).apply(null,arguments)},bI=i._emscripten_run_in_main_runtime_thread_js=function(){return(bI=i._emscripten_run_in_main_runtime_thread_js=i.asm.jb).apply(null,arguments)},Rb=i.__emscripten_call_on_thread=function(){return(Rb=i.__emscripten_call_on_thread=i.asm.kb).apply(null,arguments)},EV=i._emscripten_tls_init=function(){return(EV=i._emscripten_tls_init=i.asm.lb).apply(null,arguments)},Gh=i.__emscripten_thread_init=function(){return(Gh=i.__emscripten_thread_init=i.asm.mb).apply(null,arguments)},mm=i.stackSave=function(){return(mm=i.stackSave=i.asm.nb).apply(null,arguments)},rc=i.stackRestore=function(){return(rc=i.stackRestore=i.asm.ob).apply(null,arguments)},oc=i.stackAlloc=function(){return(oc=i.stackAlloc=i.asm.pb).apply(null,arguments)},wI=i._emscripten_stack_set_limits=function(){return(wI=i._emscripten_stack_set_limits=i.asm.qb).apply(null,arguments)},_I=i._memalign=function(){return(_I=i._memalign=i.asm.rb).apply(null,arguments)},kI=i.__emscripten_allow_main_runtime_queued_calls=9880,nc=i.__emscripten_main_thread_futex=11368;i.cwrap=we,i.PThread=Ee,i.PThread=Ee,i.wasmMemory=J,i.ExitStatus=fm;var Wh;function fm(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}Rl=function I(){Wh||Fb(),Wh||(Rl=I)};function Fb(I){if(I=I||m,di>0)return;if(w){l(i),postMessage({cmd:"loaded"});return}if(nm(),di>0)return;function $(){Wh||(Wh=!0,i.calledRun=!0,!ue&&(Xu(),_y(),l(i),i.onRuntimeInitialized&&i.onRuntimeInitialized(),lo()))}i.setStatus?(i.setStatus("Running..."),setTimeout(function(){setTimeout(function(){i.setStatus("")},1),$()},1)):$()}i.run=Fb;function DV(I,$){if(!($&&re&&I===0)){if(!$&&w)throw postMessage({cmd:"exitProcess",returnCode:I}),new fm(I);re||(Ee.terminateAllThreads(),ae=I,vh(),i.onExit&&i.onExit(I),ue=!0),d(I,new fm(I))}}if(i.preInit)for(typeof i.preInit=="function"&&(i.preInit=[i.preInit]);i.preInit.length>0;)i.preInit.pop()();return w&&(re=!1,Ee.initWorker()),Fb(),e.ready}}();typeof bx=="object"&&typeof dC=="object"?dC.exports=hC:typeof define=="function"&&define.amd?define([],function(){return hC}):typeof bx=="object"&&(bx.WasmBackendModuleThreadedSimd=hC)});var rM=Ht((wx,gC)=>{var xC=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(e){e=e||{};var t=typeof e!="undefined"?e:{},o,n;t.ready=new Promise(function(Z,se){o=Z,n=se});var s={},a;for(a in t)t.hasOwnProperty(a)&&(s[a]=t[a]);var i=[],l="./this.program",u=function(Z,se){throw se},c=!1,p=!1,m=!1,f=!1;c=typeof window=="object",p=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f=!c&&!m&&!p;var d="";function h(Z){return t.locateFile?t.locateFile(Z,d):d+Z}var g,x,b,w,_,k;m?(p?d=Ap().dirname(d)+"/":d=__dirname+"/",g=function(se,ke){return _||(_=require("fs")),k||(k=Ap()),se=k.normalize(se),_.readFileSync(se,ke?null:"utf8")},b=function(se){var ke=g(se,!0);return ke.buffer||(ke=new Uint8Array(ke)),U(ke.buffer),ke},process.argv.length>1&&(l=process.argv[1].replace(/\\/g,"/")),i=process.argv.slice(2),process.on("uncaughtException",function(Z){if(!(Z instanceof Db))throw Z}),process.on("unhandledRejection",bn),u=function(Z){process.exit(Z)},t.inspect=function(){return"[Emscripten Module object]"}):f?(typeof read!="undefined"&&(g=function(se){return read(se)}),b=function(se){var ke;return typeof readbuffer=="function"?new Uint8Array(readbuffer(se)):(ke=read(se,"binary"),U(typeof ke=="object"),ke)},typeof scriptArgs!="undefined"?i=scriptArgs:typeof arguments!="undefined"&&(i=arguments),typeof quit=="function"&&(u=function(Z){quit(Z)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(c||p)&&(p?d=self.location.href:typeof document!="undefined"&&document.currentScript&&(d=document.currentScript.src),r&&(d=r),d.indexOf("blob:")!==0?d=d.substr(0,d.lastIndexOf("/")+1):d="",g=function(Z){var se=new XMLHttpRequest;return se.open("GET",Z,!1),se.send(null),se.responseText},p&&(b=function(Z){var se=new XMLHttpRequest;return se.open("GET",Z,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),x=function(Z,se,ke){var at=new XMLHttpRequest;at.open("GET",Z,!0),at.responseType="arraybuffer",at.onload=function(){if(at.status==200||at.status==0&&at.response){se(at.response);return}ke()},at.onerror=ke,at.send(null)},w=function(Z){document.title=Z});var D=t.print||console.log.bind(console),T=t.printErr||console.warn.bind(console);for(a in s)s.hasOwnProperty(a)&&(t[a]=s[a]);s=null,t.arguments&&(i=t.arguments),t.thisProgram&&(l=t.thisProgram),t.quit&&(u=t.quit);var R;t.wasmBinary&&(R=t.wasmBinary);var O=t.noExitRuntime||!0;typeof WebAssembly!="object"&&bn("no native wasm support detected");var M,G=!1,j;function U(Z,se){Z||bn("Assertion failed: "+se)}function H(Z){var se=t["_"+Z];return U(se,"Cannot call unknown function "+Z+", make sure it is exported"),se}function q(Z,se,ke,at,Yt){var zt={string:function(vo){var za=0;if(vo!=null&&vo!==0){var Vh=(vo.length<<2)+1;za=lm(Vh),ie(vo,za,Vh)}return za},array:function(vo){var za=lm(vo.length);return ue(vo,za),za}};function tt(vo){return se==="string"?re(vo):se==="boolean"?Boolean(vo):vo}var rt=H(Z),Cr=[],gi=0;if(at)for(var xi=0;xi<at.length;xi++){var Bh=zt[ke[xi]];Bh?(gi===0&&(gi=Lh()),Cr[xi]=Bh(at[xi])):Cr[xi]=at[xi]}var cm=rt.apply(null,Cr);return cm=tt(cm),gi!==0&&zh(gi),cm}function X(Z,se,ke,at){ke=ke||[];var Yt=ke.every(function(tt){return tt==="number"}),zt=se!=="string";return zt&&Yt&&!at?H(Z):function(){return q(Z,se,ke,arguments,at)}}var oe=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Y(Z,se,ke){for(var at=se+ke,Yt=se;Z[Yt]&&!(Yt>=at);)++Yt;if(Yt-se>16&&Z.subarray&&oe)return oe.decode(Z.subarray(se,Yt));for(var zt="";se<Yt;){var tt=Z[se++];if(!(tt&128)){zt+=String.fromCharCode(tt);continue}var rt=Z[se++]&63;if((tt&224)==192){zt+=String.fromCharCode((tt&31)<<6|rt);continue}var Cr=Z[se++]&63;if((tt&240)==224?tt=(tt&15)<<12|rt<<6|Cr:tt=(tt&7)<<18|rt<<12|Cr<<6|Z[se++]&63,tt<65536)zt+=String.fromCharCode(tt);else{var gi=tt-65536;zt+=String.fromCharCode(55296|gi>>10,56320|gi&1023)}}return zt}function re(Z,se){return Z?Y(xe,Z,se):""}function J(Z,se,ke,at){if(!(at>0))return 0;for(var Yt=ke,zt=ke+at-1,tt=0;tt<Z.length;++tt){var rt=Z.charCodeAt(tt);if(rt>=55296&&rt<=57343){var Cr=Z.charCodeAt(++tt);rt=65536+((rt&1023)<<10)|Cr&1023}if(rt<=127){if(ke>=zt)break;se[ke++]=rt}else if(rt<=2047){if(ke+1>=zt)break;se[ke++]=192|rt>>6,se[ke++]=128|rt&63}else if(rt<=65535){if(ke+2>=zt)break;se[ke++]=224|rt>>12,se[ke++]=128|rt>>6&63,se[ke++]=128|rt&63}else{if(ke+3>=zt)break;se[ke++]=240|rt>>18,se[ke++]=128|rt>>12&63,se[ke++]=128|rt>>6&63,se[ke++]=128|rt&63}}return se[ke]=0,ke-Yt}function ie(Z,se,ke){return J(Z,xe,se,ke)}function ue(Z,se){de.set(Z,se)}function ae(Z,se){return Z%se>0&&(Z+=se-Z%se),Z}var fe,de,xe,we,De,Ne,ze,qe,it;function St(Z){fe=Z,t.HEAP8=de=new Int8Array(Z),t.HEAP16=we=new Int16Array(Z),t.HEAP32=Ne=new Int32Array(Z),t.HEAPU8=xe=new Uint8Array(Z),t.HEAPU16=De=new Uint16Array(Z),t.HEAPU32=ze=new Uint32Array(Z),t.HEAPF32=qe=new Float32Array(Z),t.HEAPF64=it=new Float64Array(Z)}var Tt=t.INITIAL_MEMORY||16777216,Ue,ut=[],mt=[],Pt=[],_o=[],Xt=!1;mt.push({func:function(){Th()}});function io(){if(t.preRun)for(typeof t.preRun=="function"&&(t.preRun=[t.preRun]);t.preRun.length;)ko(t.preRun.shift());Pa(ut)}function Or(){Xt=!0,Pa(mt)}function jo(){Pa(Pt)}function nr(){if(t.postRun)for(typeof t.postRun=="function"&&(t.postRun=[t.postRun]);t.postRun.length;)jr(t.postRun.shift());Pa(_o)}function ko(Z){ut.unshift(Z)}function jr(Z){_o.unshift(Z)}var wr=0,ao=null,$o=null;function $l(Z){wr++,t.monitorRunDependencies&&t.monitorRunDependencies(wr)}function Oa(Z){if(wr--,t.monitorRunDependencies&&t.monitorRunDependencies(wr),wr==0&&(ao!==null&&(clearInterval(ao),ao=null),$o)){var se=$o;$o=null,se()}}t.preloadedImages={},t.preloadedAudios={};function bn(Z){t.onAbort&&t.onAbort(Z),Z+="",T(Z),G=!0,j=1,Z="abort("+Z+"). Build with -s ASSERTIONS=1 for more info.";var se=new WebAssembly.RuntimeError(Z);throw n(se),se}function fi(Z,se){return String.prototype.startsWith?Z.startsWith(se):Z.indexOf(se)===0}var nm="data:application/octet-stream;base64,";function Xu(Z){return fi(Z,nm)}var _y="file://";function vh(Z){return fi(Z,_y)}var lo="tfjs-backend-wasm.wasm";Xu(lo)||(lo=h(lo));function Ch(Z){try{if(Z==lo&&R)return new Uint8Array(R);if(b)return b(Z);throw"both async and sync fetching of the wasm failed"}catch(se){bn(se)}}function ky(){if(!R&&(c||p)){if(typeof fetch=="function"&&!vh(lo))return fetch(lo,{credentials:"same-origin"}).then(function(Z){if(!Z.ok)throw"failed to load wasm binary file at '"+lo+"'";return Z.arrayBuffer()}).catch(function(){return Ch(lo)});if(x)return new Promise(function(Z,se){x(lo,function(ke){Z(new Uint8Array(ke))},se)})}return Promise.resolve().then(function(){return Ch(lo)})}function di(){var Z={a:uo};function se(tt,rt){var Cr=tt.exports;t.asm=Cr,M=t.asm.g,St(M.buffer),Ue=t.asm.m,Oa("wasm-instantiate")}$l("wasm-instantiate");function ke(tt){se(tt.instance)}function at(tt){return ky().then(function(rt){return WebAssembly.instantiate(rt,Z)}).then(tt,function(rt){T("failed to asynchronously prepare wasm: "+rt),bn(rt)})}function Yt(){return!R&&typeof WebAssembly.instantiateStreaming=="function"&&!Xu(lo)&&!vh(lo)&&typeof fetch=="function"?fetch(lo,{credentials:"same-origin"}).then(function(tt){var rt=WebAssembly.instantiateStreaming(tt,Z);return rt.then(ke,function(Cr){return T("wasm streaming compile failed: "+Cr),T("falling back to ArrayBuffer instantiation"),at(ke)})}):at(ke)}if(t.instantiateWasm)try{var zt=t.instantiateWasm(Z,se);return zt}catch(tt){return T("Module.instantiateWasm callback failed with error: "+tt),!1}return Yt().catch(n),{}}function Pa(Z){for(;Z.length>0;){var se=Z.shift();if(typeof se=="function"){se(t);continue}var ke=se.func;typeof ke=="number"?se.arg===void 0?Ue.get(ke)():Ue.get(ke)(se.arg):ke(se.arg===void 0?null:se.arg)}}function Rl(){bn()}function vy(Z,se,ke){xe.copyWithin(Z,se,se+ke)}function Cy(){return xe.length}function hi(Z){try{return M.grow(Z-fe.byteLength+65535>>>16),St(M.buffer),1}catch(se){}}function Ih(Z){var se=Cy(),ke=2147483648;if(Z>ke)return!1;for(var at=1;at<=4;at*=2){var Yt=se*(1+.2/at);Yt=Math.min(Yt,Z+100663296);var zt=Math.min(ke,ae(Math.max(Z,Yt),65536)),tt=hi(zt);if(tt)return!0}return!1}var Yu={mappings:{},buffers:[null,[],[]],printChar:function(Z,se){var ke=Yu.buffers[Z];se===0||se===10?((Z===1?D:T)(Y(ke,0)),ke.length=0):ke.push(se)},varargs:void 0,get:function(){Yu.varargs+=4;var Z=Ne[Yu.varargs-4>>2];return Z},getStr:function(Z){var se=re(Z);return se},get64:function(Z,se){return Z}};function Nh(Z){return 0}function Iy(Z,se,ke,at,Yt){}function Sh(Z,se,ke,at){for(var Yt=0,zt=0;zt<ke;zt++){for(var tt=Ne[se+zt*8>>2],rt=Ne[se+(zt*8+4)>>2],Cr=0;Cr<rt;Cr++)Yu.printChar(Z,xe[tt+Cr]);Yt+=rt}return Ne[at>>2]=Yt,0}var uo={a:Rl,d:vy,e:Ih,f:Nh,c:Iy,b:Sh},Ny=di(),Th=t.___wasm_call_ctors=function(){return(Th=t.___wasm_call_ctors=t.asm.h).apply(null,arguments)},Sy=t._init=function(){return(Sy=t._init=t.asm.i).apply(null,arguments)},Ah=t._register_tensor=function(){return(Ah=t._register_tensor=t.asm.j).apply(null,arguments)},Ty=t._dispose_data=function(){return(Ty=t._dispose_data=t.asm.k).apply(null,arguments)},Zu=t._dispose=function(){return(Zu=t._dispose=t.asm.l).apply(null,arguments)},Ju=t._Abs=function(){return(Ju=t._Abs=t.asm.n).apply(null,arguments)},Ay=t._Add=function(){return(Ay=t._Add=t.asm.o).apply(null,arguments)},Ey=t._AddN=function(){return(Ey=t._AddN=t.asm.p).apply(null,arguments)},Dy=t._ArgMax=function(){return(Dy=t._ArgMax=t.asm.q).apply(null,arguments)},Ee=t._AvgPool=function(){return(Ee=t._AvgPool=t.asm.r).apply(null,arguments)},$y=t._BatchMatMul=function(){return($y=t._BatchMatMul=t.asm.s).apply(null,arguments)},Ry=t._Ceil=function(){return(Ry=t._Ceil=t.asm.t).apply(null,arguments)},Fy=t._ClipByValue=function(){return(Fy=t._ClipByValue=t.asm.u).apply(null,arguments)},Oy=t._Conv2D=function(){return(Oy=t._Conv2D=t.asm.v).apply(null,arguments)},Py=t._Conv2DBackpropInput=function(){return(Py=t._Conv2DBackpropInput=t.asm.w).apply(null,arguments)},Fl=t._Cos=function(){return(Fl=t._Cos=t.asm.x).apply(null,arguments)},My=t._CropAndResize=function(){return(My=t._CropAndResize=t.asm.y).apply(null,arguments)},Ly=t._Cumsum=function(){return(Ly=t._Cumsum=t.asm.z).apply(null,arguments)},zy=t._DepthToSpace=function(){return(zy=t._DepthToSpace=t.asm.A).apply(null,arguments)},By=t._DepthwiseConv2dNative=function(){return(By=t._DepthwiseConv2dNative=t.asm.B).apply(null,arguments)},Vy=t._Equal=function(){return(Vy=t._Equal=t.asm.C).apply(null,arguments)},Gy=t._Exp=function(){return(Gy=t._Exp=t.asm.D).apply(null,arguments)},Wy=t._FlipLeftRight=function(){return(Wy=t._FlipLeftRight=t.asm.E).apply(null,arguments)},jy=t._Floor=function(){return(jy=t._Floor=t.asm.F).apply(null,arguments)},Uy=t._FloorDiv=function(){return(Uy=t._FloorDiv=t.asm.G).apply(null,arguments)},Ma=t._FusedBatchNorm=function(){return(Ma=t._FusedBatchNorm=t.asm.H).apply(null,arguments)},sm=t._FusedConv2D=function(){return(sm=t._FusedConv2D=t.asm.I).apply(null,arguments)},im=t._FusedDepthwiseConv2D=function(){return(im=t._FusedDepthwiseConv2D=t.asm.J).apply(null,arguments)},Hy=t._Gather=function(){return(Hy=t._Gather=t.asm.K).apply(null,arguments)},qy=t._GatherNd=function(){return(qy=t._GatherNd=t.asm.L).apply(null,arguments)},Ky=t._Greater=function(){return(Ky=t._Greater=t.asm.M).apply(null,arguments)},Xy=t._GreaterEqual=function(){return(Xy=t._GreaterEqual=t.asm.N).apply(null,arguments)},Yy=t._LeakyRelu=function(){return(Yy=t._LeakyRelu=t.asm.O).apply(null,arguments)},Ye=t._Less=function(){return(Ye=t._Less=t.asm.P).apply(null,arguments)},Zy=t._LessEqual=function(){return(Zy=t._LessEqual=t.asm.Q).apply(null,arguments)},Jy=t._Log=function(){return(Jy=t._Log=t.asm.R).apply(null,arguments)},Qy=t._LogicalAnd=function(){return(Qy=t._LogicalAnd=t.asm.S).apply(null,arguments)},eb=t._Max=function(){return(eb=t._Max=t.asm.T).apply(null,arguments)},tb=t._MaxPool=function(){return(tb=t._MaxPool=t.asm.U).apply(null,arguments)},rb=t._Maximum=function(){return(rb=t._Maximum=t.asm.V).apply(null,arguments)},am=t._Mean=function(){return(am=t._Mean=t.asm.W).apply(null,arguments)},Eh=t._Min=function(){return(Eh=t._Min=t.asm.X).apply(null,arguments)},Dh=t._Minimum=function(){return(Dh=t._Minimum=t.asm.Y).apply(null,arguments)},ob=t._Multiply=function(){return(ob=t._Multiply=t.asm.Z).apply(null,arguments)},nb=t._Neg=function(){return(nb=t._Neg=t.asm._).apply(null,arguments)},sb=t._NonMaxSuppressionV3=function(){return(sb=t._NonMaxSuppressionV3=t.asm.$).apply(null,arguments)},ib=t._NonMaxSuppressionV4=function(){return(ib=t._NonMaxSuppressionV4=t.asm.aa).apply(null,arguments)},ab=t._NonMaxSuppressionV5=function(){return(ab=t._NonMaxSuppressionV5=t.asm.ba).apply(null,arguments)},lb=t._NotEqual=function(){return(lb=t._NotEqual=t.asm.ca).apply(null,arguments)},ub=t._OneHot=function(){return(ub=t._OneHot=t.asm.da).apply(null,arguments)},ft=t._PadV2=function(){return(ft=t._PadV2=t.asm.ea).apply(null,arguments)},cb=t._Pow=function(){return(cb=t._Pow=t.asm.fa).apply(null,arguments)},pb=t._Prelu=function(){return(pb=t._Prelu=t.asm.ga).apply(null,arguments)},mb=t._Prod=function(){return(mb=t._Prod=t.asm.ha).apply(null,arguments)},Qu=t._RealDiv=function(){return(Qu=t._RealDiv=t.asm.ia).apply(null,arguments)},$h=t._Relu=function(){return($h=t._Relu=t.asm.ja).apply(null,arguments)},Rh=t._Relu6=function(){return(Rh=t._Relu6=t.asm.ka).apply(null,arguments)},Fh=t._ResizeBilinear=function(){return(Fh=t._ResizeBilinear=t.asm.la).apply(null,arguments)},fb=t._Reverse=function(){return(fb=t._Reverse=t.asm.ma).apply(null,arguments)},db=t._RotateWithOffset=function(){return(db=t._RotateWithOffset=t.asm.na).apply(null,arguments)},Oh=t._Round=function(){return(Oh=t._Round=t.asm.oa).apply(null,arguments)},hb=t._Rsqrt=function(){return(hb=t._Rsqrt=t.asm.pa).apply(null,arguments)},Ph=t._ScatterNd=function(){return(Ph=t._ScatterNd=t.asm.qa).apply(null,arguments)},La=t._SelectV2=function(){return(La=t._SelectV2=t.asm.ra).apply(null,arguments)},gb=t._Sigmoid=function(){return(gb=t._Sigmoid=t.asm.sa).apply(null,arguments)},xb=t._Sin=function(){return(xb=t._Sin=t.asm.ta).apply(null,arguments)},mI=t._Softmax=function(){return(mI=t._Softmax=t.asm.ua).apply(null,arguments)},Mh=t._Sqrt=function(){return(Mh=t._Sqrt=t.asm.va).apply(null,arguments)},yb=t._Square=function(){return(yb=t._Square=t.asm.wa).apply(null,arguments)},bb=t._SquaredDifference=function(){return(bb=t._SquaredDifference=t.asm.xa).apply(null,arguments)},wb=t._Step=function(){return(wb=t._Step=t.asm.ya).apply(null,arguments)},_b=t._StridedSlice=function(){return(_b=t._StridedSlice=t.asm.za).apply(null,arguments)},kb=t._Sub=function(){return(kb=t._Sub=t.asm.Aa).apply(null,arguments)},vb=t._Sum=function(){return(vb=t._Sum=t.asm.Ba).apply(null,arguments)},Cb=t._Tanh=function(){return(Cb=t._Tanh=t.asm.Ca).apply(null,arguments)},Ib=t._Tile=function(){return(Ib=t._Tile=t.asm.Da).apply(null,arguments)},Nb=t._TopK=function(){return(Nb=t._TopK=t.asm.Ea).apply(null,arguments)},Sb=t._Transpose=function(){return(Sb=t._Transpose=t.asm.Fa).apply(null,arguments)},Tb=t.__FusedMatMul=function(){return(Tb=t.__FusedMatMul=t.asm.Ga).apply(null,arguments)},Ab=t._malloc=function(){return(Ab=t._malloc=t.asm.Ha).apply(null,arguments)},Eb=t._free=function(){return(Eb=t._free=t.asm.Ia).apply(null,arguments)},Lh=t.stackSave=function(){return(Lh=t.stackSave=t.asm.Ja).apply(null,arguments)},zh=t.stackRestore=function(){return(zh=t.stackRestore=t.asm.Ka).apply(null,arguments)},lm=t.stackAlloc=function(){return(lm=t.stackAlloc=t.asm.La).apply(null,arguments)};t.cwrap=X;var ec;function Db(Z){this.name="ExitStatus",this.message="Program terminated with exit("+Z+")",this.status=Z}$o=function Z(){ec||um(),ec||($o=Z)};function um(Z){if(Z=Z||i,wr>0||(io(),wr>0))return;function se(){ec||(ec=!0,t.calledRun=!0,!G&&(Or(),jo(),o(t),t.onRuntimeInitialized&&t.onRuntimeInitialized(),nr()))}t.setStatus?(t.setStatus("Running..."),setTimeout(function(){setTimeout(function(){t.setStatus("")},1),se()},1)):se()}if(t.run=um,t.preInit)for(typeof t.preInit=="function"&&(t.preInit=[t.preInit]);t.preInit.length>0;)t.preInit.pop()();return um(),e.ready}}();typeof wx=="object"&&typeof gC=="object"?gC.exports=xC:typeof define=="function"&&define.amd?define([],function(){return xC}):typeof wx=="object"&&(wx.WasmBackendModule=xC)});var W3=Ht((G3,Z0)=>{(function(r,e,t){function o(i){var l=this,u=a();l.next=function(){var c=2091639*l.s0+l.c*23283064365386963e-26;return l.s0=l.s1,l.s1=l.s2,l.s2=c-(l.c=c|0)},l.c=1,l.s0=u(" "),l.s1=u(" "),l.s2=u(" "),l.s0-=u(i),l.s0<0&&(l.s0+=1),l.s1-=u(i),l.s1<0&&(l.s1+=1),l.s2-=u(i),l.s2<0&&(l.s2+=1),u=null}function n(i,l){return l.c=i.c,l.s0=i.s0,l.s1=i.s1,l.s2=i.s2,l}function s(i,l){var u=new o(i),c=l&&l.state,p=u.next;return p.int32=function(){return u.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,c&&(typeof c=="object"&&n(c,u),p.state=function(){return n(u,{})}),p}function a(){var i=4022871197,l=function(u){u=String(u);for(var c=0;c<u.length;c++){i+=u.charCodeAt(c);var p=.02519603282416938*i;i=p>>>0,p-=i,p*=i,i=p>>>0,p-=i,i+=p*4294967296}return(i>>>0)*23283064365386963e-26};return l}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.alea=s})(G3,typeof Z0=="object"&&Z0,typeof define=="function"&&define)});var U3=Ht((j3,J0)=>{(function(r,e,t){function o(a){var i=this,l="";i.x=0,i.y=0,i.z=0,i.w=0,i.next=function(){var c=i.x^i.x<<11;return i.x=i.y,i.y=i.z,i.z=i.w,i.w^=i.w>>>19^c^c>>>8},a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor128=s})(j3,typeof J0=="object"&&J0,typeof define=="function"&&define)});var q3=Ht((H3,Q0)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.x^i.x>>>2;return i.x=i.y,i.y=i.z,i.z=i.w,i.w=i.v,(i.d=i.d+362437|0)+(i.v=i.v^i.v<<4^(c^c<<1))|0},i.x=0,i.y=0,i.z=0,i.w=0,i.v=0,a===(a|0)?i.x=a:l+=a;for(var u=0;u<l.length+64;u++)i.x^=l.charCodeAt(u)|0,u==l.length&&(i.d=i.x<<10^i.x>>>4),i.next()}function n(a,i){return i.x=a.x,i.y=a.y,i.z=a.z,i.w=a.w,i.v=a.v,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorwow=s})(H3,typeof Q0=="object"&&Q0,typeof define=="function"&&define)});var X3=Ht((K3,eI)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.x,c=i.i,p,m,f;return p=u[c],p^=p>>>7,m=p^p<<24,p=u[c+1&7],m^=p^p>>>10,p=u[c+3&7],m^=p^p>>>3,p=u[c+4&7],m^=p^p<<7,p=u[c+7&7],p=p^p<<13,m^=p^p<<9,u[c]=m,i.i=c+1&7,m};function l(u,c){var p,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,p=0;p<c.length;++p)f[p&7]=f[p&7]<<15^c.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],u.x=f,u.i=0,p=256;p>0;--p)u.next()}l(i,a)}function n(a,i){return i.x=a.x.slice(),i.i=a.i,i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.x&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xorshift7=s})(K3,typeof eI=="object"&&eI,typeof define=="function"&&define)});var Z3=Ht((Y3,tI)=>{(function(r,e,t){function o(a){var i=this;i.next=function(){var u=i.w,c=i.X,p=i.i,m,f;return i.w=u=u+1640531527|0,f=c[p+34&127],m=c[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[p]=f^m,i.i=p,f+(u^u>>>16)|0};function l(u,c){var p,m,f,d,h,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,d=-32;d<x;++d)c&&(m^=c.charCodeAt((d+32)%c.length)),d===0&&(h=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,d>=0&&(h=h+1640531527|0,p=g[d&127]^=m+h,f=p==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,d=4*128;d>0;--d)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;u.w=h,u.X=g,u.i=f}l(i,a)}function n(a,i){return i.i=a.i,i.w=a.w,i.X=a.X.slice(),i}function s(a,i){a==null&&(a=+new Date);var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(u.X&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.xor4096=s})(Y3,typeof tI=="object"&&tI,typeof define=="function"&&define)});var Q3=Ht((J3,rI)=>{(function(r,e,t){function o(a){var i=this,l="";i.next=function(){var c=i.b,p=i.c,m=i.d,f=i.a;return c=c<<25^c>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-c|0,i.b=c=c<<20^c>>>12^p,i.c=p=p-m|0,i.d=m<<16^p>>>16^f,i.a=f-c|0},i.a=0,i.b=0,i.c=2654435769|0,i.d=1367130551,a===Math.floor(a)?(i.a=a/4294967296|0,i.b=a|0):l+=a;for(var u=0;u<l.length+20;u++)i.b^=l.charCodeAt(u)|0,i.next()}function n(a,i){return i.a=a.a,i.b=a.b,i.c=a.c,i.d=a.d,i}function s(a,i){var l=new o(a),u=i&&i.state,c=function(){return(l.next()>>>0)/4294967296};return c.double=function(){do var p=l.next()>>>11,m=(l.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},c.int32=l.next,c.quick=c,u&&(typeof u=="object"&&n(u,l),c.state=function(){return n(l,{})}),c}e&&e.exports?e.exports=s:t&&t.amd?t(function(){return s}):this.tychei=s})(J3,typeof rI=="object"&&rI,typeof define=="function"&&define)});var tB=Ht((eB,dy)=>{(function(r,e,t){var o=256,n=6,s=52,a="random",i=t.pow(o,n),l=t.pow(2,s),u=l*2,c=o-1,p;function m(w,_,k){var D=[];_=_==!0?{entropy:!0}:_||{};var T=g(h(_.entropy?[w,b(e)]:w==null?x():w,3),D),R=new f(D),O=function(){for(var M=R.g(n),G=i,j=0;M<l;)M=(M+j)*o,G*=o,j=R.g(1);for(;M>=u;)M/=2,G/=2,j>>>=1;return(M+j)/G};return O.int32=function(){return R.g(4)|0},O.quick=function(){return R.g(4)/4294967296},O.double=O,g(b(R.S),e),(_.pass||k||function(M,G,j,U){return U&&(U.S&&d(U,R),M.state=function(){return d(R,{})}),j?(t[a]=M,G):M})(O,T,"global"in _?_.global:this==t,_.state)}function f(w){var _,k=w.length,D=this,T=0,R=D.i=D.j=0,O=D.S=[];for(k||(w=[k++]);T<o;)O[T]=T++;for(T=0;T<o;T++)O[T]=O[R=c&R+w[T%k]+(_=O[T])],O[R]=_;(D.g=function(M){for(var G,j=0,U=D.i,H=D.j,q=D.S;M--;)G=q[U=c&U+1],j=j*o+q[c&(q[U]=q[H=c&H+G])+(q[H]=G)];return D.i=U,D.j=H,j})(o)}function d(w,_){return _.i=w.i,_.j=w.j,_.S=w.S.slice(),_}function h(w,_){var k=[],D=typeof w,T;if(_&&D=="object")for(T in w)try{k.push(h(w[T],_-1))}catch(R){}return k.length?k:D=="string"?w:w+"\0"}function g(w,_){for(var k=w+"",D,T=0;T<k.length;)_[c&T]=c&(D^=_[c&T]*19)+k.charCodeAt(T++);return b(_)}function x(){try{var w;return p&&(w=p.randomBytes)?w=w(o):(w=new Uint8Array(o),(r.crypto||r.msCrypto).getRandomValues(w)),b(w)}catch(D){var _=r.navigator,k=_&&_.plugins;return[+new Date,r,k,r.screen,b(e)]}}function b(w){return String.fromCharCode.apply(0,w)}if(g(t.random(),e),typeof dy=="object"&&dy.exports){dy.exports=m;try{p=t_()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):t["seed"+a]=m})(typeof self!="undefined"?self:eB,[],Math)});var oI=Ht((QBt,rB)=>{var _re=W3(),kre=U3(),vre=q3(),Cre=X3(),Ire=Z3(),Nre=Q3(),Ku=tB();Ku.alea=_re;Ku.xor128=kre;Ku.xorwow=vre;Ku.xorshift7=Cre;Ku.xor4096=Ire;Ku.tychei=Nre;rB.exports=Ku});var EB=Ht(()=>{});var dm={};Ge(dm,{bin:()=>FI,browser:()=>BI,default:()=>zV,dependencies:()=>zI,description:()=>NI,devDependencies:()=>MI,jsdelivr:()=>EI,license:()=>PI,main:()=>TI,miniprogram:()=>RI,module:()=>AI,name:()=>CI,private:()=>SI,repository:()=>OI,scripts:()=>LI,types:()=>$I,unpkg:()=>DI,version:()=>II});var CI="@tensorflow/tfjs",II="3.3.0",NI="An open-source machine learning framework.",SI=!1,TI="dist/tf.node.js",AI="dist/index.js",EI="dist/tf.min.js",DI="dist/tf.min.js",$I="dist/index.d.ts",RI="dist/miniprogram",FI={"tfjs-custom-module":"dist/tools/custom_module/cli.js"},OI={type:"git",url:"https://github.com/tensorflow/tfjs.git"},PI="Apache-2.0",MI={"@babel/core":"^7.9.0","@babel/polyfill":"^7.10.4","@babel/preset-env":"^7.9.5","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@types/argparse":"^1.0.38","@types/jasmine":"2.8.7","@types/node":"~10.17.50","@types/shelljs":"^0.8.4","@types/yargs":"^15.0.7","clang-format":"~1.2.2",commander:"~2.14.1",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~4.2.0","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~4.1.1","karma-typescript-es6-transform":"^5.1.0","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-babel":"^4.4.0","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.1","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21"},LI={build:"tsc && yarn build-cli && yarn bundle","build-ci":"tsc && yarn build-cli && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-converter":"cd ../tfjs-converter && yarn && yarn build","build-converter-ci":"cd ../tfjs-converter && yarn && yarn build-ci","build-data":"cd ../tfjs-data && yarn && yarn build","build-data-ci":"cd ../tfjs-data && yarn && yarn build-ci","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-converter && yarn build-data && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-converter-ci && yarn build-data-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-cli":"tsc --project ./tools/custom_module/tsconfig.json && chmod +x ./dist/tools/custom_module/cli.js","run-custom-build":"ts-node -s ./tools/custom_module/cli.ts","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",test:"yarn && yarn build-deps && yarn build && karma start","test-dev":"karma start","test-tools":"ts-node --project ./tools/custom_module/tsconfig.json run_tools_tests.ts","test-ci":"./scripts/test-ci.sh"},zI={"@tensorflow/tfjs-backend-cpu":"3.3.0","@tensorflow/tfjs-backend-webgl":"3.3.0","@tensorflow/tfjs-converter":"3.3.0","@tensorflow/tfjs-core":"3.3.0","@tensorflow/tfjs-data":"3.3.0","@tensorflow/tfjs-layers":"3.3.0",argparse:"^1.0.10",chalk:"^4.1.0","core-js":"3","regenerator-runtime":"^0.13.5",yargs:"^16.0.3"},BI={"node-fetch":!1,util:!1,crypto:!1},zV={name:CI,version:II,description:NI,private:SI,main:TI,module:AI,jsdelivr:EI,unpkg:DI,types:$I,miniprogram:RI,bin:FI,repository:OI,license:PI,devDependencies:MI,scripts:LI,dependencies:zI,browser:BI};var hm={};Ge(hm,{browser:()=>nN,default:()=>BV,dependencies:()=>oN,description:()=>WI,devDependencies:()=>tN,engines:()=>JI,jsdelivr:()=>HI,"jsnext:main":()=>XI,license:()=>eN,main:()=>UI,miniprogram:()=>ZI,module:()=>YI,name:()=>VI,private:()=>jI,repository:()=>QI,scripts:()=>rN,sideEffects:()=>sN,types:()=>KI,unpkg:()=>qI,version:()=>GI});var VI="@tensorflow/tfjs-core",GI="3.3.0",WI="Hardware-accelerated JavaScript library for machine intelligence",jI=!1,UI="dist/tf-core.node.js",HI="dist/tf-core.min.js",qI="dist/tf-core.min.js",KI="dist/index.d.ts",XI="dist/index.js",YI="dist/index.js",ZI="dist/miniprogram",JI={yarn:">= 1.3.2"},QI={type:"git",url:"https://github.com/tensorflow/tfjs-core.git"},eN="Apache-2.0",tN={"@bazel/bazelisk":"^1.3.0","@bazel/typescript":"^0.27.8","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"link:../tfjs-backend-cpu","@types/jasmine":"~3.0.0","@types/node":"~9.6.0","@types/node-fetch":"~2.1.2","clang-format":"~1.2.4",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~4.2.0","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-jasmine":"~1.1.0","karma-typescript":"~4.1.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.3","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21",yargs:"~13.2.2"},rN={"build-ci":"./scripts/enumerate-tests.js --ci && tsc && yarn bundle-ci && yarn build-test-snippets",build:"node ./scripts/enumerate-tests.js && tsc && yarn bundle",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-npm":"./scripts/build-npm.sh","build-deps":"yarn build && yarn build-cpu-backend","build-cpu-backend":"cd ../tfjs-backend-cpu && yarn && yarn build","build-cpu-backend-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build:bazel":"bazelisk build //...","build-test-snippets":"yarn tsc --project ./scripts/test_snippets/tsconfig.json","format-all":"clang-format -i -style=Google --glob=src/**/*.ts","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build && rollup -c && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-webworker":"karma start --worker","run-browserstack":"karma start --browserstack","test-bundle-size":"./scripts/test-bundle-size.js","test-node":"rimraf dist/ && yarn build-deps && yarn build && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-dev":"tsc && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_node.js","test-async-backends":"rimraf dist/ && yarn build && ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-async-backends-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-snippets":"yarn build && yarn build-cpu-backend && ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts","test-snippets-ci":"ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts"},oN={"@types/offscreencanvas":"~2019.3.0","@types/seedrandom":"2.4.27","@types/webgl-ext":"0.0.30","node-fetch":"~2.6.1",seedrandom:"2.4.3"},nN={"node-fetch":!1,util:!1,crypto:!1,worker_threads:!1},sN=["./dist/index.js","./dist/engine.js","./dist/tensor.js","./dist/base_side_effects.js","./dist/flags.js","./dist/platforms/*.js","./dist/register_all_gradients.js","./dist/public/chained_ops/*.js","./dist/io/*.js"],BV={name:VI,version:GI,description:WI,private:jI,main:UI,jsdelivr:HI,unpkg:qI,types:KI,"jsnext:main":XI,module:YI,miniprogram:ZI,engines:JI,repository:QI,license:eN,devDependencies:tN,scripts:rN,dependencies:oN,browser:nN,sideEffects:sN};var gm={};Ge(gm,{browser:()=>kN,default:()=>VV,dependencies:()=>_N,description:()=>lN,devDependencies:()=>yN,jsdelivr:()=>pN,"jsnext:main":()=>dN,license:()=>xN,main:()=>cN,miniprogram:()=>gN,module:()=>hN,name:()=>iN,peerDependencies:()=>wN,private:()=>uN,scripts:()=>bN,types:()=>fN,unpkg:()=>mN,version:()=>aN});var iN="@tensorflow/tfjs-data",aN="3.3.0",lN="TensorFlow Data API in JavaScript",uN=!1,cN="dist/tf-data.node.js",pN="dist/tf-data.min.js",mN="dist/tf-data.min.js",fN="dist/index.d.ts",dN="dist/index.js",hN="dist/index.js",gN="dist/miniprogram",xN="Apache-2.0",yN={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.3.0","@tensorflow/tfjs-core":"3.3.0","@tensorflow/tfjs-layers":"3.3.0","@types/jasmine":"~2.5.53","@types/seedrandom":"^2.4.27","@types/utf8":"~2.1.6","clang-format":"~1.2.2","http-server":"~0.10.0",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~4.0.1","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~4.0.0","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2","ts-node":"~7.0.0",tslint:"~5.11.0","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"^1.0.0-pre.23"},bN={build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-backend-cpu-ci","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-dev":"tsc && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-browsers":"karma start --browsers='Chrome,Firefox'","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/test_node.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose"},wN={"@tensorflow/tfjs-core":"3.3.0",seedrandom:"~2.4.3"},_N={"@types/node-fetch":"^2.1.2","node-fetch":"~2.6.1"},kN={fs:!1,"node-fetch":!1,string_decoder:!1,crypto:!1},VV={name:iN,version:aN,description:lN,private:uN,main:cN,jsdelivr:pN,unpkg:mN,types:fN,"jsnext:main":dN,module:hN,miniprogram:gN,license:xN,devDependencies:yN,scripts:bN,peerDependencies:wN,dependencies:_N,browser:kN};var xm={};Ge(xm,{default:()=>GV,description:()=>IN,devDependencies:()=>ON,jsdelivr:()=>$N,"jsnext:main":()=>EN,license:()=>NN,main:()=>TN,miniprogram:()=>FN,module:()=>DN,name:()=>vN,peerDependencies:()=>MN,private:()=>SN,scripts:()=>PN,types:()=>AN,unpkg:()=>RN,version:()=>CN});var vN="@tensorflow/tfjs-layers",CN="3.3.0",IN="TensorFlow layers API in JavaScript",NN="Apache-2.0 AND MIT",SN=!1,TN="dist/tf-layers.node.js",AN="dist/index.d.ts",EN="dist/index.js",DN="dist/index.js",$N="dist/tf-layers.min.js",RN="dist/tf-layers.min.js",FN="dist/miniprogram",ON={"@babel/polyfill":"^7.8.7","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.3.0","@tensorflow/tfjs-backend-webgl":"3.3.0","@tensorflow/tfjs-core":"3.3.0","@types/jasmine":"~2.5.53","clang-format":"~1.2.2","http-server":"~0.10.0",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~4.2.0","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.2.0","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"^0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21"},PN={prep:"yarn install && yarn build-ci",build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-npm":"./scripts/build-npm.sh",format:"./tools/clang_format_ts.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts","run-browserstack":"karma start --browsers='bs_chrome_mac' --singleRun --reporters='dots,karma-typescript'",lint:"tslint -p . -t verbose"},MN={"@tensorflow/tfjs-core":"3.3.0"},GV={name:vN,version:CN,description:IN,license:NN,private:SN,main:TN,types:AN,"jsnext:main":EN,module:DN,jsdelivr:$N,unpkg:RN,miniprogram:FN,devDependencies:ON,scripts:PN,peerDependencies:MN};var ym={};Ge(ym,{default:()=>WV,description:()=>BN,devDependencies:()=>ZN,jsdelivr:()=>HN,"jsnext:main":()=>GN,license:()=>XN,main:()=>VN,miniprogram:()=>qN,module:()=>WN,name:()=>LN,peerDependencies:()=>YN,repository:()=>KN,scripts:()=>JN,types:()=>jN,unpkg:()=>UN,version:()=>zN});var LN="@tensorflow/tfjs-converter",zN="3.3.0",BN="Tensorflow model converter for javascript",VN="dist/tf-converter.node.js",GN="dist/index.js",WN="dist/index.js",jN="dist/index.d.ts",UN="dist/tf-converter.min.js",HN="dist/tf-converter.min.js",qN="dist/miniprogram",KN={type:"git",url:"https://github.com/tensorflow/tfjs-converter.git"},XN="Apache-2.0",YN={"@tensorflow/tfjs-core":"3.3.0"},ZN={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-replace":"^2.3.3","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.3.0","@tensorflow/tfjs-core":"3.3.0","@types/argparse":"^1.0.38","@types/deep-equal":"^1.0.1","@types/jasmine":"~2.8.6","@types/long":"~3.0.32","@types/node-fetch":"1.6.9",ajv:"~6.3.0",argparse:"^1.0.10","babel-core":"~6.26.3","babel-plugin-external-helpers":"~6.22.0","babel-preset-env":"~1.7.0","clang-format":"~1.2.2",copyfiles:"~1.2.0","deep-equal":"^1.0.1","jasmine-core":"~3.5.0","node-fetch":"~2.6.1",opn:"~5.1.0",protobufjs:"~6.8.6",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2","ts-morph":"^7.1.3","ts-node":"~8.8.2",tslint:"~5.8.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21"},JN={build:"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle","build-ci":"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && yarn gen-json --test && yarn gen-kernel2ops && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/run_tests.ts","test-dev":"tsc && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose","make-version":"sh -c ./scripts/make-version","gen-doc":"ts-node -s ./scripts/gen_doc.ts","gen-json":"ts-node -s ./scripts/gen_json.ts","model-summary":"ts-node -s ./tools/model_summary.ts",pb2json:"ts-node -s ./tools/pb2json_converter.ts","build-pip-package":"yarn gen-json --test && cd python && ./build-pip-package.sh --test /tmp/tfjs-pips","run-python-tests":"yarn gen-json --test && cd python && ./run-python-tests.sh","gen-kernel2ops":"ts-node -s scripts/kernels_to_ops.ts --out metadata/kernel2op.json"},WV={name:LN,version:zN,description:BN,main:VN,"jsnext:main":GN,module:WN,types:jN,unpkg:UN,jsdelivr:HN,miniprogram:qN,repository:KN,license:XN,peerDependencies:YN,devDependencies:ZN,scripts:JN};var jV=1e-7,UV=1e-4,Va=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},$s=class{refCount(e){return Uo("refCount")}incRef(e){return Uo("incRef")}timerAvailable(){return!0}time(e){return Uo("time")}read(e){return Uo("read")}readSync(e){return Uo("readSync")}numDataIds(){return Uo("numDataIds")}disposeData(e,t){return Uo("disposeData")}write(e,t,o){return Uo("write")}move(e,t,o,n,s){return Uo("move")}memory(){return Uo("memory")}floatPrecision(){return Uo("floatPrecision")}epsilon(){return this.floatPrecision()===32?jV:UV}dispose(){return Uo("dispose")}};function Uo(r){throw new Error(`'${r}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function QN(r){let e=r.length,t=0,o=0;for(;e>0;)o=Math.random()*e|0,e--,t=r[e],r[e]=r[o],r[o]=t}function HV(r,e){if(r.length!==e.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${r.length}Second array length was ${e.length}`);let t=r.length,o,n,s=0;for(;t>0;)s=Math.random()*t|0,t--,o=r[t],n=e[t],r[t]=r[s],e[t]=e[s],r[s]=o,e[s]=n}function lc(r,e,t){return Math.max(r,Math.min(e,t))}function qV(r){return r%2==0?r:r+1}function KV(r){let e=0;for(let t=0;t<r.length;t++)e+=r[t];return e}function XV(r,e){let t=Math.random();return e*t+(1-t)*r}function YV(r,e){let t=0;for(let o=0;o<r.length;o++){let n=Number(r[o])-Number(e[o]);t+=n*n}return t}function A(r,e){if(!r)throw new Error(typeof e=="string"?e:e())}function vt(r,e,t=""){A(Kr(r,e),()=>t+` Shapes ${r} and ${e} must match`)}function Ro(r){A(r!=null,()=>"The input to the tensor constructor must be a non-null value.")}function wn(r,e=[],t=!1){if(e==null&&(e=[]),Array.isArray(r)||sr(r)&&!t)for(let o=0;o<r.length;++o)wn(r[o],e,t);else e.push(r);return e}function ct(r){if(r.length===0)return 1;let e=r[0];for(let t=1;t<r.length;t++)e*=r[t];return e}function ZV(r){return r.length===0}function Kr(r,e){if(r===e)return!0;if(r==null||e==null||r.length!==e.length)return!1;for(let t=0;t<r.length;t++)if(r[t]!==e[t])return!1;return!0}function ot(r){return r%1==0}function JV(r){if(Math.tanh!=null)return Math.tanh(r);if(r===Infinity)return 1;if(r===-Infinity)return-1;{let e=Math.exp(2*r);return(e-1)/(e+1)}}function QV(r){let e=Math.ceil(Math.sqrt(r));return[e,Math.ceil(r/e)]}function eG(r){let e=new Uint32Array(r);for(let t=0;t<r;++t)e[t]=t;return QN(e),e}function Pl(r,e){return e<=r.length?r:r+" ".repeat(e-r.length)}function tG(r,e=o=>0,t){return new Promise((o,n)=>{let s=0,a=()=>{if(r()){o();return}s++;let i=e(s);if(t!=null&&s>=t){n();return}setTimeout(a,i)};a()})}function rG(r,e){let t=1,o=-1;for(let s=0;s<r.length;++s)if(r[s]>=0)t*=r[s];else if(r[s]===-1){if(o!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${o} and dim ${s}`);o=s}else if(r[s]<0)throw Error(`Shapes can not be < 0. Found ${r[s]} at dim ${s}`);if(o===-1){if(e>0&&e!==t)throw Error(`Size(${e}) must match the product of shape ${r}`);return r}if(t===0)throw Error(`Cannot infer the missing size in [${r}] when there are 0 elements`);if(e%t!=0)throw Error(`The implicit shape can't be a fractional number. Got ${e} / ${t}`);let n=r.slice();return n[o]=e/t,n}function Qt(r,e){let t=e.length;return r=r==null?e.map((o,n)=>n):[].concat(r),A(r.every(o=>o>=-t&&o<t),()=>`All values in axis param must be in range [-${t}, ${t}) but got axis ${r}`),A(r.every(o=>ot(o)),()=>`All values in axis param must be integers but got axis ${r}`),r.map(o=>o<0?t+o:o)}function Ob(r,e){let t=[],o=[],n=e!=null&&Array.isArray(e)&&e.length===0,s=e==null||n?null:Qt(e,r).sort(),a=0;for(let i=0;i<r.length;++i){if(s!=null){if(s[a]===i&&r[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${r[i]}' is not 1`);(s[a]==null||s[a]>i)&&r[i]===1&&(t.push(r[i]),o.push(i)),s[a]<=i&&a++}r[i]!==1&&(t.push(r[i]),o.push(i))}return{newShape:t,keptDims:o}}function Pb(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else throw new Error(`Unknown data type ${r}`);return t}function Mb(r,e){let t=null;if(r==null||r==="float32")t=new Float32Array(e);else if(r==="int32")t=new Int32Array(e);else if(r==="bool")t=new Uint8Array(e);else if(r==="string")t=new Array(e);else throw new Error(`Unknown data type ${r}`);return t}function Lb(r,e){for(let t=0;t<r.length;t++){let o=r[t];if(isNaN(o)||!isFinite(o))throw Error(`A tensor of type ${e} being uploaded contains ${o}.`)}}function zb(r){return r==="bool"||r==="complex64"||r==="float32"||r==="int32"||r==="string"}function oG(r,e){return!(e==="complex64"||e==="float32"&&r!=="complex64"||e==="int32"&&r!=="float32"&&r!=="complex64"||e==="bool"&&r==="bool")}function sr(r){return r instanceof Float32Array||r instanceof Int32Array||r instanceof Uint8Array}function Uh(r){if(r==="float32"||r==="int32")return 4;if(r==="complex64")return 8;if(r==="bool")return 1;throw new Error(`Unknown dtype ${r}`)}function Bb(r){if(r==null)return 0;let e=0;return r.forEach(t=>e+=t.length),e}function _n(r){return typeof r=="string"||r instanceof String}function eS(r){return typeof r=="boolean"}function tS(r){return typeof r=="number"}function uc(r){return Array.isArray(r)?uc(r[0]):r instanceof Float32Array?"float32":r instanceof Int32Array||r instanceof Uint8Array?"int32":tS(r)?"float32":_n(r)?"string":eS(r)?"bool":"float32"}function Rs(r){return!!(r&&r.constructor&&r.call&&r.apply)}function cc(r,e){for(let t=e;t<r;++t)if(r%t==0)return t;return r}function Fs(r){let e=r.length;if(e<2)return[];let t=new Array(e-1);t[e-2]=r[e-1];for(let o=e-3;o>=0;--o)t[o]=t[o+1]*r[o+1];return t}function rS(r,e,t){let o=new Array;if(e.length===1){let n=e[0];for(let s=0;s<n;s++)o[s]=t[r+s]}else{let n=e[0],s=e.slice(1),a=s.reduce((i,l)=>i*l);for(let i=0;i<n;i++)o[i]=rS(r+i*a,s,t)}return o}function Ml(r,e){if(r.length===0)return e[0];let t=r.reduce((o,n)=>o*n);if(t===0)return[];if(t!==e.length)throw new Error(`[${r}] does not match the input size ${e.length}.`);return rS(0,r,e)}function bm(r,e){let t=pc(r,e);for(let o=0;o<t.length;o++)t[o]=1;return t}function pc(r,e){if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool")return new Uint8Array(r);throw new Error(`Unknown data type ${e}`)}function nG(r,e){let t=r.reduce((o,n)=>o*n,1);if(e==null||e==="float32")return Ml(r,new Float32Array(t));if(e==="int32")return Ml(r,new Int32Array(t));if(e==="bool")return Ml(r,new Uint8Array(t));throw new Error(`Unknown data type ${e}`)}function wm(r){r.forEach(e=>{A(Number.isInteger(e)&&e>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${r}].`)})}function sG(r,e,t){if(e===0)return 0;if(e===1)return r[0];let o=r[r.length-1];for(let n=0;n<r.length-1;++n)o+=t[n]*r[n];return o}function iG(r,e,t){if(e===0)return[];if(e===1)return[r];let o=new Array(e);for(let n=0;n<o.length-1;++n)o[n]=Math.floor(r/t[n]),r-=o[n]*t[n];return o[o.length-1]=r,o}function _m(r){return r&&r.then&&typeof r.then=="function"}var oS="tfjsflags",Hh=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,o){if(this.flagRegistry[e]={evaluationFn:t,setHook:o},this.urlFlags[e]!=null){let n=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${n}.`),this.set(e,n)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(_m(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=aG(this.global.location.search);oS in e&&e[oS].split(",").forEach(o=>{let[n,s]=o.split(":");this.urlFlags[n]=lG(n,s)})}};function aG(r){let e={};return r.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(t,...o)=>(uG(e,o[0],o[1]),o.join("="))),e}function uG(r,e,t){r[decodeURIComponent(e)]=decodeURIComponent(t||"")}function lG(r,e){if(e=e.toLowerCase(),e==="true"||e==="false")return e==="true";if(`${+e}`===e)return+e;throw new Error(`Could not parse value flag value ${e} for flag ${r}.`)}function W(){return Vb}var Vb=null;function nS(r){Vb=r}var Gb;function Wb(){if(Gb==null){let r;if(typeof window!="undefined")r=window;else if(typeof global!="undefined")r=global;else if(typeof process!="undefined")r=process;else if(typeof self!="undefined")r=self;else throw new Error("Could not find a global object");Gb=r}return Gb}function cG(){let r=Wb();return r._tfGlobals==null&&(r._tfGlobals=new Map),r._tfGlobals}function km(r,e){let t=cG();if(t.has(r))return t.get(r);{let o=e();return t.set(r,o),t.get(r)}}var Os="Abs",yi="Acos",bi="Acosh",Fo="Add",kn="AddN",mc="All",fc="Any",vn="ArgMax",Ga="ArgMin",wi="Asin",_i="Asinh",ki="Atan",vi="Atanh",Ci="Atan2",Cn="AvgPool",dc="AvgPoolGrad",Wa="AvgPool3D",hc="AvgPool3DGrad",In="BatchMatMul",ja="BatchToSpaceND",gc="Bincount",sS="BroadcastTo",Ho="Cast",Nn="Ceil",qo="ClipByValue",xc="Complex",Ua="ComplexAbs",Ps="Concat",Sn="Conv2D",yc="Conv2DBackpropFilter",Tn="Conv2DBackpropInput",Ha="Conv3D",bc="Conv3DBackpropFilterV2",wc="Conv3DBackpropInputV2",An="Cos",Ii="Cosh",En="Cumsum",Ni="CropAndResize",_c="DenseBincount",Si="DepthToSpace",Dn="DepthwiseConv2dNative",kc="DepthwiseConv2dNativeBackpropFilter",vc="DepthwiseConv2dNativeBackpropInput",Cc="Diag",qa="Dilation2D",vm="Dilation2DBackpropInput",Cm="Dilation2DBackpropFilter",$n="RealDiv",Ti="Elu",Ic="EluGrad",Ai="Erf",Ei="Equal",Rn="Exp",Ms="ExpandDims",Di="Expm1",Nc="FFT",Ka="Fill",$i="FlipLeftRight",Fn="Floor",On="FloorDiv",Pn="FusedBatchNorm",Ls="GatherV2",Ri="GatherNd",Fi="Greater",Mn="GreaterEqual",Ko="Identity",Sc="IFFT",Tc="Imag",Oi="IsFinite",Pi="IsInf",Mi="IsNan",Ln="LeakyRelu",Li="Less",zi="LessEqual",Ac="LinSpace",zn="Log",Bi="Log1p",Vi="LogicalAnd",Ll="LogicalNot",zl="LogicalOr",iS="LogSoftmax",Xa="LRN",Ec="LRNGrad",Bn="Max",Vn="Maximum",Gn="MaxPool",Dc="MaxPoolGrad",Ya="MaxPool3D",$c="MaxPool3DGrad",Rc="MaxPoolWithArgmax",Wn="Mean",jn="Min",Un="Minimum",Za="MirrorPad",Gi="Mod",Fc="Multinomial",Hn="Multiply",zs="Neg",Wi="NotEqual",ji="NonMaxSuppressionV3",Ui="NonMaxSuppressionV4",Hi="NonMaxSuppressionV5",Bs="OnesLike",qn="OneHot",Vs="Pack",Kn="PadV2",zre="Pool",Xn="Pow",Yn="Prelu",qi="Prod",Ja="Range",Oc="Real",Ki="Reciprocal",Zn="Relu",Gs="Reshape",Qa="ResizeNearestNeighbor",Pc="ResizeNearestNeighborGrad",Jn="ResizeBilinear",Mc="ResizeBilinearGrad",Qn="Relu6",es="Reverse",ts="Round",rs="Rsqrt",Xi="ScatterNd",Ws="Select",Yi="Selu",js="Slice",os="Sin",Zi="Sinh",Ji="Sign",ns="Sigmoid",Qi="Softplus",ss="Sqrt",is="Sum",el="SpaceToBatchND",Us="SplitV",as="Softmax",ls="SquaredDifference",tl="Square",us="Sub",Lc="SparseToDense",ea="StridedSlice",ta="Tan",cs="Tanh",Oo="Tile",ra="TopK",zc="Transform",ps="Transpose",Bc="Unique",Hs="Unpack",rl="UnsortedSegmentSum",qs="ZerosLike",Xo="Step",Im="FromPixels",oa="RotateWithOffset",Ks="_FusedMatMul",Xs="FusedConv2D",Ys="FusedDepthwiseConv2D";var Vc=km("kernelRegistry",()=>new Map),Nm=km("gradRegistry",()=>new Map);function Sm(r,e){let t=jb(r,e);return Vc.get(t)}function Ub(r){return Nm.get(r)}function qh(r){let e=Vc.entries(),t=[];for(;;){let{done:o,value:n}=e.next();if(o)break;let[s,a]=n,[i]=s.split("_");i===r&&t.push(a)}return t}function Bl(r){let{kernelName:e,backendName:t}=r,o=jb(e,t);Vc.has(o)&&console.warn(`The kernel '${e}' for backend '${t}' is already registered`),Vc.set(o,r)}function aS(r){let{kernelName:e}=r;Nm.has(e)&&W().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${e}'`),Nm.set(e,r)}function Wre(r,e){let t=jb(r,e);if(!Vc.has(t))throw new Error(`The kernel '${r}' for backend '${e}' is not registered`);Vc.delete(t)}function jre(r){if(!Nm.has(r))throw new Error(`The gradient '${r}' for backend is not registered`);Nm.delete(r)}function Ure(r,e){qh(r).forEach(o=>{let n=Object.assign({},o,{backendName:e});Bl(n)})}function jb(r,e){return`${e}_${r}`}var y={};Ge(y,{arraysEqual:()=>Kr,assert:()=>A,assertNonNegativeIntegerDimensions:()=>wm,assertNonNull:()=>Ro,assertShapesMatch:()=>vt,bytesFromStringArray:()=>Bb,bytesPerElement:()=>Uh,checkConversionForErrors:()=>Lb,clamp:()=>lc,computeStrides:()=>Fs,createScalarValue:()=>pG,createShuffledIndices:()=>eG,decodeString:()=>Wc,distSquared:()=>YV,encodeString:()=>ol,fetch:()=>fG,flatten:()=>wn,getArrayFromDType:()=>Mb,getTypedArrayFromDType:()=>Pb,hasEncodingLoss:()=>oG,indexToLoc:()=>iG,inferDtype:()=>uc,inferFromImplicitShape:()=>rG,isBoolean:()=>eS,isFunction:()=>Rs,isInt:()=>ot,isNumber:()=>tS,isPromise:()=>_m,isScalarShape:()=>ZV,isString:()=>_n,isTypedArray:()=>sr,isValidDtype:()=>zb,locToIndex:()=>sG,makeOnesTypedArray:()=>bm,makeZerosNestedTypedArray:()=>nG,makeZerosTypedArray:()=>pc,nearestDivisor:()=>cc,nearestLargerEven:()=>qV,now:()=>Vl,parseAxisParam:()=>Qt,randUniform:()=>XV,repeatedTry:()=>tG,rightPad:()=>Pl,shuffle:()=>QN,shuffleCombo:()=>HV,sizeFromShape:()=>ct,sizeToSquarishShape:()=>QV,squeezeShape:()=>Ob,sum:()=>KV,tanh:()=>JV,toNestedArray:()=>Ml,toTypedArray:()=>Gc});function pG(r,e){return e==="string"?ol(r):Gc([r],e)}function mG(r,e){return r instanceof Float32Array&&e==="float32"||r instanceof Int32Array&&e==="int32"||r instanceof Uint8Array&&e==="bool"}function Gc(r,e){if(e==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(r)&&(r=wn(r)),W().getBool("DEBUG")&&Lb(r,e),mG(r,e))return r;if(e==null||e==="float32"||e==="complex64")return new Float32Array(r);if(e==="int32")return new Int32Array(r);if(e==="bool"){let t=new Uint8Array(r.length);for(let o=0;o<t.length;++o)Math.round(r[o])!==0&&(t[o]=1);return t}else throw new Error(`Unknown data type ${e}`)}function Vl(){return W().platform.now()}function fG(r,e){return W().platform.fetch(r,e)}function ol(r,e="utf-8"){return e=e||"utf-8",W().platform.encode(r,e)}function Wc(r,e="utf-8"){return e=e||"utf-8",W().platform.decode(r,e)}var Hb=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new lS)}profileKernel(e,t,o){let n,s=()=>{n=o()},a,i=Vl();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(s);else{s();for(let u of n)u.dataSync();a=Promise.resolve({kernelMs:Vl()-i})}if(W().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let u=0;u<n.length;u++){let c=n[u];c.data().then(p=>{dG(p,c.dtype,e)})}return{kernelName:e,outputs:n,inputs:t,timeMs:a.then(u=>u.kernelMs),extraInfo:a.then(u=>u.getExtraProfileInfo!=null?u.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:o,timeMs:n,inputs:s,extraInfo:a}=e;o.forEach(i=>{Promise.all([i.data(),n,a]).then(l=>{this.logger.logKernelProfile(t,i,l[0],l[1],s,l[2])})})}};function dG(r,e,t){if(e!=="float32")return!1;for(let o=0;o<r.length;o++){let n=r[o];if(isNaN(n)||!isFinite(n))return console.warn(`Found ${n} in the result of '${t}'`),!0}return!1}var lS=class{logKernelProfile(e,t,o,n,s,a){let i=typeof n=="number"?Pl(`${n}ms`,9):n.error,l=Pl(e,25),u=t.rank,c=t.size,p=Pl(t.shape.toString(),14),m="";for(let f in s){let d=s[f];if(d!=null){let h=d.shape||t.shape,g=h.length;m+=`${f}: ${g}D ${g>0?h:""} `}}console.log(`%c${l} %c${i} %c${u}D ${p} %c${c} %c${m} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function uS(r,e,t){let o={},n={};for(let l=0;l<e.length;l++)o[e[l].id]=!0;for(let l=0;l<r.length;l++){let u=r[l],c=u.inputs;for(let p in c){let m=c[p],f=!1;for(let d=0;d<e.length;d++)if(o[m.id]){u.outputs.forEach(h=>o[h.id]=!0),f=!0,n[u.id]=!0;break}if(f)break}}let s={};s[t.id]=!0;let a={};for(let l=r.length-1;l>=0;l--){let u=r[l],c=u.inputs;for(let p=0;p<u.outputs.length;p++)if(s[u.outputs[p].id]){for(let m in c)s[c[m].id]=!0,a[u.id]=!0;break}}let i=[];for(let l=0;l<r.length;l++){let u=r[l];if(n[u.id]&&a[u.id]){let c={};for(let m in u.inputs){let f=u.inputs[m];o[f.id]&&(c[m]=f)}let p=Object.assign({},u);p.inputs=c,p.outputs=u.outputs,i.push(p)}}return i}function cS(r,e,t,o){for(let n=e.length-1;n>=0;n--){let s=e[n],a=[];if(s.outputs.forEach(l=>{let u=r[l.id];u!=null?a.push(u):a.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let i=s.gradient(a);for(let l in s.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=t(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!Kr(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(r[c.id]==null)r[c.id]=u;else{let p=r[c.id];r[c.id]=o(p,u),p.dispose()}}}}var pS=20,Tm=3,qb=7;function mS(r,e,t,o){let n=Fs(e),s=hG(r,e,t,n),a=e.length,i=Kh(r,e,t,n,s),l=["Tensor"];return o&&(l.push(` dtype: ${t}`),l.push(` rank: ${a}`),l.push(` shape: [${e}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
`)),l.join(`
`)}function hG(r,e,t,o){let n=ct(e),s=o[o.length-1],a=new Array(s).fill(0),i=e.length,l=t==="complex64"?Em(r):r;if(i>1)for(let u=0;u<n/s;u++){let c=u*s;for(let p=0;p<s;p++)a[p]=Math.max(a[p],Am(l[c+p],0,t).length)}return a}function Am(r,e,t){let o;return Array.isArray(r)?o=`${parseFloat(r[0].toFixed(qb))} + ${parseFloat(r[1].toFixed(qb))}j`:_n(r)?o=`'${r}'`:t==="bool"?o=fS(r):o=parseFloat(r.toFixed(qb)).toString(),Pl(o,e)}function fS(r){return r===0?"false":"true"}function Kh(r,e,t,o,n,s=!0){let a=t==="complex64"?2:1,i=e[0],l=e.length;if(l===0){if(t==="complex64"){let h=Em(r);return[Am(h[0],0,t)]}return t==="bool"?[fS(r[0])]:[r[0].toString()]}if(l===1){if(i>pS){let g=Tm*a,x=Array.from(r.slice(0,g)),b=Array.from(r.slice((i-Tm)*a,i*a));return t==="complex64"&&(x=Em(x),b=Em(b)),["["+x.map((w,_)=>Am(w,n[_],t)).join(", ")+", ..., "+b.map((w,_)=>Am(w,n[i-Tm+_],t)).join(", ")+"]"]}let h=t==="complex64"?Em(r):Array.from(r);return["["+h.map((g,x)=>Am(g,n[x],t)).join(", ")+"]"]}let u=e.slice(1),c=o.slice(1),p=o[0]*a,m=[];if(i>pS){for(let h=0;h<Tm;h++){let g=h*p,x=g+p;m.push(...Kh(r.slice(g,x),u,t,c,n,!1))}m.push("...");for(let h=i-Tm;h<i;h++){let g=h*p,x=g+p;m.push(...Kh(r.slice(g,x),u,t,c,n,h===i-1))}}else for(let h=0;h<i;h++){let g=h*p,x=g+p;m.push(...Kh(r.slice(g,x),u,t,c,n,h===i-1))}let f=l===2?",":"";m[0]="["+m[0]+f;for(let h=1;h<m.length-1;h++)m[h]=" "+m[h]+f;let d=`,
`;for(let h=2;h<l;h++)d+=`
`;return m[m.length-1]=" "+m[m.length-1]+"]"+(s?"":d),m}function Em(r){let e=[];for(let t=0;t<r.length;t+=2)e.push([r[t],r[t+1]]);return e}var lt=class{constructor(e,t,o){if(this.dtype=t,this.shape=e.slice(),this.size=ct(e),o!=null){let n=o.length;A(n===this.size,()=>`Length of values '${n}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=o||Mb(t,this.size),this.strides=Fs(e)}set(e,...t){t.length===0&&(t=[0]),A(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let o=this.locToIndex(t);this.values[o]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let n of e){if(n<0||n>=this.shape[t]){let s=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(s)}t++}let o=e[e.length-1];for(let n=0;n<e.length-1;++n)o+=this.strides[n]*e[n];return this.values[o]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let o=0;o<e.length-1;++o)t+=this.strides[o]*e[o];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let o=0;o<t.length-1;++o)t[o]=Math.floor(e/this.strides[o]),e-=t[o]*this.strides[o];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Zs().makeTensor(this.values,this.shape,this.dtype)}},Zs=null,jc=null,gG=null;function dS(r){Zs=r}function hS(r){jc=r}function gS(r){gG=r}var Ve=class{constructor(e,t,o,n){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=ct(e),this.strides=Fs(e),this.dataId=o,this.id=n,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return jc.buffer(this.shape,this.dtype,e)}bufferSync(){return jc.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Ml(this.shape,e)}arraySync(){return Ml(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Zs().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(o=>Wc(o))}catch(o){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Zs().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Wc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Zs().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Zs().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return jc.print(this,e)}clone(){return this.throwIfDisposed(),jc.clone(this)}toString(e=!1){let t=this.dataSync();return mS(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),jc.cast(this,e)}variable(e=!0,t,o){return this.throwIfDisposed(),Zs().makeVariable(this,e,t,o)}};Object.defineProperty(Ve,Symbol.hasInstance,{value:r=>!!r&&r.data!=null&&r.dataSync!=null&&r.throwIfDisposed!=null});function F(){return km("Tensor",()=>Ve)}F();var nl=class extends Ve{constructor(e,t,o,n){super(e.shape,e.dtype,e.dataId,n);this.trainable=t,this.name=o}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Kr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Zs().disposeTensor(this),this.dataId=e.dataId,Zs().incRef(this,null)}dispose(){Zs().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(nl,Symbol.hasInstance,{value:r=>r instanceof Ve&&r.assign!=null&&r.assign instanceof Function});var Yo={};Ge(Yo,{assertTypesMatch:()=>Qb,getTensorsInContainer:()=>Dm,isTensorInList:()=>yG,makeTypesMatch:()=>We});var Kb;(function(r){r.R0="R0",r.R1="R1",r.R2="R2",r.R3="R3",r.R4="R4",r.R5="R5",r.R6="R6"})(Kb||(Kb={}));var Xb;(function(r){r.float32="float32",r.int32="int32",r.bool="int32",r.complex64="complex64"})(Xb||(Xb={}));var Yb;(function(r){r.float32="float32",r.int32="int32",r.bool="bool",r.complex64="complex64"})(Yb||(Yb={}));var Zb;(function(r){r.float32="float32",r.int32="float32",r.bool="float32",r.complex64="complex64"})(Zb||(Zb={}));var Jb;(function(r){r.float32="complex64",r.int32="complex64",r.bool="complex64",r.complex64="complex64"})(Jb||(Jb={}));var xG={float32:Zb,int32:Xb,bool:Yb,complex64:Jb};function ir(r,e){if(r==="string"||e==="string"){if(r==="string"&&e==="string")return"string";throw new Error(`Can not upcast ${r} with ${e}`)}return xG[r][e]}function Gl(r){return ir(r,"int32")}function We(r,e){if(r.dtype===e.dtype)return[r,e];let t=ir(r.dtype,e.dtype);return[r.cast(t),e.cast(t)]}function Qb(r,e){A(r.dtype===e.dtype,()=>`The dtypes of the first(${r.dtype}) and second(${e.dtype}) input must match`)}function yG(r,e){return e.some(t=>t.id===r.id)}function Dm(r){let e=[],t=new Set;return xS(r,e,t),e}function xS(r,e,t){if(r==null)return;if(r instanceof Ve){e.push(r);return}if(!bG(r))return;let o=r;for(let n in o){let s=o[n];t.has(s)||(t.add(s),xS(s,e,t))}}function bG(r){return Array.isArray(r)||typeof r=="object"}function ew(r){return r.kernelName!=null}var tw=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Wl=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new tw}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let o=e[t];if(await this.initializeBackend(o).success){await this.setBackend(o);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,o=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:o},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:o}=this.initializeBackend(e);if(!(o?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new Hb(this.backendInstance),!0}setupRegisteredKernels(){qh(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){qh(e).forEach(o=>{o.disposeFunc!=null&&o.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let o=t.factory();if(o&&!(o instanceof $s)&&typeof o.then=="function"){let n=++this.pendingBackendInitId,s=o.then(a=>n<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(n<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(a.stack||a.message)),!1));return this.pendingBackendInit=s,{success:s,asyncInit:!0}}else return this.registry[e]=o,{success:!0,asyncInit:!1}}catch(o){return console.warn(`Initialization of backend ${e} failed`),console.warn(o.stack||o.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let o=e[t],{success:n,asyncInit:s}=this.initializeBackend(o);if(s||n)return{name:o,asyncInit:s}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let o=this.state.tensorInfo.get(t),n=o.backend,s=this.readSync(t),a=n.refCount(t);n.disposeData(t,!0),o.backend=e,e.move(t,s,o.shape,o.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let o=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");o=e}let n;return this.scopedRun(()=>this.startScope(o),()=>this.endScope(n),()=>(n=t(),n instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),n))}scopedRun(e,t,o){e();try{let n=o();return t(),n}catch(n){throw t(),n}}nextTensorId(){return Wl.nextTensorId++}nextVariableId(){return Wl.nextVariableId++}clone(e){let t=E.runKernel(Ko,{x:e}),o={x:e},n=a=>({x:()=>{let i="float32",l={x:a},u={dtype:i};return E.runKernel(Ho,l,u)}}),s=[];return this.addTapeNode(this.state.activeScope.name,o,[t],n,s,{}),t}runKernel(e,t,o){if(!(Sm(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:o})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,o){let n=this.backend.numDataIds(),s=0;o.forEach(l=>{s+=l.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=n-t-s-a;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,o=[],n=this.isTapeOn(),s=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let l,u=ew(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(ew(e)){let{kernelName:d,inputs:h,attrs:g}=e;this.backendName==null&&this.backend;let x=Sm(d,this.backendName);A(x!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();l=x.kernelFunc({inputs:h,attrs:g,backend:this.backend});let w=Array.isArray(l)?l:[l];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,b,w);let _=w.map(k=>{if(k.rank!=null)return k;let{dataId:D,shape:T,dtype:R}=k;return this.makeTensorFromDataId(D,T,R)});if(n){let k=this.getTensorsForGradient(d,h,_);o=this.saveTensorsForBackwardMode(k)}return _}}else{let{forwardFunc:d}=e,h=g=>{!n||(o=g.map(x=>this.keep(this.clone(x))))};i=()=>{let g=this.backend.numDataIds();l=this.tidy(()=>d(this.backend,h));let x=Array.isArray(l)?l:[l];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(u,g,x),x}}let{inputs:c,attrs:p}=e,m=ew(e)?null:e.backwardsFunc,f;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(f=this.profiler.profileKernel(u,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(f),t=f.outputs)}),n&&this.addTapeNode(u,c,t,m,o,p),this.state.profiling&&this.state.activeProfile.kernels.push({name:u,bytesAdded:this.state.numBytes-s,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:t.map(d=>d.shape),kernelTimeMs:f.timeMs,extraInfo:f.extraInfo}),Array.isArray(l)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(o=>this.keep(this.clone(o)))}getTensorsForGradient(e,t,o){let n=Ub(e);if(n!=null){let s=n.inputsToSave||[],a=n.outputsToSave||[],i;n.saveAllInputs?(A(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(u=>t[u])):i=s.map(u=>t[u]);let l=o.filter((u,c)=>a[c]);return i.concat(l)}return[]}makeTensor(e,t,o,n){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");o=o||"float32",n=n||this.backend;let s=e;o==="string"&&_n(e[0])&&(s=e.map(l=>ol(l)));let a=n.write(s,t,o),i=new Ve(t,o,a,this.nextTensorId());if(this.trackTensor(i,n),o==="string"){let l=this.state.tensorInfo.get(a),u=Bb(s);this.state.numBytes+=u-l.bytes,l.bytes=u}return i}makeTensorFromDataId(e,t,o,n){o=o||"float32";let s=new Ve(t,o,e,this.nextTensorId());return this.trackTensor(s,n),s}makeVariable(e,t=!0,o,n){o=o||this.nextVariableId().toString(),n!=null&&n!==e.dtype&&(e=e.cast(n));let s=new nl(e,t,o,this.nextTensorId());if(this.state.registeredVariables[s.name]!=null)throw new Error(`Variable with name ${s.name} was already registered`);return this.state.registeredVariables[s.name]=s,this.incRef(s,this.backend),s}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let o=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(o=e.size*Uh(e.dtype)),this.state.numBytes+=o,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:o})),e instanceof nl||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let o=e.size*Uh(e.dtype);this.state.numBytes-=o}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,o=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(n=>n.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-o;for(let n of this.state.activeProfile.kernels)n.kernelTimeMs=await n.kernelTimeMs,n.extraInfo=await n.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,o,n,s,a){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:o,saved:s},l=Ub(e);l!=null&&(n=l.gradFunc),n!=null&&(i.gradient=u=>(u=u.map((c,p)=>{if(c==null){let m=o[p],f=pc(m.size,m.dtype);return this.makeTensor(f,m.shape,m.dtype)}return c}),n(u.length>1?u:u[0],s,a))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Dm(e),o=new Set(t.map(s=>s.id));for(let s=0;s<this.state.activeScope.track.length;s++){let a=this.state.activeScope.track[s];!a.kept&&!o.has(a.id)&&a.dispose()}let n=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(s=>{!s.kept&&s.scopeId===n.id&&this.track(s)})}gradients(e,t,o,n=!1){if(A(t.length>0,()=>"gradients() received an empty list of xs."),o!=null&&o.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${o.dtype}'`);let s=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));A(s instanceof Ve,()=>"The result y returned by f() must be a tensor.");let a=uS(this.state.activeTape,t,s);if(!n&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[s.id]=o==null?wG(s.shape):o,cS(i,a,u=>this.tidy(u),_G);let l=t.map(u=>i[u.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(u=>{for(let c of u.saved)c.dispose()}),this.state.activeTape=null),{value:s,grads:l}})}customGrad(e){return A(Rs(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{A(t.every(i=>i instanceof Ve),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let o,n={};t.forEach((i,l)=>{n[l]=i});let s=(i,l)=>(o=e(...t,l),A(o.value instanceof Ve,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),A(Rs(o.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),o.value),a=(i,l)=>{let u=o.gradFunc(i,l),c=Array.isArray(u)?u:[u];A(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),A(c.every(m=>m instanceof Ve),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let p={};return c.forEach((m,f)=>{p[f]=()=>m}),p};return this.runKernelFunc({forwardFunc:s,backwardsFunc:a,inputs:n})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Vl(),o=await this.backend.time(e);return o.wallMs=Vl()-t,o}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new tw;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Wl.nextTensorId=0;Wl.nextVariableId=0;function wG(r){let e=bm(ct(r),"float32");return E.makeTensor(e,r,"float32")}function rw(){let r=Wb();if(r._tfengine==null){let e=new Hh(r);r._tfengine=new Wl(e)}return nS(r._tfengine.ENV),dS(()=>r._tfengine),r._tfengine}var E=rw();function _G(r,e){let t={a:r,b:e};return E.runKernel(Fo,t)}var jl={};Ge(jl,{isBrowser:()=>ow,isMobile:()=>vG});function kG(){return typeof navigator!="undefined"&&navigator!=null}function vG(){if(kG()){let r=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(r)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(r.substr(0,4))}return!1}function ow(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ms=W();ms.registerFlag("DEBUG",()=>!1,r=>{r&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ms.registerFlag("IS_BROWSER",()=>ow());ms.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ms.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ms.registerFlag("PROD",()=>!1);ms.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ms.getBool("DEBUG"));ms.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ms.registerFlag("IS_TEST",()=>!1);ms.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ms.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Sr(r,e){let t=r;if(sr(r))return e==="string"?[]:[r.length];if(!Array.isArray(r))return[];let o=[];for(;Array.isArray(t)||sr(t)&&e!=="string";)o.push(t.length),t=t[0];return Array.isArray(r)&&W().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&yS(r,o,[]),o}function yS(r,e,t){if(t=t||[],!Array.isArray(r)&&!sr(r)){A(e.length===0,()=>`Element arr[${t.join("][")}] is a primitive, but should be an array/TypedArray of ${e[0]} elements`);return}A(e.length>0,()=>`Element arr[${t.join("][")}] should be a primitive, but is an array of ${r.length} elements`),A(r.length===e[0],()=>`Element arr[${t.join("][")}] should have ${e[0]} elements, but has ${r.length} elements`);let o=e.slice(1);for(let n=0;n<r.length;++n)yS(r[n],o,t.concat(n))}function bS(r,e,t,o){if(r!=="string_or_numeric"){if(r==null)throw new Error("Expected dtype cannot be null.");if(r!=="numeric"&&r!==e||r==="numeric"&&e==="string")throw new Error(`Argument '${t}' passed to '${o}' must be ${r} tensor, but got ${e} tensor`)}}function v(r,e,t,o="numeric"){if(r instanceof Ve)return bS(o,r.dtype,e,t),r;let n=uc(r);if(n!=="string"&&["bool","int32","float32"].indexOf(o)>=0&&(n=o),bS(o,n,e,t),r==null||!sr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string"){let l=r==null?"null":r.constructor.name;throw new Error(`Argument '${e}' passed to '${t}' must be a Tensor or TensorLike, but got '${l}'`)}let s=Sr(r,n);!sr(r)&&!Array.isArray(r)&&(r=[r]);let i=n!=="string"?Gc(r,n):wn(r,[],!0);return E.makeTensor(i,s,n)}function na(r,e,t,o="numeric"){if(!Array.isArray(r))throw new Error(`Argument ${e} passed to ${t} must be a \`Tensor[]\` or \`TensorLike[]\``);return r.map((s,a)=>v(s,`${e}[${a}]`,t,o))}var wS="__op";function S(r){let e=Object.keys(r);if(e.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${e.length} keys.`);let t=e[0],o=r[t];t.endsWith("_")&&(t=t.substring(0,t.length-1)),t=t+wS;let n=(...s)=>{E.startScope(t);try{let a=o(...s);return _m(a)&&console.error("Cannot return a Promise inside of tidy."),E.endScope(a),a}catch(a){throw E.endScope(null),a}};return Object.defineProperty(n,"name",{value:t,configurable:!0}),n}function CG(r,e){let t=v(r,"real","complex"),o=v(e,"imag","complex");vt(t.shape,o.shape,`real and imag shapes, ${t.shape} and ${o.shape}, must match in call to tf.complex().`);let n={real:t,imag:o};return E.runKernel(xc,n)}var Co=S({complex_:CG});function Xr(r,e,t,o){if(o==null&&(o=uc(r)),o==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!sr(r)&&!Array.isArray(r)&&typeof r!="number"&&typeof r!="boolean"&&typeof r!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(e!=null){wm(e);let n=ct(e),s=ct(t);A(n===s,()=>`Based on the provided shape, [${e}], the tensor should have ${n} values but has ${s}`);for(let a=0;a<t.length;++a){let i=t[a],l=a===t.length-1?i!==ct(e.slice(a)):!0;A(t[a]===e[a]||!l,()=>`Error creating a new Tensor. Inferred shape (${t}) does not match the provided shape (${e}). `)}}return!sr(r)&&!Array.isArray(r)&&(r=[r]),e=e||t,r=o!=="string"?Gc(r,o):wn(r,[],!0),E.makeTensor(r,e,o)}function Pr(r,e,t){let o=Sr(r,t);return Xr(r,e,o,t)}var $m={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8};var Xh=4;async function _S(r,e){let t=[],o=[],n=Array.isArray(r)?r.map(a=>a.name):Object.keys(r);for(let a=0;a<n.length;++a){let i=n[a],l=Array.isArray(r)?r[a].tensor:r[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async p=>{let m=await l.bytes(),f=m.reduce((g,x)=>g+x.length,0)+Xh*m.length,d=new Uint8Array(f),h=0;for(let g=0;g<m.length;g++){let x=m[g],b=new Uint8Array(new Uint32Array([x.length]).buffer);d.set(b,h),h+=Xh,d.set(x,h),h+=x.length}p(d)});o.push(c)}else o.push(l.data());e!=null&&(u.group=e),t.push(u)}let s=await Promise.all(o);return{data:IG(s),specs:t}}function Yh(r,e){let t={},o,n=0;for(let s of e){let a=s.name,i=s.dtype,l=s.shape,u=ct(l),c;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let m=$m[p.dtype],f=r.slice(n,n+u*m),d=p.dtype==="uint8"?new Uint8Array(f):new Uint16Array(f);if(i==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=g*p.scale+p.min}}else if(p.dtype==="float16")o===void 0&&(o=NG()),c=o(d);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(i==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(d.length);for(let h=0;h<d.length;h++){let g=d[h];c[h]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);n+=u*m}else if(i==="string"){let p=ct(s.shape);c=[];for(let m=0;m<p;m++){let f=new Uint32Array(r.slice(n,n+Xh))[0];n+=Xh;let d=new Uint8Array(r.slice(n,n+f));c.push(d),n+=f}}else{let p=$m[i],m=r.slice(n,n+u*p);if(i==="float32")c=new Float32Array(m);else if(i==="int32")c=new Int32Array(m);else if(i==="bool")c=new Uint8Array(m);else if(i==="complex64"){c=new Float32Array(m);let f=new Float32Array(c.length/2),d=new Float32Array(c.length/2);for(let x=0;x<f.length;x++)f[x]=c[x*2],d[x]=c[x*2+1];let h=Pr(f,l,"float32"),g=Pr(d,l,"float32");t[a]=Co(h,g),h.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${a}': ${i}`);n+=u*p}i!=="complex64"&&(t[a]=Pr(c,l,i))}return t}function IG(r){if(r===null)throw new Error(`Invalid input value: ${JSON.stringify(r)}`);let e=0,t=[];r.forEach(s=>{if(e+=s.byteLength,t.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let o=new Uint8Array(e),n=0;return t.forEach(s=>{o.set(new Uint8Array(s.buffer),n),n+=s.byteLength}),o.buffer}var nw=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function kS(r){return nw?Buffer.byteLength(r):new Blob([r]).size}function vS(r){if(nw)return Buffer.from(r).toString("base64");let e=new Uint8Array(r),t="";for(let o=0,n=e.length;o<n;o++)t+=String.fromCharCode(e[o]);return btoa(t)}function CS(r){if(nw){let o=Buffer.from(r,"base64");return o.buffer.slice(o.byteOffset,o.byteOffset+o.byteLength)}let e=atob(r),t=new Uint8Array(e.length);for(let o=0;o<e.length;++o)t.set([e.charCodeAt(o)],o);return t.buffer}function Uc(r){if(r.length===1)return r[0];let e=0;r.forEach(n=>{e+=n.byteLength});let t=new Uint8Array(e),o=0;return r.forEach(n=>{t.set(new Uint8Array(n),o),o+=n.byteLength}),t.buffer}function sw(r){let e="/";for(r=r.trim();r.endsWith(e);)r=r.slice(0,r.length-1);let t=r.split(e);return t[t.length-1]}function Js(r){if(r.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:r.modelTopology==null?0:kS(JSON.stringify(r.modelTopology)),weightSpecsBytes:r.weightSpecs==null?0:kS(JSON.stringify(r.weightSpecs)),weightDataBytes:r.weightData==null?0:r.weightData.byteLength}}function SG(){let r=t=>{let o=t<<13,n=0;for(;(o&8388608)==0;)n-=8388608,o<<=1;return o&=~8388608,n+=947912704,o|n},e=new Uint32Array(2048);e[0]=0;for(let t=1;t<1024;t++)e[t]=r(t);for(let t=1024;t<2048;t++)e[t]=939524096+(t-1024<<13);return e}function TG(){let r=new Uint32Array(64);r[0]=0,r[31]=1199570944,r[32]=2147483648,r[63]=3347054592;for(let e=1;e<31;e++)r[e]=e<<23;for(let e=33;e<63;e++)r[e]=2147483648+(e-32<<23);return r}function AG(){let r=new Uint32Array(64);for(let e=0;e<64;e++)r[e]=1024;return r[0]=r[32]=0,r}function NG(){let r=SG(),e=TG(),t=AG();return o=>{let n=new ArrayBuffer(4*o.length),s=new Uint32Array(n);for(let a=0;a<o.length;a++){let i=o[a],l=r[t[i>>10]+(i&1023)]+e[i>>10];s[a]=l}return new Float32Array(n)}}var Ct=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Ct.instance==null&&(Ct.instance=new Ct),Ct.instance}static registerSaveRouter(e){Ct.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Ct.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Ct.getHandlers(e,"save")}static getLoadHandlers(e,t){return Ct.getHandlers(e,"load",t)}static getHandlers(e,t,o){let n=[];return(t==="load"?Ct.getInstance().loadRouters:Ct.getInstance().saveRouters).forEach(a=>{let i=a(e,o);i!==null&&n.push(i)}),n}},IS=r=>Ct.registerSaveRouter(r),NS=r=>Ct.registerLoadRouter(r),SS=r=>Ct.getSaveHandlers(r),TS=(r,e)=>Ct.getLoadHandlers(r,e);var iw="tensorflowjs",aw=1,Ul="models_store",sl="model_info_store";function AS(){if(!W().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let r=typeof window=="undefined"?self:window,e=r.indexedDB||r.mozIndexedDB||r.webkitIndexedDB||r.msIndexedDB||r.shimIndexedDB;if(e==null)throw new Error("The current browser does not appear to support IndexedDB.");return e}function lw(r){let e=r.result;e.createObjectStore(Ul,{keyPath:"modelPath"}),e.createObjectStore(sl,{keyPath:"modelPath"})}var sa=class{constructor(e){if(this.indexedDB=AS(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((o,n)=>{let s=this.indexedDB.open(iw,aw);s.onupgradeneeded=()=>lw(s),s.onsuccess=()=>{let a=s.result;if(t==null){let i=a.transaction(Ul,"readonly"),u=i.objectStore(Ul).get(this.modelPath);u.onsuccess=()=>{if(u.result==null)return a.close(),n(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));o(u.result.modelArtifacts)},u.onerror=c=>(a.close(),n(u.error)),i.oncomplete=()=>a.close()}else{let i=Js(t),l=a.transaction(sl,"readwrite"),u=l.objectStore(sl),c=u.put({modelPath:this.modelPath,modelArtifactsInfo:i}),p;c.onsuccess=()=>{p=a.transaction(Ul,"readwrite");let f=p.objectStore(Ul).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});f.onsuccess=()=>o({modelArtifactsInfo:i}),f.onerror=d=>{u=l.objectStore(sl);let h=u.delete(this.modelPath);h.onsuccess=()=>(a.close(),n(f.error)),h.onerror=g=>(a.close(),n(f.error))}},c.onerror=m=>(a.close(),n(c.error)),l.oncomplete=()=>{p==null?a.close():p.oncomplete=()=>a.close()}}},s.onerror=a=>n(s.error)})}};sa.URL_SCHEME="indexeddb://";var ES=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(sa.URL_SCHEME)?EG(r.slice(sa.URL_SCHEME.length)):null;Ct.registerSaveRouter(ES);Ct.registerLoadRouter(ES);function EG(r){return new sa(r)}function DG(r){return r.startsWith(sa.URL_SCHEME)?r.slice(sa.URL_SCHEME.length):r}var uw=class{constructor(){this.indexedDB=AS()}async listModels(){return new Promise((e,t)=>{let o=this.indexedDB.open(iw,aw);o.onupgradeneeded=()=>lw(o),o.onsuccess=()=>{let n=o.result,s=n.transaction(sl,"readonly"),i=s.objectStore(sl).getAll();i.onsuccess=()=>{let l={};for(let u of i.result)l[u.modelPath]=u.modelArtifactsInfo;e(l)},i.onerror=l=>(n.close(),t(i.error)),s.oncomplete=()=>n.close()},o.onerror=n=>t(o.error)})}async removeModel(e){return e=DG(e),new Promise((t,o)=>{let n=this.indexedDB.open(iw,aw);n.onupgradeneeded=()=>lw(n),n.onsuccess=()=>{let s=n.result,a=s.transaction(sl,"readwrite"),i=a.objectStore(sl),l=i.get(e),u;l.onsuccess=()=>{if(l.result==null)return s.close(),o(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),p=()=>{u=s.transaction(Ul,"readwrite");let f=u.objectStore(Ul).delete(e);f.onsuccess=()=>t(l.result.modelArtifactsInfo),f.onerror=d=>o(l.error)};c.onsuccess=p,c.onerror=m=>(p(),s.close(),o(l.error))}},l.onerror=c=>(s.close(),o(l.error)),a.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}},n.onerror=s=>o(n.error)})}};var ia="/",Hc="tensorflowjs_models",DS="info",$G="model_topology",RG="weight_specs",FG="weight_data",OG="model_metadata";function $S(r){return{info:[Hc,r,DS].join(ia),topology:[Hc,r,$G].join(ia),weightSpecs:[Hc,r,RG].join(ia),weightData:[Hc,r,FG].join(ia),modelMetadata:[Hc,r,OG].join(ia)}}function PG(r){let e=r.split(ia);if(e.length<3)throw new Error(`Invalid key format: ${r}`);return e.slice(1,e.length-1).join(ia)}function MG(r){return r.startsWith(aa.URL_SCHEME)?r.slice(aa.URL_SCHEME.length):r}var aa=class{constructor(e){if(!W().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=$S(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),o=JSON.stringify(e.weightSpecs),n=Js(e);try{this.LS.setItem(this.keys.info,JSON.stringify(n)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,o),this.LS.setItem(this.keys.weightData,vS(e.weightData));let s={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(s.signature=e.signature),e.userDefinedMetadata!=null&&(s.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(s.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(s)),{modelArtifactsInfo:n}}catch(s){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${n.modelTopologyBytes}, weightSpecsBytes=${n.weightSpecsBytes}, weightDataBytes=${n.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},o=JSON.parse(this.LS.getItem(this.keys.topology));if(o==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=o;let n=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(n==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=n;let s=this.LS.getItem(this.keys.modelMetadata);if(s!=null){let i=JSON.parse(s);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=CS(a),t}};aa.URL_SCHEME="localstorage://";var RS=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(aa.URL_SCHEME)?LG(r.slice(aa.URL_SCHEME.length)):null;Ct.registerSaveRouter(RS);Ct.registerLoadRouter(RS);function LG(r){return new aa(r)}var cw=class{constructor(){A(W().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),A(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Hc+ia,o=ia+DS;for(let n=0;n<this.LS.length;++n){let s=this.LS.key(n);if(s.startsWith(t)&&s.endsWith(o)){let a=PG(s);e[a]=JSON.parse(this.LS.getItem(s))}}return e}async removeModel(e){e=MG(e);let t=$S(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let o=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),o}};var qc="://",Yr=class{constructor(){this.managers={}}static getInstance(){return Yr.instance==null&&(Yr.instance=new Yr),Yr.instance}static registerManager(e,t){A(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(qc)&&(e=e.slice(0,e.indexOf(qc))),A(e.length>0,()=>"scheme must not be an empty string.");let o=Yr.getInstance();A(o.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),o.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Zh(r){if(r.indexOf(qc)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Yr.getSchemes().join(",")}`);return{scheme:r.split(qc)[0],path:r.split(qc)[1]}}async function FS(r,e,t=!1){A(r!==e,()=>`Old path and new path are the same: '${r}'`);let o=Ct.getLoadHandlers(r);A(o.length>0,()=>`Copying failed because no load handler is found for source URL ${r}.`),A(o.length<2,()=>`Copying failed because more than one (${o.length}) load handlers for source URL ${r}.`);let n=o[0],s=Ct.getSaveHandlers(e);A(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${e}.`),A(s.length<2,()=>`Copying failed because more than one (${o.length}) save handlers for destination URL ${e}.`);let a=s[0],i=Zh(r).scheme,l=Zh(r).path,u=i===Zh(r).scheme,c=await n.load();t&&u&&await Yr.getManager(i).removeModel(l);let p=await a.save(c);return t&&!u&&await Yr.getManager(i).removeModel(l),p.modelArtifactsInfo}async function OS(){let r=Yr.getSchemes(),e={};for(let t of r){let o=await Yr.getManager(t).listModels();for(let n in o){let s=t+qc+n;e[s]=o[n]}}return e}async function PS(r){let e=Zh(r);return Yr.getManager(e.scheme).removeModel(e.path)}async function MS(r,e){return FS(r,e,!1)}async function LS(r,e){return FS(r,e,!0)}var zS=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(W().get("IS_BROWSER")){W().setPlatform("browser",new zS);try{Yr.registerManager(aa.URL_SCHEME,new cw)}catch(r){}try{Yr.registerManager(sa.URL_SCHEME,new uw)}catch(r){}}var zG={importFetch:()=>BS()},pw;var VS=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return W().global.fetch!=null?W().global.fetch(e,t):(pw==null&&(pw=zG.importFetch()),pw(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};W().get("IS_NODE")&&W().setPlatform("node",new VS);function ve(r,e="float32",t){return e=e||"float32",wm(r),new lt(r,e,t)}function BG(r,e){let t=v(r,"x","cast");if(!zb(e))throw new Error(`Failed to cast to unknown dtype ${e}`);if(e==="string"&&t.dtype!=="string"||e!=="string"&&t.dtype==="string")throw new Error("Only strings can be casted to strings");let o={x:t},n={dtype:e};return E.runKernel(Ho,o,n)}var ne=S({cast_:BG});function VG(r){let t={x:v(r,"x","clone","string_or_numeric")};return E.runKernel(Ko,t)}var Po=S({clone_:VG});function mw(r,e=!1){console.log(r.toString(e))}rw();var GG={buffer:ve,cast:ne,clone:Po,print:mw};hS(GG);var Tr={};Ge(Tr,{browserFiles:()=>jS,browserHTTPRequest:()=>qS,concatenateArrayBuffers:()=>Uc,copyModel:()=>MS,decodeWeights:()=>Yh,encodeWeights:()=>_S,fromMemory:()=>XS,getLoadHandlers:()=>TS,getModelArtifactsInfoForJSON:()=>Js,getSaveHandlers:()=>SS,http:()=>eg,isHTTPScheme:()=>Qh,listModels:()=>OS,loadWeights:()=>US,moveModel:()=>LS,registerLoadRouter:()=>NS,registerSaveRouter:()=>IS,removeModel:()=>PS,weightsLoaderFactory:()=>hw,withSaveHandler:()=>YS});var WG="model",jG=".json",UG=".weights.bin";function GS(r){return new Promise(e=>setTimeout(e)).then(r)}var il=class{constructor(e){if(!W().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(il.URL_SCHEME)&&(e=e.slice(il.URL_SCHEME.length)),(e==null||e.length===0)&&(e=WG),this.modelTopologyFileName=e+jG,this.weightDataFileName=e+UG}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let o=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:o};e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer);let s=window.URL.createObjectURL(new Blob([JSON.stringify(n)],{type:"application/json"})),a=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(a.download=this.modelTopologyFileName,a.href=s,await GS(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await GS(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Js(e)}}}};il.URL_SCHEME="downloads://";var WS=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((o,n)=>{let s=new FileReader;s.onload=a=>{let i=JSON.parse(a.target.result),l=i.modelTopology;if(l==null){n(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&o({modelTopology:l});let u=i.weightsManifest;if(u==null){n(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(u,t)}catch(d){n(d);return}let p=[],m=[],f=[];u.forEach(d=>{d.paths.forEach(h=>{m.push(h),f.push(null)}),p.push(...d.weights)}),u.forEach(d=>{d.paths.forEach(h=>{let g=new FileReader;g.onload=x=>{let b=x.target.result,w=m.indexOf(h);if(f[w]=b,f.indexOf(null)===-1){let _={modelTopology:l,weightSpecs:p,weightData:Uc(f),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(_.signature=i.signature),i.userDefinedMetadata!=null&&(_.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(_.modelInitializer=i.modelInitializer),o(_)}},g.onerror=x=>n(`Failed to weights data from file of path '${h}'.`),g.readAsArrayBuffer(c[h])})})},s.onerror=a=>n(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),s.readAsText(e)})}checkManifestAndWeightFiles(e,t){let o=[],n=t.map(a=>sw(a.name)),s={};for(let a of e)a.paths.forEach(i=>{let l=sw(i);if(o.indexOf(l)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${l}'`);if(o.push(l),n.indexOf(l)===-1)throw new Error(`Weight file with basename '${l}' is not provided.`);s[i]=t[n.indexOf(l)]});if(o.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${o.length}) and the number of weight files provided (${t.length}).`);return s}},qG=r=>W().getBool("IS_BROWSER")&&!Array.isArray(r)&&r.startsWith(il.URL_SCHEME)?HG(r.slice(il.URL_SCHEME.length)):null;Ct.registerSaveRouter(qG);function HG(r="model"){return new il(r)}function jS(r){return new WS(r)}function fw(r,e,t,o){a(r),t=t==null?0:t,o=o==null?1:o,i(t,o);let n=0,s=l=>(l.then(u=>{let c=t+ ++n/r.length*(o-t);return e(c),u}),l);function a(l){A(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){A(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),A(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),A(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(r.map(s))}async function dw(r,e){e==null&&(e={});let t=e.fetchFunc==null?W().platform.fetch:e.fetchFunc,o=r.map(p=>t(p,e.requestInit,{isBinary:!0})),n=0,s=.5,i=(e.onProgress==null?await Promise.all(o):await fw(o,e.onProgress,n,s)).map(p=>p.arrayBuffer()),l=.5,u=1;return e.onProgress==null?await Promise.all(i):await fw(i,e.onProgress,l,u)}async function US(r,e="",t,o){return hw(a=>dw(a,{requestInit:o}))(r,e,t)}function hw(r){return async(e,t="",o)=>{let n=e.map(()=>!1),s={},a=o!=null?o.map(()=>!1):[],i=[];if(e.forEach((f,d)=>{let h=0;f.weights.forEach(g=>{let x="quantization"in g?g.quantization.dtype:g.dtype,b=$m[x]*ct(g.shape),w=()=>{n[d]=!0,s[d]==null&&(s[d]=[]),s[d].push({manifestEntry:g,groupOffset:h,sizeBytes:b})};o!=null?o.forEach((_,k)=>{_===g.name&&(w(),a[k]=!0)}):w(),i.push(g.name),h+=b})}),!a.every(f=>f)){let f=o.filter((d,h)=>!a[h]);throw new Error(`Could not find weights in manifest with names: ${f.join(", ")}.
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=n.reduce((f,d,h)=>(d&&f.push(h),f),[]),u=[];l.forEach(f=>{e[f].paths.forEach(d=>{let h=t+(t.endsWith("/")?"":"/")+d;u.push(h)})});let c=await r(u),p={},m=0;return l.forEach(f=>{let d=e[f].paths.length,h=0;for(let _=0;_<d;_++)h+=c[m+_].byteLength;let g=new ArrayBuffer(h),x=new Uint8Array(g),b=0;for(let _=0;_<d;_++){let k=new Uint8Array(c[m+_]);x.set(k,b),b+=k.byteLength}s[f].forEach(_=>{let k=g.slice(_.groupOffset,_.groupOffset+_.sizeBytes),D=Yh(k,[_.manifestEntry]);for(let T in D)p[T]=D[T]}),m+=d}),p}}var KG="application/octet-stream",XG="application/json",Jh=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(A(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=W().platform.fetch,A(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&A(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let o=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:o};e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(n)],{type:XG}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:KG}),"model.weights.bin");let s=await this.fetch(this.path,t);if(s.ok)return{modelArtifactsInfo:Js(e),responses:[s]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${s.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(d){let h=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?h+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":h+=" Please make sure the server is serving valid JSON for this request.",new Error(h)}let o=t.modelTopology,n=t.weightsManifest,s=t.generatedBy,a=t.convertedBy,i=t.format,l=t.signature,u=t.userDefinedMetadata;if(o==null&&n==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,p;n!=null&&([c,p]=await this.loadWeights(n));let m={modelTopology:o,weightSpecs:c,weightData:p,generatedBy:s,convertedBy:a,format:i};l!=null&&(m.signature=l),u!=null&&(m.userDefinedMetadata=u);let f=t.modelInitializer;return f&&(m.modelInitializer=f),m}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[o,n]=YG(t),s=this.weightPathPrefix||o,a=[];for(let c of e)a.push(...c.weights);let i=[],l=[];for(let c of e)for(let p of c.paths)this.weightUrlConverter!=null?l.push(this.weightUrlConverter(p)):i.push(s+p+n);this.weightUrlConverter&&i.push(...await Promise.all(l));let u=await dw(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Uc(u)]}};Jh.URL_SCHEME_REGEX=/^https?:\/\//;function YG(r){let e=r.lastIndexOf("/"),t=r.lastIndexOf("?"),o=r.substring(0,e),n=t>e?r.substring(t):"";return[o+"/",n]}function Qh(r){return r.match(Jh.URL_SCHEME_REGEX)!=null}var HS=(r,e)=>{if(typeof fetch=="undefined"&&(e==null||e.fetchFunc==null))return null;{let t=!0;if(Array.isArray(r)?t=r.every(o=>Qh(o)):t=Qh(r),t)return eg(r,e)}return null};Ct.registerSaveRouter(HS);Ct.registerLoadRouter(HS);function eg(r,e){return new Jh(r,e)}function qS(r,e){return eg(r,e)}var tg=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},KS=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function XS(r,e,t,o){return arguments.length===1?r.modelTopology!=null||r.weightSpecs!=null?new tg(r):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new tg({modelTopology:r})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new tg({modelTopology:r,weightSpecs:e,weightData:t,trainingConfig:o}))}function YS(r){return new KS(r)}var JS={};Ge(JS,{confusionMatrix:()=>ZS});function ZG(r,e,t=!1,o=!1){let n=v(r,"a","matMul"),s=v(e,"b","matMul");[n,s]=We(n,s);let a={a:n,b:s},i={transposeA:t,transposeB:o};return E.runKernel(In,a,i)}var je=S({matMul_:ZG});function JG(r,e,t=1,o=0){if(e<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${e}`);let s={indices:v(r,"indices","oneHot","int32")},a={depth:e,onValue:t,offValue:o};return E.runKernel(qn,s,a)}var fs=S({oneHot_:JG});function QG(r,e){let t=v(r,"x","transpose");if(e==null&&(e=t.shape.map((s,a)=>a).reverse()),A(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of perm ${e}.`),e.forEach(s=>{A(s>=0&&s<t.rank,()=>`All entries in 'perm' must be between 0 and ${t.rank-1} but got ${e}`)}),t.rank<=1)return t.clone();let o={x:t},n={perm:e};return E.runKernel(ps,o,n)}var Ke=S({transpose_:QG});function eW(r,e,t){let o=v(r,"labels","confusionMatrix"),n=v(e,"predictions","confusionMatrix");A(t==null||t>0&&Number.isInteger(t),()=>`If provided, numClasses must be a positive integer, but got ${t}`),A(o.rank===1,()=>`Expected the rank of labels to be 1, but got ${o.rank}`),A(n.rank===1,()=>`Expected the rank of predictions to be 1, but got ${n.rank}`),A(o.shape[0]===n.shape[0],()=>`Mismatch in the number of examples: ${o.shape[0]} vs. ${n.shape[0]}. Labels and predictions should have the same number of elements.`),A(t>0&&Number.isInteger(t),()=>`numClasses is required to be a positive integer, but got ${t}`);let s=fs(ne(o,"int32"),t),a=fs(ne(n,"int32"),t),i=Ke(s),l=je(i,a);return ne(l,"int32")}var ZS=S({confusionMatrix_:eW});var rg={};Ge(rg,{fromPixels:()=>aW,fromPixelsAsync:()=>sW,toPixels:()=>iW});function gw(r,e,t){if(Ro(r),e!=null&&e.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let o=Sr(r,t);if(o.length!==3&&o.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Xr(r,e,o,t)}var Kc;function QS(r,e=3){if(e>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let t=!1,o=!1,n=!1,s=!1,a=!1,i=!1;if(r.data instanceof Uint8Array)t=!0;else if(typeof ImageData!="undefined"&&r instanceof ImageData)o=!0;else if(typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement)n=!0;else if(typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement)s=!0;else if(r.getContext!=null)a=!0;else if(typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${r.constructor.name}`);if(n){let d=2;if(n&&r.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Sm(Im,E.backendName)!=null){let d={pixels:r},h={numChannels:e};return E.runKernel(Im,d,h)}let[u,c]=n?[r.videoWidth,r.videoHeight]:[r.width,r.height],p;a?p=r.getContext("2d").getImageData(0,0,u,c).data:o||t?p=r.data:(s||n||i)&&(Kc==null&&(Kc=document.createElement("canvas").getContext("2d")),Kc.canvas.width=u,Kc.canvas.height=c,Kc.drawImage(r,0,0,u,c),p=Kc.getImageData(0,0,u,c).data);let m;if(e===4)m=new Int32Array(p);else{let d=u*c;m=new Int32Array(d*e);for(let h=0;h<d;h++)for(let g=0;g<e;++g)m[h*e+g]=p[h*4+g]}return gw(m,[c,u,e],"int32")}function tW(r){return r!=null&&r.data instanceof Uint8Array}function rW(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function oW(r){return r!=null&&r.width!==0&&r.height!==0}function nW(r){return rW()&&!(r instanceof ImageBitmap)&&oW(r)&&!tW(r)}async function sW(r,e=3){let t=null;if(W().getBool("WRAP_TO_IMAGEBITMAP")&&nW(r)){let o;try{o=await createImageBitmap(r,{premultiplyAlpha:"none"})}catch(n){o=null}o!=null&&o.width===r.width&&o.height===r.height?t=o:t=r}else t=r;return QS(t,e)}async function iW(r,e){let t=v(r,"img","toPixels");if(!(r instanceof Ve)){let u=t;t=ne(u,"int32"),u.dispose()}if(t.rank!==2&&t.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${t.rank}.`);let[o,n]=t.shape.slice(0,2),s=t.rank===2?1:t.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(t.dtype!=="float32"&&t.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${t.dtype}. Please use float32 or int32 tensors.`);let a=await t.data(),i=t.dtype==="float32"?255:1,l=new Uint8ClampedArray(n*o*4);for(let u=0;u<o*n;++u){let c=[0,0,0,255];for(let m=0;m<s;m++){let f=a[u*s+m];if(t.dtype==="float32"){if(f<0||f>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${f}.`)}else if(t.dtype==="int32"&&(f<0||f>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${f}.`);s===1?(c[0]=f*i,c[1]=f*i,c[2]=f*i):c[m]=f*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(e!=null){e.width=n,e.height=o;let u=e.getContext("2d"),c=new ImageData(l,n,o);u.putImageData(c,0,0)}return t!==r&&t.dispose(),l}var aW=S({fromPixels_:QS});var og={};Ge(og,{prepareAndValidate:()=>eT});function eT(r,e){let t=r.shape.length,o=e.shape.length;if(t<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${t}.`);if(o<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${o}.`);if(e.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.shape[o-1]>t)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${e.shape[o-1]} vs. ${t}`);if(ct(r.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${r.shape}.`);let n=e.shape,s=n[n.length-1],a=1;for(let p=0;p<n.length-1;++p)a*=n[p];let i=r.shape,l=n.slice();l.pop();let u=1;for(let p=s;p<t;++p)u*=i[p],l.push(i[p]);let c=[...Fs(r.shape).map(p=>p/u),1].slice(0,s);return[l,a,u,c]}var ng={};Ge(ng,{calculateShapes:()=>tT,validateInput:()=>sg,validateUpdateShape:()=>xw});function xw(r,e,t){let o=e.rank>1?e.shape[e.rank-1]:1,n=e.rank>1?e.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${t.shape}, indices.shape: ${e.shape}, shape: ${r}, sliceDim: ${o}, and batchDim: ${n}.`;if(t.rank<n)throw new Error(s+` update.rank < ${n}. `);if(r.length<o+(t.rank-n))throw new Error(s+` Output shape length < ${o+(t.rank-n)}`);if(t.rank!==n+r.length-o)throw new Error(s+` update.rank != ${n+r.length-o}`);for(let a=0;a<n;++a)if(t.shape[a]!==e.shape[a])throw new Error(s+` updates.shape[${a}] (${t.shape[a]}) != indices.shape[${a}] (${e.shape[a]}).`);for(let a=0;a<t.rank-n;++a)if(t.shape[a+n]!==r[a+o])throw new Error(s+` updates.shape[${a+n}] (${t.shape[a+n]}) != shape[${a+n}] (${r[a+n]})`)}function sg(r,e,t){if(e.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${e.rank}.`);if(r.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${r.rank}.`);if(e.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${e.dtype}`);if(t.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${t}`);if(t.length===0){if(e.size===0)throw new Error(`Indices specified for empty output. indices shape: ${e.shape}`);if(r.size===0)throw new Error(`Updates specified for empty output. updates shape: ${r.shape}`)}xw(t,e,r)}function tT(r,e,t){let o=e.shape.length,n=o>1?e.shape[o-1]:1,s=t.length,a=1;for(let p=n;p<s;++p)a*=t[p];let i=n<1?1:n,l=ct(e.shape)/i,u=[...Fs(t.slice(0,n)),1],c=ct(t);return{sliceRank:n,numUpdates:l,sliceSize:a,strides:u,outputSize:c}}var er={};Ge(er,{assertParamsValid:()=>lW,computeFlatOffset:()=>cW,computeOutShape:()=>rT,getNormalizedAxes:()=>pT,isSliceContinous:()=>uW,maskToAxes:()=>ig,parseSliceParams:()=>yw,sliceInfo:()=>pW,startForAxis:()=>uT,startIndicesWithElidedDims:()=>iT,stopForAxis:()=>cT,stopIndicesWithElidedDims:()=>aT,stridesForAxis:()=>lT,stridesWithElidedDims:()=>oT});function lW(r,e,t){let o=r.shape.length;A(o===e.length,()=>`Error in slice${o}D: Length of begin ${e} must match the rank of the array (${o}).`),A(o===t.length,()=>`Error in slice${o}D: Length of size ${t} must match the rank of the array (${o}).`);for(let n=0;n<o;++n)A(e[n]+t[n]<=r.shape[n],()=>`Error in slice${o}D: begin[${n}] + size[${n}] (${e[n]+t[n]}) would overflow input.shape[${n}] (${r.shape[n]})`)}function ig(r){let e=[],t=0;for(;r>0;)r&1&&e.push(t),r/=2,t++;return e}function rT(r,e,t){let o=[];for(let n=0;n<r.length;n++)o[n]=Math.ceil((e[n]-r[n])/t[n]);return o}function oT(r,e,t,o){let n=[...r];for(let s=n.length;s<o.length;s++)n.push(1);for(let s=0;s<t;s++)s===0?n[e]=1:(n.splice(e,0,1),n.pop());return n}function nT(r,e,t){return t<=r?t:t-(e-1)}function sT(r,e){let t=[];for(let o=0;o<r;o++)t.push(e+o);return t}function pT(r,e,t,o,n,s,a,i,l){let u=r.length,c=new Array(u),p=new Array(u),m=new Array(u);if(e.length&&t>0){let f=e[0],d=t+1;c=iT(a,f,d,o,r),p=aT(i,f,d,n,r),m=oT(s,f,d,r)}else for(let f=0;f<u;f++)c[f]=uT(a,o,s,r,f,l),p[f]=cT(i,n,s,r,f,l),m[f]=lT(s,f,l);return{begin:c,end:p,strides:m}}function iT(r,e,t,o,n){let s=[...n],a=sT(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=0;else{let l=nT(e,t,i),u=o[l];r&1<<l&&(u=0),s[i]=u}return s}function aT(r,e,t,o,n){let s=[...n],a=sT(t,e);for(let i=0;i<s.length;i++)if(a.indexOf(i)>-1)s[i]=Number.MAX_SAFE_INTEGER;else{let l=nT(e,t,i),u=o[l];r&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[i]=u}for(let i=0;i<s.length;i++){let l=n[i];s[i]<0&&(s[i]+=l),s[i]=lc(0,s[i],n[i])}return s}function lT(r,e,t){let o=r[e];return(t&1<<e||o==null)&&(o=1),o}function uT(r,e,t,o,n,s){let a=e[n],i=t[n]||1;(r&1<<n||s&1<<n||a==null)&&(i>0?a=Number.MIN_SAFE_INTEGER:a=Number.MAX_SAFE_INTEGER);let l=o[n];return a<0&&(a+=l),a=lc(0,a,l-1),a}function cT(r,e,t,o,n,s){let a=e[n],i=t[n]||1;(r&1<<n||s&1<<n||a==null)&&(i>0?a=Number.MAX_SAFE_INTEGER:a=Number.MIN_SAFE_INTEGER);let l=o[n];return a<0&&(a+=l),i>0?a=lc(0,a,l):a=lc(-1,a,l-1),a}function uW(r,e,t){let o=t.length;for(let n=0;n<t.length;n++)if(t[n]>1){o=n;break}for(let n=o+1;n<t.length;n++)if(e[n]>0||t[n]!==r[n])return!1;return!0}function cW(r,e){let t=r.length>0?r[r.length-1]:1;for(let o=0;o<r.length-1;o++)t+=r[o]*e[o];return t}function yw(r,e,t){let o,n=r.shape.length;typeof e=="number"?o=[e,...new Array(n-1).fill(0)]:e.length<n?o=e.concat(new Array(n-e.length).fill(0)):o=e.slice(),o.forEach(a=>{A(a!==-1,()=>"slice() does not support negative begin indexing.")});let s;return t==null?s=new Array(n).fill(-1):typeof t=="number"?s=[t,...new Array(n-1).fill(-1)]:t.length<n?s=t.concat(new Array(n-t.length).fill(-1)):s=t,s=s.map((a,i)=>a>=0?a:(A(a===-1,()=>`Negative size values should be exactly -1 but got ${a} for the slice() size at index ${i}.`),r.shape[i]-o[i])),[o,s]}function pW(r,e,t,o,n,s,a,i,l){let u=e.slice(),c=t.slice(),p=o;o==null&&(p=new Array(u.length));let m=ig(a);if(m.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(a!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(a!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.length-u.length,d=ig(i),h=r.slice();d.forEach(T=>{u[T]=0,c[T]=1,h.splice(T,0,1)});let{begin:g,end:x,strides:b}=pT(h,m,f,u,c,p,n,s,a);u=g,c=x,p=b;let w=ig(l);w.forEach(T=>{c[T]=u[T]+1,p[T]=1});let _=rT(u,c,p),k=_.filter((T,R)=>w.indexOf(R)===-1);return{nonStrided:p.every(T=>T===1),$begin:u,$end:c,$strides:p,size:_,newShape:h,outShape:k}}var Q={};Ge(Q,{Serializable:()=>ag,SerializationMap:()=>la,registerClass:()=>co});var ag=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},la=class{constructor(){this.classNameMap={}}static getMap(){return la.instance==null&&(la.instance=new la),la.instance}static register(e){la.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function co(r){A(r.className!=null,()=>"Class being registered does not have the static className property defined."),A(typeof r.className=="string",()=>"className is required to be a string, but got type "+typeof r.className),A(r.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),la.register(r)}var mT={};Ge(mT,{TEST_EPSILON_FLOAT16:()=>fT,encodeStrings:()=>dT,expectArrayBuffersEqual:()=>yW,expectArraysClose:()=>fW,expectArraysEqual:()=>hW,expectNumbersClose:()=>gW,expectPromiseToFail:()=>dW,expectValuesInRange:()=>xW,testEpsilon:()=>bw});var mW=.001,fT=.1;function fW(r,e,t){return t==null&&(t=bw()),ww(r,e,(o,n)=>_w(o,n,t))}function bw(){return E.backend.floatPrecision()===32?mW:fT}function ww(r,e,t){let o=!0;if((sr(r)||sr(e))&&(o=!1),sr(r)&&sr(e)&&(o=!0),o){let a=r.constructor.name,i=e.constructor.name;if(a!==i)throw new Error(`Arrays are of different type. Actual: ${a}. Expected: ${i}`)}if(Array.isArray(r)&&Array.isArray(e)){let a=Sr(r),i=Sr(e);if(!Kr(a,i))throw new Error(`Arrays have different shapes. Actual: [${a}]. Expected: [${i}]`)}let n=sr(r)?r:wn(r),s=sr(e)?e:wn(e);if(n.length!==s.length)throw new Error(`Arrays have different lengths actual: ${n.length} vs expected: ${s.length}.
Actual: ${n}.
Expected: ${s}.`);for(let a=0;a<s.length;++a){let i=n[a],l=s[a];if(!t(i,l))throw new Error(`Arrays differ: actual[${a}] = ${i}, expected[${a}] = ${l}.
Actual: ${n}.
Expected: ${s}.`)}}function dW(r,e){r().then(()=>e.fail(),()=>e())}function hW(r,e){let t=typeof e=="string"||typeof e=="number"||typeof e=="boolean"?[e]:e;return _n(r)||_n(r[0])||_n(e)||_n(e[0])?ww(r,t,(o,n)=>o==n):ww(r,e,(o,n)=>_w(o,n,0))}function gW(r,e,t){if(t==null&&(t=bw()),!_w(r,e,t))throw new Error(`Numbers differ: actual === ${r}, expected === ${e}`)}function _w(r,e,t){return!isFinite(r)&&!isFinite(e)?!0:!(isNaN(r)||isNaN(e)||Math.abs(r-e)>t)}function xW(r,e,t){for(let o=0;o<r.length;o++)if(r[o]<e||r[o]>t)throw new Error(`Value out of range:${r[o]} low: ${e}, high: ${t}`)}function yW(r,e){expect(new Float32Array(r)).toEqual(new Float32Array(e))}function dT(r){for(let e=0;e<r.length;e++){let t=r[e];Array.isArray(t)?dT(t):r[e]=ol(t)}return r}var bW="3.3.0";function wie(){W().set("PROD",!0)}function _ie(){W().set("DEBUG",!0)}function kie(){W().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function kw(r){W().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(r+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}gS(kw);function vie(){E.disposeVariables()}function Zo(){return E}function Rm(){return E.memory()}function Cie(r){return E.profile(r)}function V(r,e){return E.tidy(r,e)}function Ae(r){Dm(r).forEach(t=>t.dispose())}function Et(r){return E.keep(r)}function Iie(r){return E.time(r)}function wW(r){return E.setBackend(r)}function Nie(){return E.ready()}function Sie(){return E.backendName}function Tie(r){E.removeBackend(r)}function Aie(r){return E.findBackend(r)}function Eie(r){return E.findBackendFactory(r)}function Xc(r,e,t=1){return E.registerBackend(r,e,t)}function hT(){return E.backend}function Die(r,e){W().setPlatform(r,e)}function _W(r,e){let t=v(r,"a","add"),o=v(e,"b","add");[t,o]=We(t,o);let n={a:t,b:o};return E.runKernel(Fo,n)}var ee=S({add_:_W});function kW(r,e){let t=v(r,"a","floorDiv"),o=v(e,"b","floorDiv");[t,o]=We(t,o);let n={a:t,b:o};return E.runKernel(On,n)}var Hl=S({floorDiv_:kW});function vW(r,e){let t=v(r,"a","div"),o=v(e,"b","div");if([t,o]=We(t,o),t.dtype==="int32"&&o.dtype==="int32")return Hl(t,o);let n={a:t,b:o},s={};return E.runKernel($n,n,s)}var me=S({div_:vW});function CW(r,e){let t=v(r,"a","mul"),o=v(e,"b","mul");[t,o]=We(t,o);let n={a:t,b:o};return E.runKernel(Hn,n)}var P=S({mul_:CW});function IW(r){let e=v(r,"x","abs");if(e.dtype==="complex64"){let t={x:e};return E.runKernel(Ua,t)}else{let t={x:e};return E.runKernel(Os,t)}}var It=S({abs_:IW});function NW(r){let t={x:v(r,"x","acos")};return E.runKernel(yi,t)}var Fm=S({acos_:NW});function SW(r){let t={x:v(r,"x","acosh")};return E.runKernel(bi,t)}var Om=S({acosh_:SW});function TW(r){A(Array.isArray(r),()=>"The argument passed to tf.addN() must be a list of tensors"),A(r.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${r.length}`);let e=r.map((n,s)=>v(n,`tensors${s}`,"addN")),t=e[0];e.forEach(n=>{if(n.dtype!==t.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),e.forEach(n=>{if(!Kr(n.shape,t.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let o=e;return E.runKernel(kn,o)}var vw=S({addN_:TW});function AW(r,e=null,t=!1){let n={x:v(r,"x","all","bool")},s={axis:e,keepDims:t};return E.runKernel(mc,n,s)}var ql=S({all_:AW});function EW(r,e=null,t=!1){let n={x:v(r,"x","any","bool")},s={axis:e,keepDims:t};return E.runKernel(fc,n,s)}var al=S({any_:EW});function DW(r,e=0){let o={x:v(r,"x","argMax")},n={axis:e};return E.runKernel(vn,o,n)}var ll=S({argMax_:DW});function $W(r,e=0){let o={x:v(r,"x","argMin")},n={axis:e};return E.runKernel(Ga,o,n)}var Pm=S({argMin_:$W});function RW(r){let t={x:v(r,"x","asin")};return E.runKernel(wi,t)}var Mm=S({asin_:RW});function FW(r){let t={x:v(r,"x","asinh")};return E.runKernel(_i,t)}var Lm=S({asinh_:FW});function OW(r){let t={x:v(r,"x","atan")};return E.runKernel(ki,t)}var zm=S({atan_:OW});function PW(r,e){let t=v(r,"a","atan2"),o=v(e,"b","atan2");[t,o]=We(t,o);let n={a:t,b:o};return E.runKernel(Ci,n)}var Bm=S({atan2_:PW});function MW(r){let t={x:v(r,"x","atanh")};return E.runKernel(vi,t)}var Vm=S({atanh_:MW});function LW(r,e,t,o,n="NHWC",s){let a=r[3],i=[...e,a],l=gT(n);return Kl(r,i,t,s,o,null,null,l)}function Cw(r,e,t,o,n,s,a="channelsLast"){let[i,l]=lg(e),u;if(a==="channelsLast")u=[i,l,r[3],r[3]];else if(a==="channelsFirst")u=[i,l,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return Kl(r,u,t,o,n,s,!1,a)}function zW(r,e,t,o,n,s,a="NDHWC"){let[i,l,u]=Iw(e),c,p;if(a==="NDHWC")p="channelsLast",c=[i,l,u,r[4],r[4]];else if(a==="NCDHW")p="channelsFirst",c=[i,l,u,r[1],r[1]];else throw new Error(`Unknown dataFormat ${a}`);return xT(r,c,t,o,n,!1,p,s)}function Kl(r,e,t,o,n,s,a=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=r;else if(i==="channelsFirst")[l,p,u,c]=r;else throw new Error(`Unknown dataFormat ${i}`);let[m,f,,d]=e,[h,g]=lg(t),[x,b]=lg(o),w=Yc(m,x),_=Yc(f,b),{padInfo:k,outHeight:D,outWidth:T}=BW(n,u,c,h,g,w,_,s,i),R=a?d*p:d,O;return i==="channelsFirst"?O=[l,R,D,T]:i==="channelsLast"&&(O=[l,D,T,R]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:D,outWidth:T,outChannels:R,padInfo:k,strideHeight:h,strideWidth:g,filterHeight:m,filterWidth:f,effectiveFilterHeight:w,effectiveFilterWidth:_,dilationHeight:x,dilationWidth:b,inShape:r,outShape:O,filterShape:e}}function xT(r,e,t,o,n,s=!1,a="channelsLast",i){let[l,u,c,p,m]=[-1,-1,-1,-1,-1];if(a==="channelsLast")[l,u,c,p,m]=r;else if(a==="channelsFirst")[l,m,u,c,p]=r;else throw new Error(`Unknown dataFormat ${a}`);let[f,d,h,,g]=e,[x,b,w]=Iw(t),[_,k,D]=Iw(o),T=Yc(f,_),R=Yc(d,k),O=Yc(h,D),{padInfo:M,outDepth:G,outHeight:j,outWidth:U}=VW(n,u,c,p,x,b,w,T,R,O,i),H=s?g*m:g,q;return a==="channelsFirst"?q=[l,H,G,j,U]:a==="channelsLast"&&(q=[l,G,j,U,H]),{batchSize:l,dataFormat:a,inDepth:u,inHeight:c,inWidth:p,inChannels:m,outDepth:G,outHeight:j,outWidth:U,outChannels:H,padInfo:M,strideDepth:x,strideHeight:b,strideWidth:w,filterDepth:f,filterHeight:d,filterWidth:h,effectiveFilterDepth:T,effectiveFilterHeight:R,effectiveFilterWidth:O,dilationDepth:_,dilationHeight:k,dilationWidth:D,inShape:r,outShape:q,filterShape:e}}function GW(r,e,t,o,n){o==null&&(o=Nw(r,e,t));let s=r[0],a=r[1],i=Xl((s-e+2*o)/t+1,n),l=Xl((a-e+2*o)/t+1,n);return[i,l]}function WW(r,e,t,o,n,s){n==null&&(n=Nw(r,e,o));let a=r[0],i=r[1],l=r[2],u=Xl((a-e+2*n)/o+1,s),c=Xl((i-e+2*n)/o+1,s),p=Xl((l-e+2*n)/o+1,s);return[u,c,p,t]}function Nw(r,e,t,o=1){let n=Yc(e,o);return Math.floor((r[0]*(t-1)-t+n)/2)}function lg(r){return typeof r=="number"?[r,r,r]:r.length===2?[r[0],r[1],1]:r}function Iw(r){return typeof r=="number"?[r,r,r]:r}function Yc(r,e){return e<=1?r:r+(r-1)*(e-1)}function BW(r,e,t,o,n,s,a,i,l){let u,c,p;if(typeof r=="number"){u={top:r,bottom:r,left:r,right:r,type:r===0?"VALID":"NUMBER"};let f=GW([e,t],s,o,r,i);c=f[0],p=f[1]}else if(r==="same"){c=Math.ceil(e/o),p=Math.ceil(t/n);let m=Math.max(0,(c-1)*o+s-e),f=Math.max(0,(p-1)*n+a-t),d=Math.floor(m/2),h=m-d,g=Math.floor(f/2),x=f-g;u={top:d,bottom:h,left:g,right:x,type:"SAME"}}else if(r==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((e-s+1)/o),p=Math.ceil((t-a+1)/n);else if(typeof r=="object"){let m=l==="channelsLast"?r[1][0]:r[2][0],f=l==="channelsLast"?r[1][1]:r[2][1],d=l==="channelsLast"?r[2][0]:r[3][0],h=l==="channelsLast"?r[2][1]:r[3][1];u={top:m,bottom:f,left:d,right:h,type:m===0&&f===0&&d===0&&h===0?"VALID":"EXPLICIT"},c=Xl((e-s+m+f)/o+1,i),p=Xl((t-a+d+h)/n+1,i)}else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:u,outHeight:c,outWidth:p}}function VW(r,e,t,o,n,s,a,i,l,u,c){let p,m,f,d;if(typeof r=="number"){p={top:r,bottom:r,left:r,right:r,front:r,back:r,type:r===0?"VALID":"NUMBER"};let g=WW([e,t,o,1],i,1,n,r,c);m=g[0],f=g[1],d=g[2]}else if(r==="same"){m=Math.ceil(e/n),f=Math.ceil(t/s),d=Math.ceil(o/a);let h=(m-1)*n+i-e,g=(f-1)*s+l-t,x=(d-1)*a+u-o,b=Math.floor(h/2),w=h-b,_=Math.floor(g/2),k=g-_,D=Math.floor(x/2),T=x-D;p={top:_,bottom:k,left:D,right:T,front:b,back:w,type:"SAME"}}else if(r==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},m=Math.ceil((e-i+1)/n),f=Math.ceil((t-l+1)/s),d=Math.ceil((o-u+1)/a);else throw Error(`Unknown padding parameter: ${r}`);return{padInfo:p,outDepth:m,outHeight:f,outWidth:d}}function Xl(r,e){if(!e)return Math.trunc(r);switch(e){case"round":return Math.round(r);case"ceil":return Math.ceil(r);case"floor":return Math.floor(r);default:throw new Error(`Unknown roundingMode ${e}`)}}function Mo(r){let[e,t,o]=lg(r);return e===1&&t===1&&o===1}function kr(r,e){return Mo(r)||Mo(e)}function gT(r){if(r==="NHWC")return"channelsLast";if(r==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${r}`)}function jW(r,e){let o={x:v(r,"x","reshape","string_or_numeric")},n={shape:e};return E.runKernel(Gs,o,n)}var L=S({reshape_:jW});function UW(r,e,t,o,n){let s=v(r,"x","avgPool","float32"),a=1;A(kr(t,a),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`);let i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),n!=null&&A(ot(o),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n},p=E.runKernel(Cn,u,c);return p=ne(p,s.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ua=S({avgPool_:UW});function HW(r,e,t,o,n,s="NDHWC"){let a=v(r,"x","avgPool3d","float32"),i=a,l=!1;a.rank===4&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),A(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),A(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),n!=null&&A(ot(o),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n,dataFormat:s},p=E.runKernel(Wa,u,c);return p=ne(p,i.dtype),l?L(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Gm=S({avgPool3d_:HW});function qW(r,e=0){A(r.length>=1,()=>"Pass at least one tensor to concat");let t=na(r,"tensors","concat","string_or_numeric");if(t[0].dtype==="complex64"&&t.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),t.length===1)return Po(t[0]);let o=t,n={axis:e};return E.runKernel(Ps,o,n)}var Ze=S({concat_:qW});function KW(r){let t={x:v(r,"x","sigmoid")};return E.runKernel(ns,t)}var Zr=S({sigmoid_:KW});function XW(r,e,t){let o=v(r,"x","slice","string_or_numeric");if(o.rank===0)throw new Error("Slicing scalar is not possible");let n={x:o},s={begin:e,size:t};return E.runKernel(js,n,s)}var Re=S({slice_:XW});function YW(r){let t={x:v(r,"x","tanh")};return E.runKernel(cs,t)}var Qs=S({tanh_:YW});function ZW(r,e,t,o,n,s){let a=v(r,"forgetBias","basicLSTMCell"),i=v(e,"lstmKernel","basicLSTMCell"),l=v(t,"lstmBias","basicLSTMCell"),u=v(o,"data","basicLSTMCell"),c=v(n,"c","basicLSTMCell"),p=v(s,"h","basicLSTMCell"),m=Ze([u,p],1),f=je(m,i),d=ee(f,l),h=d.shape[0],g=d.shape[1]/4,x=[h,g],b=Re(d,[0,0],x),w=Re(d,[0,g],x),_=Re(d,[0,g*2],x),k=Re(d,[0,g*3],x),D=ee(P(Zr(b),Qs(w)),P(c,Zr(ee(a,_)))),T=P(Qs(D),Zr(k));return[D,T]}var JW=S({basicLSTMCell_:ZW});function QW(r,e,t){let o=v(r,"x","batchToSpaceND"),n=e.reduce((i,l)=>i*l);A(o.rank>=1+e.length,()=>`input rank is ${o.rank} but should be > than blockShape.length ${e.length}`),A(t.length===e.length,()=>`crops.length is ${t.length} but should be equal to blockShape.length ${e.length}`),A(o.shape[0]%n==0,()=>`input tensor batch is ${o.shape[0]} but is not divisible by the product of the elements of blockShape ${e.join(" * ")} === ${n}`);let s={x:o},a={blockShape:e,crops:t};return E.runKernel(ja,s,a)}var ca=S({batchToSpaceND_:QW});function yT(r){let e;return r.rank===0||r.rank===1?e=L(r,[1,1,1,r.size]):r.rank===2?e=L(r,[1,1,r.shape[0],r.shape[1]]):r.rank===3?e=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]):e=r,e}function ej(r,e,t,o,n,s){s==null&&(s=.001);let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;o!=null&&(c=v(o,"offset","batchNorm")),A(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),A(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),A(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let m={x:yT(a),scale:u,offset:c,mean:i,variance:l},f={varianceEpsilon:s},d=E.runKernel(Pn,m,f);return L(d,a.shape)}var Jo=S({batchNorm_:ej});function tj(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),A(a.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${a.rank}.`),A(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),A(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&A(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Jo(a,i,l,c,u,s)}var Sw=S({batchNorm2d_:tj});function rj(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),A(a.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${a.rank}.`),A(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),A(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&A(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Jo(a,i,l,c,u,s)}var Tw=S({batchNorm3d_:rj});function oj(r,e,t,o,n,s){let a=v(r,"x","batchNorm"),i=v(e,"mean","batchNorm"),l=v(t,"variance","batchNorm"),u;n!=null&&(u=v(n,"scale","batchNorm"));let c;return o!=null&&(c=v(o,"offset","batchNorm")),A(a.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${a.rank}.`),A(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),A(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&A(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&A(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Jo(a,i,l,c,u,s)}var Aw=S({batchNorm4d_:oj});function nj(r,e,t){let o=v(r,"x","bincount"),n=v(e,"weights","bincount");A(o.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${o.dtype}`),A(t>=0,()=>`size must be non-negative, but got ${t}.`),A(n.size===o.size||n.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${o.shape}, weights shape: ${n.shape}.`);let s={x:o,weights:n},a={size:t};return E.runKernel(gc,s,a)}var Ew=S({bincount_:nj});function sj(r,e){let t=v(r,"broadcastTo","x"),o=t.shape;if(e.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${e}].`);if(e.length<t.rank)throw new Error(`broadcastTo(): shape.length=${e.length} < input.rank=${t.rank}.`);if(e.length>t.rank){let u=t.shape.slice();for(;u.length<e.length;)u.unshift(1);t=L(t,u)}let n=t.shape,s=Array.from(e);for(let u=e.length-1;u>=0;u--)if(n[u]===e[u])s[u]=1;else if(t.shape[u]!==1)throw new Error(`broadcastTo(): [${o}] cannot be broadcast to [${e}].`);if(s.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Po(t);let i={x:t},l={reps:s};return E.runKernel(Oo,i,l)}var ul=S({broadcastTo_:sj});function ij(r){let t={x:v(r,"x","ceil")};return E.runKernel(Nn,t)}var Wm=S({ceil_:ij});function aj(r,e,t){let o=v(r,"x","clipByValue");A(e<=t,()=>`Error in clip: min (${e}) must be less than or equal to max (${t}).`);let n={x:o},s={clipValueMin:e,clipValueMax:t};return E.runKernel(qo,n,s)}var ar=S({clipByValue_:aj});function lj(r){return Ze(r,0)}var Dw=S({concat1d_:lj});function uj(r,e){return Ze(r,e)}var $w=S({concat2d_:uj});function cj(r,e){return Ze(r,e)}var Rw=S({concat3d_:cj});function pj(r,e){return Ze(r,e)}var Fw=S({concat4d_:pj});function mj(r,e,t,o,n="NHWC",s=[1,1],a){let i=v(r,"x","conv2d"),l=v(e,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),A(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),a!=null&&A(ot(o),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let p=n==="NHWC"?u.shape[3]:u.shape[1];A(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),A(kr(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`);let m={x:u,filter:l},f={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a},d=E.runKernel(Sn,m,f);return c?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Jr=S({conv2d_:mj});function fj(r,e,t,o,n="NWC",s=1,a){let i=v(r,"x","conv1d"),l=v(e,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1]])),A(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),A(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),a!=null&&A(ot(o),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`),A(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),A(kr(t,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${t} and dilation '${s}'`),A(n==="NWC",()=>`Error in conv1d: got dataFormat of ${n} but only NWC is currently supported.`);let p=L(l,[1,l.shape[0],l.shape[1],l.shape[2]]),m=L(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Jr(m,p,[1,t],o,"NHWC",[1,s],a);return c?L(g,[g.shape[2],g.shape[3]]):L(g,[g.shape[0],g.shape[2],g.shape[3]])}var Yl=S({conv1d_:fj});function dj(r,e,t,o,n,s="NHWC",a){A(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let i=r,l=e,u=!1;e.rank===3&&(u=!0,l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]),i=[1,r[0],r[1],r[2]]),A(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),A(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),A(t.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${t.rank}`);let c=s==="NHWC"?i[3]:i[1],p=s==="NHWC"?l.shape[3]:l.shape[1];A(c===t.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${t.shape[2]}.`),A(p===t.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${t.shape[3]}.`),a!=null&&A(ot(n),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let m={dy:l,filter:t},f={strides:o,pad:n,dataFormat:s,dimRoundingMode:a,inputShape:i},d=E.runKernel(Tn,m,f);return u?L(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Zc=S({conv2DBackpropInput_:dj});function hj(r,e,t,o,n,s){let a=v(r,"x","conv2dTranspose"),i=v(e,"filter","conv2dTranspose");return Zc(t,a,i,o,n,"NHWC",s)}var Zl=S({conv2dTranspose_:hj});function gj(r,e,t,o,n="NDHWC",s=[1,1,1]){let a=v(r,"x","conv3d"),i=v(e,"filter","conv3d"),l=a,u=!1;a.rank===4&&(u=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),A(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),A(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),A(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),A(kr(t,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),A(n==="NDHWC",()=>`Error in conv3d: got dataFormat of ${n} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:t,pad:o,dataFormat:n,dilations:s},m=E.runKernel(Ha,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var jm=S({conv3d_:gj});function xj(r,e,t,o,n){A(r.length===e.rank,()=>`Length of inShape (${r.length}) and rank of dy (${e.rank}) must match`);let s=r,a=e,i=!1;e.rank===4&&(i=!0,a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]),s=[1,r[0],r[1],r[2],r[3]]);let l=s[4],u=a.shape[4];A(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),A(a.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${a.rank}`),A(t.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${t.rank}`),A(l===t.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${t.shape[3]}.`),A(u===t.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${t.shape[4]}.`);let c={dy:a,filter:t},p={pad:n,strides:o,inputShape:s},m=E.runKernel(wc,c,p);return i?L(m,[m.shape[1],m.shape[2],m.shape[3],m.shape[4]]):m}var ug=S({conv3DBackpropInput_:xj});function yj(r,e,t,o,n){let s=v(r,"x","conv3dTranspose"),a=v(e,"filter","conv3dTranspose");return ug(t,s,a,o,n)}var bj=S({conv3dTranspose_:yj});function wj(r){let t={x:v(r,"x","cos")};return E.runKernel(An,t)}var pa=S({cos_:wj});function _j(r){let t={x:v(r,"x","cosh")};return E.runKernel(Ii,t)}var Jl=S({cosh_:_j});function kj(r,e=0,t=!1,o=!1){let s={x:v(r,"x","cumsum")},a={axis:e,exclusive:t,reverse:o};return E.runKernel(En,s,a)}var Ql=S({cumsum_:kj});function vj(r,e,t,o=!1){let n=v(r,"x","denseBincount"),s=v(e,"weights","denseBincount");A(n.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${n.dtype}`),A(n.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${n.rank}.`),A(t>=0,()=>`size must be non-negative, but got ${t}.`),A(s.size===n.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${n.shape}, weights shape: ${s.shape}.`);let a={x:n,weights:s},i={size:t,binaryOutput:o};return E.runKernel(_c,a,i)}var Ow=S({denseBincount_:vj});function Cj(r,e,t="NHWC"){let o=v(r,"x","depthToSpace"),n=t==="NHWC"?o.shape[1]:o.shape[2],s=t==="NHWC"?o.shape[2]:o.shape[3],a=t==="NHWC"?o.shape[3]:o.shape[1];A(n*e>=0,()=>`Negative dimension size caused by overflow when multiplying
${n} and ${e} for depthToSpace with input shape
${o.shape}`),A(s*e>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${e} for depthToSpace with input shape
${o.shape}`),A(a%(e*e)==0,()=>`Dimension size must be evenly divisible by ${e*e} but is ${a} for depthToSpace with input shape ${o.shape}`);let i={x:o},l={blockSize:e,dataFormat:t};return E.runKernel(Si,i,l)}var Um=S({depthToSpace_:Cj});function Ij(r,e,t,o,n="NHWC",s=[1,1],a){let i=v(r,"x","depthwiseConv2d"),l=v(e,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),A(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),A(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),A(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),a!=null&&A(ot(o),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`);let p={x:u,filter:l},m={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a},f=E.runKernel(Dn,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var ds=S({depthwiseConv2d_:Ij});function Nj(r){let t={x:v(r,"x","diag")};return E.runKernel(Cc,t)}var Sj=S({diag_:Nj});function Tj(r,e,t,o,n=[1,1],s="NHWC"){let a=v(r,"x","dilation2d"),i=v(e,"filter","dilation2d");A(a.rank===3||a.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${a.rank}.`),A(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),A(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=a,u=!1;a.rank===3&&(l=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:t,pad:o,dilations:n},m=E.runKernel(qa,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Hm=S({dilation2d_:Tj});function Aj(r,e){let t=r.length,o=[];for(let n=0;n<t;n++){let s=t-1-n,a=r[s]||1;(e[e.length-1-n]||1)>1&&a===1&&o.unshift(s)}return o}function _t(r,e){let t=[];for(let o=0;o<e.length;o++){let n=r[r.length-o-1],s=e.length-o-1,a=e[s];(n==null||n===1&&a>1)&&t.unshift(s)}return t}function Be(r,e){let t=[],o=Math.max(r.length,e.length);for(let n=0;n<o;n++){let s=r[r.length-n-1];s==null&&(s=1);let a=e[e.length-n-1];if(a==null&&(a=1),s===1)t.unshift(a);else if(a===1)t.unshift(s);else if(s!==a){let i=`Operands could not be broadcast together with shapes ${r} and ${e}.`;throw Error(i)}else t.unshift(s)}return t}function Ej(r,e){let t=v(r,"a","equal"),o=v(e,"b","equal");[t,o]=We(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Ei,n)}var Io=S({equal_:Ej});function Dj(r,e,t){let o=v(e,"a","where"),n=v(t,"b","where"),s=v(r,"condition","where","bool"),a=Be(o.shape,n.shape),i=ul(o,a),l=ul(n,a);s.rank===1&&A(s.shape[0]===o.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&vt(s.shape,l.shape,"Error in where: ");let u={condition:s,t:i,e:l};return E.runKernel(Ws,u)}var Dt=S({where_:Dj});function $j(r){let t={x:v(r,"x","zerosLike")};return E.runKernel(qs,t)}var Ce=S({zerosLike_:$j});function Rj(r,e){let t=v(r,"a","div"),o=v(e,"b","div");[t,o]=We(t,o);let n=me(t,o),s=Ce(n),a=Io(o,s);return Dt(a,s,n)}var qm=S({divNoNan_:Rj});function Fj(r,e){let t=v(r,"t1","dot"),o=v(e,"t2","dot");A((t.rank===1||t.rank===2)&&(o.rank===1||o.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${t.rank} and ${o.rank}.`);let n=t.rank===1?t.size:t.shape[1],s=o.rank===1?o.size:o.shape[0];if(A(n===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${n} and ${s}.`),t.rank===1&&o.rank===1){let a=L(t,[1,-1]),i=L(o,[-1,1]),l=je(a,i);return L(l,[])}else if(t.rank===1&&o.rank===2){let a=L(t,[1,-1]),i=L(o,[o.shape[0],o.shape[1]]),l=je(a,i);return L(l,[l.size])}else if(t.rank===2&&o.rank===1){let a=L(o,[-1,1]),i=je(t,a);return L(i,[i.size])}else{let a=L(o,[o.shape[0],o.shape[1]]);return je(t,a)}}var Pw=S({dot_:Fj});function Oj(r){let t={x:v(r,"x","elu")};return E.runKernel(Ti,t)}var hs=S({elu_:Oj});function Pj(r){let e=v(r,"x","erf");A(e.dtype==="int32"||e.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),e.dtype==="int32"&&(e=ne(e,"float32"));let t={x:e};return E.runKernel(Ai,t)}var Km=S({erf_:Pj});function Mj(r){let t={x:v(r,"x","exp")};return E.runKernel(Rn,t)}var Zt=S({exp_:Mj});function Lj(r,e=0){let t=v(r,"x","expandDims","string_or_numeric");A(e<=t.rank,()=>"Axis must be <= rank of the tensor");let o={input:t},n={dim:e};return E.runKernel(Ms,o,n)}var lr=S({expandDims_:Lj});function zj(r){let t={x:v(r,"x","expm1")};return E.runKernel(Di,t)}var Xm=S({expm1_:zj});function Bj(r,e){let t=v(r,"x","tile","string_or_numeric");A(t.rank===e.length,()=>`Error in transpose: rank of input ${t.rank} must match length of reps ${e}.`);let o={x:t},n={reps:e};return E.runKernel(Oo,o,n)}var Lo=S({tile_:Bj});function Vj(r,e,t,o="float32"){e==null&&(e=r);let n=ve([r,e],o),s=r<=e?r:e;for(let i=0;i<s;++i)n.set(1,i,i);let a=L(n.toTensor(),[r,e]);if(t==null)return a;if(t.length===1)return Lo(lr(a,0),[t[0],1,1]);if(t.length===2)return Lo(lr(lr(a,0),0),[t[0],t[1],1,1]);if(t.length===3)return Lo(lr(lr(lr(a,0),0),0),[t[0],t[1],t[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${t.length}D.`)}var Jc=S({eye_:Vj});function ma(r,e,t){let o={shape:r,value:e,dtype:t};return E.runKernel(Ka,{},o)}function Gj(r){let t={x:v(r,"x","floor")};return E.runKernel(Fn,t)}var gs=S({floor_:Gj});function Wj(r,e,t=0,o=0){let n=v(r,"x","gather"),s=v(e,"indices","gather","int32"),a={x:n,indices:s},i={axis:t,batchDims:o};return E.runKernel(Ls,a,i)}var Qo=S({gather_:Wj});function jj(r,e){let t=v(r,"a","greater"),o=v(e,"b","greater");[t,o]=We(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Fi,n)}var tr=S({greater_:jj});function Uj(r,e){let t=v(r,"a","greaterEqual"),o=v(e,"b","greaterEqual");[t,o]=We(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Mn,n)}var po=S({greaterEqual_:Uj});function Hj(r){let t={input:v(r,"input","imag")};return E.runKernel(Tc,t)}var eu=S({imag_:Hj});function qj(r){let t={x:v(r,"x","isFinite")};return E.runKernel(Oi,t)}var Mw=S({isFinite_:qj});function Kj(r){let t={x:v(r,"x","isInf")};return E.runKernel(Pi,t)}var Lw=S({isInf_:Kj});function Xj(r){let t={x:v(r,"x","isNaN")};return E.runKernel(Mi,t)}var zw=S({isNaN_:Xj});function Yj(r,e=.2){let o={x:v(r,"x","leakyRelu")},n={alpha:e};return E.runKernel(Ln,o,n)}var fa=S({leakyRelu_:Yj});function Zj(r,e){let t=v(r,"a","less"),o=v(e,"b","less");[t,o]=We(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Li,n)}var tu=S({less_:Zj});function Jj(r,e){let t=v(r,"a","lessEqual"),o=v(e,"b","lessEqual");[t,o]=We(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(zi,n)}var zo=S({lessEqual_:Jj});function Bw(r,e,t){if(t<=0)throw new Error("The number of values should be positive.");let o={start:r,stop:e,num:t};return E.runKernel(Ac,{},o)}function Qj(r,e=5,t=1,o=1,n=.5){let s=v(r,"x","localResponseNormalization");A(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),A(ot(e),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${e}.`);let a=s,i=!1;s.rank===3&&(i=!0,a=L(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:a},u={depthRadius:e,bias:t,alpha:o,beta:n},c=E.runKernel(Xa,l,u);return i?L(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Ym=S({localResponseNormalization_:Qj});function e4(r){let t={x:v(r,"x","log")};return E.runKernel(zn,t)}var ur=S({log_:e4});function t4(r){let t={x:v(r,"x","log1p")};return E.runKernel(Bi,t)}var ru=S({log1p_:t4});function r4(r){return A(Rs(r),()=>"The f passed in grad(f) must be a function"),(e,t)=>{let o=v(e,"x","tf.grad","string_or_numeric"),n=t!=null?v(t,"dy","tf.grad"):null;return E.tidy(()=>{let{value:s,grads:a}=E.gradients(()=>r(o),[o],n);return n!=null&&vt(s.shape,n.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),cg(a),a[0]})}}function o4(r){return A(Rs(r),()=>"The f passed in grads(f) must be a function"),(e,t)=>{A(Array.isArray(e),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let o=na(e,"args","tf.grads","string_or_numeric"),n=t!=null?v(t,"dy","tf.grads"):null;return E.tidy(()=>{let{value:s,grads:a}=E.gradients(()=>r(...o),o,n);return n!=null&&vt(s.shape,n.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),cg(a),a})}}function n4(r){return A(Rs(r),()=>"The f passed in valueAndGrad(f) must be a function"),(e,t)=>{A(e instanceof Ve,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),A(t==null||t instanceof Ve,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:o,value:n}=E.gradients(()=>r(e),[e],t);return cg(o),{grad:o[0],value:n}}}function s4(r){return A(Rs(r),()=>"The f passed in valueAndGrads(f) must be a function"),(e,t)=>{A(Array.isArray(e)&&e.every(n=>n instanceof Ve),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),A(t==null||t instanceof Ve,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let o=E.gradients(()=>r(...e),e,t);return t!=null&&vt(o.value.shape,t.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),cg(o.grads),o}}function pg(r,e){A(Rs(r),()=>"The f passed in variableGrads(f) must be a function"),A(e==null||Array.isArray(e)&&e.every(u=>u instanceof nl),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let t=e!=null;if(!t){e=[];for(let u in E.registeredVariables)e.push(E.registeredVariables[u])}let o=t?e.filter(u=>!u.trainable):null,n=e.length;e=e.filter(u=>u.trainable),A(e.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${n} variables is trainable.`);let s=!0,{value:a,grads:i}=E.gradients(r,e,null,s);A(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),A(a.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${a.rank} tensor`);let l={};return e.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),o!=null&&o.forEach(u=>l[u.name]=null),{value:a,grads:l}}function Qr(r){return E.customGrad(r)}function cg(r){if(r.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function i4(r){let t={x:v(r,"x","neg")};return E.runKernel(zs,t)}var He=S({neg_:i4});function a4(r){let t={x:v(r,"x","softplus")};return E.runKernel(Qi,t)}var xs=S({softplus_:a4});function l4(r){let e=v(r,"x","logSigmoid");return Qr(o=>({value:He(xs(He(o))),gradFunc:a=>P(a,Zr(He(o)))}))(e)}var Vw=S({logSigmoid_:l4});function u4(r,e=null,t=!1){let n={x:v(r,"x","max")},s={reductionIndices:e,keepDims:t};return E.runKernel(Bn,n,s)}var cr=S({max_:u4});function c4(r,e){let t=v(r,"a","sub"),o=v(e,"b","sub");[t,o]=We(t,o);let n={a:t,b:o};return E.runKernel(us,n)}var ce=S({sub_:c4});function p4(r,e=null,t=!1){let o=v(r,"x","sum");o.dtype==="bool"&&(o=ne(o,"int32"));let n={x:o},s={axis:e,keepDims:t};return E.runKernel(is,n,s)}var ge=S({sum_:p4});function m4(r,e=-1){let t=v(r,"logits","logSoftmax");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and axis was ${e}`);return Qr((n,s)=>{let a=!0,i=cr(n,e,!0),l=ce(n,i),u=ce(ne(l,"float32"),ur(ge(Zt(l),e,a)));return s([u]),{value:u,gradFunc:(p,m)=>{let[f]=m,d=!0,h=Zt(f);return ce(p,P(ge(p,e,d),h))}}})(t)}var ou=S({logSoftmax_:m4});function Gw(r,e){for(let t=0;t<r.length;++t)if(r[r.length-t-1]!==e-1-t)return!1;return!0}function bT(r,e,t){let o=r.length+e.length,n=[],s=0,a=0;for(let i=0;i<o;i++)t.indexOf(i)===-1?n.push(r[s++]):n.push(e[a++]);return n}function Ww(r,e){let t=[],o=r.length;for(let s=0;s<o;s++)e.indexOf(s)===-1&&t.push(r[s]);let n=e.map(s=>r[s]);return[t,n]}function en(r,e){let t=e.map(o=>1);return bT(r,t,e)}function f4(r,e,t){A(Gw(e,t),()=>`${r} supports only inner-most axes for now. Got axes ${e} and rank-${t} input.`)}function jw(r,e){if(Gw(r,e))return null;let t=[];for(let o=0;o<e;++o)r.indexOf(o)===-1&&t.push(o);return r.forEach(o=>t.push(o)),t}function Zm(r){return r.map((e,t)=>[t,e]).sort((e,t)=>e[1]-t[1]).map(e=>e[0])}function d4(r,e){let t=[];for(let o=e-r;o<e;++o)t.push(o);return t}function h4(r,e=null,t=!1){let o=v(r,"x","logSumExp"),n=Qt(e,o.shape),s=cr(o,n,!0),a=ce(o,s),i=Zt(a),l=ge(i,n),u=ur(l),c=ee(L(s,u.shape),u);if(t){let p=en(c.shape,n);return L(c,p)}return c}var Jm=S({logSumExp_:h4});function g4(r,e){let t=v(r,"a","logicalAnd","bool"),o=v(e,"b","logicalAnd","bool");Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Vi,n)}var gr=S({logicalAnd_:g4});function x4(r){let t={x:v(r,"x","logicalNot","bool")};return E.runKernel(Ll,t)}var da=S({logicalNot_:x4});function y4(r,e){let t=v(r,"a","logicalOr","bool"),o=v(e,"b","logicalOr","bool");Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(zl,n)}var nu=S({logicalOr_:y4});function b4(r,e){let t=v(r,"a","logicalXor","bool"),o=v(e,"b","logicalXor","bool");return Be(t.shape,o.shape),gr(nu(r,e),da(gr(r,e)))}var Uw=S({logicalXor_:b4});function w4(r,e,t,o,n){let s=v(r,"x","maxPool"),a=1,i=s,l=!1;s.rank===3&&(l=!0,i=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),A(kr(t,a),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${t} and dilations '${a}'`),n!=null&&A(ot(o),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n},p=E.runKernel(Gn,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ha=S({maxPool_:w4});function _4(r,e=[1,1,1],t,o,n,s="NDHWC"){let a=v(r,"x","maxPool3d"),i=a,l=!1;a.rank===4&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]])),A(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),A(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),n!=null&&A(ot(o),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${n} but got pad ${o}.`);let u={x:i},c={filterSize:e,strides:t,pad:o,dimRoundingMode:n,dataFormat:s},p=E.runKernel(Ya,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var Qm=S({maxPool3d_:_4});function k4(r,e,t,o,n=!1){let a={x:v(r,"x","maxPoolWithArgmax")},i={filterSize:e,strides:t,pad:o,includeBatchInIndex:n},l=E.runKernel(Rc,a,i);return{result:l[0],indexes:l[1]}}var Hw=S({maxPoolWithArgmax_:k4});function v4(r,e){let t=v(r,"a","maximum"),o=v(e,"b","maximum");[t,o]=We(t,o),t.dtype==="bool"&&(t=ne(t,"int32"),o=ne(o,"int32")),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Vn,n)}var eo=S({maximum_:v4});function C4(r,e=null,t=!1){let n={x:v(r,"x","mean")},s={axis:e,keepDims:t};return E.runKernel(Wn,n,s)}var dt=S({mean_:C4});function I4(r,e=null,t=!1){let n={x:v(r,"x","min")},s={axis:e,keepDims:t};return E.runKernel(jn,n,s)}var ei=S({min_:I4});function N4(r,e){let t=v(r,"a","minimum"),o=v(e,"b","minimum");[t,o]=We(t,o),t.dtype==="bool"&&(t=ne(t,"int32"),o=ne(o,"int32")),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Un,n)}var ys=S({minimum_:N4});function S4(r,e,t){A(t==="reflect"||t==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${t}.`);let o=v(r,"x","mirrorPad");if(o.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");A(e.length===o.rank,()=>`Padding doesn't match input. Must be ${o.rank}. Got ${e.length}.`);let n=t==="reflect"?1:0;for(let i=0;i<o.rank;i++)A(e[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),A(e[i][0]>=0&&e[i][0]<=o.shape[i]-n&&e[i][1]>=0&&e[i][1]<=o.shape[i]-n,()=>`Padding in dimension ${i} cannot be greater than or equal to ${o.shape[i]-n} or less than 0 for input of shape ${o.shape}`);let s={paddings:e,mode:t},a={x:o};return E.runKernel(Za,a,s)}var ef=S({mirrorPad_:S4});function T4(r,e){let t=v(r,"a","mod"),o=v(e,"b","mod");[t,o]=We(t,o);let n={a:t,b:o};return E.runKernel(Gi,n)}var tf=S({mod_:T4});function A4(r){let e=v(r,"x","square"),t={};return E.runKernel("Square",{x:e},t)}var Oe=S({square_:A4});function E4(r,e=null,t=!1){r=v(r,"x","moments");let o=Qt(e,r.shape),n=dt(r,o,t),s=n.shape;t||(s=en(n.shape,o));let a=Oe(ce(ne(r,"float32"),L(n,s))),i=dt(a,o,t);return{mean:n,variance:i}}var Qc=S({moments_:E4});function D4(r,e,t,o){let n=v(e,"data","multiRNNCell"),s=na(t,"c","multiRNNCell"),a=na(o,"h","multiRNNCell"),i=n,l=[];for(let p=0;p<r.length;p++){let m=r[p](i,s[p],a[p]);l.push(m[0]),l.push(m[1]),i=m[1]}let u=[],c=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),c.push(l[p+1]);return[u,c]}var $4=S({multiRNNCell_:D4});function R4(r,e,t,o=!1){let n=v(r,"logits","multinomial"),s=n.size,a=n.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(a>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${a}`);t=t||Math.random();let l={logits:a===1?L(n,[1,-1]):n},u={numSamples:e,seed:t,normalized:o},c=E.runKernel(Fc,l,u);return a===1?L(c,[c.size]):c}var qw=S({multinomial_:R4});function F4(r,e){let t=v(r,"a","notEqual"),o=v(e,"b","notEqual");[t,o]=We(t,o),Be(t.shape,o.shape);let n={a:t,b:o};return E.runKernel(Wi,n)}var tn=S({notEqual_:F4});function ht(r,e="float32"){if(e==="complex64"){let o=ht(r,"float32"),n=ht(r,"float32");return Co(o,n)}let t=pc(ct(r),e);return E.makeTensor(t,r,e)}function Ar(r,e="float32"){if(e==="complex64"){let o=Ar(r,"float32"),n=ht(r,"float32");return Co(o,n)}let t=bm(ct(r),e);return E.makeTensor(t,r,e)}function O4(r){let t={x:v(r,"x","onesLike")};return E.runKernel(Bs,t)}var rr=S({onesLike_:O4});function P4(r,e){let t=v(r,"v1","outerProduct"),o=v(e,"v2","outerProduct");A(t.rank===1&&o.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${t.rank} and ${o.rank}.`);let n=L(t,[-1,1]),s=L(o,[1,-1]);return je(n,s)}var M4=S({outerProduct_:P4});function L4(r,e,t=0){let o=v(r,"x","pad");if(o.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let n={paddings:e,constantValue:t},s={x:o};return E.runKernel(Kn,s,n)}var Mr=S({pad_:L4});function z4(r,e,t=0){return A(e.length===2,()=>"Invalid number of paddings. Must be length of 2."),Mr(r,[e],t)}var B4=S({pad1d_:z4});function V4(r,e,t=0){return A(e.length===2&&e[0].length===2&&e[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Mr(r,e,t)}var G4=S({pad2d_:V4});function W4(r,e,t=0){return A(e.length===3&&e[0].length===2&&e[1].length===2&&e[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Mr(r,e,t)}var j4=S({pad3d_:W4});function U4(r,e,t=0){return A(e.length===4&&e[0].length===2&&e[1].length===2&&e[2].length===2&&e[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Mr(r,e,t)}var H4=S({pad4d_:U4});function q4(r,e,t){let o=v(r,"x","spaceToBatchND");A(o.rank>=1+e.length,()=>`input rank ${o.rank} should be > than [blockShape] ${e.length}`),A(t.length===e.length,()=>`paddings.shape[0] ${t.length} must be equal to [blockShape] ${e.length}`),A(o.shape.reduce((a,i,l)=>l>0&&l<=e.length?a&&(i+t[l-1][0]+t[l-1][1])%e[l-1]==0:a,!0),()=>`input spatial dimensions ${o.shape.slice(1)} with paddings ${t.toString()} must be divisible by blockShapes ${e.toString()}`);let n={x:o},s={blockShape:e,paddings:t};return E.runKernel(el,n,s)}var ga=S({spaceToBatchND_:q4});function Y4(r,e,t,o,n,s){n==null&&(n=[1,1]),s==null&&(s=1),o===0&&(o="valid");let a=v(r,"x","maxPool"),i=a,l=!1;a.rank===3&&(l=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]])),A(kr(s,n),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${n}'`);let u=Cw(i.shape,e,s,n,o),c=[u.dilationHeight,u.dilationWidth],p;o==="same"?p=X4([u.filterHeight,u.filterWidth],c):p=[[0,0],[0,0]];let m=c[0]===1&&c[1]===1,[f,d]=K4([u.inHeight,u.inWidth],c,p),h=m?o:"valid",g=m?i:ga(i,c,f),b=(t==="avg"?()=>ua(g,e,s,h):()=>ha(g,e,s,h))(),w=m?b:ca(b,c,d);return l?L(w,[w.shape[1],w.shape[2],w.shape[3]]):w}function K4(r,e,t){let o=t.map(c=>c[0]),n=t.map(c=>c[1]),s=r.concat(o,n),a=e.map((c,p)=>(c-s[p]%c)%c),i=n.map((c,p)=>c+a[p]),l=e.map((c,p)=>[o[p],i[p]]),u=e.map((c,p)=>[0,a[p]]);return[l,u]}function X4(r,e){let o=r.map((a,i)=>a+(a-1)*(e[i]-1)).map(a=>a-1),n=o.map(a=>Math.floor(a/2)),s=o.map((a,i)=>a-n[i]);return o.map((a,i)=>[n[i],s[i]])}var Kw=S({pool_:Y4});function Z4(r,e){let t=v(r,"base","pow"),o=v(e,"exp","pow");[t,o]=We(t,o);let n={a:t,b:o};return E.runKernel(Xn,n)}var Lr=S({pow_:Z4});function J4(r,e){let t=v(r,"x","prelu"),o=v(e,"alpha","prelu"),n={x:t,alpha:o};return E.runKernel(Yn,n)}var xa=S({prelu_:J4});function Q4(r,e=null,t=!1){let o=v(r,"x","prod");o.dtype==="bool"&&(o=ne(o,"int32"));let n={x:o},s={axis:e,keepDims:t};return E.runKernel(qi,n,s)}var su=S({prod_:Q4});function eU(r,e,t){let o=ct(r),n=null;if(t==null||t==="float32")n=new Float32Array(o);else if(t==="int32")n=new Int32Array(o);else if(t==="bool")n=new Uint8Array(o);else throw new Error(`Unknown data type ${t}`);for(let s=0;s<o;s++)n[s]=e();return E.makeTensor(n,r,t)}var tU=S({rand_:eU});var fg=ac(r_());var ep=class{constructor(e,t,o,n,s){this.mean=e,this.stdDev=t,this.dtype=o,this.nextVal=NaN,this.truncated=n,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=s||Math.random();this.random=fg.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let n=this.nextVal;return this.nextVal=NaN,n}let e,t,o=!1;for(;!o;){let n,s,a;do n=2*this.random()-1,s=2*this.random()-1,a=n*n+s*s;while(a>=1||a===0);let i=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*n*i,t=this.mean+this.stdDev*s*i,(!this.truncated||this.isValidTruncated(e))&&(o=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},o_=class{constructor(e,t,o,n){this.alpha=e,this.beta=1/t,this.dtype=o;let s=n||Math.random();this.randu=fg.alea(s.toString()),this.randn=new ep(0,1,o,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,o,n,s,a;for(;;){do n=this.randn.nextValue(),a=1+this.c*n;while(a<=0);if(a*=a*a,e=n*n,t=1-.331*e*e,o=.5*e+this.d*(1-a+Math.log(a)),s=this.randu(),s<t||Math.log(s)<o)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},n_=class{constructor(e=0,t=1,o,n){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=o,n==null&&(n=Math.random()),typeof n=="number"&&(n=n.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=fg.alea(n)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function lU(r,e,t=1,o="float32",n){if(t==null&&(t=1),o==null&&(o="float32"),o!=="float32"&&o!=="int32")throw new Error(`Unsupported data type ${o}`);let s=new o_(e,t,o,n),a=ve(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var uU=S({randomGamma_:lU});function cU(r,e=0,t=1,o,n){if(o!=null&&o==="bool")throw new Error(`Unsupported data type ${o}`);let s=new ep(e,t,o,!1,n),a=ve(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var dg=S({randomNormal_:cU});function pU(r,e=0,t=1,o="float32",n){let s=ve(r,o),a=new n_(e,t,null,n);for(let i=0;i<s.values.length;i++)s.values[i]=a.nextValue();return s.toTensor()}var bs=S({randomUniform_:pU});function tp(r,e,t=1,o="float32"){if(t===0)throw new Error("Cannot have a step of zero");let n={start:r,stop:e,step:t,dtype:o};return E.runKernel(Ja,{},n)}function mU(r){let t={input:v(r,"input","real")};return E.runKernel(Oc,t)}var cl=S({real_:mU});function fU(r){let t={x:v(r,"x","reciprocal")};return E.runKernel(Ki,t)}var rf=S({reciprocal_:fU});function dU(r){let t={x:v(r,"x","relu")};return E.runKernel(Zn,t)}var Er=S({relu_:dU});function hU(r){let t={x:v(r,"x","relu6")};return E.runKernel(Qn,t)}var au=S({relu6_:hU});function gU(r,e){let o={x:v(r,"x","reverse")},n={dims:e};return E.runKernel(es,o,n)}var qt=S({reverse_:gU});function xU(r){let e=v(r,"x","reverse");return A(e.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${e.rank}.`),qt(e,0)}var yU=S({reverse1d_:xU});function bU(r,e){let t=v(r,"x","reverse");return A(t.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${t.rank}.`),qt(t,e)}var wU=S({reverse2d_:bU});function _U(r,e){let t=v(r,"x","reverse");return A(t.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${t.rank}.`),qt(t,e)}var kU=S({reverse3d_:_U});function vU(r,e){let t=v(r,"x","reverse");return A(t.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${t.rank}.`),qt(t,e)}var CU=S({reverse4d_:vU});function IU(r){let t={x:v(r,"x","round")};return E.runKernel(ts,t)}var of=S({round_:IU});function NU(r){let t={x:v(r,"x","rsqrt")};return E.runKernel(rs,t)}var lu=S({rsqrt_:NU});function le(r,e){if((sr(r)&&e!=="string"||Array.isArray(r))&&e!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(e==="string"&&sr(r)&&!(r instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Xr(r,[],[],e)}function SU(r){let t={x:v(r,"x","selu")};return E.runKernel(Yi,t)}var uu=S({selu_:SU});function TU(r,e,t,o,n,s=[1,1],a="NHWC"){let i=v(r,"x","separableConv2d"),l=v(e,"depthwiseFilter","separableConv2d"),u=v(t,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2]])),a==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");A(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),A(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),A(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),A(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let m=l.shape[2],f=l.shape[3];A(u.shape[2]===m*f,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${m*f}, but got ${u.shape[2]}.`);let d=ds(c,l,o,n,a,s),g=Jr(d,u,1,"valid",a);return p?L(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var nf=S({separableConv2d_:TU});async function AU(r,e){let t=v(r,"x","setdiff1d"),o=v(e,"y","setdiff1d");A(t.dtype===o.dtype,()=>`x and y should have the same dtype, but got x (${t.dtype}) and y (${o.dtype}).`),A(t.rank===1,()=>`x should be 1D tensor, but got x (${t.shape}).`),A(o.rank===1,()=>`y should be 1D tensor, but got y (${o.shape}).`);let n=await t.data(),s=await o.data(),a=new Set(s),i=0;for(let c=0;c<n.length;c++)a.has(n[c])||i++;let l=new lt([i],t.dtype),u=new lt([i],"int32");for(let c=0,p=0;c<n.length;c++)a.has(n[c])||(l.values[p]=n[c],u.values[p]=c,p++);return[l.toTensor(),u.toTensor()]}var s_=AU;function EU(r){let t={x:v(r,"x","sign")};return E.runKernel(Ji,t)}var sf=S({sign_:EU});function DU(r){let t={x:v(r,"x","sin")};return E.runKernel(os,t)}var cu=S({sin_:DU});function $U(r){let t={x:v(r,"x","sinh")};return E.runKernel(Zi,t)}var pu=S({sinh_:$U});function RU(r,e,t){let o=v(r,"x","slice1d");return A(o.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${o.rank} tensor`),Re(o,[e],[t])}var af=S({slice1d_:RU});function FU(r,e,t){let o=v(r,"x","slice2d");return A(o.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${o.rank} tensor`),Re(o,e,t)}var hg=S({slice2d_:FU});function OU(r,e,t){let o=v(r,"x","slice3d");return A(o.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${o.rank} tensor`),Re(o,e,t)}var lf=S({slice3d_:OU});function PU(r,e,t){let o=v(r,"x","slice4d");return A(o.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${o.rank} tensor`),Re(o,e,t)}var rp=S({slice4d_:PU});function MU(r,e=-1){let t=v(r,"logits","softmax","float32");if(e===-1&&(e=t.rank-1),e!==t.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${t.rank} and dim was ${e}`);let o={logits:t},n={dim:e};return E.runKernel(as,o,n)}var ya=S({softmax_:MU});function LU(r){A(r.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${r.dtype}.`);let e={input:r};return E.runKernel(Nc,e)}var ba=S({fft_:LU});function zU(r){A(r.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${r.dtype}.`);let e={input:r};return E.runKernel(Sc,e)}var ti=S({ifft_:zU});function BU(r){let e=r.shape[r.shape.length-1],t=r.size/e,o;if(e<=2){let n=L(r,[t,e]);o=ti(n)}else{let n=[t,2*(e-1)],s=L(cl(r),[t,e]),a=L(eu(r),[t,e]),i=qt(Re(s,[0,1],[t,e-2]),1),l=P(qt(Re(a,[0,1],[t,e-2]),1),le(-1)),u=Ze([s,i],1),c=Ze([a,l],1),p=L(Co(u,c),[n[0],n[1]]);o=ti(p)}if(o=cl(o),r.rank===3&&r.shape[0]!==0){let n=o,s=r.shape[0];o=L(o,[s,o.shape[0]/s,o.shape[1]]),n.dispose()}return o}var mu=S({irfft_:BU});function VU(r,e,t=0){let n={x:v(r,"x","split")},s={numOrSizeSplits:e,axis:t};return E.runKernel(Us,n,s)}var pr=S({split_:VU});function GU(r,e){A(r.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${r.dtype}`);let t=r.shape[r.shape.length-1],o=r.size/t,n;if(e!=null&&e<t){let d=r.shape.map(g=>0),h=r.shape.map(g=>g);h[r.shape.length-1]=e,n=Re(r,d,h),t=e}else if(e!=null&&e>t){let d=r.shape.map(h=>h);d[r.shape.length-1]=e-t,n=Ze([r,ht(d)],r.shape.length-1),t=e}else n=r;let s=Ce(n),a=L(Co(n,s),[o,t]),i=ba(a),l=Math.floor(t/2)+1,u=cl(i),c=eu(i),p=pr(u,[l,t-l],u.shape.length-1),m=pr(c,[l,t-l],c.shape.length-1),f=n.shape.slice();return f[n.shape.length-1]=l,L(Co(p[0],m[0]),f)}var wa=S({rfft_:GU});function WU(r){let t={x:v(r,"x","sqrt")};return E.runKernel(ss,t)}var gt=S({sqrt_:WU});function jU(r,e){let t=v(r,"a","squaredDifference"),o=v(e,"b","squaredDifference");[t,o]=We(t,o),Be(t.shape,o.shape);let n={a:t,b:o},s={};return E.runKernel(ls,n,s)}var fu=S({squaredDifference_:jU});function UU(r,e){let t=v(r,"x","squeeze");return L(t,Ob(t.shape,e).newShape)}var No=S({squeeze_:UU});function HU(r,e=0){let t=na(r,"tensors","stack","string_or_numeric");A(t.length>=1,()=>"Pass at least one tensor to tf.stack"),t.length>0&&A(e<=t[0].rank,()=>"Axis must be <= rank of the tensor");let o=t,n={axis:e};return E.runKernel(Vs,o,n)}var Bt=S({stack_:HU});function qU(r,e=0){let o={x:v(r,"x","step")},n={alpha:e};return E.runKernel(Xo,o,n)}var ws=S({step_:qU});function KU(r,e,t,o,n=0,s=0,a=0,i=0,l=0){let c={x:v(r,"x","stridedSlice")},p={begin:e,end:t,strides:o,beginMask:n,endMask:s,ellipsisMask:a,newAxisMask:i,shrinkAxisMask:l};return E.runKernel(ea,c,p)}var uf=S({stridedSlice_:KU});function XU(r){let t={x:v(r,"x","tan")};return E.runKernel(ta,t)}var cf=S({tan_:XU});function Vt(r,e){Ro(r);let t=Sr(r,e);if(t.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Xr(r,null,t,e)}function ri(r,e,t){if(Ro(r),e!=null&&e.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let o=Sr(r,t);if(o.length!==2&&o.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Xr(r,e,o,t)}function YU(r,e,t){if(Ro(r),e!=null&&e.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let o=Sr(r,t);if(o.length!==4&&o.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Xr(r,e,o,t)}function ZU(r,e,t){if(Ro(r),e!=null&&e.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let o=Sr(r,t);if(o.length!==5&&o.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Xr(r,e,o,t)}function JU(r,e,t){if(Ro(r),e!=null&&e.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let o=Sr(r,t);if(o.length!==6&&o.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(o.length===1&&e==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return e=e||o,Xr(r,e,o,t)}function QU(r,e=1,t=!0){let o=v(r,"x","topk");if(o.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let n=o.shape[o.shape.length-1];if(e>n)throw new Error(`'k' passed to topk() must be <= the last dimension (${n}) but got ${e}`);let s={x:o},a={k:e,sorted:t},[i,l]=E.runKernel(ra,s,a);return{values:i,indices:l}}var pf=S({topk_:QU});function eH(r,e=0,t=1,o,n){if(o!=null&&o==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new ep(e,t,o,!0,n),a=ve(r,o);for(let i=0;i<a.values.length;i++)a.values[i]=s.nextValue();return a.toTensor()}var du=S({truncatedNormal_:eH});function tH(r,e=0){let t=v(r,"x","unique","string_or_numeric");A(t.rank>0,()=>"The input tensor must be at least 1D");let o={x:t},n={axis:e},[s,a]=E.runKernel(Bc,o,n);return{values:s,indices:a}}var op=S({unique_:tH});function rH(r,e,t){let o=v(r,"x","unsortedSegmentSum"),n=v(e,"segmentIds","unsortedSegmentSum","int32");A(ot(t),()=>"numSegments must be of dtype int");let s={x:o,segmentIds:n},a={numSegments:t};return E.runKernel(rl,s,a)}var mf=S({unsortedSegmentSum_:rH});function oH(r,e=0){let t=v(r,"x","unstack","string_or_numeric");A(e>=-t.shape.length&&e<t.shape.length,()=>`Axis = ${e} is not in [-${t.shape.length}, ${t.shape.length})`);let o={value:t},n={axis:e};return E.runKernel(Hs,o,n)}var mr=S({unstack_:oH});function i_(r,e=!0,t,o){return E.makeVariable(r,e,t,o)}function gg(r,e){let t=[];for(let s=0;s<e.length;s++)e[s]&&t.push(s);let o=ve(r,"int32"),n=ve([t.length,r.length],"int32");for(let s=0;s<t.length;s++){let a=o.indexToLoc(t[s]),i=s*r.length;n.values.set(a,i)}return n.toTensor()}async function nH(r){let e=v(r,"condition","whereAsync","bool"),t=await e.data(),o=gg(e.shape,t);return r!==e&&e.dispose(),o}var ff=nH;async function sH(r,e,t){let o=v(r,"tensor","boolMask"),n=v(e,"mask","boolMask","bool"),s=t==null?0:t,a=n.rank,i=o.shape;A(a>0,()=>"mask cannot be scalar"),vt(i.slice(s,s+a),n.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let h=s;h<s+a;h++)l*=i[h];let u=i.slice(0,s).concat([l],i.slice(s+a)),c=L(o,u),p=L(n,[-1]),m=await ff(p),f=No(m,[1]),d=Qo(c,f,s);return r!==o&&o.dispose(),e!==n&&n.dispose(),f.dispose(),c.dispose(),p.dispose(),m.dispose(),d}var JCe=sH;function iH(r,e="euclidean",t=null,o=!1){r=v(r,"x","norm");let n=FT(r,e,t),s=n.shape;if(o){let a=Qt(t,r.shape);s=en(n.shape,a)}return L(n,s)}function FT(r,e,t=null){if(r.rank===0)return It(r);if(r.rank!==1&&t===null)return FT(L(r,[-1]),e,t);if(r.rank===1||typeof t=="number"||Array.isArray(t)&&t.length===1){if(e===1)return ge(It(r),t);if(e===Infinity)return cr(It(r),t);if(e===-Infinity)return ei(It(r),t);if(e==="euclidean"||e===2)return gt(ge(Lr(It(r),le(2,"int32")),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}if(Array.isArray(t)&&t.length===2){if(e===1)return cr(ge(It(r),t[0]),t[1]-1);if(e===Infinity)return cr(ge(It(r),t[1]),t[0]);if(e===-Infinity)return ei(ge(It(r),t[1]),t[0]);if(e==="fro"||e==="euclidean")return gt(ge(Oe(r),t));throw new Error(`Error in norm: invalid ord value: ${e}`)}throw new Error(`Error in norm: invalid axis: ${t}`)}var np=S({norm_:iH});function aH(r,e,t,o,n=!0){let s=v(r,"v","movingAverage"),a=v(e,"x","movingAverage"),i=v(t,"decay","movingAverage");Qb(s,a),A(Kr(s.shape,a.shape),()=>"Shape mismatch in v and x");let l=le(1),u=ce(l,i),c=P(ce(a,s),u);if(n){A(o!=null,()=>"When using zeroDebias: true, step is required.");let p=v(o,"step","movingAverage");c=me(c,ce(l,Lr(i,p)))}return ee(s,c)}var C0e=S({movingAverage_:aH});function lH(r,e,t){let o=v(r,"indices","scatterND","int32"),n=v(e,"updates","scatterND");sg(n,o,t);let s={indices:o,updates:n},a={shape:t};return E.runKernel(Xi,s,a)}var OT=S({scatterND_:lH});function PT(r,e,t,o){if(r.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${r.dtype}.`);if(r.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${r.shape}.`);let n=r.rank>0?r.shape[0]:1,s=r.rank>1?r.shape[1]:1;if(t.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${t.length}, should be: ${s}.`);let a=e.size;if(!(e.rank===0||e.rank===1&&a===n))throw new Error(`sparseValues has incorrect shape ${e.shape}, should be [] or [${n}]`);if(e.dtype!==o.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function uH(r,e,t,o=0){let n=v(r,"sparseIndices","sparseToDense","int32"),s=v(e,"sparseValues","sparseToDense"),a=v(o,"defaultValue","sparseToDense",s.dtype);PT(n,s,t,a);let i={sparseIndices:n,sparseValues:s,defaultValue:a},l={outputShape:t};return E.runKernel(Lc,i,l)}var xg=S({sparseToDense_:uH});function cH(r,e){let t=v(e,"indices","gatherND","int32"),n={params:v(r,"x","gatherND"),indices:t};return E.runKernel(Ri,n)}var MT=S({gatherND_:cH});function LT(r,e){if(e==null)return r.shape.slice();if(Kr(r.shape,e))return e;if(r.shape.length===e.length){let t=[];for(let o=0;o<r.shape.length;o++)e[o]==null&&r.shape[o]!=null?t.push(r.shape[o]):t.push(e[o]);return t}return e}function pH(r,e,t,o){let n=v(r,"x","dropout");if(A(n.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${n.dtype} tensor instead.`),A(e>=0&&e<1,()=>`rate must be a float in the range [0, 1), but got ${e}.`),e===0)return r instanceof Ve?n.clone():n;let s=LT(n,t),a=1-e,i=me(gs(ee(bs(s,0,1,"float32",o),a)),a);return P(n,i)}var zT=S({dropout_:pH});function BT(r){return Math.floor(Math.pow(2,Math.ceil(Math.log(r)/Math.log(2))))}function yg(r,e,t){let o=1-r%2,n=new Float32Array(r);for(let s=0;s<r;++s){let a=2*Math.PI*s/(r+o-1);n[s]=e-t*Math.cos(a)}return Vt(n,"float32")}async function mH(r,e,t=1){let o=v(r,"predictions","inTopK"),n=v(e,"targets","inTopK");A(o.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${o.rank}`),A(o.rank-1===n.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${o.rank} and targets rank ${n.rank}`),vt(o.shape.slice(0,o.shape.length-1),n.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=o.shape[o.shape.length-1];A(t>0&&t<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${t}`);let a=await o.data(),i=await n.data(),[l,u]=[a.length/s,s],c=Pb("bool",l);for(let p=0;p<l;p++){let m=p*u,f=a.subarray(m,m+u),d=[];for(let h=0;h<f.length;h++)d.push({value:f[h],index:h});d.sort((h,g)=>g.value-h.value),c[p]=0;for(let h=0;h<t;h++)if(d[h].index===i[p]){c[p]=1;break}}return r!==o&&o.dispose(),e!==n&&n.dispose(),Pr(c,n.shape,"bool")}var lIe=mH;var rn={};Ge(rn,{conv2d:()=>VT,depthwiseConv2d:()=>GT,matMul:()=>WT});function fH(r,e,t,o,n,s="NHWC",a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]])),A(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),A(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),A(t.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${t}.`);let u=s==="NHWC"?i.shape[3]:i.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];A(u===t[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${t[2]}.`),A(c===t[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${t[3]}).`),a!=null&&A(ot(n),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${a} but got pad ${n}.`);let p={x:i,dy:l},m={strides:o,pad:n,dataFormat:s,dimRoundingMode:a,filterShape:t};return E.runKernel(yc,p,m)}var sp=S({conv2DBackpropFilter_:fH});function hu(r,e,t){if(t==null||t==="linear")return r;if(t==="relu")return P(r,ws(e));throw new Error(`Cannot compute gradient for fused activation ${t}.`)}function gu(r,e){let t=e,o=_t(r.shape,e.shape);return o.length>0&&(t=ge(t,o)),L(t,r.shape)}function xu(r,e,t,o){if(e==="linear")return r;if(e==="relu")return Er(r);if(e==="elu")return hs(r);if(e==="relu6")return au(r);if(e==="prelu")return xa(r,t);if(e==="leakyrelu")return fa(r,o);throw new Error(`Unknown fused activation ${e}.`)}var yu=(r,e)=>!(r>0)||e==="linear";function dH({x:r,filter:e,strides:t,pad:o,dataFormat:n="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",yu(E.state.gradientDepth,l)===!1){let k=Jr(r,e,t,o,n,s,a);return i!=null&&(k=ee(k,i)),xu(k,l,u,c)}let p=v(r,"x","conv2d"),m=v(e,"filter","conv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),A(f.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${f.rank}.`),A(m.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${m.rank}.`),a!=null&&A(ot(o),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${o}.`),A(f.shape[3]===m.shape[2],()=>`Error in conv2d: depth of input (${f.shape[3]}) must match input depth for filter ${m.shape[2]}.`),A(kr(t,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),A(n==="NHWC",()=>`Error in conv2d: got dataFormat of ${n} but only NHWC is currently supported.`);let h=Kl(f.shape,m.shape,t,s,o,a),g;i!=null&&(g=v(i,"bias","fused conv2d"),[g]=We(g,p),Be(h.outShape,g.shape));let x;u!=null&&(x=v(u,"prelu weights","fused conv2d"));let b=(k,D)=>{let[T,R,O,M]=D,G=hu(k,O,l);A(Mo(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let j=Zc(R.shape,G,T,t,o),U=sp(R,G,T.shape,t,o),H=[j,U];if(M!=null){let q=gu(M,G);H.push(q)}return H},w={x:f,filter:m,bias:g,preluActivationWeights:x},_={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?Qr((D,T,R)=>{let O=E.runKernel(Xs,w,_);return R([T,D,O]),d&&(O=L(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:b}})(f,m):Qr((D,T,R,O)=>{let M=E.runKernel(Xs,w,_);return O([T,D,M,R]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m,g)}var VT=S({fusedConv2d_:dH});function hH(r,e,t,o,n,s=[1,1],a){let i=r;r.rank===3&&(i=L(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let l=e;l.rank===3&&(l=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={x:i,dy:l},c={strides:o,pad:n,dimRoundingMode:a,dilations:s,filterShape:t};return E.runKernel(kc,u,c)}var bg=S({depthwiseConv2dNativeBackpropFilter_:hH});function gH(r,e,t,o,n,s=[1,1],a){let i=e,l=!1;e.rank===3&&(l=!0,i=L(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u={dy:i,filter:t},c={strides:o,pad:n,dimRoundingMode:a,dilations:s,inputShape:r},p=E.runKernel(vc,u,c);return l?L(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var wg=S({depthwiseConv2dNativeBackpropInput_:gH});function xH({x:r,filter:e,strides:t,pad:o,dataFormat:n="NHWC",dilations:s=[1,1],dimRoundingMode:a,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(yu(E.state.gradientDepth,l)===!1){let k=ds(r,e,t,o,n,s,a);return i!=null&&(k=ee(k,i)),xu(k,l,u,c)}let p=v(r,"x","depthwiseConv2d"),m=v(e,"filter","depthwiseConv2d"),f=p,d=!1;p.rank===3&&(d=!0,f=L(p,[1,p.shape[0],p.shape[1],p.shape[2]])),A(f.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${f.rank}.`),A(m.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${m.rank}.`),A(f.shape[3]===m.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${f.shape[3]}) must match the inChannels dimension in filter ${m.shape[2]}.`),s==null&&(s=[1,1]),A(kr(t,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${t} and dilations '${s}'`),a!=null&&A(ot(o),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${a} but got pad ${o}.`);let h=Kl(f.shape,m.shape,t,s,o,a,!0),g;i!=null&&(g=v(i,"bias","fused conv2d"),[g]=We(g,p),Be(h.outShape,g.shape));let x;u!=null&&(x=v(u,"prelu weights","fused depthwiseConv2d"));let b=(k,D)=>{A(Mo(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[T,R,O,M]=D,G=hu(k,O,l),j=wg(R.shape,G,T,t,o,s,a),U=bg(R,G,T.shape,t,o,s,a);if(M!=null){let H=gu(g,G);return[j,U,H]}return[j,U]},w={x:f,filter:m,bias:g,preluActivationWeights:x},_={strides:t,pad:o,dataFormat:n,dilations:s,dimRoundingMode:a,activation:l,leakyreluAlpha:c};return i==null?Qr((D,T,R)=>{let O=E.runKernel(Ys,w,_);return R([T,D,O]),d&&(O=L(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:b}})(f,m):Qr((D,T,R,O)=>{let M=E.runKernel(Ys,w,_);return O([T,D,M,R]),d&&(M=L(M,[M.shape[1],M.shape[2],M.shape[3]])),{value:M,gradFunc:b}})(f,m,g)}var GT=S({fusedDepthwiseConv2d_:xH});function yH({a:r,b:e,transposeA:t=!1,transposeB:o=!1,bias:n,activation:s="linear",preluActivationWeights:a,leakyreluAlpha:i}){if(yu(E.state.gradientDepth,s)===!1){let M=je(r,e,t,o);return n!=null&&(M=ee(M,n)),xu(M,s,a,i)}let l=v(r,"a","fused matMul"),u=v(e,"b","fused matMul");[l,u]=We(l,u);let c=t?l.shape[l.rank-2]:l.shape[l.rank-1],p=o?u.shape[u.rank-1]:u.shape[u.rank-2],m=t?l.shape[l.rank-1]:l.shape[l.rank-2],f=o?u.shape[u.rank-2]:u.shape[u.rank-1],d=l.shape.slice(0,-2),h=u.shape.slice(0,-2),g=ct(d),x=ct(h);A(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),A(Kr(d,h),()=>`Error in fused matMul: outer dimensions (${d}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),A(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${t} and transposeB=${o} must match.`);let b=l.shape.slice(0,-2).concat([m,f]),w=t?L(l,[g,c,m]):L(l,[g,m,c]),_=o?L(u,[x,f,p]):L(u,[x,p,f]),k;n!=null&&(k=v(n,"bias","fused matMul"),[k]=We(k,l),Be(b,k.shape));let D;a!=null&&(D=v(a,"prelu weights","fused matMul"));let T=(M,G)=>{let[j,U,H,q]=G,X=hu(L(M,H.shape),H,s),oe,Y;if(!t&&!o?(oe=je(X,U,!1,!0),Y=je(j,X,!0,!1)):!t&&o?(oe=je(X,U,!1,!1),Y=je(X,j,!0,!1)):t&&!o?(oe=je(U,X,!1,!0),Y=je(j,X,!1,!1)):(oe=je(U,X,!0,!0),Y=je(X,j,!0,!0)),n!=null){let re=gu(q,X);return[oe,Y,re]}else return[oe,Y]},R={a:w,b:_,bias:k,preluActivationWeights:D},O={transposeA:t,transposeB:o,activation:s,leakyreluAlpha:i};return n==null?Qr((G,j,U)=>{let H=E.runKernel(Ks,R,O);return U([G,j,H]),{value:L(H,b),gradFunc:T}})(w,_):Qr((G,j,U,H)=>{let q=E.runKernel(Ks,R,O);return H([G,j,q,U]),{value:L(q,b),gradFunc:T}})(w,_,k)}var WT=S({fusedMatMul_:yH});function bH(r){return yg(r,.54,.46)}var jT=S({hammingWindow_:bH});function wH(r){return yg(r,.5,.5)}var _g=S({hannWindow_:wH});function _H(r,e,t,o=!1,n=0){let s=0,a=[];for(;s+e<=r.size;)a.push(Re(r,s,e)),s+=t;if(o)for(;s<r.size;){let i=s+e-r.size,l=Ze([Re(r,s,e-i),ma([i],n)]);a.push(l),s+=t}return a.length===0?ri([],[0,e]):L(Ze(a),[a.length,e])}var kg=S({frame_:_H});function kH(r,e,t,o,n=_g){o==null&&(o=BT(e));let s=kg(r,e,t),a=P(s,n(e)),i=[];for(let l=0;l<s.shape[0];l++)i.push(wa(Re(a,[l,0],[1,e]),o));return Ze(i)}var UT=S({stft_:kH});function vH(r,e,t,o,n="bilinear",s=0){let a=v(r,"image","cropAndResize"),i=v(e,"boxes","cropAndResize","float32"),l=v(t,"boxInd","cropAndResize","int32"),u=i.shape[0];A(a.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${a.rank}.`),A(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),A(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),A(o.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${o.length}.`),A(o[0]>=1&&o[1]>=1,()=>`cropSize must be atleast [1,1], but was ${o}`),A(n==="bilinear"||n==="nearest",()=>`method must be bilinear or nearest, but was ${n}`);let c={image:a,boxes:i,boxInd:l},p={method:n,extrapolationValue:s,cropSize:o};return E.runKernel(Ni,c,p)}var HT=S({cropAndResize_:vH});function CH(r){let e=v(r,"image","flipLeftRight","float32");A(e.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${e.rank}.`);let t={image:e};return E.runKernel($i,t,{})}var qT=S({flipLeftRight_:CH});function IH(r,e,t=0,o=.5){let n=v(r,"image","rotateWithOffset","float32");A(n.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${n.rank}.`);let s={image:n},a={radians:e,fillValue:t,center:o};return E.runKernel(oa,s,a)}var KT=S({rotateWithOffset_:IH});function on(r,e,t,o,n,s){o==null&&(o=.5),n==null&&(n=Number.NEGATIVE_INFINITY),s==null&&(s=0);let a=r.shape[0];return t=Math.min(t,a),A(0<=o&&o<=1,()=>`iouThreshold must be in [0, 1], but was '${o}'`),A(r.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${r.rank}'`),A(r.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${r.shape[1]}`),A(e.rank===1,()=>"scores must be a 1D tensor"),A(e.shape[0]===a,()=>`scores has incompatible shape with boxes. Expected ${a}, but was ${e.shape[0]}`),A(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:t,iouThreshold:o,scoreThreshold:n,softNmsSigma:s}}function NH(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppression"),a=v(e,"scores","nonMaxSuppression"),i=on(s,a,t,o,n);t=i.maxOutputSize,o=i.iouThreshold,n=i.scoreThreshold;let l={maxOutputSize:t,iouThreshold:o,scoreThreshold:n};return E.runKernel(ji,{boxes:s,scores:a},l)}var XT=S({nonMaxSuppression_:NH});function YT(r,e,t){let o=SH(r,e,t),n=o<0?-(o+1):o;r.splice(n,0,e)}function SH(r,e,t){return AH(r,e,t||TH)}function TH(r,e){return r>e?1:r<e?-1:0}function AH(r,e,t){let o=0,n=r.length,s=0,a=!1;for(;o<n;){s=o+(n-o>>>1);let i=t(e,r[s]);i>0?o=s+1:(n=s,a=!i)}return a?o:-o-1}function vg(r,e,t,o,n){return a_(r,e,t,o,n,0)}function Cg(r,e,t,o,n,s){return a_(r,e,t,o,n,0,!1,s,!0)}function Ig(r,e,t,o,n,s){return a_(r,e,t,o,n,s,!0)}function a_(r,e,t,o,n,s,a=!1,i=!1,l=!1){let u=[];for(let g=0;g<e.length;g++)e[g]>n&&u.push({score:e[g],boxIndex:g,suppressBeginIndex:0});u.sort(ZT);let c=s>0?-.5/s:0,p=[],m=[];for(;p.length<t&&u.length>0;){let g=u.pop(),{score:x,boxIndex:b,suppressBeginIndex:w}=g;if(x<n)break;let _=!1;for(let k=p.length-1;k>=w;--k){let D=EH(r,b,p[k]);if(D>=o){_=!0;break}if(g.score=g.score*DH(o,c,D),g.score<=n)break}g.suppressBeginIndex=p.length,_||(g.score===x?(p.push(b),m.push(g.score)):g.score>n&&YT(u,g,ZT))}let f=p.length,d=t-f;i&&d>0&&(p.push(...new Array(d).fill(0)),m.push(...new Array(d).fill(0)));let h={selectedIndices:p};return a&&(h.selectedScores=m),l&&(h.validOutputs=f),h}function EH(r,e,t){let o=r.subarray(e*4,e*4+4),n=r.subarray(t*4,t*4+4),s=Math.min(o[0],o[2]),a=Math.min(o[1],o[3]),i=Math.max(o[0],o[2]),l=Math.max(o[1],o[3]),u=Math.min(n[0],n[2]),c=Math.min(n[1],n[3]),p=Math.max(n[0],n[2]),m=Math.max(n[1],n[3]),f=(i-s)*(l-a),d=(p-u)*(m-c);if(f<=0||d<=0)return 0;let h=Math.max(s,u),g=Math.max(a,c),x=Math.min(i,p),b=Math.min(l,m),w=Math.max(x-h,0)*Math.max(b-g,0);return w/(f+d-w)}function DH(r,e,t){let o=Math.exp(e*t*t);return t<=r?o:0}function ZT(r,e){return r.score-e.score||r.score===e.score&&e.boxIndex-r.boxIndex}async function $H(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY){let s=v(r,"boxes","nonMaxSuppressionAsync"),a=v(e,"scores","nonMaxSuppressionAsync"),i=on(s,a,t,o,n);t=i.maxOutputSize,o=i.iouThreshold,n=i.scoreThreshold;let l=await Promise.all([s.data(),a.data()]),u=l[0],c=l[1],{selectedIndices:p}=vg(u,c,t,o,n);return s!==r&&s.dispose(),a!==e&&a.dispose(),Vt(p,"int32")}var JT=$H;function RH(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=0){let a=v(r,"boxes","nonMaxSuppression"),i=v(e,"scores","nonMaxSuppression"),l=on(a,i,t,o,n,s);t=l.maxOutputSize,o=l.iouThreshold,n=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:a,scores:i},c={maxOutputSize:t,iouThreshold:o,scoreThreshold:n,softNmsSigma:s},p=E.runKernel(Hi,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var QT=S({nonMaxSuppressionWithScore_:RH});async function FH(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=0){let a=v(r,"boxes","nonMaxSuppressionAsync"),i=v(e,"scores","nonMaxSuppressionAsync"),l=on(a,i,t,o,n,s);t=l.maxOutputSize,o=l.iouThreshold,n=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([a.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:m,selectedScores:f}=Ig(c,p,t,o,n,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Vt(m,"int32"),selectedScores:Vt(f)}}var e1=FH;function OH(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=!1){let a=v(r,"boxes","nonMaxSuppression"),i=v(e,"scores","nonMaxSuppression"),l=on(a,i,t,o,n,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,m={boxes:a,scores:i},f={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:s},d=E.runKernel(Ui,m,f);return{selectedIndices:d[0],validOutputs:d[1]}}var t1=S({nonMaxSuppressionPadded_:OH});async function PH(r,e,t,o=.5,n=Number.NEGATIVE_INFINITY,s=!1){let a=v(r,"boxes","nonMaxSuppressionAsync"),i=v(e,"scores","nonMaxSuppressionAsync"),l=on(a,i,t,o,n,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[m,f]=await Promise.all([a.data(),i.data()]),{selectedIndices:d,validOutputs:h}=Cg(m,f,u,c,p,s);return a!==r&&a.dispose(),i!==e&&i.dispose(),{selectedIndices:Vt(d,"int32"),validOutputs:le(h,"int32")}}var r1=PH;function MH(r,e,t=!1,o=!1){let n=v(r,"images","resizeBilinear");A(n.rank===3||n.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${n.rank}.`),A(e.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${e}.`),A(o===!1||t===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=n,a=!1;n.rank===3&&(a=!0,s=L(n,[1,n.shape[0],n.shape[1],n.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:o,size:e},u=E.runKernel(Jn,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Ng=S({resizeBilinear_:MH});function LH(r,e,t=!1,o=!1){let n=v(r,"images","resizeNearestNeighbor");A(n.rank===3||n.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${n.rank}.`),A(e.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${e}.`),A(n.dtype==="float32"||n.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),A(o===!1||t===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=n,a=!1;n.rank===3&&(a=!0,s=L(n,[1,n.shape[0],n.shape[1],n.shape[2]]));let[]=e,i={images:s},l={alignCorners:t,halfPixelCenters:o,size:e},u=E.runKernel(Qa,i,l);return a?L(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Sg=S({resizeNearestNeighbor_:LH});function zH(r,e,t="nearest",o="constant",n=0,s){let a=v(r,"image","transform","float32"),i=v(e,"transforms","transform","float32");A(a.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${a.rank}.`),A(i.rank===2&&(i.shape[0]===a.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),A(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:a,transforms:i},u={interpolation:t,fillMode:o,fillValue:n,outputShape:s};return E.runKernel(zc,l,u)}var o1=S({transform_:zH});function BH(r,e,t){A(e%1==0,()=>`bandPart(): numLower must be an integer, got ${e}.`),A(t%1==0,()=>`bandPart(): numUpper must be an integer, got ${t}.`);let o=v(r,"a","bandPart");A(o.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${o.rank}.`);let n=o.shape,[s,a]=o.shape.slice(-2);if(!(e<=s))throw new Error(`bandPart(): numLower (${e}) must not be greater than the number of rows (${s}).`);if(!(t<=a))throw new Error(`bandPart(): numUpper (${t}) must not be greater than the number of columns (${a}).`);e<0&&(e=s),t<0&&(t=a);let i=L(tp(0,s,1,"int32"),[-1,1]),l=tp(0,a,1,"int32"),u=ce(i,l),c=gr(zo(u,le(+e,"int32")),po(u,le(-t,"int32"))),p=ht([s,a],o.dtype);return L(Bt(mr(L(o,[-1,s,a])).map(m=>Dt(c,m,p))),n)}var n1=S({bandPart_:BH});function VH(r){let e;if(Array.isArray(r)){e=!1,A(r!=null&&r.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let n=r[0].shape[0];for(let s=1;s<r.length;++s)A(r[s].shape[0]===n,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${r[s].shape[0]} vs. ${n})`)}else e=!0,r=pr(r,r.shape[0],0).map(n=>No(n,[0]));A(r.length<=r[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${r.length}) exceeds number of dimensions (${r[0].shape[0]}).`);let t=[],o=r;for(let n=0;n<r.length;++n)t.push(E.tidy(()=>{let s=o[n];if(n>0)for(let a=0;a<n;++a){let i=P(ge(P(t[a],s)),t[a]);s=ce(s,i)}return me(s,np(s,"euclidean"))}));return e?Bt(t,0):t}var s1=S({gramSchmidt_:VH});function GH(r,e=!1){if(A(r.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${r.rank}`),r.rank===2)return i1(r,e);{let t=r.shape.slice(0,r.shape.length-2).reduce((l,u)=>l*u),o=mr(L(r,[t,r.shape[r.shape.length-2],r.shape[r.shape.length-1]]),0),n=[],s=[];o.forEach(l=>{let[u,c]=i1(l,e);n.push(u),s.push(c)});let a=L(Bt(n,0),r.shape),i=L(Bt(s,0),r.shape);return[a,i]}}function i1(r,e=!1){return E.tidy(()=>{A(r.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${r.shape.length}D Tensor.`);let t=r.shape[0],o=r.shape[1],n=Jc(t),s=Po(r),a=ri([[1]],[1,1]),i=Po(a),l=t>=o?o:t;for(let u=0;u<l;++u){let c=s,p=i,m=n;[i,s,n]=E.tidy(()=>{let f=Re(s,[u,u],[t-u,1]),d=np(f),h=Re(s,[u,u],[1,1]),g=Dt(tr(h,0),ri([[-1]]),ri([[1]])),x=ce(h,P(g,d)),b=me(f,x);b.shape[0]===1?i=Po(a):i=Ze([a,Re(b,[1,0],[b.shape[0]-1,b.shape[1]])],0);let w=He(me(je(g,x),d)),_=Re(s,[u,0],[t-u,o]),k=P(w,i),D=Ke(i);if(u===0)s=ce(_,je(k,je(D,_)));else{let O=ce(_,je(k,je(D,_)));s=Ze([Re(s,[0,0],[u,o]),O],0)}let T=Ke(k),R=Re(n,[0,u],[t,n.shape[1]-u]);if(u===0)n=ce(R,je(je(R,i),T));else{let O=ce(R,je(je(R,i),T));n=Ze([Re(n,[0,0],[t,u]),O],1)}return[i,s,n]}),Ae([c,p,m])}return!e&&t>o&&(n=Re(n,[0,0],[t,o]),s=Re(s,[0,0],[o,o])),[n,s]})}var a1=S({qr_:GH});var Gt;(function(r){r[r.NONE=0]="NONE",r[r.MEAN=1]="MEAN",r[r.SUM=2]="SUM",r[r.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Gt||(Gt={}));function WH(r,e,t=Gt.SUM_BY_NONZERO_WEIGHTS){let o=v(r,"losses","computeWeightedLoss"),n=null;e!=null&&(n=v(e,"weights","computeWeightedLoss"));let s=n==null?o:P(o,n);if(t===Gt.NONE)return s;if(t===Gt.SUM)return ge(s);if(t===Gt.MEAN){if(n==null)return dt(s);{let a=o.size/n.size,i=me(ge(s),ge(n));return a>1?me(i,le(a)):i}}if(t===Gt.SUM_BY_NONZERO_WEIGHTS){if(n==null)return me(ge(s),le(o.size));{let a=P(n,Ar(o.shape)),i=ne(ge(tn(a,le(0))),"float32");return me(ge(s),i)}}throw Error(`Unknown reduction: ${t}`)}var Dr=S({computeWeightedLoss_:WH});function jH(r,e,t,o=Gt.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","absoluteDifference"),s=v(e,"predictions","absoluteDifference"),a=null;t!=null&&(a=v(t,"weights","absoluteDifference")),vt(n.shape,s.shape,"Error in absoluteDifference: ");let i=It(ce(n,s));return Dr(i,a,o)}var l1=S({absoluteDifference_:jH});function UH(r,e,t,o,n=Gt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","cosineDistance"),a=v(e,"predictions","cosineDistance"),i=null;o!=null&&(i=v(o,"weights","cosineDistance")),vt(s.shape,a.shape,"Error in cosineDistance: ");let l=le(1),u=ce(l,ge(P(s,a),t,!0));return Dr(u,i,n)}var u1=S({cosineDistance_:UH});function HH(r,e,t,o=Gt.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","hingeLoss"),s=v(e,"predictions","hingeLoss"),a=null;t!=null&&(a=v(t,"weights","hingeLoss")),vt(n.shape,s.shape,"Error in hingeLoss: ");let i=le(1);n=ce(P(le(2),n),i);let l=Er(ce(i,P(n,s)));return Dr(l,a,o)}var c1=S({hingeLoss_:HH});function qH(r,e,t,o=1,n=Gt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","huberLoss"),a=v(e,"predictions","huberLoss"),i=null;t!=null&&(i=v(t,"weights","huberLoss")),vt(s.shape,a.shape,"Error in huberLoss: ");let l=le(o),u=It(ce(a,s)),c=ys(u,l),p=ce(u,c),m=ee(P(le(.5),Oe(c)),P(l,p));return Dr(m,i,n)}var p1=S({huberLoss_:qH});function KH(r,e,t,o=1e-7,n=Gt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"labels","logLoss"),a=v(e,"predictions","logLoss"),i=null;t!=null&&(i=v(t,"weights","logLoss")),vt(s.shape,a.shape,"Error in logLoss: ");let l=le(1),u=le(o),c=He(P(s,ur(ee(a,u)))),p=P(ce(l,s),ur(ee(ce(l,a),u))),m=ce(c,p);return Dr(m,i,n)}var m1=S({logLoss_:KH});function XH(r,e,t,o=Gt.SUM_BY_NONZERO_WEIGHTS){let n=v(r,"labels","meanSquaredError"),s=v(e,"predictions","meanSquaredError"),a=null;t!=null&&(a=v(t,"weights","meanSquaredError")),vt(n.shape,s.shape,"Error in meanSquaredError: ");let i=fu(n,s);return Dr(i,a,o)}var f1=S({meanSquaredError_:XH});function YH(r,e){let t=v(r,"labels","sigmoidCrossEntropyWithLogits"),o=v(e,"logits","sigmoidCrossEntropyWithLogits");vt(t.shape,o.shape,"Error in sigmoidCrossEntropyWithLogits: ");let n=Er(o),s=P(o,t),a=ru(Zt(He(It(o))));return ee(ce(n,s),a)}function ZH(r,e,t,o=0,n=Gt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"multiClassLabels","sigmoidCrossEntropy"),a=v(e,"logits","sigmoidCrossEntropy"),i=null;if(t!=null&&(i=v(t,"weights","sigmoidCrossEntropy")),vt(s.shape,a.shape,"Error in sigmoidCrossEntropy: "),o>0){let u=le(o),c=le(1),p=le(.5);s=ee(P(s,ce(c,u)),P(p,u))}let l=YH(s,a);return Dr(l,i,n)}var d1=S({sigmoidCrossEntropy_:ZH});function JH(r,e,t=-1){if(t===-1&&(t=e.rank-1),t!==e.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${e.rank} and dim was ${t}`);return Qr((n,s,a)=>{let l=Jm(s,[t],!0),u=ce(ne(s,"float32"),l);a([n,u]);let c=He(P(u,n));return{value:ge(c,[t]),gradFunc:(f,d)=>{let[h,g]=d,x=en(f.shape,[t]);return[P(L(f,x),ce(ne(h,"float32"),Zt(g))),P(L(f,x),ce(Zt(g),ne(h,"float32")))]}}})(r,e)}function QH(r,e,t,o=0,n=Gt.SUM_BY_NONZERO_WEIGHTS){let s=v(r,"onehotLabels","softmaxCrossEntropy"),a=v(e,"logits","softmaxCrossEntropy"),i=null;if(t!=null&&(i=v(t,"weights","softmaxCrossEntropy")),vt(s.shape,a.shape,"Error in softmaxCrossEntropy: "),o>0){let u=le(o),c=le(1),p=le(s.shape[1]);s=ee(P(s,ce(c,u)),me(u,p))}let l=JH(s,a);return Dr(l,i,n)}var h1=S({softmaxCrossEntropy_:QH});var vRe={fft:ba,ifft:ti,rfft:wa,irfft:mu},CRe={hammingWindow:jT,hannWindow:_g,frame:kg,stft:UT},oi={flipLeftRight:qT,resizeNearestNeighbor:Sg,resizeBilinear:Ng,rotateWithOffset:KT,cropAndResize:HT,nonMaxSuppression:XT,nonMaxSuppressionAsync:JT,nonMaxSuppressionWithScore:QT,nonMaxSuppressionWithScoreAsync:e1,nonMaxSuppressionPadded:t1,nonMaxSuppressionPaddedAsync:r1,transform:o1},g1={bandPart:n1,gramSchmidt:s1,qr:a1},IRe={absoluteDifference:l1,computeWeightedLoss:Dr,cosineDistance:u1,hingeLoss:c1,huberLoss:p1,logLoss:m1,meanSquaredError:f1,sigmoidCrossEntropy:d1,softmaxCrossEntropy:h1};var zr=class extends ag{minimize(e,t=!1,o){let{value:n,grads:s}=this.computeGradients(e,o);if(o!=null){let a=o.map(i=>({name:i.name,tensor:s[i.name]}));this.applyGradients(a)}else this.applyGradients(s);return Ae(s),t?n:(n.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return pg(e,t)}dispose(){this.iterations_!=null&&Ae(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:le(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(zr,Symbol.hasInstance,{value:r=>r.minimize!=null&&r.computeGradients!=null&&r.applyGradients!=null});var ip=class extends zr{constructor(e,t,o=null){super();this.learningRate=e,this.rho=t,this.epsilon=o,this.accumulatedGrads=[],this.accumulatedUpdates=[],o==null&&(this.epsilon=E.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${o}/accum_grad`,variable:V(()=>Ce(s).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${o}/accum_var`,variable:V(()=>Ce(s).variable(a))});let i=Array.isArray(e)?e[n].tensor:e[o];if(i==null)return;let l=this.accumulatedGrads[n].variable,u=this.accumulatedUpdates[n].variable;V(()=>{let c=ee(P(l,this.rho),P(Oe(i),1-this.rho)),p=P(me(gt(ee(u,this.epsilon)),gt(ee(l,this.epsilon))),i),m=ee(P(u,this.rho),P(Oe(p),1-this.rho));l.assign(c),u.assign(m);let f=ee(P(p,-this.learningRate),s);s.assign(f)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ae(this.accumulatedGrads.map(e=>e.variable)),Ae(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,o=!1;this.accumulatedGrads=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedUpdates=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};ip.className="Adadelta";co(ip);var ap=class extends zr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o];if(this.accumulatedGrads[n]==null){let l=!1;this.accumulatedGrads[n]={originalName:`${o}/accumulator`,variable:V(()=>ma(s.shape,this.initialAccumulatorValue).variable(l))}}let a=Array.isArray(e)?e[n].tensor:e[o];if(a==null)return;let i=this.accumulatedGrads[n].variable;V(()=>{let l=ee(i,Oe(a));i.assign(l);let u=ee(P(me(a,gt(ee(l,E.backend.epsilon()))),-this.learningRate),s);s.assign(u)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ae(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(o=>({originalName:o.name,variable:o.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};ap.className="Adagrad";co(ap);var lp=class extends zr{constructor(e,t,o,n=null){super();this.learningRate=e,this.beta1=t,this.beta2=o,this.epsilon=n,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],V(()=>{this.accBeta1=le(t).variable(),this.accBeta2=le(o).variable()}),n==null&&(this.epsilon=E.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);V(()=>{let o=ce(1,this.accBeta1),n=ce(1,this.accBeta2);t.forEach((s,a)=>{let i=E.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:V(()=>Ce(i).variable(l))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${s}/v`,variable:V(()=>Ce(i).variable(l))});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedSecondMoment[a].variable,m=ee(P(c,this.beta1),P(u,1-this.beta1)),f=ee(P(p,this.beta2),P(Oe(u),1-this.beta2)),d=me(m,o),h=me(f,n);c.assign(m),p.assign(f);let g=ee(P(me(d,ee(gt(h),this.epsilon)),-this.learningRate),i);i.assign(g)}),this.accBeta1.assign(P(this.accBeta1,this.beta1)),this.accBeta2.assign(P(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ae(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),V(()=>{this.accBeta1.assign(Lr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Lr(this.beta2,this.iterations_+1))});let t=e.length/2,o=!1;this.accumulatedFirstMoment=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};lp.className="Adam";co(lp);var up=class extends zr{constructor(e,t,o,n=null,s=0){super();this.learningRate=e,this.beta1=t,this.beta2=o,this.epsilon=n,this.decay=s,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],V(()=>{this.iteration=le(0).variable(),this.accBeta1=le(t).variable()}),n==null&&(this.epsilon=E.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);V(()=>{let o=ce(1,this.accBeta1),n=me(-this.learningRate,ee(P(this.iteration,this.decay),1));t.forEach((s,a)=>{let i=E.registeredVariables[s],l=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${s}/m`,variable:Ce(i).variable(l)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${s}/v`,variable:Ce(i).variable(l)});let u=Array.isArray(e)?e[a].tensor:e[s];if(u==null)return;let c=this.accumulatedFirstMoment[a].variable,p=this.accumulatedWeightedInfNorm[a].variable,m=ee(P(c,this.beta1),P(u,1-this.beta1)),f=P(p,this.beta2),d=It(u),h=eo(f,d);c.assign(m),p.assign(h);let g=ee(P(me(n,o),me(m,ee(h,this.epsilon))),i);i.assign(g)}),this.iteration.assign(ee(this.iteration,1)),this.accBeta1.assign(P(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ae(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ae(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};up.className="Adamax";co(up);var pl=class extends zr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=Array.isArray(e)?e[n].tensor:e[o];if(s==null)return;let a=E.registeredVariables[o];V(()=>{let i=ee(P(this.c,s),a);a.assign(i)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Et(le(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};pl.className="SGD";co(pl);var cp=class extends pl{constructor(e,t,o=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=o,this.accumulations=[],this.m=le(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o];if(this.accumulations[n]==null){let l=!1;this.accumulations[n]={originalName:`${o}/momentum`,variable:V(()=>Ce(s).variable(l))}}let a=this.accumulations[n].variable,i=Array.isArray(e)?e[n].tensor:e[o];i!=null&&V(()=>{let l,u=ee(P(this.m,a),i);this.useNesterov?l=ee(P(this.c,ee(i,P(u,this.m))),s):l=ee(P(this.c,u),s),a.assign(u),s.assign(l)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ae(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(o=>({originalName:o.name,variable:o.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};cp.className="Momentum";co(cp);var pp=class extends zr{constructor(e,t=.9,o=0,n=null,s=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=o,this.epsilon=n,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=s,n==null&&(this.epsilon=E.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(o=>o.name):Object.keys(e)).forEach((o,n)=>{let s=E.registeredVariables[o],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${o}/rms`,variable:V(()=>Ce(s).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${o}/momentum`,variable:V(()=>Ce(s).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${o}/mg`,variable:V(()=>Ce(s).variable(a))});let i=Array.isArray(e)?e[n].tensor:e[o];if(i==null)return;let l=this.accumulatedMeanSquares[n].variable,u=this.accumulatedMoments[n].variable;V(()=>{let c=ee(P(l,this.decay),P(Oe(i),1-this.decay));if(this.centered){let p=this.accumulatedMeanGrads[n].variable,m=ee(P(p,this.decay),P(i,1-this.decay)),f=me(P(i,this.learningRate),gt(ce(c,ee(Oe(m),this.epsilon)))),d=ee(P(u,this.momentum),f);l.assign(c),p.assign(m),u.assign(d);let h=ce(s,d);s.assign(h)}else{let p=ee(P(l,this.decay),P(Oe(i),1-this.decay)),m=ee(P(u,this.momentum),me(P(i,this.learningRate),gt(ee(p,this.epsilon))));l.assign(p),u.assign(m);let f=ce(s,m);s.assign(f)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ae(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ae(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ae(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,o=!1;this.accumulatedMeanSquares=e.slice(0,t).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.accumulatedMoments=e.slice(t,t*2).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(n=>({originalName:n.name,variable:n.tensor.variable(o)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};pp.className="RMSProp";co(pp);var _a=class{static sgd(e){return new pl(e)}static momentum(e,t,o=!1){return new cp(e,t,o)}static rmsprop(e,t=.9,o=0,n=null,s=!1){return new pp(e,t,o,n,s)}static adam(e=.001,t=.9,o=.999,n=null){return new lp(e,t,o,n)}static adadelta(e=.001,t=.95,o=null){return new ip(e,t,o)}static adamax(e=.002,t=.9,o=.999,n=null,s=0){return new up(e,t,o,n,s)}static adagrad(e,t=.1){return new ap(e,t)}};var bu={sgd:_a.sgd,momentum:_a.momentum,adadelta:_a.adadelta,adagrad:_a.adagrad,rmsprop:_a.rmsprop,adamax:_a.adamax,adam:_a.adam};var eq=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:r=>r())();function df(){return new Promise(r=>eq(()=>r()))}var N={};Ge(N,{ERF_A1:()=>pq,ERF_A2:()=>mq,ERF_A3:()=>fq,ERF_A4:()=>dq,ERF_A5:()=>hq,ERF_P:()=>cq,PARALLELIZE_THRESHOLD:()=>Tg,SELU_SCALE:()=>u_,SELU_SCALEALPHA:()=>l_,applyActivation:()=>xu,assertAndGetBroadcastShape:()=>Be,assertAxesAreInnerMostDims:()=>f4,assertParamsConsistent:()=>tq,assignToTypedArray:()=>vq,axesAreInnerMostDims:()=>Gw,calculateShapes:()=>tT,combineLocations:()=>bT,complexWithEvenIndex:()=>wq,complexWithOddIndex:()=>_q,computeConv2DInfo:()=>Kl,computeConv3DInfo:()=>xT,computeDefaultPad:()=>Nw,computeDilation2DInfo:()=>LW,computeOptimalWindowSize:()=>oq,computeOutAndReduceShapes:()=>Ww,computeOutShape:()=>rq,computePool2DInfo:()=>Cw,computePool3DInfo:()=>zW,convertConv2DDataFormat:()=>gT,eitherStridesOrDilationsAreOne:()=>kr,expandShapeToKeepDim:()=>en,exponent:()=>Iq,exponents:()=>Cq,fromStringArrayToUint8:()=>Dq,fromUint8ToStringArray:()=>Eq,getAxesPermutation:()=>jw,getBroadcastDims:()=>Aj,getComplexWithIndex:()=>kq,getFusedBiasGradient:()=>gu,getFusedDyActivation:()=>hu,getImageCenter:()=>nq,getInnerMostAxes:()=>d4,getPermuted:()=>iq,getReductionAxes:()=>_t,getReshaped:()=>sq,getReshapedPermuted:()=>aq,getSliceBeginCoords:()=>lq,getSliceSize:()=>uq,getUndoAxesPermutation:()=>Zm,log:()=>xq,mergeRealAndImagArrays:()=>yq,prepareAndValidate:()=>eT,prepareSplitSize:()=>Nq,segment_util:()=>c_,shouldFuse:()=>yu,slice_util:()=>er,splitRealAndImagArrays:()=>bq,tupleValuesAreOne:()=>Mo,upcastType:()=>ir,validateInput:()=>sg,validateUpdateShape:()=>xw,warn:()=>gq});function tq(r,e){let t=r[0].length;r.forEach((n,s)=>{A(n.length===t,()=>`Error in concat${t}D: rank of tensors[${s}] must be the same as the rank of the rest (${t})`)}),A(e>=0&&e<t,()=>`Error in concat${t}D: axis must be between 0 and ${t-1}.`);let o=r[0];r.forEach((n,s)=>{for(let a=0;a<t;a++)A(a===e||n[a]===o[a],()=>`Error in concat${t}D: Shape of tensors[${s}] (${n}) does not match the shape of the rest (${o}) along the non-concatenated axis ${s}.`)})}function rq(r,e){let t=r[0].slice();for(let o=1;o<r.length;o++)t[e]+=r[o][e];return t}var Tg=30;function oq(r){return r<=Tg?r:cc(r,Math.floor(Math.sqrt(r)))}function nq(r,e,t){let o=t*(typeof r=="number"?r:r[0]),n=e*(typeof r=="number"?r:r[1]);return[o,n]}function sq(r,e,t,o=!0){let n=[];if(o)n=n.concat(e.slice(0)),n.push(r[0]/t),n=n.concat(r.slice(1));else{n=n.concat(r[0]);let s=e.length;for(let a=0;a<s;++a)n=n.concat([r[a+1]/e[a],e[a]]);n=n.concat(r.slice(s+1))}return n}function iq(r,e,t=!0){let o=[];if(t){o.push(e);for(let n=e+1;n<r;++n)n<=2*e?(o.push(n),o.push(n-(e+1))):o.push(n)}else{let n=[],s=[];for(let a=1;a<r;++a)a>=e*2+1||a%2==1?s.push(a):n.push(a);o.push(...n),o.push(0),o.push(...s)}return o}function aq(r,e,t,o=!0){let n=[];o?n.push(r[0]/t):n.push(r[0]*t);for(let s=1;s<r.length;++s)s<=e.length?o?n.push(e[s-1]*r[s]):n.push(r[s]/e[s-1]):n.push(r[s]);return n}function lq(r,e){let t=[0];for(let o=0;o<e;++o)t.push(r[o][0]);return t}function uq(r,e,t){let o=r.slice(0,1);for(let n=0;n<t;++n)o.push(r[n+1]-e[n][0]-e[n][1]);return o}var l_=1.7580993408473768,u_=1.0507009873554805;var cq=.3275911,pq=.254829592,mq=-.284496736,fq=1.421413741,dq=-1.453152027,hq=1.061405429;function gq(...r){W().getBool("IS_TEST")||console.warn(...r)}function xq(...r){W().getBool("IS_TEST")||console.log(...r)}function yq(r,e){if(r.length!==e.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${r.length}, imag: ${e.length}.`);let t=new Float32Array(r.length*2);for(let o=0;o<t.length;o+=2)t[o]=r[o/2],t[o+1]=e[o/2];return t}function bq(r){let e=new Float32Array(r.length/2),t=new Float32Array(r.length/2);for(let o=0;o<r.length;o+=2)e[o/2]=r[o],t[o/2]=r[o+1];return{real:e,imag:t}}function wq(r){let e=Math.ceil(r.length/4),t=new Float32Array(e),o=new Float32Array(e);for(let n=0;n<r.length;n+=4)t[Math.floor(n/4)]=r[n],o[Math.floor(n/4)]=r[n+1];return{real:t,imag:o}}function _q(r){let e=Math.floor(r.length/4),t=new Float32Array(e),o=new Float32Array(e);for(let n=2;n<r.length;n+=4)t[Math.floor(n/4)]=r[n],o[Math.floor(n/4)]=r[n+1];return{real:t,imag:o}}function kq(r,e){let t=r[e*2],o=r[e*2+1];return{real:t,imag:o}}function vq(r,e,t,o){r[o*2]=e,r[o*2+1]=t}function Cq(r,e){let t=new Float32Array(r/2),o=new Float32Array(r/2);for(let n=0;n<Math.ceil(r/2);n++){let s=(e?2:-2)*Math.PI*(n/r);t[n]=Math.cos(s),o[n]=Math.sin(s)}return{real:t,imag:o}}function Iq(r,e,t){let o=(t?2:-2)*Math.PI*(r/e),n=Math.cos(o),s=Math.sin(o);return{real:n,imag:s}}function Nq(r,e,t=0){let o=[];if(typeof e=="number")A(r.shape[t]%e==0,()=>"Number of splits must evenly divide the axis."),o=new Array(e).fill(r.shape[t]/e);else{let n=e.reduce((a,i)=>(i===-1&&(a+=1),a),0);A(n<=1,()=>"There should be only one negative value in split array.");let s=e.indexOf(-1);if(s!==-1){let a=e.reduce((i,l)=>l>0?i+l:i);e[s]=r.shape[t]-a}A(r.shape[t]===e.reduce((a,i)=>a+i),()=>"The sum of sizes must match the size of the axis dimension."),o=e}return o}var c_={};Ge(c_,{collectGatherOpShapeInfo:()=>Aq,computeOutShape:()=>Tq,segOpComputeOptimalWindowSize:()=>Sq});function Sq(r,e){let t=!1,o;for(r<=Tg?(o=r,t=!0):o=cc(r,Math.floor(Math.sqrt(r)));!t;)o>e||o===r?t=!0:o=cc(r,o+1);return o}function Tq(r,e,t){let o=[],n=r.length;for(let s=0;s<n;s++)s!==e?o.push(r[s]):o.push(t);return o}function Aq(r,e,t,o){let n=e.shape.length,s=r.shape.length;if(o!==0&&(o<-n||o>n))throw new Error(`Expect batchDims in the range of [-${n}, ${n}], but got ${o}`);if(o<0&&(o+=n),o>s)throw new Error(`batchDims (${o}) must be less than rank(x) (
${s}).`);if(t<o)throw new Error(`batchDims (${o}) must be less than or equal to axis (${t}).`);for(let p=0;p<o;++p)if(r.shape[p]!==e.shape[p])throw new Error(`x.shape[${p}]: ${r.shape[p]} should be equal to indices.shape[${p}]: ${e.shape[p]}.`);let a=r.shape[t],i=[],l=1,u=1,c=1;for(let p=0;p<o;++p)i.push(r.shape[p]),l*=r.shape[p];for(let p=o;p<t;p++)i.push(r.shape[p]),u*=r.shape[p];for(let p=o;p<n;p++)i.push(e.shape[p]);for(let p=t+1;p<s;p++)i.push(r.shape[p]),c*=r.shape[p];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:a,outputShape:i}}function Eq(r){try{return r.map(e=>Wc(e))}catch(e){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${e}`)}}function Dq(r){return r.map(e=>ol(e))}var $r={};Ge($r,{nonMaxSuppressionV3Impl:()=>vg,nonMaxSuppressionV4Impl:()=>Cg,nonMaxSuppressionV5Impl:()=>Ig,whereImpl:()=>gg});function te(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the CPU backend.`)})}var $q=$r.whereImpl,wu=class extends $s{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Va(this,Zo())}nextDataId(){return wu.nextDataId++}write(e,t,o){this.firstUse&&(this.firstUse=!1,W().get("IS_NODE")&&N.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let n={id:this.nextDataId()};return this.data.set(n,{values:e,dtype:o,refCount:1}),n}makeTensorInfo(e,t,o){let n;if(t==="string"&&o!=null&&o.length>0&&y.isString(o[0])){let s=o.map(a=>y.encodeString(a));n=this.write(s,e,t)}else n=this.write(o,e,t);return{dataId:n,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,o,n,s){this.data.set(e,{values:t,dtype:n,refCount:s})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:o}=this.data.get(e);if(t==="complex64"){let n=this.readSync(o.real.dataId),s=this.readSync(o.imag.dataId);return N.mergeRealAndImagArrays(n,s)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),o=t;if(e.dtype==="string")try{o=t.map(n=>y.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return ve(e.shape,e.dtype,o)}makeOutput(e,t,o){let n=this.write(e,t,o);return Zo().makeTensorFromDataId(n,t,o,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:o}=this.data.get(e);o!=null&&(this.disposeData(o.real.dataId,!0),this.disposeData(o.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){te([e],"where");let t=this.readSync(e.dataId);return $q(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};wu.nextDataId=0;var Mg={};Ge(Mg,{addImpl:()=>m_,bincountImpl:()=>dp,bincountReduceImpl:()=>Ag,ceilImpl:()=>f_,concatImpl:()=>_u,expImpl:()=>d_,expm1Impl:()=>g_,floorImpl:()=>x_,gatherV2Impl:()=>Eg,greaterImpl:()=>y_,lessImpl:()=>b_,linSpaceImpl:()=>Dg,logImpl:()=>w_,maxImpl:()=>$g,maximumImpl:()=>__,minimumImpl:()=>k_,multiplyImpl:()=>hf,negImpl:()=>v_,notEqualImpl:()=>C_,prodImpl:()=>I_,rangeImpl:()=>ku,rsqrtImpl:()=>N_,simpleAbsImpl:()=>p_,sliceImpl:()=>vu,squaredDifferenceImpl:()=>S_,stridedSliceImpl:()=>Rg,subImpl:()=>T_,tileImpl:()=>Fg,topKImpl:()=>Og,transposeImpl:()=>hp,uniqueImpl:()=>Pg});function p_(r){let e=new Float32Array(r.length);for(let t=0;t<r.length;++t)e[t]=Math.abs(r[t]);return e}var Rq=r=>{let{x:e}=r.inputs,t=r.backend;te(e,"abs");let o=new Float32Array(y.sizeFromShape(e.shape)),n=t.data.get(e.dataId).values;return o=p_(n),t.makeOutput(o,e.shape,"float32")},x1={kernelName:Os,backendName:"cpu",kernelFunc:Rq};function Xe(r){return(e,t,o,n,s)=>{let a=N.assertAndGetBroadcastShape(e,t),i=a.length,l=y.computeStrides(a),u=y.sizeFromShape(a),c=y.getTypedArrayFromDType(s,u),p=e.length,m=t.length,f=y.computeStrides(e),d=y.computeStrides(t),h=N.getBroadcastDims(e,a),g=N.getBroadcastDims(t,a);if(h.length+g.length===0)for(let x=0;x<c.length;++x)c[x]=r(o[x%o.length],n[x%n.length]);else for(let x=0;x<c.length;++x){let b=y.indexToLoc(x,i,l),w=b.slice(-p);h.forEach(T=>w[T]=0);let _=y.locToIndex(w,p,f),k=b.slice(-m);g.forEach(T=>k[T]=0);let D=y.locToIndex(k,m,d);c[x]=r(o[_],n[D])}return[c,a]}}function fr(r){let{inputs:e,backend:t}=r,{real:o,imag:n}=e,s=t.data.get(o.dataId).values,a=t.data.get(n.dataId).values,i=t.makeTensorInfo(o.shape,"complex64"),l=t.data.get(i.dataId);return l.complexTensorInfos={real:t.makeTensorInfo(o.shape,"float32",s),imag:t.makeTensorInfo(n.shape,"float32",a)},i}var y1={kernelName:xc,backendName:"cpu",kernelFunc:fr};function mp(r,e,t="float32"){if(t==="complex64"){let n=mp(r,e,"float32"),s=mp(r,e,"float32");return fr({inputs:{real:n,imag:s},backend:r})}let o=y.makeZerosTypedArray(y.sizeFromShape(e),t);return r.makeTensorInfo(e,t,o)}function Rr(r){let{inputs:e,backend:t}=r,{x:o}=e;return t.incRef(o.dataId),{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}var b1={kernelName:Ko,backendName:"cpu",kernelFunc:Rr};function nn(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.data.get(o.dataId).complexTensorInfos.real,s=t.data.get(n.dataId).values;return t.makeTensorInfo(n.shape,n.dtype,s)}var w1={kernelName:Oc,backendName:"cpu",kernelFunc:nn};function sn(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dtype:s}=o;if(s==="complex64"){if(n.dtype==="complex64")return Rr({inputs:{x:n},backend:t});let a=mp(t,n.shape,n.dtype),i=sn({inputs:{x:n},backend:t,attrs:{dtype:"float32"}}),l=fr({inputs:{real:i,imag:a},backend:t});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}if(n.dtype==="complex64"){let a=nn({inputs:{input:n},backend:t}),i=sn({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(n.dtype,s)){let a=Rr({inputs:{x:n},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32"){let a=t.data.get(n.dataId).values,i=Int32Array.from(a);return t.makeTensorInfo(n.shape,"int32",i)}if(s==="bool"){let a=t.data.get(n.dataId).values,i=y.toTypedArray([0],n.dtype),[l,u]=Xe((c,p)=>c!==p?1:0)(n.shape,[],a,i,"bool");return t.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${n.dtype} to ${s}`)}var _1={kernelName:Ho,backendName:"cpu",kernelFunc:sn};function et(r,e,t,o){return t==null?({inputs:n,backend:s})=>{let{a,b:i}=n,l=s;te([a,i],r);let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=o||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}:({inputs:n,backend:s})=>{let{a,b:i}=n,l=s;if(a.dtype==="complex64"||i.dtype==="complex64"){let u=sn({inputs:{x:a},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,m=c.complexTensorInfos.imag,f=l.data.get(p.dataId).values,d=l.data.get(m.dataId).values,h=sn({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(h.dataId),x=g.complexTensorInfos.real,b=g.complexTensorInfos.imag,w=l.data.get(x.dataId).values,_=l.data.get(b.dataId).values,[k,D,T]=t(a.shape,i.shape,f,d,w,_),R=l.makeTensorInfo(T,"float32",k),O=l.makeTensorInfo(T,"float32",D),M=fr({inputs:{real:R,imag:O},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(h),l.disposeIntermediateTensorInfo(R),l.disposeIntermediateTensorInfo(O),M}else{let u=l.data.get(a.dataId).values,c=l.data.get(i.dataId).values,p=o||a.dtype,[m,f]=e(a.shape,i.shape,u,c,p);return l.makeTensorInfo(f,p,m)}}}function fp(r){return(e,t,o,n,s,a)=>{let i=N.assertAndGetBroadcastShape(e,t),l=y.sizeFromShape(i),u=i.length,c=y.computeStrides(i),p=y.getTypedArrayFromDType("float32",l),m=y.getTypedArrayFromDType("float32",l),f=N.getBroadcastDims(e,i),d=N.getBroadcastDims(t,i),h=N.mergeRealAndImagArrays(o,n),g=N.mergeRealAndImagArrays(s,a),x=e.length,b=y.computeStrides(e),w=t.length,_=y.computeStrides(t);if(f.length+d.length===0)for(let k=0;k<p.length;k++){let D=k%h.length,T=k%g.length,R=r(h[D*2],h[D*2+1],g[T*2],g[T*2+1]);p[k]=R.real,m[k]=R.imag}else for(let k=0;k<p.length;k++){let D=y.indexToLoc(k,u,c),T=D.slice(-x);f.forEach(j=>T[j]=0);let R=y.locToIndex(T,x,b),O=D.slice(-w);d.forEach(j=>O[j]=0);let M=y.locToIndex(O,w,_),G=r(h[R*2],h[R*2+1],g[M*2],g[M*2+1]);p[k]=G.real,m[k]=G.imag}return[p,m,i]}}var m_=Xe((r,e)=>r+e),Fq=fp((r,e,t,o)=>({real:r+t,imag:e+o})),ka=et(Fo,m_,Fq),k1={kernelName:Fo,backendName:"cpu",kernelFunc:ka};function dp(r,e,t,o,n){let s=y.sizeFromShape(o),a=y.makeZerosTypedArray(n,t);for(let i=0;i<r.length;i++){let l=r[i];if(l<0)throw new Error("Input x must be non-negative!");l>=n||(s>0?a[l]+=e[i]:a[l]+=1)}return a}function Ag(r,e,t,o=!1){let n=r.shape[0],s=r.shape[1],a=ve([n,t],e.dtype);for(let i=0;i<n;i++)for(let l=0;l<s;l++){let u=r.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=t||(o?a.set(1,i,u):e.size>0?a.set(a.get(i,u)+e.get(i,l),i,u):a.set(a.get(i,u)+1,i,u))}return a}function an(r){return(e,t,o)=>{let n=y.getTypedArrayFromDType(t,e.length);for(let s=0;s<e.length;++s)n[s]=r(e[s],o);return n}}function $e(r,e,t){return({inputs:o,attrs:n,backend:s})=>{let{x:a}=o;if(te(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=y.sizeFromShape(a.shape),c=t||a.dtype,p=y.getArrayFromDType(c,u);for(let m=0;m<u;++m)p[m]=e(l[m],n);return i.makeTensorInfo(a.shape,c,p)}}function ln(r,e,t){return({inputs:o,attrs:n,backend:s})=>{let{x:a}=o;if(te(a,r),a.dtype==="string"||t==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=s,l=i.data.get(a.dataId).values,u=t||a.dtype,c=e(l,u,n);return i.makeTensorInfo(a.shape,u,c)}}var f_=an(r=>Math.ceil(r)),Oq=ln(Nn,f_),v1={kernelName:Nn,backendName:"cpu",kernelFunc:Oq};function _u(r,e,t,o){let n=y.getArrayFromDType(t,y.sizeFromShape(e));if(o&&t!=="string"){let s=0;r.forEach(a=>{let i=y.sizeFromShape(a.shape);n.set(a.vals,s),s+=i})}else{let s=0;r.forEach(a=>{let i=t==="string"?N.fromUint8ToStringArray(a.vals):a.vals,l=0;for(let u=0;u<a.shape[0];++u){let c=u*e[1]+s;for(let p=0;p<a.shape[1];++p)n[c+p]=i[l++]}s+=a.shape[1]})}return n}var d_=an(r=>Math.exp(r)),h_=ln(Rn,d_),C1={kernelName:Rn,backendName:"cpu",kernelFunc:h_};var g_=an(r=>Math.expm1(r)),Pq=ln(Di,g_),I1={kernelName:Di,backendName:"cpu",kernelFunc:Pq};var x_=an(r=>Math.floor(r)),Mq=ln(Fn,x_),N1={kernelName:Fn,backendName:"cpu",kernelFunc:Mq};function Eg(r,e,t){let o=ve(t,r.dtype);for(let n=0;n<o.size;++n){let a=o.indexToLoc(n).slice(),i=a[0],l=a[2],u=e.locToIndex([i,l]);a[2]=e.values[u];let c=r.locToIndex(a);o.values[n]=r.values[c]}return o}var y_=Xe((r,e)=>r>e?1:0),Lq=et(Fi,y_,null,"bool"),S1={kernelName:Fi,backendName:"cpu",kernelFunc:Lq};var b_=Xe((r,e)=>r<e?1:0),zq=et(Li,b_,null,"bool"),T1={kernelName:Li,backendName:"cpu",kernelFunc:zq};function Dg(r,e,t){let o=(e-r)/(t-1),n=y.makeZerosTypedArray(t,"float32");n[0]=r;for(let s=1;s<n.length;s++)n[s]=n[s-1]+o;return n}var w_=an(r=>Math.log(r)),Bq=ln(zn,w_),A1={kernelName:zn,backendName:"cpu",kernelFunc:Bq};function $g(r,e,t,o){let n=y.getTypedArrayFromDType(o,y.sizeFromShape(t));for(let s=0;s<n.length;++s){let a=s*e,i=r[a];for(let l=0;l<e;++l){let u=r[a+l];u>i&&(i=u)}n[s]=i}return n}var __=Xe((r,e)=>Math.max(r,e)),Vq=et(Vn,__),E1={kernelName:Vn,backendName:"cpu",kernelFunc:Vq};var k_=Xe((r,e)=>Math.min(r,e)),Gq=et(Un,k_),D1={kernelName:Un,backendName:"cpu",kernelFunc:Gq};var hf=Xe((r,e)=>r*e),Wq=fp((r,e,t,o)=>({real:r*t-e*o,imag:r*o+e*t})),gf=et(Hn,hf,Wq),$1={kernelName:Hn,backendName:"cpu",kernelFunc:gf};function v_(r,e,t){let o=y.createScalarValue(-1,t);return hf([],e,o,r,t)}function jq(r){let{inputs:e,backend:t}=r,{x:o}=e;te(o,"neg");let n=t.data.get(o.dataId).values,[s,a]=v_(n,o.shape,o.dtype);return t.makeTensorInfo(a,o.dtype,s)}var R1={kernelName:zs,backendName:"cpu",kernelFunc:jq};var C_=Xe((r,e)=>r!==e?1:0),Uq=et(Wi,C_,null,"bool"),F1={kernelName:Wi,backendName:"cpu",kernelFunc:Uq};function hp(r,e,t,o,n){let s=e.length,a=y.sizeFromShape(e),i=y.computeStrides(e),l=y.computeStrides(n),u=y.getTypedArrayFromDType(t,y.sizeFromShape(n));for(let c=0;c<a;++c){let p=y.indexToLoc(c,s,i),m=new Array(p.length);for(let d=0;d<m.length;d++)m[d]=p[o[d]];let f=y.locToIndex(m,s,l);u[f]=r[c]}return u}function or(r){let{inputs:e,attrs:t,backend:o}=r,{x:n}=e,{perm:s}=t;te(n,"transpose");let a=n.shape.length,i=new Array(a);for(let p=0;p<i.length;p++)i[p]=n.shape[s[p]];let l=o.data.get(n.dataId).values,u=hp(l,n.shape,n.dtype,s,i);return{dataId:o.write(u,i,n.dtype),shape:i,dtype:n.dtype}}var O1={kernelName:ps,backendName:"cpu",kernelFunc:or};function I_(r,e,t,o){let[n,s]=N.computeOutAndReduceShapes(r,o),a=ir(e,"int32"),i=y.makeZerosTypedArray(y.sizeFromShape(n),a),l=y.sizeFromShape(s);for(let u=0;u<i.length;++u){let c=u*l,p=1;for(let m=0;m<l;++m)p*=t[c+m];i[u]=p}return{outVals:i,outShape:n,outDtype:a}}function Hq(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"prod");let i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=N.getAxesPermutation(l,i),c=l,p=n,m=[];u!=null&&(p=or({inputs:{x:n},backend:t,attrs:{perm:u}}),m.push(p),c=N.getInnerMostAxes(c.length,i));let f=t.data.get(p.dataId).values,{outVals:d,outShape:h,outDtype:g}=I_(p.shape,p.dtype,f,c),x=h;return a&&(x=N.expandShapeToKeepDim(h,l)),m.forEach(b=>t.disposeIntermediateTensorInfo(b)),t.makeTensorInfo(x,g,d)}var P1={kernelName:qi,backendName:"cpu",kernelFunc:Hq};function ku(r,e,t,o){let n=r===e,s=r<e&&t<0,a=e<r&&t>1;if(n||s||a)return y.makeZerosTypedArray(0,o);let i=Math.abs(Math.ceil((e-r)/t)),l=y.makeZerosTypedArray(i,o);e<r&&t===1&&(t=-1),l[0]=r;for(let u=1;u<l.length;u++)l[u]=l[u-1]+t;return l}var N_=an(r=>1/Math.sqrt(r)),qq=ln(rs,N_),M1={kernelName:rs,backendName:"cpu",kernelFunc:qq};function vu(r,e,t,o,n){let s=er.isSliceContinous(o,e,t),a=y.sizeFromShape(t),i=y.computeStrides(o);if(s){let p=er.computeFlatOffset(e,i);return n==="string"?r.slice(p,p+a):r.subarray(p,p+a)}let l=n==="string"?N.fromUint8ToStringArray(r):r,u=ve(o,n,l),c=ve(t,n);for(let p=0;p<c.size;++p){let m=c.indexToLoc(p),f=m.map((d,h)=>d+e[h]);c.set(u.get(...f),...m)}return n==="string"?N.fromStringArrayToUint8(c.values):c.values}function un(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,size:a}=o;te(n,"slice");let[i,l]=er.parseSliceParams(n,s,a);er.assertParamsValid(n,i,l);let u=t.data.get(n.dataId).values,c=vu(u,i,l,n.shape,n.dtype);return t.makeTensorInfo(l,n.dtype,c)}var L1={kernelName:js,backendName:"cpu",kernelFunc:un};var S_=Xe((r,e)=>{let t=r-e;return t*t}),Kq=et(ls,S_),z1={kernelName:ls,backendName:"cpu",kernelFunc:Kq};function Rg(r,e,t,o){let n=ve(r,e.dtype);for(let s=0;s<n.size;s++){let a=n.indexToLoc(s),i=new Array(a.length);for(let l=0;l<i.length;l++)i[l]=a[l]*t[l]+o[l];n.set(e.get(...i),...a)}return n}var T_=Xe((r,e)=>r-e),Xq=fp((r,e,t,o)=>({real:r-t,imag:e-o})),xf=et(us,T_,Xq),B1={kernelName:us,backendName:"cpu",kernelFunc:xf};function Fg(r,e){let t=new Array(r.rank);for(let n=0;n<t.length;n++)t[n]=r.shape[n]*e[n];let o=ve(t,r.dtype);for(let n=0;n<o.values.length;++n){let s=o.indexToLoc(n),a=new Array(r.rank);for(let l=0;l<a.length;l++)a[l]=s[l]%r.shape[l];let i=r.locToIndex(a);o.values[n]=r.values[i]}return o}function Og(r,e,t,o,n){let s=e[e.length-1],[a,i]=[r.length/s,s],l=y.getTypedArrayFromDType(t,a*o),u=y.getTypedArrayFromDType("int32",a*o);for(let p=0;p<a;p++){let m=p*i,f=r.subarray(m,m+i),d=[];for(let b=0;b<f.length;b++)d.push({value:f[b],index:b});d.sort((b,w)=>w.value-b.value);let h=p*o,g=l.subarray(h,h+o),x=u.subarray(h,h+o);for(let b=0;b<o;b++)g[b]=d[b].value,x[b]=d[b].index}let c=e.slice();return c[c.length-1]=o,[ve(c,t,l),ve(c,"int32",u)]}function Pg(r,e,t,o){let n=y.parseAxisParam(e,t)[0],s=[1,t[0],1];for(let d=0;d<n;d++)s[0]*=t[d];s[1]=t[n];for(let d=n+1;d<t.length;d++)s[2]*=t[d];let a={},i=new Int32Array(t[n]),l=new lt(s,o,r),u=[],c=s[0]===1&&s[2]===1;for(let d=0;d<t[n];d++){let h;if(c)h=r[d].toString();else{let g=[];for(let x=0;x<s[0];x++)for(let b=0;b<s[2];b++)g.push(l.get(x,d,b));h=g.join(",")}if(a[h]!==void 0)i[d]=a[h];else{let g=Object.keys(a).length;a[h]=g,i[d]=g,u.push(d)}}let p=s.slice();p[1]=Object.keys(a).length;let m=new lt(p,o);u.forEach((d,h)=>{for(let g=0;g<s[0];g++)for(let x=0;x<s[2];x++)m.set(l.get(g,d,x),g,h,x)});let f=t.slice();return f[n]=p[1],{outputValues:m.values,outputShape:f,indices:i}}var A_="3.3.0";Xc("cpu",()=>new wu,1);var E_=$e(Ti,r=>r>=0?r:Math.exp(r)-1),V1={kernelName:Ti,backendName:"cpu",kernelFunc:E_};function D_(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{alpha:s}=o;te([n],"leakyRelu");let a=y.sizeFromShape(n.shape),i=t.data.get(n.dataId).values,l=y.getTypedArrayFromDType("float32",a);for(let u=0;u<i.length;u++)l[u]=i[u]<0?s*i[u]:i[u];return t.makeTensorInfo(n.shape,"float32",l)}var G1={kernelName:Ln,backendName:"cpu",kernelFunc:D_};var Yq=Xe((r,e)=>r<0?e*r:r);function $_(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e;te([o,n],"prelu");let s=t.data.get(o.dataId).values,a=t.data.get(n.dataId).values,[i,l]=Yq(o.shape,n.shape,s,a,o.dtype);return t.makeTensorInfo(l,o.dtype,i)}var W1={kernelName:Yn,backendName:"cpu",kernelFunc:$_};var R_=$e(Zn,r=>Math.max(0,r)),j1={kernelName:Zn,backendName:"cpu",kernelFunc:R_};var F_=$e(Qn,r=>Math.min(Math.max(0,r),6)),U1={kernelName:Qn,backendName:"cpu",kernelFunc:F_};function gp(r,e,t,o,n){if(t==="linear")return Rr({inputs:{x:e},backend:r});if(t==="relu")return R_({inputs:{x:e},backend:r});if(t==="elu")return E_({inputs:{x:e},backend:r});if(t==="relu6")return F_({inputs:{x:e},backend:r});if(t==="prelu")return $_({inputs:{x:e,alpha:o},backend:r});if(t==="leakyrelu")return D_({inputs:{x:e},backend:r,attrs:{alpha:n}});throw new Error(`Activation ${t} has not been implemented for the CPU backend.`)}function Qe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{shape:s}=o,a=y.sizeFromShape(n.shape),i=y.inferFromImplicitShape(s,a),l=y.sizeFromShape(i);y.assert(a===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${n.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),t.incRef(n.dataId);let u=t.data.get(n.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:n.dataId,shape:i,dtype:n.dtype}}var H1={kernelName:Gs,backendName:"cpu",kernelFunc:Qe};function O_(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;te([n,s],"matMul");let l=n.shape.length,u=s.shape.length,c=a?n.shape[l-2]:n.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?n.shape[l-1]:n.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=n.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),b=g===x||g===1||x===1;y.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let _=(g>x?n.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${n.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let k=a?[g,c,m]:[g,m,c],D=i?[x,f,p]:[x,p,f],T=Qe({inputs:{x:n},backend:t,attrs:{shape:k}}),R=Qe({inputs:{x:s},backend:t,attrs:{shape:D}}),O=a?T.shape[1]:T.shape[2],M=a?T.shape[2]:T.shape[1],G=i?R.shape[1]:R.shape[2],j=Math.max(g,x),U=t.data.get(T.dataId).values,H=t.data.get(R.dataId).values,q=y.computeStrides(T.shape),X=y.computeStrides(R.shape),[oe,Y,re]=a?[q[0],1,q[1]]:[q[0],q[1],1],[J,ie,ue]=i?[1,X[1],X[0]]:[X[1],1,X[0]],ae=M*G,fe=ve([j,M,G],T.dtype),de=fe.values,xe=t.blockSize;for(let we=0;we<j;we++)for(let De=0;De<M;De+=xe)for(let Ne=0;Ne<G;Ne+=xe)for(let ze=0;ze<O;ze+=xe){let qe=Math.min(De+xe,M),it=Math.min(Ne+xe,G),St=Math.min(ze+xe,O);for(let Tt=De;Tt<qe;Tt++)for(let Ue=Ne;Ue<it;Ue++){let ut=0;for(let mt=ze;mt<St;mt++){let Pt=Math.min(we,g-1)*oe,_o=Math.min(we,x-1)*ue,Xt=U[Pt+Tt*Y+mt*re],io=H[mt*J+Ue*ie+_o];ut+=Xt*io}de[we*ae+(Tt*G+Ue)]+=ut}}return t.disposeIntermediateTensorInfo(T),t.disposeIntermediateTensorInfo(R),t.makeTensorInfo(_,fe.dtype,fe.values)}var q1={kernelName:In,backendName:"cpu",kernelFunc:O_};function Zq(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o,m,f,d,h=[];m=O_({inputs:{a:n,b:s},attrs:{transposeA:l,transposeB:u},backend:t}),a&&(f=ka({inputs:{a:m,b:a},backend:t}),h.push(m),m=f),c&&(d=gp(t,m,c,i,p),h.push(m),m=d);for(let x of h)t.disposeIntermediateTensorInfo(x);return m}var K1={kernelName:Ks,backendName:"cpu",kernelFunc:Zq};var Jq=$e(yi,r=>Math.acos(r)),X1={kernelName:yi,backendName:"cpu",kernelFunc:Jq};var Qq=$e(bi,r=>Math.acosh(r)),Y1={kernelName:bi,backendName:"cpu",kernelFunc:Qq};function eK(r){let{inputs:e,backend:t}=r,o=e;te(e,"addN");let n=o.map(i=>t.data.get(i.dataId).values),s=ve(o[0].shape,o[0].dtype),a=s.values;for(let i=0;i<o.length;i++){let l=n[i];for(let u=0;u<a.length;u++)a[u]+=l[u]}return t.makeTensorInfo(s.shape,s.dtype,s.values)}var Z1={kernelName:kn,backendName:"cpu",kernelFunc:eK};function tK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"all");let i=y.parseAxisParam(s,n.shape),l=i,u=N.getAxesPermutation(l,n.shape.length),c=n;u!=null&&(c=or({inputs:{x:n},backend:t,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,n.shape.length)),N.assertAxesAreInnerMostDims("all",l,c.shape.length);let[p,m]=N.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let _=0;_<f;++_){let k=h[b+_];w=w&&k}d[x]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=N.expandShapeToKeepDim(p,i),b=Qe({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var J1={kernelName:mc,backendName:"cpu",kernelFunc:tK};function rK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"any");let i=y.parseAxisParam(s,n.shape),l=i,u=N.getAxesPermutation(l,n.shape.length),c=n;u!=null&&(c=or({inputs:{x:n},backend:t,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,n.shape.length)),N.assertAxesAreInnerMostDims("any",l,c.shape.length);let[p,m]=N.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let _=0;_<f;++_){let k=h[b+_];w=w||k}d[x]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=N.expandShapeToKeepDim(p,i),b=Qe({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var Q1={kernelName:fc,backendName:"cpu",kernelFunc:rK};function oK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o;te(n,"argMax");let a=y.parseAxisParam(s,n.shape),i=N.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=or({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=N.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],N.assertAxesAreInnerMostDims("argMax",a,l.shape.length);let[c,p]=N.computeOutAndReduceShapes(l.shape,a),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,b=h[x],w=0;for(let _=0;_<d;++_){let k=h[x+_];k>b&&(b=k,w=_)}f[g]=w}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var eA={kernelName:vn,backendName:"cpu",kernelFunc:oK};function nK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o;te(n,"argMin");let a=y.parseAxisParam(s,n.shape),i=N.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=or({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=N.getInnerMostAxes(a.length,l.shape.length)),a=[a[0]],N.assertAxesAreInnerMostDims("argMin",a,l.shape.length);let[c,p]=N.computeOutAndReduceShapes(l.shape,a),m=y.sizeFromShape(c),f=y.makeZerosTypedArray(m,"int32"),d=y.sizeFromShape(p),h=t.data.get(l.dataId).values;for(let g=0;g<f.length;++g){let x=g*d,b=h[x],w=0;for(let _=0;_<d;++_){let k=h[x+_];k<b&&(b=k,w=_)}f[g]=w}return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),t.makeTensorInfo(c,"int32",f)}var tA={kernelName:Ga,backendName:"cpu",kernelFunc:nK};var sK=$e(wi,r=>Math.asin(r)),rA={kernelName:wi,backendName:"cpu",kernelFunc:sK};var iK=$e(_i,r=>Math.asinh(r)),oA={kernelName:_i,backendName:"cpu",kernelFunc:iK};var aK=$e(ki,r=>Math.atan(r)),nA={kernelName:ki,backendName:"cpu",kernelFunc:aK};var lK=Xe((r,e)=>Math.atan2(r,e)),uK=et(Ci,lK),sA={kernelName:Ci,backendName:"cpu",kernelFunc:uK};var cK=$e(vi,r=>Math.atanh(r)),iA={kernelName:vi,backendName:"cpu",kernelFunc:cK};function xp(r,e,t,o,n,s){let a=n.strideHeight,i=n.strideWidth,l=n.dilationHeight,u=n.dilationWidth,c=n.effectiveFilterHeight,p=n.effectiveFilterWidth,m=n.padInfo.top,f=n.padInfo.left,d=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,h=ve(n.outShape,t),g=h.values,x=n.outShape[1]*n.outShape[2]*n.outShape[3],b=n.outShape[2]*n.outShape[3],w=n.outShape[3];for(let _=0;_<n.batchSize;++_){let k=_*x,D=_*o[0];for(let T=0;T<n.inChannels;++T)for(let R=0;R<n.outHeight;++R){let O=R*a-m,M=Math.max(0,O),G=Math.min(n.inHeight,c+O),j=k+R*b;for(let U=0;U<n.outWidth;++U){let H=U*i-f,q=Math.max(0,H),X=Math.min(n.inWidth,p+H),oe=d,Y=0,re=0;for(let ie=M;ie<G;ie+=l){let ue=D+ie*o[1];for(let ae=q;ae<X;ae+=u){let fe=ue+ae*o[2],de=r[fe+T];s==="max"&&de>oe?oe=de:s==="avg"&&(Y+=de,re++)}if(isNaN(oe))break}let J=j+U*w+T;g[J]=s==="avg"?Y/re:oe}}}return h}function Lg(r,e,t,o,n=!1,s=!1){let a=ve(o.outShape,"int32"),i=o.strideHeight,l=o.strideWidth,u=o.dilationHeight,c=o.dilationWidth,p=o.effectiveFilterHeight,m=o.effectiveFilterWidth,f=o.padInfo.top,d=o.padInfo.left,h=ve(e,t,r);for(let g=0;g<o.batchSize;++g)for(let x=0;x<o.inChannels;++x)for(let b=0;b<o.outHeight;++b){let w=b*i-f,_=w;for(;_<0;)_+=u;let k=Math.min(o.inHeight,p+w);for(let D=0;D<o.outWidth;++D){let T=D*l-d,R=T;for(;R<0;)R+=c;let O=Math.min(o.inWidth,m+T),M=Number.NEGATIVE_INFINITY,G=-1;for(let j=_;j<k;j+=u){let U=j-w;for(let H=R;H<O;H+=c){let q=H-T,X=h.get(g,j,H,x);X>M&&(M=X,n?G=s?((g*o.inHeight+j)*o.inWidth+H)*o.inChannels+x:(j*o.inWidth+H)*o.inChannels+x:G=U*m+q)}}a.set(G,g,b,D,x)}}return a}function zg(r,e,t,o,n,s){let a=n.strideDepth,i=n.strideHeight,l=n.strideWidth,u=n.dilationDepth,c=n.dilationHeight,p=n.dilationWidth,m=n.effectiveFilterDepth,f=n.effectiveFilterHeight,d=n.effectiveFilterWidth,h=n.padInfo.front,g=n.padInfo.top,x=n.padInfo.left,b=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=ve(n.outShape,t),_=w.values,k=n.outShape[1]*n.outShape[2]*n.outShape[3]*n.outShape[4],D=n.outShape[2]*n.outShape[3]*n.outShape[4],T=n.outShape[3]*n.outShape[4],R=n.outShape[4];for(let O=0;O<n.batchSize;++O){let M=O*k,G=O*o[0];for(let j=0;j<n.inChannels;++j)for(let U=0;U<n.outDepth;++U){let H=U*a-h,q=H;for(;q<0;)q+=u;let X=Math.min(n.inDepth,m+H),oe=M+U*D;for(let Y=0;Y<n.outHeight;++Y){let re=Y*i-g,J=re;for(;J<0;)J+=c;let ie=Math.min(n.inHeight,f+re),ue=oe+Y*T;for(let ae=0;ae<n.outWidth;++ae){let fe=ae*l-x,de=fe;for(;de<0;)de+=p;let xe=Math.min(n.inWidth,d+fe),we=ue+ae*R,De=b,Ne=0,ze=0;for(let it=q;it<X;it+=u){let St=G+it*o[1];for(let Tt=J;Tt<ie;Tt+=c){let Ue=St+Tt*o[2];for(let ut=de;ut<xe;ut+=p){let mt=Ue+ut*o[3],Pt=r[mt+j];if(s==="max"&&Pt>De?De=Pt:s==="avg"&&(Ne+=Pt,ze++),isNaN(De))break}if(isNaN(De))break}if(isNaN(De))break}let qe=we+j;_[qe]=s==="avg"?Ne/ze:De}}}}return w}function aA(r,e){let t=ve(e.outShape,"int32"),o=e.strideDepth,n=e.strideHeight,s=e.strideWidth,a=e.dilationDepth,i=e.dilationHeight,l=e.dilationWidth,u=e.effectiveFilterDepth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,m=e.padInfo.front,f=e.padInfo.top,d=e.padInfo.left;for(let h=0;h<e.batchSize;++h)for(let g=0;g<e.inChannels;++g)for(let x=0;x<e.outDepth;++x){let b=x*o-m,w=b;for(;w<0;)w+=a;let _=Math.min(e.inDepth,u+b);for(let k=0;k<e.outHeight;++k){let D=k*n-f,T=D;for(;T<0;)T+=i;let R=Math.min(e.inHeight,c+D);for(let O=0;O<e.outWidth;++O){let M=O*s-d,G=M;for(;G<0;)G+=l;let j=Math.min(e.inWidth,p+M),U=Number.NEGATIVE_INFINITY,H=-1;for(let q=w;q<_;q+=a){let X=q-b;for(let oe=T;oe<R;oe+=i){let Y=oe-D;for(let re=G;re<j;re+=l){let J=re-M,ie=r.get(h,q,oe,re,g);ie>=U&&(U=ie,H=X*c*p+Y*c+J)}}}t.set(H,h,x,k,O,g)}}}return t}function pK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;te(n,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(N.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=N.computePool2DInfo(n.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Rr({inputs:{x:n},backend:t});else{let m=t.data.get(n.dataId).values,f=y.computeStrides(n.shape),d=xp(m,n.shape,n.dtype,f,c,"avg");p=t.makeTensorInfo(c.outShape,n.dtype,d.values)}return p}var lA={kernelName:Cn,backendName:"cpu",kernelFunc:pK};function mK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=o;te(n,"avgPool3d");let c=N.computePool3DInfo(n.shape,s,a,1,i,l,u),p=t.data.get(n.dataId).values,m=zg(p,n.shape,n.dtype,y.computeStrides(n.shape),c,"avg");return t.makeTensorInfo(m.shape,"float32",m.values)}var uA={kernelName:Wa,backendName:"cpu",kernelFunc:mK};function fK(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=o;te([n,s],"avgPool3DGrad");let c=N.computePool3DInfo(s.shape,a,i,1,l,u),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,d=c.filterDepth,h=c.filterHeight,g=c.filterWidth,x=c.dilationDepth,b=c.dilationHeight,w=c.dilationWidth,_=c.effectiveFilterDepth,k=c.effectiveFilterHeight,D=c.effectiveFilterWidth,T=_-1-c.padInfo.front,R=D-1-c.padInfo.left,O=k-1-c.padInfo.top,M=ve(s.shape,"float32"),G=1/(d*h*g),j=t.bufferSync(n);for(let U=0;U<c.batchSize;++U)for(let H=0;H<c.inChannels;++H)for(let q=0;q<c.inDepth;++q)for(let X=0;X<c.inHeight;++X)for(let oe=0;oe<c.inWidth;++oe){let Y=q-T,re=X-O,J=oe-R,ie=0;for(let ue=0;ue<_;ue+=x){let ae=(Y+ue)/p;if(!(ae<0||ae>=c.outDepth||Math.floor(ae)!==ae))for(let fe=0;fe<k;fe+=b){let de=(re+fe)/m;if(!(de<0||de>=c.outHeight||Math.floor(de)!==de))for(let xe=0;xe<D;xe+=w){let we=(J+xe)/f;if(we<0||we>=c.outWidth||Math.floor(we)!==we)continue;ie+=j.get(U,ae,de,we,H)}}}M.set(ie*G,U,q,X,oe,H)}return t.makeTensorInfo(M.shape,M.dtype,M.values)}var cA={kernelName:hc,backendName:"cpu",kernelFunc:fK};function dK(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s;te([n,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=o,c=N.computePool2DInfo(a.shape,i,l,1,u),p=c.strideHeight,m=c.strideWidth,f=c.filterHeight,d=c.filterWidth,h=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,b=c.effectiveFilterWidth,w=b-1-c.padInfo.left,_=x-1-c.padInfo.top,k=ve(a.shape,"float32"),D=1/(f*d),T=t.data.get(n.dataId).values,R=ve(n.shape,"float32",T);for(let O=0;O<c.batchSize;++O)for(let M=0;M<c.inChannels;++M)for(let G=0;G<c.inHeight;++G)for(let j=0;j<c.inWidth;++j){let U=G-_,H=j-w,q=0;for(let X=0;X<x;X+=h){let oe=(U+X)/p;if(!(oe<0||oe>=c.outHeight||Math.floor(oe)!==oe))for(let Y=0;Y<b;Y+=g){let re=(H+Y)/m;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;q+=R.get(O,oe,re,M)}}k.set(q*D,O,G,j,M)}return t.makeTensorInfo(k.shape,k.dtype,k.values)}var pA={kernelName:dc,backendName:"cpu",kernelFunc:dK};function hK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,scale:s,offset:a,mean:i,variance:l}=e;y.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(s==null||i.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),te([n,i,l,s,a],"batchNorm");let{varianceEpsilon:u}=o;u==null&&(u=.001);let c=t.data.get(n.dataId).values,p=t.data.get(i.dataId).values,m=t.data.get(l.dataId).values,f=s?t.data.get(s.dataId).values:new Float32Array([1]),d=a?t.data.get(a.dataId).values:new Float32Array([0]),h=new Float32Array(c.length),g=d.length,x=f.length,b=m.length,w=p.length,_=0,k=0,D=0,T=0;for(let R=0;R<c.length;++R)h[R]=d[_++]+(c[R]-p[k++])*f[D++]/Math.sqrt(m[T++]+u),_>=g&&(_=0),k>=w&&(k=0),D>=x&&(D=0),T>=b&&(T=0);return t.makeTensorInfo(n.shape,n.dtype,h)}var mA={kernelName:Pn,backendName:"cpu",kernelFunc:hK};function gK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,crops:a}=o;te([n],"batchToSpaceND");let i=s.reduce((x,b)=>x*b),l=N.getReshaped(n.shape,s,i),u=N.getPermuted(l.length,s.length),c=N.getReshapedPermuted(n.shape,s,i),p=N.getSliceBeginCoords(a,s.length),m=N.getSliceSize(c,a,s.length),f=Qe({inputs:{x:n},backend:t,attrs:{shape:l}}),d=or({inputs:{x:f},backend:t,attrs:{perm:u}}),h=Qe({inputs:{x:d},backend:t,attrs:{shape:c}}),g=un({inputs:{x:h},backend:t,attrs:{begin:p,size:m}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var fA={kernelName:ja,backendName:"cpu",kernelFunc:gK};function xK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a}=o,i=t.data.get(n.dataId).values,l=t.data.get(s.dataId).values,u=dp(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var dA={kernelName:gc,backendName:"cpu",kernelFunc:xK};var yK=$e(qo,(r,e)=>{let t=e;return r>t.clipValueMax?t.clipValueMax:r<t.clipValueMin?t.clipValueMin:r}),hA={kernelName:qo,backendName:"cpu",kernelFunc:yK};var bK=r=>{let{x:e}=r.inputs,t=r.backend,o=new Float32Array(y.sizeFromShape(e.shape)),n=t.data.get(e.dataId),s=n.complexTensorInfos.real,a=n.complexTensorInfos.imag,i=t.data.get(s.dataId).values,l=t.data.get(a.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],p=l[u];o[u]=Math.hypot(c,p)}return t.makeOutput(o,e.shape,"float32")},gA={kernelName:Ua,backendName:"cpu",kernelFunc:bK};function ni(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.data.get(o.dataId).complexTensorInfos.imag,s=t.data.get(n.dataId).values;return t.makeTensorInfo(n.shape,n.dtype,s)}var xA={kernelName:Tc,backendName:"cpu",kernelFunc:ni};function ml(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o,s=y.parseAxisParam(n,e[0].shape)[0],a=N.computeOutShape(e.map(h=>h.shape),s);if(y.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(h=>y.sizeFromShape(h.shape)>0);if(i.length===1)return Rr({inputs:{x:i[0]},backend:t});let l=i.map(h=>h.shape);if(N.assertParamsConsistent(l,s),i[0].dtype==="complex64"){let h=i.map(_=>nn({inputs:{input:_},backend:t})),g=i.map(_=>ni({inputs:{input:_},backend:t})),x=ml({inputs:h,backend:t,attrs:{axis:s}}),b=ml({inputs:g,backend:t,attrs:{axis:s}}),w=fr({inputs:{real:x,imag:b},backend:t});return h.forEach(_=>t.disposeIntermediateTensorInfo(_)),g.forEach(_=>t.disposeIntermediateTensorInfo(_)),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(b),w}let u=i.map(h=>{let g=y.sizeFromShape(h.shape.slice(s));return Qe({inputs:{x:h},backend:t,attrs:{shape:[-1,g]}})}),c=u.map(h=>({vals:t.data.get(h.dataId).values,shape:h.shape}));a=N.computeOutShape(u.map(h=>h.shape),1);let p=u[0].shape[0]===1,m=_u(c,a,e[0].dtype,p),f=N.computeOutShape(i.map(h=>h.shape),s),d=t.makeTensorInfo(f,e[0].dtype,m);return u.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var yA={kernelName:Ps,backendName:"cpu",kernelFunc:ml};function P_(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=o;te([n,s],"conv2d");let p=N.convertConv2DDataFormat(l),m=N.computeConv2DInfo(n.shape,s.shape,a,u,i,c,!1,p),f=m.filterHeight,d=m.filterWidth,h=m.dilationHeight,g=m.dilationWidth,x=m.padInfo.left,b=m.padInfo.top,w=m.dataFormat==="channelsLast",_=new lt(m.outShape,n.dtype),k=y.computeStrides(n.shape),D=y.computeStrides(s.shape),T=k[0],R=w?k[1]:k[2],O=w?k[2]:1,M=w?1:k[1],G=_.strides[0],j=w?_.strides[1]:_.strides[2],U=w?_.strides[2]:1,H=w?1:_.strides[1],q=t.data.get(n.dataId).values,X=t.data.get(s.dataId).values,oe=_.values;for(let Y=0;Y<m.batchSize;++Y){let re=Y*T,J=Y*G;for(let ie=0;ie<m.outHeight;++ie){let ue=J+ie*j,ae=ie*m.strideHeight-b;for(let fe=0;fe<f;++fe){let de=ae+fe*h;if(de<0||de>=m.inHeight)continue;let xe=fe*D[0],we=re+de*R;for(let De=0;De<m.outWidth;++De){let Ne=ue+De*U,ze=De*m.strideWidth-x;for(let qe=0;qe<d;++qe){let it=ze+qe*g;if(it<0||it>=m.inWidth)continue;let St=xe+qe*D[1],Tt=we+it*O,Ue=St;for(let ut=0;ut<m.inChannels;++ut){let mt=q[Tt+ut*M];for(let Pt=0;Pt<m.outChannels;++Pt)oe[Ne+Pt*H]+=mt*X[Ue+Pt];Ue+=m.outChannels}}}}}}return t.makeTensorInfo(_.shape,_.dtype,oe)}var bA={kernelName:Sn,backendName:"cpu",kernelFunc:P_};function wK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=o;te([n,s],"conv2dBackpropFilter");let p=N.convertConv2DDataFormat(l),m=N.computeConv2DInfo(n.shape,c,a,1,i,u,!1,p),{strideHeight:f,strideWidth:d,filterHeight:h,filterWidth:g}=m,x=m.dataFormat==="channelsLast",b=new lt(m.filterShape,"float32"),w=m.padInfo.left,_=m.padInfo.top,k=t.data.get(n.dataId).values,D=t.data.get(s.dataId).values,T=new lt(n.shape,n.dtype,k),R=new lt(s.shape,s.dtype,D);for(let O=0;O<h;++O){let M=Math.max(0,Math.ceil((_-O)/f)),G=Math.min(m.outHeight,(m.inHeight+_-O)/f);for(let j=0;j<g;++j){let U=Math.max(0,Math.ceil((w-j)/d)),H=Math.min(m.outWidth,(m.inWidth+w-j)/d);for(let q=0;q<m.inChannels;++q)for(let X=0;X<m.outChannels;++X){let oe=0;for(let Y=0;Y<m.batchSize;++Y)for(let re=M;re<G;++re){let J=O+re*f-_;for(let ie=U;ie<H;++ie){let ue=j+ie*d-w;x?oe+=T.get(Y,J,ue,q)*R.get(Y,re,ie,X):oe+=T.get(Y,q,J,ue)*R.get(Y,X,re,ie)}}b.set(oe,O,j,q,X)}}}return t.makeTensorInfo(b.shape,b.dtype,b.values)}var wA={kernelName:yc,backendName:"cpu",kernelFunc:wK};function _K(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=o;te([n,s],"conv2dBackpropInput");let p=y.computeStrides(s.shape),m=y.computeStrides(n.shape),f=N.convertConv2DDataFormat(u),d=N.computeConv2DInfo(a,s.shape,i,1,l,c,!1,f),h=new lt(d.inShape,"float32"),g=h.values,x=t.data.get(n.dataId).values,b=t.data.get(s.dataId).values,[w,_,k]=p,{batchSize:D,filterHeight:T,filterWidth:R,inChannels:O,inHeight:M,inWidth:G,outChannels:j,outHeight:U,outWidth:H,strideHeight:q,strideWidth:X}=d;f=d.dataFormat;let oe=T-1-d.padInfo.top,Y=R-1-d.padInfo.left,re=f==="channelsLast",J=h.strides[0],ie=re?h.strides[1]:h.strides[2],ue=re?h.strides[2]:1,ae=re?1:h.strides[1],fe=m[0],de=re?m[1]:m[2],xe=re?m[2]:1,we=re?1:m[1];for(let De=0;De<D;++De)for(let Ne=0;Ne<O;++Ne)for(let ze=0;ze<M;++ze){let qe=ze-oe,it=Math.max(0,Math.ceil(qe/q)),St=Math.min(U,(T+qe)/q);for(let Tt=0;Tt<G;++Tt){let Ue=Tt-Y,ut=Math.max(0,Math.ceil(Ue/X)),mt=Math.min(H,(R+Ue)/X),Pt=0;for(let Xt=it;Xt<St;++Xt){let io=Xt*q-qe;for(let Or=ut;Or<mt;++Or){let jo=Or*X-Ue,nr=fe*De+de*Xt+xe*Or,ko=w*(T-1-io)+_*(R-1-jo)+k*Ne;for(let jr=0;jr<j;++jr){let wr=x[nr+we*jr],ao=b[ko+jr];Pt+=wr*ao}}}let _o=J*De+ie*ze+ue*Tt+ae*Ne;g[_o]=Pt}}return t.makeTensorInfo(h.shape,h.dtype,h.values)}var _A={kernelName:Tn,backendName:"cpu",kernelFunc:_K};function kK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o;te([n,s],"conv3d");let u=N.computeConv3DInfo(n.shape,s.shape,a,l,i),{filterDepth:c,filterHeight:p,filterWidth:m,dilationDepth:f,dilationHeight:d,dilationWidth:h,padInfo:g}=u,x=g.front,b=g.left,w=g.top,_=new lt(u.outShape,n.dtype),k=t.data.get(n.dataId).values,D=t.data.get(s.dataId).values,T=_.values,R=y.computeStrides(n.shape),O=y.computeStrides(s.shape);for(let M=0;M<u.batchSize;++M){let G=M*R[0],j=M*_.strides[0];for(let U=0;U<u.outDepth;++U){let H=j+U*_.strides[1],q=U*u.strideDepth-x;for(let X=0;X<c;++X){let oe=q+X*f;if(oe<0||oe>=u.inDepth)continue;let Y=X*O[0],re=G+oe*R[1];for(let J=0;J<u.outHeight;++J){let ie=H+J*_.strides[2],ue=J*u.strideHeight-w;for(let ae=0;ae<p;++ae){let fe=ue+ae*d;if(fe<0||fe>=u.inHeight)continue;let de=Y+ae*O[1],xe=re+fe*R[2];for(let we=0;we<u.outWidth;++we){let De=ie+we*u.outChannels,Ne=we*u.strideWidth-b;for(let ze=0;ze<m;++ze){let qe=Ne+ze*h;if(qe<0||qe>=u.inWidth)continue;let it=de+ze*O[2],St=xe+qe*u.inChannels,Tt=it;for(let Ue=0;Ue<u.inChannels;++Ue){let ut=k[St+Ue];for(let mt=0;mt<u.outChannels;++mt)T[De+mt]+=ut*D[Tt+mt];Tt+=u.outChannels}}}}}}}}return t.makeTensorInfo(_.shape,_.dtype,_.values)}var kA={kernelName:Ha,backendName:"cpu",kernelFunc:kK};function vK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,filterShape:l}=o;te([n,s],"conv3dBackpropFilterV2");let u=y.computeStrides(n.shape),c=y.computeStrides(s.shape),p=N.computeConv3DInfo(n.shape,l,a,1,i),m=p.strideDepth,f=p.strideHeight,d=p.strideWidth,h=p.filterDepth,g=p.filterHeight,x=p.filterWidth,b=new lt(p.filterShape,"float32"),w=b.values,[_,k,D,T]=b.strides,R=t.data.get(s.dataId).values,[O,M,G,j]=c,U=t.data.get(n.dataId).values,[H,q,X,oe]=u,Y=p.padInfo.front,re=p.padInfo.left,J=p.padInfo.top;for(let ie=0;ie<h;++ie){let ue=Math.max(0,Math.ceil((Y-ie)/m)),ae=Math.min(p.outDepth,(p.inDepth+Y-ie)/m),fe=ie*_;for(let de=0;de<g;++de){let xe=Math.max(0,Math.ceil((J-de)/f)),we=Math.min(p.outHeight,(p.inHeight+J-de)/f),De=de*k+fe;for(let Ne=0;Ne<x;++Ne){let ze=Math.max(0,Math.ceil((re-Ne)/d)),qe=Math.min(p.outWidth,(p.inWidth+re-Ne)/d),it=Ne*D+De;for(let St=0;St<p.inChannels;++St){let Tt=St*T+it;for(let Ue=0;Ue<p.outChannels;++Ue){let ut=0;for(let mt=0;mt<p.batchSize;++mt){let Pt=mt*H,_o=mt*O;for(let Xt=ue;Xt<ae;++Xt){let Or=(ie+Xt*m-Y)*q+Pt,jo=Xt*M+_o;for(let nr=xe;nr<we;++nr){let jr=(de+nr*f-J)*X+Or,wr=nr*G+jo;for(let ao=ze;ao<qe;++ao){let $l=(Ne+ao*d-re)*oe+jr,Oa=ao*j+wr;ut+=U[$l+St]*R[Oa+Ue]}}}}w[Tt+Ue]=ut}}}}}return t.makeTensorInfo(b.shape,b.dtype,b.values)}var vA={kernelName:bc,backendName:"cpu",kernelFunc:vK};function CK(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{pad:a,strides:i,inputShape:l}=o;te([n],"conv3dBackpropInputV2");let u=y.computeStrides(n.shape),c=y.computeStrides(s.shape),p=N.computeConv3DInfo(l,s.shape,i,1,a),m=new lt(p.inShape,"float32"),f=m.values,[d,h,g,x]=m.strides,b=t.data.get(n.dataId).values,[w,_,k,D]=u,T=t.data.get(s.dataId).values,[R,O,M,G]=c,{batchSize:j,filterDepth:U,filterHeight:H,filterWidth:q,inChannels:X,inDepth:oe,inHeight:Y,inWidth:re,outChannels:J,outDepth:ie,outHeight:ue,outWidth:ae,strideDepth:fe,strideHeight:de,strideWidth:xe}=p,we=U-1-p.padInfo.front,De=H-1-p.padInfo.top,Ne=q-1-p.padInfo.left;for(let ze=0;ze<j;++ze)for(let qe=0;qe<X;++qe)for(let it=0;it<oe;++it){let St=it-we,Tt=Math.max(0,Math.ceil(St/fe)),Ue=Math.min(ie,(U+St)/fe);for(let ut=0;ut<Y;++ut){let mt=ut-De,Pt=Math.max(0,Math.ceil(mt/de)),_o=Math.min(ue,(H+mt)/de);for(let Xt=0;Xt<re;++Xt){let io=Xt-Ne,Or=Math.max(0,Math.ceil(io/xe)),jo=Math.min(ae,(q+io)/xe),nr=0;for(let ko=Tt;ko<Ue;++ko){let jr=ko*fe-St;for(let wr=Pt;wr<_o;++wr){let ao=wr*de-mt;for(let $o=Or;$o<jo;++$o){let $l=$o*xe-io,Oa=w*ze+_*ko+k*wr+D*$o,bn=R*(U-1-jr)+O*(H-1-ao)+M*(q-1-$l)+G*qe;for(let fi=0;fi<J;++fi){let nm=b[Oa+fi],Xu=T[bn+fi];nr+=nm*Xu}}}}f[d*ze+h*it+g*ut+x*Xt+qe]=nr}}}return t.makeTensorInfo(m.shape,m.dtype,m.values)}var CA={kernelName:wc,backendName:"cpu",kernelFunc:CK};var IK=$e(An,r=>Math.cos(r)),IA={kernelName:An,backendName:"cpu",kernelFunc:IK};var NK=$e(Ii,r=>Math.cosh(r)),NA={kernelName:Ii,backendName:"cpu",kernelFunc:NK};function SK(r){let{inputs:e,backend:t,attrs:o}=r,{image:n,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=o,[c,p,m,f]=n.shape,d=s.shape[0],[h,g]=i,x=ve([d,h,g,f],"float32"),b=t.data.get(s.dataId).values,w=t.data.get(a.dataId).values,_=t.data.get(n.dataId).values,k=y.computeStrides(n.shape),D=y.computeStrides(x.shape);for(let T=0;T<d;T++){let R=T*4,O=b[R],M=b[R+1],G=b[R+2],j=b[R+3],U=w[T];if(U>=c)continue;let H=h>1?(G-O)*(p-1)/(h-1):0,q=g>1?(j-M)*(m-1)/(g-1):0;for(let X=0;X<h;X++){let oe=h>1?O*(p-1)+X*H:.5*(O+G)*(p-1);if(oe<0||oe>p-1){for(let Y=0;Y<g;Y++)for(let re=0;re<f;re++){let J=re+Y*D[2]+X*D[1]+T*D[0];x.values[J]=u}continue}if(l==="bilinear"){let Y=Math.floor(oe),re=Math.ceil(oe),J=oe-Y;for(let ie=0;ie<g;ie++){let ue=g>1?M*(m-1)+ie*q:.5*(M+j)*(m-1);if(ue<0||ue>m-1){for(let xe=0;xe<f;xe++){let we=xe+ie*D[2]+X*D[1]+T*D[0];x.values[we]=u}continue}let ae=Math.floor(ue),fe=Math.ceil(ue),de=ue-ae;for(let xe=0;xe<f;xe++){let we=xe+ae*k[2]+Y*k[1]+U*k[0],De=_[we];we=xe+fe*k[2]+Y*k[1]+U*k[0];let Ne=_[we];we=xe+ae*k[2]+re*k[1]+U*k[0];let ze=_[we];we=xe+fe*k[2]+re*k[1]+U*k[0];let qe=_[we],it=De+(Ne-De)*de,St=ze+(qe-ze)*de;we=xe+ie*D[2]+X*D[1]+T*D[0],x.values[we]=it+(St-it)*J}}}else for(let Y=0;Y<g;++Y){let re=g>1?M*(m-1)+Y*q:.5*(M+j)*(m-1);if(re<0||re>m-1){for(let ue=0;ue<f;ue++){let ae=ue+Y*D[2]+X*D[1]+T*D[0];x.values[ae]=u}continue}let J=Math.round(re),ie=Math.round(oe);for(let ue=0;ue<f;ue++){let ae=ue+J*k[2]+ie*k[1]+U*k[0],fe=ue+Y*D[2]+X*D[1]+T*D[0];x.values[fe]=_[ae]}}}}return t.makeTensorInfo(x.shape,x.dtype,x.values)}var SA={kernelName:Ni,backendName:"cpu",kernelFunc:SK};function TK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o;te(n,"cumsum");let l=N.getAxesPermutation([s],n.shape.length),u=n;l!=null&&(u=or({inputs:{x:n},backend:t,attrs:{perm:l}}));let c=N.getInnerMostAxes(1,n.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=ir(u.dtype,"int32"),m=y.makeZerosTypedArray(y.sizeFromShape(u.shape),p),f=t.data.get(u.dataId).values,d=u.shape[u.shape.length-1],h=i?(x,b)=>x+d-b-1:(x,b)=>x+b;for(let x=0;x<f.length;x+=d)for(let b=0;b<d;b++){let w=h(x,b);if(b===0)m[w]=a?0:f[w];else{let _=h(x,b-1);m[w]=a?f[_]+m[_]:f[w]+m[_]}}let g=t.makeTensorInfo(u.shape,p,m);if(l!=null){let x=N.getUndoAxesPermutation(l),b=or({inputs:{x:g},backend:t,attrs:{perm:x}});return t.disposeIntermediateTensorInfo(g),t.disposeIntermediateTensorInfo(u),b}return g}var TA={kernelName:En,backendName:"cpu",kernelFunc:TK};function AK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a,binaryOutput:i}=o;if(n.shape.length===1){let l=t.data.get(n.dataId).values,u=t.data.get(s.dataId).values,c=dp(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(n.shape.length===2){let l=t.bufferSync(n),u=t.bufferSync(s),c=Ag(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${n.shape.length}.`)}var AA={kernelName:_c,backendName:"cpu",kernelFunc:AK};function EK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockSize:s,dataFormat:a}=o;y.assert(a==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${a}`),y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=n.shape[1],u=n.shape[2],c=n.shape[3],p=l*s,m=u*s,f=c/(s*s),d=t.data.get(n.dataId).values,h=new Float32Array(i*p*m*f),g=0;for(let x=0;x<i;++x)for(let b=0;b<p;++b){let w=Math.floor(b/s),_=b%s;for(let k=0;k<m;++k){let D=Math.floor(k/s),T=k%s,R=(_*s+T)*f;for(let O=0;O<f;++O){let G=O+R+c*(D+u*(w+l*x));h[g++]=d[G]}}}return t.makeTensorInfo([i,p,m,f],n.dtype,h)}var EA={kernelName:Si,backendName:"cpu",kernelFunc:EK};function M_(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=o;te([n,s],"depthwiseConv2DNative");let c=y.computeStrides(n.shape),p=y.computeStrides(s.shape),m=l;m==null&&(m=[1,1]),y.assert(N.eitherStridesOrDilationsAreOne(a,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${m}'`);let f=N.computeConv2DInfo(n.shape,s.shape,a,m,i,u,!0),{filterHeight:d,filterWidth:h,dilationHeight:g,dilationWidth:x,padInfo:b}=f,w=b.left,_=b.top,k=f.outChannels/f.inChannels,D=new lt(f.outShape,n.dtype),T=t.data.get(n.dataId).values,R=t.data.get(s.dataId).values,O=D.values;for(let M=0;M<f.batchSize;++M){let G=M*c[0],j=M*D.strides[0];for(let U=0;U<f.outHeight;++U){let H=j+U*D.strides[1],q=U*f.strideHeight-w;for(let X=0;X<d;++X){let oe=q+X*g;if(oe<0||oe>=f.inHeight)continue;let Y=X*p[0],re=G+oe*c[1];for(let J=0;J<f.outWidth;++J){let ie=H+J*D.strides[2],ue=J*f.strideWidth-_;for(let ae=0;ae<h;++ae){let fe=ue+ae*x;if(fe<0||fe>=f.inWidth)continue;let de=Y+ae*p[1],xe=re+fe*f.inChannels,we=ie,De=de;for(let Ne=0;Ne<f.inChannels;++Ne){let ze=T[xe+Ne];for(let qe=0;qe<k;++qe)O[we+qe]+=ze*R[De+qe];we+=k,De+=k}}}}}}return t.makeTensorInfo(D.shape,D.dtype,D.values)}var DA={kernelName:Dn,backendName:"cpu",kernelFunc:M_};function DK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=o;te([n,s],"depthwiseConv2dNativeBackpropFilter");let p=N.computeConv2DInfo(n.shape,c,a,i,l,u,!0),{strideHeight:m,strideWidth:f,filterHeight:d,filterWidth:h}=p,g=new lt(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,w=p.outChannels/p.inChannels,_=t.data.get(n.dataId).values,k=new lt(n.shape,n.dtype,_),D=t.data.get(s.dataId).values,T=new lt(s.shape,s.dtype,D);for(let R=0;R<d;++R){let O=Math.max(0,Math.ceil((b-R)/m)),M=Math.min(p.outHeight,(p.inHeight+b-R)/m);for(let G=0;G<h;++G){let j=Math.max(0,Math.ceil((x-G)/f)),U=Math.min(p.outWidth,(p.inWidth+x-G)/f);for(let H=0;H<p.outChannels;++H){let q=Math.trunc(H/w),X=H%w,oe=0;for(let Y=0;Y<p.batchSize;++Y)for(let re=O;re<M;++re){let J=R+re*m-b;for(let ie=j;ie<U;++ie){let ue=G+ie*f-x;oe+=k.get(Y,J,ue,q)*T.get(Y,re,ie,H)}}g.set(oe,R,G,q,X)}}}return t.makeTensorInfo(g.shape,g.dtype,g.values)}var $A={kernelName:kc,backendName:"cpu",kernelFunc:DK};function $K(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=o;te([n,s],"depthwiseConv2DNativeBackpropInput");let p=y.computeStrides(n.shape),m=y.computeStrides(s.shape),f=N.computeConv2DInfo(c,s.shape,a,i,l,u,!0),d=new lt(f.inShape,"float32"),h=d.values,[g,x,b]=d.strides,w=t.data.get(n.dataId).values,[_,k,D]=p,T=t.data.get(s.dataId).values,[R,O,M]=m,{batchSize:G,filterHeight:j,filterWidth:U,inChannels:H,inHeight:q,inWidth:X,outChannels:oe,outHeight:Y,outWidth:re,strideHeight:J,strideWidth:ie}=f,ue=j-1-f.padInfo.top,ae=U-1-f.padInfo.left,fe=oe/H;for(let de=0;de<G;++de)for(let xe=0;xe<H;++xe)for(let we=0;we<q;++we){let De=we-ue,Ne=Math.max(0,Math.ceil(De/J)),ze=Math.min(Y,(j+De)/J);for(let qe=0;qe<X;++qe){let it=qe-ae,St=Math.max(0,Math.ceil(it/ie)),Tt=Math.min(re,(U+it)/ie),Ue=0;for(let ut=Ne;ut<ze;++ut){let mt=ut*J-De;for(let Pt=St;Pt<Tt;++Pt){let _o=Pt*ie-it,Xt=_*de+k*ut+D*Pt,io=R*(j-1-mt)+O*(U-1-_o)+M*xe;for(let Or=0;Or<fe;++Or){let jo=xe*fe+Or,nr=w[Xt+jo],ko=T[io+Or];Ue+=nr*ko}}}h[g*de+x*we+b*qe+xe]=Ue}}return t.makeTensorInfo(d.shape,d.dtype,d.values)}var RA={kernelName:vc,backendName:"cpu",kernelFunc:$K};function RK(r){let{inputs:e,backend:t}=r,{x:o}=e,n=y.sizeFromShape(o.shape),s=t.data.get(o.dataId).values,a=ve([n,n],o.dtype),i=a.values;for(let u=0;u<s.length;u++)i[u*n+u]=s[u];let l=[...o.shape,...o.shape];return t.makeTensorInfo(l,a.dtype,a.values)}var FA={kernelName:Cc,backendName:"cpu",kernelFunc:RK};var OA={kernelName:qa,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n}=r,{strides:s,pad:a,dilations:i}=t,l=e,u=l.data.get(o.dataId).values,c=o.shape.length,p=l.data.get(n.dataId).values,m=n.shape.length,{batchSize:f,inHeight:d,inWidth:h,inChannels:g,outHeight:x,outWidth:b,padInfo:w,strideHeight:_,strideWidth:k,filterHeight:D,filterWidth:T,dilationHeight:R,dilationWidth:O,outShape:M}=N.computeDilation2DInfo(o.shape,n.shape,s,a,"NHWC",i),G=y.sizeFromShape(M),j=M.length,U=y.getArrayFromDType(o.dtype,G);for(let q=0;q<f;++q)for(let X=0;X<x;++X){let oe=X*_-w.top;for(let Y=0;Y<b;++Y){let re=Y*k-w.left;for(let J=0;J<g;++J){let ie=Number.MIN_SAFE_INTEGER;for(let ae=0;ae<D;++ae){let fe=oe+ae*R;if(fe>=0&&fe<d)for(let de=0;de<T;++de){let xe=re+de*O;if(xe>=0&&xe<h){let we=y.locToIndex([q,fe,xe,J],c,y.computeStrides(o.shape)),De=y.locToIndex([ae,de,J],m,y.computeStrides(n.shape)),Ne=u[we]+p[De];Ne>ie&&(ie=Ne)}}}let ue=y.locToIndex([q,X,Y,J],j,y.computeStrides(M));U[ue]=ie}}}return{dataId:l.write(y.toTypedArray(U,o.dtype),M,o.dtype),shape:M,dtype:o.dtype}}};var PA={kernelName:Cm,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=y.toNestedArray(o.shape,u.data.get(o.dataId).values),p=y.toNestedArray(n.shape,u.data.get(n.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:_,filterHeight:k,filterWidth:D,dilationHeight:T,dilationWidth:R,outShape:O}=N.computeDilation2DInfo(o.shape,n.shape,a,i,"NHWC",l);y.assert(s.rank===O.length,()=>`Error in ${Cm}, dy must have the same rank as output ${O.length}, but got ${s.rank}`);let M=y.toNestedArray(O,u.data.get(s.dataId).values),G=y.makeZerosNestedTypedArray(n.shape,n.dtype);for(let U=0;U<m;++U)for(let H=0;H<g;++H){let q=H*w-b.top;for(let X=0;X<x;++X){let oe=X*_-b.left;for(let Y=0;Y<h;++Y){let re=Number.MIN_SAFE_INTEGER,J=0,ie=0;for(let ue=0;ue<k;++ue){let ae=q+ue*T;if(ae>=0&&ae<f)for(let fe=0;fe<D;++fe){let de=oe+fe*R;if(de>=0&&de<d){let xe=c[U][ae][de][Y]+p[ue][fe][Y];xe>re&&(re=xe,J=ue,ie=fe)}}}G[J][ie][Y]+=M[U][H][X][Y]}}}return{dataId:u.write(y.toTypedArray(G,o.dtype),n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}};var MA={kernelName:vm,backendName:"cpu",kernelFunc:({inputs:r,backend:e,attrs:t})=>{let{x:o,filter:n,dy:s}=r,{strides:a,pad:i,dilations:l}=t,u=e,c=y.toNestedArray(o.shape,u.data.get(o.dataId).values),p=y.toNestedArray(n.shape,u.data.get(n.dataId).values),{batchSize:m,inHeight:f,inWidth:d,inChannels:h,outHeight:g,outWidth:x,padInfo:b,strideHeight:w,strideWidth:_,filterHeight:k,filterWidth:D,dilationHeight:T,dilationWidth:R,outShape:O}=N.computeDilation2DInfo(o.shape,n.shape,a,i,"NHWC",l);y.assert(s.rank===O.length,()=>`Error in ${vm}, dy must have the same rank as output ${O.length}, but got ${s.rank}`);let M=y.toNestedArray(O,u.data.get(s.dataId).values),G=y.makeZerosNestedTypedArray(o.shape,o.dtype);for(let U=0;U<m;++U)for(let H=0;H<g;++H){let q=H*w-b.top;for(let X=0;X<x;++X){let oe=X*_-b.left;for(let Y=0;Y<h;++Y){let re=Number.MIN_SAFE_INTEGER,J=q<0?0:q,ie=oe<0?0:oe;for(let ue=0;ue<k;++ue){let ae=q+ue*T;if(ae>=0&&ae<f)for(let fe=0;fe<D;++fe){let de=oe+fe*R;if(de>=0&&de<d){let xe=c[U][ae][de][Y]+p[ue][fe][Y];xe>re&&(re=xe,J=ae,ie=de)}}}G[U][J][ie][Y]+=M[U][H][X][Y]}}}return{dataId:u.write(y.toTypedArray(G,o.dtype),o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};function FK(r){let{inputs:e,backend:t}=r,{dy:o,y:n}=e;te([o,n],"eluGrad");let s=new Float32Array(y.sizeFromShape(n.shape)),a=t.data.get(n.dataId).values,i=t.data.get(o.dataId).values;for(let l=0;l<a.length;++l){let u=a[l];u>=1?s[l]=i[l]:s[l]=i[l]*(u+1)}return t.makeTensorInfo(n.shape,"float32",s)}var LA={kernelName:Ic,backendName:"cpu",kernelFunc:FK};var OK=Xe((r,e)=>r===e?1:0),L_=et(Ei,OK,null,"bool"),zA={kernelName:Ei,backendName:"cpu",kernelFunc:L_};var PK=N.ERF_P,MK=N.ERF_A1,LK=N.ERF_A2,zK=N.ERF_A3,BK=N.ERF_A4,VK=N.ERF_A5,GK=$e(Ai,r=>{let e=Math.sign(r),t=Math.abs(r),o=1/(1+PK*t);return e*(1-((((VK*o+BK)*o+zK)*o+LK)*o+MK)*o*Math.exp(-t*t))}),BA={kernelName:Ai,backendName:"cpu",kernelFunc:GK};function yp(r){let{inputs:e,backend:t,attrs:o}=r,{input:n}=e,{dim:s}=o,a=n.shape.length,i=n.shape.slice(),l=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),Qe({inputs:{x:n},backend:t,attrs:{shape:i}})}var VA={kernelName:Ms,backendName:"cpu",kernelFunc:yp};var WK=Xe((r,e)=>r/e),yf=et($n,WK),bf={kernelName:$n,backendName:"cpu",kernelFunc:yf};function Bg(r,e,t){let o=r.shape,n=o[0],s=o[1],a=t.data.get(r.dataId),i=a.complexTensorInfos.real,l=a.complexTensorInfos.imag,u=[n,s],c=y.sizeFromShape(u),p=y.getTypedArrayFromDType("float32",c),m=y.getTypedArrayFromDType("float32",c);for(let g=0;g<n;g++){let x=un({inputs:{x:i},backend:t,attrs:{begin:[g,0],size:[1,s]}}),b=un({inputs:{x:l},backend:t,attrs:{begin:[g,0],size:[1,s]}}),w=fr({inputs:{real:x,imag:b},backend:t}),{real:_,imag:k}=jK(w,e,t),D=N.mergeRealAndImagArrays(_,k);for(let T=0;T<s;T++){let R=N.getComplexWithIndex(D,T);p[g*s+T]=R.real,m[g*s+T]=R.imag}t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(b),t.disposeIntermediateTensorInfo(w)}let f=t.makeTensorInfo(u,"float32",p),d=t.makeTensorInfo(u,"float32",m),h=fr({inputs:{real:f,imag:d},backend:t});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),h}function jK(r,e,t){let o=y.sizeFromShape(r.shape),n=t.data.get(r.dataId),s=t.data.get(n.complexTensorInfos.real.dataId).values,a=t.data.get(n.complexTensorInfos.imag.dataId).values;if(UK(o)){let i=z_(s,a,o,e,t),l=[r.shape[0],r.shape[1]];if(e){let u=t.makeTensorInfo(l,"float32",i.real),c=t.makeTensorInfo(l,"float32",i.imag),p=t.makeTensorInfo([],"float32",y.createScalarValue(o,"float32")),m=Rr({inputs:{x:p},backend:t}),f=bf.kernelFunc({inputs:{a:u,b:p},backend:t}),d=bf.kernelFunc({inputs:{a:c,b:m},backend:t}),h=t.data.get(f.dataId).values,g=t.data.get(d.dataId).values;return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),{real:h,imag:g}}return i}else{let i=N.mergeRealAndImagArrays(s,a),l=HK(i,o,e);return N.splitRealAndImagArrays(l)}}function UK(r){return(r&r-1)==0}function z_(r,e,t,o,n){if(t===1)return{real:r,imag:e};let s=N.mergeRealAndImagArrays(r,e),a=t/2,i=N.complexWithEvenIndex(s),l=i.real,u=i.imag,c=[l.length],p=n.makeTensorInfo(c,"float32",l),m=n.makeTensorInfo(c,"float32",u),f=fr({inputs:{real:p,imag:m},backend:n}),d=N.complexWithOddIndex(s),h=d.real,g=d.imag,x=[h.length],b=n.makeTensorInfo(x,"float32",h),w=n.makeTensorInfo(x,"float32",g),_=fr({inputs:{real:b,imag:w},backend:n}),k=z_(l,u,a,o,n),D=k.real,T=k.imag,R=[D.length],O=n.makeTensorInfo(R,"float32",D),M=n.makeTensorInfo(R,"float32",T),G=fr({inputs:{real:O,imag:M},backend:n}),j=z_(h,g,a,o,n),U=j.real,H=j.imag,q=[U.length],X=n.makeTensorInfo(q,"float32",U),oe=n.makeTensorInfo(q,"float32",H),Y=fr({inputs:{real:X,imag:oe},backend:n}),re=N.exponents(t,o),J=[re.real.length],ie=n.makeTensorInfo(J,"float32",re.real),ue=n.makeTensorInfo(J,"float32",re.imag),ae=fr({inputs:{real:ie,imag:ue},backend:n}),fe=gf({inputs:{a:ae,b:Y},backend:n}),de=ka({inputs:{a:G,b:fe},backend:n}),xe=xf({inputs:{a:G,b:fe},backend:n}),we=nn({inputs:{input:de},backend:n}),De=nn({inputs:{input:xe},backend:n}),Ne=ni({inputs:{input:de},backend:n}),ze=ni({inputs:{input:xe},backend:n}),qe=ml({inputs:[we,De],backend:n,attrs:{axis:0}}),it=ml({inputs:[Ne,ze],backend:n,attrs:{axis:0}}),St=n.data.get(qe.dataId).values,Tt=n.data.get(it.dataId).values;return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(O),n.disposeIntermediateTensorInfo(M),n.disposeIntermediateTensorInfo(G),n.disposeIntermediateTensorInfo(X),n.disposeIntermediateTensorInfo(oe),n.disposeIntermediateTensorInfo(Y),n.disposeIntermediateTensorInfo(ie),n.disposeIntermediateTensorInfo(ue),n.disposeIntermediateTensorInfo(ae),n.disposeIntermediateTensorInfo(fe),n.disposeIntermediateTensorInfo(de),n.disposeIntermediateTensorInfo(xe),n.disposeIntermediateTensorInfo(we),n.disposeIntermediateTensorInfo(Ne),n.disposeIntermediateTensorInfo(De),n.disposeIntermediateTensorInfo(ze),n.disposeIntermediateTensorInfo(qe),n.disposeIntermediateTensorInfo(it),{real:St,imag:Tt}}function HK(r,e,t){let o=new Float32Array(e*2);for(let n=0;n<e;n++){let s=0,a=0;for(let i=0;i<e;i++){let l=N.exponent(n*i,e,t),u=N.getComplexWithIndex(r,i);s+=u.real*l.real-u.imag*l.imag,a+=u.real*l.imag+u.imag*l.real}t&&(s/=e,a/=e),N.assignToTypedArray(o,s,a,n)}return o}function qK(r){let{inputs:e,backend:t}=r,{input:o}=e,n=y.sizeFromShape(o.shape),s=o.shape[o.shape.length-1],a=n/s,i=Qe({inputs:{x:o},backend:t,attrs:{shape:[a,s]}}),l=Bg(i,!1,t),u=Qe({inputs:{x:l},backend:t,attrs:{shape:o.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var GA={kernelName:Nc,backendName:"cpu",kernelFunc:qK};function wf(r){let{backend:e,attrs:t}=r,{shape:o,value:n,dtype:s}=t,a=s||y.inferDtype(n),i=y.getArrayFromDType(a,y.sizeFromShape(o));return KK(i,n,a),e.makeTensorInfo(o,a,i)}var WA={kernelName:Ka,backendName:"cpu",kernelFunc:wf};function KK(r,e,t){r.fill(e)}var jA={kernelName:$i,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,n=t,s=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(o.shape)),[a,i,l,u]=o.shape,c=n.data.get(o.dataId).values;for(let m=0;m<a;m++){let f=m*l*i*u;for(let d=0;d<i;d++){let h=d*(l*u);for(let g=0;g<l;g++){let x=g*u;for(let b=0;b<u;b++){let _=[a,d,g,b][2],k=Math.round(l-_),D=f+h+x+b,T=c[D];if(k>=0&&k<l){let R=k*u,O=f+h+R+b;T=c[O]}s[D]=T}}}}return{dataId:n.write(s,o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var XK=Xe((r,e)=>Math.floor(r/e)),YK=et(On,XK,null,"int32"),UA={kernelName:On,backendName:"cpu",kernelFunc:YK};function ZK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=P_({inputs:{x:n,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=ka({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=gp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var HA={kernelName:Xs,backendName:"cpu",kernelFunc:ZK};function JK(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=M_({inputs:{x:n,filter:s},backend:t,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m}});if(a){let g=h;h=ka({inputs:{a:h,b:a},backend:t}),t.disposeIntermediateTensorInfo(g)}if(f){let g=h;h=gp(t,h,f,i,d),t.disposeIntermediateTensorInfo(g)}return h}var qA={kernelName:Ys,backendName:"cpu",kernelFunc:JK};function QK(r){let{inputs:e,backend:t}=r,{params:o,indices:n}=e,s=y.sizeFromShape(o.shape),a=n.shape,i=a[a.length-1],[l,u,c,p]=N.prepareAndValidate(o,n);if(u===0)return t.makeTensorInfo(l,o.dtype,[]);let m=ve([u,c],o.dtype),f=t.data.get(n.dataId).values,d=t.data.get(o.dataId).values;for(let h=0;h<u;h++){let g=[],x=0;for(let b=0;b<i;b++){let w=f[h*i+b];x+=w*p[b],g.push(w)}if(x<0||x>=s/c)throw new Error(`Invalid indices: ${g} does not index into ${o.shape}`);for(let b=0;b<c;b++)m.values[h*c+b]=d[x*c+b]}return t.makeTensorInfo(l,m.dtype,m.values)}var KA={kernelName:Ri,backendName:"cpu",kernelFunc:QK};function e6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,indices:s}=e,{axis:a,batchDims:i}=o;te([n,s],"gatherV2");let l=i;i==null&&(l=0);let u=y.sizeFromShape(s.shape),c=y.parseAxisParam(a,n.shape)[0],p=N.segment_util.collectGatherOpShapeInfo(n,s,c,l),m=Qe({inputs:{x:n},backend:t,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),f=Qe({inputs:{x:s},backend:t,attrs:{shape:[p.batchSize,u/p.batchSize]}}),d=[p.batchSize,p.outerSize,u/p.batchSize,p.sliceSize],h=t.bufferSync(f),g=t.bufferSync(m),x=Eg(g,h,d);return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.makeTensorInfo(p.outputShape,x.dtype,x.values)}var XA={kernelName:Ls,backendName:"cpu",kernelFunc:e6};var t6=Xe((r,e)=>r>=e?1:0),r6=et(Mn,t6,null,"bool"),YA={kernelName:Mn,backendName:"cpu",kernelFunc:r6};function o6(r){let{inputs:e,backend:t}=r,{input:o}=e,n=y.sizeFromShape(o.shape),s=o.shape[o.shape.length-1],a=n/s,i=Qe({inputs:{x:o},backend:t,attrs:{shape:[a,s]}}),l=Bg(i,!0,t),u=Qe({inputs:{x:l},backend:t,attrs:{shape:o.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(l),u}var ZA={kernelName:Sc,backendName:"cpu",kernelFunc:o6};var n6=$e(Oi,r=>Number.isFinite(r)?1:0,"bool"),JA={kernelName:Oi,backendName:"cpu",kernelFunc:n6};var s6=$e(Pi,r=>Math.abs(r)===Infinity?1:0,"bool"),QA={kernelName:Pi,backendName:"cpu",kernelFunc:s6};var i6=$e(Mi,r=>Number.isNaN(r)?1:0,"bool"),eE={kernelName:Mi,backendName:"cpu",kernelFunc:i6};var a6=Xe((r,e)=>r<=e?1:0),l6=et(zi,a6,null,"bool"),tE={kernelName:zi,backendName:"cpu",kernelFunc:l6};function u6(r){let{backend:e,attrs:t}=r,{start:o,stop:n,num:s}=t,a=Dg(o,n,s);return e.makeTensorInfo([a.length],"float32",a)}var rE={kernelName:Ac,backendName:"cpu",kernelFunc:u6};var c6=$e(Bi,r=>Math.log1p(r)),oE={kernelName:Bi,backendName:"cpu",kernelFunc:c6};var p6=Xe((r,e)=>r&&e),m6=et(Vi,p6,null,"bool"),nE={kernelName:Vi,backendName:"cpu",kernelFunc:m6};var f6=$e(Ll,r=>r?0:1,"bool"),sE={kernelName:Ll,backendName:"cpu",kernelFunc:f6};var d6=Xe((r,e)=>r||e),h6=et(zl,d6,null,"bool"),iE={kernelName:zl,backendName:"cpu",kernelFunc:h6};function g6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=o;te(n,"LRN");let u=n.shape[3],c=u-1,p=t.data.get(n.dataId).values,m=y.sizeFromShape(n.shape),f=new Float32Array(m);function d(h){let g=h%u,x=h-g+Math.max(0,g-s),b=h-g+Math.min(g+s,c),w=0;for(;x<=b;x++){let _=p[x];w+=_*_}return w}for(let h=0;h<m;h++){let g=d(h),x=p[h]*Math.pow(a+i*g,-l);f[h]=x}return t.makeTensorInfo(n.shape,n.dtype,f)}var aE={kernelName:Xa,backendName:"cpu",kernelFunc:g6};function x6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=o;te(a,"LRNGrad");let p=y.sizeFromShape(a.shape),m=a.shape[3],f=t.data.get(a.dataId).values,d=t.data.get(n.dataId).values,h=t.data.get(s.dataId).values,g=new Float32Array(p),x=p;for(let b=0;b<x;b++){let w=b%m,_=b-w+Math.max(0,w-i),k=b-w+Math.min(m,w+i+1),D=0;for(let T=_;T<k;T++)D+=Math.pow(d[T],2);D=u*D+l;for(let T=_;T<k;T++){let R=-2*u*c*d[T]*h[b]/D;b===T&&(R+=Math.pow(D,-c)),R*=f[b],g[T]+=R}}return t.makeTensorInfo(a.shape,n.dtype,g)}var lE={kernelName:Ec,backendName:"cpu",kernelFunc:x6};function B_(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reductionIndices:s,keepDims:a}=o,i=t,l=n.shape,u=l.length,c=y.parseAxisParam(s,l),p=c,m=N.getAxesPermutation(p,u),f=i.data.get(n.dataId).values;if(m!=null){let _=new Array(u);for(let k=0;k<_.length;k++)_[k]=l[m[k]];f=hp(f,l,n.dtype,m,_),p=N.getInnerMostAxes(p.length,u),l=_}te(n,"max"),N.assertAxesAreInnerMostDims("max",p,u);let[d,h]=N.computeOutAndReduceShapes(l,p),g=y.sizeFromShape(h),x=$g(f,g,d,n.dtype),b=i.write(x,d,n.dtype),w=d;return a&&(w=N.expandShapeToKeepDim(d,c)),{dataId:b,shape:w,dtype:n.dtype}}var uE={kernelName:Bn,backendName:"cpu",kernelFunc:B_};function y6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;te(n,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(N.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=N.computePool2DInfo(n.shape,s,a,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))p=Rr({inputs:{x:n},backend:t});else{let m=t.data.get(n.dataId).values,f=y.computeStrides(n.shape),d=xp(m,n.shape,n.dtype,f,c,"max");p=t.makeTensorInfo(c.outShape,n.dtype,d.values)}return p}var cE={kernelName:Gn,backendName:"cpu",kernelFunc:y6};function b6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=o;te(n,"maxPool3d");let c=N.computePool3DInfo(n.shape,s,a,1,i,l,u),p=t.data.get(n.dataId).values,m=zg(p,n.shape,n.dtype,y.computeStrides(n.shape),c,"max");return t.makeTensorInfo(m.shape,"float32",m.values)}var pE={kernelName:Ya,backendName:"cpu",kernelFunc:b6};function w6(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=o;te([n,s],"maxPool3DGrad");let c=N.computePool3DInfo(s.shape,a,i,1,l,u),p=t.bufferSync(s),m=aA(p,c),f=c.strideDepth,d=c.strideHeight,h=c.strideWidth,g=c.dilationDepth,x=c.dilationHeight,b=c.dilationWidth,w=c.effectiveFilterDepth,_=c.effectiveFilterHeight,k=c.effectiveFilterWidth,D=w-1-c.padInfo.front,T=k-1-c.padInfo.left,R=_-1-c.padInfo.top,O=ve(s.shape,"float32"),M=t.bufferSync(n);for(let G=0;G<c.batchSize;++G)for(let j=0;j<c.inChannels;++j)for(let U=0;U<c.inDepth;++U)for(let H=0;H<c.inHeight;++H)for(let q=0;q<c.inWidth;++q){let X=U-D,oe=H-R,Y=q-T,re=0;for(let J=0;J<w;J+=g){let ie=(X+J)/f;if(!(ie<0||ie>=c.outDepth||Math.floor(ie)!==ie))for(let ue=0;ue<_;ue+=x){let ae=(oe+ue)/d;if(!(ae<0||ae>=c.outHeight||Math.floor(ae)!==ae))for(let fe=0;fe<k;fe+=b){let de=(Y+fe)/h;if(de<0||de>=c.outWidth||Math.floor(de)!==de)continue;let xe=w*_*k-1-m.get(G,ie,ae,de,j),we=J*_*k+ue*k+fe,De=xe===we?1:0;if(De===0)continue;re+=M.get(G,ie,ae,de,j)*De}}}O.set(re,G,U,H,q,j)}return t.makeTensorInfo(O.shape,O.dtype,O.values)}var mE={kernelName:$c,backendName:"cpu",kernelFunc:w6};function _6(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s,output:a}=e,i=s;te([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=o,m=N.computePool2DInfo(i.shape,l,u,1,c,p),f=t.data.get(i.dataId).values,d=ve(m.outShape,i.dtype,Lg(f,i.shape,i.dtype,m).values),h=m.strideHeight,g=m.strideWidth,x=m.dilationHeight,b=m.dilationWidth,w=m.effectiveFilterHeight,_=m.effectiveFilterWidth,k=_-1-m.padInfo.left,D=w-1-m.padInfo.top,T=ve(i.shape,"float32"),R=t.data.get(n.dataId).values,O=ve(n.shape,"float32",R);for(let M=0;M<m.batchSize;++M)for(let G=0;G<m.inChannels;++G)for(let j=0;j<m.inHeight;++j)for(let U=0;U<m.inWidth;++U){let H=j-D,q=U-k,X=0;for(let oe=0;oe<w;oe+=x){let Y=(H+oe)/h;if(!(Y<0||Y>=m.outHeight||Math.floor(Y)!==Y))for(let re=0;re<_;re+=b){let J=(q+re)/g;if(J<0||J>=m.outWidth||Math.floor(J)!==J)continue;let ie=w*_-1-d.get(M,Y,J,G),ue=oe*_+re,ae=ie===ue?1:0;if(ae===0)continue;X+=O.get(M,Y,J,G)*ae}}T.set(X,M,j,U,G)}return t.makeTensorInfo(T.shape,T.dtype,T.values)}var fE={kernelName:Dc,backendName:"cpu",kernelFunc:_6};function dE(r,e,t,o,n){let s=y.computeStrides(e),a=xp(r,e,t,s,n,"max"),i=Lg(r,e,t,n,!0,o);return[a.values,i.values]}var hE={kernelName:Rc,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{filterSize:n,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;te(o,"MaxPoolWithArgmax");let u=l.data.get(o.dataId).values,c=N.computePool2DInfo(o.shape,n,s,[1,1],a),[p,m]=dE(u,o.shape,o.dtype,i,c),f=l.write(p,c.outShape,o.dtype),d=l.write(m,c.outShape,o.dtype);return[{dataId:f,shape:c.outShape,dtype:o.dtype},{dataId:d,shape:c.outShape,dtype:"int32"}]}};function Cu(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"sum");let i;n.dtype==="bool"?i=sn({inputs:{x:n},backend:t,attrs:{dtype:"int32"}}):i=Rr({inputs:{x:n},backend:t});let l=i.shape.length,u=y.parseAxisParam(s,i.shape),c=N.getAxesPermutation(u,l),p=u,m=i;c!=null&&(m=or({inputs:{x:i},backend:t,attrs:{perm:c}}),p=N.getInnerMostAxes(p.length,l)),N.assertAxesAreInnerMostDims("sum",p,m.shape.length);let[f,d]=N.computeOutAndReduceShapes(m.shape,p),h=N.upcastType(m.dtype,"int32"),g=mp(t,f,h),x=y.sizeFromShape(d),b=t.data.get(g.dataId).values,w=t.data.get(m.dataId).values;for(let _=0;_<b.length;++_){let k=_*x,D=0;for(let T=0;T<x;++T)D+=w[k+T];b[_]=D}if(a){let _=N.expandShapeToKeepDim(g.shape,u),k=g;g=Qe({inputs:{x:g},backend:t,attrs:{shape:_}}),t.disposeIntermediateTensorInfo(k)}return t.disposeIntermediateTensorInfo(i),c!=null&&t.disposeIntermediateTensorInfo(m),g}var gE={kernelName:is,backendName:"cpu",kernelFunc:Cu};function k6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=y.parseAxisParam(s,n.shape),u=N.computeOutAndReduceShapes(n.shape,i)[1],c=y.sizeFromShape(u),p=[],m=t.makeTensorInfo([],"float32",new Float32Array([c]));p.push(m);let f=sn({inputs:{x:n},backend:t,attrs:{dtype:"float32"}});p.push(f);let d=yf({inputs:{a:f,b:m},backend:t});p.push(d);let h=Cu({inputs:{x:d},backend:t,attrs:{axis:s,keepDims:a}});return p.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}var xE={kernelName:Wn,backendName:"cpu",kernelFunc:k6};function v6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;te(n,"min");let i=y.parseAxisParam(s,n.shape),l=i,u=N.getAxesPermutation(l,n.shape.length),c=n;u!=null&&(c=or({inputs:{x:n},backend:t,attrs:{perm:u}}),l=N.getInnerMostAxes(l.length,n.shape.length)),N.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,m]=N.computeOutAndReduceShapes(c.shape,l),f=y.sizeFromShape(m),d=y.makeZerosTypedArray(y.sizeFromShape(p),c.dtype),h=t.data.get(c.dataId).values;for(let x=0;x<d.length;++x){let b=x*f,w=h[b];for(let _=0;_<f;++_){let k=h[b+_];k<w&&(w=k)}d[x]=w}u!=null&&t.disposeIntermediateTensorInfo(c);let g=t.makeTensorInfo(p,c.dtype,d);if(a){let x=N.expandShapeToKeepDim(p,i),b=Qe({inputs:{x:g},backend:t,attrs:{shape:x}});return t.disposeIntermediateTensorInfo(g),b}return g}var yE={kernelName:jn,backendName:"cpu",kernelFunc:v6};function C6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,mode:a}=o;te(n,"mirrorPad");let i=s.map((w,_)=>w[0]+n.shape[_]+w[1]),l=s.map(w=>w[0]),u=s.map((w,_)=>w[0]+n.shape[_]),c=a==="reflect"?0:1,p=t.data.get(n.dataId).values,m=n.shape.length,f=y.computeStrides(n.shape),d=y.sizeFromShape(i),h=i.length,g=y.computeStrides(i),x=y.getTypedArrayFromDType(n.dtype,d);for(let w=0;w<d;w++){let _=y.indexToLoc(w,h,g);for(let D=0;D<h;D++)_[D]<l[D]?_[D]=l[D]*2-_[D]-c:_[D]>=u[D]&&(_[D]=(u[D]-1)*2-_[D]+c);_=_.map((D,T)=>D-l[T]);let k=y.locToIndex(_,m,f);x[w]=p[k]}return{dataId:t.write(x,i,n.dtype),shape:i,dtype:n.dtype}}var bE={kernelName:Za,backendName:"cpu",kernelFunc:C6};var I6=Xe((r,e)=>{let t=r%e;return r<0&&e<0||r>=0&&e>=0?t:(t+e)%e}),N6=et(Gi,I6),wE={kernelName:Gi,backendName:"cpu",kernelFunc:N6};var kE=ac(r_());function V_(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{dim:s}=o,a=n.shape.length,i=s;if(i===-1&&(i=a-1),i!==a-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${a} and dim was ${i}`);let l=y.parseAxisParam([i],n.shape),u=B_({inputs:{x:n},backend:t,attrs:{reductionIndices:l,keepDims:!1}}),c=N.expandShapeToKeepDim(u.shape,l),p=Qe({inputs:{x:u},backend:t,attrs:{shape:c}}),m=xf({inputs:{a:n,b:p},backend:t}),f=h_({inputs:{x:m},backend:t}),d=Cu({inputs:{x:f},backend:t,attrs:{axis:l,keepDims:!1}}),h=Qe({inputs:{x:d},backend:t,attrs:{shape:c}}),g=yf({inputs:{a:f,b:h},backend:t});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(h),g}var _E={kernelName:as,backendName:"cpu",kernelFunc:V_};function S6(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{numSamples:s,seed:a,normalized:i}=o;te(n,"multinomial");let l=i?n:V_({inputs:{logits:n},backend:t,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=t.data.get(l.dataId).values,m=[u,s],f=y.makeZerosTypedArray(y.sizeFromShape(m),"int32");for(let d=0;d<u;++d){let h=d*c,g=new Float32Array(c-1);g[0]=p[h];for(let w=1;w<g.length;++w)g[w]=g[w-1]+p[h+w];let x=kE.alea(a.toString()),b=d*s;for(let w=0;w<s;++w){let _=x();f[b+w]=g.length;for(let k=0;k<g.length;k++)if(_<g[k]){f[b+w]=k;break}}}return i||t.disposeIntermediateTensorInfo(l),t.makeTensorInfo(m,"int32",f)}var vE={kernelName:Fc,backendName:"cpu",kernelFunc:S6};var T6=$r.nonMaxSuppressionV3Impl;function A6(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=o;te(n,"NonMaxSuppression");let u=t.data.get(n.dataId).values,c=t.data.get(s.dataId).values,{selectedIndices:p}=T6(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var CE={kernelName:ji,backendName:"cpu",kernelFunc:A6};var E6=$r.nonMaxSuppressionV4Impl;function D6(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=o;te(n,"NonMaxSuppressionPadded");let c=t.data.get(n.dataId).values,p=t.data.get(s.dataId).values,{selectedIndices:m,validOutputs:f}=E6(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var IE={kernelName:Ui,backendName:"cpu",kernelFunc:D6};var $6=$r.nonMaxSuppressionV5Impl;function R6(r){let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=o;te(n,"NonMaxSuppressionWithScore");let c=t.data.get(n.dataId).values,p=t.data.get(s.dataId).values,m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:x}=$6(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var NE={kernelName:Hi,backendName:"cpu",kernelFunc:R6};function F6(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o;te(n,"oneHot");let l=y.sizeFromShape(n.shape),u=new Float32Array(l*s);u.fill(i);let c=t.data.get(n.dataId).values;for(let p=0;p<l;++p)c[p]>=0&&c[p]<s&&(u[p*s+c[p]]=a);return t.makeTensorInfo([...n.shape,s],"int32",u)}var SE={kernelName:qn,backendName:"cpu",kernelFunc:F6};function _f(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(o.dtype==="complex64"){let n=nn({inputs:{input:o},backend:t}),s=_f({inputs:{x:n},backend:t}),a=ni({inputs:{input:o},backend:t}),i=_f({inputs:{x:a},backend:t}),l=fr({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return wf({backend:t,attrs:{shape:o.shape,value:0,dtype:o.dtype}})}var TE={kernelName:qs,backendName:"cpu",kernelFunc:_f};function AE(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(o.dtype==="complex64"){let n=nn({inputs:{input:o},backend:t}),s=AE({inputs:{x:n},backend:t}),a=ni({inputs:{input:o},backend:t}),i=_f({inputs:{x:a},backend:t}),l=fr({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return wf({backend:t,attrs:{shape:o.shape,value:1,dtype:o.dtype}})}var EE={kernelName:Bs,backendName:"cpu",kernelFunc:AE};function G_(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return yp({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=yp({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(p),p}),u=ml({inputs:l,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var DE={kernelName:Vs,backendName:"cpu",kernelFunc:G_};function O6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,constantValue:a}=o;te(n,"pad");let i=s.map((b,w)=>b[0]+n.shape[w]+b[1]),l=s.map(b=>b[0]),u=t.data.get(n.dataId).values,c=y.sizeFromShape(n.shape),p=n.shape.length,m=y.computeStrides(n.shape),f=y.sizeFromShape(i),d=i.length,h=y.computeStrides(i),g=y.getTypedArrayFromDType(n.dtype,f);a!==0&&g.fill(a);for(let b=0;b<c;b++){let _=y.indexToLoc(b,p,m).map((D,T)=>D+l[T]),k=y.locToIndex(_,d,h);g[k]=u[b]}return{dataId:t.write(g,i,n.dtype),shape:i,dtype:n.dtype}}var Vg={kernelName:Kn,backendName:"cpu",kernelFunc:O6};var P6=Xe((r,e)=>Math.pow(r,e)),M6=et(Xn,P6),$E={kernelName:Xn,backendName:"cpu",kernelFunc:M6};function L6(r){let{backend:e,attrs:t}=r,{start:o,stop:n,dtype:s,step:a}=t,i=ku(o,n,a,s);return e.makeTensorInfo([i.length],s,i)}var RE={kernelName:Ja,backendName:"cpu",kernelFunc:L6};var z6=$e(Ki,r=>1/r),FE={kernelName:Ki,backendName:"cpu",kernelFunc:z6};function B6(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o;te(n,"resizeBilinear");let l=y.computeStrides(n.shape),[u,c]=i,[p,m,f,d]=n.shape,h=t.data.get(n.dataId).values,g=new Float32Array(y.sizeFromShape([p,u,c,d])),x=[s&&u>1?m-1:m,s&&c>1?f-1:f],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=0,_=x[0]/b[0],k=x[1]/b[1];for(let D=0;D<p;D++)for(let T=0;T<u;T++){let R;a?R=_*(T+.5)-.5:R=_*T;let O=Math.max(0,Math.floor(R)),M=R-O,G=Math.min(m-1,Math.ceil(R)),j=D*l[0]+O*l[1],U=D*l[0]+G*l[1];for(let H=0;H<c;H++){let q;a?q=k*(H+.5)-.5:q=k*H;let X=Math.max(0,Math.floor(q)),oe=q-X,Y=Math.min(f-1,Math.ceil(q)),re=j+X*l[2],J=U+X*l[2],ie=j+Y*l[2],ue=U+Y*l[2];for(let ae=0;ae<d;ae++){let fe=h[re+ae],de=h[J+ae],xe=h[ie+ae],we=h[ue+ae],De=fe+(xe-fe)*oe,Ne=de+(we-de)*oe,ze=De+(Ne-De)*M;g[w++]=ze}}}return t.makeTensorInfo([p,u,c,d],"float32",g)}var OE={kernelName:Jn,backendName:"cpu",kernelFunc:B6};function V6(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o;te([s,n],"resizeBilinearGrad");let i=y.computeStrides(n.shape),[l,u,c,p]=n.shape,[,m,f]=s.shape,d=new Float32Array(l*u*c*p),h=[a&&m>1?u-1:u,a&&f>1?c-1:c],g=[a&&m>1?m-1:m,a&&f>1?f-1:f],x=h[0]/g[0],b=h[1]/g[1],w=t.data.get(s.dataId).values,_=0;for(let k=0;k<l;k++){let D=k*i[0];for(let T=0;T<m;T++){let R=T*x,O=Math.floor(R),M=Math.min(Math.ceil(R),u-1),G=D+O*i[1],j=D+M*i[1],U=R-O,H=1-U;for(let q=0;q<f;q++){let X=q*b,oe=Math.floor(X),Y=Math.min(Math.ceil(X),c-1),re=X-oe,J=1-re,ie=G+oe*i[2],ue=G+Y*i[2],ae=j+oe*i[2],fe=j+Y*i[2],de=H*J,xe=H*re,we=U*J,De=U*re;for(let Ne=0;Ne<p;Ne++){let ze=w[_++];d[ie+Ne]+=ze*de,d[ue+Ne]+=ze*xe,d[ae+Ne]+=ze*we,d[fe+Ne]+=ze*De}}}}return t.makeTensorInfo([l,c,u,p],"float32",d)}var PE={kernelName:Mc,backendName:"cpu",kernelFunc:V6};function G6(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o;te(n,"resizeNearestNeighbor");let l=y.computeStrides(n.shape),[u,c]=i,[p,m,f,d]=n.shape,h=t.data.get(n.dataId).values,g=new Float32Array(p*u*c*d),x=[s&&u>1?m-1:m,s&&c>1?f-1:f],b=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=x[0]/b[0],_=x[1]/b[1],k=0;for(let D=0;D<p;D++){let T=D*l[0];for(let R=0;R<u;R++){let O=a?w*(R+.5):w*R,M=Math.min(m-1,s?Math.round(O):Math.floor(O));a&&(M=Math.max(0,M));let G=T+M*l[1];for(let j=0;j<c;j++){let U=a?_*(j+.5):_*j,H=Math.min(f-1,s?Math.round(U):Math.floor(U));a&&(H=Math.max(0,H));let q=G+H*l[2];for(let X=0;X<d;X++){let oe=h[q+X];g[k++]=oe}}}}return t.makeTensorInfo([p,u,c,d],n.dtype,g)}var ME={kernelName:Qa,backendName:"cpu",kernelFunc:G6};function W6(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o;te([s,n],"resizeNearestNeighborGrad");let i=y.computeStrides(n.shape),l=y.computeStrides(s.shape),[u,c,p,m]=n.shape,[,f,d]=s.shape,h=new Float32Array(u*c*p*m),g=t.data.get(s.dataId).values,x=[a&&f>1?c-1:c,a&&d>1?p-1:p],b=[a&&f>1?f-1:f,a&&d>1?d-1:d],w=x[0]/b[0],_=x[1]/b[1],k=1/w,D=1/_,T=Math.ceil(k)*2+2,R=Math.ceil(D)*2+2;for(let O=0;O<u;O++){let M=O*i[0];for(let G=0;G<c;G++){let j=M+G*i[1],U=Math.floor(G*k),H=Math.floor(U-T/2);for(let q=0;q<p;q++){let X=j+q*i[2],oe=Math.floor(q*D),Y=Math.floor(oe-R/2);for(let re=0;re<m;re++){let J=0;for(let ie=0;ie<T;ie++){let ue=ie+H;if(ue<0||ue>=f)continue;let ae=M+ue*l[1],fe=ue*w,de=Math.min(c-1,a?Math.round(fe):Math.floor(fe));if(G===de)for(let xe=0;xe<R;xe++){let we=xe+Y;if(we<0||we>=d)continue;let De=ae+we*l[2],Ne=we*_,ze=Math.min(p-1,a?Math.round(Ne):Math.floor(Ne));q===ze&&(J+=g[De+re])}}h[X+re]=J}}}}return t.makeTensorInfo(n.shape,n.dtype,h)}var LE={kernelName:Pc,backendName:"cpu",kernelFunc:W6};function j6(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o;te(n,"reverse");let a=n.shape.length,i=y.parseAxisParam(s,n.shape);if(a===0)return Rr({inputs:{x:n},backend:t});let l=new lt(n.shape,n.dtype),u=t.bufferSync(n);for(let c=0;c<l.size;c++){let p=l.indexToLoc(c),m=p.slice();i.forEach(f=>m[f]=n.shape[f]-1-m[f]),l.set(u.get(...m),...p)}return t.makeTensorInfo(l.shape,l.dtype,l.values)}var zE={kernelName:es,backendName:"cpu",kernelFunc:j6};var BE={kernelName:oa,backendName:"cpu",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,{radians:n,fillValue:s,center:a}=e,i=t,l=y.getTypedArrayFromDType(o.dtype,y.sizeFromShape(o.shape)),[u,c,p,m]=o.shape,[f,d]=N.getImageCenter(a,c,p),h=255,g=Math.sin(n),x=Math.cos(n),b=i.data.get(o.dataId).values;for(let _=0;_<u;_++){let k=_*p*c*m;for(let D=0;D<c;D++){let T=D*(p*m);for(let R=0;R<p;R++){let O=R*m;for(let M=0;M<m;M++){let G=[u,D,R,M],j=G[2],U=G[1],H=(j-f)*x-(U-d)*g,q=(j-f)*g+(U-d)*x;H=Math.round(H+f),q=Math.round(q+d);let X=s;if(typeof s!="number"&&(M===3?X=h:X=s[M]),H>=0&&H<p&&q>=0&&q<c){let Y=q*(p*m),re=H*m,J=k+Y+re+M;X=b[J]}let oe=k+T+O+M;l[oe]=X}}}}return{dataId:i.write(l,o.shape,o.dtype),shape:o.shape,dtype:o.dtype}}};var U6=$e(ts,r=>{let e=Math.floor(r);return r-e<.5?Math.floor(r):r-e>.5?Math.ceil(r):e%2==0?e:e+1}),VE={kernelName:ts,backendName:"cpu",kernelFunc:U6};function Gg(r,e,t,o,n,s,a,i,l,u){let c=[o/n,n],p=r.values,m=e.values;if(o===0)return ve(t,e.dtype);let f=ve(c,e.dtype);f.values.fill(l);for(let d=0;d<s;d++){let h=[],g=0;for(let x=0;x<a;x++){let b=p[d*a+x];h.push(b),g+=b*i[x]}if(g<0||g>=o/n)throw new Error(`Invalid indices: ${h} does not index into ${t}`);for(let x=0;x<n;x++)u?f.values[g*n+x]+=m[d*n+x]:f.values[g*n+x]=e.rank===0?m[0]:m[d*n+x]}return f}function H6(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n,updates:s}=e,{shape:a}=o,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=N.calculateShapes(s,n,a),m=!0,f=t.bufferSync(n),d=t.bufferSync(s),h=Gg(f,d,a,p,u,l,i,c,0,m);return t.makeTensorInfo(a,h.dtype,h.values)}var GE={kernelName:Xi,backendName:"cpu",kernelFunc:H6};function q6(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e;te([o,n,s],"select");let a=o.shape.length,i=t.data.get(o.dataId).values,l=t.data.get(n.dataId).values,u=t.data.get(s.dataId).values,c=ir(n.dtype,s.dtype),p=y.makeZerosTypedArray(y.sizeFromShape(n.shape),c),m=0,f=a===0||a>1||n.shape.length===1?1:y.sizeFromShape(n.shape.slice(1));for(let d=0;d<i.length;d++)for(let h=0;h<f;h++)i[d]===1?p[m++]=l[d]:p[m++]=u[d];return t.makeTensorInfo(n.shape,c,p)}var WE={kernelName:Ws,backendName:"cpu",kernelFunc:q6};var K6=N.SELU_SCALEALPHA,X6=N.SELU_SCALE,Y6=$e(Yi,r=>r>=0?X6*r:K6*(Math.exp(r)-1)),jE={kernelName:Yi,backendName:"cpu",kernelFunc:Y6};var Z6=$e(ns,r=>1/(1+Math.exp(-r))),UE={kernelName:ns,backendName:"cpu",kernelFunc:Z6};var J6=$e(Ji,r=>r<0?-1:r>0?1:0),HE={kernelName:Ji,backendName:"cpu",kernelFunc:J6};var Q6=$e(os,r=>Math.sin(r)),qE={kernelName:os,backendName:"cpu",kernelFunc:Q6};var e5=$e(Zi,r=>Math.sinh(r)),KE={kernelName:Zi,backendName:"cpu",kernelFunc:e5};var t5=11920928955078125e-23,XE=Math.log(t5)+2,r5=$e(Qi,r=>{let e=r>-XE,t=r<XE,o=Math.exp(r),n;return t?n=o:e?n=r:n=Math.log(1+o),n}),YE={kernelName:Qi,backendName:"cpu",kernelFunc:r5};function o5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,paddings:a}=o;te([n],"spaceToBatchND");let i=y.sizeFromShape(s),l=[[0,0]];l.push(...a);for(let D=1+s.length;D<n.shape.length;++D)l.push([0,0]);let u=Vg.kernelFunc({inputs:{x:n},backend:t,attrs:{paddings:l,constantValue:0}}),c=N.getReshaped(u.shape,s,i,!1),p=N.getPermuted(c.length,s.length,!1),m=N.getReshapedPermuted(u.shape,s,i,!1),h=Qe({inputs:{x:u},backend:t,attrs:{shape:c}}),b=or({inputs:{x:h},backend:t,attrs:{perm:p}}),k=Qe({inputs:{x:b},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(b),k}var ZE={kernelName:el,backendName:"cpu",kernelFunc:o5};function n5(r){let{inputs:e,backend:t,attrs:o}=r,{sparseIndices:n,sparseValues:s,defaultValue:a}=e,{outputShape:i}=o,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=N.calculateShapes(s,n,i),f=!1,d=t.bufferSync(n),h=t.bufferSync(s),g=t.data.get(a.dataId).values[0],x=Gg(d,h,i,m,c,u,l,p,g,f);return t.makeTensorInfo(i,x.dtype,x.values)}var JE={kernelName:Lc,backendName:"cpu",kernelFunc:n5};function s5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=o,i=y.parseAxisParam(a,n.shape)[0],l=N.prepareSplitSize(n,s,i),u=new Array(n.shape.length).fill(0),c=n.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=un({inputs:{x:n},backend:t,attrs:{begin:u,size:m}});return u[i]+=p,f})}var QE={kernelName:Us,backendName:"cpu",kernelFunc:s5};var i5=$e(ss,r=>Math.sqrt(r)),e2={kernelName:ss,backendName:"cpu",kernelFunc:i5};var t2={kernelName:tl,backendName:"cpu",kernelFunc:({inputs:r,backend:e})=>{let{x:t}=r,o=e;te(t,"square");let n=o.data.get(t.dataId).values,s=new Float32Array(n.length);for(let i=0;i<n.length;++i){let l=n[i];s[i]=l*l}return{dataId:o.write(s,t.shape,t.dtype),shape:t.shape,dtype:t.dtype}}};var a5=$e(Xo,(r,e)=>{let t=e;return isNaN(r)?NaN:r>0?1:t.alpha}),r2={kernelName:Xo,backendName:"cpu",kernelFunc:a5};function l5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o;te(n,"stridedSlice");let{nonStrided:f,$begin:d,$strides:h,size:g,newShape:x,outShape:b}=er.sliceInfo(n.shape,s,a,i,l,u,c,p,m),w=Qe({inputs:{x:n},backend:t,attrs:{shape:x}}),_;if(f){let D=un({inputs:{x:w},backend:t,attrs:{begin:d,size:g}});_=Qe({inputs:{x:D},backend:t,attrs:{shape:b}}),t.disposeIntermediateTensorInfo(D)}else if(b.some(D=>D===0))_=t.makeTensorInfo(b,n.dtype,[]);else{let D=t.bufferSync(w),T=Rg(b,D,h,d);_=t.makeTensorInfo(T.shape,T.dtype,T.values)}let k=Qe({inputs:{x:_},backend:t,attrs:{shape:b}});return t.disposeIntermediateTensorInfo(w),t.disposeIntermediateTensorInfo(_),k}var o2={kernelName:ea,backendName:"cpu",kernelFunc:l5};var u5=$e(ta,r=>Math.tan(r)),n2={kernelName:ta,backendName:"cpu",kernelFunc:u5};var c5=$e(cs,r=>Math.tanh(r)),s2={kernelName:cs,backendName:"cpu",kernelFunc:c5};function p5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reps:s}=o;te(n,"tile");let a=Fg(t.bufferSync(n),s);return t.makeTensorInfo(a.shape,a.dtype,a.values)}var i2={kernelName:Oo,backendName:"cpu",kernelFunc:p5};function m5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{k:s,sorted:a}=o;te(n,"topk");let i=t.data.get(n.dataId).values,[l,u]=Og(i,n.shape,n.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var a2={kernelName:ra,backendName:"cpu",kernelFunc:m5};function h5(r){let{inputs:e,attrs:t,backend:o}=r,{image:n,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:l,outputShape:u}=t,[c,p,m,f]=n.shape,[d,h]=u!=null?u:[p,m],g=[c,d,h,f],x=y.computeStrides(n.shape),b=x[0],w=x[1],_=x[2],k=y.getTypedArrayFromDType(n.dtype,y.sizeFromShape(g));k.fill(l);let D=o.data.get(n.dataId).values,T=o.data.get(s.dataId).values;for(let O=0;O<c;++O){let M=s.shape[0]===1?T:T.subarray(O*8,O*8+8);for(let G=0;G<d;++G)for(let j=0;j<h;++j)for(let U=0;U<f;++U){let H,q=M[6]*j+M[7]*G+1;if(q===0)continue;let X=(M[0]*j+M[1]*G+M[2])/q,oe=(M[3]*j+M[4]*G+M[5])/q,Y=l2(X,m,i),re=l2(oe,p,i);switch(a){case"nearest":H=f5(D,p,m,b,w,_,O,re,Y,U,l);break;case"bilinear":H=d5(D,p,m,b,w,_,O,re,Y,U,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${a}`)}let J=O*b+G*w+j*_+U;k[J]=H}return o.makeTensorInfo(g,n.dtype,k)}return{dataId:o.write(k,g,n.dtype),shape:n.shape,dtype:n.dtype}}var u2={kernelName:zc,backendName:"cpu",kernelFunc:h5};function l2(r,e,t){switch(t){case"reflect":return g5(r,e);case"wrap":return x5(r,e);case"nearest":return b5(r,e);case"constant":default:return y5(r,e)}}function g5(r,e){let t=r;if(t<0)if(e<=1)t=0;else{let o=2*e;t<o&&(t=o*Math.trunc(-t/o)+t),t=t<-e?t+o:-t-1}else if(t>e-1)if(e<=1)t=0;else{let o=2*e;t-=o*Math.trunc(t/o),t>=e&&(t=o-t-1)}return y.clamp(0,t,e-1)}function x5(r,e){let t=r;if(t<0)if(e<=1)t=0;else{let o=e-1;t+=e*(Math.trunc(-t/o)+1)}else if(t>e-1)if(e<=1)t=0;else{let o=e-1;t-=e*Math.trunc(t/o)}return y.clamp(0,t,e-1)}function y5(r,e){return r}function b5(r,e){return y.clamp(0,r,e-1)}function kf(r,e,t,o,n,s,a,i,l,u,c){let p=a*o+i*n+l*s+u;return 0<=i&&i<e&&0<=l&&l<t?r[p]:c}function f5(r,e,t,o,n,s,a,i,l,u,c){let p=Math.round(i),m=Math.round(l);return kf(r,e,t,o,n,s,a,p,m,u,c)}function d5(r,e,t,o,n,s,a,i,l,u,c){let p=Math.floor(i),m=Math.floor(l),f=p+1,d=m+1,h=(d-l)*kf(r,e,t,o,n,s,a,p,m,u,c)+(l-m)*kf(r,e,t,o,n,s,a,p,d,u,c),g=(d-l)*kf(r,e,t,o,n,s,a,f,m,u,c)+(l-m)*kf(r,e,t,o,n,s,a,f,d,u,c);return(f-i)*h+(i-p)*g}function w5(r){let{inputs:e,attrs:t,backend:o}=r,{axis:n}=t,{x:s}=e;te(s,"unique");let a=o.data.get(s.dataId).values,{outputValues:i,outputShape:l,indices:u}=Pg(a,n,s.shape,s.dtype);return[o.makeTensorInfo(l,s.dtype,i),o.makeTensorInfo([u.length],"int32",u)]}var c2={kernelName:Bc,backendName:"cpu",kernelFunc:w5};function _5(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n.shape.length,i=n.shape[s],l=new Array(a-1),u=0;for(let f=0;f<a;f++)f!==s&&(l[u++]=n.shape[f]);let c=new Array(a).fill(0),p=n.shape.slice();p[s]=1;let m=new Array(i);for(let f=0;f<m.length;f++){c[s]=f;let d=un({inputs:{x:n},backend:t,attrs:{begin:c,size:p}});m[f]=Qe({inputs:{x:d},backend:t,attrs:{shape:l}}),t.disposeIntermediateTensorInfo(d)}return m}var p2={kernelName:Hs,backendName:"cpu",kernelFunc:_5};function k5(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,segmentIds:s}=e,{numSegments:a}=o;te(n,"unsortedSegmentSum");let i=n.shape.length,l=s.shape.length,u=[],c=[],p=i-l,m=s;for(let d=0;d<p;++d){let h=yp({inputs:{input:m},backend:t,attrs:{dim:d+1}});m=h,c.push(h)}for(let d=0;d<a;++d){let h=y.createScalarValue(d,"int32"),g=t.makeTensorInfo([],"int32",h),x=L_({inputs:{a:g,b:m},backend:t}),b=sn({inputs:{x},backend:t,attrs:{dtype:"float32"}}),w=gf({inputs:{a:b,b:n},backend:t}),_=Cu({inputs:{x:w},backend:t,attrs:{axis:0,keepDims:!1}});u.push(_),c.push(g),c.push(x),c.push(b),c.push(w),c.push(_)}let f=G_({inputs:u,backend:t,attrs:{axis:0}});return c.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var m2={kernelName:rl,backendName:"cpu",kernelFunc:k5};var v5=[K1,x1,X1,Y1,k1,Z1,J1,Q1,eA,tA,rA,oA,nA,sA,iA,lA,uA,cA,pA,q1,mA,fA,dA,_1,v1,hA,y1,gA,yA,wA,_A,bA,vA,CA,kA,IA,NA,SA,TA,AA,EA,DA,$A,RA,FA,OA,MA,PA,bf,V1,LA,zA,BA,C1,VA,I1,GA,WA,jA,N1,UA,HA,qA,KA,XA,S1,YA,b1,ZA,xA,JA,QA,eE,G1,T1,tE,rE,A1,oE,nE,sE,iE,aE,lE,E1,cE,pE,mE,fE,hE,uE,xE,yE,D1,bE,wE,vE,$1,R1,CE,IE,NE,F1,SE,EE,DE,Vg,$E,W1,P1,RE,w1,FE,j1,U1,H1,OE,PE,ME,LE,zE,BE,VE,M1,GE,WE,jE,UE,HE,qE,KE,L1,_E,YE,ZE,JE,QE,e2,t2,z1,r2,o2,B1,gE,n2,s2,i2,a2,O1,u2,c2,p2,m2,TE];for(let r of v5)Bl(r);var h2={};Ge(h2,{assertNotComplex:()=>_s,bindCanvasToFramebuffer:()=>R5,bindColorTextureToFramebuffer:()=>If,bindTextureToProgramUniformSampler:()=>ok,bindTextureUnit:()=>y2,bindVertexBufferToProgramAttribute:()=>Wg,callAndCheck:()=>Ie,canBeRepresented:()=>U_,createFragmentShader:()=>q_,createFramebuffer:()=>ek,createProgram:()=>K_,createStaticIndexBuffer:()=>Z_,createStaticVertexBuffer:()=>Y_,createTexture:()=>J_,createVertexShader:()=>H_,getBatchDim:()=>Ca,getExtensionOrThrow:()=>bp,getFramebufferErrorMessage:()=>b2,getMaxTexturesInShader:()=>ik,getNumChannels:()=>D5,getProgramUniformLocation:()=>rk,getProgramUniformLocationOrThrow:()=>tk,getRowsCols:()=>Ia,getShapeAs3D:()=>Nf,getTextureShapeFromLogicalShape:()=>nk,getWebGLDisjointQueryTimerVersion:()=>ak,getWebGLErrorMessage:()=>g2,getWebGLMaxTextureSize:()=>sk,hasExtension:()=>So,isCapableOfRenderingToFloatTexture:()=>uk,isDownloadFloatTextureEnabled:()=>ck,isReshapeFree:()=>hl,isWebGLFenceEnabled:()=>pk,isWebGLVersionEnabled:()=>Kg,linkProgram:()=>X_,resetMaxTextureSize:()=>F5,resetMaxTexturesInShader:()=>O5,unbindColorTextureFromFramebuffer:()=>jg,unbindTextureUnit:()=>$5,validateFramebuffer:()=>wp,validateProgram:()=>Cf,validateTextureSize:()=>Q_});var Iu={},W_={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function j_(r,e){Iu[r]=e}function Bo(r){if(!(r in Iu)){let t=C5(r);if(t!==null)Iu[r]=t;else return console.log("Could not get context for WebGL version",r),null}let e=Iu[r];return e.isContextLost()?(delete Iu[r],Bo(r)):(e.disable(e.DEPTH_TEST),e.disable(e.STENCIL_TEST),e.disable(e.BLEND),e.disable(e.DITHER),e.disable(e.POLYGON_OFFSET_FILL),e.disable(e.SAMPLE_COVERAGE),e.enable(e.SCISSOR_TEST),e.enable(e.CULL_FACE),e.cullFace(e.BACK),Iu[r])}function I5(r){if(typeof OffscreenCanvas!="undefined"&&r===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function C5(r){if(r!==1&&r!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let e=I5(r);return e.addEventListener("webglcontextlost",t=>{t.preventDefault(),delete Iu[r]},!1),r===1?e.getContext("webgl",W_)||e.getContext("experimental-webgl",W_):e.getContext("webgl2",W_)}var fl;(function(r){r[r.DENSE=0]="DENSE",r[r.SHARED_BATCH=1]="SHARED_BATCH"})(fl||(fl={}));var Fr;(function(r){r[r.RENDER=0]="RENDER",r[r.UPLOAD=1]="UPLOAD",r[r.PIXELS=2]="PIXELS",r[r.DOWNLOAD=3]="DOWNLOAD"})(Fr||(Fr={}));var vr;(function(r){r[r.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",r[r.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",r[r.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",r[r.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",r[r.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(vr||(vr={}));function Nu(r,e){return[e,r]}function f2(r,e){return r*e}function dl(r){let e=y.sizeFromShape(r),t=Math.ceil(e/4);return y.sizeToSquarishShape(t)}function si(r,e){return[Math.max(1,Math.ceil(e/2)),Math.max(1,Math.ceil(r/2))]}function d2(r,e){let[t,o]=si(r,e);return t*o*4}function vf(r,e){let t=r,o,n,s,a,i,l,u,c,p,m;return W().getNumber("WEBGL_VERSION")===2?(o=t.R32F,n=t.R16F,s=t.RGBA16F,a=t.RGBA32F,i=t.RED,u=4,c=1,p=t.HALF_FLOAT,m=t.FLOAT):(o=r.RGBA,n=r.RGBA,s=r.RGBA,a=t.RGBA,i=r.RGBA,u=4,c=4,p=e!=null?e.HALF_FLOAT_OES:null,m=r.FLOAT),l=r.RGBA,{internalFormatFloat:o,internalFormatHalfFloat:n,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:a,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:m}}function Ie(r,e){let t=e();return W().getBool("DEBUG")&&N5(r),t}function N5(r){let e=r.getError();if(e!==r.NO_ERROR)throw new Error("WebGL Error: "+g2(r,e))}var S5=596e-10,T5=65504;function U_(r){return!!(W().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||r===0||S5<Math.abs(r)&&Math.abs(r)<T5)}function g2(r,e){switch(e){case r.NO_ERROR:return"NO_ERROR";case r.INVALID_ENUM:return"INVALID_ENUM";case r.INVALID_VALUE:return"INVALID_VALUE";case r.INVALID_OPERATION:return"INVALID_OPERATION";case r.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case r.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case r.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${e}`}}function bp(r,e){return va(r,()=>r.getExtension(e),'Extension "'+e+'" not supported on this browser.')}function H_(r,e){let t=va(r,()=>r.createShader(r.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(r,()=>r.shaderSource(t,e)),Ie(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw console.log(r.getShaderInfoLog(t)),new Error("Failed to compile vertex shader.");return t}function q_(r,e){let t=va(r,()=>r.createShader(r.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(r,()=>r.shaderSource(t,e)),Ie(r,()=>r.compileShader(t)),r.getShaderParameter(t,r.COMPILE_STATUS)===!1)throw A5(e,r.getShaderInfoLog(t)),new Error("Failed to compile fragment shader.");return t}var E5=/ERROR: [0-9]+:([0-9]+):/g;function A5(r,e){let t=E5.exec(e);if(t==null){console.log(`Couldn't parse line number in error: ${e}`),console.log(r);return}let o=+t[1],n=r.split(`
`),s=n.length.toString().length+2,a=n.map((p,m)=>y.rightPad((m+1).toString(),s)+p),i=0;for(let p=0;p<a.length;p++)i=Math.max(a[p].length,i);let l=a.slice(0,o-1),u=a.slice(o-1,o),c=a.slice(o);console.log(l.join(`
`)),console.log(e.split(`
`)[0]),console.log(`%c ${y.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function K_(r){return va(r,()=>r.createProgram(),"Unable to create WebGLProgram.")}function X_(r,e){if(Ie(r,()=>r.linkProgram(e)),r.getProgramParameter(e,r.LINK_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Failed to link vertex and fragment shaders.")}function Cf(r,e){if(Ie(r,()=>r.validateProgram(e)),r.getProgramParameter(e,r.VALIDATE_STATUS)===!1)throw console.log(r.getProgramInfoLog(e)),new Error("Shader program validation failed.")}function Y_(r,e){let t=va(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ie(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),Ie(r,()=>r.bufferData(r.ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function Z_(r,e){let t=va(r,()=>r.createBuffer(),"Unable to create WebGLBuffer");return Ie(r,()=>r.bindBuffer(r.ELEMENT_ARRAY_BUFFER,t)),Ie(r,()=>r.bufferData(r.ELEMENT_ARRAY_BUFFER,e,r.STATIC_DRAW)),t}function D5(){return W().getNumber("WEBGL_VERSION")===2?1:4}function J_(r){return va(r,()=>r.createTexture(),"Unable to create WebGLTexture.")}function Q_(r,e){let t=W().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(r<=0||e<=0){let o=`[${r}x${e}]`;throw new Error("Requested texture size "+o+" is invalid.")}if(r>t||e>t){let o=`[${r}x${e}]`,n=`[${t}x${t}]`;throw new Error("Requested texture size "+o+" greater than WebGL maximum on this browser / GPU "+n+".")}}function ek(r){return va(r,()=>r.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Wg(r,e,t,o,n,s,a){let i=r.getAttribLocation(e,t);return i===-1?!1:(Ie(r,()=>r.bindBuffer(r.ARRAY_BUFFER,o)),Ie(r,()=>r.vertexAttribPointer(i,n,r.FLOAT,!1,s,a)),Ie(r,()=>r.enableVertexAttribArray(i)),!0)}function y2(r,e,t){x2(r,t),Ie(r,()=>r.activeTexture(r.TEXTURE0+t)),Ie(r,()=>r.bindTexture(r.TEXTURE_2D,e))}function $5(r,e){x2(r,e),Ie(r,()=>r.activeTexture(r.TEXTURE0+e)),Ie(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function tk(r,e,t){return va(r,()=>r.getUniformLocation(e,t),'uniform "'+t+'" not present in program.')}function rk(r,e,t){return r.getUniformLocation(e,t)}function ok(r,e,t,o){Ie(r,()=>y2(r,e,o)),Ie(r,()=>r.uniform1i(t,o))}function R5(r){Ie(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,null)),Ie(r,()=>r.viewport(0,0,r.canvas.width,r.canvas.height)),Ie(r,()=>r.scissor(0,0,r.canvas.width,r.canvas.height))}function If(r,e,t){Ie(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,t)),Ie(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,e,0))}function jg(r,e){Ie(r,()=>r.bindFramebuffer(r.FRAMEBUFFER,e)),Ie(r,()=>r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,null,0))}function wp(r){let e=r.checkFramebufferStatus(r.FRAMEBUFFER);if(e!==r.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+b2(r,e))}function b2(r,e){switch(e){case r.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case r.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case r.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${e}`}}function va(r,e,t){let o=Ie(r,()=>e());if(o==null)throw new Error(t);return o}function x2(r,e){let t=r.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,o=e+r.TEXTURE0;if(o<r.TEXTURE0||o>t){let n=`[gl.TEXTURE0, gl.TEXTURE${t}]`;throw new Error(`textureUnit must be in ${n}.`)}}function Ca(r,e=2){return y.sizeFromShape(r.slice(0,r.length-e))}function Ia(r){if(r.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[r.length>1?r[r.length-2]:1,r[r.length-1]]}function Nf(r){let e=[1,1,1];return r.length===0||r.length===1&&r[0]===1||(e=[Ca(r),...Ia(r)]),e}function nk(r,e=!1){let t=W().getNumber("WEBGL_MAX_TEXTURE_SIZE");e&&(t=t*2,r=r.map((n,s)=>s>=r.length-2?y.nearestLargerEven(r[s]):r[s]),r.length===1&&(r=[2,r[0]])),r.length!==2&&(r=y.squeezeShape(r).newShape);let o=y.sizeFromShape(r);if(r.length<=1&&o<=t)return[1,o];if(r.length===2&&r[0]<=t&&r[1]<=t)return r;if(r.length===3&&r[0]*r[1]<=t&&r[2]<=t)return[r[0]*r[1],r[2]];if(r.length===3&&r[0]<=t&&r[1]*r[2]<=t)return[r[0],r[1]*r[2]];if(r.length===4&&r[0]*r[1]*r[2]<=t&&r[3]<=t)return[r[0]*r[1]*r[2],r[3]];if(r.length===4&&r[0]<=t&&r[1]*r[2]*r[3]<=t)return[r[0],r[1]*r[2]*r[3]];if(e){let n=Ca(r),s=2,a=2;return r.length&&([s,a]=Ia(r)),o=n*(s/2)*(a/2),y.sizeToSquarishShape(o).map(i=>i*2)}return y.sizeToSquarishShape(o)}function Ug(r){return r%2==0}function hl(r,e){if(r=r.slice(-2),e=e.slice(-2),y.arraysEqual(r,e)||!r.length||!e.length||r[0]===0||r[1]===0||e[0]===0||e[1]===0)return!0;if(r.length!==e.length){let t=r.slice(-1)[0],o=e.slice(-1)[0];if(t===o||Ug(t)&&Ug(o)&&(r[0]===1||e[0]===1))return!0}return r[1]===e[1]&&Ug(r[0])&&Ug(e[0])}var Hg,qg;function sk(r){if(Hg==null){let e=Bo(r);Hg=e.getParameter(e.MAX_TEXTURE_SIZE)}return Hg}function F5(){Hg=null}function O5(){qg=null}function ik(r){if(qg==null){let e=Bo(r);qg=e.getParameter(e.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,qg)}function ak(r){if(r===0)return 0;let e,t=Bo(r);return So(t,"EXT_disjoint_timer_query_webgl2")&&r===2?e=2:So(t,"EXT_disjoint_timer_query")?e=1:e=0,e}function So(r,e){return r.getExtension(e)!=null}function Kg(r){try{if(Bo(r)!=null)return!0}catch(e){return console.log("Error when getting WebGL context: ",e),!1}return!1}function uk(r){if(r===0)return!1;let e=Bo(r);if(r===1){if(!So(e,"OES_texture_float"))return!1}else if(!So(e,"EXT_color_buffer_float"))return!1;return lk(e)}function ck(r){if(r===0)return!1;let e=Bo(r);if(r===1){if(!So(e,"OES_texture_float")||!So(e,"WEBGL_color_buffer_float"))return!1}else{if(So(e,"EXT_color_buffer_float"))return lk(e);let o="EXT_color_buffer_half_float";if(So(e,o)){let n=e.getExtension(o);return P5(e,n)}return!1}return lk(e)}function lk(r){let e=vf(r),t=r.createTexture();r.bindTexture(r.TEXTURE_2D,t);let o=1,n=1;r.texImage2D(r.TEXTURE_2D,0,e.internalFormatFloat,o,n,0,e.textureFormatFloat,e.textureTypeFloat,null);let s=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,s),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,t,0);let a=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(t),r.deleteFramebuffer(s),a}function P5(r,e){let t=vf(r,e),o=r.createTexture();r.bindTexture(r.TEXTURE_2D,o);let n=1,s=1;r.texImage2D(r.TEXTURE_2D,0,t.internalFormatHalfFloat,n,s,0,t.textureFormatFloat,t.textureTypeHalfFloat,null);let a=r.createFramebuffer();r.bindFramebuffer(r.FRAMEBUFFER,a),r.framebufferTexture2D(r.FRAMEBUFFER,r.COLOR_ATTACHMENT0,r.TEXTURE_2D,o,0);let i=r.checkFramebufferStatus(r.FRAMEBUFFER)===r.FRAMEBUFFER_COMPLETE;return r.bindTexture(r.TEXTURE_2D,null),r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteTexture(o),r.deleteFramebuffer(a),i}function pk(r){return r!==2?!1:Bo(r).fenceSync!=null}function _s(r,e){Array.isArray(r)||(r=[r]),r.forEach(t=>{t!=null&&y.assert(t.dtype!=="complex64",()=>`${e} does not support complex64 tensors in the WebGL backend.`)})}var Pe=W();Pe.registerFlag("HAS_WEBGL",()=>Pe.getNumber("WEBGL_VERSION")>0);Pe.registerFlag("WEBGL_VERSION",()=>Kg(2)?2:Kg(1)?1:0);Pe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Pe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Pe.get("WEBGL_VERSION")===2);Pe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Pe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Pe.registerFlag("WEBGL_PACK",()=>Pe.getBool("HAS_WEBGL"));Pe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_CLIP",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Pe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_REDUCE",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_CONV_IM2COL",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>sk(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>ik(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let r=Pe.getNumber("WEBGL_VERSION");return r===0?0:ak(r)});Pe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Pe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!jl.isMobile());Pe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>uk(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Pe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Pe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Pe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>ck(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>pk(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Pe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Pe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${r}.`)});Pe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>jl.isMobile()&&Pe.getBool("IS_CHROME")?1:-1,r=>{if(r<0&&r!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${r}.`)});function Rt(){let r,e,t,o,n,s,a,i,l,u;return W().getNumber("WEBGL_VERSION")===2?(r="#version 300 es",e="in",t="out",o="in",n="texture",s="outputColor",a="out vec4 outputColor;",i=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(r="",e="attribute",t="varying",o="varying",n="texture2D",s="gl_FragColor",a="",i=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:r,attribute:e,varyingVs:t,varyingFs:o,texture2D:n,output:s,defineOutput:a,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function ks(r,e,t="index"){let o=y.computeStrides(e);return o.map((n,s)=>{let a=`int ${r[s]} = ${t} / ${n}`,i=s===o.length-1?`int ${r[s+1]} = ${t} - ${r[s]} * ${n}`:`index -= ${r[s]} * ${n}`;return`${a}; ${i};`}).join("")}function _p(r){let e=y.computeStrides(r).map(t=>t.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${e[0]} + coords.y * ${e[1]} + coords.z;
}
`}var Xg=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`;var mk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=fl.DENSE;let t=dl(e),o=Rt();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${ks(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${o.output} = result;
}
`}};var fk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=fl.DENSE;let t=dl(e),o=Rt();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${ks(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${o.output} = result;
}
`}};var dk=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Fr.DOWNLOAD;let t=Rt();this.outputShape=e,this.userCode=`
${Xg}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}};var hk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Fr.DOWNLOAD;let t=Rt();this.outputShape=e,this.userCode=`
${Xg}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}};var gk=class{constructor(e,t,o=!1){this.variableNames=["A"];let n=Rt(),[s,a]=t;this.outputShape=e;let i="result";o&&(i="floor(result * 255. + 0.5)"),this.userCode=`
${_p(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${a};
int c = imod(flatIndex, ${a});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${i}, 0., 0., 0.);
}
`}};var xk=class{constructor(e,t,o=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let n=Rt(),[s,a]=t;this.outputShape=e;let i="",l="result";o&&(l="floor(result * 255. + 0.5)");for(let u=0;u<=1;u++)for(let c=0;c<=1;c++){let p=u*2+c;i+=`
localCoords = coords;
if(localCoords[2] + ${c} < ${e[2]}) {
localCoords[2] += ${c};
if(localCoords[1] + ${u} < ${e[1]}) {
localCoords[1] += ${u};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${a};
c = imod(flatIndex, ${a});
uv = (vec2(c, r) + halfCR) / vec2(${a}.0, ${s}.0);
values = ${n.texture2D}(A, uv);
if(offset == 0) {
result[${p}] = values[0];
} else if(offset == 1) {
result[${p}] = values[1];
} else if(offset == 2) {
result[${p}] = values[2];
} else {
result[${p}] = values[3];
}
}
}
`}this.userCode=`
${_p(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${i}
${n.output} = ${l};
}
`}};var w2={};Ge(w2,{bindVertexProgramAttributeStreams:()=>Nk,createBufferFromOutputTexture:()=>Ak,createFloat16MatrixTexture:()=>kk,createFloat16PackedMatrixTexture:()=>Ik,createFloat32MatrixTexture:()=>_k,createIndexBuffer:()=>wk,createPackedMatrixTexture:()=>Ck,createUnsignedBytesMatrixTexture:()=>vk,createVertexBuffer:()=>bk,createVertexShader:()=>yk,downloadByteEncodedFloatMatrixFromOutputTexture:()=>Dk,downloadFloat32MatrixFromBuffer:()=>Ek,downloadMatrixFromPackedOutputTexture:()=>Rk,downloadPackedMatrixFromBuffer:()=>$k,getInternalFormatForFloat16MatrixTexture:()=>Zg,getInternalFormatForFloat16PackedMatrixTexture:()=>ex,getInternalFormatForFloat32MatrixTexture:()=>Yg,getInternalFormatForPackedMatrixTexture:()=>Qg,getInternalFormatForUnsignedBytesMatrixTexture:()=>Jg,uploadDenseMatrixToTexture:()=>Sk,uploadPixelDataToTexture:()=>Tk});function yk(r){let e=Rt(),t=`${e.version}
precision highp float;
${e.attribute} vec3 clipSpacePos;
${e.attribute} vec2 uv;
${e.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return H_(r,t)}function bk(r){let e=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return Y_(r,e)}function wk(r){let e=new Uint16Array([0,1,2,2,1,3]);return Z_(r,e)}function Sf(r,e,t,o,n,s){Q_(e,t);let a=J_(r),i=r.TEXTURE_2D;return Ie(r,()=>r.bindTexture(i,a)),Ie(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_S,r.CLAMP_TO_EDGE)),Ie(r,()=>r.texParameteri(i,r.TEXTURE_WRAP_T,r.CLAMP_TO_EDGE)),Ie(r,()=>r.texParameteri(i,r.TEXTURE_MIN_FILTER,r.NEAREST)),Ie(r,()=>r.texParameteri(i,r.TEXTURE_MAG_FILTER,r.NEAREST)),Ie(r,()=>r.texImage2D(i,0,o,e,t,0,n,s,null)),Ie(r,()=>r.bindTexture(r.TEXTURE_2D,null)),a}function Yg(r){return r.internalFormatFloat}function _k(r,e,t,o){let[n,s]=Nu(e,t);return Sf(r,n,s,Yg(o),o.textureFormatFloat,r.FLOAT)}function Zg(r){return r.internalFormatHalfFloat}function kk(r,e,t,o){let[n,s]=Nu(e,t);return Sf(r,n,s,Zg(o),o.textureFormatFloat,o.textureTypeHalfFloat)}function Jg(r){return r.downloadTextureFormat}function vk(r,e,t,o){let[n,s]=Nu(e,t);return Sf(r,n,s,Jg(o),r.RGBA,r.UNSIGNED_BYTE)}function Qg(r){return r.internalFormatPackedFloat}function Ck(r,e,t,o){let[n,s]=si(e,t);return Sf(r,n,s,Qg(o),r.RGBA,r.FLOAT)}function ex(r){return r.internalFormatPackedHalfFloat}function Ik(r,e,t,o){let[n,s]=si(e,t);return Sf(r,n,s,ex(o),r.RGBA,o.textureTypeHalfFloat)}function Nk(r,e,t){let o=0,n=3*4,s=3*4+2*4;return Ie(r,()=>r.bindBuffer(r.ARRAY_BUFFER,t)),Wg(r,e,"clipSpacePos",t,3,s,o)&&Wg(r,e,"uv",t,2,s,n)}function Sk(r,e,t,o,n,s){Ie(r,()=>r.bindTexture(r.TEXTURE_2D,e));let a,i,l;n instanceof Uint8Array?(a=new Uint8Array(t*o*4),i=r.UNSIGNED_BYTE,l=r.RGBA):(a=new Float32Array(t*o*4),i=r.FLOAT,l=s.internalFormatPackedFloat),a.set(n),Ie(r,()=>r.texImage2D(r.TEXTURE_2D,0,l,t,o,0,r.RGBA,i,a)),Ie(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function Tk(r,e,t){Ie(r,()=>r.bindTexture(r.TEXTURE_2D,e)),t.data instanceof Uint8Array?Ie(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,t.width,t.height,0,r.RGBA,r.UNSIGNED_BYTE,t.data)):Ie(r,()=>r.texImage2D(r.TEXTURE_2D,0,r.RGBA,r.RGBA,r.UNSIGNED_BYTE,t)),Ie(r,()=>r.bindTexture(r.TEXTURE_2D,null))}function Ak(r,e,t,o){let n=r.createBuffer();Ie(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,n));let i=4*4*e*t;return Ie(r,()=>r.bufferData(r.PIXEL_PACK_BUFFER,i,r.STREAM_READ)),Ie(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,0)),Ie(r,()=>r.bindBuffer(r.PIXEL_PACK_BUFFER,null)),n}function Ek(r,e,t){let o=r,n=new Float32Array(t);return o.bindBuffer(o.PIXEL_PACK_BUFFER,e),o.getBufferSubData(o.PIXEL_PACK_BUFFER,0,n),o.bindBuffer(o.PIXEL_PACK_BUFFER,null),n}function Dk(r,e,t,o){let[n,s]=Nu(e,t),a=4,i=new Uint8Array(f2(e*t,a));return Ie(r,()=>r.readPixels(0,0,n,s,o.downloadTextureFormat,r.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function $k(r,e,t,o,n,s,a,i){let l=r,u=new Float32Array(d2(s,a));return l.bindBuffer(l.PIXEL_PACK_BUFFER,e),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function Rk(r,e,t){let o=new Float32Array(e*t*4);return Ie(r,()=>r.readPixels(0,0,t,e,r.RGBA,r.FLOAT,o)),o}var tx=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=W().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,j_(t,e)):this.gl=Bo(t);let o="WEBGL_color_buffer_float",n="EXT_color_buffer_half_float";if(W().getNumber("WEBGL_VERSION")===1){let s="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=bp(this.gl,s),So(this.gl,a))this.textureHalfFloatExtension=bp(this.gl,a);else if(W().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(o),So(this.gl,n))this.colorBufferHalfFloatExtension=bp(this.gl,n);else if(W().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(o="EXT_color_buffer_float",So(this.gl,o))this.colorBufferFloatExtension=this.gl.getExtension(o);else if(So(this.gl,n))this.colorBufferHalfFloatExtension=this.gl.getExtension(n);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=bk(this.gl),this.indexBuffer=wk(this.gl),this.framebuffer=ek(this.gl),this.textureConfig=vf(this.gl,this.textureHalfFloatExtension)}get debug(){return W().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),_k(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),kk(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),vk(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Tk(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,o,n){this.throwIfDisposed(),Sk(this.gl,e,t,o,n,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Ik(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),Ck(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(jg(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,o){return this.downloadMatrixDriver(e,()=>Dk(this.gl,t,o,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,o,n,s,a){return $k(this.gl,e,t,o,n,s,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Ek(this.gl,e,t)}createBufferFromTexture(e,t,o){this.bindTextureToFrameBuffer(e);let n=Ak(this.gl,t,o,this.textureConfig);return this.unbindTextureToFrameBuffer(),n}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,o;if(W().getBool("WEBGL_FENCE_API_ENABLED")){let n=e,s=n.fenceSync(n.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),o=()=>{let a=n.clientWaitSync(s,0,0);return a===n.ALREADY_SIGNALED||a===n.CONDITION_SATISFIED},t=s}else W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),o=()=>this.isQueryAvailable(t,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):o=()=>!0;return{query:t,isFencePassed:o}}downloadMatrixFromPackedTexture(e,t,o){return this.downloadMatrixDriver(e,()=>Rk(this.gl,t,o))}createProgram(e){this.throwIfDisposed();let t=this.gl,o=q_(t,e),n=yk(t),s=K_(t);return Ie(t,()=>t.attachShader(s,n)),Ie(t,()=>t.attachShader(s,o)),X_(t,s),this.debug&&Cf(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=Nk(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Cf(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,o=!0){return this.throwIfDisposed(),o?tk(this.gl,e,t):rk(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,o){this.throwIfDisposed(),this.throwIfNoProgram(),ok(this.gl,e,t,o)}setOutputMatrixTexture(e,t,o){this.setOutputMatrixTextureDriver(e,o,t)}setOutputPackedMatrixTexture(e,t,o){this.throwIfDisposed();let[n,s]=si(t,o);this.setOutputMatrixTextureDriver(e,n,s)}setOutputMatrixWriteRegion(e,t,o,n){this.setOutputMatrixWriteRegionDriver(o,e,n,t)}setOutputPackedMatrixWriteRegion(e,t,o,n){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Cf(this.gl,this.program),wp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=bp(this.gl,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let o=this.gl,n=this.getQueryTimerExtensionWebGL2(),s=o.createQuery();return o.beginQuery(n.TIME_ELAPSED_EXT,s),s}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,o=this.getQueryTimerExtensionWebGL2();t.endQuery(o.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await y.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let o=this.gl;return o.getQueryParameter(e,o.QUERY_RESULT)/1e6}else{let o=this.getQueryTimerExtensionWebGL1();return o.getQueryObjectEXT(e,o.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let o=this.gl,n=this.getQueryTimerExtensionWebGL2(),s=o.getQueryParameter(e,o.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}else{let o=this.getQueryTimerExtensionWebGL1(),n=o.getQueryObjectEXT(e,o.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(o.GPU_DISJOINT_EXT)),n&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=M5(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:o}=this.itemsToPoll[t];o()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&y.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),If(this.gl,e,this.framebuffer),this.debug&&wp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(If(this.gl,this.outputTexture,this.framebuffer),this.debug&&wp(this.gl)):jg(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let o=t();return this.unbindTextureToFrameBuffer(),o}setOutputMatrixTextureDriver(e,t,o){this.throwIfDisposed();let n=this.gl;If(n,e,this.framebuffer),this.debug&&wp(n),this.outputTexture=e,Ie(n,()=>n.viewport(0,0,t,o)),Ie(n,()=>n.scissor(0,0,t,o))}setOutputMatrixWriteRegionDriver(e,t,o,n){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,o,n))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function M5(r){let e=0;for(;e<r.length&&r[e]();++e);return e-1}var{getBroadcastDims:_2}=N;function k2(r,e,t,o){let n=[];r.forEach(d=>{let h=y.sizeFromShape(d.shapeInfo.logicalShape);d.shapeInfo.isUniform?n.push(`uniform float ${d.name}${h>1?`[${h}]`:""};`):(n.push(`uniform sampler2D ${d.name};`),n.push(`uniform int offset${d.name};`))});let s=n.join(`
`),a=r.map(d=>L5(d,e,o)).join(`
`),i=e.texShape,l=Rt(),u=V5(l),c,p,m=j5(l);return e.isPacked?(c=z5(e.logicalShape,i),p=W5(l)):(c=B5(e.logicalShape,i),p=G5(l)),o&&(m+=U5),[m,u,p,s,c,a,t].join(`
`)}function kp(r){let e=r.shapeInfo.logicalShape;switch(e.length){case 0:return H5(r);case 1:return q5(r);case 2:return K5(r);case 3:return X5(r);case 4:return Y5(r);case 5:return Z5(r);case 6:return J5(r);default:throw new Error(`${e.length}-D input sampling is not yet supported`)}}function v2(r){switch(r.shapeInfo.logicalShape.length){case 0:return Q5(r);case 1:return eX(r);case 2:return tX(r);case 3:return rX(r);default:return oX(r)}}function L5(r,e,t=!1){let o="";t?o+=v2(r):o+=kp(r);let n=r.shapeInfo.logicalShape,s=e.logicalShape;return n.length<=s.length&&(t?o+=nX(r,e):o+=sX(r,e)),o}function z5(r,e){switch(r.length){case 0:return C2();case 1:return iX(r,e);case 2:return uX(r,e);case 3:return aX(r,e);default:return lX(r,e)}}function B5(r,e){switch(r.length){case 0:return C2();case 1:return cX(r,e);case 2:return hX(r,e);case 3:return pX(r,e);case 4:return mX(r,e);case 5:return fX(r,e);case 6:return dX(r,e);default:throw new Error(`${r.length}-D output sampling is not yet supported`)}}function V5(r){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${r.texture2D}(textureSampler, uv).r;
}
`}function G5(r){return`
void setOutput(float val) {
${r.output} = vec4(val, 0, 0, 0);
}
`}function W5(r){return`
void setOutput(vec4 val) {
${r.output} = val;
}
`}function j5(r){return`${r.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${r.varyingFs} vec2 resultUV;
${r.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${r.defineSpecialNaN}
${r.defineSpecialInf}
${r.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${gX}
${xX}
${yX}
`}var gX=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,xX=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,yX=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,U5=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function C2(){return`
int getOutputCoords() {
return 0;
}
`}function iX(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];return t[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return 2 * (resTexRC.x * ${t[1]} + resTexRC.y);
}
`}function cX(r,e){return e[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${e[1]}.0);
}
`:e[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${e[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
return resTexRC.x * ${e[1]} + resTexRC.y;
}
`}function aX(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],o=Math.ceil(r[2]/2),n=o*Math.ceil(r[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int b = index / ${n};
index -= b * ${n};
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec3(b, r, c);
}
`}function pX(r,e){let t=ks(["r","c","d"],r);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
return ivec3(r, c, d);
}
`}function lX(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)],o=Math.ceil(r[r.length-1]/2),n=o*Math.ceil(r[r.length-2]/2),s=n,a="",i="b, r, c";for(let l=2;l<r.length-1;l++)s*=r[r.length-l-1],a=`
int b${l} = index / ${s};
index -= b${l} * ${s};
`+a,i=`b${l}, `+i;return`
ivec${r.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${a}
int b = index / ${n};
index -= b * ${n};
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec${r.length}(${i});
}
`}function mX(r,e){let t=ks(["r","c","d","d2"],r);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
return ivec4(r, c, d, d2);
}
`}function fX(r,e){let t=ks(["r","c","d","d2","d3"],r);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${e[0]},
${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function dX(r,e){let t=ks(["r","c","d","d2","d3","d4"],r);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
${t}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function uX(r,e){let t=[Math.ceil(e[0]/2),Math.ceil(e[1]/2)];if(y.arraysEqual(r,e))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`;let o=Math.ceil(r[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = 2 * (index / ${o});
int c = imod(index, ${o}) * 2;
return ivec2(r, c);
}
`}function hX(r,e){return y.arraysEqual(r,e)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${e[0]}, ${e[1]}));
}
`:r[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:r[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${e[0]}, ${e[1]}));
int index = resTexRC.x * ${e[1]} + resTexRC.y;
int r = index / ${r[1]};
int c = index - r * ${r[1]};
return ivec2(r, c);
}
`}function Su(r){return`offset${r}`}function Q5(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),o=Rt();return`
vec4 ${t}() {
return ${o.texture2D}(${e}, halfCR);
}
`}function H5(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`float ${t}() {return ${e};}`;let[o,n]=r.shapeInfo.texShape;if(o===1&&n===1)return`
float ${t}() {
return sampleTexture(${e}, halfCR);
}
`;let[s,a]=r.shapeInfo.texShape,i=Su(e);return`
float ${t}() {
vec2 uv = uvFromFlat(${s}, ${a}, ${i});
return sampleTexture(${e}, uv);
}
`}function eX(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1),o=r.shapeInfo.texShape,n=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],s=Rt();return`
vec4 ${t}(int index) {
vec2 uv = packedUVfrom1D(
${n[0]}, ${n[1]}, index);
return ${s.texture2D}(${e}, uv);
}
`}function q5(r){let e=r.name,t="get"+e.charAt(0).toUpperCase()+e.slice(1);if(r.shapeInfo.isUniform)return`
float ${t}(int index) {
${vp(r)}
}
`;let o=r.shapeInfo.texShape,n=o[0],s=o[1];if(s===1&&n===1)return`
float ${t}(int index) {
return sampleTexture(${e}, halfCR);
}
`;let a=Su(e);return s===1?`
float ${t}(int index) {
vec2 uv = vec2(0.5, (float(index + ${a}) + 0.5) / ${n}.0);
return sampleTexture(${e}, uv);
}
`:n===1?`
float ${t}(int index) {
vec2 uv = vec2((float(index + ${a}) + 0.5) / ${s}.0, 0.5);
return sampleTexture(${e}, uv);
}
`:`
float ${t}(int index) {
vec2 uv = uvFromFlat(${n}, ${s}, index + ${a});
return sampleTexture(${e}, uv);
}
`}function tX(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=r.shapeInfo.texShape,s=n[0],a=n[1],i=Rt();if(n!=null&&y.arraysEqual(e,n))return`
vec4 ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${a}.0, ${s}.0);
return ${i.texture2D}(${t}, uv);
}
`;let l=[Math.ceil(n[0]/2),Math.ceil(n[1]/2)],u=Math.ceil(e[1]/2);return`
vec4 ${o}(int row, int col) {
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
return ${i.texture2D}(${t}, uv);
}
`}function K5(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=r.shapeInfo.texShape;if(n!=null&&y.arraysEqual(e,n)){let p=n[0],m=n[1];return`
float ${o}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`}let{newShape:s,keptDims:a}=y.squeezeShape(e),i=s;if(i.length<e.length){let p=Cp(r,i),m=["row","col"];return`
${kp(p)}
float ${o}(int row, int col) {
return ${o}(${Ip(m,a)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${e[1]}, 1)));
${vp(r)}
}
`;let l=n[0],u=n[1],c=Su(t);return u===1?`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${t}, uv);
}
`:l===1?`
float ${o}(int row, int col) {
float index = dot(vec3(row, col, ${c}), vec3(${e[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${o}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${e[1]} + col + ${c};
vec2 uv = uvFromFlat(${l}, ${u}, index);
return sampleTexture(${t}, uv);
}
`}function rX(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=r.shapeInfo.texShape,s=[Math.ceil(n[0]/2),Math.ceil(n[1]/2)];if(e[0]===1){let p=e.slice(1),m=[1,2],f=Cp(r,p),d=["b","row","col"];return`
${v2(f)}
vec4 ${o}(int b, int row, int col) {
return ${o}(${Ip(d,m)});
}
`}let a=s[0],i=s[1],l=Math.ceil(e[2]/2),u=l*Math.ceil(e[1]/2),c=Rt();return`
vec4 ${o}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${a}, ${i}, ${u}, ${l}, b, row, col);
return ${c.texture2D}(${t}, uv);
}
`}function X5(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e[1]*e[2],s=e[2],{newShape:a,keptDims:i}=y.squeezeShape(e),l=a;if(l.length<e.length){let d=Cp(r,l),h=["row","col","depth"];return`
${kp(d)}
float ${o}(int row, int col, int depth) {
return ${o}(${Ip(h,i)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${n}, ${s}, 1)));
${vp(r)}
}
`;let u=r.shapeInfo.texShape,c=u[0],p=u[1],m=r.shapeInfo.flatOffset;if(p===n&&m==null)return`
float ${o}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${c}.0);
return sampleTexture(${t}, uv);
}
`;if(p===s&&m==null)return`
float ${o}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${e[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${c}.0);
return sampleTexture(${t}, uv);
}
`;let f=Su(t);return`
float ${o}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n} + col * ${s} + depth + ${f};
vec2 uv = uvFromFlat(${c}, ${p}, index);
return sampleTexture(${t}, uv);
}
`}function oX(r){let e=r.shapeInfo.logicalShape,t=e.length,o=r.name,n="get"+o.charAt(0).toUpperCase()+o.slice(1),s=r.shapeInfo.texShape,a=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],i=a[0],l=a[1],u=Math.ceil(e[t-1]/2),c=u*Math.ceil(e[t-2]/2),p="int b, int row, int col",m=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let d=2;d<t-1;d++)p=`int b${d}, `+p,c*=e[t-d-1],m=`b${d} * ${c} + `+m;let f=Rt();return`
vec4 ${n}(${p}) {
int index = ${m};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${i});
return ${f.texture2D}(${o}, uv);
}
`}function Y5(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e[3],s=e[2]*n,a=e[1]*s,{newShape:i,keptDims:l}=y.squeezeShape(e);if(i.length<e.length){let d=Cp(r,i),h=["row","col","depth","depth2"];return`
${kp(d)}
float ${o}(int row, int col, int depth, int depth2) {
return ${o}(${Ip(h,l)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${a}, ${s}, ${n}, 1)));
${vp(r)}
}
`;let u=r.shapeInfo.flatOffset,c=r.shapeInfo.texShape,p=c[0],m=c[1];if(m===a&&u==null)return`
float ${o}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${s}, ${n}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`;if(m===n&&u==null)return`
float ${o}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${e[1]*e[2]}, ${e[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${p}.0);
return sampleTexture(${t}, uv);
}
`;let f=Su(t);return`
float ${o}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${s} +
depth * ${n} + depth2;
vec2 uv = uvFromFlat(${p}, ${m}, index + ${f});
return sampleTexture(${t}, uv);
}
`}function Z5(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),n=e[4],s=e[3]*n,a=e[2]*s,i=e[1]*a,{newShape:l,keptDims:u}=y.squeezeShape(e);if(l.length<e.length){let h=Cp(r,l),g=["row","col","depth","depth2","depth3"];return`
${kp(h)}
float ${o}(int row, int col, int depth, int depth2, int depth3) {
return ${o}(${Ip(g,u)});
}
`}if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${i}, ${a}, ${s}, ${n})) +
depth3;
${vp(r)}
}
`;let c=r.shapeInfo.flatOffset,p=r.shapeInfo.texShape,m=p[0],f=p[1];if(f===i&&c==null)return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${a}, ${s}, ${n}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${t}, uv);
}
`;if(f===n&&c==null)return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${e[1]*e[2]*e[3]},
${e[2]*e[3]}, ${e[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${m}.0);
return sampleTexture(${t}, uv);
}
`;let d=Su(t);return`
float ${o}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${a} + depth * ${s} +
depth2 * ${n} + depth3 + ${d};
vec2 uv = uvFromFlat(${m}, ${f}, index);
return sampleTexture(${t}, uv);
}
`}function J5(r){let e=r.shapeInfo.logicalShape,t=r.name,o="get"+t.charAt(0).toUpperCase()+t.slice(1),{newShape:n,keptDims:s}=y.squeezeShape(e);if(n.length<e.length){let g=Cp(r,n),x=["row","col","depth","depth2","depth3","depth4"];return`
${kp(g)}
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${o}(${Ip(x,s)});
}
`}let a=e[5],i=e[4]*a,l=e[3]*i,u=e[2]*l,c=e[1]*u;if(r.shapeInfo.isUniform)return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${u}, ${l}, ${i})) +
dot(
vec2(depth3, depth4),
vec2(${a}, 1)));
${vp(r)}
}
`;let p=r.shapeInfo.flatOffset,m=r.shapeInfo.texShape,f=m[0],d=m[1];if(d===c&&p==null)return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${i}, ${a})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${t}, uv);
}
`;if(d===a&&p==null)return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${e[1]*e[2]*e[3]*e[4]},
${e[2]*e[3]*e[4]},
${e[3]*e[4]},
${e[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${f}.0);
return sampleTexture(${t}, uv);
}
`;let h=Su(t);return`
float ${o}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${u} + depth * ${l} +
depth2 * ${i} + depth3 * ${a} + depth4 + ${h};
vec2 uv = uvFromFlat(${f}, ${d}, index);
return sampleTexture(${t}, uv);
}
`}function vp(r){let e=r.name,t=y.sizeFromShape(r.shapeInfo.logicalShape);return t<2?`return ${e};`:`
for (int i = 0; i < ${t}; i++) {
if (i == index) {
return ${e}[i];
}
}
`}function nX(r,e){let t=r.name,o=t.charAt(0).toUpperCase()+t.slice(1),n="get"+o+"AtOutCoords",s=r.shapeInfo.logicalShape.length,a=e.logicalShape.length,i=_2(r.shapeInfo.logicalShape,e.logicalShape),l=Le(a),u=a-s,c,p=["x","y","z","w","u","v"];s===0?c="":a<2&&i.length>=1?c="coords = 0;":c=i.map(b=>`coords.${p[b+u]} = 0;`).join(`
`);let m="";a<2&&s>0?m="coords":m=r.shapeInfo.logicalShape.map((b,w)=>`coords.${p[w+u]}`).join(", ");let f="return outputValue;",h=y.sizeFromShape(r.shapeInfo.logicalShape)===1,x=y.sizeFromShape(e.logicalShape)===1;if(s===1&&!h&&!x)f=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(h&&!x)a===1?f=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:f=`
return vec4(outputValue.x);
`;else if(i.length){let b=s-2,w=s-1;i.indexOf(b)>-1&&i.indexOf(w)>-1?f="return vec4(outputValue.x);":i.indexOf(b)>-1?f="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(w)>-1&&(f="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${n}() {
${l} coords = getOutputCoords();
${c}
vec4 outputValue = get${o}(${m});
${f}
}
`}function sX(r,e){let t=r.name,o=t.charAt(0).toUpperCase()+t.slice(1),n="get"+o+"AtOutCoords",s=e.texShape,a=r.shapeInfo.texShape,i=r.shapeInfo.logicalShape.length,l=e.logicalShape.length;if(!r.shapeInfo.isUniform&&i===l&&r.shapeInfo.flatOffset==null&&y.arraysEqual(a,s))return`
float ${n}() {
return sampleTexture(${t}, resultUV);
}
`;let u=Le(l),c=_2(r.shapeInfo.logicalShape,e.logicalShape),p=l-i,m,f=["x","y","z","w","u","v"];i===0?m="":l<2&&c.length>=1?m="coords = 0;":m=c.map(h=>`coords.${f[h+p]} = 0;`).join(`
`);let d="";return l<2&&i>0?d="coords":d=r.shapeInfo.logicalShape.map((h,g)=>`coords.${f[g+p]}`).join(", "),`
float ${n}() {
${u} coords = getOutputCoords();
${m}
return get${o}(${d});
}
`}function Le(r){if(r<=1)return"int";if(r===2)return"ivec2";if(r===3)return"ivec3";if(r===4)return"ivec4";if(r===5)return"ivec5";if(r===6)return"ivec6";throw Error(`GPU for rank ${r} is not yet supported`)}function Cp(r,e){let t=JSON.parse(JSON.stringify(r));return t.shapeInfo.logicalShape=e,t}function Ip(r,e){return e.map(t=>r[t]).join(", ")}function I2(r,e,t,o){let n=e.userCode,s=t.map((f,d)=>{let h={logicalShape:f.shape,texShape:f.isUniform?null:f.texData.texShape,isUniform:f.isUniform,isPacked:f.isUniform?!1:f.texData.isPacked,flatOffset:null};return f.texData!=null&&f.texData.slice!=null&&f.texData.slice.flatOffset>0&&(h.flatOffset=f.texData.slice.flatOffset),{name:e.variableNames[d],shapeInfo:h}}),a=s.map(f=>f.shapeInfo),i={logicalShape:o.shape,texShape:o.texData.texShape,isUniform:!1,isPacked:o.texData.isPacked,flatOffset:null},l=k2(s,i,n,e.packedInputs),u=r.createProgram(l),c=null,p=r.getUniformLocation(u,"NAN",!1);W().getNumber("WEBGL_VERSION")===1&&(c=r.getUniformLocation(u,"INFINITY",!1));let m={};for(let f=0;f<e.variableNames.length;f++){let d=e.variableNames[f],h=!1;m[d]=r.getUniformLocation(u,d,h),m[`offset${d}`]=r.getUniformLocation(u,`offset${d}`,h)}return{program:e,source:l,webGLProgram:u,uniformLocations:m,inShapeInfos:a,outShapeInfo:i,infLoc:c,nanLoc:p}}function N2(r,e){if(r.length!==e.length)throw Error(`Binary was compiled with ${r.length} inputs, but was executed with ${e.length} inputs`);r.forEach((t,o)=>{let n=t.logicalShape,s=e[o],a=s.shape;if(!y.arraysEqual(n,a))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${n} and ${a} must match`);if(t.isUniform&&s.isUniform)return;let i=t.texShape,l=s.isUniform?null:s.texData.texShape;if(!y.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function S2(r,e,t,o,n){N2(e.inShapeInfos,t),N2([e.outShapeInfo],[o]);let s=o.texData.texture,a=o.texData.texShape;o.texData.isPacked?r.setOutputPackedMatrixTexture(s,a[0],a[1]):r.setOutputMatrixTexture(s,a[0],a[1]),r.setProgram(e.webGLProgram),W().getNumber("WEBGL_VERSION")===1&&e.infLoc!==null&&r.gl.uniform1f(e.infLoc,Infinity),e.nanLoc!==null&&r.gl.uniform1f(e.nanLoc,NaN),t.forEach((i,l)=>{let u=e.program.variableNames[l],c=e.uniformLocations[u],p=e.uniformLocations[`offset${u}`];if(c!=null){if(i.isUniform){if(y.sizeFromShape(i.shape)<2)r.gl.uniform1f(c,i.uniformValues[0]);else{let m=i.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),r.gl.uniform1fv(c,m)}return}i.texData.slice!=null&&p!=null&&r.gl.uniform1i(p,i.texData.slice.flatOffset),r.setInputMatrixTexture(i.texData.texture,c,l)}}),n!=null&&n(r,e.webGLProgram),r.executeProgram()}function T2(r,e,t){let o="";e.concat(t).forEach(a=>{let i=a.texData!=null&&a.texData.slice!=null&&a.texData.slice.flatOffset>0,l=a.isUniform?"uniform":a.texData.texShape;o+=`${a.shape}_${l}_${i}`});let n=r.userCode,s=r.constructor.name;return s+="_"+o+"_"+n,s}var{addImpl:A2,bincountImpl:rx,bincountReduceImpl:E2,ceilImpl:D2,concatImpl:$2,expImpl:R2,expm1Impl:F2,floorImpl:O2,gatherV2Impl:P2,greaterImpl:M2,lessImpl:L2,linSpaceImpl:z2,logImpl:B2,maxImpl:V2,maximumImpl:G2,minimumImpl:W2,multiplyImpl:j2,negImpl:U2,prodImpl:H2,rangeImpl:q2,rsqrtImpl:K2,simpleAbsImpl:ox,sliceImpl:X2,stridedSliceImpl:Y2,subImpl:Z2,tileImpl:J2,topKImpl:Q2,transposeImpl:Tu,uniqueImpl:eD}=Mg;function Fk(r,e){return["x","y","z","w","u","v"].slice(0,e).map(t=>`${r}.${t}`)}function Wt(r,e){return e===1?[r]:Fk(r,e)}function tD(r,e){if(r===1)return"rc";let t="";for(let o=0;o<r;o++)t+=e[o],o<r-1&&(t+=",");return t}var Ok=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let o=Wt("rc",t),n=Le(t),s=bX(t,e,o),a=wX(t,e[e.length-1],e[e.length-2],o),i=_X(e,o);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${s}) {
setOutput(vec4(0));
} else {
${a}
setOutput(vec4(${i}));
}
}
`}}};function kX(r,e){let t=[];for(let o=0;o<=1;o++)for(let n=0;n<=1;n++){let s=`${o===0?"r":"rp1"}, ${n===0?"c":"cp1"}`;for(let a=2;a<r;a++)s=`${e[e.length-1-a]},`+s;t.push(s)}return t}function bX(r,e,t){if(r===1)return`rc > ${e[0]}`;let o="";for(let n=r-2;n<r;n++)o+=`${t[n]} >= ${e[n]}`,n<r-1&&(o+="||");return o}function wX(r,e,t,o){if(r===1)return"";let n=o.slice(-2);return`
int r = ${n[0]};
int c = ${n[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${e};
bool rEdge = rp1 >= ${t};
`}function _X(r,e){let t=r.length,o=kX(t,e);return t===1?`getA(rc),
rc + 1 >= ${r[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${o[0]}),
cEdge ? 0. : getA(${o[1]}),
rEdge ? 0. : getA(${o[2]}),
rEdge || cEdge ? 0. : getA(${o[3]})`}var Tf=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let o="";for(let n=0;n<4;n++){let s="thisRC = rc;";n%2==1&&(s+="thisRC.z += 1;"),n>1&&(s+="thisRC.y += 1;"),o+=`
${s}
${n>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${n}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${n>0?"}":""}
`}this.userCode=`
${vX(t)}
${_p(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${o}
setOutput(result);
}
`}};function vX(r){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${ks(["r","c","d"],r)}
return ivec3(r, c, d);
}
`}var Pk=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,o){let n=oD(t,o),s=nD(e,n,o);s in this.freeTextures||(this.freeTextures[s]=[]),s in this.usedTextures||(this.usedTextures[s]=[]);let a=rD(e,n,this.gpgpu.gl,this.gpgpu.textureConfig,o);if(this.freeTextures[s].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let l=this.freeTextures[s].shift();return this.usedTextures[s].push(l),l}let i;return n===vr.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):n===vr.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):n===vr.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):n===vr.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):n===vr.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[s].push(i),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),i}releaseTexture(e,t,o,n){if(this.freeTextures==null)return;let s=oD(o,n),a=nD(t,s,n);a in this.freeTextures||(this.freeTextures[a]=[]);let i=rD(t,s,this.gpgpu.gl,this.gpgpu.textureConfig,n),l=W().get("WEBGL_DELETE_TEXTURE_THRESHOLD");l!==-1&&this._numBytesAllocated>l?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let u=this.usedTextures[a],c=u.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");u.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function CX(r,e){let t=r;if(e===t.R32F)return 4;if(e===t.R16F)return 2;if(e===t.RGBA32F)return 16;if(e===r.RGBA)return 16;if(e===t.RGBA16F)return 8;throw new Error(`Unknown internal format ${e}`)}function rD(r,e,t,o,n){let s=IX(e,o),a;if(n){let[l,u]=si(r[0],r[1]);a=l*u}else{let[l,u]=Nu(r[0],r[1]);a=l*u}let i=CX(t,s);return a*i}function IX(r,e){switch(r){case vr.PACKED_2X2_FLOAT32:return Qg(e);case vr.PACKED_2X2_FLOAT16:return ex(e);case vr.UNPACKED_FLOAT32:return Yg(e);case vr.UNPACKED_FLOAT16:return Zg(e);case vr.PACKED_4X1_UNSIGNED_BYTE:return Jg(e);default:throw new Error(`Unknown physical texture type ${r}`)}}function NX(r){return W().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?r?vr.PACKED_2X2_FLOAT32:vr.UNPACKED_FLOAT32:r?vr.PACKED_2X2_FLOAT16:vr.UNPACKED_FLOAT16}function oD(r,e){if(r===Fr.UPLOAD)return vr.PACKED_2X2_FLOAT32;if(r===Fr.RENDER||r==null)return NX(e);if(r===Fr.DOWNLOAD||r===Fr.PIXELS)return vr.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${r}`)}function nD(r,e,t){return`${r[0]}_${r[1]}_${e}_${t}`}var mo=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},xr="if (isnan(x)) return x;",sD="return x;",Mk="return abs(x);";var iD="return (x >= 0.0) ? x : (exp(x) - 1.0);",aD=xr+`
return (x < 0.0) ? 0.0 : x;
`,lD=xr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Af="return x;";var uD="return x;",cD=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,pD=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,mD=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,vs=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}};var Lk=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,o=Wt("rc",t),n=Le(t),s=tD(t,o),a=o.slice(-2),i=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 packedInput = getA(${s});
setOutput(getChannel(packedInput, ${i}));
}
`}};var SX=$r.whereImpl,TX=1e-7,AX=1e-4,nx={};function EX(r){return r in nx||(nx[r]={}),nx[r]}var DX=128,$X=600;function RX(){return W().global.screen==null?1024:W().global.screen.height*W().global.screen.width*window.devicePixelRatio*$X/1024/1024}var Au=class extends $s{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!W().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Bo(W().getNumber("WEBGL_VERSION"));this.binaryCache=EX(W().getNumber("WEBGL_VERSION")),this.gpgpu=new tx(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new Pk(this.gpgpu),this.numMBBeforeWarning=RX(),this.texData=new Va(this,Zo())}nextDataId(){return Au.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,o){if((W().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||W().getBool("DEBUG"))&&this.checkNumericalProblems(e),o==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let n={id:this.nextDataId()};return this.texData.set(n,{shape:t,dtype:o,values:e,usage:Fr.UPLOAD,refCount:1}),n}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,o,n,s){if(W().getBool("DEBUG")&&this.checkNumericalProblems(t),n==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:o,dtype:n,values:t,usage:Fr.UPLOAD,refCount:s})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:o,dtype:n,complexTensorInfos:s,slice:a,shape:i,isPacked:l}=t;if(a!=null){let m;l?m=new vs(i,Af):m=new mo(i,Af);let f=this.runWebGLProgram(m,[{dataId:e,shape:i,dtype:n}],n),d=this.readSync(f.dataId);return this.disposeIntermediateTensorInfo(f),d}if(o!=null)return this.convertAndCacheOnCPU(e);if(n==="string")return o;let u=this.activeTimers!=null,c;u&&(c=y.now());let p;if(n==="complex64"){let m=this.readSync(s.real.dataId),f=this.readSync(s.imag.dataId);p=N.mergeRealAndImagArrays(m,f)}else p=this.getValuesFromTexture(e);return u&&(this.downloadWaitMs+=y.now()-c),this.convertAndCacheOnCPU(e,p)}async read(e){if(this.pendingRead.has(e)){let d=this.pendingRead.get(e);return new Promise(h=>d.push(h))}let t=this.texData.get(e),{values:o,shape:n,slice:s,dtype:a,complexTensorInfos:i,isPacked:l}=t;if(s!=null){let d;l?d=new vs(n,Af):d=new mo(n,Af);let h=this.runWebGLProgram(d,[{dataId:e,shape:n,dtype:a}],a),g=this.read(h.dataId);return this.disposeIntermediateTensorInfo(h),g}if(o!=null)return this.convertAndCacheOnCPU(e);if(!W().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&W().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let u=null,c;if(a!=="complex64"&&W().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let d=this.texData.get(c.dataId);u=this.gpgpu.createBufferFromTexture(d.texture,...dl(n))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let p;if(a==="complex64"){let d=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),h=d[0],g=d[1];p=N.mergeRealAndImagArrays(h,g)}else if(u==null)p=this.getValuesFromTexture(e);else{let d=y.sizeFromShape(n);p=this.gpgpu.downloadFloat32MatrixFromBuffer(u,d)}c!=null&&this.disposeIntermediateTensorInfo(c);let m=this.convertAndCacheOnCPU(e,p),f=this.pendingRead.get(e);return this.pendingRead.delete(e),f.forEach(d=>d(m)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Zo().removeDataId(e,this),this.pendingDeletes--),m}bufferSync(e){let t=this.readSync(e.dataId),o=t;if(e.dtype==="string")try{o=t.map(n=>y.decodeString(n))}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return ve(e.shape,e.dtype,o)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let o=e[t];if(!U_(o))throw W().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${o} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${o} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:o,isPacked:n}=this.texData.get(e),s=y.sizeFromShape(t);if(W().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let m=this.decode(e),f=this.texData.get(m.dataId),d=this.gpgpu.downloadMatrixFromPackedTexture(f.texture,...dl(t)).subarray(0,s);return this.disposeIntermediateTensorInfo(m),d}let a=W().getBool("WEBGL_PACK")&&n===!0,i=a?Nf(t):t,l=a?new hk(i):new dk(i),u=this.runWebGLProgram(l,[{shape:i,dtype:o,dataId:e}],"float32"),c=this.texData.get(u.dataId),p=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,s);return this.disposeIntermediateTensorInfo(u),p}timerAvailable(){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,o=[],n=!1;this.programTimersStack==null?(this.programTimersStack=o,n=!0):this.activeTimers.push(o),this.activeTimers=o,e();let s=y.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=y.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,n&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let l=await Promise.all(s);i.kernelMs=y.sum(l),i.getExtraProfileInfo=()=>l.map((u,c)=>({name:a[c],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:y.now(),endMs:null}}endTimer(e){return W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=y.now(),e)}async getQueryTime(e){if(W().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:o}=this.texData.get(e);return o!=null&&(this.disposeData(o.real.dataId,t),this.disposeData(o.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:o,texShape:n,usage:s,isPacked:a,slice:i}=this.texData.get(e),l=i&&i.origDataId||e,u=this.dataRefCount.get(l);u>1?this.dataRefCount.set(l,u-1):(this.dataRefCount.delete(l),t!=null&&(this.numBytesInGPU-=this.computeBytes(n,o),this.textureManager.releaseTexture(t,n,s,a)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return W().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Zo().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=DX){let o=this.getCPUBackend();return!W().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&o==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),o!=null&&e.every(n=>this.texData.get(n.dataId).texture==null&&y.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){N.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return SX(e.shape,t)}packedUnaryOp(e,t,o){let n=new vs(e.shape,t),s=this.compileAndRun(n,[e],o);return Zo().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=ox(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(W().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Mk,e.dtype);let t=new mo(e.shape,Mk),o=this.compileAndRun(t,[e]);return Zo().makeTensorFromDataId(o.dataId,o.shape,o.dtype)}makeTensorInfo(e,t,o){let n;if(t==="string"&&o!=null&&o.length>0&&y.isString(o[0])){let s=o.map(a=>y.encodeString(a));n=this.write(s,e,t)}else n=this.write(o,e,t);return this.texData.get(n).usage=null,{dataId:n,shape:e,dtype:t}}makeOutput(e,t,o){let{dataId:n}=this.makeTensorInfo(e,t,o);return Zo().makeTensorFromDataId(n,e,t,this)}unpackTensor(e){let t=new Lk(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Ok(e.shape),o=!0;return this.runWebGLProgram(t,[e],e.dtype,null,o)}packedReshape(e,t){let o=[Ca(e.shape),...Ia(e.shape)],n={dtype:e.dtype,shape:o,dataId:e.dataId},s=[Ca(t),...Ia(t)],a=new Tf(s,o),i=!0,l=this.runWebGLProgram(a,[n],e.dtype,null,i);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:o,shape:n,dtype:s}=t,a=Nf(n),i;o?i=new fk(a):i=new mk(a);let l=!0,u=this.runWebGLProgram(i,[{shape:a,dtype:s,dataId:e}],s,null,l);return{dtype:s,shape:n,dataId:u.dataId}}runWebGLProgram(e,t,o,n,s=!1){let a=this.makeTensorInfo(e.outputShape,o),i=this.texData.get(a.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===fl.DENSE){let g=dl(e.outputShape);i.texShape=g.map(x=>x*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),y.sizeFromShape(a.shape)===0)return i.values=y.getTypedArrayFromDType(a.dtype,0),a;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let x=this.texData.get(g.dataId);if(x.texture==null){if(!e.packedInputs&&y.sizeFromShape(g.shape)<=W().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:x.values};e.packedInputs&&(x.isPacked=!0,x.shape=g.shape)}else if(!!x.isPacked!=!!e.packedInputs)g=x.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),x=this.texData.get(g.dataId);else if(x.isPacked&&!hl(x.shape,g.shape)){let b=g,w=g.shape;g.shape=x.shape,g=this.packedReshape(g,w),l.push(g),x=this.texData.get(g.dataId),b.shape=w}return this.uploadToGPU(g.dataId),{shape:g.shape,texData:x,isUniform:!1}});this.uploadToGPU(a.dataId);let c={shape:a.shape,texData:i,isUniform:!1},p=T2(e,u,c),m=this.getAndSaveBinary(p,()=>I2(this.gpgpu,e,u,c)),f=this.activeTimers!=null,d;f&&(d=this.startTimer()),S2(this.gpgpu,m,u,c,n),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),f&&(d=this.endTimer(d),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(d)}));let h=W().get("WEBGL_FLUSH_THRESHOLD");if(h>0){let g=y.now();g-this.lastGlFlushTime>h&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!W().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&s===!1){let g=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),g}return a}compileAndRun(e,t,o,n,s=!1){return o=o||t[0].dtype,this.runWebGLProgram(e,t,o,n,s)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(W().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=V(()=>{if(!W().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=W().getBool("DEBUG");W().set("DEBUG",!1);let t=this.abs(le(1e-8)).dataSync()[0];if(W().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?TX:AX}uploadToGPU(e){let t=this.texData.get(e),{shape:o,dtype:n,values:s,texture:a,usage:i,isPacked:l}=t;if(a!=null)return;let u=this.activeTimers!=null,c;u&&(c=y.now());let p=t.texShape;if(p==null&&(p=nk(o,l),t.texShape=p),s!=null){let m=Nf(o),f,d=p[1],h=p[0],g=s instanceof Uint8Array;l?([d,h]=si(p[0],p[1]),f=new xk(m,[h,d],g)):f=new gk(m,[h,d],g);let x=this.makeTensorInfo([h,d],n);g?this.texData.get(x.dataId).usage=Fr.PIXELS:this.texData.get(x.dataId).usage=Fr.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(x.dataId),d,h,s);let b=!0,w=this.runWebGLProgram(f,[x],n,null,b),_=this.texData.get(w.dataId);t.texture=_.texture,t.texShape=_.texShape,t.isPacked=_.isPacked,t.usage=_.usage,this.disposeIntermediateTensorInfo(x),this.texData.delete(w.dataId),t.values=null,u&&(this.uploadWaitMs+=y.now()-c)}else{let m=this.acquireTexture(p,i,n,l);t.texture=m}}convertAndCacheOnCPU(e,t){let o=this.texData.get(e),{dtype:n}=o;return this.releaseGPUData(e),t!=null&&(o.values=FX(t,n)),o.values}acquireTexture(e,t,o,n){if(this.numBytesInGPU+=this.computeBytes(e,o),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let s=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${s} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,n)}computeBytes(e,t){return e[0]*e[1]*y.bytesPerElement(t)}};Au.nextDataId=0;function FX(r,e){if(e==="float32"||e==="complex64")return r;if(e==="int32"||e==="bool"){let t=e==="int32"?new Int32Array(r.length):new Uint8Array(r.length);for(let o=0;o<t.length;++o)t[o]=Math.round(r[o]);return t}else throw new Error(`Unknown dtype ${e}`)}var zk="3.3.0";function fD(){W().set("WEBGL_FORCE_F16_TEXTURES",!0)}jl.isBrowser()&&Xc("webgl",()=>new Au,2);var kXe={forceHalfFloat:fD};var sx=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`;var cn=class{constructor(e,t,o){this.variableNames=["A","B"],this.outputShape=N.assertAndGetBroadcastShape(t,o),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}};var gl=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;var Cs=class{constructor(e,t,o,n=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=N.assertAndGetBroadcastShape(t,o);let s=this.outputShape.length,a="";if(n)if(s===0||y.sizeFromShape(this.outputShape)===1)a=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(a=`
${Le(s)} coords = getOutputCoords();
`,s===1)a+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let l=Wt("coords",s);a+=`
bool nextRowOutOfBounds =
(${l[s-2]} + 1) >= ${this.outputShape[s-2]};
bool nextColOutOfBounds =
(${l[s-1]} + 1) >= ${this.outputShape[s-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${a}
setOutput(result);
}
`}};function jt(r){let{inputs:e,backend:t}=r,{x:o}=e;return t.incRef(o.dataId),{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}var dD={kernelName:Ko,backendName:"webgl",kernelFunc:jt};function fo(r){let{inputs:e,backend:t}=r,{real:o,imag:n}=e,s=t.makeTensorInfo(o.shape,"complex64"),a=t.texData.get(s.dataId),i=jt({inputs:{x:o},backend:t}),l=jt({inputs:{x:n},backend:t});return a.complexTensorInfos={real:i,imag:l},s}var hD={kernelName:xc,backendName:"webgl",kernelFunc:fo};var Bk="return (a < 0.) ? b * a : a;",Vk=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function OX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{alpha:s}=o,a=t.makeTensorInfo([],"float32",y.createScalarValue(s,"float32")),i=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Cs(Vk,n.shape,a.shape):new cn(Bk,n.shape,a.shape),l=t.runWebGLProgram(i,[n,a],n.dtype);return t.disposeIntermediateTensorInfo(a),l}var gD={kernelName:Ln,backendName:"webgl",kernelFunc:OX};var Gk="return (a < 0.) ? b * a : a;",Wk=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function PX(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e,s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Cs(Wk,o.shape,n.shape):new cn(Gk,o.shape,n.shape);return t.runWebGLProgram(s,[o,n],o.dtype)}var xD={kernelName:Yn,backendName:"webgl",kernelFunc:PX};var ix="if (isnan(x)) return x;",yD=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,bD=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function _e({opSnippet:r,packedOpSnippet:e,cpuKernelImpl:t,dtype:o}){return({inputs:n,backend:s})=>{let{x:a}=n,i=s,l=o||a.dtype;if(i.shouldExecuteOnCPU([a])&&t!=null){let p=i.texData.get(a.dataId),m=t(p.values,l);return i.makeTensorInfo(a.shape,l,m)}let u=W().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&e!=null,c;return u?c=new vs(a.shape,e):c=new mo(a.shape,r),i.runWebGLProgram(c,[a],l)}}function nt({opSnippet:r,packedOpSnippet:e,checkOutOfBounds:t=!1,supportsComplex:o=!1,cpuKernelImpl:n,dtype:s}){return({inputs:a,backend:i})=>{let{a:l,b:u}=a,c=i;if(o&&l.dtype==="complex64"){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,x]=[[d.complexTensorInfos.real,h.complexTensorInfos.real],[d.complexTensorInfos.imag,h.complexTensorInfos.imag]].map(w=>{let[_,k]=w,D={dataId:_.dataId,dtype:_.dtype,shape:l.shape},T={dataId:k.dataId,dtype:k.dtype,shape:u.shape},R=new cn(r,l.shape,u.shape);return c.runWebGLProgram(R,[D,T],ir(_.dtype,k.dtype))}),b=fo({inputs:{real:g,imag:x},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(x),b}let p=s||ir(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&n!=null){let d=c.texData.get(l.dataId),h=c.texData.get(u.dataId),[g,x]=n(l.shape,u.shape,d.values,h.values,p),b=c.makeTensorInfo(x,p),w=c.texData.get(b.dataId);return w.values=g,b}let m=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&e!=null,f;return m?f=new Cs(e,l.shape,u.shape,t):f=new cn(r,l.shape,u.shape),c.runWebGLProgram(f,[l,u],p)}}function xl(r,e=!1){if(r==="linear")return e?uD:sD;if(r==="relu")return e?pD:aD;if(r==="elu")return e?cD:iD;if(r==="relu6")return e?mD:lD;if(r==="prelu")return e?Wk:Gk;if(r==="leakyrelu")return e?Vk:Bk;throw new Error(`Activation ${r} has not been implemented for the WebGL backend.`)}var Ef=class{constructor(e,t,o,n=!1,s=!1,a=!1,i=null,l=!1,u=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=o;let c=n?e[1]:e[2],p=Math.ceil(c/2),m=n?"i * 2, rc.y":"rc.y, i * 2",f=s?"rc.z, i * 2":"i * 2, rc.z",d=n?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],h=s?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],g="",x="";i&&(l?g=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:u?g=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:g=`vec4 activation(vec4 x) {
${i}
}`,x="result = activation(result);");let b=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),l&&this.variableNames.push("preluActivationWeights"),u&&this.variableNames.push("leakyreluAlpha");let w="rc.x",_="rc.x";e[0]<t[0]?w=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(_=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${g}
const float sharedDimension = ${p}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${p}; i++) {
int batchA = ${w};
int batchB = ${_};
vec4 a = getMatrixA(batchA, ${m});
vec4 b = getMatrixB(batchB, ${f});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${d[0]} * ${h[0]});
result += (${d[1]} * ${h[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${b}
${x}
setOutput(result);
}
`}};var jk={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},ax=class{constructor(e,t,o){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=N.assertAndGetBroadcastShape(t,o),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}};var wD="return a * b;";function Uk(r){let{inputs:e,backend:t}=r,{a:o,b:n}=e,s=N.upcastType(o.dtype,n.dtype);if(o.dtype==="complex64"){let i=t.texData.get(o.dataId),l=t.texData.get(n.dataId),u=new ax(jk.REAL,o.shape,n.shape),c=new ax(jk.IMAG,o.shape,n.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:o.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:n.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:n.shape}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=fo({inputs:{real:m,imag:f},backend:t});return t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}if(t.shouldExecuteOnCPU([o,n])){let i=t.texData.get(o.dataId),l=t.texData.get(n.dataId),[u,c]=j2(o.shape,n.shape,i.values,l.values,s),p=t.makeTensorInfo(c,s),m=t.texData.get(p.dataId);return m.values=u,p}let a;return W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?a=new Cs(wD,o.shape,n.shape):a=new cn(wD,o.shape,n.shape),t.runWebGLProgram(a,[o,n],s)}var _D={kernelName:Hn,backendName:"webgl",kernelFunc:Uk};function kD(r,e,t){let o=[Ca(r.shape),...Ia(r.shape)],n={dtype:r.dtype,shape:o,dataId:r.dataId},s=[Ca(e),...Ia(e)],a=new Tf(s,o),i=!0,l=t.runWebGLProgram(a,[n],r.dtype,null,i);return{dataId:l.dataId,shape:e,dtype:l.dtype}}function pe(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{shape:s}=o,a=t,i=y.sizeFromShape(n.shape),l=y.inferFromImplicitShape(s,i),u=y.sizeFromShape(l);y.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${n.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=a.texData.get(n.dataId);return c.isPacked&&!hl(n.shape,l)&&!(c.texture!==null&&hl(c.shape,l))?kD(n,l,a):(a.incRef(n.dataId),{dataId:n.dataId,shape:l,dtype:n.dtype})}var vD={kernelName:Gs,backendName:"webgl",kernelFunc:pe};var lx=class{constructor(e,t){this.variableNames=["x"];let{windowSize:o,batchSize:n,inSize:s,outSize:a}=e;this.outputShape=[n,a];let i=Math.floor(o/4)*4,l=o%4,u="sumValue += dot(values, ones);";if(t!=null){let p=1/t;u=`sumValue += dot(values * ${y.isInt(p)?p.toPrecision(2):p}, ones);`}let c="";s%o>0&&(c=`
if (inIdx < 0 || inIdx >= ${s}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${o};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${u}
}
int inIdx = inOffset + ${i};
if (${l===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${u}
} else if (${l===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${u}
} else if (${l===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${u}
}
setOutput(sumValue);
}
`}};var Hk=class{constructor(e,t){this.variableNames=["x"];let{windowSize:o,batchSize:n,inSize:s,outSize:a}=e;this.outputShape=[n,a];let i="0.0",l="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",l="min"):t==="max"&&(i="-1.0 / 1e-20",l="max");let u=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?u="sumValue":t==="prod"?u="prodValue":t==="all"?u="allValue":t==="any"&&(u="anyValue");let c=Math.floor(o/4)*4,p=o%4,m=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${l}(values, minMaxValue);
}
`,f="vec4";t==="all"?(i="1.0",m=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,f="bvec4"):t==="any"&&(i="0.0",m=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,f="bvec4");let d="";s%o>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${o};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
${f} values = ${f}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${m}
} else if (${p===2}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${m}
} else if (${p===3}) {
${f} values = ${f}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${m}
}
setOutput(${u});
}
`}};function MX(r){let e=[];for(;e.length===0||e[e.length-1].outSize!==1;){let t=e.length?e[e.length-1].outSize:r[1],o=N.computeOptimalWindowSize(t);e.push({inSize:t,windowSize:o,outSize:Math.ceil(t/o)})}return e}function To(r,e,t,o){let n=MX(r.shape),s=r;for(let a=0;a<n.length;a++){let{inSize:i,windowSize:l,outSize:u}=n[a],c,p;t==="mean"?c=a===0?new lx({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},i):new lx({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u}):c=new Hk({windowSize:l,inSize:i,batchSize:r.shape[0],outSize:u},t),p=s,s=o.runWebGLProgram(c,[s],e),p.dataId!==r.dataId&&o.disposeIntermediateTensorInfo(p)}return s}var qk=class{constructor(e,t){this.variableNames=["A"];let o=new Array(e.length);for(let a=0;a<o.length;a++)o[a]=e[t[a]];this.outputShape=o,this.rank=o.length;let n=Le(this.rank),s=LX(t);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function LX(r){let e=r.length;if(e>6)throw Error(`Transpose for rank ${e} is not yet supported`);let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],o=new Array(e);for(let n=0;n<r.length;n++)o[r[n]]=t[n];return o.join()}var Kk=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let o=new Array(e.length);for(let c=0;c<o.length;c++)o[c]=e[t[c]];if(this.outputShape=o,this.rank=o.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let n=Le(this.rank),s=Fk("rc",this.rank),a=new Array(this.rank);for(let c=0;c<t.length;c++)a[t[c]]=s[c];let i=`vec2(${a.slice(-2).join()})`,l=`++${s[this.rank-1]} < ${o[this.rank-1]}`,u=`getChannel(getA(${a.join()}), ${i})`;this.userCode=`
void main() {
${n} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${u};
if(${l}) {
result[1] = ${u};
}
--${s[this.rank-1]};
if(++${s[this.rank-2]} < ${o[this.rank-2]}) {
result[2] = ${u};
if(${l}) {
result[3] = ${u};
}
}
setOutput(result);
}
`}};function yl(r,e,t){let o=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Kk(r.shape,e):new qk(r.shape,e);return t.runWebGLProgram(o,[r],r.dtype)}function CD(r,e,t,o){let n=e,s=r.shape.length,a=y.parseAxisParam(n,r.shape),i=a,l=N.getAxesPermutation(i,s),u=l!=null,c=r;u&&(c=yl(r,l,o),i=N.getInnerMostAxes(i.length,s)),N.assertAxesAreInnerMostDims("sum",i,s);let[p,m]=N.computeOutAndReduceShapes(c.shape,i),f=p;t&&(f=N.expandShapeToKeepDim(p,a));let d=y.sizeFromShape(m),g=y.sizeFromShape(r.shape)/d,x=pe({inputs:{x:c},attrs:{shape:[g,d]},backend:o}),b=Gl(r.dtype),w=To(x,b,"sum",o),_=pe({inputs:{x:w},attrs:{shape:f},backend:o});return o.disposeIntermediateTensorInfo(x),o.disposeIntermediateTensorInfo(w),u&&o.disposeIntermediateTensorInfo(c),_}function Df(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o;return CD(n,s,a,t)}var ID={kernelName:is,backendName:"webgl",kernelFunc:Df};function Mt(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{perm:s}=o,a=t,i=n.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=n.shape[s[c]];let u;if(a.shouldExecuteOnCPU([n])){let p=a.texData.get(n.dataId).values,m=Tu(p,n.shape,n.dtype,s,l);u=a.makeTensorInfo(l,n.dtype);let f=a.texData.get(u.dataId);f.values=m}else u=yl(n,s,a);return u}var ND={kernelName:ps,backendName:"webgl",kernelFunc:Mt};var Xk=1e3;function Eu({a:r,b:e,transposeA:t,transposeB:o,backend:n,bias:s=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:l=null}){let u=r.shape.length,c=e.shape.length,p=t?r.shape[u-2]:r.shape[u-1],m=o?e.shape[c-1]:e.shape[c-2],f=t?r.shape[u-1]:r.shape[u-2],d=o?e.shape[c-2]:e.shape[c-1],h=r.shape.slice(0,-2),g=e.shape.slice(0,-2),x=y.sizeFromShape(h),b=y.sizeFromShape(g),w=x===b||x===1||b===1;y.assert(u>=2&&c>=2&&w,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${h}) and (${g}).`);let k=(x>b?r.shape.slice(0,-2):e.shape.slice(0,-2)).concat([f,d]);y.assert(p===m,()=>`Error in matMul: inner shapes (${p}) and (${m}) of Tensors with shapes ${r.shape} and ${e.shape} and transposeA=${t} and transposeB=${o} must match.`);let D=t?[x,p,f]:[x,f,p],T=o?[b,d,m]:[b,m,d],R=pe({inputs:{x:r},backend:n,attrs:{shape:D}}),O=pe({inputs:{x:e},backend:n,attrs:{shape:T}}),M=[R,O],G=Math.max(x,b),j=t?R.shape[1]:R.shape[2],U=s!=null,H=a!=null,q=l==="leakyrelu",X=l!=null?xl(l,!0):null,oe=U||H||q||X!=null,Y;if((f===1||d===1)&&j>Xk&&oe===!1){let J=R,ie=O;t&&(J=Mt({inputs:{x:R},backend:n,attrs:{perm:[0,2,1]}}),M.push(J)),o&&(ie=Mt({inputs:{x:O},backend:n,attrs:{perm:[0,2,1]}}),M.push(ie));let ue=d!==1,ae=d===1,fe=J;ue&&(fe=pe({inputs:{x:J},backend:n,attrs:{shape:[G,j,1]}}),M.push(fe));let de=d===1?2:1,xe=ie;ae&&(xe=pe({inputs:{x:ie},backend:n,attrs:{shape:[G,1,j]}}),M.push(xe));let we=Uk({inputs:{a:fe,b:xe},backend:n});Y=Df({inputs:{x:we},backend:n,attrs:{axis:de,keepDims:!0}}),M.push(we)}else{let J=ir(r.dtype,e.dtype),ie=new Ef(D,T,[G,f,d],t,o,U,X,H,q),ue=[R,O];if(s!=null&&ue.push(s),H&&ue.push(a),q){let ae=n.makeTensorInfo([],"float32",y.createScalarValue(i,"float32"));ue.push(ae),M.push(ae)}Y=n.runWebGLProgram(ie,ue,J)}let re=pe({inputs:{x:Y},backend:n,attrs:{shape:k}});M.push(Y);for(let J of M)n.disposeIntermediateTensorInfo(J);return re}function zX(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o;return Eu({a:n,b:s,transposeA:l,transposeB:u,backend:t,bias:a,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var SD={kernelName:Ks,backendName:"webgl",kernelFunc:zX};var TD="return abs(x);";function BX(r){let{inputs:e,backend:t}=r,{x:o}=e;if(t.shouldExecuteOnCPU([o])&&o.dtype!=="complex64"){let s=t.texData.get(o.dataId),a=ox(s.values);return t.makeTensorInfo(o.shape,o.dtype,a)}let n;return W().getBool("WEBGL_PACK_UNARY_OPERATIONS")?n=new vs(o.shape,TD):n=new mo(o.shape,TD),t.runWebGLProgram(n,[o],o.dtype)}var AD={kernelName:Os,backendName:"webgl",kernelFunc:BX};var VX=xr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,GX=_e({opSnippet:VX}),ED={kernelName:yi,backendName:"webgl",kernelFunc:GX};var WX=xr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,jX=_e({opSnippet:WX}),DD={kernelName:bi,backendName:"webgl",kernelFunc:jX};var $D="return a + b;",UX=nt({opSnippet:$D,packedOpSnippet:$D,supportsComplex:!0,cpuKernelImpl:A2}),RD={kernelName:Fo,backendName:"webgl",kernelFunc:UX};var Yk=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let o=[];this.variableNames.forEach(s=>{o.push(`float v${s} = get${s}AtOutCoords();`)});let n=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${o.join(`
`)}
float result = ${n};
setOutput(result);
}
`}};var Zk=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((s,a)=>`T${a}`);let o=[];this.variableNames.forEach(s=>{o.push(`vec4 v${s} = get${s}AtOutCoords();`)});let n=this.variableNames.map(s=>`v${s}`).join(" + ");this.userCode=`
void main() {
${o.join(`
`)}
vec4 result = ${n};
setOutput(result);
}
`}};function ux(r){let{inputs:e,backend:t}=r,o=e;if(o.length===1)return jt({inputs:{x:o[0]},backend:t});if(o.length>W().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(o.length/2),u=ux({inputs:o.slice(0,l),backend:t}),c=ux({inputs:o.slice(l),backend:t});return ux({inputs:[u,c],backend:t})}let n=o.map(l=>l.dtype).reduce((l,u)=>ir(l,u)),s=o.map(l=>l.shape),i=W().getBool("WEBGL_PACK")?new Zk(o[0].shape,s):new Yk(o[0].shape,s);return t.runWebGLProgram(i,o,n)}var FD={kernelName:kn,backendName:"webgl",kernelFunc:ux};function HX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=N.getAxesPermutation(u,i),p=n;c!=null&&(p=Mt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=N.getInnerMostAxes(u.length,i)),N.assertAxesAreInnerMostDims("all",u,i);let[m,f]=N.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=pe({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=To(h,h.dtype,"all",t),x;if(a){let b=N.expandShapeToKeepDim(m,l);x=pe({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=pe({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var OD={kernelName:mc,backendName:"webgl",kernelFunc:HX};function qX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=N.getAxesPermutation(u,i),p=n;c!=null&&(p=Mt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=N.getInnerMostAxes(u.length,i)),N.assertAxesAreInnerMostDims("any",u,i);let[m,f]=N.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=pe({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=To(h,h.dtype,"any",t),x;if(a){let b=N.expandShapeToKeepDim(m,l);x=pe({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=pe({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var PD={kernelName:fc,backendName:"webgl",kernelFunc:qX};var Jk=class{constructor(e,t,o){this.variableNames=["A"];let{windowSize:n,batchSize:s,outSize:a}=e;o||this.variableNames.push("bestIndicesA"),this.outputShape=[s,a];let i=t==="max"?">":"<",l=o?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${n}; i++) {
int inIdx = ${l};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}};var Qk=class{constructor(e,t,o,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,y.assert(e.length>2,()=>`Packed arg${o.charAt(0).toUpperCase()+o.slice(1)} supports only inputs with rank above 2.`);let s=e[e.length-1],a=Math.ceil(s/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),n||this.variableNames.push("bestIndicesA");let i=this.outputShape,l=i.length,u=Le(l),c=Wt("coords",l),p,m;if(a===1){m=l+1;let R=Le(m);p=`
${R} sourceLocR = ${R}(${c.join()}, 0);
++${c[l-1]};
${R} sourceLocG = ${R}(${c.join()}, 0);
++${c[l-2]};
${R} sourceLocA = ${R}(${c.join()}, 0);
--${c[l-1]};
${R} sourceLocB = ${R}(${c.join()}, 0);
--${c[l-2]};`}else m=l,p=`
${u} sourceLocR = coords;
++${c[l-1]};
${u} sourceLocG = coords;
++${c[l-2]};
${u} sourceLocA = coords;
--${c[l-1]};
${u} sourceLocB = coords;
--${c[l-2]};`;let f=["x","y","z","w","u","v"].slice(0,m),d="."+f[m-1],h=f.map(R=>"int "+R),g=Wt("sourceLocR",m-1).concat("inIdx.r"),x=Wt("sourceLocG",m-1).concat("inIdx.g"),b=Wt("sourceLocB",m-1).concat("inIdx.b"),w=Wt("sourceLocA",m-1).concat("inIdx.a"),_=o==="max"?"greaterThan":"lessThan",k=n?"":`
inIdx = round(vec4(getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${x.join()}),
getBestIndicesAChannel(${b.join()}),
getBestIndicesAChannel(${w.join()})));`,D=`vec4(
getAChannel(${g.join()}),
hasNextCol ? getAChannel(${x.join()}) : 0.,
hasNextRow ? getAChannel(${b.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${w.join()}) : 0.)`,T=n?"":`
float getBestIndicesAChannel(${h.join()}) {
return getChannel(getBestIndicesA(${f.join()}),
vec2(${f.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${h.join()}) {
return getChannel(getA(${f.join()}),
vec2(${f.slice(-2).join()}));
}
${T}
void main() {
${u} coords = getOutputCoords();
bool hasNextCol = ${c[l-1]} < ${i[l-1]-1};
bool hasNextRow = ${c[l-2]} < ${i[l-2]-1};
${p}
ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},
sourceLocB${d}, sourceLocA${d}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${D};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${k}
vec4 candidate = ${D};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${_}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function MD(r,e,t,o=null){let n=e.shape[0],s=e.shape[1];o!=null&&(n=o.shape[0],s=o.shape[1]);let a=N.computeOptimalWindowSize(s),i={windowSize:a,inSize:s,batchSize:n,outSize:Math.ceil(s/a)},l=new Jk(i,t,o==null),u=[e];o!=null&&u.push(o);let c=r.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=MD(r,e,t,c);return r.disposeIntermediateTensorInfo(c),p}function LD(r,e,t,o=null){let n=o!=null?o.shape:e.shape,s=n[n.length-1],a=N.computeOptimalWindowSize(s),i=new Qk(n,a,t,o==null),l=o==null?[e]:[e,o],u=r.runWebGLProgram(i,l,"int32");if(u.shape.length===e.shape.length){let c=LD(r,e,t,u);return r.disposeIntermediateTensorInfo(u),c}return u}function cx(r,e,t,o){let n=[t];if(N.assertAxesAreInnerMostDims("arg"+o.charAt(0).toUpperCase()+o.slice(1),n,e.shape.length),!W().getBool("WEBGL_PACK_REDUCE")||e.shape.length<=2){let s=[],[a,i]=N.computeOutAndReduceShapes(e.shape,n),l=y.sizeFromShape(i),u=pe({inputs:{x:e},backend:r,attrs:{shape:[-1,l]}});s.push(u);let c=MD(r,u,o);s.push(c);let p=pe({inputs:{x:c},backend:r,attrs:{shape:a}});return s.forEach(m=>r.disposeIntermediateTensorInfo(m)),p}return LD(r,e,o)}function KX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o,a=y.parseAxisParam(s,n.shape),i=N.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=Mt({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=N.getInnerMostAxes(a.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMax",[a[0]],l.shape.length);let c=cx(t,l,a[0],"max");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var zD={kernelName:vn,backendName:"webgl",kernelFunc:KX};function XX(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s}=o,a=y.parseAxisParam(s,n.shape),i=N.getAxesPermutation(a,n.shape.length),l=n,u=[];i!=null&&(l=Mt({inputs:{x:n},backend:t,attrs:{perm:i}}),u.push(l),a=N.getInnerMostAxes(a.length,l.shape.length)),N.assertAxesAreInnerMostDims("argMin",[a[0]],l.shape.length);let c=cx(t,l,a[0],"min");return u.forEach(p=>t.disposeIntermediateTensorInfo(p)),c}var BD={kernelName:Ga,backendName:"webgl",kernelFunc:XX};var YX=xr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,ZX=_e({opSnippet:YX}),VD={kernelName:wi,backendName:"webgl",kernelFunc:ZX};var JX=xr+"return log(x + sqrt(x * x + 1.0));",QX=_e({opSnippet:JX}),GD={kernelName:_i,backendName:"webgl",kernelFunc:QX};var e8=xr+`
return atan(x);
`,t8=_e({opSnippet:e8}),WD={kernelName:ki,backendName:"webgl",kernelFunc:t8};var r8=yD+`
return atan(a, b);
`,o8=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+bD+`
return result;
`,n8=nt({opSnippet:r8,packedOpSnippet:o8}),jD={kernelName:Ci,backendName:"webgl",kernelFunc:n8};var s8=xr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,i8=_e({opSnippet:s8}),UD={kernelName:vi,backendName:"webgl",kernelFunc:i8};var ii=class{constructor(e,t,o,n=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&o)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.top,d=e.padInfo.left;this.outputShape=e.outShape;let h=t==="avg",g=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,x=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(h||(b="-1.0 / 1e-20"),o){let R=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${f}, ${d});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${R} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?s?g:x:`wR * ${m} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let w="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let k=Math.floor(a/4)*4,D=a%4,T=`
if (${h}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${w}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${f}, ${d});
const float initializationValue = ${b};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${b});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${k}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${T}
}
int xC = xCCorner + ${k};
if (${D===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${D===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${T}
} else if (${D===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${T}
}
}
setOutput(${_});
}
`}},Du=class{constructor(e,t,o,n=!1,s=!1){if(this.variableNames=["x"],t==="avg"&&o)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideDepth,l=e.strideHeight,u=e.strideWidth,c=e.dilationDepth,p=e.dilationHeight,m=e.dilationWidth,f=e.effectiveFilterDepth,d=e.effectiveFilterHeight,h=e.effectiveFilterWidth,g=e.padInfo.front,x=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let w=t==="avg",_="0.0";if(w||(_="-1.0 / 1e-20"),o){let M=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${l}, ${u});
const ivec3 pads = ivec3(${g}, ${x}, ${b});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${m}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${M} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${n?s?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${d} * ${h} +
wR * ${h} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let k="max",D=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(D="avgValue / count");let T=Math.floor(a/4)*4,R=a%4,O=`
if (${w}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${k}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${l}, ${u});
const ivec3 pads = ivec3(${g}, ${x}, ${b});
const float initializationValue = ${_};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${_});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${f};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${d};
wR += ${p}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${T}; wC += 4) {
int xC = xCCorner + wC * ${m};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
getValue(batch, xD, xR, xC + 3 * ${m}, ch)
);
${O}
}
int xC = xCCorner + ${T};
if (${R===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${O}
} else if (${R===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
initializationValue,
initializationValue
);
${O}
} else if (${R===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${m}, ch),
getValue(batch, xD, xR, xC + 2 * ${m}, ch),
initializationValue
);
${O}
}
}
setOutput(${D});
}
}
`}};function a8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;_s(n,"avgPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(N.eitherStridesOrDilationsAreOne(a,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=N.computePool2DInfo(n.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return jt({inputs:{x:n},backend:t});let p=new ii(c,"avg",!1);return t.runWebGLProgram(p,[n],"float32")}var HD={kernelName:Cn,backendName:"webgl",kernelFunc:a8};function l8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l,dataFormat:u}=o,c=[1,1,1],p=N.computePool3DInfo(n.shape,s,a,c,i,l,u),m=new Du(p,"avg",!1);return t.runWebGLProgram(m,[n],"float32")}var qD={kernelName:Wa,backendName:"webgl",kernelFunc:l8};var ev=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=l-1-e.padInfo.top,p=u-1-e.padInfo.left,m=1/(t*o);this.userCode=`
const ivec2 pads = ivec2(${c}, ${p});
const float avgMultiplier = float(${m});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${l};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},tv=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,o=e.filterHeight,n=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.effectiveFilterDepth,m=e.effectiveFilterHeight,f=e.effectiveFilterWidth,d=p-1-e.padInfo.front,h=m-1-e.padInfo.top,g=f-1-e.padInfo.left,x=1/(t*o*n);this.userCode=`
const ivec3 pads = ivec3(${d}, ${h}, ${g});
const float avgMultiplier = float(${x});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${p};
wD += ${l}) {
float dyD = float(dyDCorner + wD) / ${s}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${m};
wR += ${u}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${f};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function u8(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=o,p=[1,1,1],m=N.computePool3DInfo(a.shape,i,l,p,u,c),f=new tv(m);return t.runWebGLProgram(f,[n],a.dtype)}var KD={kernelName:hc,backendName:"webgl",kernelFunc:u8};function c8(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s;_s([n,s],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=o,c=N.computePool2DInfo(a.shape,i,l,1,u),p=new ev(c);return t.runWebGLProgram(p,[n],a.dtype)}var XD={kernelName:dc,backendName:"webgl",kernelFunc:c8};function p8(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;return Eu({a:n,b:s,transposeA:a,transposeB:i,backend:t})}var YD={kernelName:In,backendName:"webgl",kernelFunc:p8};var rv=class{constructor(e,t,o,n,s,a){this.outputShape=[],this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,o);let i="0.0";n!=null&&(N.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="1.0";s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${l};
float inv = scale * inversesqrt(variance + float(${a}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}};var ov=class{constructor(e,t,o,n,s,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],N.assertAndGetBroadcastShape(e,t),N.assertAndGetBroadcastShape(e,o);let i="vec4(0.0)";n!=null&&(N.assertAndGetBroadcastShape(e,n),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let l="vec4(1.0)";s!=null&&(N.assertAndGetBroadcastShape(e,s),this.variableNames.push("scale"),l="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${l};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
setOutput((x - mean) * inv + offset);
}
`}};var m8=({inputs:r,backend:e,attrs:t})=>{let{x:o,mean:n,variance:s,offset:a,scale:i}=r;y.assert(n.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),y.assert(a==null||n.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),y.assert(i==null||n.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=t;l==null&&(l=.001);let u=[o,n,s],c=null;a!=null&&(c=a.shape,u.push(a));let p=null;i!=null&&(p=i.shape,u.push(i));let m=W().getBool("WEBGL_PACK_NORMALIZATION")?new ov(o.shape,n.shape,s.shape,c,p,l):new rv(o.shape,n.shape,s.shape,c,p,l);return e.runWebGLProgram(m,u,u[0].dtype)},ZD={kernelName:Pn,backendName:"webgl",kernelFunc:m8};var nv=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=Le(this.rank),o=`uniform int start[${this.rank}];`,n=f8(this.rank),s,a=e.map((i,l)=>`sourceLoc.${sv[l]} = start[${l}] + coords.${sv[l]};`);s=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${a.join(`
`)}
`,this.userCode=`
${o}
void main() {
${s}
setOutput(getSource(${n}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,o)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(o,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},sv=["x","y","z","w","u","v"];function f8(r){if(r===1)return"sourceLoc";if(r<=6)return sv.slice(0,r).map(e=>"sourceLoc."+e).join(",");throw Error(`Slicing for rank ${r} is not yet supported`)}var iv=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=Le(this.rank),o=Wt("coords",this.rank),n=Wt("sourceLoc",this.rank),s=this.rank===1?"sourceLoc":`vec2(${n.slice(-2).join()})`,a=`getChannel(getSource(${n.join()}), ${s})`,i=`
result.x = ${a};
if (++${o[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.y = ${a};
--${n[this.rank-1]};
}
`,l=this.rank===1?"":`
--${o[this.rank-1]};
if (++${o[this.rank-2]} < ${e[this.rank-2]}) {
++${n[this.rank-2]};
result.z = ${a};
if (++${o[this.rank-1]} < ${e[this.rank-1]}) {
++${n[this.rank-1]};
result.w = ${a};
}
}
`,u=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,p)=>`start[${p}]`).join()});`:e.map((c,p)=>`${n[p]} = ${o[p]} + start[${p}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${u}
vec4 result = vec4(0.);
${i}
${l}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,o)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(o,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function d8(r,e,t,o){let n=o.texData.get(r.dataId),s=o.makeTensorInfo(t,r.dtype),a=o.texData.get(s.dataId);Object.assign(a,n),a.refCount=1,a.shape=t,a.dtype=r.dtype;let i=er.computeFlatOffset(e,y.computeStrides(r.shape));n.slice&&(i+=n.slice.flatOffset),a.slice={flatOffset:i,origDataId:n.slice&&n.slice.origDataId||r.dataId};let l=o.dataRefCount.get(a.slice.origDataId)||1;return o.dataRefCount.set(a.slice.origDataId,l+1),s}function Na(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,size:a}=o,[i,l]=er.parseSliceParams(n,s,a);if(er.assertParamsValid(n,i,l),y.sizeFromShape(l)===0)return t.makeTensorInfo(l,n.dtype,[]);if(t.shouldExecuteOnCPU([n])||n.dtype==="string"){let p=t.texData.get(n.dataId),m=X2(p.values,i,l,n.shape,n.dtype);return t.makeTensorInfo(l,n.dtype,m)}let{isPacked:u}=t.texData.get(n.dataId),c=er.isSliceContinous(n.shape,i,l);if(u||!c){let p=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new iv(l):new nv(l),m=p.getCustomSetupFunc(i);return t.runWebGLProgram(p,[n],n.dtype,m)}return t.uploadToGPU(n.dataId),d8(n,i,l,t)}var JD={kernelName:js,backendName:"webgl",kernelFunc:Na};var h8=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,crops:a}=o;y.assert(n.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((b,w)=>b*w),l=N.getReshaped(n.shape,s,i),u=N.getPermuted(l.length,s.length),c=N.getReshapedPermuted(n.shape,s,i),p=N.getSliceBeginCoords(a,s.length),m=N.getSliceSize(c,a,s.length),f=[],d=pe({inputs:{x:n},backend:t,attrs:{shape:l}}),h=Mt({inputs:{x:d},backend:t,attrs:{perm:u}}),g=pe({inputs:{x:h},backend:t,attrs:{shape:c}}),x=Na({inputs:{x:g},backend:t,attrs:{begin:p,size:m}});return f.push(d),f.push(h),f.push(g),f.forEach(b=>t.disposeIntermediateTensorInfo(b)),x},QD={kernelName:ja,backendName:"webgl",kernelFunc:h8};function g8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a}=o,i=t.readSync(n.dataId),l=t.readSync(s.dataId),u=rx(i,l,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,u)}var e$={kernelName:gc,backendName:"webgl",kernelFunc:g8};var x8="return float(a != b);",av=nt({opSnippet:x8,dtype:"bool"}),t$={kernelName:Wi,backendName:"webgl",kernelFunc:av};function Sa(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.texData.get(o.dataId);return jt({inputs:{x:n.complexTensorInfos.real},backend:t})}var r$={kernelName:Oc,backendName:"webgl",kernelFunc:Sa};var y8="return float(int(x));";function o$(r,e){let t=new mo(r.shape,y8),o=e.runWebGLProgram(t,[r],"int32");return{dataId:o.dataId,shape:o.shape,dtype:o.dtype}}function lv(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dtype:s}=o;if(s==="complex64"){if(n.dtype==="complex64")return jt({inputs:{x:n},backend:t});let a=ht(n.shape),i=lv({inputs:{x:n},backend:t,attrs:{dtype:"float32"}}),l=fo({inputs:{real:i,imag:a},backend:t});return a.dispose(),t.disposeIntermediateTensorInfo(i),l}if(n.dtype==="complex64"){let a=Sa({inputs:{input:n},backend:t}),i=lv({inputs:{x:a},backend:t,attrs:{dtype:s}});return t.disposeIntermediateTensorInfo(a),i}if(!y.hasEncodingLoss(n.dtype,s)){let a=jt({inputs:{x:n},backend:t});return{dataId:a.dataId,shape:a.shape,dtype:s}}if(s==="int32")return o$(n,t);if(s==="bool"){let a=t.makeTensorInfo([],"bool",y.getTypedArrayFromDType("bool",1)),l=av({inputs:{a:n,b:a},backend:t});return t.disposeIntermediateTensorInfo(a),l}throw new Error(`Error in Cast: failed to cast ${n.dtype} to ${s}`)}var n$={kernelName:Ho,backendName:"webgl",kernelFunc:lv};var s$="return ceil(x);",b8=_e({opSnippet:s$,packedOpSnippet:s$,cpuKernelImpl:D2}),i$={kernelName:Nn,backendName:"webgl",kernelFunc:b8};var uv=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(o,n)=>{this.minLoc==null&&(this.minLoc=o.getUniformLocationNoThrow(n,"minVal"),this.maxLoc=o.getUniformLocationNoThrow(n,"maxVal")),o.gl.uniform1f(this.minLoc,e),o.gl.uniform1f(this.maxLoc,t)}}};var cv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(o,n)=>{this.minLoc==null&&(this.minLoc=o.getUniformLocationNoThrow(n,"minVal"),this.maxLoc=o.getUniformLocationNoThrow(n,"maxVal")),o.gl.uniform1f(this.minLoc,e),o.gl.uniform1f(this.maxLoc,t)}}};function w8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{clipValueMin:s,clipValueMax:a}=o,i;W().getBool("WEBGL_PACK_CLIP")?i=new cv(n.shape):i=new uv(n.shape);let l=i.getCustomSetupFunc(s,a);return t.runWebGLProgram(i,[n],n.dtype,l)}var a$={kernelName:qo,backendName:"webgl",kernelFunc:w8};var pv=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function l$(r,e){return{dataId:e.dataId,dtype:e.dtype,shape:r.shape}}function _8(r){let{inputs:e,backend:t}=r,{x:o}=e,n=t.texData.get(o.dataId),s=new pv(o.shape),a=[l$(o,n.complexTensorInfos.real),l$(o,n.complexTensorInfos.imag)];return t.runWebGLProgram(s,a,a[0].dtype)}var u$={kernelName:Ua,backendName:"webgl",kernelFunc:_8};var mv=class{constructor(e){this.outputShape=[],this.outputShape=N.computeOutShape(e,1),this.variableNames=e.map((a,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let o=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let i=t[a-1];o.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${i}));`)}let n=t.length,s=t[t.length-1];o.push(`else setOutput(getT${n}(yR, yC-${s}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${o.join(`
`)}
}
`}};var fv=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=N.computeOutShape(e,t);let o=this.outputShape,n=o.length,s=Le(n),a=Wt("coords",n),i=["x","y","z","w","u","v"].slice(0,n);this.variableNames=e.map((h,g)=>`T${g}`);let l=new Array(e.length-1);l[0]=e[0][t];for(let h=1;h<l.length;h++)l[h]=l[h-1]+e[h][t];let u=i[t],c=i.slice(-2),p=i.join(),m=`if (${u} < ${l[0]}) {
return getChannel(
getT0(${p}), vec2(${c.join()}));
}`;for(let h=1;h<l.length;h++){let g=l[h-1];m+=`
if (${u} < ${l[h]} && ${u} >= ${l[h-1]}) {
return getChannel(
getT${h}(${px(i,u,g)}),
vec2(${px(c,u,g)}));
}`}let f=l.length,d=l[l.length-1];m+=`
return getChannel(
getT${f}(${px(i,u,d)}),
vec2(${px(c,u,d)}));`,this.userCode=`
float getValue(${i.map(h=>"int "+h)}) {
${m}
}
void main() {
${s} coords = getOutputCoords();
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
${a[n-1]} = ${a[n-1]} + 1;
if (${a[n-1]} < ${o[n-1]}) {
result.g = getValue(${a});
}
${a[n-2]} = ${a[n-2]} + 1;
if (${a[n-2]} < ${o[n-2]}) {
result.a = getValue(${a});
}
${a[n-1]} = ${a[n-1]} - 1;
if (${a[n-2]} < ${o[n-2]} &&
${a[n-1]} < ${o[n-1]}) {
result.b = getValue(${a});
}
setOutput(result);
}
`}};function px(r,e,t){let o=r.indexOf(e);return r.map((s,a)=>a===o?`${s} - ${t}`:s).join()}function $u(r){let{inputs:e,backend:t}=r,{input:o}=e,n=t.texData.get(o.dataId);return jt({inputs:{x:n.complexTensorInfos.imag},backend:t})}var c$={kernelName:Tc,backendName:"webgl",kernelFunc:$u};function Ru(r,e,t){let o=r[0].dtype;if(o==="complex64"){let u=r.map(d=>Sa({inputs:{input:d},backend:t})),c=r.map(d=>$u({inputs:{input:d},backend:t})),p=Ru(u,e,t),m=Ru(c,e,t),f=fo({inputs:{real:p,imag:m},backend:t});return u.forEach(d=>t.disposeIntermediateTensorInfo(d)),c.forEach(d=>t.disposeIntermediateTensorInfo(d)),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),f}if(o==="string"){let{tensors2D:u,outShape:c}=p$(r,e,t),p=u.map(g=>({vals:t.readSync(g.dataId),shape:g.shape})),m=u[0].shape[0]===1,f=$2(p,c,o,m),d=N.computeOutShape(r.map(g=>g.shape),e),h=t.makeTensorInfo(d,o,f);return u.forEach(g=>t.disposeIntermediateTensorInfo(g)),h}if(r.length>W().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(r.length/2),c=Ru(r.slice(0,u),e,t),p=Ru(r.slice(u),e,t),m=Ru([c,p],e,t);return t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),m}if(W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&r[0].shape.length>1){let u=new fv(r.map(c=>c.shape),e);return t.runWebGLProgram(u,r,o)}let{tensors2D:n,outShape:s}=p$(r,e,t),a=new mv(n.map(u=>u.shape)),i=t.runWebGLProgram(a,n,o);n.forEach(u=>t.disposeIntermediateTensorInfo(u));let l=pe({inputs:{x:i},attrs:{shape:s},backend:t});return t.disposeIntermediateTensorInfo(i),l}function p$(r,e,t){let o=N.computeOutShape(r.map(s=>s.shape),e);return{tensors2D:r.map(s=>pe({inputs:{x:s},attrs:{shape:[-1,y.sizeFromShape(s.shape.slice(e))]},backend:t})),outShape:o}}function dv(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o,s=y.parseAxisParam(n,e[0].shape)[0],a=N.computeOutShape(e.map(u=>u.shape),s);if(y.sizeFromShape(a)===0)return t.makeTensorInfo(a,e[0].dtype,[]);let i=e.filter(u=>y.sizeFromShape(u.shape)>0);if(i.length===1)return jt({inputs:{x:i[0]},backend:t});let l=i.map(u=>u.shape);return N.assertParamsConsistent(l,s),Ru(i,s,t)}var m$={kernelName:Ps,backendName:"webgl",kernelFunc:dv};var $f=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,i=e.padInfo.left,l=e.strideHeight,u=e.strideWidth,c=e.dilationHeight,p=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4,g=e.dataFormat==="channelsLast",x=g?1:2,b=g?2:3,w=g?3:1,_="",k="";o&&(n?_=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${o}
}`:s?_=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${o}
}`:_=`
float activation(float x) {
${o}
}
`,k="result = activation(result);");let D=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${_}
const ivec2 strides = ivec2(${l}, ${u});
const ivec2 pads = ivec2(${a}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${w}];
ivec2 xRCCorner =
ivec2(coords[${x}], coords[${b}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${p};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${g}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${h===1}) {
if (${g}) {
dotProd +=
getX(batch, xR, xC, ${d}) *
getW(wR, wC, ${d}, d2);
} else {
dotProd +=
getX(batch, ${d}, xR, xC) *
getW(wR, wC, ${d}, d2);
}
} else if (${h===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2)
);
if (${g}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${h===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${d}, d2),
getW(wR, wC, ${d} + 1, d2),
getW(wR, wC, ${d} + 2, d2)
);
if (${g}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${d}),
getX(batch, xR, xC, ${d} + 1),
getX(batch, xR, xC, ${d} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${d}, xR, xC),
getX(batch, ${d} + 1, xR, xC),
getX(batch, ${d} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${D}
${k}
setOutput(result);
}
`}},hv=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,o=e.padInfo.top,n=e.padInfo.left,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=e.dilationDepth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterDepth,m=e.filterHeight,f=e.filterWidth,d=Math.floor(e.inChannels/4)*4,h=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${s}, ${a}, ${i});
const ivec3 pads = ivec3(${t}, ${o}, ${n});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${p}; wF++) {
int xF = xFCorner + wF * ${l};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${m}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${d}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${h===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${d}) *
getW(wF, wR, wC, ${d}, d2);
} else if (${h===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${h===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${d}),
getX(batch, xF, xR, xC, ${d} + 1),
getX(batch, xF, xR, xC, ${d} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${d}, d2),
getW(wF, wR, wC, ${d} + 1, d2),
getW(wF, wR, wC, ${d} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}};var gv=class{constructor(e,t,o){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:n,inChannels:s,strideWidth:a,strideHeight:i,padInfo:l,outWidth:u,dilationWidth:c,dilationHeight:p,dataFormat:m}=o,{left:f,top:d}=l,h=s*n,g=Rt(),x=m==="channelsLast",b=x?0:1,w=x?1:2,_="";for(let k=0;k<=1;k++)for(let D=0;D<=1;D++)_+=`
blockIndex = rc.y + ${D};
pos = rc.x + ${k};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${u})) * ${i} - ${d};
d0 = offsetY + ${p} * (pos / ${h});
if(d0 < ${t[b]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${u}.) * ${a}. - ${f}.);
d1 = offsetX + ${c} * (int(mod(float(pos), ${h}.) / ${s}.));
if(d1 < ${t[w]} && d1 >= 0) {
ch = int(mod(float(pos), ${s}.));
if (${x}) {
innerDims = vec2(d1, ch);
result[${k*2+D}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${k*2+D}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${_}
${g.output} = result;
}
`}};function mx({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let l=r.shape,u=o.texData.get(r.dataId),c=t.inChannels,p=l[0]*l[1]*l[2],m=t.outChannels,f=t.dataFormat==="channelsLast",d=!1,h=!1,g,x=[],b=(p===1||m===1)&&c>Xk,w=l[2]%2!=0&&!!u.isPacked;if(b||!W().getBool("WEBGL_LAZILY_UNPACK")||!W().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!w){let _=f?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],k=pe({inputs:{x:r},backend:o,attrs:{shape:[1,_,t.inChannels]}}),D=pe({inputs:{x:e},backend:o,attrs:{shape:[1,t.inChannels,t.outChannels]}}),T=Eu({a:k,b:D,transposeA:d,transposeB:h,backend:o,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a});g=pe({inputs:{x:T},backend:o,attrs:{shape:t.outShape}}),x.push(k),x.push(D),x.push(T)}else{let _=f?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),k={dataId:r.dataId,shape:[1,_,t.inChannels],dtype:r.dtype},D=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,y.assert(hl(u.shape,k.shape),()=>`packed reshape ${u.shape} to ${k.shape} isn't free`);let T=pe({inputs:{x:e},backend:o,attrs:{shape:[1,t.inChannels,t.outChannels]}});x.push(T);let R=Eu({a:k,b:T,backend:o,transposeA:d,transposeB:h,bias:n,activation:i,preluActivationWeights:s,leakyreluAlpha:a}),O=o.texData.get(R.dataId);y.assert(O.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=D,O.shape=t.outShape,g=jt({inputs:{x:R},backend:o}),g.shape=t.outShape,x.push(R)}for(let _ of x)o.disposeIntermediateTensorInfo(_);return g}function fx({x:r,filter:e,convInfo:t,backend:o,bias:n=null,preluActivationWeights:s=null,leakyreluAlpha:a=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:m,dataFormat:f}=t,d=f==="channelsLast",h=l*u*c,g=m*p,x=[h,g],b=!0,w=!1,_=[],k=pe({inputs:{x:r},backend:o,attrs:{shape:r.shape.slice(1)}}),D=pe({inputs:{x:e},backend:o,attrs:{shape:[1,h,y.sizeFromShape(e.shape)/h]}});_.push(k),_.push(D);let T=new gv(x,k.shape,t),R=o.runWebGLProgram(T,[k],"float32"),O=pe({inputs:{x:R},backend:o,attrs:{shape:[1,x[0],x[1]]}});_.push(R),_.push(O);let M=n!=null,G=s!=null,j=i==="leakyrelu",U=i?xl(i,!0):null,H=new Ef(O.shape,D.shape,[1,g,t.outChannels],b,w,M,U,G,j),q=[O,D];if(n&&q.push(n),G&&q.push(s),j){let re=o.makeTensorInfo([],"float32",y.createScalarValue(a,"float32"));q.push(re),_.push(re)}let X=o.runWebGLProgram(H,q,"float32"),oe=d?[1,m,p,t.outChannels]:[1,t.outChannels,m,p],Y=pe({inputs:{x:X},backend:o,attrs:{shape:oe}});_.push(X);for(let re of _)o.disposeIntermediateTensorInfo(re);return Y}function k8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=o,p=N.convertConv2DDataFormat(l),m=N.computeConv2DInfo(n.shape,s.shape,a,u,i,c,!1,p),f;if(m.filterHeight===1&&m.filterWidth===1&&m.dilationHeight===1&&m.dilationWidth===1&&m.strideHeight===1&&m.strideWidth===1&&(m.padInfo.type==="SAME"||m.padInfo.type==="VALID"))f=mx({x:n,filter:s,convInfo:m,backend:t});else if(W().getBool("WEBGL_CONV_IM2COL")&&n.shape[0]===1)f=fx({x:n,filter:s,convInfo:m,backend:t});else{let h=new $f(m);f=t.runWebGLProgram(h,[n,s],"float32")}let d=pe({inputs:{x:f},backend:t,attrs:{shape:m.outShape}});return t.disposeIntermediateTensorInfo(f),d}var f$={kernelName:Sn,backendName:"webgl",kernelFunc:k8};var xv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,o=e.strideWidth,n=e.padInfo.top,s=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${o} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${a}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},yv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,l=o-1-e.padInfo.left,u=a?1:2,c=a?2:3,p=a?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${p}];
ivec2 dyCorner = ivec2(coords[${u}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${o}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${o} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${a}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},bv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,o=e.strideHeight,n=e.strideWidth,s=e.padInfo.front,a=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${s};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${o} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},wv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,o=e.filterHeight,n=e.filterWidth,s=e.strideDepth,a=e.strideHeight,i=e.strideWidth,l=t-1-e.padInfo.front,u=o-1-e.padInfo.top,c=n-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${l}, ${u}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${s}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${o}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${o} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function v8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=o,p=N.convertConv2DDataFormat(l),m=N.computeConv2DInfo(n.shape,c,a,1,i,u,!1,p),f=new xv(m);return t.runWebGLProgram(f,[n,s],"float32")}var d$={kernelName:yc,backendName:"webgl",kernelFunc:v8};function C8(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{inputShape:a,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=o,p=N.convertConv2DDataFormat(u),m=N.computeConv2DInfo(a,s.shape,i,1,l,c,!1,p),f=new yv(m);return t.runWebGLProgram(f,[n,s],"float32")}var h$={kernelName:Tn,backendName:"webgl",kernelFunc:C8};function I8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o,u=N.computeConv3DInfo(n.shape,s.shape,a,l,i),c=new hv(u);return t.runWebGLProgram(c,[n,s],"float32")}var g$={kernelName:Ha,backendName:"webgl",kernelFunc:I8};function N8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,pad:i,filterShape:l}=o,u=N.computeConv3DInfo(n.shape,l,a,1,i),c=new bv(u);return t.runWebGLProgram(c,[n,s],"float32")}var x$={kernelName:bc,backendName:"webgl",kernelFunc:N8};function S8(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{pad:a,strides:i,inputShape:l}=o,u=N.computeConv3DInfo(l,s.shape,i,1,a),c=new wv(u);return t.runWebGLProgram(c,[n,s],"float32")}var y$={kernelName:wc,backendName:"webgl",kernelFunc:S8};var T8=ix+`
return cos(x);
`,A8=_e({opSnippet:T8}),b$={kernelName:An,backendName:"webgl",kernelFunc:A8};var E8=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,D8=_e({opSnippet:E8}),w$={kernelName:Ii,backendName:"webgl",kernelFunc:D8};var _v=class{constructor(e,t,o,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,i,l,u]=e,[c]=t,[p,m]=o;this.outputShape=[c,p,m,u];let f=n==="bilinear"?1:0,[d,h]=[`${i-1}.0`,`${l-1}.0`],[g,x,b]=p>1?[`${(i-1)/(p-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[w,_,k]=m>1?[`${(l-1)/(m-1)}`,"(x2-x1) * width_ratio",`x1*${h} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${h}`];this.userCode=`
const float height_ratio = float(${g});
const float width_ratio = float(${w});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${a}) {
return;
}
float height_scale = ${x};
float width_scale = ${_};
float in_y = ${b};
if( in_y < 0.0 || in_y > ${d} ) {
setOutput(float(${s}));
return;
}
float in_x = ${k};
if( in_x < 0.0 || in_x > ${h} ) {
setOutput(float(${s}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${f} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}};var $8=r=>{let{inputs:e,backend:t,attrs:o}=r,{image:n,boxes:s,boxInd:a}=e,{cropSize:i,method:l,extrapolationValue:u}=o,c=new _v(n.shape,s.shape,i,l,u);return t.runWebGLProgram(c,[n,s,a],"float32")},_$={kernelName:Ni,backendName:"webgl",kernelFunc:$8};var dx=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=e;let n=e.length,s=t?"0.0":`getX(${k$(n,"coords")})`,a=e[e.length-1],i="",l="";t?(i=o?`end != ${a-1}`:"end != 0",l=o?"end + 1":"end - 1"):(i=o?`end + pow2 < ${a}`:"end >= pow2",l=o?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${Le(n)} coords = getOutputCoords();
int end = ${v$(n,"coords")};
float val = ${s};
int pow2 = int(pow(2.0, index));
if (${i}) {
int idx = ${l};
${v$(n,"coords")} = idx;
val += getX(${k$(n,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,o)=>{this.index==null&&(this.index=t.getUniformLocation(o,"index")),t.gl.uniform1f(this.index,e)}}};function k$(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.x, ${e}.y`;if(r===3)return`${e}.x, ${e}.y, ${e}.z`;if(r===4)return`${e}.x, ${e}.y, ${e}.z, ${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function v$(r,e){if(r===1)return`${e}`;if(r===2)return`${e}.y`;if(r===3)return`${e}.z`;if(r===4)return`${e}.w`;throw Error(`Cumulative sum for rank ${r} is not yet supported`)}function R8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o,l=n.shape.length,u=N.getAxesPermutation([s],l),c=n;u!=null&&(c=Mt({inputs:{x:n},backend:t,attrs:{perm:u}}));let p=N.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${n.shape.length-1} but got axis=${s}`);let m=c.shape[p],f=jt({inputs:{x:c},backend:t});for(let d=0;d<=Math.ceil(Math.log2(m))-1;d++){let h=new dx(c.shape,!1,i),g=h.getCustomSetupFunc(d),x=f;f=t.runWebGLProgram(h,[f],f.dtype,g),t.disposeIntermediateTensorInfo(x)}if(a){let d=new dx(c.shape,a,i),h=f;f=t.runWebGLProgram(d,[f],f.dtype),t.disposeIntermediateTensorInfo(h)}if(u!=null){let d=N.getUndoAxesPermutation(u),h=Mt({inputs:{x:f},backend:t,attrs:{perm:d}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(c),h}return f}var C$={kernelName:En,backendName:"webgl",kernelFunc:R8};function F8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,weights:s}=e,{size:a,binaryOutput:i}=o;if(n.shape.length===1){let l=t.readSync(n.dataId),u=t.readSync(s.dataId),c=rx(l,u,s.dtype,s.shape,a);return t.makeTensorInfo([a],s.dtype,c)}else if(n.shape.length===2){let l=t.bufferSync(n),u=t.bufferSync(s),c=E2(l,u,a,i);return t.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${n.shape.length}.`)}var I$={kernelName:_c,backendName:"webgl",kernelFunc:F8};var kv=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=o,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function O8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockSize:s,dataFormat:a}=o;y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=a==="NHWC"?n.shape[1]:n.shape[2],u=a==="NHWC"?n.shape[2]:n.shape[3],c=a==="NHWC"?n.shape[3]:n.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=new kv(d,s,a);return t.runWebGLProgram(h,[n],n.dtype)}var N$={kernelName:Si,backendName:"webgl",kernelFunc:O8};var Rf=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=e.outChannels/e.inChannels,x="",b="";o&&(n?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${o}
}`:s?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${o}
}`:x=`
float activation(float x) {
${o}
}
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${c}, ${p});
const ivec2 pads = ivec2(${l}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${g};
int q = d2 - d1 * ${g};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${d}; wR++) {
int xR = xRCorner + wR * ${m};
if (xR < 0 || xR >= ${a}) {
continue;
}
for (int wC = 0; wC < ${h}; wC++) {
int xC = xCCorner + wC * ${f};
if (xC < 0 || xC >= ${i}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${w}
${b}
setOutput(result);
}
`}};var Ff=class{constructor(e,t=!1,o=null,n=!1,s=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let a=e.inHeight,i=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,c=e.strideHeight,p=e.strideWidth,m=e.dilationHeight,f=e.dilationWidth,d=e.filterHeight,h=e.filterWidth,g=h,x="int xR; int xC; int xCOffset;";for(let k=0;k<d;k++)for(let D=0;D<h;D++)x+=`
vec4 xTexelR${k}C${D*2} = vec4(0.);
vec4 wR${k}C${D} = vec4(0.);
vec4 xR${k}C${D} = vec4(0.);`;for(let k=0;k<d;k++)for(let D=0;D<g;D++){let T=D*2;if(x+=`
xR = xRCorner + ${k*m};
xC = xCCorner + ${T*f};
`,p===1){if(T<h&&(u%2==1?x+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
xTexelR${k}C${T}.zw = vec2(0.);
}
} else {
xTexelR${k}C${T} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${a} && xCOffset >= 0 && xCOffset < ${i}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
previous.zw = vec2(0.);
}
xR${k}C${T} = vec4(previous.zw, xTexelR${k}C${T}.xy);
} else {
xR${k}C${T} = vec4(0, 0, xTexelR${k}C${T}.xy);
}
`:x+=`
if(xR >= 0 && xR < ${a} && xC >= 0 && xC < ${i}) {
xTexelR${k}C${T} = getX(batch, xR, xC, d1);
} else {
xTexelR${k}C${T} = vec4(0.);
}
xR${k}C${T} = xTexelR${k}C${T};
`,T+1<h)){let R=u%2==0?y.nearestLargerEven(f):f;f%2==0&&u%2==1||f%2!=0&&u%2!=1?(x+=`
xCOffset = xC + ${u%2} + ${R};
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T+2} = getX(batch, xR, xCOffset, d1);
}
`,f>1&&(x+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${k}C${T} = vec4(0.);
}
`),x+=`
xR${k}C${T+1} = vec4(
xTexelR${k}C${T}.zw, xTexelR${k}C${T+2}.xy);
`):x+=`
xCOffset = xC + ${R};
if(xR >= 0 && xR < ${a} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T+2} = getX(batch, xR, xCOffset, d1);
}
xR${k}C${T+1} = xTexelR${k}C${T+2};
`}}else T<h&&(x+=`
if(xR >= 0 && xR < ${a}) {
`,u%2==1?(x+=`
xCOffset = xC + 1 - ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${k}C${T} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${i}) {
xTexelR${k}C${T+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${k}C${T+2} = vec4(0.);
}
xR${k}C${T} = vec4(
xTexelR${k}C${T}.zw, xTexelR${k}C${T+2}.zw);
`,T+1<h&&(x+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${k}C${T+1} = vec4(xTexelR${k}C${T+2}.xy, final.xy);
`)):(x+=`
if(xC >= 0 && xC < ${i}) {
xTexelR${k}C${T} = getX(batch, xR, xC, d1);
} else {
xTexelR${k}C${T} = vec4(0.);
}
xCOffset = xC + ${p};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${k}C${T+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${k}C${T+2} = vec4(0.);
}
xR${k}C${T} = vec4(
xTexelR${k}C${T}.xy, xTexelR${k}C${T+2}.xy);
`,T+1<h&&(x+=`
xR${k}C${T+1} = vec4(
xTexelR${k}C${T}.zw, xTexelR${k}C${T+2}.zw);
`)),x+="}");T<h&&(x+=`
vec4 wTexelR${k}C${T} = getW(${k}, ${T}, d1, q);
wR${k}C${T} = vec4(wTexelR${k}C${T}.xz, wTexelR${k}C${T}.xz);
`,T+1<h&&(x+=`
vec4 wTexelR${k}C${T+1} = getW(${k}, ${T+1}, d1, q);
wR${k}C${T+1} =
vec4(wTexelR${k}C${T+1}.xz, wTexelR${k}C${T+1}.xz);`))}for(let k=0;k<d;k++)for(let D=0;D<h;D++)x+=`dotProd += xR${k}C${D} * wR${k}C${D};`;let b="",w="";o&&(n?b=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${o}
}`:s?b=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${o}
}`:b=`vec4 activation(vec4 x) {
${o}
}`,w="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),n&&this.variableNames.push("preluActivationWeights"),s&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${b}
const ivec2 strides = ivec2(${c}, ${p});
const ivec2 pads = ivec2(${l}, ${u});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${x}
vec4 result = dotProd;
${_}
${w}
setOutput(result);
}
`}};function P8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l,dimRoundingMode:u}=o,c=l;c==null&&(c=[1,1]),y.assert(N.eitherStridesOrDilationsAreOne(a,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${c}'`);let p=N.computeConv2DInfo(n.shape,s.shape,a,c,i,u,!0),m;return W().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?m=new Ff(p):m=new Rf(p),t.runWebGLProgram(m,[n,s],"float32")}var S$={kernelName:Dn,backendName:"webgl",kernelFunc:P8};var vv=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,o=e.strideWidth,n=e.padInfo.top,s=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${a} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${n};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${o} - ${s};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},Cv=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,o=e.filterWidth,n=e.strideHeight,s=e.strideWidth,a=t-1-e.padInfo.top,i=o-1-e.padInfo.left,l=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${a}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${o}; wC++) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${o} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${l}; dm++) {
int d2 = d1 * ${l} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function M8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,dy:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=o,p=N.computeConv2DInfo(n.shape,c,a,i,l,u,!0),m=new vv(p);return t.runWebGLProgram(m,[n,s],"float32")}var T$={kernelName:kc,backendName:"webgl",kernelFunc:M8};function L8(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,filter:s}=e,{strides:a,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=o,p=N.computeConv2DInfo(c,s.shape,a,i,l,u,!0),m=new Cv(p);return t.runWebGLProgram(m,[n,s],"float32")}var A$={kernelName:vc,backendName:"webgl",kernelFunc:L8};var Iv=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function z8(r){let{inputs:e,backend:t}=r,{x:o}=e,n=[...o.shape,...o.shape],s=y.sizeFromShape(o.shape),a=pe({inputs:{x:o},backend:t,attrs:{shape:[s]}}),i=new Iv(s),l=t.runWebGLProgram(i,[a],a.dtype),u=pe({inputs:{x:l},backend:t,attrs:{shape:n}});return t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(l),u}var E$={kernelName:Cc,backendName:"webgl",kernelFunc:z8};var Nv=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:o,padInfo:n,strideHeight:s,strideWidth:a,filterHeight:i,filterWidth:l,dilationHeight:u,dilationWidth:c}=e,{top:p,left:m}=n;this.userCode=`
const ivec2 strides = ivec2(${s}, ${a});
const ivec2 pads = ivec2(${p}, ${m});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${u};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${l}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${o}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function B8(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s}=e,{strides:a,pad:i,dilations:l}=o,u=N.computeDilation2DInfo(n.shape,s.shape,a,i,"NHWC",l),c,p=new Nv(u);c=t.runWebGLProgram(p,[n,s],"float32");let m=pe({inputs:{x:c},backend:t,attrs:{shape:u.outShape}});return t.disposeIntermediateTensorInfo(c),m}var D$={kernelName:qa,backendName:"webgl",kernelFunc:B8};var V8="return (x >= 0.0) ? x : (exp(x) - 1.0);",G8=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,W8=_e({opSnippet:V8,packedOpSnippet:G8}),$$={kernelName:Ti,backendName:"webgl",kernelFunc:W8};var j8="return (b >= 1.0) ? a : a * (b + 1.0);",U8=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,H8=r=>{let{inputs:e,backend:t}=r,{dy:o,y:n}=e,s=W().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Cs(U8,o.shape,n.shape):new cn(j8,o.shape,n.shape);return t.runWebGLProgram(s,[o,n],o.dtype)},R$={kernelName:Ic,backendName:"webgl",kernelFunc:H8};var q8=`
return vec4(equal(a, b));
`,K8="return float(a == b);",X8=nt({opSnippet:K8,packedOpSnippet:q8,dtype:"bool"}),F$={kernelName:Ei,backendName:"webgl",kernelFunc:X8};var Y8=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${N.ERF_P};
float a1 = ${N.ERF_A1};
float a2 = ${N.ERF_A2};
float a3 = ${N.ERF_A3};
float a4 = ${N.ERF_A4};
float a5 = ${N.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,Z8=_e({opSnippet:Y8}),O$={kernelName:Ai,backendName:"webgl",kernelFunc:Z8};var P$="return exp(x);",Sv=_e({opSnippet:P$,packedOpSnippet:P$,cpuKernelImpl:R2}),M$={kernelName:Rn,backendName:"webgl",kernelFunc:Sv};function hx(r){let{inputs:e,attrs:t,backend:o}=r,{dim:n}=t,{input:s}=e,a=s.shape.length,i=s.shape.slice(),l=n;return n<0&&(y.assert(-(a+1)<=n,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+n+1),i.splice(l,0,1),pe({inputs:{x:s},backend:o,attrs:{shape:i}})}var L$={kernelName:Ms,backendName:"webgl",kernelFunc:hx};var z$="return exp(x) - 1.0;",J8=_e({opSnippet:z$,packedOpSnippet:z$,cpuKernelImpl:F2}),B$={kernelName:Di,backendName:"webgl",kernelFunc:J8};var gx=class{constructor(e,t,o){this.variableNames=["real","imag"];let n=t[1];this.outputShape=t;let s=o?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=o?`${n}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${s};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${n});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${n}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${a};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function xx(r,e,t){let o=t.texData.get(r.dataId),n=y.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],a=n/s,i=pe({inputs:{x:r},backend:t,attrs:{shape:[a,s]}}),l=i.shape,u=new gx("real",l,e),c=new gx("imag",l,e),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:l},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:l}],m=t.runWebGLProgram(u,p,"float32"),f=t.runWebGLProgram(c,p,"float32"),d=fo({inputs:{real:m,imag:f},backend:t});t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f);let h=pe({inputs:{x:d},backend:t,attrs:{shape:r.shape}});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(d),h}function Q8(r){let{inputs:e,backend:t}=r,{input:o}=e;return xx(o,!1,t)}var V$={kernelName:Nc,backendName:"webgl",kernelFunc:Q8};var Tv=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,o)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(o,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Of(r){let{backend:e,attrs:t}=r,{shape:o,value:n}=t,{dtype:s}=t;if(s=s||y.inferDtype(n),s==="string"){let a=y.getArrayFromDType(s,y.sizeFromShape(o));return a.fill(n),e.makeTensorInfo(o,s,a)}else{let a=new Tv(o,n),i=a.getCustomSetupFunc(n);return e.runWebGLProgram(a,[],s,i)}}var G$={kernelName:Ka,backendName:"webgl",kernelFunc:Of};var Av=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}};var W$={kernelName:$i,backendName:"webgl",kernelFunc:({inputs:r,backend:e})=>{let{image:t}=r,o=e,n=new Av(t.shape);return o.runWebGLProgram(n,[t],t.dtype)}};var j$="return floor(x);",eY=_e({opSnippet:j$,packedOpSnippet:j$,cpuKernelImpl:O2}),U$={kernelName:Fn,backendName:"webgl",kernelFunc:eY};var tY=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,rY=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,oY=nt({opSnippet:tY,packedOpSnippet:rY,dtype:"int32"}),H$={kernelName:On,backendName:"webgl",kernelFunc:oY};var Ev=class{constructor(e){this.variableNames=["A"];let t=Rt(),[o,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${n}.0, ${o}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}};var Dv=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Rt(),[o,n]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${n}.0, ${o}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}};var q$={kernelName:Im,backendName:"webgl",kernelFunc:nY},Np;function nY(r){let{inputs:e,backend:t,attrs:o}=r,{pixels:n}=e,{numChannels:s}=o,a=typeof HTMLVideoElement!="undefined"&&n instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&n instanceof HTMLImageElement,[l,u]=a?[n.videoWidth,n.videoHeight]:[n.width,n.height],c=[u,l],p=[u,l,s];(i||a)&&(Np==null&&(Np=document.createElement("canvas").getContext("2d")),Np.canvas.width=l,Np.canvas.height=u,Np.drawImage(n,0,0,l,u),n=Np.canvas);let m=t.makeTensorInfo(c,"int32");t.texData.get(m.dataId).usage=Fr.PIXELS,t.gpgpu.uploadPixelDataToTexture(t.getTexture(m.dataId),n);let f=W().getBool("WEBGL_PACK")?new Dv(p):new Ev(p),d=t.runWebGLProgram(f,[m],"int32");return t.disposeData(m.dataId),d}function sY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=o,h=N.convertConv2DDataFormat(c),g=N.computeConv2DInfo(n.shape,s.shape,l,p,u,m,!1,h),x,b=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))x=mx({x:n,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else if(W().getBool("WEBGL_CONV_IM2COL")&&n.shape[0]===1)x=fx({x:n,filter:s,convInfo:g,backend:t,bias:a,activation:f,preluActivationWeights:i,leakyreluAlpha:d});else{let _=a!=null,k=i!=null,D=f==="leakyrelu",T=f?xl(f,!1):null,R=new $f(g,_,T,k,D),O=[n,s];if(a&&O.push(a),i&&O.push(i),D){let M=t.makeTensorInfo([],"float32",y.createScalarValue(d,"float32"));O.push(M),b.push(M)}x=t.runWebGLProgram(R,O,"float32")}let w=pe({inputs:{x},backend:t,attrs:{shape:g.outShape}});return b.push(x),b.forEach(_=>t.disposeIntermediateTensorInfo(_)),w}var K$={kernelName:Xs,backendName:"webgl",kernelFunc:sY};function iY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:m,leakyreluAlpha:f}=o,d=[],h=c;h==null&&(h=[1,1]),y.assert(N.eitherStridesOrDilationsAreOne(l,h),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${h}'`);let g=N.computeConv2DInfo(n.shape,s.shape,l,h,u,p,!0),x=W().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,b=m?xl(m,x):null,w=[n,s],_=a!=null,k=i!=null,D=m==="leakyrelu";if(_&&w.push(a),k&&w.push(i),D){let O=t.makeTensorInfo([],"float32",y.createScalarValue(f,"float32"));w.push(O),d.push(O)}let T;x?T=new Ff(g,_,b,k,D):T=new Rf(g,_,b,k,D);let R=t.runWebGLProgram(T,w,"float32");return d.forEach(O=>t.disposeIntermediateTensorInfo(O)),R}var X$={kernelName:Ys,backendName:"webgl",kernelFunc:iY};var $v=class{constructor(e,t,o){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=o;let n=Le(t.length),s=Le(o.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${n} strides = ${n}(${this.strides});
void main() {
${s} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${a};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function aY(r){let{inputs:e,backend:t}=r,{params:o,indices:n}=e,s=n.shape,a=s[s.length-1],[i,l,u,c]=N.prepareAndValidate(o,n),p=pe({inputs:{x:n},backend:t,attrs:{shape:[l,a]}}),m=pe({inputs:{x:o},backend:t,attrs:{shape:[y.sizeFromShape(o.shape)/u,u]}}),f=new $v(a,c,[l,u]),d=t.runWebGLProgram(f,[m,p],m.dtype),h=pe({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(d),h}var Y$={kernelName:Ri,backendName:"webgl",kernelFunc:aY};var Rv=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let o=Le(this.rank),n=lY(e,2);this.userCode=`
void main() {
${o} resRC = getOutputCoords();
setOutput(getA(${n}));
}
`}};function lY(r,e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[];for(let n=0;n<r.length;n++)n===2?o.push("int(getIndices(resRC.x, resRC.z))"):o.push(`${t[n]}`);return o.join()}function uY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,indices:s}=e,{axis:a,batchDims:i}=o,l=y.parseAxisParam(a,n.shape)[0],u=N.segment_util.collectGatherOpShapeInfo(n,s,l,i),c=y.sizeFromShape(s.shape),p=[],m=pe({inputs:{x:n},backend:t,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),f=pe({inputs:{x:s},backend:t,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(m),p.push(f);let d=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(t.shouldExecuteOnCPU([n,s])||n.dtype==="string"){let b=t.bufferSync(f),w=t.bufferSync(m),_=P2(w,b,d);return p.forEach(k=>t.disposeIntermediateTensorInfo(k)),t.makeTensorInfo(u.outputShape,_.dtype,_.values)}let h=new Rv(m.shape,d),g=t.runWebGLProgram(h,[m,f],m.dtype);p.push(g);let x=pe({inputs:{x:g},backend:t,attrs:{shape:u.outputShape}});return p.forEach(b=>t.disposeIntermediateTensorInfo(b)),x}var Z$={kernelName:Ls,backendName:"webgl",kernelFunc:uY};var cY="return float(a > b);",pY=`
return vec4(greaterThan(a, b));
`,mY=nt({opSnippet:cY,packedOpSnippet:pY,cpuKernelImpl:M2,dtype:"bool"}),J$={kernelName:Fi,backendName:"webgl",kernelFunc:mY};var fY="return float(a >= b);",dY=`
return vec4(greaterThanEqual(a, b));
`,hY=nt({opSnippet:fY,packedOpSnippet:dY,dtype:"bool"}),Q$={kernelName:Mn,backendName:"webgl",kernelFunc:hY};function gY(r){let{inputs:e,backend:t}=r,{input:o}=e;return xx(o,!0,t)}var eR={kernelName:Sc,backendName:"webgl",kernelFunc:gY};var xY="return float(!isnan(x) && !isinf(x));",yY=_e({opSnippet:xY,dtype:"bool"}),tR={kernelName:Oi,backendName:"webgl",kernelFunc:yY};var bY="return float(isinf(x));",wY=_e({opSnippet:bY,dtype:"bool"}),rR={kernelName:Pi,backendName:"webgl",kernelFunc:wY};var _Y="return float(isnan(x));",kY=_e({opSnippet:_Y,dtype:"bool"}),oR={kernelName:Mi,backendName:"webgl",kernelFunc:kY};var vY="return float(a < b);",CY=`
return vec4(lessThan(a, b));
`,IY=nt({opSnippet:vY,packedOpSnippet:CY,cpuKernelImpl:L2,dtype:"bool"}),nR={kernelName:Li,backendName:"webgl",kernelFunc:IY};var NY="return float(a <= b);",SY=`
return vec4(lessThanEqual(a, b));
`,TY=nt({opSnippet:NY,packedOpSnippet:SY,dtype:"bool"}),sR={kernelName:zi,backendName:"webgl",kernelFunc:TY};function AY(r){let{backend:e,attrs:t}=r,{start:o,stop:n,num:s}=t,a=z2(o,n,s);return e.makeTensorInfo([a.length],"float32",a)}var iR={kernelName:Ac,backendName:"webgl",kernelFunc:AY};var EY=`if (x < 0.0) return NAN;
return log(x);`,DY=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,$Y=_e({opSnippet:EY,packedOpSnippet:DY,cpuKernelImpl:B2}),aR={kernelName:zn,backendName:"webgl",kernelFunc:$Y};var RY="return log(1.0 + x);",FY=_e({opSnippet:RY}),lR={kernelName:Bi,backendName:"webgl",kernelFunc:FY};var OY="return float(a >= 1.0 && b >= 1.0);",PY=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,MY=nt({opSnippet:OY,packedOpSnippet:PY,dtype:"bool"}),uR={kernelName:Vi,backendName:"webgl",kernelFunc:MY};var LY="return float(!(x >= 1.0));",zY=_e({opSnippet:LY}),cR={kernelName:Ll,backendName:"webgl",kernelFunc:zY};var BY="return float(a >= 1.0 || b >= 1.0);",VY=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,GY=nt({opSnippet:BY,packedOpSnippet:VY,dtype:"bool"}),pR={kernelName:zl,backendName:"webgl",kernelFunc:GY};var Fv=class{constructor(e,t,o,n,s){this.variableNames=["x"],this.outputShape=[];let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${o}) + float(${n}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${a}; j <= ${a}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${l};
setOutput(val);
}
`}};var Ov=class{constructor(e,t,o,n,s){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,i=e[3]-1;this.outputShape=e;let l,u=`float(${o}) + float(${n}) * sum`;s===.5?l=`inversesqrt(${u})`:s===1?l=`1.0/(${u})`:l=`exp(log(${u}) * float(-${s}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${a};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${a}; j <= ${a}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${l};
setOutput(result);
}
`}};var WY=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{depthRadius:s,bias:a,alpha:i,beta:l}=o,u=W().getBool("WEBGL_PACK_NORMALIZATION")?new Ov(n.shape,s,a,i,l):new Fv(n.shape,s,a,i,l);return t.runWebGLProgram(u,[n],n.dtype)},mR={kernelName:Xa,backendName:"webgl",kernelFunc:WY};var Pv=class{constructor(e,t,o,n,s){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=o,this.alpha=n,this.beta=s,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${n}) * norm + float(${o});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${n})
* float(${s})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${s});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}};var jY=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n,y:s,dy:a}=e,{depthRadius:i,bias:l,alpha:u,beta:c}=o,p=new Pv(n.shape,i,l,u,c);return t.runWebGLProgram(p,[n,s,a],n.dtype)},fR={kernelName:Ec,backendName:"webgl",kernelFunc:jY};function dR(r,e,t,o){let n=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/n,i=pe({inputs:{x:r},attrs:{shape:[a,n]},backend:o}),l=To(i,r.dtype,"max",o),u=pe({inputs:{x:l},attrs:{shape:t},backend:o});return o.disposeIntermediateTensorInfo(i),o.disposeIntermediateTensorInfo(l),u}function Mv(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reductionIndices:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=N.getAxesPermutation(u,i),p=c!=null,m=t.shouldExecuteOnCPU([n]),f=n;if(p){if(m){let w=t.texData.get(f.dataId).values,_=new Array(i);for(let T=0;T<_.length;T++)_[T]=n.shape[c[T]];let k=Tu(w,n.shape,n.dtype,c,_);f=t.makeTensorInfo(_,n.dtype);let D=t.texData.get(f.dataId);D.values=k}else f=yl(n,c,t);u=N.getInnerMostAxes(u.length,i)}N.assertAxesAreInnerMostDims("max",u,i);let[d,h]=N.computeOutAndReduceShapes(f.shape,u),g=d;a&&(g=N.expandShapeToKeepDim(d,l));let x;if(m){let w=t.texData.get(f.dataId).values,_=V2(w,y.sizeFromShape(h),g,n.dtype);x=t.makeTensorInfo(g,n.dtype);let k=t.texData.get(x.dataId);k.values=_}else x=dR(f,h,g,t);return p&&t.disposeIntermediateTensorInfo(f),x}var hR={kernelName:Bn,backendName:"webgl",kernelFunc:Mv};var UY=sx+`
return max(a, b);
`,HY=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+gl+`
return result;
`,qY=nt({opSnippet:UY,packedOpSnippet:HY,cpuKernelImpl:G2}),gR={kernelName:Vn,backendName:"webgl",kernelFunc:qY};function KY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e;_s(n,"maxPool");let{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=o,u=1;y.assert(N.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=N.computePool2DInfo(n.shape,s,a,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&y.arraysEqual(c.inShape,c.outShape))return jt({inputs:{x:n},backend:t});let p=new ii(c,"max",!1);return t.runWebGLProgram(p,[n],n.dtype)}var xR={kernelName:Gn,backendName:"webgl",kernelFunc:KY};function XY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{filterSize:s,strides:a,pad:i,dataFormat:l,dimRoundingMode:u}=o,c=[1,1,1],p=N.computePool3DInfo(n.shape,s,a,c,i,u,l),m=new Du(p,"max",!1);return t.runWebGLProgram(m,[n],n.dtype)}var yR={kernelName:Ya,backendName:"webgl",kernelFunc:XY};var Lv=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,o=e.strideWidth,n=e.dilationHeight,s=e.effectiveFilterHeight,a=e.effectiveFilterWidth,i=s-1-e.padInfo.top,l=a-1-e.padInfo.left,u=s*a-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${s};
wR += ${n}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${u} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${a} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},zv=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,o=e.strideHeight,n=e.strideWidth,s=e.dilationDepth,a=e.dilationHeight,i=e.dilationWidth,l=e.effectiveFilterDepth,u=e.effectiveFilterHeight,c=e.effectiveFilterWidth,p=l-1-e.padInfo.front,m=u-1-e.padInfo.top,f=c-1-e.padInfo.left,d=l*u*c-1;this.userCode=`
const ivec3 pads = ivec3(${p}, ${m}, ${f});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${l};
wD += ${s}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${u};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${o}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${d} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${u} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function YY(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s}=e,a=s,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=o,p=[1,1,1],m=N.computePool3DInfo(a.shape,i,l,p,u,c),f=new Du(m,"max",!0),d=t.runWebGLProgram(f,[a],a.dtype),h=new zv(m),g=t.runWebGLProgram(h,[n,d],a.dtype);return t.disposeIntermediateTensorInfo(d),g}var bR={kernelName:$c,backendName:"webgl",kernelFunc:YY};function ZY(r){let{inputs:e,backend:t,attrs:o}=r,{dy:n,input:s,output:a}=e,i=s;_s([s,a],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=o,m=N.computePool2DInfo(i.shape,l,u,1,c,p),f=!0,d=new ii(m,"max",f),h=t.runWebGLProgram(d,[i],i.dtype),g=new Lv(m),x=t.runWebGLProgram(g,[n,h],i.dtype);return t.disposeIntermediateTensorInfo(h),x}var wR={kernelName:Dc,backendName:"webgl",kernelFunc:ZY};function _R(r,e,t,o){let n=new ii(t,"max",!1),s=o.runWebGLProgram(n,[r],"float32");n=new ii(t,"max",!0,!0,e);let a=o.runWebGLProgram(n,[r],"float32");return[s,a]}var kR={kernelName:Rc,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{filterSize:n,strides:s,pad:a,includeBatchInIndex:i}=e,l=t;y.assert(o.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.shape.length}.`);let u=[1,1];y.assert(N.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=N.computePool2DInfo(o.shape,n,s,u,a),[p,m]=_R(o,i,c,l);return[p,m]}};function vR(r,e,t,o){let n=y.sizeFromShape(e),a=y.sizeFromShape(r.shape)/n,i=pe({inputs:{x:r},attrs:{shape:[a,n]},backend:o}),l=To(i,"float32","mean",o),u=pe({inputs:{x:l},attrs:{shape:t},backend:o});return o.disposeIntermediateTensorInfo(i),o.disposeIntermediateTensorInfo(l),u}var CR={kernelName:Wn,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{x:o}=r,{keepDims:n,axis:s}=e,a=t,i=o.shape.length,l=y.parseAxisParam(s,o.shape),u=l,c=N.getAxesPermutation(u,i),p=c!=null,m=a.shouldExecuteOnCPU([o]),f=[],d=o;if(p){if(m){let _=a.texData.get(d.dataId).values,k=new Array(i);for(let R=0;R<k.length;R++)k[R]=o.shape[c[R]];let D=Tu(_,o.shape,o.dtype,c,k);d=a.makeTensorInfo(k,o.dtype);let T=a.texData.get(d.dataId);T.values=D}else d=yl(o,c,a);f.push(d),u=N.getInnerMostAxes(u.length,i)}N.assertAxesAreInnerMostDims("sum",u,i);let[h,g]=N.computeOutAndReduceShapes(d.shape,u),x=h;n&&(x=N.expandShapeToKeepDim(h,l));let b=vR(d,g,x,a);for(let w of f)a.disposeIntermediateTensorInfo(w);return b}};function JY(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=y.parseAxisParam(s,n.shape),u=l,c=N.getAxesPermutation(u,i),p=n;c!=null&&(p=Mt({inputs:{x:n},backend:t,attrs:{perm:c}}),u=N.getInnerMostAxes(u.length,n.shape.length)),N.assertAxesAreInnerMostDims("min",u,i);let[m,f]=N.computeOutAndReduceShapes(p.shape,u),d=y.sizeFromShape(f),h=pe({inputs:{x:p},backend:t,attrs:{shape:[-1,d]}}),g=To(h,h.dtype,"min",t),x;if(a){let b=N.expandShapeToKeepDim(m,l);x=pe({inputs:{x:g},backend:t,attrs:{shape:b}})}else x=pe({inputs:{x:g},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(h),t.disposeIntermediateTensorInfo(g),c!=null&&t.disposeIntermediateTensorInfo(p),x}var IR={kernelName:jn,backendName:"webgl",kernelFunc:JY};var QY=sx+`
return min(a, b);
`,e7=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+gl+`
return result;
`,t7=nt({opSnippet:QY,packedOpSnippet:e7,cpuKernelImpl:W2}),NR={kernelName:Un,backendName:"webgl",kernelFunc:t7};var Bv=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=t.map((c,p)=>c[0]+e[p]+c[1]);let n=e.length,s=Le(n),a=t.map(c=>c[0]).join(","),i=t.map((c,p)=>c[0]+e[p]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n),u=o==="reflect"?0:1;if(n===1){this.userCode=`
int start = ${a};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${u};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${u};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${i});
void main() {
${s} outC = getOutputCoords();
for (int i = 0; i < ${n}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${u};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${u};
}
}
${s} coords = outC - start;
setOutput(getX(${l}));
}
`}};var Vv=class{constructor(e,t,o){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((d,h)=>d[0]+e[h]+d[1]);let n=e.length,s=Le(n),a=t.map(d=>d[0]).join(","),i=t.map((d,h)=>d[0]+e[h]).join(","),l=Wt("rc",n),u=Wt("source",n),c=`${l[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${u.slice(-2).join()})`,m=o==="reflect"?0:1,f="";if(n===1){let d=`
${s} source = rc;
if (source < start) {
source = start * 2 - source - ${m};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${m};
}
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${u.join()}), ${p});
${l[n-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${u.join()}), ${p});
}
`}else{let d=`
${s} source = rc;
${s} lt = ${s}(lessThan(source, start));
${s} gte = ${s}(greaterThanEqual(source, end));
${s} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${m}) +
gte * ((end - 1) * 2 - source + ${m});
source -= start;
`;f=`
${s} rc = outputLoc;
${d}
result[0] = getChannel(getX(${u.join()}), ${p});
${l[n-1]} += 1;
if(${c}) {
${d}
result[1] = getChannel(getX(${u.join()}), ${p});
}
rc = outputLoc;
${l[n-2]} += 1;
if(${l[n-2]} < ${this.outputShape[n-2]}) {
${d}
result[2] = getChannel(getX(${u.join()}), ${p});
${l[n-1]} += 1;
if(${c}) {
${d}
result[3] = getChannel(getX(${u.join()}), ${p});
}
}
`}this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${i});
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${f}
setOutput(result);
}
`}};var r7=({inputs:r,backend:e,attrs:t})=>{let{x:o}=r,{paddings:n,mode:s}=t,a=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Vv(o.shape,n,s):new Bv(o.shape,n,s);return e.runWebGLProgram(a,[o],o.dtype)},SR={kernelName:Za,backendName:"webgl",kernelFunc:r7};var o7=`if (b == 0.0) return NAN;
return mod(a, b);`,n7=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+gl+`
return result;
`,s7=nt({opSnippet:o7,packedOpSnippet:n7}),TR={kernelName:Gi,backendName:"webgl",kernelFunc:s7};var Gv=class{constructor(e,t,o){this.variableNames=["probs"],this.outputShape=[e,o],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,o)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(o,"seed")),t.gl.uniform1f(this.seedLoc,e)}}};var i7=`
if (a == b) {
return 1.0;
};
return a / b;`,a7=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,Wv=nt({opSnippet:i7,packedOpSnippet:a7,checkOutOfBounds:!0}),AR={kernelName:$n,backendName:"webgl",kernelFunc:Wv};var ER="return a - b;",jv=nt({opSnippet:ER,packedOpSnippet:ER,supportsComplex:!0,cpuKernelImpl:Z2}),DR={kernelName:us,backendName:"webgl",kernelFunc:jv};function Uv(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{dim:s}=o,a=y.parseAxisParam([s],n.shape),i=Mv({inputs:{x:n},backend:t,attrs:{reductionIndices:a,keepDims:!1}}),l=N.expandShapeToKeepDim(i.shape,a),u=pe({inputs:{x:i},backend:t,attrs:{shape:l}}),c=jv({inputs:{a:n,b:u},backend:t}),p=Sv({inputs:{x:c},backend:t}),m=Df({inputs:{x:p},backend:t,attrs:{axis:a,keepDims:!1}}),f=pe({inputs:{x:m},backend:t,attrs:{shape:l}}),d=Wv({inputs:{a:p,b:f},backend:t});return t.disposeIntermediateTensorInfo(i),t.disposeIntermediateTensorInfo(u),t.disposeIntermediateTensorInfo(c),t.disposeIntermediateTensorInfo(p),t.disposeIntermediateTensorInfo(m),t.disposeIntermediateTensorInfo(f),d}var $R={kernelName:as,backendName:"webgl",kernelFunc:Uv};function l7(r){let{inputs:e,backend:t,attrs:o}=r,{logits:n}=e,{numSamples:s,seed:a,normalized:i}=o,l=i?n:Uv({inputs:{logits:n},backend:t,attrs:{dim:n.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new Gv(u,c,s),m=p.getCustomSetupFunc(a),f=t.runWebGLProgram(p,[l],"int32",m);return i||t.disposeIntermediateTensorInfo(l),f}var RR={kernelName:Fc,backendName:"webgl",kernelFunc:l7};var FR="return -x;";function u7(r){let{inputs:e,backend:t}=r,{x:o}=e;if(t.shouldExecuteOnCPU([o])){let s=t.texData.get(o.dataId),[a,i]=U2(s.values,o.shape,o.dtype);return t.makeTensorInfo(i,o.dtype,a)}let n;return W().getBool("WEBGL_PACK_UNARY_OPERATIONS")?n=new vs(o.shape,FR):n=new mo(o.shape,FR),t.runWebGLProgram(n,[o],o.dtype)}var OR={kernelName:zs,backendName:"webgl",kernelFunc:u7};var c7=$r.nonMaxSuppressionV3Impl;function p7(r){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l}=o,u=t.readSync(n.dataId),c=t.readSync(s.dataId),{selectedIndices:p}=c7(u,c,a,i,l);return t.makeTensorInfo([p.length],"int32",new Int32Array(p))}var PR={kernelName:ji,backendName:"webgl",kernelFunc:p7};var m7=$r.nonMaxSuppressionV4Impl;function f7(r){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=o,c=t.readSync(n.dataId),p=t.readSync(s.dataId),{selectedIndices:m,validOutputs:f}=m7(c,p,a,i,l,u);return[t.makeTensorInfo([m.length],"int32",new Int32Array(m)),t.makeTensorInfo([],"int32",new Int32Array([f]))]}var MR={kernelName:Ui,backendName:"webgl",kernelFunc:f7};var d7=$r.nonMaxSuppressionV5Impl;function h7(r){N.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:e,backend:t,attrs:o}=r,{boxes:n,scores:s}=e,{maxOutputSize:a,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=o,c=t.readSync(n.dataId),p=t.readSync(s.dataId),m=a,f=i,d=l,h=u,{selectedIndices:g,selectedScores:x}=d7(c,p,m,f,d,h);return[t.makeTensorInfo([g.length],"int32",new Int32Array(g)),t.makeTensorInfo([x.length],"float32",new Float32Array(x))]}var LR={kernelName:Hi,backendName:"webgl",kernelFunc:h7};var Hv=class{constructor(e,t,o,n){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${n}), float(${o}),
float(index == coords.y)));
}
`}};var g7=r=>{let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o,l=y.sizeFromShape(n.shape),u=new Hv(l,s,a,i),c=pe({inputs:{x:n},backend:t,attrs:{shape:[l]}}),p=t.runWebGLProgram(u,[c],n.dtype);t.disposeIntermediateTensorInfo(c);let m=[...n.shape,s],f=pe({inputs:{x:p},backend:t,attrs:{shape:m}});return t.disposeIntermediateTensorInfo(p),f},zR={kernelName:qn,backendName:"webgl",kernelFunc:g7};function Pf(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="complex64"){let n=Sa({inputs:{input:o},backend:t}),s=Pf({inputs:{x:n},backend:t}),a=$u({inputs:{input:o},backend:t}),i=Pf({inputs:{x:a},backend:t}),l=fo({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Of({attrs:{shape:o.shape,dtype:o.dtype,value:o.dtype==="string"?"":0},backend:t})}var BR={kernelName:qs,backendName:"webgl",kernelFunc:Pf};function VR(r){let{inputs:e,backend:t}=r,{x:o}=e;if(o.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(o.dtype==="complex64"){let n=Sa({inputs:{input:o},backend:t}),s=VR({inputs:{x:n},backend:t}),a=$u({inputs:{input:o},backend:t}),i=Pf({inputs:{x:a},backend:t}),l=fo({inputs:{real:s,imag:i},backend:t});return t.disposeIntermediateTensorInfo(n),t.disposeIntermediateTensorInfo(s),t.disposeIntermediateTensorInfo(a),t.disposeIntermediateTensorInfo(i),l}else return Of({attrs:{shape:o.shape,dtype:o.dtype,value:1},backend:t})}var GR={kernelName:Bs,backendName:"webgl",kernelFunc:VR};function x7(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return hx({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=hx({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(p),p}),u=dv({inputs:l,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeIntermediateTensorInfo(c)),u}var WR={kernelName:Vs,backendName:"webgl",kernelFunc:x7};var qv=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let n=e.length,s=Le(n),a=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),l=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,n);if(n===1){this.userCode=`
int start = ${a};
int end = ${i};
uniform float value;
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${s} start = ${s}(${a});
${s} end = ${s}(${i});
uniform float value;
void main() {
${s} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${s} coords = outC - start;
setOutput(getX(${l}));
}
}
`}getCustomSetupFunc(e){return(t,o)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(o,"value")),t.gl.uniform1f(this.valueLoc,e)}}};var Kv=class{constructor(e,t,o){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,g)=>h[0]+e[g]+h[1]);let n=e.length,s=Le(n),a=t.map(h=>h[0]).join(","),i=t.map((h,g)=>h[0]+e[g]).join(","),l=Wt("rc",n),u=Wt("source",n),c=`${l[n-1]} < ${this.outputShape[n-1]}`,p=n===1?"source":`vec2(${u.slice(-2).join()})`,m=[`${s} rc = outputLoc;`,`${l[n-1]} += 1;
if(${c}) {
`,n===1?"":`}
rc = outputLoc;
${l[n-2]} += 1;
if(${l[n-2]} < ${this.outputShape[n-2]}) {`,n===1?"":` ${l[n-1]} += 1;
if(${c}) {`],f=n===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",d="";for(let h=0,g=n===1?2:4;h<g;h++)d+=`
${m[h]}
if (${f}) {
result[${h}] = float(value);
} else {
${s} source = rc - start;
result[${h}] = getChannel(getX(${u.join()}), ${p});
}
`;d+=n===1?"} ":"}}",this.userCode=`
const ${s} start = ${s}(${a});
const ${s} end = ${s}(${i});
uniform float value;
void main() {
${s} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}getCustomSetupFunc(e){return(t,o)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(o,"value")),t.gl.uniform1f(this.valueLoc,e)}}};var Xv=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{paddings:s,constantValue:a}=o,i=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Kv(n.shape,s,a):new qv(n.shape,s,a),l=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[n],n.dtype,l)},jR={kernelName:Kn,backendName:"webgl",kernelFunc:Xv};var y7=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,b7=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+gl+`
return result;
`,w7=nt({opSnippet:y7,packedOpSnippet:b7}),UR={kernelName:Xn,backendName:"webgl",kernelFunc:w7};function _7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,keepDims:a}=o,i=n.shape.length,l=[],u=y.parseAxisParam(s,n.shape),c=u,p=N.getAxesPermutation(c,i),m=n;p!=null&&(m=Mt({inputs:{x:n},backend:t,attrs:{perm:p}}),c=N.getInnerMostAxes(c.length,i),l.push(m)),N.assertAxesAreInnerMostDims("prod",c,i);let f;if(t.shouldExecuteOnCPU([m])){let d=t.texData.get(m.dataId).values,{outVals:h,outShape:g,outDtype:x}=H2(m.shape,m.dtype,d,c);f=t.makeTensorInfo(g,x,h)}else{let[d,h]=N.computeOutAndReduceShapes(m.shape,c),g=y.sizeFromShape(h),x=pe({inputs:{x:m},backend:t,attrs:{shape:[-1,g]}}),b=Gl(n.dtype),w=To(x,b,"prod",t);f=pe({inputs:{x:w},backend:t,attrs:{shape:d}}),l.push(x),l.push(w)}if(a){l.push(f);let d=N.expandShapeToKeepDim(f.shape,u);f=pe({inputs:{x:f},backend:t,attrs:{shape:d}})}return l.forEach(d=>t.disposeIntermediateTensorInfo(d)),f}var HR={kernelName:qi,backendName:"webgl",kernelFunc:_7};var Yv=r=>{let{backend:e,attrs:t}=r,{start:o,stop:n,step:s,dtype:a}=t,i=q2(o,n,s,a);return e.makeTensorInfo([i.length],a,i)},qR={kernelName:Ja,backendName:"webgl",kernelFunc:Yv};var k7="return 1.0 / x;",v7=_e({opSnippet:k7}),KR={kernelName:Ki,backendName:"webgl",kernelFunc:v7};var C7=xr+`
return (x < 0.0) ? 0.0 : x;
`,I7=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,N7=_e({opSnippet:C7,packedOpSnippet:I7}),XR={kernelName:Zn,backendName:"webgl",kernelFunc:N7};var S7=xr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,T7=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,A7=_e({opSnippet:S7,packedOpSnippet:T7}),YR={kernelName:Qn,backendName:"webgl",kernelFunc:A7};var Zv=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m;s?m="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":m="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}};var Jv=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m;s?m="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":m="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/p[0]},
${c[1]/p[1]},
${c[1]/p[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${l}.0,
${l}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${m};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${u-1};
bool hasNextRow = coords.z < ${o-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function E7(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,c=W().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Jv(n.shape,l,u,s,a):new Zv(n.shape,l,u,s,a);return t.runWebGLProgram(c,[n],"float32")}var ZR={kernelName:Jn,backendName:"webgl",kernelFunc:E7};var Qv=class{constructor(e,t,o){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,s]=t,[,a,i]=e,l=[o&&a>1?n-1:n,o&&i>1?s-1:s],u=[o&&a>1?a-1:a,o&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${n-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${s-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function D7(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,i=new Qv(s.shape,n.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var JR={kernelName:Mc,backendName:"webgl",kernelFunc:D7};var eC=class{constructor(e,t,o,n,s){this.variableNames=["A"],this.outputShape=[];let[a,i,l,u]=e;this.outputShape=[a,t,o,u];let c=[n&&t>1?i-1:i,n&&o>1?l-1:l],p=[n&&t>1?t-1:t,n&&o>1?o-1:o],m=n?"0.5":"0.0",f;s?f="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":f="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/p[0]},
${c[1]/p[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${l}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${f};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${m})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};function $7(r){let{inputs:e,backend:t,attrs:o}=r,{images:n}=e,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,c=new eC(n.shape,l,u,s,a);return t.runWebGLProgram(c,[n],n.dtype)}var QR={kernelName:Qa,backendName:"webgl",kernelFunc:$7};var tC=class{constructor(e,t,o){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,n,s]=t,[,a,i]=e,l=[o&&a>1?n-1:n,o&&i>1?s-1:s],u=[o&&a>1?a-1:a,o&&i>1?i-1:i],c=l[0]/u[0],p=l[1]/u[1],m=1/c,f=1/p,d=Math.ceil(m)*2+2,h=Math.ceil(f)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${p});
const float invHeightScale = float(${m});
const float invWidthScale = float(${f});
const int winHeight = int(${d});
const int winWidth = int(${h});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${l[0]}) *
(float(dyR) / float(${u[0]}));
float sourceFracCol =
float(${l[1]}) *
(float(dyC) / float(${u[1]}));
int sourceNearestRow = int(min(
float(int(${n}) - 1),
${o} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${s}) - 1),
${o} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function R7(r){let{inputs:e,backend:t,attrs:o}=r,{images:n,dy:s}=e,{alignCorners:a}=o,i=new tC(s.shape,n.shape,a);return t.runWebGLProgram(i,[s],s.dtype)}var eF={kernelName:Pc,backendName:"webgl",kernelFunc:R7};var rC=class{constructor(e,t){this.variableNames=["x"];let o=e.length;if(o>4)throw new Error(`WebGL backend: Reverse of rank-${o} tensor is not yet supported`);if(this.outputShape=e,o===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let n=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,s=e.map((i,l)=>n(l)).join(","),a=Le(o);this.userCode=`
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${s}));
}
`}};var oC=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let o=e.length;if(o>4)throw new Error(`WebGL backend: Reverse of rank-${o} tensor is not yet supported`);this.outputShape=e;let n=Wt("rc",o),s=`${n[o-1]} + 1 < ${this.outputShape[o-1]}`,a=`${n[o-2]} + 1 < ${this.outputShape[o-2]}`,i=Le(o);o===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${s}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${l(n.slice())};
if(${s}){
result.g = ${u(n.slice())};
}
if(${a}) {
result.b = ${c(n.slice())};
if(${s}) {
result.a = ${p(n.slice())};
}
}
setOutput(result);
}
`;function l(d){return m(d)}function u(d){return d[o-1]="("+d[o-1]+" + 1)",m(d)}function c(d){return d[o-2]="("+d[o-2]+" + 1)",m(d)}function p(d){return d[o-1]="("+d[o-1]+" + 1)",d[o-2]="("+d[o-2]+" + 1)",m(d)}function m(d){let h=e.map((b,w)=>f(w,d)),g=h.join(","),x=h.slice(-2).join(",");return`getChannel(getX(${g}), vec2(${x}))`}function f(d,h){return t.indexOf(d)!==-1&&e[d]!==1?`${e[d]} - ${h[d]} - 1`:`${h[d]}`}}};function F7(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o,a=n.shape.length,i=y.parseAxisParam(s,n.shape);if(a===0)return jt({inputs:{x:n},backend:t});let l=W().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new oC(n.shape,i):new rC(n.shape,i);return t.runWebGLProgram(l,[n],n.dtype)}var tF={kernelName:es,backendName:"webgl",kernelFunc:F7};var nC=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let o=e[1],n=e[2];this.outputShape=e;let s="";typeof t=="number"?s=`float outputValue = ${t.toFixed(2)};`:s=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
uniform vec4 params;
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${s}
if(coordX >= 0 && coordX < ${n} && coordY >= 0 && coordY < ${o}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}getCustomSetupFunc(e,t,o,n){return(s,a)=>{this.paramsLoc==null&&(this.paramsLoc=s.getUniformLocationNoThrow(a,"params")),s.gl.uniform4f(this.paramsLoc,e,t,o,n)}}};var rF={kernelName:oa,backendName:"webgl",kernelFunc:({inputs:r,attrs:e,backend:t})=>{let{image:o}=r,{radians:n,fillValue:s,center:a}=e,i=t,l=new nC(o.shape,s),[u,c]=N.getImageCenter(a,o.shape[1],o.shape[2]),p=l.getCustomSetupFunc(u,c,Math.sin(n),Math.cos(n));return i.runWebGLProgram(l,[o],o.dtype,p)}};var O7=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,P7=_e({opSnippet:O7}),oF={kernelName:ts,backendName:"webgl",kernelFunc:P7};var M7="return inversesqrt(x);",L7=_e({opSnippet:M7,cpuKernelImpl:K2}),nF={kernelName:rs,backendName:"webgl",kernelFunc:L7};var Mf=class{constructor(e,t,o,n,s,a,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let l=Le(s.length),u=Le(a.length),c="";o===1?c="i":o===2&&(c="i, j");let p=`getIndices(${c})`,m="";n===1?m="i":n===2&&(m="i, coords[1]");let f=`getUpdates(${m})`,d=t>1?"strides[j]":"strides";this.userCode=`
${l} strides = ${l}(${s});
void main() {
${u} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${p});
flattenedIndex += index * ${d};
}
if (flattenedIndex == coords[0]) {
sum += ${f};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function z7(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n,updates:s}=e,{shape:a}=o,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=N.calculateShapes(s,n,a),m=[p/u,u];if(p===0)return t.makeTensorInfo(a,n.dtype);let f=pe({inputs:{x:n},backend:t,attrs:{shape:[l,i]}}),d=pe({inputs:{x:s},backend:t,attrs:{shape:[l,u]}}),h=t.makeTensorInfo([],"float32",new Float32Array([0])),g=new Mf(l,i,f.shape.length,d.shape.length,c,m),x=t.runWebGLProgram(g,[d,f,h],d.dtype),b=pe({inputs:{x},backend:t,attrs:{shape:a}});return t.disposeIntermediateTensorInfo(f),t.disposeIntermediateTensorInfo(d),t.disposeIntermediateTensorInfo(x),t.disposeIntermediateTensorInfo(h),b}var sF={kernelName:Xi,backendName:"webgl",kernelFunc:z7};var sC=class{constructor(e,t,o){this.variableNames=["c","a","b"],this.outputShape=t;let n,s;if(o>4)throw Error(`Where for rank ${o} is not yet supported`);if(o===1)s="resRC",n="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],l=[],u=[];for(let c=0;c<t.length;c++)u.push(`${i[c]}`),c<e&&l.push(`${i[c]}`);n=l.join(),s=u.join()}let a=Le(o);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
float cVal = getC(${n});
if (cVal >= 1.0) {
setOutput(getA(${s}));
} else {
setOutput(getB(${s}));
}
}
`}};function B7(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e,a=new sC(o.shape.length,n.shape,n.shape.length);return t.runWebGLProgram(a,[o,n,s],ir(n.dtype,s.dtype))}var iF={kernelName:Ws,backendName:"webgl",kernelFunc:B7};var V7=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${N.SELU_SCALEALPHA};
float scale = ${N.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,G7=_e({opSnippet:V7}),aF={kernelName:Yi,backendName:"webgl",kernelFunc:G7};var W7="return 1.0 / (1.0 + exp(-1.0 * x));",j7=_e({opSnippet:W7}),lF={kernelName:ns,backendName:"webgl",kernelFunc:j7};var U7=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,H7=_e({opSnippet:U7}),uF={kernelName:Ji,backendName:"webgl",kernelFunc:H7};var q7=ix+`
return sin(x);
`,K7=_e({opSnippet:q7}),cF={kernelName:os,backendName:"webgl",kernelFunc:K7};var X7=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,Y7=_e({opSnippet:X7}),pF={kernelName:Zi,backendName:"webgl",kernelFunc:Y7};var Z7=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,J7=_e({opSnippet:Z7}),mF={kernelName:Qi,backendName:"webgl",kernelFunc:J7};var Q7=r=>{let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{blockShape:s,paddings:a}=o;y.assert(n.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=s.reduce((x,b)=>x*b),l=[[0,0]];l.push(...a);for(let x=1+s.length;x<n.shape.length;++x)l.push([0,0]);let u=[],c=Xv({inputs:{x:n},backend:t,attrs:{paddings:l,constantValue:0}}),p=N.getReshaped(c.shape,s,i,!1),m=N.getPermuted(p.length,s.length,!1),f=N.getReshapedPermuted(c.shape,s,i,!1),d=pe({inputs:{x:c},backend:t,attrs:{shape:p}}),h=Mt({inputs:{x:d},backend:t,attrs:{perm:m}}),g=pe({inputs:{x:h},backend:t,attrs:{shape:f}});return u.push(c),u.push(d),u.push(h),u.forEach(x=>t.disposeIntermediateTensorInfo(x)),g},fF={kernelName:el,backendName:"webgl",kernelFunc:Q7};function eZ(r){let{inputs:e,backend:t,attrs:o}=r,{sparseIndices:n,sparseValues:s,defaultValue:a}=e,{outputShape:i}=o,{sliceRank:l,numUpdates:u,strides:c,outputSize:p}=N.calculateShapes(s,n,i),m=!1,f=new Mf(u,l,n.shape.length,s.shape.length,c,[p,1],m),d=t.runWebGLProgram(f,[s,n,a],s.dtype),h=pe({inputs:{x:d},backend:t,attrs:{shape:i}});return t.disposeIntermediateTensorInfo(d),h}var dF={kernelName:Lc,backendName:"webgl",kernelFunc:eZ};function tZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=o,i=y.parseAxisParam(a,n.shape)[0],l=N.prepareSplitSize(n,s,i),u=n.shape.length,c=new Array(u).fill(0),p=n.shape.slice();return l.map(m=>{let f=[...p];f[i]=m;let d=Na({inputs:{x:n},backend:t,attrs:{begin:c,size:f}});return c[i]+=m,d})}var hF={kernelName:Us,backendName:"webgl",kernelFunc:tZ};var rZ="return sqrt(x);",oZ=_e({opSnippet:rZ}),gF={kernelName:ss,backendName:"webgl",kernelFunc:oZ};var nZ="return x * x;",sZ=_e({opSnippet:nZ}),xF={kernelName:tl,backendName:"webgl",kernelFunc:sZ};var yF="return (a - b) * (a - b);",iZ=nt({opSnippet:yF,packedOpSnippet:yF}),bF={kernelName:ls,backendName:"webgl",kernelFunc:iZ};function aZ({inputs:r,attrs:e,backend:t}){let{x:o}=r,n=xr+`
return x > 0.0 ? 1.0 : float(${e.alpha});
`,s=new mo(o.shape,n);return t.runWebGLProgram(s,[o],o.dtype)}var wF={kernelName:Xo,backendName:"webgl",kernelFunc:aZ};var iC=class{constructor(e,t,o){this.variableNames=["x"],this.outputShape=o;let n=o.length,s=Le(o.length),a=Le(o.length),i="";if(n===1)i="coords * strides + begin";else{let l=0;i=o.map((u,c)=>(l++,o.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${l-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${s} begin = ${s}(${e});
${s} strides = ${s}(${t});
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function lZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{begin:s,end:a,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o,{nonStrided:f,$begin:d,$strides:h,size:g,newShape:x,outShape:b}=er.sliceInfo(n.shape,s,a,i,l,u,c,p,m),w=pe({inputs:{x:n},backend:t,attrs:{shape:x}}),_;if(f){let D=Na({inputs:{x:w},backend:t,attrs:{begin:d,size:g}});_=pe({inputs:{x:D},backend:t,attrs:{shape:b}}),t.disposeIntermediateTensorInfo(D)}else if(b.some(D=>D===0))_=t.makeTensorInfo(b,n.dtype,[]);else if(t.shouldExecuteOnCPU([w])){let R=t.texData.get(w.dataId).values,O=ve(w.shape,w.dtype,R),M=Y2(b,O,h,d);_=t.makeTensorInfo(b,w.dtype,M.values)}else{let T=new iC(d,h,b);_=t.runWebGLProgram(T,[w],w.dtype)}let k=pe({inputs:{x:_},backend:t,attrs:{shape:b}});return t.disposeIntermediateTensorInfo(w),t.disposeIntermediateTensorInfo(_),k}var _F={kernelName:ea,backendName:"webgl",kernelFunc:lZ};var uZ="return tan(x);",cZ=_e({opSnippet:uZ}),kF={kernelName:ta,backendName:"webgl",kernelFunc:cZ};var pZ=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,mZ=_e({opSnippet:pZ}),vF={kernelName:cs,backendName:"webgl",kernelFunc:mZ};var aC=class{constructor(e,t){this.variableNames=["A"];let o=new Array(e.length);for(let a=0;a<o.length;a++)o[a]=e[a]*t[a];this.outputShape=o,this.rank=o.length;let n=Le(this.rank),s=fZ(e);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${s}));
}
`}};function fZ(r){let e=r.length;if(e>5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`imod(resRC, ${r[0]})`;let t=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],o=[];for(let n=0;n<r.length;n++)o.push(`imod(${t[n]}, ${r[n]})`);return o.join()}function lC(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{reps:s}=o;if(n.dtype==="string"){let u=t.readSync(n.dataId).map(m=>y.decodeString(m)),c=ve(n.shape,n.dtype,u),p=J2(c,s);return t.makeTensorInfo(p.shape,p.dtype,p.values)}let a=new aC(n.shape,s);return t.runWebGLProgram(a,[n],n.dtype)}var CF={kernelName:Oo,backendName:"webgl",kernelFunc:lC};function dZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{k:s,sorted:a}=o,i=t.readSync(n.dataId),[l,u]=Q2(i,n.shape,n.dtype,s,a);return[t.makeTensorInfo(l.shape,l.dtype,l.values),t.makeTensorInfo(u.shape,u.dtype,u.values)]}var IF={kernelName:ra,backendName:"webgl",kernelFunc:dZ};var uC=class{constructor(e,t,o,n,s,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let i=o==="nearest"?1:2,l;switch(n){case"constant":l=1;break;case"reflect":l=2;break;case"wrap":l=3;break;case"nearest":l=4;break;default:l=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${l} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${l} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${l} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${s});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${s});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function hZ(r){let{inputs:e,backend:t,attrs:o}=r,{image:n,transforms:s}=e,{interpolation:a,fillMode:i,fillValue:l,outputShape:u}=o,[c,p,m,f]=n.shape,[d,h]=u!=null?u:[p,m],g=[c,d,h,f],x=new uC(p,m,a,i,l,g);return t.runWebGLProgram(x,[n,s],"float32")}var NF={kernelName:zc,backendName:"webgl",kernelFunc:hZ};function gZ(r){let{inputs:e,attrs:t,backend:o}=r,{axis:n}=t,{x:s}=e;_s(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let a=o.readSync(s.dataId),{outputValues:i,outputShape:l,indices:u}=eD(a,n,s.shape,s.dtype);return[o.makeTensorInfo(l,s.dtype,i),o.makeTensorInfo([u.length],"int32",u)]}var SF={kernelName:Bc,backendName:"webgl",kernelFunc:gZ};function xZ(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n,i=a.shape.length,l=n.shape[s],u=new Array(i-1),c=0;for(let h=0;h<i;h++)h!==s&&(u[c++]=a.shape[h]);let p=[],m=new Array(i).fill(0),f=a.shape.slice();f[s]=1;let d=new Array(l);for(let h=0;h<d.length;h++){m[s]=h;let g=Na({inputs:{x:a},backend:t,attrs:{begin:m,size:f}}),x=pe({inputs:{x:g},backend:t,attrs:{shape:u}});d[h]=x,p.push(g)}return p.forEach(h=>t.disposeIntermediateTensorInfo(h)),d}var TF={kernelName:Hs,backendName:"webgl",kernelFunc:xZ};var cC=class{constructor(e,t){this.variableNames=["x","segmentIds"];let o=e.windowSize,n=e.batchSize,s=e.inSize,a=e.numSegments,i=a*Math.ceil(s/o);this.outputShape=[n,i];let l="0.0",u="sumValue",c=Math.floor(o/4)*4,p=o%4,m=`
sumValue += dot(values, segFilter);
`,f="";s%o>0&&(f=`
if (inIdx < 0 || inIdx >= ${s}) {
return initializationValue;
}
`);let d="";s%o>0&&(d=`
if (inIdx < 0 || inIdx >= ${s}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${l};
float getValue(int batch, int inIdx) {
${f}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${d}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${a})) * float(${o}));
int currentSeg = int(mod(float(outIdx), float(${a})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${m}
}
int inIdx = inOffset + ${c};
if (${p===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${m}
} else if (${p===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${m}
} else if (${p===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${m}
}
setOutput(${u});
}
`}};function yZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n,segmentIds:s}=e,{numSegments:a}=o,i=n.shape.length,l=[],u=0,c=N.getAxesPermutation([u],i),p=n;c!=null&&(p=Mt({inputs:{x:n},backend:t,attrs:{perm:c}}),l.push(p),u=N.getInnerMostAxes(1,i)[0]);let m=N.segment_util.computeOutShape(p.shape,u,a),f=y.sizeFromShape([p.shape[u]]),d=pe({inputs:{x:p},backend:t,attrs:{shape:[-1,f]}});l.push(d);let h=Gl(n.dtype),g=(_,k,D,T,R)=>{let O=_.shape[0],M=_.shape[1],G=N.segment_util.segOpComputeOptimalWindowSize(M,R),j={windowSize:G,inSize:M,batchSize:O,numSegments:R},U=new cC(j,k),H=t.compileAndRun(U,[_,D],T);if(l.push(H),H.shape[1]===R)return H;let q=Yv({backend:t,attrs:{start:0,stop:R,step:1,dtype:"float32"}}),X=lC({inputs:{x:q},backend:t,attrs:{reps:[M/G]}});return l.push(q),l.push(X),g(H,k,X,T,R)},x=g(d,"unsortedSegmentSum",s,h,a),b=pe({inputs:{x},backend:t,attrs:{shape:m}}),w=b;if(c!=null){l.push(b);let _=N.getUndoAxesPermutation(c);w=Mt({inputs:{x:w},backend:t,attrs:{perm:_}})}return l.forEach(_=>t.disposeIntermediateTensorInfo(_)),w}var AF={kernelName:rl,backendName:"webgl",kernelFunc:yZ};var bZ=[mR,fR,SD,AD,ED,DD,RD,FD,OD,PD,zD,BD,VD,GD,jD,WD,UD,qD,HD,KD,XD,YD,ZD,QD,e$,n$,i$,a$,u$,hD,m$,d$,h$,f$,x$,y$,g$,b$,w$,_$,C$,I$,N$,T$,A$,S$,E$,D$,$$,R$,F$,O$,M$,L$,B$,V$,G$,W$,U$,H$,q$,K$,X$,Y$,Z$,J$,Q$,dD,eR,c$,tR,rR,oR,gD,nR,sR,iR,lR,aR,uR,cR,pR,hR,yR,xR,bR,wR,kR,gR,CR,IR,NR,SR,TR,RR,_D,OR,PR,MR,LR,t$,zR,GR,WR,jR,UR,xD,HR,qR,r$,AR,KR,YR,XR,vD,ZR,JR,QR,eF,tF,rF,oF,nF,sF,iF,aF,lF,uF,cF,pF,JD,$R,mF,fF,dF,hF,gF,xF,bF,wF,_F,DR,ID,kF,vF,CF,IF,NF,ND,SF,TF,AF,BR];for(let r of bZ)Bl(r);var Lt;(function(r){r[r.float32=0]="float32",r[r.int32=1]="int32",r[r.bool=2]="bool",r[r.string=3]="string",r[r.complex64=4]="complex64"})(Lt||(Lt={}));var bl;(function(r){r[r.linear=0]="linear",r[r.relu=1]="relu",r[r.relu6=2]="relu6",r[r.prelu=3]="prelu",r[r.leakyrelu=4]="leakyrelu"})(bl||(bl={}));var EF;function wZ(r){EF=r.wasm.cwrap(Ks,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function _Z(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s,bias:a,preluActivationWeights:i}=e;if(n.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=o,m=t.dataIdMap.get(n.dataId).id,f=t.dataIdMap.get(s.dataId).id,d=0;if(a!=null){let R=t.dataIdMap.get(a.dataId);if(R.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${R.shape.length}.`);d=R.id}let h=i==null?0:t.dataIdMap.get(i.dataId).id,g=bl[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let x=l?n.shape[2]:n.shape[1],b=u?s.shape[1]:s.shape[2],w=n.shape[0],_=t.makeOutput([w,x,b],n.dtype),k=t.dataIdMap.get(_.dataId).id,D=new Uint8Array(new Int32Array(n.shape).buffer),T=new Uint8Array(new Int32Array(s.shape).buffer);return EF(m,D,n.shape.length,f,T,s.shape.length,l,u,g,d,h,p||0,k),_}var DF={kernelName:Ks,backendName:"wasm",setupFunc:wZ,kernelFunc:_Z};function Nt(r){let e;function t(n){e=n.wasm.cwrap(r,null,["number","number"])}function o(n){let{backend:s,inputs:{x:a}}=n,i=s.dataIdMap.get(a.dataId).id,l=s.makeOutput(a.shape,a.dtype),u=s.dataIdMap.get(l.dataId).id;return y.sizeFromShape(l.shape)===0||e(i,u),l}return{kernelName:r,backendName:"wasm",setupFunc:t,kernelFunc:o}}var $F=Nt(Os);function xt(r,e,t){let o;function n(a){o=a.wasm.cwrap(r,null,["number","array","number","number","array","number","number","number"])}function s(a){let{backend:i,inputs:l}=a,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,m=i.dataIdMap.get(c.dataId).id,f=t!=null?t:u.dtype,d=N.assertAndGetBroadcastShape(u.shape,c.shape),h=i.makeOutput(d,f);if(y.sizeFromShape(d)===0)return h;let g=new Uint8Array(new Int32Array(u.shape).buffer),x=new Uint8Array(new Int32Array(c.shape).buffer),b=i.dataIdMap.get(h.dataId).id,w=()=>o(p,g,u.shape.length,m,x,c.shape.length,Lt[u.dtype],b);if(e&&u.dtype==="float32")return w(),h;let _=N.getBroadcastDims(u.shape,d),k=N.getBroadcastDims(c.shape,d),D=_.every((R,O)=>R===O),T=k.every((R,O)=>R===O);if(D&&T)return w(),h;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${r}.`)}return{kernelName:r,backendName:"wasm",setupFunc:n,kernelFunc:s}}var kZ=!0,RF=xt(Fo,kZ);var FF;function vZ(r){FF=r.wasm.cwrap(kn,null,["array","number","number","number"])}function CZ(r){let{inputs:e,backend:t}=r,o=t.makeOutput(e[0].shape,e[0].dtype);if(y.sizeFromShape(o.shape)===0)return o;let n=e.map(i=>t.dataIdMap.get(i.dataId).id),s=new Uint8Array(new Int32Array(n).buffer),a=t.dataIdMap.get(o.dataId).id;return FF(s,n.length,Lt[o.dtype],a),o}var OF={kernelName:kn,backendName:"wasm",setupFunc:vZ,kernelFunc:CZ};function Fu(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype),n=t.typedArrayFromHeap(e);return t.typedArrayFromHeap(o).set(n),o}var PF={kernelName:Ko,backendName:"wasm",kernelFunc:Fu};var MF;function IZ(r){MF=r.wasm.cwrap(ps,null,["number","array","number","number","number","array","number"])}function Sp(r){let{inputs:e,backend:t,attrs:o}=r,[n,s]=SZ(e.x.shape,o.perm),a=!0;for(let d=0;d<s.length;d++)s[d]!==d&&(a=!1);let i=NZ(e.x.shape,o.perm),l={dataId:e.x.dataId,shape:n,dtype:e.x.dtype};if(a){let d=Fu({inputs:e,backend:t});return d.shape=i,d}let u=t.makeOutput(i,l.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,m=new Uint8Array(new Int32Array(s).buffer),f=new Uint8Array(new Int32Array(l.shape).buffer);return MF(c,f,l.shape.length,Lt[l.dtype],p,m,s.length),u}function NZ(r,e){let t=new Array(r.length);for(let o=0;o<t.length;o++)t[o]=r[e[o]];return t}function SZ(r,e){let t=[],o=[];for(let n=0;n<r.length;++n)r[n]!==1&&t.push(r[n]),r[e[n]]!==1&&o.push(e[n]);for(let n=0;n<o.length;++n){let s=-1;for(let a=0;a<o.length;++a)o[a]>=n&&(s===-1||o[s]>o[a])&&(s=a);o[s]=n}return[t,o]}var LF={kernelName:ps,backendName:"wasm",kernelFunc:Sp,setupFunc:IZ};function pn(r,e,t){let o=r.shape,n=r.shape.length,s=y.parseAxisParam(e,o),a=s,i=N.getAxesPermutation(a,n),l=null,u=!1;if(i!=null){let c=new Array(n);for(let f=0;f<c.length;f++)c[f]=o[i[f]];a=N.getInnerMostAxes(a.length,n),l=Sp({inputs:{x:r},attrs:{perm:i},backend:t});let p=t.dataIdMap.get(r.dataId).id;t.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:s,axes:a,inputWasTransposed:u}}var zF;function TZ(r){zF=r.wasm.cwrap(vn,null,["number","number","number","number","number"])}function AZ(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n}=o,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=a,l=s,{transposed:u,axes:c,inputWasTransposed:p}=pn(s,n,e);if(p){let x=e.dataIdMap.get(u.dataId).id;x!==a&&(l=u,i=x)}let m=l.shape.slice(0,-1),f=e.makeOutput(m,"int32"),d=e.dataIdMap.get(f.dataId).id,h=y.sizeFromShape(f.shape),g=l.shape[c[0]];return zF(i,Lt[l.dtype],h,g,d),p&&e.disposeData(u.dataId),f}var BF={kernelName:vn,backendName:"wasm",kernelFunc:AZ,setupFunc:TZ};var VF;function EZ(r){VF=r.wasm.cwrap(Cn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function DZ(r){let{inputs:e,attrs:t,backend:o}=r,n=e.x,s=o.dataIdMap.get(n.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=N.computePool2DInfo(n.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.strideHeight,b=c.strideWidth,w=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let _=o.makeOutput(c.outShape,"float32"),k=o.dataIdMap.get(_.dataId).id;return VF(s,n.shape[0],n.shape[1],n.shape[2],p,m,f,d,h,g,x,b,w,k),_}var GF={kernelName:Cn,backendName:"wasm",setupFunc:EZ,kernelFunc:DZ};function Br(r){let{inputs:e,attrs:t}=r,{x:o}=e,{shape:n}=t,s=y.sizeFromShape(o.shape),a=y.inferFromImplicitShape(n,s);return y.assert(s===y.sizeFromShape(a),()=>`new shape: ${a}, old shape: ${o.shape}. New shape and old shape must have the same number of elements.`),r.backend.incRef(o.dataId),{dataId:o.dataId,shape:a,dtype:o.dtype}}var WF={kernelName:Gs,backendName:"wasm",kernelFunc:Br};var jF;function $Z(r){jF=r.wasm.cwrap(In,null,["number","array","number","number","array","number","number","number","number"])}function RZ(r){let{inputs:e,backend:t,attrs:o}=r,{a:n,b:s}=e,{transposeA:a,transposeB:i}=o;if(n.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=n.shape.length,u=s.shape.length,c=a?n.shape[l-2]:n.shape[l-1],p=i?s.shape[u-1]:s.shape[u-2],m=a?n.shape[l-1]:n.shape[l-2],f=i?s.shape[u-2]:s.shape[u-1],d=n.shape.slice(0,-2),h=s.shape.slice(0,-2),g=y.sizeFromShape(d),x=y.sizeFromShape(h),b=g===x||g===1||x===1;y.assert(l>=2&&u>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${d}) and (${h}).`);let _=(g>x?n.shape.slice(0,-2):s.shape.slice(0,-2)).concat([m,f]);y.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${n.shape} and ${s.shape} and transposeA=${a} and transposeB=${i} must match.`);let k=a?[g,c,m]:[g,m,c],D=i?[x,f,p]:[x,p,f],T=Br({inputs:{x:n},backend:t,attrs:{shape:k}}),R=Br({inputs:{x:s},backend:t,attrs:{shape:D}}),O=t.dataIdMap.get(T.dataId).id,M=t.dataIdMap.get(R.dataId).id,G=a?T.shape[2]:T.shape[1],j=i?R.shape[1]:R.shape[2],U=Math.max(g,x),H=t.makeOutput([U,G,j],T.dtype),q=t.dataIdMap.get(H.dataId).id,X=new Uint8Array(new Int32Array(T.shape).buffer),oe=new Uint8Array(new Int32Array(R.shape).buffer);return jF(O,X,T.shape.length,M,oe,R.shape.length,a,i,q),t.disposeData(T.dataId),t.disposeData(R.dataId),H.shape=_,H}var UF={kernelName:In,backendName:"wasm",setupFunc:$Z,kernelFunc:RZ};function Ou(r){let{inputs:{x:e},attrs:{dtype:t},backend:o}=r,n=o.makeOutput(e.shape,t),s=o.typedArrayFromHeap(e);return o.typedArrayFromHeap(n).set(s),n}var HF={kernelName:Ho,backendName:"wasm",kernelFunc:Ou};var qF=Nt(Nn);var KF;function FZ(r){KF=r.wasm.cwrap(qo,null,["number","number","number","number"])}function OZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{clipValueMin:s,clipValueMax:a}=o,i=t.dataIdMap.get(n.dataId).id,l=t.makeOutput(n.shape,n.dtype),u=t.dataIdMap.get(l.dataId).id;return KF(i,s,a,u),l}var XF={kernelName:qo,backendName:"wasm",setupFunc:FZ,kernelFunc:OZ};function pC(r){let{inputs:e,backend:t}=r,o=y.parseAxisParam(r.attrs.axis,e[0].shape)[0],n=N.computeOutShape(e.map(f=>f.shape),o),s=e.filter(f=>y.sizeFromShape(f.shape)>0);if(s.length===1)return Fu({inputs:{x:s[0]},backend:t});let a=t.makeOutput(n,e[0].dtype);if(y.sizeFromShape(n)===0)return a;let i=s.map(f=>f.shape);if(N.assertParamsConsistent(i,o),s[0].dtype==="string"){let f=s.map(w=>{let _=y.sizeFromShape(w.shape.slice(o));return Br({inputs:{x:w},backend:t,attrs:{shape:[-1,_]}})}),d=f.map(w=>({vals:t.readSync(w.dataId),shape:w.shape}));n=N.computeOutShape(f.map(w=>w.shape),1);let h=f[0].shape[0]===1,g=_u(d,n,e[0].dtype,h),x=N.computeOutShape(s.map(w=>w.shape),o);a.shape=x;let b=t.dataIdMap.get(a.dataId);return b.stringBytes=N.fromStringArrayToUint8(g),f.forEach(w=>t.disposeData(w.dataId)),a}let l=y.sizeFromShape(s[0].shape.slice(0,o)),u=0,c=s.map(f=>{let d=y.sizeFromShape(f.shape.slice(o));return u+=d,d}),p=s.map(f=>t.typedArrayFromHeap(f)),m=t.typedArrayFromHeap(a);for(let f=0;f<l;f++){let d=f*u;for(let h=0;h<p.length;h++){let g=c[h],x=f*g,b=p[h].subarray(x,x+g);m.set(b,d),d+=g}}return a}var YF={kernelName:Ps,backendName:"wasm",kernelFunc:pC};var ZF;function PZ(r){ZF=r.wasm.cwrap(Sn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function MZ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s}=e,a=o.dataIdMap.get(n.dataId).id,i=o.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p,dataFormat:m}=t,f=N.convertConv2DDataFormat(m),d=N.computeConv2DInfo(n.shape,s.shape,l,u,c,p,!1,f),h=d.filterHeight,g=d.filterWidth,x=d.padInfo.top,b=d.padInfo.right,w=d.padInfo.bottom,_=d.padInfo.left,k=d.dilationHeight,D=d.dilationWidth,T=d.strideHeight,R=d.strideWidth,O=d.inChannels,M=d.outChannels,G=d.padInfo.type==="SAME"?1:0;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let j=o.makeOutput(d.outShape,"float32"),U=o.dataIdMap.get(j.dataId).id;return ZF(a,n.shape[0],n.shape[1],n.shape[2],i,h,g,x,b,w,_,G,k,D,T,R,O,M,U),j}var JF={kernelName:Sn,backendName:"wasm",setupFunc:PZ,kernelFunc:MZ};var QF;function LZ(r){QF=r.wasm.cwrap(Tn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function zZ(r){let{backend:e,inputs:t,attrs:o}=r,{dy:n,filter:s}=t,{strides:a,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=o,p=1,m=N.convertConv2DDataFormat(l),f=N.computeConv2DInfo(c,s.shape,a,p,i,u,!1,m),{batchSize:d,filterHeight:h,filterWidth:g,inChannels:x,inHeight:b,inWidth:w,outChannels:_,outHeight:k,outWidth:D,strideHeight:T,strideWidth:R}=f,O=h-1-f.padInfo.top,M=g-1-f.padInfo.left,G=f.dataFormat==="channelsLast",j=y.computeStrides(f.inShape),U=y.computeStrides(n.shape),[H,q,X]=y.computeStrides(s.shape),oe=j[0],Y=G?j[1]:j[2],re=G?j[2]:1,J=G?1:j[1],ie=U[0],ue=G?U[1]:U[2],ae=G?U[2]:1,fe=G?1:U[1],de=e.makeOutput(f.inShape,"float32"),xe=e.dataIdMap.get(de.dataId).id,we=e.dataIdMap.get(n.dataId).id,De=e.dataIdMap.get(s.dataId).id;return QF(we,De,d,h,g,b,w,x,k,D,_,T,R,O,M,H,q,X,oe,Y,re,J,ie,ue,ae,fe,xe),de}var eO={kernelName:Tn,backendName:"wasm",setupFunc:LZ,kernelFunc:zZ};var tO=Nt(An);var mC;(function(r){r[r.bilinear=0]="bilinear",r[r.nearest=1]="nearest"})(mC||(mC={}));var rO;function BZ(r){rO=r.wasm.cwrap(Ni,null,["number","number","number","number","array","number","number","number","number","number"])}function VZ(r){let{backend:e,inputs:t,attrs:o}=r,{method:n,extrapolationValue:s,cropSize:a}=o,{image:i,boxes:l,boxInd:u}=t,c=l.shape[0],[p,m]=a,f=[c,p,m,i.shape[3]],d=e.dataIdMap.get(i.dataId),h;i.dtype!=="float32"&&(h=Ou({backend:e,inputs:{x:i},attrs:{dtype:"float32"}}),d=e.dataIdMap.get(h.dataId));let g=d.id,x=e.dataIdMap.get(l.dataId).id,b=e.dataIdMap.get(u.dataId).id,w=e.makeOutput(f,"float32"),_=e.dataIdMap.get(w.dataId).id,k=new Uint8Array(new Int32Array(i.shape).buffer);return rO(g,x,b,c,k,p,m,mC[n],s,_),h!=null&&e.disposeData(h.dataId),w}var oO={kernelName:Ni,backendName:"wasm",setupFunc:BZ,kernelFunc:VZ};var nO;function GZ(r){nO=r.wasm.cwrap(En,null,["number","number","number","number","number","number"])}function WZ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{axis:s,exclusive:a,reverse:i}=o,l=n.shape.length;y.assert(n.dtype==="float32"||n.dtype==="int32",()=>`cumsum does not support ${n.dtype} tensors in the WASM backend`);let u=N.getAxesPermutation([s],l),c=n;u!==null&&(c=Sp({inputs:{x:n},attrs:{perm:u},backend:t}));let p=N.getInnerMostAxes(1,l)[0];N.assertAxesAreInnerMostDims("cumsum",[p],l);let m=t.makeOutput(c.shape,c.dtype),f=c.shape[p],d=t.dataIdMap.get(c.dataId).id,h=t.dataIdMap.get(m.dataId).id;nO(d,a?1:0,i?1:0,f,h,Lt[n.dtype]);let g=m;if(u!==null){let x=N.getUndoAxesPermutation(u);g=Sp({inputs:{x:m},attrs:{perm:x},backend:t}),t.disposeData(c.dataId),t.disposeData(m.dataId)}return g}var sO={kernelName:En,backendName:"wasm",setupFunc:GZ,kernelFunc:WZ};var iO;function jZ(r){iO=r.wasm.cwrap(Si,null,["number","number","number","array","number","array","array","number","number"])}function UZ(r){let{backend:e,inputs:t,attrs:o}=r,{x:n}=t,{blockSize:s,dataFormat:a}=o;y.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let i=n.shape[0],l=a==="NHWC"?n.shape[1]:n.shape[2],u=a==="NHWC"?n.shape[2]:n.shape[3],c=a==="NHWC"?n.shape[3]:n.shape[1],p=l*s,m=u*s,f=c/(s*s),d=a==="NHWC"?[i,p,m,f]:[i,f,p,m],h=e.makeOutput(d,"float32"),x=e.dataIdMap.get(n.dataId).id,b=new Uint8Array(new Int32Array(y.computeStrides(n.shape)).buffer),w=new Uint8Array(new Int32Array(d).buffer),_=new Uint8Array(new Int32Array(y.computeStrides(d)).buffer),k=e.dataIdMap.get(h.dataId).id;return iO(x,s,a==="NHWC"?1:0,b,n.shape.length-1,w,_,d.length,k),h}var aO={kernelName:Si,backendName:"wasm",setupFunc:jZ,kernelFunc:UZ};var lO;function HZ(r){lO=r.wasm.cwrap(Dn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qZ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s}=e,a=o.dataIdMap.get(n.dataId).id,i=o.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=t,m=u==null?[1,1]:u,f=N.computeConv2DInfo(n.shape,s.shape,l,m,c,p,!0),d=f.filterHeight,h=f.filterWidth,g=f.padInfo.top,x=f.padInfo.right,b=f.padInfo.bottom,w=f.padInfo.left,_=f.dilationHeight,k=f.dilationWidth,D=f.strideHeight,T=f.strideWidth,R=f.inChannels,O=f.outChannels,M=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let G=o.makeOutput(f.outShape,"float32"),j=o.dataIdMap.get(G.dataId).id;return lO(a,n.shape[0],n.shape[1],n.shape[2],i,d,h,g,x,b,w,M,_,k,D,T,R,O,j),G}var uO={kernelName:Dn,backendName:"wasm",setupFunc:HZ,kernelFunc:qZ};var KZ=!1,cO=xt(Ei,KZ,"bool");var pO=Nt(Rn);function yx(r){let{inputs:e,attrs:t,backend:o}=r,{input:n}=e,{dim:s}=t,a=n.shape.length,i=n.shape.slice(),l=s;return s<0&&(y.assert(-(a+1)<=s,()=>`Axis must be in the interval [${-(a+1)}, ${a}]`),l=a+s+1),i.splice(l,0,1),Br({inputs:{x:n},backend:o,attrs:{shape:i}})}var mO={kernelName:Ms,backendName:"wasm",kernelFunc:yx};function XZ(r){let{attrs:{shape:e,value:t,dtype:o},backend:n}=r,s=n.makeOutput(e,o);return n.typedArrayFromHeap(s).fill(t),s}var fO={kernelName:Ka,backendName:"wasm",kernelFunc:XZ};var dO;function YZ(r){dO=r.wasm.cwrap($i,null,["number","number","number","number","number","number"])}function ZZ(r){let{inputs:e,backend:t}=r,{image:o}=e,n=t.makeOutput(o.shape,o.dtype),s=t.dataIdMap.get(o.dataId).id,a=t.dataIdMap.get(n.dataId).id,[i,l,u,c]=o.shape;return dO(s,i,l,u,c,a),n}var hO={kernelName:$i,backendName:"wasm",kernelFunc:ZZ,setupFunc:YZ};var gO=Nt(Fn);var JZ=!1,xO=xt(On,JZ);var yO;function QZ(r){yO=r.wasm.cwrap(Pn,null,["number","number","number","number","number","number","number"])}function e9(r){let{backend:e,inputs:t,attrs:o}=r,{varianceEpsilon:n}=o,{x:s,mean:a,variance:i,offset:l,scale:u}=t,c=e.dataIdMap.get(s.dataId).id,p=e.dataIdMap.get(a.dataId).id,m=e.dataIdMap.get(i.dataId).id,f=l!=null?e.dataIdMap.get(l.dataId).id:0,d=u!=null?e.dataIdMap.get(u.dataId).id:0,h=e.makeOutput(s.shape,s.dtype);if(y.sizeFromShape(s.shape)===0)return h;let g=e.dataIdMap.get(h.dataId).id;return yO(c,p,m,f,d,n,g),h}var bO={kernelName:Pn,backendName:"wasm",setupFunc:QZ,kernelFunc:e9};var wO;function t9(r){wO=r.wasm.cwrap(Xs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function r9(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=N.computeConv2DInfo(n.shape,s.shape,l,c,u,m),g=bl[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedConv2D in the wasm backend.`);let x=o.dataIdMap.get(n.dataId).id,b=o.dataIdMap.get(s.dataId).id,w=h.outChannels,_=0;if(a!=null){let ae=o.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${ae.shape}) does not match the number of output channels (${w})`);_=ae.id}let k=h.filterHeight,D=h.filterWidth,T=h.padInfo.top,R=h.padInfo.right,O=h.padInfo.bottom,M=h.padInfo.left,G=h.dilationHeight,j=h.dilationWidth,U=h.strideHeight,H=h.strideWidth,q=h.inChannels,X=h.padInfo.type==="SAME"?1:0,oe=h.batchSize,Y=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let J=o.makeOutput(h.outShape,"float32"),ie=o.dataIdMap.get(J.dataId).id,ue=i==null?0:o.dataIdMap.get(i.dataId).id;return wO(x,oe,Y,re,b,k,D,_,T,R,O,M,X,G,j,U,H,q,w,g,ue,d||0,ie),J}var _O={kernelName:Xs,backendName:"wasm",setupFunc:t9,kernelFunc:r9};var kO;function o9(r){kO=r.wasm.cwrap(Ys,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function n9(r){let{inputs:e,attrs:t,backend:o}=r,{x:n,filter:s,bias:a,preluActivationWeights:i}=e,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:m,activation:f,leakyreluAlpha:d}=t,h=N.computeConv2DInfo(n.shape,s.shape,l,c,u,m,!0),g=bl[f];if(g==null)throw new Error(`${f} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let x=o.dataIdMap.get(n.dataId).id,b=o.dataIdMap.get(s.dataId).id,w=h.outChannels,_=0;if(a!=null){let ae=o.dataIdMap.get(a.dataId);if(ae.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ae.shape.length}.`);if(ae.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${ae.shape}) does not match the number of output channels (${w})`);_=ae.id}let k=h.filterHeight,D=h.filterWidth,T=h.padInfo.top,R=h.padInfo.right,O=h.padInfo.bottom,M=h.padInfo.left,G=h.dilationHeight,j=h.dilationWidth,U=h.strideHeight,H=h.strideWidth,q=h.inChannels,X=h.padInfo.type==="SAME"?1:0,oe=h.batchSize,Y=h.inHeight,re=h.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let J=o.makeOutput(h.outShape,"float32"),ie=o.dataIdMap.get(J.dataId).id,ue=i==null?0:o.dataIdMap.get(i.dataId).id;return kO(x,oe,Y,re,b,k,D,_,T,R,O,M,X,G,j,U,H,q,w,g,ue,d||0,ie),J}var vO={kernelName:Ys,backendName:"wasm",setupFunc:o9,kernelFunc:n9};var CO;function s9(r){CO=r.wasm.cwrap(Ri,null,["number","number","number","number","number","number","array","number"])}function i9(r){let{backend:e,inputs:t}=r,{params:o,indices:n}=t,[s,a,i,l]=og.prepareAndValidate(o,n),u=e.makeOutput(s,o.dtype);if(a===0)return u;let c=n.shape,p=c[c.length-1],f=e.dataIdMap.get(o.dataId).id,h=e.dataIdMap.get(n.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),x=e.dataIdMap.get(u.dataId).id;return CO(f,Lt[o.dtype],h,a,p,i,g,x),u}var IO={kernelName:Ri,backendName:"wasm",setupFunc:s9,kernelFunc:i9};var NO;function a9(r){NO=r.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function l9(r){let{backend:e,inputs:t,attrs:o}=r,{x:n,indices:s}=t,{axis:a,batchDims:i}=o,l=y.parseAxisParam(a,n.shape)[0],u=N.segment_util.collectGatherOpShapeInfo(n,s,l,i),c=Br({inputs:{x:n},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:e}),p=y.sizeFromShape(s.shape),m=Br({inputs:{x:s},attrs:{shape:[u.batchSize,p/u.batchSize]},backend:e}),f=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize],d=e.makeOutput(f,n.dtype);if(y.sizeFromShape(n.shape)===0)return d;let h=c.shape.length-1,x=e.dataIdMap.get(c.dataId).id,w=e.dataIdMap.get(m.dataId).id,_=e.dataIdMap.get(d.dataId).id,k=new Uint8Array(new Int32Array(y.computeStrides(c.shape)).buffer),D=new Uint8Array(new Int32Array(y.computeStrides(f)).buffer);return NO(x,Lt[n.dtype],k,h,w,u.batchSize,D,_),e.disposeData(c.dataId),e.disposeData(m.dataId),d.shape=u.outputShape,d}var SO={kernelName:Ls,backendName:"wasm",setupFunc:a9,kernelFunc:l9};var u9=!1,TO=xt(Fi,u9,"bool");var c9=!1,AO=xt(Mn,c9,"bool");var EO;function p9(r){EO=r.wasm.cwrap(Ln,null,["number","number","number"])}function m9(r){let{inputs:{x:e},attrs:{alpha:t},backend:o}=r,n=o.dataIdMap.get(e.dataId).id,s=o.makeOutput(e.shape,e.dtype);if(y.sizeFromShape(e.shape)!==0){let a=o.dataIdMap.get(s.dataId).id;EO(n,t,a)}return s}var DO={kernelName:Ln,backendName:"wasm",setupFunc:p9,kernelFunc:m9};var f9=!1,$O=xt(Li,f9,"bool");var d9=!1,RO=xt(zi,d9,"bool");var FO=Nt(zn);var h9=!1,OO=xt(Vi,h9,"bool");var PO;function g9(r){PO=r.wasm.cwrap(Bn,null,["number, number, number"])}function x9(r){let{backend:e,inputs:t,attrs:o}=r,{reductionIndices:n,keepDims:s}=o,{x:a}=t,l=e.dataIdMap.get(a.dataId).id,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=pn(a,n,e);if(f){let w=e.dataIdMap.get(c.dataId).id;u=c,l=w}let d=u.shape.length;N.assertAxesAreInnerMostDims("max",p,d);let[h,g]=N.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),b=e.makeOutput(h,a.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;PO(l,x,w)}if(f&&e.disposeData(c.dataId),s){let w=N.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var MO={kernelName:Bn,backendName:"wasm",setupFunc:g9,kernelFunc:x9};var y9=!1,LO=xt(Vn,y9);var zO;function b9(r){zO=r.wasm.cwrap(Gn,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function w9(r){let{inputs:e,attrs:t,backend:o}=r,n=e.x,s=o.dataIdMap.get(n.dataId).id,{filterSize:a,strides:i,pad:l,dimRoundingMode:u}=t,c=N.computePool2DInfo(n.shape,a,i,1,l,u),p=c.filterHeight,m=c.filterWidth,f=c.padInfo.top,d=c.padInfo.right,h=c.padInfo.bottom,g=c.padInfo.left,x=c.dilationHeight,b=c.dilationWidth,w=c.strideHeight,_=c.strideWidth,k=c.inChannels,D=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let T=o.makeOutput(c.outShape,"float32"),R=o.dataIdMap.get(T.dataId).id;return zO(s,n.shape[0],n.shape[1],n.shape[2],p,m,f,d,h,g,x,b,w,_,k,D,R),T}var BO={kernelName:Gn,backendName:"wasm",setupFunc:b9,kernelFunc:w9};var VO;function _9(r){VO=r.wasm.cwrap(Wn,null,["number, number, number"])}function k9(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=pn(a,n,e),d=p;if(f){let _=e.dataIdMap.get(c.dataId).id;_!==i&&(u=c,l=_,d=N.getInnerMostAxes(d.length,u.shape.length))}N.assertAxesAreInnerMostDims("mean",d,u.shape.length);let[h,g]=N.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=u;u.dtype!=="float32"&&(b=Ou({backend:e,inputs:{x:u},attrs:{dtype:"float32"}}),l=e.dataIdMap.get(b.dataId).id);let w=e.makeOutput(h,"float32");if(y.sizeFromShape(u.shape)!==0){let _=e.dataIdMap.get(w.dataId).id;VO(l,x,_)}if(f&&e.disposeData(c.dataId),s){let _=N.expandShapeToKeepDim(w.shape,m);w.shape=_}return u.dtype!=="float32"&&e.disposeData(b.dataId),w}var GO={kernelName:Wn,backendName:"wasm",setupFunc:_9,kernelFunc:k9};var WO;function v9(r){WO=r.wasm.cwrap(jn,null,["number, number, number"])}function C9(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=pn(a,n,e);if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w)}let d=u.shape.length;N.assertAxesAreInnerMostDims("min",p,d);let[h,g]=N.computeOutAndReduceShapes(u.shape,p),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;WO(l,x,w)}if(f&&e.disposeData(c.dataId),s){let w=N.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var jO={kernelName:jn,backendName:"wasm",setupFunc:v9,kernelFunc:C9};var I9=!1,UO=xt(Un,I9);var N9=!0,HO=xt(Hn,N9);var qO=Nt(zs);function Tp(r,e){let t=new Int32Array(r.wasm.HEAPU8.buffer,e,4),o=t[0],n=t[1],s=t[2],a=t[3];return r.wasm._free(e),{pSelectedIndices:o,selectedSize:n,pSelectedScores:s,pValidOutputs:a}}var KO;function S9(r){KO=r.wasm.cwrap(ji,"number",["number","number","number","number","number"])}function T9(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a}=o,{boxes:i,scores:l}=t,u=e.dataIdMap.get(i.dataId).id,c=e.dataIdMap.get(l.dataId).id,p=KO(u,c,s,n,a),{pSelectedIndices:m,selectedSize:f,pSelectedScores:d,pValidOutputs:h}=Tp(e,p);return e.wasm._free(d),e.wasm._free(h),e.makeOutput([f],"int32",m)}var XO={kernelName:ji,backendName:"wasm",setupFunc:S9,kernelFunc:T9};var YO;function A9(r){YO=r.wasm.cwrap(Ui,"number",["number","number","number","number","number","bool"])}function E9(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a,padToMaxOutputSize:i}=o,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=YO(c,p,s,n,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Tp(e,m);e.wasm._free(h);let x=e.makeOutput([d],"int32",f),b=e.makeOutput([],"int32",g);return[x,b]}var ZO={kernelName:Ui,backendName:"wasm",setupFunc:A9,kernelFunc:E9};var JO;function D9(r){JO=r.wasm.cwrap(Hi,"number",["number","number","number","number","number","number"])}function $9(r){let{backend:e,inputs:t,attrs:o}=r,{iouThreshold:n,maxOutputSize:s,scoreThreshold:a,softNmsSigma:i}=o,{boxes:l,scores:u}=t,c=e.dataIdMap.get(l.dataId).id,p=e.dataIdMap.get(u.dataId).id,m=JO(c,p,s,n,a,i),{pSelectedIndices:f,selectedSize:d,pSelectedScores:h,pValidOutputs:g}=Tp(e,m);e.wasm._free(g);let x=e.makeOutput([d],"int32",f),b=e.makeOutput([d],"float32",h);return[x,b]}var QO={kernelName:Hi,backendName:"wasm",setupFunc:D9,kernelFunc:$9};var R9=!1,eP=xt(Wi,R9,"bool");var tP;function F9(r){tP=r.wasm.cwrap(qn,null,["number","number","number","number","number"])}function O9(r){let{inputs:e,backend:t,attrs:o}=r,{indices:n}=e,{depth:s,onValue:a,offValue:i}=o,l=t.makeOutput([...n.shape,s],"int32"),u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(n.dataId).id;return tP(p,s,a,i,u),l}var rP={kernelName:qn,backendName:"wasm",setupFunc:F9,kernelFunc:O9};function P9(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(o).fill(1),o}var oP={kernelName:Bs,backendName:"wasm",kernelFunc:P9};function M9(r){let{inputs:e,backend:t,attrs:o}=r,{axis:n}=o;if(e.length===1)return yx({inputs:{input:e[0]},backend:t,attrs:{dim:n}});let s=e[0].shape,a=e[0].dtype;e.forEach(c=>{y.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),y.assert(a===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=e.map(c=>{let p=yx({inputs:{input:c},backend:t,attrs:{dim:n}});return i.push(p),p}),u=pC({inputs:l,backend:t,attrs:{axis:n}});return i.forEach(c=>t.disposeData(c.dataId)),u}var nP={kernelName:Vs,backendName:"wasm",kernelFunc:M9};var sP;function L9(r){sP=r.wasm.cwrap(Kn,null,["number","array","number","number","array","array","number","number"])}function z9(r){let{inputs:{x:e},backend:t,attrs:{paddings:o,constantValue:n}}=r,s=o.map((d,h)=>d[0]+e.shape[h]+d[1]),a=t.dataIdMap.get(e.dataId).id,i=t.makeOutput(s,e.dtype),l=t.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(e.shape).buffer),c=o.map(d=>d[0]),p=o.map(d=>d[1]),m=new Uint8Array(new Int32Array(c).buffer),f=new Uint8Array(new Int32Array(p).buffer);return sP(a,u,e.shape.length,Lt[e.dtype],m,f,n,l),i}var iP={kernelName:Kn,backendName:"wasm",kernelFunc:z9,setupFunc:L9};var B9=!1,aP=xt(Xn,B9);var lP;function V9(r){lP=r.wasm.cwrap(Yn,null,["number","number","number"])}function G9(r){let{inputs:e,backend:t}=r,{x:o,alpha:n}=e,s=t.dataIdMap.get(o.dataId).id,a=t.dataIdMap.get(n.dataId).id,i=t.makeOutput(o.shape,"float32"),l=t.dataIdMap.get(i.dataId).id;return lP(s,a,l),i}var uP={kernelName:Yn,backendName:"wasm",setupFunc:V9,kernelFunc:G9};var cP;function W9(r){cP=r.wasm.cwrap(qi,null,["number","number","number","number"])}function j9(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=pn(a,n,e),d=p;if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w,d=N.getInnerMostAxes(d.length,u.shape.length))}N.assertAxesAreInnerMostDims("prod",d,u.shape.length);let[h,g]=N.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;cP(l,x,Lt[b.dtype],w)}if(f&&e.disposeData(c.dataId),s){let w=N.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var pP={kernelName:qi,backendName:"wasm",setupFunc:W9,kernelFunc:j9};var U9=r=>{let{backend:e,attrs:t}=r,{start:o,stop:n,step:s,dtype:a}=t,i=ku(o,n,s,a),l=e.makeOutput([i.length],a);return e.typedArrayFromHeap(l).set(i),l},mP={kernelName:Ja,backendName:"wasm",kernelFunc:U9};var H9=!0,fP=xt($n,H9);var dP=Nt(Zn);var hP=Nt(Qn);var gP;function q9(r){gP=r.wasm.cwrap(Jn,null,["number","number","number","number","number","number","number","number","number","number"])}function K9(r){let{backend:e,inputs:t,attrs:o}=r,{images:n}=t,{alignCorners:s,halfPixelCenters:a,size:i}=o,[l,u]=i,[c,p,m,f]=n.shape,d=[c,l,u,f],h=e.dataIdMap.get(n.dataId),g;h.dtype!=="float32"&&(g=Ou({backend:e,inputs:{x:n},attrs:{dtype:"float32"}}),h=e.dataIdMap.get(g.dataId));let x=h.id,b=e.makeOutput(d,"float32");if(y.sizeFromShape(n.shape)===0)return b;let w=e.dataIdMap.get(b.dataId).id;return gP(x,c,p,m,f,l,u,s?1:0,a?1:0,w),g!=null&&e.disposeData(g.dataId),b}var xP={kernelName:Jn,backendName:"wasm",setupFunc:q9,kernelFunc:K9};var yP;function X9(r){yP=r.wasm.cwrap(es,null,["number","array","number","array","number","number"])}function Y9(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,{dims:s}=o,a=y.parseAxisParam(s,n.shape);if(n.shape.length===0)return Fu({inputs:{x:n},backend:t});let i=t.makeOutput(n.shape,n.dtype),l=t.dataIdMap.get(n.dataId).id,u=t.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(a).buffer),p=new Uint8Array(new Int32Array(n.shape).buffer);yP(l,c,a.length,p,n.shape.length,u);let m=Br({inputs:{x:i},attrs:{shape:n.shape},backend:t});return t.disposeData(i.dataId),m}var bP={kernelName:es,backendName:"wasm",kernelFunc:Y9,setupFunc:X9};var wP;function Z9(r){wP=r.wasm.cwrap(oa,null,["number","number","number","number","number","number","number","number","array","number","number"])}function J9(r){let{inputs:e,backend:t,attrs:o}=r,{image:n}=e,{radians:s,fillValue:a,center:i}=o,l=t.makeOutput(n.shape,n.dtype),u=t.dataIdMap.get(n.dataId).id,c=t.dataIdMap.get(l.dataId).id,[p,m,f,d]=n.shape,[h,g]=N.getImageCenter(i,m,f),x=a===0,b=255,w=typeof a=="number"?[a,a,a,x?0:b]:[...a,b],_=new Uint8Array(new Int32Array(w).buffer);return wP(u,p,m,f,d,s,h,g,_,w.length,c),l}var _P={kernelName:oa,backendName:"wasm",kernelFunc:J9,setupFunc:Z9};var kP=Nt(ts);var vP=Nt(rs);var CP;function Q9(r){CP=r.wasm.cwrap(Xi,null,["number","number","number","number","number","number","array","number","number"])}function eJ(r){let{backend:e,inputs:t,attrs:o}=r,{indices:n,updates:s}=t,{shape:a}=o,i=e.makeOutput(a,s.dtype);if(y.sizeFromShape(a)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:m}=ng.calculateShapes(s,n,a),d=e.dataIdMap.get(n.dataId).id,g=e.dataIdMap.get(s.dataId).id,x=new Uint8Array(new Int32Array(p).buffer),b=e.dataIdMap.get(i.dataId).id;return CP(d,g,Lt[s.dtype],l,u,c,x,m,b),i}var IP={kernelName:Xi,backendName:"wasm",setupFunc:Q9,kernelFunc:eJ};var NP;function tJ(r){NP=r.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function rJ(r){let{inputs:e,backend:t}=r,{condition:o,t:n,e:s}=e,a=t.dataIdMap.get(o.dataId).id,i=t.dataIdMap.get(n.dataId).id,l=t.dataIdMap.get(s.dataId).id,u=t.makeOutput(n.shape,n.dtype),c=t.dataIdMap.get(u.dataId).id,p=o.shape.length,m=n.shape.length,f=p===0||p>1||m===1?1:y.sizeFromShape(n.shape.slice(1));return NP(a,i,l,f,c),u}var SP={kernelName:Ws,backendName:"wasm",kernelFunc:rJ,setupFunc:tJ};var TP;function oJ(r){TP=r.wasm.cwrap(ns,null,["number","number"])}function nJ(r){let{backend:e,inputs:{x:t}}=r,o=e.dataIdMap.get(t.dataId).id,n=e.makeOutput(t.shape,t.dtype),s=e.dataIdMap.get(n.dataId).id;return y.sizeFromShape(n.shape)===0||TP(o,s),n}var AP={kernelName:"Sigmoid",backendName:"wasm",setupFunc:oJ,kernelFunc:nJ};var EP=Nt(os);function Pu(r){let{inputs:{x:e},attrs:{begin:t,size:o},backend:n}=r,[s,a]=er.parseSliceParams(e,t,o),i=er.isSliceContinous(e.shape,s,a),l=n.readSync(e.dataId),u=n.makeOutput(a,e.dtype),c=y.computeStrides(e.shape),p=n.dataIdMap.get(u.dataId);if(i){let d=er.computeFlatOffset(s,c);return e.dtype==="string"?p.stringBytes=l.slice(d,d+y.sizeFromShape(a)):n.typedArrayFromHeap(u).set(l.subarray(d,d+y.sizeFromShape(a))),u}if(e.dtype==="string"){let d=vu(l,s,a,e.shape,e.dtype);return p.stringBytes=d,u}let m=n.typedArrayFromHeap(u),f=e.shape.length;if(f===2)sJ(l,c[0],m,s,a);else if(f===3)iJ(l,c[0],c[1],m,s,a);else if(f===4)aJ(l,c[0],c[1],c[2],m,s,a);else{let d=vu(l,s,a,e.shape,e.dtype);m.set(d)}return u}function sJ(r,e,t,o,n){let s=0,a=o[0],i=o[1],l=a+n[0];for(let u=a;u<l;u++){let c=u*e+i;t.set(r.subarray(c,c+n[1]),s),s+=n[1]}}function iJ(r,e,t,o,n,s){let a=0,i=n[0],l=n[1],u=n[2],c=i+s[0],p=l+s[1];for(let m=i;m<c;m++)for(let f=l;f<p;f++){let d=m*e+f*t+u;o.set(r.subarray(d,d+s[2]),a),a+=s[2]}}function aJ(r,e,t,o,n,s,a){let i=0,l=s[0],u=s[1],c=s[2],p=l+a[0],m=u+a[1],f=c+a[2],d=s[3];for(let h=l;h<p;h++)for(let g=u;g<m;g++)for(let x=c;x<f;x++){let b=h*e+g*t+x*o+d;n.set(r.subarray(b,b+a[3]),i),i+=a[3]}}var DP={kernelName:js,backendName:"wasm",kernelFunc:Pu};var $P;function lJ(r){$P=r.wasm.cwrap(as,null,["number","number","number","number"])}function uJ(r){let{backend:e,inputs:{logits:t},attrs:{dim:o}}=r,n=e.dataIdMap.get(t.dataId).id,s=e.makeOutput(t.shape,t.dtype),a=e.dataIdMap.get(s.dataId).id,i=t.shape[o],l=y.sizeFromShape(t.shape)/i;return y.sizeFromShape(s.shape)===0||$P(n,a,i,l),s}var RP={kernelName:as,backendName:"wasm",setupFunc:lJ,kernelFunc:uJ};function cJ(r){let{inputs:e,attrs:t,backend:o}=r,{x:n}=e,{numOrSizeSplits:s,axis:a}=t,i=y.parseAxisParam(a,n.shape)[0],l=N.prepareSplitSize(n,s,i),u=new Array(n.shape.length).fill(0),c=n.shape.slice();return l.map(p=>{let m=[...c];m[i]=p;let f=Pu({inputs:{x:n},attrs:{begin:u,size:m},backend:o});return u[i]+=p,f})}var FP={kernelName:Us,backendName:"wasm",kernelFunc:cJ};var OP=Nt(ss);var PP=Nt(tl);var pJ=!0,MP=xt(ls,pJ);var LP;function mJ(r){LP=r.wasm.cwrap(Xo,null,["number","number","number"])}function fJ(r){let{backend:e,inputs:t,attrs:o}=r,{alpha:n}=o,{x:s}=t,a=e.dataIdMap.get(s.dataId).id,i=e.makeOutput(s.shape,s.dtype),l=e.dataIdMap.get(i.dataId).id;return LP(a,n,l),i}var zP={kernelName:Xo,backendName:"wasm",setupFunc:mJ,kernelFunc:fJ};var BP;function dJ(r){BP=r.wasm.cwrap(ea,null,["number","array","number","array","array","array","array","array","number","number"])}function hJ(r){let{backend:e,inputs:t,attrs:o}=r,{x:n}=t,{begin:s,end:a,strides:i}=o;i==null&&(i=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:m}=o,f=N.slice_util.maskToAxes(c);if(f.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&m!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let d=n.shape.length-s.length,h=N.slice_util.maskToAxes(p),g=n.shape.slice();h.forEach(G=>{s[G]=0,a[G]=1,g.splice(G,0,1)});let x=Br({inputs:{x:n},attrs:{shape:g},backend:e}),{begin:b,end:w,strides:_}=N.slice_util.getNormalizedAxes(x.shape,f,d,s,a,i,l,u,c);s=b,a=w,i=_;let k=N.slice_util.maskToAxes(m);k.forEach(G=>{a[G]=s[G]+1,i[G]=1});let D=N.slice_util.computeOutShape(s,a,i),T=D.filter((G,j)=>k.indexOf(j)===-1);if(i.every(G=>G===1)){let G=Pu({inputs:{x},attrs:{begin:s,size:D},backend:e});e.disposeData(x.dataId);let j=Br({inputs:{x:G},attrs:{shape:T},backend:e});return e.disposeData(G.dataId),j}let O=e.makeOutput(T,"float32");if(!T.some(G=>G===0)){let G=e.dataIdMap.get(x.dataId).id,j=new Uint8Array(new Int32Array(y.computeStrides(x.shape)).buffer),U=new Uint8Array(new Int32Array(s).buffer),H=new Uint8Array(new Int32Array(a).buffer),q=new Uint8Array(new Int32Array(i).buffer),X=new Uint8Array(new Int32Array(T).buffer),oe=new Uint8Array(new Int32Array(y.computeStrides(T)).buffer),Y=e.dataIdMap.get(O.dataId).id;BP(G,j,x.shape.length,U,H,q,X,oe,T.length,Y)}e.disposeData(x.dataId);let M=Br({inputs:{x:O},attrs:{shape:T},backend:e});return e.disposeData(O.dataId),M}var VP={kernelName:ea,backendName:"wasm",setupFunc:dJ,kernelFunc:hJ};var gJ=!0,GP=xt(us,gJ);var WP;function xJ(r){WP=r.wasm.cwrap(is,null,["number, number, number"])}function yJ(r){let{backend:e,inputs:t,attrs:o}=r,{axis:n,keepDims:s}=o,{x:a}=t,i=e.dataIdMap.get(a.dataId).id,l=i,u=a,{transposed:c,axes:p,originalAxes:m,inputWasTransposed:f}=pn(a,n,e),d=p;if(f){let w=e.dataIdMap.get(c.dataId).id;w!==i&&(u=c,l=w,d=N.getInnerMostAxes(d.length,u.shape.length))}N.assertAxesAreInnerMostDims("sum",d,u.shape.length);let[h,g]=N.computeOutAndReduceShapes(u.shape,d),x=y.sizeFromShape(g),b=e.makeOutput(h,u.dtype);if(y.sizeFromShape(u.shape)!==0){let w=e.dataIdMap.get(b.dataId).id;WP(l,x,w)}if(f&&e.disposeData(c.dataId),s){let w=N.expandShapeToKeepDim(b.shape,m);b.shape=w}return b}var jP={kernelName:is,backendName:"wasm",setupFunc:xJ,kernelFunc:yJ};var UP=Nt(cs);var HP;function bJ(r){HP=r.wasm.cwrap(Oo,null,["number","array","number","array","number","number"])}function wJ(r){let{inputs:e,backend:t,attrs:o}=r,{x:n}=e,s=t.dataIdMap.get(n.dataId).id,{reps:a}=o,i=new Array(n.shape.length);for(let m=0;m<i.length;m++)i[m]=n.shape[m]*a[m];let l=new Uint8Array(new Int32Array(n.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=t.makeOutput(i,n.dtype),p=t.dataIdMap.get(c.dataId).id;return HP(s,l,n.shape.length,u,i.length,Lt[c.dtype],p),c}var qP={kernelName:Oo,backendName:"wasm",setupFunc:bJ,kernelFunc:wJ};var KP;function _J(r){KP=r.wasm.cwrap(ra,null,["number","array","number","number","number","bool","number","number"])}var kJ=({inputs:r,backend:e,attrs:t})=>{let{x:o}=r,{k:n,sorted:s}=t,a=e.dataIdMap.get(o.dataId).id,i=new Uint8Array(new Int32Array(o.shape).buffer),l=o.shape.slice();l[l.length-1]=n;let u=e.makeOutput(l,o.dtype),c=e.dataIdMap.get(u.dataId).id,p=e.makeOutput(l,"int32"),m=e.dataIdMap.get(p.dataId).id;return KP(a,i,o.shape.length,Lt[o.dtype],n,s,c,m),[u,p]},XP={kernelName:ra,backendName:"wasm",setupFunc:_J,kernelFunc:kJ};function vJ(r){let{inputs:e,backend:t,attrs:o}=r,{value:n}=e,{axis:s}=o;s<0&&(s+=n.shape.length);let a=n.shape[s],i=n.shape.length,l=new Array(i-1),u=0;for(let f=0;f<i;f++)f!==s&&(l[u++]=n.shape[f]);let c=new Array(a),p=new Array(i).fill(0),m=n.shape.slice();m[s]=1;for(let f=0;f<c.length;f++)p[s]=f,c[f]=Pu({inputs:{x:n},attrs:{begin:p,size:m},backend:t});return c.map(({dataId:f,dtype:d})=>({dataId:f,dtype:d,shape:l}))}var YP={kernelName:Hs,backendName:"wasm",kernelFunc:vJ};function CJ(r){let{inputs:{x:e},backend:t}=r,o=t.makeOutput(e.shape,e.dtype);return t.typedArrayFromHeap(o).fill(0),o}var ZP={kernelName:qs,backendName:"wasm",kernelFunc:CJ};var IJ=[$F,RF,OF,BF,GF,UF,HF,qF,XF,YF,JF,eO,tO,oO,sO,aO,uO,cO,pO,mO,fO,hO,gO,xO,DF,bO,_O,vO,IO,SO,TO,AO,PF,DO,$O,RO,FO,OO,MO,LO,BO,GO,jO,UO,HO,qO,XO,ZO,QO,eP,rP,oP,nP,iP,aP,uP,pP,mP,fP,dP,hP,WF,xP,bP,_P,vP,kP,IP,SP,AP,EP,DP,RP,FP,OP,PP,MP,zP,VP,GP,jP,UP,qP,XP,LF,YP,ZP];for(let r of IJ)Bl(r);var fC=W();fC.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));fC.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(fC.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(r){return!1}});var yC=ac(eM());var tM='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}';var oM=ac(rM());var _x=class extends $s{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Va(this,Zo())}write(e,t,o){let n={id:this.dataIdNextNumber++};return this.move(n,e,t,o,1),n}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=y.now();return e(),{kernelMs:y.now()-t}}move(e,t,o,n,s){let a=this.dataIdNextNumber++;if(n==="string"){let c=t;this.dataIdMap.set(e,{id:a,stringBytes:c,shape:o,dtype:n,memoryOffset:null,refCount:s});return}let i=y.sizeFromShape(o),l=i*y.bytesPerElement(n),u=this.wasm._malloc(l);this.dataIdMap.set(e,{id:a,memoryOffset:u,shape:o,dtype:n,refCount:s}),this.wasm.tfjs.registerTensor(a,i,u),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,l),u)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:o,shape:n,stringBytes:s}=this.dataIdMap.get(e);if(o==="string")return s;let a=this.wasm.HEAPU8.slice(t,t+y.sizeFromShape(n)*y.bytesPerElement(o));return NJ(a.buffer,o)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let o=this.dataIdMap.get(e);if(o.refCount--,!t&&o.refCount>0)return!1;this.wasm._free(o.memoryOffset),this.wasm.tfjs.disposeData(o.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,o){let n;if(o==null)n=this.write(null,e,t);else{let s=this.dataIdNextNumber++;n={id:s},this.dataIdMap.set(n,{id:s,memoryOffset:o,shape:e,dtype:t,refCount:1});let a=y.sizeFromShape(e);this.wasm.tfjs.registerTensor(s,a,o)}return{dataId:n,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:o}){let n=this.wasm.HEAPU8.buffer,{memoryOffset:s}=this.dataIdMap.get(o),a=y.sizeFromShape(e);switch(t){case"float32":return new Float32Array(n,s,a);case"int32":return new Int32Array(n,s,a);case"bool":return new Uint8Array(n,s,a);default:throw new Error(`Unknown dtype ${t}`)}}};function SJ(r){return(e,t)=>(y.fetch(r,{credentials:"same-origin"}).then(o=>{o.ok||e.env.a(`failed to load wasm binary file at '${r}'`),o.arrayBuffer().then(n=>{WebAssembly.instantiate(n,e).then(s=>{t(s.instance)})})}),{})}function nM(r,e,t){if(kx!=null)return kx;let o="tfjs-backend-wasm.wasm";return r&&e?o="tfjs-backend-wasm-threaded-simd.wasm":r&&(o="tfjs-backend-wasm-simd.wasm"),Lf!=null&&Lf[o]!=null?Lf[o]:t+o}async function sM(){let[r,e]=await Promise.all([W().getAsync("WASM_HAS_SIMD_SUPPORT"),W().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((t,o)=>{let n={};n.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=tM,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?nM(r,e,zf!=null?zf:l):l+i},bC&&(n.instantiateWasm=SJ(nM(r,e,zf!=null?zf:"")));let s=!1;n.onAbort=()=>{if(s||Bf)return;Bf=!0,o({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let a;e&&r&&kx==null?(n.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+yC.default.toString()],{type:"text/javascript"}),a=(0,yC.default)(n)):a=(0,oM.default)(n),a.then(i=>{s=!0,Bf=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},t({wasm:i})})})}function NJ(r,e){switch(e){case"float32":return new Float32Array(r);case"int32":return new Int32Array(r);case"bool":return new Uint8Array(r);default:throw new Error(`Unknown dtype ${e}`)}}var TJ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],kx=null,zf=null,Lf={},Bf=!1,bC=!1;function AJ(r,e=!1){if(kw("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Bf)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");kx=r,bC=e}function EJ(r,e=!1){if(Bf)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof r=="string")zf=r;else{Lf=r;let t=TJ.filter(o=>Lf[o]==null);if(t.length>0)throw new Error(`There were no entries found for the following binaries: ${t.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}bC=e}var wC="3.3.0";var DJ=2;Xc("wasm",async()=>{let{wasm:r}=await sM();return new _x(r)},DJ);F().prototype.abs=function(){return this.throwIfDisposed(),It(this)};F().prototype.acos=function(){return this.throwIfDisposed(),Fm(this)};F().prototype.acosh=function(){return this.throwIfDisposed(),Om(this)};F().prototype.add=function(r){return this.throwIfDisposed(),ee(this,r)};F().prototype.all=function(r,e){return this.throwIfDisposed(),ql(this,r,e)};F().prototype.any=function(r,e){return this.throwIfDisposed(),al(this,r,e)};F().prototype.argMax=function(r){return this.throwIfDisposed(),ll(this,r)};F().prototype.argMin=function(r){return this.throwIfDisposed(),Pm(this,r)};F().prototype.asScalar=function(){return this.throwIfDisposed(),A(this.size===1,()=>"The array must have only 1 element."),L(this,[])};F().prototype.asType=function(r){return this.throwIfDisposed(),ne(this,r)};F().prototype.as1D=function(){return this.throwIfDisposed(),L(this,[this.size])};F().prototype.as2D=function(r,e){return this.throwIfDisposed(),L(this,[r,e])};F().prototype.as3D=function(r,e,t){return this.throwIfDisposed(),L(this,[r,e,t])};F().prototype.as4D=function(r,e,t,o){return this.throwIfDisposed(),L(this,[r,e,t,o])};F().prototype.as5D=function(r,e,t,o,n){return this.throwIfDisposed(),L(this,[r,e,t,o,n])};F().prototype.asin=function(){return this.throwIfDisposed(),Mm(this)};F().prototype.asinh=function(){return this.throwIfDisposed(),Lm(this)};F().prototype.atan=function(){return this.throwIfDisposed(),zm(this)};F().prototype.atan2=function(r){return this.throwIfDisposed(),Bm(this,r)};F().prototype.atanh=function(){return this.throwIfDisposed(),Vm(this)};F().prototype.avgPool=function(r,e,t,o){return this.throwIfDisposed(),ua(this,r,e,t,o)};F().prototype.batchToSpaceND=function(r,e){return this.throwIfDisposed(),ca(this,r,e)};F().prototype.batchNorm=function(r,e,t,o,n){return this.throwIfDisposed(),Jo(this,r,e,t,o,n)};F().prototype.broadcastTo=function(r){return this.throwIfDisposed(),ul(this,r)};F().prototype.cast=function(r){return this.throwIfDisposed(),ne(this,r)};F().prototype.ceil=function(){return this.throwIfDisposed(),Wm(this)};F().prototype.clipByValue=function(r,e){return this.throwIfDisposed(),ar(this,r,e)};F().prototype.concat=function(r,e){return this.throwIfDisposed(),r instanceof Ve&&(r=[r]),Ze([this,...r],e)};F().prototype.conv1d=function(r,e,t,o,n,s){return this.throwIfDisposed(),Yl(this,r,e,t,o,n,s)};F().prototype.conv2dTranspose=function(r,e,t,o,n){return this.throwIfDisposed(),Zl(this,r,e,t,o,n)};F().prototype.conv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),Jr(this,r,e,t,o,n,s)};F().prototype.cos=function(){return this.throwIfDisposed(),pa(this)};F().prototype.cosh=function(){return this.throwIfDisposed(),Jl(this)};F().prototype.cumsum=function(r,e,t){return this.throwIfDisposed(),Ql(this,r,e,t)};F().prototype.depthToSpace=function(r,e){return this.throwIfDisposed(),Um(this,r,e)};F().prototype.depthwiseConv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),ds(this,r,e,t,o,n,s)};F().prototype.dilation2d=function(r,e,t,o,n){return this.throwIfDisposed(),Hm(this,r,e,t,o,n)};F().prototype.divNoNan=function(r){return this.throwIfDisposed(),qm(this,r)};F().prototype.div=function(r){return this.throwIfDisposed(),me(this,r)};F().prototype.dot=function(r){return this.throwIfDisposed(),Pw(this,r)};F().prototype.elu=function(){return this.throwIfDisposed(),hs(this)};F().prototype.equal=function(r){return this.throwIfDisposed(),Io(this,r)};F().prototype.erf=function(){return this.throwIfDisposed(),Km(this)};F().prototype.exp=function(){return this.throwIfDisposed(),Zt(this)};F().prototype.expandDims=function(r){return this.throwIfDisposed(),lr(this,r)};F().prototype.expm1=function(){return this.throwIfDisposed(),Xm(this)};F().prototype.fft=function(){return this.throwIfDisposed(),ba(this)};F().prototype.flatten=function(){return this.throwIfDisposed(),L(this,[this.size])};F().prototype.floor=function(){return this.throwIfDisposed(),gs(this)};F().prototype.floorDiv=function(r){return this.throwIfDisposed(),Hl(this,r)};F().prototype.gather=function(r,e){return this.throwIfDisposed(),Qo(this,r,e)};F().prototype.greaterEqual=function(r){return this.throwIfDisposed(),po(this,r)};F().prototype.greater=function(r){return this.throwIfDisposed(),tr(this,r)};F().prototype.ifft=function(){return this.throwIfDisposed(),ti(this)};F().prototype.irfft=function(){return this.throwIfDisposed(),mu(this)};F().prototype.isFinite=function(){return this.throwIfDisposed(),Mw(this)};F().prototype.isInf=function(){return this.throwIfDisposed(),Lw(this)};F().prototype.isNaN=function(){return this.throwIfDisposed(),zw(this)};F().prototype.leakyRelu=function(r){return this.throwIfDisposed(),fa(this,r)};F().prototype.lessEqual=function(r){return this.throwIfDisposed(),zo(this,r)};F().prototype.less=function(r){return this.throwIfDisposed(),tu(this,r)};F().prototype.localResponseNormalization=function(r,e,t,o){return this.throwIfDisposed(),Ym(this,r,e,t,o)};F().prototype.logSigmoid=function(){return this.throwIfDisposed(),Vw(this)};F().prototype.logSoftmax=function(r){return this.throwIfDisposed(),ou(this,r)};F().prototype.logSumExp=function(r,e){return this.throwIfDisposed(),Jm(this,r,e)};F().prototype.log=function(){return this.throwIfDisposed(),ur(this)};F().prototype.log1p=function(){return this.throwIfDisposed(),ru(this)};F().prototype.logicalAnd=function(r){return this.throwIfDisposed(),gr(this,r)};F().prototype.logicalNot=function(){return this.throwIfDisposed(),da(this)};F().prototype.logicalOr=function(r){return this.throwIfDisposed(),nu(this,r)};F().prototype.logicalXor=function(r){return this.throwIfDisposed(),Uw(this,r)};F().prototype.matMul=function(r,e,t){return this.throwIfDisposed(),je(this,r,e,t)};F().prototype.maxPool=function(r,e,t,o){return this.throwIfDisposed(),ha(this,r,e,t,o)};F().prototype.max=function(r,e){return this.throwIfDisposed(),cr(this,r,e)};F().prototype.maximum=function(r){return this.throwIfDisposed(),eo(this,r)};F().prototype.mean=function(r,e){return this.throwIfDisposed(),dt(this,r,e)};F().prototype.min=function(r,e){return this.throwIfDisposed(),ei(this,r,e)};F().prototype.minimum=function(r){return this.throwIfDisposed(),ys(this,r)};F().prototype.mirrorPad=function(r,e){return this.throwIfDisposed(),ef(this,r,e)};F().prototype.mod=function(r){return this.throwIfDisposed(),tf(this,r)};F().prototype.mul=function(r){return this.throwIfDisposed(),P(this,r)};F().prototype.neg=function(){return this.throwIfDisposed(),He(this)};F().prototype.norm=function(r,e,t){return this.throwIfDisposed(),np(this,r,e,t)};F().prototype.notEqual=function(r){return this.throwIfDisposed(),tn(this,r)};F().prototype.oneHot=function(r,e=1,t=0){return this.throwIfDisposed(),fs(this,r,e,t)};F().prototype.onesLike=function(){return this.throwIfDisposed(),rr(this)};F().prototype.pad=function(r,e){return this.throwIfDisposed(),Mr(this,r,e)};F().prototype.pool=function(r,e,t,o,n){return this.throwIfDisposed(),Kw(this,r,e,t,o,n)};F().prototype.pow=function(r){return this.throwIfDisposed(),Lr(this,r)};F().prototype.prelu=function(r){return this.throwIfDisposed(),xa(this,r)};F().prototype.prod=function(r,e){return this.throwIfDisposed(),su(this,r,e)};F().prototype.reciprocal=function(){return this.throwIfDisposed(),rf(this)};F().prototype.relu=function(){return this.throwIfDisposed(),Er(this)};F().prototype.relu6=function(){return this.throwIfDisposed(),au(this)};F().prototype.reshapeAs=function(r){return this.throwIfDisposed(),L(this,r.shape)};F().prototype.reshape=function(r){return this.throwIfDisposed(),L(this,r)};F().prototype.resizeBilinear=function(r,e,t){return this.throwIfDisposed(),Ng(this,r,e,t)};F().prototype.resizeNearestNeighbor=function(r,e,t){return this.throwIfDisposed(),Sg(this,r,e,t)};F().prototype.reverse=function(r){return this.throwIfDisposed(),qt(this,r)};F().prototype.rfft=function(){return this.throwIfDisposed(),wa(this)};F().prototype.round=function(){return this.throwIfDisposed(),of(this)};F().prototype.rsqrt=function(){return this.throwIfDisposed(),lu(this)};F().prototype.selu=function(){return this.throwIfDisposed(),uu(this)};F().prototype.separableConv2d=function(r,e,t,o,n,s){return this.throwIfDisposed(),nf(this,r,e,t,o,n,s)};F().prototype.sigmoid=function(){return this.throwIfDisposed(),Zr(this)};F().prototype.sign=function(){return this.throwIfDisposed(),sf(this)};F().prototype.sin=function(){return this.throwIfDisposed(),cu(this)};F().prototype.sinh=function(){return this.throwIfDisposed(),pu(this)};F().prototype.slice=function(r,e){return this.throwIfDisposed(),Re(this,r,e)};F().prototype.softmax=function(r){return this.throwIfDisposed(),ya(this,r)};F().prototype.softplus=function(){return this.throwIfDisposed(),xs(this)};F().prototype.spaceToBatchND=function(r,e){return this.throwIfDisposed(),ga(this,r,e)};F().prototype.split=function(r,e){return this.throwIfDisposed(),pr(this,r,e)};F().prototype.sqrt=function(){return this.throwIfDisposed(),gt(this)};F().prototype.square=function(){return this.throwIfDisposed(),Oe(this)};F().prototype.squaredDifference=function(r){return this.throwIfDisposed(),fu(this,r)};F().prototype.squeeze=function(r){return this.throwIfDisposed(),No(this,r)};F().prototype.stack=function(r,e){this.throwIfDisposed();let t=r instanceof Ve?[this,r]:[this,...r];return Bt(t,e)};F().prototype.step=function(r){return this.throwIfDisposed(),ws(this,r)};F().prototype.stridedSlice=function(r,e,t,o,n,s,a,i){return this.throwIfDisposed(),uf(this,r,e,t,o,n,s,a,i)};F().prototype.sub=function(r){return this.throwIfDisposed(),ce(this,r)};F().prototype.sum=function(r,e){return this.throwIfDisposed(),ge(this,r,e)};F().prototype.tan=function(){return this.throwIfDisposed(),cf(this)};F().prototype.tanh=function(){return this.throwIfDisposed(),Qs(this)};F().prototype.tile=function(r){return this.throwIfDisposed(),Lo(this,r)};F().prototype.toBool=function(){return this.throwIfDisposed(),ne(this,"bool")};F().prototype.toFloat=function(){return this.throwIfDisposed(),ne(this,"float32")};F().prototype.toInt=function(){return this.throwIfDisposed(),ne(this,"int32")};F().prototype.topk=function(r,e){return this.throwIfDisposed(),pf(this,r,e)};F().prototype.transpose=function(r){return this.throwIfDisposed(),Ke(this,r)};F().prototype.unique=function(r){return this.throwIfDisposed(),op(this,r)};F().prototype.unsortedSegmentSum=function(r,e){return this.throwIfDisposed(),mf(this,r,e)};F().prototype.unstack=function(r){return this.throwIfDisposed(),mr(this,r)};F().prototype.where=function(r,e){return this.throwIfDisposed(),Dt(r,this,e)};F().prototype.zerosLike=function(){return this.throwIfDisposed(),Ce(this)};var vx={kernelName:Os,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,ws(ne(t,"float32"),-1))}}};var iM={kernelName:yi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=Oe(ne(t,"float32")),n=gt(ce(le(1),o));return He(me(r,n))}}}};var aM={kernelName:bi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=gt(ce(Oe(ne(t,"float32")),1));return me(r,o)}}}};var lM={kernelName:Fo,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=r,l=_t(t.shape,n);return l.length>0&&(i=ge(i,l)),L(i,t.shape)},b:()=>{let i=r,l=_t(o.shape,n);return l.length>0&&(i=ge(i,l)),L(i,o.shape)}}}};var uM={kernelName:kn,saveAllInputs:!0,gradFunc:(r,e)=>{let t={};return e.forEach((o,n)=>{t[n]=()=>r.clone()}),t}};var cM={kernelName:vn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ce(t)}}};var pM={kernelName:Ga,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>Ce(t)}}};var mM={kernelName:wi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,gt(ce(le(1),Oe(ne(t,"float32")))))}}};var fM={kernelName:_i,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=gt(ee(le(1),Oe(ne(t,"float32"))));return me(r,o)}}}};var dM={kernelName:Ci,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=ee(Oe(t),Oe(o)),l=P(r,me(o,i)),u=_t(t.shape,n);return u.length>0&&(l=ge(l,u)),L(l,t.shape)},b:()=>{let i=ee(Oe(t),Oe(o)),l=He(P(r,me(t,i))),u=_t(o.shape,n);return u.length>0&&(l=ge(l,u)),L(l,o.shape)}}}};var hM={kernelName:ki,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ee(Oe(ne(t,"float32")),1))}}};var gM={kernelName:vi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ce(le(1),Oe(ne(t,"float32"))))}}};function $J(r,e,t,o,n,s){let a=v(r,"dy","avgPool3dGrad"),i=v(e,"input","avgPool3dGrad"),l=a,u=i,c=!1;i.rank===4&&(c=!0,l=L(a,[1,a.shape[0],a.shape[1],a.shape[2],a.shape[3]]),u=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),A(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),A(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&A(ot(n),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${n}.`);let p={dy:l,input:u},m={filterSize:t,strides:o,pad:n,dimRoundingMode:s},f=E.runKernel(hc,p,m);return c?L(f,[f.shape[1],f.shape[2],f.shape[3],f.shape[4]]):f}var xM=S({avgPool3dGrad_:$J});var yM={kernelName:Wa,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{filterSize:n,strides:s,pad:a,dimRoundingMode:i}=t;return{x:()=>xM(r,o,n,s,a,i)}}};function RJ(r,e,t,o,n){let s=v(r,"dy","avgPoolGrad"),a=v(e,"input","avgPoolGrad");A(a.rank===s.rank,()=>`Rank of input (${a.rank}) does not match rank of dy (${s.rank})`);let i=a,l=s,u=!1;a.rank===3&&(u=!0,i=L(a,[1,a.shape[0],a.shape[1],a.shape[2]]),l=L(s,[1,s.shape[0],s.shape[1],s.shape[2]])),A(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),A(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:t,strides:o,pad:n},m=E.runKernel(dc,c,p);return u?L(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var bM=S({avgPoolGrad_:RJ});var wM={kernelName:Cn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{filterSize:n,strides:s,pad:a}=t;return{x:()=>bM(r,o,n,s,a)}}};var _M={kernelName:In,inputsToSave:["a","b"],gradFunc:(r,e,t)=>{let[o,n]=e,{transposeA:s,transposeB:a}=t;return!s&&!a?{a:()=>je(r,n,!1,!0),b:()=>je(o,r,!0,!1)}:!s&&a?{a:()=>je(r,n,!1,!1),b:()=>je(r,o,!0,!1)}:s&&!a?{a:()=>je(n,r,!1,!0),b:()=>je(o,r,!1,!1)}:{a:()=>je(n,r,!0,!0),b:()=>je(r,o,!0,!0)}}};var kM={kernelName:ja,gradFunc:(r,e,t)=>{let{blockShape:o,crops:n}=t;return{x:()=>ga(r,o,n)}}};var vM={kernelName:sS,gradFunc:(r,e,t)=>{let o=t,n=o.inputShape,s=o.shape,a=Array.from(s);for(let l=n.length-1;l>=0;l--)if(n[l]===s[l])a[l]=1;else if(n[l]!==1)throw new Error(`broadcastTo(): [${n}] cannot be broadcast to [${s}].`);let i=[];for(let l=0;l<a.length;l++)a[l]>1&&i.push(l);return{x:()=>ge(r,i,!0)}}};var CM={kernelName:Ho,gradFunc:r=>({x:()=>r.clone()})};var IM={kernelName:Nn,gradFunc:r=>({x:()=>Ce(r)})};var NM={kernelName:qo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{clipValueMin:n,clipValueMax:s}=t;return{x:()=>Dt(gr(po(o,n),zo(o,s)),r,Ce(r))}}};var SM={kernelName:Ua,inputsToSave:["x"],gradFunc:vx.gradFunc};var TM={kernelName:Ps,saveAllInputs:!0,gradFunc:(r,e,t)=>{let o=e.map(l=>l.shape),{axis:n}=t,s=Qt(n,e[0].shape)[0],a=o.map(l=>l[s]);return pr(r,a,s).map(l=>()=>l)}};var AM={kernelName:Sn,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,{dilations:s,strides:a,pad:i,dataFormat:l}=t;return A(Mo(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Zc(o.shape,r,n,a,i,l),filter:()=>sp(o,r,n.shape,a,i,l)}}};var EM={kernelName:Tn,inputsToSave:["dy","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,{strides:s,pad:a,dataFormat:i,dimRoundingMode:l}=t;return{dy:()=>Jr(r,n,s,a,i,1,l),filter:()=>sp(r,o,n.shape,s,a,i,l)}}};function FJ(r,e,t,o,n){let s=r;r.rank===4&&(s=L(r,[1,r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));let a=e;a.rank===4&&(a=L(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]])),A(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),A(a.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${a.shape}.`),A(t.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${t}.`),A(s.shape[4]===t[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${t[3]}.`),A(a.shape[4]===t[4],()=>`Error in conv3dDerFilter: depth of dy (${a.shape[4]}) must match output depth for filter (${t[4]}).`);let i={x:s,dy:a},l={strides:o,pad:n,filterShape:t};return E.runKernel(bc,i,l)}var DM=S({conv3DBackpropFilter_:FJ});var $M={kernelName:Ha,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:o,strides:n,pad:s}=t;A(Mo(o),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${o}'`);let[a,i]=e;return{x:()=>ug(a.shape,r,i,n,s),filter:()=>DM(a,r,i.shape,n,s)}}};var RM={kernelName:An,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(He(cu(ne(t,"float32"))),r)}}};var FM={kernelName:Ii,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(pu(ne(t,"float32")),r)}}};var OM={kernelName:En,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{axis:n,exclusive:s,reverse:a}=t;return{x:()=>{let i=jw([n],o.rank),l=Ql(r,n,s,!a);return i!=null&&(l=Ke(l,i)),l}}}};var PM={kernelName:Dn,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let{dilations:o,strides:n,pad:s,dimRoundingMode:a}=t,i=o==null?[1,1]:o;A(Mo(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=e;return A(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),A(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),A(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),A(kr(n,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'.`),a!=null&&A(ot(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`),{x:()=>wg(l.shape,r,u,n,s,o,a),filter:()=>bg(l,r,u.shape,n,s,o,a)}}};var MM={kernelName:qa,inputsToSave:["x","filter"],gradFunc:(r,e,t)=>{let[o,n]=e,s={x:o,filter:n,dy:r},a={x:o,filter:n,dy:r};return{x:()=>E.runKernel(vm,s,t),filter:()=>E.runKernel(Cm,a,t)}}};var LM={kernelName:Ti,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e,o={dy:r,y:t};return{x:()=>E.runKernel(Ic,o)}}};var zM={kernelName:Ai,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,o=P(Zt(He(Oe(t))),2/Math.sqrt(Math.PI));return{x:()=>P(r,o)}}};var BM={kernelName:Rn,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,t)}}};var VM={kernelName:Ms,inputsToSave:["input"],gradFunc:(r,e)=>{let[t]=e;return{input:()=>L(r,t.shape)}}};var GM={kernelName:Di,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,Zt(t))}}};var WM={kernelName:Fn,gradFunc:r=>({x:()=>Ce(r)})};var jM={kernelName:On,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=me(r,ne(o,"float32")),l=_t(t.shape,n);return l.length>0?L(ge(i,l),t.shape):i},b:()=>{let i=P(r,ne(t,"float32")),l=_t(o.shape,n);l.length>0&&(i=L(ge(i,l),o.shape));let u=Oe(o);return He(me(i,ne(u,"float32")))}}}};var UM={kernelName:Pn,inputsToSave:["x","mean","variance","scale"],gradFunc:(r,e,t)=>{let{varianceEpsilon:o}=t,[n,s,a,i]=e,l=i==null?le(1):i,u=_t(s.shape,n.shape),c=[];if(s.rank===1){for(let _=0;_<n.shape.length-1;++_)c.push(n.shape[_]);c.push(1)}let p=ce(n,s),m=P(r,l),f=lu(ee(a,le(o))),d=P(P(P(f,f),f),le(-.5));return{x:()=>s.rank===1?L(P(P(r,Lo(L(f,[1,1,1,s.shape[0]]),c)),l),n.shape):L(P(P(r,f),l),n.shape),mean:()=>{let _=P(P(f,le(-1)),m);return s.rank===1&&(_=ge(_,u)),L(_,s.shape)},variance:()=>{let _=P(P(d,p),m);return s.rank===1&&(_=ge(_,u)),L(_,s.shape)},scale:()=>{let _=P(p,f),k=P(r,_);return s.rank===1&&(k=ge(k,u)),L(k,s.shape)},offset:()=>{let _=r;return s.rank===1&&(_=ge(_,u)),L(_,s.shape)}}}};var KM={kernelName:Ls,inputsToSave:["x","indices"],gradFunc:(r,e,t)=>{let[o,n]=e,{axis:s}=t,a=Qt(s,o.shape)[0];return{x:()=>{let l=o.shape,u=n.size,c=l.slice(0,a),p=c.length,m=l.slice(s,l.length).slice(1),f=m.length,d=HM(0,p),h=HM(p+1,p+1+f),g=qM([c,[u],m]),x=L(r,g),b=L(n,[u]),w=qM([[p],d,h]),_=Ke(x,w),k=mf(_,b,o.shape[a]),D=Zm(w);return k=Ke(k,D),k},indices:()=>n}}};function HM(r,e){let t=[];for(let o=r;o<e;++o)t.push(o);return t}function qM(r){let e=[];for(let t=0;t<r.length;++t)for(let o=0;o<r[t].length;++o)e.push(r[t][o]);return e}var XM={kernelName:Mn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>Ce(t),b:()=>Ce(o)}}};var YM={kernelName:Ko,gradFunc:r=>({x:()=>ne(r,"float32")})};var ZM={kernelName:Oi,gradFunc:r=>({x:()=>Ce(r)})};var JM={kernelName:Pi,gradFunc:r=>({x:()=>Ce(r)})};var QM={kernelName:Mi,gradFunc:r=>({x:()=>Ce(r)})};var eL={kernelName:Ln,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{alpha:n}=t,s=tr(o,0);return{x:()=>Dt(s,r,P(r,n))}}};var tL={kernelName:Bi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ee(t,1))}}};var rL={kernelName:zn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,ne(t,"float32"))}}};var oL={kernelName:iS,inputsToSave:[],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o]=e,{axis:n}=t;return{logits:()=>{let s=!0,a=Zt(o);return ce(r,P(ge(r,n,s),a))}}}};function OJ(r,e,t,o=5,n=1,s=1,a=.5){let i={x:r,y:e,dy:t},l={depthRadius:o,bias:n,alpha:s,beta:a};return E.runKernel(Ec,i,l)}var nL=S({localResponseNormalizationBackprop_:OJ});var sL={kernelName:Xa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{depthRadius:s,bias:a,alpha:i,beta:l}=t;return{x:()=>nL(o,n,r,s,a,i,l)}}};function Cx(r,e,t,o){return e.rank<t.rank&&(e=L(e,en(e.shape,o))),r.rank<t.rank&&(r=L(r,en(r.shape,o))),{x:()=>P(r,ne(Io(t,e),r.dtype))}}var _C={kernelName:Bn,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let o=t,{reductionIndices:n}=o,s=e[0],a=e[1],i=Qt(n,s.shape),l=Cx(r,a,s,i);return{x:()=>l.x()}}};var iL={kernelName:Vn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>P(r,ne(po(t,o),"float32")),b:()=>P(r,ne(tu(t,o),"float32"))}}};function PJ(r,e,t,o,n,s,a){let i=v(r,"dy","maxPool3dGrad"),l=v(e,"input","maxPool3dGrad"),u=v(t,"output","maxPool3dGrad"),c=i,p=l,m=u,f=!1;l.rank===4&&(f=!0,c=L(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=L(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),m=L(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),A(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),A(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),A(m.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${m.rank}.`),a!=null&&A(ot(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let d={dy:c,input:p,output:m},h={filterSize:o,strides:n,pad:s,dimRoundingMode:a},g=E.runKernel($c,d,h);return f?L(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var aL=S({maxPool3dGrad_:PJ});var lL={kernelName:Ya,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{filterSize:s,strides:a,pad:i,dimRoundingMode:l}=t;return{x:()=>aL(r,o,n,s,a,i,l)}}};function MJ(r,e,t,o,n,s,a){let i=v(r,"dy","maxPoolGrad"),l=v(e,"input","maxPoolGrad"),u=v(t,"output","maxPoolGrad");A(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),A(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),A(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),a!=null&&A(ot(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${s}.`);let c={dy:i,input:l,output:u},p={filterSize:o,strides:n,pad:s,dimRoundingMode:a};return E.runKernel(Dc,c,p)}var uL=S({maxPoolGrad_:MJ});var cL={kernelName:Gn,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o,n]=e,{filterSize:s,strides:a,pad:i}=t;return{x:()=>uL(r,o,n,s,a,i)}}};var pL={kernelName:Wn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{axis:n}=t,s=Qt(n,o.shape),i=Ww(o.shape,s)[1],l=ct(i);return{x:()=>{let c=o.shape.slice();s.forEach(f=>{c[f]=1});let p=L(r,c);return me(P(p,Ar(o.shape,"float32")),l)}}}};var mL={kernelName:jn,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(r,e,t)=>{let o=t,{axis:n}=o,[s,a]=e,i=Qt(n,s.shape),l=Cx(r,a,s,i);return{x:()=>l.x()}}};var fL={kernelName:Un,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e;return{a:()=>P(r,ne(zo(t,o),"float32")),b:()=>P(r,ne(tr(t,o),"float32"))}}};var dL={kernelName:Za,inputsToSave:["x"],gradFunc:(r,e,t)=>{let o=e[0],{paddings:n}=t,s=n.map(a=>a[0]);return{x:()=>Re(r,s,o.shape)}}};var hL={kernelName:Gi,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=_t(t.shape,n);return i.length>0?L(ge(r,i),t.shape):r},b:()=>{let i=P(r,He(gs(me(t,o)))),l=_t(o.shape,n);return l.length>0?L(ge(i,l),o.shape):i}}}};var gL={kernelName:Hn,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=P(r,ne(o,"float32")),l=_t(t.shape,n);return l.length>0?L(ge(i,l),t.shape):i},b:()=>{let i=P(r,ne(t,"float32")),l=_t(o.shape,n);return l.length>0?L(ge(i,l),o.shape):i}}}};var xL={kernelName:zs,gradFunc:r=>({x:()=>He(r)})};var yL={kernelName:qn,inputsToSave:["indices"],gradFunc:(r,e)=>{let t=e[0];return{indices:()=>ht(t.shape,"float32")}}};var bL={kernelName:Bs,gradFunc:r=>({x:()=>Ce(r)})};var wL={kernelName:Vs,saveAllInputs:!0,gradFunc:(r,e,t)=>{let{axis:o}=t;return mr(r,o).map(s=>()=>s)}};var kC={kernelName:Kn,inputsToSave:["x"],gradFunc:(r,e,t)=>{let o=e[0],{paddings:n}=t,s=n.map(a=>a[0]);return{x:()=>Re(r,s,o.shape)}}};var _L={kernelName:Xn,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(r,e)=>{let[t,o,n]=e,s=t,a=o,i=Be(s.shape,a.shape);return{a:()=>{let c=ne(a,"float32"),p=P(r,P(c,Lr(s,ce(c,le(1))))),m=_t(s.shape,i);return m.length>0&&(p=ge(p,m)),L(p,s.shape)},b:()=>{let c=tr(s,0),p=Dt(c,ur(s),Ce(s)),m=P(r,P(n,p)),f=_t(a.shape,i);return f.length>0&&(m=ge(m,f)),L(m,a.shape)}}}};var kL={kernelName:Yn,inputsToSave:["x","alpha"],gradFunc:(r,e)=>{let[t,o]=e,n=tr(t,0);return{x:()=>Dt(n,r,P(r,o)),alpha:()=>{let s=Dt(n,Ce(r),P(r,t)),a=_t(o.shape,r.shape);return a.length>0&&(s=ge(s,a)),L(s,o.shape)}}}};var vL={kernelName:$n,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=me(r,ne(o,"float32")),l=_t(t.shape,n);return l.length>0?L(ge(i,l),t.shape):i},b:()=>{let i=P(r,ne(t,"float32")),l=_t(o.shape,n);l.length>0&&(i=L(ge(i,l),o.shape));let u=Oe(o);return He(me(i,ne(u,"float32")))}}}};var CL={kernelName:Ki,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,He(Oe(t)))}}};var IL={kernelName:Qn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e,o=P(zo(t,6),ws(t));return{x:()=>P(r,ne(o,"float32"))}}};var NL={kernelName:Zn,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,ne(ws(t),"float32"))}}};var SL={kernelName:Gs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>L(r,t.shape)}}};var TL={kernelName:Jn,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[o]=e,n={dy:r,images:o};return{images:()=>E.runKernel(Mc,n,t)}}};var AL={kernelName:Qa,inputsToSave:["images"],gradFunc:(r,e,t)=>{let[o]=e,n={dy:r,images:o};return{images:()=>E.runKernel(Pc,n,t)}}};var EL={kernelName:es,gradFunc:(r,e,t)=>{let{dims:o}=t,n=Qt(o,r.shape);return{x:()=>qt(r,n)}}};var DL={kernelName:ts,gradFunc:r=>({x:()=>Ce(r)})};var $L={kernelName:rs,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>He(me(r,P(Lr(t,1.5),2)))}}};var RL={kernelName:Ws,inputsToSave:["condition"],gradFunc:(r,e)=>{let[t]=e;return{condition:()=>ne(Ce(t),"float32"),t:()=>P(r,ne(t,r.dtype)),e:()=>P(r,ne(da(t),r.dtype))}}};var FL={kernelName:Yi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>{let o=tr(t,le(0)),n=le(l_),s=le(u_),a=P(r,s),i=P(P(r,n),Zt(ne(t,"float32")));return Dt(o,a,i)}}}};var OL={kernelName:ns,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,P(t,ce(le(1),t)))}}};var PL={kernelName:Ji,gradFunc:r=>({x:()=>Ce(r)})};var ML={kernelName:os,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(pa(ne(t,"float32")),r)}}};var LL={kernelName:Zi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(Jl(ne(t,"float32")),r)}}};var zL={kernelName:js,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{begin:n,size:s}=t,a=o.shape,[i,l]=yw(o,n,s),u=[];for(let c=0;c<r.rank;c++)u.push([i[c],a[c]-i[c]-l[c]]);return{x:()=>Mr(r,u)}}};var BL={kernelName:as,outputsToSave:[!0],gradFunc:(r,e,t)=>{let[o]=e,{dim:n}=t,s=!0,a=P(r,o);return{logits:()=>ce(a,P(ge(a,[n],s),o))}}};var VL={kernelName:Qi,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,Zr(t))}}};var vC={kernelName:el,gradFunc:(r,e,t)=>{let{blockShape:o,paddings:n}=t;return{x:()=>ca(r,o,n)}}};var CC={kernelName:Us,gradFunc:(r,e,t)=>{let{axis:o}=t;return{x:()=>Ze(r,o)}}};var GL={kernelName:ss,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,P(gt(ne(t,"float32")),2))}}};var WL={kernelName:tl,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(r,P(ne(t,"float32"),2))}}};var jL={kernelName:ls,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=le(2);return{a:()=>P(r,P(n,ce(t,o))),b:()=>P(r,P(n,ce(o,t)))}}};var UL={kernelName:Xo,gradFunc:r=>({x:()=>Ce(r)})};var HL={kernelName:us,inputsToSave:["a","b"],gradFunc:(r,e)=>{let[t,o]=e,n=Be(t.shape,o.shape);return{a:()=>{let i=r,l=_t(t.shape,n);return l.length>0&&(i=ge(i,l)),L(i,t.shape)},b:()=>{let i=r,l=_t(o.shape,n);return l.length>0&&(i=ge(i,l)),L(He(i),o.shape)}}}};var qL={kernelName:is,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,n=o.shape.slice(),{axis:s}=t;Qt(s,o.shape).forEach(u=>{n[u]=1});let i=L(r,n),l=P(i,Ar(o.shape,"float32"));return{x:()=>l}}};var KL={kernelName:ta,inputsToSave:["x"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>me(r,Oe(pa(t)))}}};var XL={kernelName:cs,outputsToSave:[!0],gradFunc:(r,e)=>{let[t]=e;return{x:()=>P(ce(le(1),Oe(t)),r)}}};var YL={kernelName:Oo,inputsToSave:["x"],gradFunc:(r,e,t)=>{let[o]=e,{reps:n}=t;return{x:()=>{let a=Ce(o);if(o.rank===1)for(let i=0;i<n[0];++i)a=ee(a,Re(r,[i*o.shape[0]],[o.shape[0]]));else if(o.rank===2)for(let i=0;i<n[0];++i)for(let l=0;l<n[1];++l)a=ee(a,Re(r,[i*o.shape[0],l*o.shape[1]],[o.shape[0],o.shape[1]]));else if(o.rank===3)for(let i=0;i<n[0];++i)for(let l=0;l<n[1];++l)for(let u=0;u<n[2];++u)a=ee(a,Re(r,[i*o.shape[0],l*o.shape[1],u*o.shape[2]],[o.shape[0],o.shape[1],o.shape[2]]));else if(o.rank===4)for(let i=0;i<n[0];++i)for(let l=0;l<n[1];++l)for(let u=0;u<n[2];++u)for(let c=0;c<n[3];++c)a=ee(a,Re(r,[i*o.shape[0],l*o.shape[1],u*o.shape[2],c*o.shape[3]],[o.shape[0],o.shape[1],o.shape[2],o.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${o.rank} tensors yet.`);return a}}}};var ZL={kernelName:ps,gradFunc:(r,e,t)=>{let o=t,{perm:n}=o,s=Zm(n);return{x:()=>Ke(r,s)}}};var JL={kernelName:Hs,gradFunc:(r,e,t)=>{let o=t,{axis:n}=o;return{value:()=>Bt(r,n)}}};var QL={kernelName:rl,inputsToSave:["segmentIds"],gradFunc:(r,e)=>{let[t]=e;return{x:()=>LJ(r,t)}}};function LJ(r,e){let t=eo(e,Ce(e)),o=Qo(r,t),n=po(e,le(0,"int32")),s=o.rank-n.rank;for(let i=0;i<s;++i)n=lr(n,i+1);n=gr(n,Ar(o.shape,"bool"));let a=Ce(o);return Dt(n,o,a)}var ez={kernelName:qs,gradFunc:r=>({x:()=>Ce(r)})};var zJ=[vx,iM,aM,lM,uM,cM,pM,mM,fM,dM,hM,gM,yM,wM,_M,kM,vM,CM,IM,NM,SM,TM,EM,AM,$M,RM,FM,OM,PM,MM,vL,LM,zM,BM,VM,GM,jM,WM,UM,KM,XM,YM,ZM,JM,QM,eL,tL,rL,oL,sL,_C,_C,iL,lL,cL,pL,mL,fL,dL,hL,gL,xL,yL,bL,wL,kC,kC,_L,kL,CL,IL,NL,SL,TL,AL,EL,DL,$L,RL,FL,OL,PL,ML,LL,zL,BL,VL,vC,vC,CC,CC,GL,jL,WL,UL,HL,qL,KL,XL,YL,ZL,JL,QL,ez];for(let r of zJ)aS(r);var iz={};Ge(iz,{maxNorm:()=>VJ,minMaxNorm:()=>jJ,nonNeg:()=>WJ,unitNorm:()=>GJ});var IC;function Jt(){return IC==null&&(IC=hT().epsilon()),IC}function to(){return"channelsLast"}var Ao=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ao.prototype)}},Vr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Vr.prototype)}},z=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,z.prototype)}},Se=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Se.prototype)}},Vf=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Vf.prototype)}};function mn(r,e){if(Array.isArray(r)){let t=[];for(let o=0;o<e;o++)t=t.concat(r);return t}else{let t=new Array(e);return t.fill(r),t}}function Vo(r,e){if(!r)throw new Vf(e)}function NC(r,e){let t=0;for(let o of r)o===e&&t++;return t}function yr(r){return r.length===1?r[0]:r}function yt(r){return Array.isArray(r)?r:[r]}function fn(r){let t=r.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Ta(r){return r.length<=1||r.indexOf("_")===-1?r:r.replace(/[_]+(\w|$)/g,(e,t)=>t.toUpperCase())}var dn={};function Ep(r){if(r==null)return null;let e={};return e.className=r.getClassName(),e.config=r.getConfig(),e}function SC(r){if(!(r==null||typeof r!="object"))if(Array.isArray(r))r.forEach(e=>SC(e));else{let e=Object.keys(r);for(let t of e){let o=r[t];o!=null&&typeof o=="object"&&(!Array.isArray(o)&&o.type==="ndarray"&&typeof o.value=="number"?r[t]=o.value:SC(o))}}}function ai(r,e={},t={},o="object",n=!1){if(typeof r=="string"){let s=r,a;if(s in t)a=t[s];else if(s in dn)a=dn[s];else if(a=e[s],a==null)throw new z(`Unknown ${o}: ${r}. This may be due to one of the following reasons:
1. The ${o} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${o} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return a}else{let s=r;if(s.className==null||s.config==null)throw new z(`${o}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let a=s.className,i,l;if(a in t?[i,l]=t[a]:a in dn?[i,l]=dn.className:a in e&&([i,l]=e[a]),i==null)throw new z(`Unknown ${o}: ${a}. This may be due to one of the following reasons:
1. The ${o} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${o} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let f of Object.keys(dn))u[f]=dn[f];for(let f of Object.keys(t))u[f]=t[f];let c=s.config;c.customObjects=u;let p=Object.assign({},dn);for(let f of Object.keys(t))dn[f]=t[f];SC(s.config);let m=l(i,s.config,t,n);return dn=Object.assign({},p),m}else{let u=Object.assign({},dn);for(let p of Object.keys(t))dn[p]=t[p];let c=new i(s.config);return dn=Object.assign({},u),c}}}function BJ(r,e){return r<e?-1:r>e?1:0}function Gf(r,e){return-1*BJ(r,e)}function hn(r){if(r==null)return r;let e=[];for(let t of r)e.indexOf(t)===-1&&e.push(t);return e}function tz(r){if(r==null)throw new z(`Invalid value in obj: ${JSON.stringify(r)}`);for(let e in r)if(r.hasOwnProperty(e))return!1;return!0}function li(r,e,t){if(t!=null&&r.indexOf(t)<0)throw new z(`${t} is not a valid ${e}. Valid values are ${r} or null/undefined.`)}function Ix(r,e,t=0,o=Infinity){return Vo(t>=0),Vo(o>=t),Array.isArray(r)&&r.length>=t&&r.length<=o&&r.every(n=>typeof n===e)}function Ut(r,e){Array.isArray(r)?(y.assert(r.length>0,()=>`${e} is unexpectedly an empty array.`),r.forEach((t,o)=>Ut(t,`element ${o+1} of ${e}`))):y.assert(Number.isInteger(r)&&r>0,()=>`Expected ${e} to be a positive integer, but got ${rz(r)}.`)}function rz(r){return r===null?"null":Array.isArray(r)?"["+r.map(e=>rz(e)).join(",")+"]":typeof r=="string"?`"${r}"`:`${r}`}function oz(r,e){let t=y.now(),o;return(...s)=>{let a=y.now();return a-t<e||(t=a,o=r(...s)),o}}function Nx(r){return r==="relu"?"relu":r==="linear"?"linear":r==="elu"?"elu":null}function TC(r,e){return V(()=>gt(ge(P(r,r),e,!0)))}var Dp=class extends Q.Serializable{getConfig(){return{}}},Wf=class extends Dp{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=TC(e,this.axis),o=ar(t,0,this.maxValue);return P(e,me(o,ee(Jt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Wf.className="MaxNorm";Q.registerClass(Wf);var jf=class extends Dp{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>me(e,ee(Jt(),TC(e,this.axis))))}getConfig(){return{axis:this.axis}}};jf.className="UnitNorm";Q.registerClass(jf);var Uf=class extends Dp{apply(e){return Er(e)}};Uf.className="NonNeg";Q.registerClass(Uf);var Hf=class extends Dp{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=TC(e,this.axis),o=ee(P(this.rate,ar(t,this.minValue,this.maxValue)),P(1-this.rate,t));return P(e,me(o,ee(Jt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Hf.className="MinMaxNorm";Q.registerClass(Hf);var nz={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Ft(r){return Ep(r)}function sz(r,e={}){return ai(r,Q.SerializationMap.getMap().classNameMap,e,"constraint")}function Ot(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in nz?nz[r]:r,config:{}};return sz(t)}else return r instanceof Dp?r:sz(r)}function VJ(r){return new Wf(r)}function GJ(r){return new jf(r)}function WJ(){return new Uf}function jJ(r){return new Hf(r)}var Sz={};Ge(Sz,{constant:()=>JJ,glorotNormal:()=>sQ,glorotUniform:()=>nQ,heNormal:()=>iQ,heUniform:()=>aQ,identity:()=>rQ,leCunNormal:()=>lQ,leCunUniform:()=>uQ,ones:()=>ZJ,orthogonal:()=>cQ,randomNormal:()=>eQ,randomUniform:()=>QJ,truncatedNormal:()=>tQ,varianceScaling:()=>oQ,zeros:()=>YJ});var az=["channelsFirst","channelsLast"],lz=["nearest","bilinear"],uz=["valid","same","causal"],cz=["max","avg"],pz=["sum","mul","concat","ave"];var $p=new Map;function $t(r){li(az,"DataFormat",r)}function mz(r){li(lz,"InterpolationFormat",r)}function ro(r){li(uz,"PaddingMode",r)}function AC(r){li(cz,"PoolMode",r)}var qf=[],fz="/";function Is(r,e){qf.push(r);try{let t=e();return qf.pop(),t}catch(t){throw qf.pop(),t}}function UJ(){return qf.length===0?"":qf.join(fz)+fz}function Sx(r){if(!dz(r))throw new Error("Not a valid tensor name: '"+r+"'");return UJ()+r}function Tx(r){if(!dz(r))throw new Error("Not a valid tensor name: '"+r+"'");$p.has(r)||$p.set(r,0);let e=$p.get(r);if($p.set(r,$p.get(r)+1),e>0){let t=`${r}_${e}`;return $p.set(t,1),t}else return r}var HJ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function dz(r){return!!r.match(HJ)}function hz(r){return r===parseInt(r.toString(),10)}function gn(r,e,t){e==null&&(e=0),t==null&&(t=r.length);let o=1;for(let n=e;n<t;++n)o*=r[n];return o}function gz(r){return r=Array.isArray(r)?new Float32Array(r):r,Vt(r)}function Mu(r){return ei(gz(r)).dataSync()[0]}function Ns(r){return cr(gz(r)).dataSync()[0]}function Gr(r,e){if(e<r)throw new z(`end (${e}) < begin (${r}) is forbidden.`);let t=[];for(let o=r;o<e;++o)t.push(o);return t}function Aa(r,e){return r.asType(e)}function Ea(r,e=-1){let t=r.shape.slice();return e<0&&(e=t.length+e+1),t.splice(e,0,1),r.reshape(t)}function xz(r,e){return V(()=>{if(r.shape.length!==2)throw new z(`repeat() expects a rank-2 tensor, but received a rank-${r.shape.length} tensor.`);let t=Ea(r,1);return Ax(t,[1,e,1])})}function yz(r){let e=[gn(r.shape)];return r.reshape(e)}function bz(r){if(r.rank<=1)throw new z(`batchFlatten requires a minimum rank of 2. Got rank: ${r.rank}.`);let e=[r.shape[0],gn(r.shape,1)];return r.reshape(e)}function Da(r,e,t){return V(()=>{switch(r.rank){case 1:return af(r,e,t);case 2:return hg(r,[e,0],[t,r.shape[1]]);case 3:return lf(r,[e,0,0],[t,r.shape[1],r.shape[2]]);case 4:return rp(r,[e,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3]]);case 5:return Re(r,[e,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4]]);case 6:return Re(r,[e,0,0,0,0,0],[t,r.shape[1],r.shape[2],r.shape[3],r.shape[4],r.shape[5]]);default:throw new z(`sliceAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}})}function EC(r,e,t){return V(()=>{switch(r.rank){case 1:return af(r,e,t);case 2:return hg(r,[0,e],[r.shape[0],t]);case 3:return lf(r,[0,0,e],[r.shape[0],r.shape[1],t]);case 4:return rp(r,[0,0,0,e],[r.shape[0],r.shape[1],r.shape[2],t]);default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Kf(r,e,t,o){return V(()=>{switch(r.rank){case 1:return af(r,e,t);case 2:switch(o){case 1:return Da(r,e,t);case 2:return EC(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${o}`)}case 3:switch(o){case 1:return Da(r,e,t);case 2:return lf(r,[0,e,0],[r.shape[0],t,r.shape[2]]);case 3:return EC(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${o}`)}case 4:switch(o){case 1:return Da(r,e,t);case 2:return rp(r,[0,e,0,0],[r.shape[0],t,r.shape[2],r.shape[3]]);case 3:return rp(r,[0,0,e,0],[r.shape[0],r.shape[1],t,r.shape[3]]);case 4:return EC(r,e,t);default:throw new z(`The axis is not within the rank of the tensor ${o}`)}default:throw new z(`sliceAlongLastAxis() received an unsupported tensor rank: ${r.rank}`)}})}function Rp(r,e=-1){let t;return e<0&&(t=r[0].rank,t!==0?e=t:e=0),e===r[0].rank&&(e=-1),Ze(r,e)}function DC(r,e){switch(r.rank){case 1:return Dw([r,e]);case 2:return $w([r,e],0);case 3:return Rw([r,e],0);case 4:return Fw([r,e],0);default:throw new z(`concatAlongFirstAxis() received an unsupported tensor rank: ${r.rank}`)}}function Ax(r,e){if(Array.isArray(e)||(e=[e]),r.rank!==e.length)throw new z(`The length of input n (${e.length}) does not match the number of dimensions in input x (${r.rank})`);return Lo(r,e)}function Fp(r,e=0,t=1,o,n){return dg(r,e,t,o,n)}function xn(r,e,t,o){if(r.rank<2||e.rank<2)throw new Se(`dot requires both inputs to be rank >= 2 but got x shape = ${r.shape} and y shape = ${e.shape}`);if(e.rank>=3){let n=r.shape.slice(-1)[0],s=e.shape.slice(-2)[0];if(n!==s)throw new Se(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${r.shape} and y shape = ${e.shape}`)}if(r.rank===2&&e.rank===2){let n=!1,s=!1;return rn.matMul({a:r,b:e,transposeA:n,transposeB:s,bias:o?$C(r.rank,o,to()):null,activation:t})}else{let n=r.shape.slice(),s=n.pop();r=r.reshape([-1,s]);let a=e.shape.slice(),i=a.pop(),l=a.pop(),u=[...a,i],c=Array.from({length:e.rank},(d,h)=>h===0?e.rank-2:h<=e.rank-2?h-1:h);e=e.transpose(c).reshape([l,-1]);let p=[...n,...u],m=!1,f=!1;return rn.matMul({a:r,b:e,transposeA:m,transposeB:f,bias:o?$C(r.rank,o,to()):null,activation:t}).reshape(p)}}function Ex(r,e,t){return V(()=>(Array.isArray(e)?e=Vt(e,"int32"):e=e.toInt(),Qo(r,e,t)))}function Lu(r){return P(r,r)}function $C(r,e,t){let o=e.shape;if(e.rank!==1&&e.rank!==r)throw new z(`Unexpected bias dimensions: ${e.rank}; expected it to be 1 or ${r}`);if(r===5){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1,1,1]):e.reshape([1,o[3],o[0],o[1],o[2]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,1,1,o[0]]):e.reshape([1].concat(o))}else if(r===4){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1,1]):e.reshape([1,o[2],o[0],o[1]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,1,o[0]]):e.reshape([1].concat(o))}else if(r===3){if(t==="channelsFirst")return o.length===1?e.reshape([1,o[0],1]):e.reshape([1,o[1],o[0]]);if(t==="channelsLast")return o.length===1?e.reshape([1,1,o[0]]):e.reshape([1].concat(o))}else if(r<3)return e;throw new z(`Unsupported input rank by biasAdd: ${e.rank}`)}function ho(r,e,t){return V(()=>(t==null&&(t=to()),$t(t),r.add($C(r.rank,e,t))))}function wz(r,e=1){if(e!==1)throw new Se(`Support for alpha values other than 1 (${e}) is not implemented yet.`);return hs(r)}function _z(r){return V(()=>me(r,It(r).add(1)))}function Dx(r,e,t,o){return V(()=>zT(r,e,t,o))}function kz(r){return V(()=>{let e=ee(.5,P(.2,r));return ar(e,0,1)})}function wl(r,e,t=!1){return t?r():e()}var vz=["fanIn","fanOut","fanAvg"],Cz=["normal","uniform","truncatedNormal"];function qJ(r){li(vz,"FanMode",r)}function KJ(r){li(Cz,"Distribution",r)}var go=class extends Q.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Xf=class extends go{apply(e,t){return ht(e,t)}};Xf.className="Zeros";Q.registerClass(Xf);var zu=class extends go{apply(e,t){return Ar(e,t)}};zu.className="Ones";Q.registerClass(zu);var Yf=class extends go{constructor(e){super();if(typeof e!="object")throw new z(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new z(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return V(()=>P(le(this.value),Ar(e,t)))}getConfig(){return{value:this.value}}};Yf.className="Constant";Q.registerClass(Yf);var Zf=class extends go{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return bs(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Zf.className="RandomUniform";Q.registerClass(Zf);var Jf=class extends go{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`randomNormal does not support dType ${t}.`);return Fp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Jf.className="RandomNormal";Q.registerClass(Jf);var Qf=class extends go{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`truncatedNormal does not support dType ${t}.`);return du(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Qf.className="TruncatedNormal";Q.registerClass(Qf);var ed=class extends go{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return V(()=>{if(e.length!==2||e[0]!==e[1])throw new z("Identity matrix initializer can only be used for 2D square matrices.");return P(this.gain,Jc(e[0]))})}getConfig(){return{gain:this.gain}}};ed.className="Identity";Q.registerClass(ed);function XJ(r,e="channelsLast"){let t,o;if($t(e),r.length===2)t=r[0],o=r[1];else if([3,4,5].indexOf(r.length)!==-1){if(e==="channelsFirst"){let n=gn(r,2);t=r[1]*n,o=r[0]*n}else if(e==="channelsLast"){let n=gn(r,0,r.length-2);t=r[r.length-2]*n,o=r[r.length-1]*n}}else{let n=gn(r);t=Math.sqrt(n),o=Math.sqrt(n)}return[t,o]}var Wr=class extends go{constructor(e){super();if(e.scale<0)throw new z(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,qJ(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,KJ(this.distribution),this.seed=e.seed}apply(e,t){let o=XJ(e),n=o[0],s=o[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,n):this.mode==="fanOut"?a/=Math.max(1,s):a/=Math.max(1,(n+s)/2),this.distribution==="normal"){let i=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Se(`${this.getClassName()} does not support dType ${t}.`);return du(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*a);return bs(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Wr.className="VarianceScaling";Q.registerClass(Wr);var Op=class extends Wr{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};Op.className="GlorotUniform";Q.registerClass(Op);var Pp=class extends Wr{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};Pp.className="GlorotNormal";Q.registerClass(Pp);var Mp=class extends Wr{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};Mp.className="HeNormal";Q.registerClass(Mp);var Lp=class extends Wr{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};Lp.className="HeUniform";Q.registerClass(Lp);var zp=class extends Wr{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};zp.className="LeCunNormal";Q.registerClass(zp);var Bp=class extends Wr{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Wr.className}};Bp.className="LeCunNormal";Q.registerClass(Bp);var td=class extends go{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Se("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return V(()=>{if(e.length<2)throw new Se("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let o=e[0]>e[1]?[e[1],e[0]]:e,n=Fp(o,0,1,"float32"),s=g1.gramSchmidt(n);return e[0]>e[1]&&(s=s.transpose()),P(this.gain,s)})}getConfig(){return{gain:this.gain,seed:this.seed}}};td.className="Orthogonal";Q.registerClass(td);var Iz={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Nz(r,e={}){return ai(r,Q.SerializationMap.getMap().classNameMap,e,"initializer")}function kt(r){return Ep(r)}function pt(r){if(typeof r=="string"){let e=r in Iz?Iz[r]:r;if(e==="GlorotNormal")return new Pp;if(e==="GlorotUniform")return new Op;if(e==="HeNormal")return new Mp;if(e==="HeUniform")return new Lp;if(e==="LeCunNormal")return new zp;if(e==="LeCunUniform")return new Bp;{let t={};return t.className=e,t.config={},Nz(t)}}else return r instanceof go?r:Nz(r)}function YJ(){return new Xf}function ZJ(){return new zu}function JJ(r){return new Yf(r)}function QJ(r){return new Zf(r)}function eQ(r){return new Jf(r)}function tQ(r){return new Qf(r)}function rQ(r){return new ed(r)}function oQ(r){return new Wr(r)}function nQ(r){return new Op(r)}function sQ(r){return new Pp(r)}function iQ(r){return new Mp(r)}function aQ(r){return new Lp(r)}function lQ(r){return new zp(r)}function uQ(r){return new Bp(r)}function cQ(r){return new td(r)}var n3={};Ge(n3,{Layer:()=>Me,RNN:()=>Eo,RNNCell:()=>Tl,activation:()=>$ee,add:()=>Vee,alphaDropout:()=>Cte,average:()=>Gee,averagePooling1d:()=>y0,averagePooling2d:()=>b0,averagePooling3d:()=>w0,avgPool1d:()=>Zee,avgPool2d:()=>Qee,avgPool3d:()=>tte,avgPooling1d:()=>Jee,avgPooling2d:()=>ete,avgPooling3d:()=>rte,batchNormalization:()=>Kee,bidirectional:()=>gte,concatenate:()=>Wee,conv1d:()=>Cee,conv2d:()=>Iee,conv2dTranspose:()=>Nee,conv3d:()=>See,convLstm2d:()=>mte,convLstm2dCell:()=>fte,cropping2D:()=>Aee,dense:()=>Ree,depthwiseConv2d:()=>Dee,dot:()=>qee,dropout:()=>Fee,elu:()=>yee,embedding:()=>Bee,flatten:()=>Pee,gaussianDropout:()=>vte,gaussianNoise:()=>kte,globalAveragePooling1d:()=>ote,globalAveragePooling2d:()=>nte,globalMaxPool1d:()=>yte,globalMaxPool2d:()=>bte,globalMaxPooling1d:()=>s3,globalMaxPooling2d:()=>i3,gru:()=>ite,gruCell:()=>ate,input:()=>UC,inputLayer:()=>xee,layerNormalization:()=>Xee,leakyReLU:()=>wee,lstm:()=>lte,lstmCell:()=>ute,masking:()=>Ite,maxPool1d:()=>wte,maxPool2d:()=>_te,maxPooling1d:()=>a3,maxPooling2d:()=>l3,maxPooling3d:()=>ste,maximum:()=>jee,minimum:()=>Uee,multiply:()=>Hee,permute:()=>zee,prelu:()=>_ee,reLU:()=>bee,repeatVector:()=>Mee,reshape:()=>Lee,rnn:()=>dte,separableConv2d:()=>Tee,simpleRNN:()=>cte,simpleRNNCell:()=>pte,softmax:()=>kee,spatialDropout1d:()=>Oee,stackedRNNCells:()=>hte,thresholdedReLU:()=>vee,timeDistributed:()=>xte,upSampling2d:()=>Eee,zeroPadding2d:()=>Yee});var pQ=0;function $x(){return pQ++}var Rx={};function _l(r=""){return r in Rx||(Rx[r]=0),Rx[r]+=1,r+Rx[r].toString()}function Fx(r){return Array.isArray(r)&&Array.isArray(r[0])}function Vp(r){return r.length===0?[]:Array.isArray(r[0])?r:[r]}function Fe(r){let e;if(Array.isArray(r)){if(r.length!==1)throw new z(`Expected Tensor length to be 1; got ${r.length}`);e=r[0]}else e=r;return e}function Je(r){if(Array.isArray(r)&&Array.isArray(r[0])){if(r.length===1)return r=r,r[0];throw new z(`Expected exactly 1 Shape; got ${r.length}`)}else return r}function Gp(r){let e=0;for(let t of r)t.shape.length===0?e+=1:e+=t.shape.reduce((o,n)=>o*n);return e}var Tz="Variable",Ox=class{constructor(e,t="float32",o=Tz,n=!0,s=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=$x(),o=o==null?Tz:o,this.originalName=Sx(o),this.name=Tx(this.originalName),this.trainable_=n,this.constraint=s,this.val=i_(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),mQ(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function mQ(r,e){if(r.shape.toString()!==e.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(r.shape)+" vs. "+JSON.stringify(e.shape))}function rd(r){return r.map(e=>e.read())}function Wp(r){r.forEach(e=>{e[0].write(e[1])})}var At=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},oo=class{constructor(e,t,o,n,s,a,i){this.dtype=e,this.shape=t,this.sourceLayer=o,this.inputs=n,this.callArgs=s,this.outputTensorIndex=i,this.id=$x(),a!=null&&(this.originalName=Sx(a),this.name=Tx(this.originalName)),this.rank=t.length}},fQ=0,kl=class{constructor(e,t){this.callArgs=t,this.id=fQ++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let o of e.inboundLayers)o!=null&&o.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},dQ=0,Me=class extends Q.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=dQ++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let o=this.getClassName();t=fn(o)+"_"+_l(o)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let o;if(e.batchInputShape!=null)o=e.batchInputShape;else if(e.inputShape!=null){let s=null;e.batchSize!=null&&(s=e.batchSize),o=[s].concat(e.inputShape)}this.batchInputShape=o;let n=e.dtype;n==null&&(n=e.inputDType),n==null&&(n="float32"),this.dtype=n}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Vr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new z(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return yr(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return yr(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ao(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ao(`Layer ${this.name} is not connected, no input to return.`);return yr(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ao(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ao(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return yr(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=yt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=yt(this.inputSpec);if(e.length!==t.length)throw new z(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let o=0;o<e.length;o++){let n=e[o],s=t[o];if(s==null)continue;let a=n.rank;if(s.ndim!=null&&a!==s.ndim)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected ndim=${s.ndim}, found ndim=${a}`);if(s.maxNDim!=null&&a>s.maxNDim)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected max_ndim=${s.maxNDim}, found ndim=${a}`);if(s.minNDim!=null&&a<s.minNDim)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected min_ndim=${s.minNDim}, found ndim=${a}.`);if(s.dtype!=null&&n.dtype!==s.dtype)throw new z(`Input ${o} is incompatible with layer ${this.name} : expected dtype=${s.dtype}, found dtype=${n.dtype}.`);if(s.axes){let i=n.shape;for(let l in s.axes){let u=Number(l),c=s.axes[l],p=u>=0?i[u]:i[i.length+u];if(c!=null&&[c,null].indexOf(p)===-1)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected axis ${u} of input shape to have value ${c} but got shape ${i}.`)}}if(s.shape!=null)for(let i=0;i<s.shape.length;++i){let l=s.shape[i],u=n.shape[i];if(l!=null&&u!=null&&l!==u)throw new z(`Input ${o} is incompatible with layer ${this.name}: expected shape=${s.shape}, found shape=${n.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let o=yt(e),n=!0;for(let a of o)if(!(a instanceof oo)){n=!1;break}let s=!0;for(let a of o)if(a instanceof oo){s=!1;break}if(n===s)throw new z("Arguments to apply() must be all SymbolicTensors or all Tensors");return Is(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let i of yt(e))a.push(i.shape);this.build(yr(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&s&&(this._refCount=1)}if(this.assertInputCompatibility(e),s){let a=this.call(e,t),i=yt(a),l=[];for(let u of i)o.indexOf(u)!==-1&&(u=u.clone()),l.push(u);if(a=yr(l),this.activityRegularizer!=null)throw new Se("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=hQ(e),i=this.computeOutputShape(a),l,u=gQ(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),i!=null&&i.length>0&&Array.isArray(i[0])?l=i.map((c,p)=>new oo(u,c,this,yt(e),t,this.name,p)):l=new oo(u,i,this,yt(e),t,this.name),this.addInboundNode(e,l,null,null,a,i,t),this._refCount++,this.activityRegularizer!=null)throw new Se("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return l}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((o,n)=>{o!=null&&e[n]!=null&&e[n]!==o&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ao(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let o=JSON.stringify(t.outputShapes);e.indexOf(o)===-1&&e.push(o)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ao(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Vr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Gp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return rd(e?this.trainableWeights:this.weights)}setWeights(e){V(()=>{let t=this.weights;if(t.length!==e.length)throw new z(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let o=[],n=rd(t);for(let s=0;s<n.length;++s){let a=n[s],i=t[s],l=e[s];if(!y.arraysEqual(a.shape,l.shape))throw new z(`Layer weight shape ${a.shape} not compatible with provided weight shape ${l.shape}`);o.push([i,l])}Wp(o)})}addWeight(e,t,o,n,s,a,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new z(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),o==null&&(o="float32"),this.fastWeightInitDuringBuild&&(n=pt("zeros"));let l=n.apply(t,o),u=new Ox(l,o,e,a,i);return l.dispose(),s!=null&&this.addLoss(()=>s.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=yt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(o=>{if(o!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,o,n,s,a,i=null){let l=yt(e);t=yt(t),o=yt(o),n=yt(n),s=Vp(s),a=Vp(a);let u=[],c=[],p=[];for(let m of l)u.push(m.sourceLayer),c.push(m.nodeIndex),p.push(m.tensorIndex);new kl({outboundLayer:this,inboundLayers:u,nodeIndices:c,tensorIndices:p,inputTensors:l,outputTensors:t,inputMasks:o,outputMasks:n,inputShapes:s,outputShapes:a},i);for(let m=0;m<t.length;m++)t[m].sourceLayer=this,t[m].nodeIndex=this.inboundNodes.length-1,t[m].tensorIndex=m}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function hQ(r){r=yt(r);let e=[];for(let t of r)e.push(t.shape);return yr(e)}function gQ(r){return"float32"}function RC(r,e,t){if((e==null||t!=null&&t>0)&&(e=r.sourceLayer,t=r.nodeIndex),e.inboundNodes.length===0)return[r];{let o=e.inboundNodes[t];if(o.inboundLayers.length===0)return o.inputTensors;{let n=[];for(let s=0;s<o.inboundLayers.length;s++){let a=o.inputTensors[s],i=o.inboundLayers[s],l=o.nodeIndices[s],u=RC(a,i,l);for(let c of u)n.indexOf(c)===-1&&n.push(c)}return n}}}var ui=class extends Me{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:_l("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new z("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new z("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new z("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let o=e.dtype||"float32";this.batchInputShape=t,this.dtype=o,this.inputSpec=[{shape:t}];let n=new oo(this.dtype,this.batchInputShape,this,[],{},this.name);n.nodeIndex=0,n.tensorIndex=0,new kl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[n],outputTensors:[n],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new z(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};ui.className="InputLayer";Q.registerClass(ui);function Px(r){if(r.batchShape==null&&r.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(r.batchShape!=null&&r.shape!=null)throw new z("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let e=r.batchShape;r.shape!=null&&e==null&&(e=[null].concat(r.shape));let t=r.dtype;return t==null&&(t="float32"),new ui({batchInputShape:e,name:r.name,dtype:t,sparse:r.sparse}).inboundNodes[0].outputTensors[0]}async function ci(r){if(r==null)return;let e=[],t=[],o=[];for(let n in r){let s=r[n];if(typeof s!="number"){let a=s;e.push(a.data()),t.push(n),o.push(a)}}if(e.length>0){let n=await Promise.all(e);for(let s=0;s<n.length;++s)r[t[s]]=n[s][0];Ae(o)}}function Mx(r){if(r!=null)for(let e in r){let t=r[e];typeof t!="number"&&t.dispose()}}var Az;(function(r){r[r.SILENT=0]="SILENT",r[r.VERBOSE=1]="VERBOSE"})(Az||(Az={}));var xQ=125,vl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},FC=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let o of this.callbacks)await o.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},Ez=class extends vl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let o=t.size==null?0:t.size;this.seen+=o;for(let n in t){let s=t[n];if(typeof s=="number")this.totals.hasOwnProperty(n)||(this.totals[n]=0),this.totals[n]=this.totals[n]+s*o;else{let a;n in this.totals?a=this.totals[n]:this.totals[n]=0;let i=V(()=>ee(this.totals[n],P(s,o)));this.totals[n]=i,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let o of this.params.metrics)this.totals[o]!=null&&(typeof this.totals[o]=="number"?t[o]=this.totals[o]/this.seen:V(()=>{let n=P(me(1,this.seen),this.totals[o]);t[o]=n,this.totals[o].dispose(),Et(t[o])}))}},OC=class extends vl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let o in t)this.history[o]==null&&(this.history[o]=[]),this.history[o].push(t[o])}async syncData(){let e=[],t=[],o=[];for(let s in this.history){let a=this.history[s];for(let i=0;i<a.length;++i)if(typeof a[i]!="number"){let l=a[i];e.push(l.data()),t.push(s),o.push(i)}}let n=await Promise.all(e);for(let s=0;s<n.length;++s)this.history[t[s]][o[s]].dispose(),this.history[t[s]][o[s]]=n[s][0]}},PC=class extends vl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=xQ),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");y.isNumber(this.yieldEvery)&&(this.maybeWait=oz(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,o){let n=[];this.yield!=null&&(await ci(o),n.push(this.yield(e,t,o))),n.push(df()),await Promise.all(n)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await ci(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let o=[];this.epochEnd!=null&&(await ci(t),o.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&o.push(df()),await Promise.all(o)}async onBatchBegin(e,t){this.batchBegin!=null&&(await ci(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let o=[];this.batchEnd!=null&&(await ci(t),o.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?o.push(df()):y.isNumber(this.yieldEvery)&&o.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(o)}async onTrainBegin(e){this.trainBegin!=null&&(await ci(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await ci(e),await this.trainEnd(e))}};function Lx(r,e){return r==null&&(r={}),r instanceof vl?[r]:Array.isArray(r)&&r[0]instanceof vl?r:yt(r).map(o=>new PC(o,e))}var xo=class{constructor(){}static registerCallbackConstructor(e,t){y.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),xo.checkForDuplicate(t),xo.constructors[e]==null&&(xo.constructors[e]=[]),xo.constructors[e].push(t)}static checkForDuplicate(e){for(let t in xo.constructors)xo.constructors[+t].forEach(n=>{if(n===e)throw new z("Duplicate callback constructor.")})}static clear(){xo.constructors={}}static createCallbacks(e){let t=[];for(let o in xo.constructors){let n=+o;e>=n&&t.push(...xo.constructors[n])}return t.map(o=>new o)}};xo.constructors={};function zx(r,e,t,o,n,s,a,i,l){let u=new OC,c=[new Ez,...xo.createCallbacks(e)];r!=null&&c.push(...r),c.push(u);let p=new FC(c);return p.setParams({epochs:t,initialEpoch:o,samples:n,steps:s,batchSize:a,verbose:e,doValidation:i,metrics:l}),{callbackList:p,history:u}}function no(r,e={},t=!1){return ai(r,Q.SerializationMap.getMap().classNameMap,e,"layer",t)}function od(r,e){return V(()=>{r.dtype!=="float32"&&(r=r.asType("float32"));let t=ge(Lu(r),e,!0),o=ma(t.shape,Jt()),n=gt(eo(t,o));return me(r,n)})}function pi(r,e){return V(()=>dt(Lu(ce(e,r)),-1))}function jp(r,e){return V(()=>dt(It(ce(e,r)),-1))}function Cl(r,e){return V(()=>{let t=ce(r,e),o=ar(It(r),Jt(),Number.MAX_VALUE),n=It(me(t,o));return P(100,dt(n,-1))})}function yQ(r,e){return V(()=>{let t=ar(e,Jt(),Number.MAX_VALUE),o=ur(ee(1,t)),n=ar(r,Jt(),Number.MAX_VALUE),s=ur(ee(1,n));return dt(Lu(ce(o,s)),-1)})}function bQ(r,e){return V(()=>{let t=eo(0,ce(1,P(r,e)));return dt(Lu(t),-1)})}function wQ(r,e){return V(()=>{let t=eo(0,ce(1,P(r,e)));return dt(t,-1)})}function _Q(r,e){return V(()=>{let t=ge(P(r,e),-1),o=cr(P(ce(1,r),e),-1);return eo(0,ee(1,ce(o,t)))})}function kQ(r,e){return V(()=>{let t=Math.log(2),o=ce(e,r),n=ce(ee(o,xs(P(-2,o))),t);return dt(n,-1)})}function Bu(r,e,t=!1){return V(()=>{if(t)e=ya(e);else{let o=ge(e,e.shape.length-1,!0);e=me(e,o)}return e=ar(e,Jt(),1-Jt()),He(ge(P(r.toFloat(),ur(e)),e.shape.length-1))})}function Up(r,e,t=!1){return V(()=>{let o=gs(yz(r)).toInt();e=ar(e,Jt(),1-Jt());let n=e.shape,s=fs(o,n[n.length-1]).reshape(n);return Bu(s,e,t)})}function vQ(r,e){if(!y.arraysEqual(r.shape,e.shape))throw new z(`logits and labels must have the same shape, but got shapes ${JSON.stringify(r.shape)} and ${JSON.stringify(e.shape)}`);return V(()=>{let t=e.relu(),o=e.abs().neg();return t.sub(e.mul(r)).add(o.exp().log1p())})}function Hp(r,e){return V(()=>{let t;return t=ar(e,Jt(),1-Jt()),t=ur(me(t,ce(1,t))),dt(vQ(r,t),-1)})}function CQ(r,e){return V(()=>{let t=ar(r,Jt(),1),o=ar(e,Jt(),1);return ge(P(r,ur(me(t,o))),-1)})}function IQ(r,e){return V(()=>{let t=ur(ee(Jt(),e));return dt(ce(e,P(r,t)),-1)})}function nd(r,e){return V(()=>{let t=od(r,-1),o=od(e,-1),n=P(t,o);return He(ge(n,-1))})}var sd={meanSquaredError:pi,meanAbsoluteError:jp,meanAbsolutePercentageError:Cl,meanSquaredLogarithmicError:yQ,squaredHinge:bQ,hinge:wQ,categoricalHinge:_Q,logcosh:kQ,categoricalCrossentropy:Bu,sparseCategoricalCrossentropy:Up,binaryCrossentropy:Hp,kullbackLeiblerDivergence:CQ,poisson:IQ,cosineProximity:nd};function Bx(r){if(typeof r=="string"){if(r in sd)return sd[r];let e=`Unknown loss ${r}`;throw r.toLowerCase().includes("softmaxcrossentropy")&&(e=`Unknown loss ${r}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new z(e)}else return r}function id(r,e){return V(()=>{let t=P(.5,rr(e)),o=Aa(tr(e,t),r.dtype);return dt(Io(r,o),-1)})}function ad(r,e){return V(()=>Aa(Io(ll(r,-1),ll(e,-1)),"float32"))}function Dz(r,e){return V(()=>gr(r.equal(1),e.equal(1)).sum().cast("float32"))}function NQ(r,e){return V(()=>gr(r.equal(1),e.equal(0)).sum().cast("float32"))}function SQ(r,e){return V(()=>gr(r.equal(0),e.equal(1)).sum().cast("float32"))}function MC(r,e){return V(()=>{let t=Dz(r,e),o=SQ(r,e),n=t.add(o);return Dt(tr(n,0),t.div(n),0).cast("float32")})}function $z(r,e){return V(()=>{let t=Dz(r,e),o=NQ(r,e),n=t.add(o);return Dt(tr(n,0),t.div(n),0).cast("float32")})}function Vx(r,e){return Hp(r,e)}function Gx(r,e){return r.rank===e.rank&&(r=r.squeeze([r.rank-1])),e=e.argMax(-1),e.dtype!==r.dtype&&(e=e.asType(r.dtype)),Io(r,e).asType("float32")}var TQ=pi,AQ=pi,EQ=jp,DQ=jp,$Q=Cl,RQ=Cl,ld=Bu,FQ=nd,LC=Up,Wx={binaryAccuracy:id,categoricalAccuracy:ad,precision:MC,categoricalCrossentropy:ld,sparseCategoricalCrossentropy:LC,mse:TQ,MSE:AQ,mae:EQ,MAE:DQ,mape:$Q,MAPE:RQ,cosine:FQ};function Rz(r){if(typeof r=="string"&&r in Wx)return Wx[r];if(typeof r!="string"&&r!=null)return r;throw new z(`Unknown metric ${r}`)}function ud(r){if(Vo(r!==null,`Unknown LossOrMetricFn ${r}`),typeof r=="string")return r;{let e;for(let t of Object.keys(sd))if(sd[t]===r){e=t;break}if(e!==void 0)return e;for(let t of Object.keys(Wx))if(Wx[t]===r){e=t;break}return e!==void 0?e:r.name}}function Fz(r){let e={Adagrad:()=>bu.adagrad(.01),Adadelta:()=>bu.adadelta(1,.95,Jt()),Adam:()=>bu.adam(.001,.9,.999,Jt()),Adamax:()=>bu.adamax(.002,.9,.999,Jt(),0),RMSProp:()=>bu.rmsprop(.001,.9,0,Jt()),SGD:()=>bu.sgd(.01)};if(e.adagrad=e.Adagrad,e.adadelta=e.Adadelta,e.adam=e.Adam,e.adamax=e.Adamax,e.rmsprop=e.RMSProp,e.sgd=e.SGD,r in e)return e[r]();throw new z(`Unknown Optimizer ${r}`)}var Oz=1*1024*1024;function BC(r,e,t=!1){if(r==null||typeof r!="object"||Object.getPrototypeOf(r)!==Object.prototype||!zC(r))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(t){let o=JSON.stringify(r);o.length>Oz&&console.warn(`User-defined metadata of model "${e}" is too large in size (length=${o.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${Oz}.`)}}function zC(r){if(r===null)return!0;if(typeof r=="object")if(Object.getPrototypeOf(r)===Object.prototype){let e=Object.keys(r);for(let t of e)if(typeof t!="string"||!zC(r[t]))return!1;return!0}else if(Array.isArray(r)){for(let e of r)if(!zC(e))return!1;return!0}else return!1;else{let e=typeof r;return e==="string"||e==="number"||e==="boolean"}}function Pz(r,e,t,o=console.log){let n=PQ(r),s=["Layer (type)","Output shape","Param #"];n?(e=e||65,t=t||[.45,.85,1]):(e=e||98,t=t||[.33,.55,.67,1]),t[t.length-1]<=1&&(t=t.map(c=>Math.floor(e*c)));let a;if(!n){s.push("Receives inputs"),a=[];for(let c in r.nodesByDepth)a.push(...r.nodesByDepth[c])}o("_".repeat(e)),jx(s,t,o),o("=".repeat(e));let i=r.layers;for(let c=0;c<i.length;++c)n?MQ(i[c],t,o):LQ(i[c],t,a,o),o((c===i.length-1?"=":"_").repeat(e));r.checkTrainableWeightsConsistency();let l=OQ(r),u=Gp(r.nonTrainableWeights);o(`Total params: ${l+u}`),o(`Trainable params: ${l}`),o(`Non-trainable params: ${u}`),o("_".repeat(e))}function OQ(r){let e;return r.collectedTrainableWeights!=null?e=Gp(r.collectedTrainableWeights):e=Gp(r.trainableWeights),e}function PQ(r){let e=!0,t=[],o=[];for(let n in r.nodesByDepth)t.push(r.nodesByDepth[n]);for(let n of t){if(n.length>1||n.length===1&&n[0].inboundLayers.length>1){e=!1;break}o.push(...n)}if(e)for(let n of r.layers){let s=!1;for(let a of n.inboundNodes)if(o.indexOf(a)!==-1)if(s){e=!1;break}else s=!0;if(!e)break}return e}function jx(r,e,t=console.log){let o="";for(let n=0;n<r.length;++n)n>0&&(o=o.slice(0,o.length-1)+" "),o+=r[n],o=o.slice(0,e[n]),o+=" ".repeat(e[n]-o.length);t(o)}function MQ(r,e,t){let o;try{o=JSON.stringify(r.outputShape)}catch(i){o="multiple"}let n=r.name,s=r.getClassName(),a=[`${n} (${s})`,o,r.countParams().toString()];jx(a,e,t)}function LQ(r,e,t,o){let n;try{n=JSON.stringify(r.outputShape)}catch(c){n="multiple"}let s=[];for(let c of r.inboundNodes)if(!(t!=null&&t.length>0&&t.indexOf(c)===-1))for(let p=0;p<c.inboundLayers.length;++p){let m=c.inboundLayers[p].name,f=c.nodeIndices[p],d=c.tensorIndices[p];s.push(`${m}[${f}][${d}]`)}let a=r.name,i=r.getClassName(),l=s.length===0?"":s[0],u=[`${a} (${i})`,n,r.countParams().toString(),l];jx(u,e,o);for(let c=1;c<s.length;++c)jx(["","","",s[c]],e,o)}function Mz(r,e,t){return(r==="inboundNodes"||r==="outputLayers"||r==="inputLayers")&&e===0&&typeof t=="string"}function Vu(r,e){if(r===null)return null;if(typeof r=="string")return Ta(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],o=r.length;for(let n=0;n<o;++n){let s=r[n];Mz(e,n,s)?t.push(s):t.push(Vu(s,e))}return t}else{let t={};for(let o of Object.keys(r)){let n=r[o];if(o==="name"&&typeof n=="string")t[o]=n;else{let s=Ta(o);t[s]=Vu(n,s)}}return t}}function Ux(r,e){if(r==null)return null;if(typeof r=="string")return fn(r);if(typeof r=="number"||typeof r=="boolean")return r;if(r instanceof Array){let t=[],o=r.length;for(let n=0;n<o;++n){let s=r[n];Mz(e,n,s)?t.push(s):t.push(Ux(s,e))}return t}else{let t={};for(let o of Object.keys(r)){let n=r[o],s=fn(o);(o==="name"||o==="className")&&typeof n=="string"?t[s]=n:t[s]=Ux(n,o)}return t}}var cd="3.3.0";function zQ(r,e){if(r.dtype==null||r.dtype===e.dtype)return e;try{return ne(e,r.dtype)}catch(t){throw new z(`The dtype of the feed (${e.dtype}) can not be cast to the dtype of the key '${r.name}' (${r.dtype}).`)}}var Ss=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Ss)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,o){if(this.id2Value[e.id]==null)this.id2Value[e.id]=zQ(e,t),this.name2Id[e.name]=e.id,o!=null&&(this.id2Mask[e.id]=o);else throw new z(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof oo){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof oo){if(this.id2Value[e.id]==null)throw new z(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new z(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ae(this.id2Mask)}},VC={},Lz={};function Gu(r,e,t,o){let n=t==null?!1:t.training,s=Array.isArray(r),a=s?r:[r],i=a.map(d=>d.name),l=[],u=e.names();for(let d of i)u.indexOf(d)!==-1?l.push(e.getValue(d)):l.push(null);o!=null&&(o.maxNumTensors=-Infinity,o.minNumTensors=Infinity);let c=i.join(",")+"|"+e.names().join(","),p,m;if(VC[c]==null){let d=BQ(a,e);p=d.sorted,m=d.recipientCounts,VC[c]=p,Lz[c]=m}p=VC[c],m={},n||Object.assign(m,Lz[c]);let f=new Ss(e);for(let d=0;d<p.length;++d){if(o!=null){let O=Rm().numTensors;O>o.maxNumTensors&&(o.maxNumTensors=O),O<o.minNumTensors&&(o.minNumTensors=O)}let h=p[d],g=h.sourceLayer;if(g instanceof ui)continue;let x=[],b=[],w=[],_=!1;for(let O of h.inputs){let M=f.getValue(O),G=f.getMask(O);x.push(M),b.push(G),G!=null&&(_=!0),n||(m[O.name]--,m[O.name]===0&&!e.hasKey(O)&&i.indexOf(O.name)===-1&&!M.isDisposed&&O.sourceLayer.stateful!==!0&&w.push(M))}_&&(t=t||{},t.mask=b[0]);let k=yt(g.apply(x,t)),D=null;g.supportsMasking&&(D=g.computeMask(x,b));let T=VQ(h),R=Array.isArray(T)?T:[T];for(let O=0;O<R.length;++O){f.hasKey(R[O])||f.add(R[O],k[O],Array.isArray(D)?D[0]:D);let M=i.indexOf(R[O].name);M!==-1&&(l[M]=k[O])}n||Ae(w)}return f.disposeMasks(),s?l:l[0]}function BQ(r,e){y.assert(r!=null&&r.length>0,()=>"Expected at least one fetch, got none");let t=[],o={};if(r.length===1){let n=zz(r[0],e);t=n.sorted,o=n.recipientMap}else{let n=new Set;for(let s of r){let{sorted:a,recipientMap:i}=zz(s,e);for(let l of a)n.has(l.name)||(t.push(l),n.add(l.name));for(let l in i)o[l]==null&&(o[l]=new Set),i[l].forEach(u=>o[l].add(u))}}return{sorted:t,recipientCounts:GQ(o)}}function GQ(r){let e={};for(let t in r)e[t]=r[t].size;return e}function zz(r,e){let t=new Set,o=[],n={};for(let i of e.names())t.add(i);let s=[],a=[];for(s.push(r);s.length>0;){let i=s[s.length-1];if(t.has(i.name)){s.pop();continue}let l=a[a.length-1]===s.length-1;if(i.inputs.length===0||l)s.pop(),o.push(i),t.add(i.name),l&&a.pop();else{a.push(s.length-1);for(let u of i.inputs)n[u.name]==null&&(n[u.name]=new Set),n[u.name].add(i.name),!t.has(u.name)&&s.push(u)}}return{sorted:o,recipientMap:n}}function VQ(r){let e;if(r.sourceLayer.inboundNodes.length===1)e=r.sourceLayer.output;else{let t=null;for(let o=0;o<r.sourceLayer.inboundNodes.length;++o)for(let n of r.sourceLayer.inboundNodes[o].outputTensors)if(n.id===r.id){t=o;break}e=r.sourceLayer.getOutputAt(t)}return e}var Go=class extends Me{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=_l(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],hn(this.inputs).length!==this.inputs.length)throw new z(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);hn(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let w=b.sourceLayer,_=b.nodeIndex,k=b.tensorIndex;this.outputLayers.push(w),this.outputLayersNodeIndices.push(_),this.outputLayersTensorIndices.push(k)}for(let b of this.inputs){let w=b.sourceLayer,_=b.nodeIndex,k=b.tensorIndex;Vo(_===0,"input layer has >1 nodes"),Vo(k===0,"input layer has >1 tensors"),this.inputLayers.push(w),this.inputLayersNodeIndices.push(_),this.inputLayersTensorIndices.push(k)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let w=this.inputLayers[b];if(!(w instanceof ui))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${w.getClassName()}.`);this.inputNames.push(w.name),this.feedInputShapes.push(w.batchInputShape),this.feedInputNames.push(w.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},o={},n={},s={},a={},i=[],l=(b,w,_,k,D,T)=>{(k==null||D==null||T==null)&&(k=b.sourceLayer,D=b.nodeIndex,T=b.tensorIndex);let R=k.inboundNodes[D];if(_.indexOf(R)!==-1)throw new Vr(`The tensor ${b.name} at layer "${k.name}" is part of a cycle.`);if(w.indexOf(R)!==-1)return;this.containerNodes.add(Go.nodeKey(k,D)),k.id in a||(a[k.id]=Object.keys(a).length),_.indexOf(R)===-1&&_.push(R);let O=R.inboundLayers.length;for(let M=0;M<O;M++){let G=R.inputTensors[M],j=R.inboundLayers[M],U=R.nodeIndices[M],H=R.tensorIndices[M];l(G,w,_,j,U,H)}for(w.push(R);_.indexOf(R)>=0;)_.splice(_.indexOf(R),1);i.push(R)},u=[],c=[];for(let b of this.outputs)l(b,u,c);let p=i.slice().reverse();for(let b of p){o[b.id]=b,b.id in t||(t[b.id]=0);let w=t[b.id],_=n[b.outboundLayer.id]==null?0:n[b.outboundLayer.id];w=Math.max(w,_),n[b.outboundLayer.id]=w,s[b.outboundLayer.id]=b.outboundLayer,t[b.id]=w;for(let k=0;k<b.inboundLayers.length;k++){let D=b.inboundLayers[k],T=b.nodeIndices[k],R=D.inboundNodes[T],O=t[R.id]==null?0:t[R.id];t[R.id]=Math.max(w+1,O),o[R.id]=R}}let m={};for(let b in t){let w=t[b];w in m||(m[w]=[]),m[w].push(o[b])}let f={};for(let b in n){let w=n[b];w in f||(f[w]=[]),f[w].push(s[b])}let d=Object.keys(f).map(b=>parseInt(b,10)).sort(Gf);this.layers=[];for(let b of d){let w=f[b];w.sort((_,k)=>{let D=a[_.id],T=a[k.id];return D<T?-1:D>T?1:0});for(let _ of w)_ instanceof Go&&this.internalContainerRefs.push(_),this.layers.push(_)}this.layersByDepth=f,d=Object.keys(m).map(b=>parseInt(b,10)).sort(Gf);let h=this.inputs.slice(),g=[];for(let b of d)for(let w of m[b]){let _=w.outboundLayer;if(_!=null){for(let k of w.inputTensors)if(h.indexOf(k)===-1)throw new Vr(`Graph disconnected: cannot obtain value for tensor ${k} at layer "${_.name}". The following previous layers were accessed without issue: ${g}`);for(let k of w.outputTensors)h.push(k);g.push(_.name)}}this.nodesByDepth=m;let x=this.layers.map(b=>b.name);for(let b of x){let w=x.filter(_=>_===b).length;if(w!==1)throw new Vr(`The name "${b}" is used ${w} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(x))}this.outboundNodes=[],this.inboundNodes=[],new kl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(o=>o.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new z("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let o of this.layers)t.push(...o.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let o={},n=0;for(let a of this.layers)for(let i of a.weights){if(o[i.originalName]!=null)throw new z(`Duplicate weight name: ${i.originalName}`);o[i.originalName]=i,n++}let s=[];for(let a in e){let i=a;if(o[a]==null){let l=a.split("/");i=l.slice(0,-2).concat([l[l.length-1]]).join("/")}if(o[i]!=null)s.push([o[i],e[a]]);else if(t)throw new z(`Provided weight data has no target variable: ${a}`);delete o[i]}if(t){let a=[];for(let i in o)a.push(i);if(a.length>0)throw new z(`${a.length} of ${n} weights are not set: ${a}`)}Wp(s)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${cd}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let o=Ux(this.updatedConfig());return t?JSON.stringify(o):o}call(e,t){return V(()=>{e=yt(e);let o=new Ss;for(let n=0;n<this.inputs.length;++n)o.add(this.inputs[n],e[n]);return Gu(this.outputs,o,t)})}computeMask(e,t){return V(()=>{e=yt(e);let o;return t==null?o=mn(null,e.length):o=yt(t),this.runInternalGraph(e,o)[1]})}computeOutputShape(e){let t=Vp(e);if(t.length!==this.inputLayers.length)throw new z(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let o={};for(let i=0;i<t.length;i++){let l=this.inputLayers[i],u=t[i],c=l.name+"_0_0";o[c]=u}let n=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Gf);if(n.length>1)for(let i of n){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer;if(this.inputLayers.map(h=>h.id).indexOf(c.id)!==-1)continue;let p=[];for(let h=0;h<u.inboundLayers.length;h++){let g=u.inboundLayers[h],x=u.nodeIndices[h],b=u.tensorIndices[h],w=`${g.name}_${x}_${b}`,_=o[w];p.push(_)}let m=c.computeOutputShape(yr(p)),f=Vp(m),d=c.inboundNodes.indexOf(u);for(let h=0;h<f.length;h++){let g=`${c.name}_${d}_${h}`;o[g]=f[h]}}}let s=[],a=[];for(let i=0;i<this.outputLayers.length;i++){let l=this.outputLayers[i],u=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],p=`${l.name}_${u}_${c}`;a.push(p)}for(let i=0;i<a.length;i++){let l=a[i];Vo(l in o),s.push(o[l])}return yr(s)}runInternalGraph(e,t){t==null&&(t=mn(null,e.length));let o={};for(let l=0;l<this.inputs.length;++l){let u=this.inputs[l],c=e[l],p=t[l];o[u.id]=[c,p]}let n=Object.keys(this.nodesByDepth).map(l=>parseInt(l,10)).sort(Gf);for(let l of n){let u=this.nodesByDepth[l];for(let c of u){let p=c.outboundLayer,m=c.inputTensors,f=c.outputTensors,d=new Array;for(let h of m)h.id in o&&d.push(o[h.id]);if(d.length===m.length){let h={},g,x,b,w;if(c.callArgs!=null&&(h=c.callArgs),d.length===1){let[_,k]=d[0];h.mask==null&&(h.mask=k),b=yt(p.call(_,h)),w=yt(p.computeMask(_,k)),g=[_],x=[k]}else g=d.map(_=>_[0]),x=d.map(_=>_[1]),h.mask==null&&(h.mask=x),b=yt(p.call(g,h)),w=yt(p.computeMask(g,x));if(p.activityRegularizer)throw new Se("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let _=0;_<f.length;++_){let k=f[_],D=b[_],T=w[_];o[k.id]=[D,T]}}}}let s=[],a=[],i=[];for(let l of this.outputs){Vo(l.id in o,`Could not compute output ${l.name} : ${l.id}`);let[u,c]=o[l.id];i.push(u.shape),s.push(u),a.push(c)}return[s,a,i]}buildNodeConversionMap(e){let t={},o;for(let n of this.layers){o=n instanceof Go?1:0;for(let s=0;s<n.inboundNodes.length;s++){let a=Go.nodeKey(n,s);this.containerNodes.has(a)&&(t[a]=o,o+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new z(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new z("Provide either a layer name or layer index");for(let o of this.layers)if(o.name===e)return o;throw new z(`No such layer: ${e}`)}calculateLosses(){return V(()=>{let e=[];for(let t of this.layers)for(let o=0;o<t.inboundNodes.length;++o){let n=Go.nodeKey(t,o);this.containerNodes.has(n)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),o=[];for(let a of this.layers){let i=a.getClassName(),l=a.getConfig(),u=[];for(let p=0;p<a.inboundNodes.length;p++){let m=a.inboundNodes[p],f=Go.nodeKey(a,p),d={};if(this.containerNodes.has(f)){if(m.callArgs)try{JSON.stringify(m.callArgs),d=m.callArgs}catch(h){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${m.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),d={}}if(m.inboundLayers.length>0){let h=[];for(let g=0;g<m.inboundLayers.length;g++){let x=m.inboundLayers[g],b=m.nodeIndices[g],w=m.tensorIndices[g],_=Go.nodeKey(x,b),k=t[_];k==null&&(k=0),h.push([x.name,k,w,d])}u.push(h)}}}let c={};c.name=a.name,c.className=i,c.config=l,c.inboundNodes=u,o.push(c)}e.layers=o;let n=[];for(let a=0;a<this.inputLayers.length;a++){let i=this.inputLayers[a],l=this.inputLayersNodeIndices[a],u=Go.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.inputLayersTensorIndices[a];n.push([i.name,c,p])}e.inputLayers=n;let s=[];for(let a=0;a<this.outputLayers.length;a++){let i=this.outputLayers[a],l=this.outputLayersNodeIndices[a],u=Go.nodeKey(i,l);if(!this.containerNodes.has(u))continue;let c=t[u];c==null&&(c=0);let p=this.outputLayersTensorIndices[a];s.push([i.name,c,p])}return e.outputLayers=s,e}static fromConfig(e,t,o={},n=!1){let s={},a={};function i(g,x){g.name in a?a[g.name].push(x):a[g.name]=[x]}function l(g,x){let b=[],w;for(let _ of x){let k=_[0],D=_[1],T=_[2];if(w=_[3]==null?{}:_[3],!(k in s)){i(g,x);return}let R=s[k];if(R.inboundNodes.length<=D){i(g,x);return}let O=R.inboundNodes[D];b.push(O.outputTensors[T])}b.length>0&&g.apply(yr(b),w)}function u(g){let x=g.name,b=no(g,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(n),s[x]=b,g.inboundNodes.forEach(_=>{if(!(_ instanceof Array))throw new z(`Corrupted configuration, expected array for nodeData: ${_}`);i(b,_)})}let c=t.name,p=t.layers;for(let g of p)u(g);for(;!tz(a);)for(let g of p){let x=s[g.name];if(x.name in a){let b=a[x.name];delete a[x.name];for(let w of b)l(x,w)}}let m=[],f=[],d=t.inputLayers;for(let g of d){let x=g[0],b=g[1],w=g[2];Vo(x in s);let k=s[x].inboundNodes[b].outputTensors;m.push(k[w])}let h=t.outputLayers;for(let g of h){let x=g[0],b=g[1],w=g[2];Vo(x in s);let k=s[x].inboundNodes[b].outputTensors;f.push(k[w])}return new e({inputs:m,outputs:f,name:c})}get stateful(){if(this._stateful)throw new z("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){V(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function WQ(r,e,t){let o=e.length;if(r==null||Array.isArray(r)&&r.length===0)return e.map(n=>null);if(o===1)return Array.isArray(r)&&r.length===1?r:typeof r=="object"&&e[0]in r?[r[e[0]]]:[r];if(Array.isArray(r)){if(r.length!==o)throw new Error(`Provided ${t} is an array of ${r.length} element(s), but the model has ${o} outputs. Make sure a set of weights is provided for each model output.`);return r}else if(typeof r=="object"&&Object.keys(r).length>0&&typeof r[Object.keys(r)[0]]=="object"){let n=[];return e.forEach(s=>{s in r?n.push(r[s]):n.push(null)}),n}else throw new Error(`The model has multiple (${o}) outputs, so ${t} must be either an array with ${o} elements or an object with ${e} keys. Provided ${t} not understood: ${JSON.stringify(r)}`)}function Hx(r,e){return WQ(r,e,"classWeight")}async function qx(r,e,t,o){if(e!=null||o!=null)throw new Error("Support sampleWeight is not implemented yet");if(t!=null){let n=V(()=>{if(r.shape.length===1)return r.clone();if(r.shape.length===2)if(r.shape[1]>1){let i=1;return r.argMax(i)}else{if(r.shape[1]===1)return r.reshape([r.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${r.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${r.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await n.data());Ae(n);let a=[];return s.forEach(i=>{if(t[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);a.push(t[i])}),Vt(a,"float32")}else return null}function Bz(r,e){return P(r,e)}var jQ=32;function Gz(r,e){let t,o,n=e;t=n.xs,o=n.ys,y.assert(t!=null&&o!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${e}`);let s=Vz("input",r.inputNames,t),a=Vz("output",r.outputNames,o),i=s[0].shape[0];y.assert(s.length===r.inputs.length,()=>`LayersModel has ${r.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(r.inputNames)})`),y.assert(a.length===r.outputs.length,()=>`LayersModel has ${r.outputs.length} outputs, but the dataset provides ${a.length} outputs. (Expected output keys: ${JSON.stringify(r.outputNames)})`);for(let l=0;l<s.length;l++)y.assert(s[l].shape[0]===i,()=>`Batch size mismatch: input ${r.inputNames[l]} has ${s[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);for(let l=0;l<a.length;l++)y.assert(a[l].shape[0]===i,()=>`Batch size mismatch: output ${r.outputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${r.inputNames[0]}.`);return{xs:s,ys:a}}function Vz(r,e,t){if(t instanceof Ve)return[t];if(Array.isArray(t))return y.assert(t.length===e.length,()=>`Received an array of ${t.length} Tensors, but expected ${e.length} to match the ${r} keys ${e}.`),t;{let o=[];for(let n of e){if(t[n]==null)throw new z(`The feature data generated by the dataset lacks the required ${r} key '${n}'.`);o.push(t[n])}return o}}function UQ(r){if(r.length===3)throw new Se("Validation with sample weights is not implemented yet.");return{xs:r[0],ys:r[1]}}async function jz(r,e,t){let o=t.batchesPerEpoch!=null;if(y.assert(r.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),y.assert(t!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),y.assert(t.epochs!=null&&t.epochs>0&&Number.isInteger(t.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${t.epochs}`),y.assert(!o||t.batchesPerEpoch>0&&Number.isInteger(t.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${t.batchesPerEpoch}`),y.assert(t.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;try{let n=t.validationData!=null,s,a;if(n)if(Wz(t.validationData))y.assert(t.validationBatches==null||t.validationBatches>0&&Number.isInteger(t.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${t.validationBatches}`);else{let g=UQ(t.validationData);s=g.xs,a=g.ys}let i=r.makeTrainFunction(),l=r.getDedupedMetricsNames(),u;n?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=Lx(t.callbacks,t.yieldEvery),p=t.verbose==null?1:t.verbose,{callbackList:m,history:f}=zx(c,p,t.epochs,null,null,HQ(e,t),null,n,u);m.setModel(r),r.history=f,await m.onTrainBegin(),r.stopTraining_=!1;let d=t.initialEpoch==null?0:t.initialEpoch,h=await e.iterator();for(;d<t.epochs;){let g={};await m.onEpochBegin(d);let x=0,b=0;for(o||(h=await e.iterator());o?x<t.batchesPerEpoch:!0;){let w=await h.next();if(o&&w.done){console.warn(`You provided \`batchesPerEpoch\` as ${t.batchesPerEpoch}, but your dataset iterator ran out of data after ${x} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${t.batchesPerEpoch*t.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(w.value!=null){let{xs:_,ys:k}=Gz(r,w.value),D={};D.batch=b,D.size=_[0].shape[0],await m.onBatchBegin(b,D);let T=[];if(t.classWeight!=null){let M=Hx(t.classWeight,r.outputNames);for(let G=0;G<M.length;++G)T.push(await qx(k[G],null,M[G]))}let R=_.concat(k).concat(T),O=i(R);Ae(R);for(let M=0;M<l.length;++M){let G=l[M],j=O[M];D[G]=j,Et(j)}await m.onBatchEnd(b,D),Mx(D),b++,x++}if(o?x>=t.batchesPerEpoch:w.done){if(n){let _;Wz(t.validationData)?_=yt(await r.evaluateDataset(t.validationData,{batches:t.validationBatches})):_=yt(r.evaluate(s,a,{batchSize:t.validationBatchSize==null?jQ:t.validationBatchSize,verbose:0}));for(let k=0;k<r.metricsNames.length;++k)g[`val_${r.metricsNames[k]}`]=_[k]}break}if(r.stopTraining_)break}if(await m.onEpochEnd(d,g),d++,r.stopTraining_)break}return await m.onTrainEnd(),await r.history.syncData(),r.history}finally{r.isTraining=!1}}function HQ(r,e){let t=null;return e.batchesPerEpoch!=null?t=e.batchesPerEpoch:Number.isFinite(r.size)&&(t=r.size),t}function Wz(r){return typeof r.iterator=="function"}function qQ(r){return typeof r.next=="function"}async function Uz(r,e,t){t=t||{};let o=t.batches!=null,n=r.testFunction,s=[];if(t.verbose>0)throw new Se("Verbose mode is not implemented yet.");y.assert(!o||t.batches>0&&Number.isInteger(t.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(t.batches)}`);let a=qQ(e)?e:await e.iterator(),i=0,l=0;for(;o?l<t.batches:!0;){let u=await a.next();if(s=V(()=>{if(u.value){let{xs:c,ys:p}=Gz(r,u.value),m=c.concat(p),f=V(()=>n(m));if(Ae(m),l===0)for(let h=0;h<f.length;++h)s.push(le(0));let d=m[0].shape[0];for(let h=0;h<f.length;++h){let g=f[h],x=s[h];s[h]=V(()=>ee(s[h],P(d,g))),l>0&&Ae(x)}Ae(f),i+=d,++l}return s}),u.done){o&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${t.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=me(s[u],i),Ae(c)}return yr(s)}function Kx(r){y.assert(r>0&&Number.isInteger(r),()=>`batchSize is required to be a positive integer, but got ${r}`)}function qp(r,e,t){return r==null?[null]:Array.isArray(r)?r.map(o=>Da(o,e,t-e)):Da(r,e,t-e)}function Xx(r,e){return V(()=>r==null?null:Array.isArray(r)?r.map(t=>Xx(t,e)):Ex(r,e.dtype==="int32"?e:e.toInt()))}function Yx(r,e){let t=[],o=0,n=null;for(;o<r;)n=o+e,n>=r&&(n=r),t.push([o,n]),o=n;return t}async function KQ(r,e,t,o,n,s,a,i,l,u,c,p,m,f,d){n==null&&(n=32),s==null&&(s=1),c==null&&(c=!0),m==null&&(m=0);let h=!1;if(l!=null&&u!=null&&(h=!0),d!=null&&(h=!0,f==null))throw new z("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=r.checkNumSamples(t,n,f,"steps_per_epoch"),x;g!=null&&(x=Gr(0,g)),a==null&&(a=1);let{callbackList:b,history:w}=zx(i,a,s,m,g,f,n,h,p);b.setModel(r),r.history=w,await b.onTrainBegin(),r.stopTraining_=!1;for(let _=m;_<s;++_){await b.onEpochBegin(_);let k={};if(f!=null)throw new Se("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Se("batch shuffling is not implemneted yet");c&&y.shuffle(x);let D=Vt(x),T=Yx(g,n);for(let R=0;R<T.length;++R){let O={};if(await b.onBatchBegin(R,O),V(()=>{let M=T[R][0],G=T[R][1],j=Da(D,M,G-M);O.batch=R,O.size=G-M;let U=Xx(t,j),H=e(U);for(let q=0;q<o.length;++q){let X=o[q],oe=H[q];O[X]=oe,Et(oe)}if(R===T.length-1&&h){let q=r.testLoop(l,u,n);for(let X=0;X<o.length;++X){let oe=o[X],Y=q[X];Et(Y),k["val_"+oe]=Y}}}),await b.onBatchEnd(R,O),Mx(O),r.stopTraining_)break}D.dispose()}if(await b.onEpochEnd(_,k),r.stopTraining_)break}return await b.onTrainEnd(),await r.history.syncData(),r.history}async function Hz(r,e,t,o={}){if(r.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");r.isTraining=!0;let n,s,a,i,l,u,c;try{let p=o.batchSize==null?32:o.batchSize;Kx(p);let m=!1,f=await r.standardizeUserData(e,t,o.sampleWeight,o.classWeight,m,p);n=f[0],s=f[1],c=f[2];let d=!1,h;if(o.validationData!=null&&o.validationData.length>0){if(d=!0,o.validationData.length===2)a=o.validationData[0],i=o.validationData[1];else throw o.validationData.length===3?new Se("validationData including sample weights is not supported yet."):new z(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${o.validationData} is invalid.`);let T=!0,R=await r.standardizeUserData(a,i,null,null,T,p);l=R[0],u=R[1],h=l.concat(u)}else if(o.validationSplit!=null&&o.validationSplit>0&&o.validationSplit<1){d=!0;let T=Math.floor(n[0].shape[0]*(1-o.validationSplit)),R=n[0].shape[0];l=qp(n,T,R),n=qp(n,0,T),u=qp(s,T,R),s=qp(s,0,T),h=l.concat(u)}else o.validationSteps!=null&&(d=!0);let g=n.concat(s).concat(c);r.checkTrainableWeightsConsistency();let x=r.makeTrainFunction(),b=r.getDedupedMetricsNames(),w,_;d?(r.makeTestFunction(),w=r.testFunction,_=b.slice().concat(b.map(T=>"val_"+T))):(w=null,h=[],_=b.slice());let k=Lx(o.callbacks,o.yieldEvery);return await KQ(r,x,g,b,p,o.epochs,o.verbose,k,w,h,o.shuffle,_,o.initialEpoch,null,null)}finally{r.isTraining=!1,Il(n,e),Il(s,t),Il(l,a),Il(u,i),c!=null&&Ae(c)}}function GC(r){let e=[];r instanceof Ve&&(r=[r]);for(let t=0;t<r.length;++t){let o=r[t];if(o.rank===1)e.push(Ea(o,1));else{if(o.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");e.push(o)}}return e}function Il(r,e){if(r==null)return;let t=[];if(e instanceof Ve)t.push(e.id);else if(Array.isArray(e))e.forEach(n=>t.push(n.id));else if(e!=null)for(let n in e){let s=e[n];t.push(s.id)}let o=[];if(r instanceof Ve)t.indexOf(r.id)===-1&&o.push(r);else if(Array.isArray(r))r.forEach(n=>{t.indexOf(n.id)===-1&&o.push(n)});else if(r!=null)for(let n in r){let s=r[n];t.indexOf(s.id)===-1&&o.push(s)}o.forEach(n=>{n.isDisposed||n.dispose()})}function XQ(r){return r instanceof Ve}function WC(r){return Array.isArray(r)}function qz(r){return!XQ(r)&&!WC(r)}function Kz(r,e,t,o=!0,n=""){if(e==null||e.length===0){if(r!=null){let a=!1;if(WC(r)&&r.length>0)a=!0;else if(qz(r)){for(let i in r)if(r.hasOwnProperty(i)){a=!0;break}}else a=!0;if(a)throw new z(`Error when checking model ${n} expected no data, but got ${r}`)}return[]}if(r==null)return e.map(a=>null);let s;if(qz(r)){r=r,s=[];for(let a of e){if(r[a]==null)throw new z(`No data provided for "${a}". Need data for each key in: ${e}`);s.push(r[a])}}else if(WC(r)){if(r=r,r.length!==e.length)throw new z(`Error when checking model ${n}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${e.length} Tensor(s), but instead got the following list of Tensor(s): ${r}`);s=r}else{if(r=r,e.length>1)throw new z(`The model ${n} expects ${e.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${r.shape}`);s=[r]}if(s=GC(s),t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new z(`Error when checking ${n}: expected ${e[a]} to have ${t[a].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<t[a].length;++l){if(l===0&&!o)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c>=0&&u!==c)throw new z(`Error when checking ${n}: expected ${e[a]} to have shape [${t[a]}], but got array with shape [${i.shape}].`)}}return s}function YQ(r,e,t){let o=hn(r.map(s=>s.shape[0]));o.sort();let n=hn(e.map(s=>s.shape[0]));if(n.sort(),o.length>1)throw new z(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(r.map(s=>s.shape))}`);if(n.length>1)throw new z(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(o.length>0&&n.length>0&&!y.arraysEqual(o,n))throw new z(`Input Tensors should have the same number of samples as target Tensors. Found ${o[0]} input sample(s) and ${n[0]} target sample(s).`)}function ZQ(r,e,t){let o=[pi,Hp,Bu];for(let n=0;n<r.length;++n){let s=r[n],a=e[n],i=t[n];if(a!=null){if(a===Bu&&s.shape[s.shape.length-1]===1)throw new z(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(o.indexOf(a)!==-1){let l=s.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let p=l[c],m=u[c];if(m!=null&&p!==m)throw new z(`A target Tensor with shape ${s.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function Xz(r,e,t,o=!0,n=""){let s;if(Array.isArray(r)){if(r.length!==e.length)throw new z(`Error when checking model ${n}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${e.length} Tensor(s), but instead got ${r.length} Tensors(s).`);s=r}else{if(e.length>1)throw new z(`The model expects ${e.length} ${n} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(r.shape)}.`);s=[r]}if(t!=null)for(let a=0;a<e.length;++a){if(t[a]==null)continue;let i=s[a];if(i.shape.length!==t[a].length)throw new z(`Error when checking ${n}: expected ${e[a]} to have ${t[a].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<t[a].length;++l){if(l===0&&!o)continue;let u=i.shape[l],c=t[a][l];if(c!=null&&c!==u)throw new z(`Error when checking ${n}: expected ${e[a]} to have shape ${JSON.stringify(t[a])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function JQ(r,e){if(r==null||Array.isArray(r)&&r.length===0)return e.map(o=>[]);let t;if(typeof r=="string"||typeof r=="function")t=[r];else if(Array.isArray(r)||typeof r=="object")t=r;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${r}`);if(Array.isArray(t))return e.map(o=>t);{let o=[];for(let n of e){let s=t.hasOwnProperty(n)?t[n]:[];Array.isArray(s)||(s=[s]),o.push(s)}return o}}var QQ="layers-model",Wo=class extends Go{constructor(e){super(e);this.isTraining=!1}summary(e,t,o=console.log){if(!this.built)throw new z("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Pz(this,e,t,o)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Fz(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof zr))throw new z("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new z(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(Bx(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new z(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(i=>Bx(i))}else{let a=Bx(e.loss);this.outputs.forEach(i=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let i=this.internalOutputShapes[a],l=this.outputNames[a];this.feedOutputNames.push(l),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[a])}let o=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Is("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(o.indexOf(a)!==-1)continue;let i=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([i,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let n=JQ(e.metrics,this.outputNames),s=(a,i,l)=>{this.outputNames.length>1&&(i=this.outputNames[a]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([l,a])};Is("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(o.indexOf(a)!==-1)continue;let i=n[a];(u=>{let c="",p,m,f;for(let d of u){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let g=this.internalOutputShapes[a];g[g.length-1]===1||this.lossFunctions[a]===Hp?["accuracy","acc"].indexOf(d)!==-1?m=id:["crossentropy","ce"].indexOf(d)!==-1&&(m=Vx):this.lossFunctions[a]===Up?["accuracy","acc"].indexOf(d)!==-1?m=Gx:["crossentropy","ce"].indexOf(d)!==-1&&(m=LC):["accuracy","acc"].indexOf(d)!==-1?m=ad:["crossentropy","ce"].indexOf(d)!==-1&&(m=ld);let x;["accuracy","acc"].indexOf(d)!==-1?x="acc":["crossentropy","ce"].indexOf(d)!==-1&&(x="ce"),f=m,p=c+x}else f=Rz(d),p=c+ud(d);let h;Is(p,()=>{h=f}),s(a,p,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,o={}){let n=o.batchSize==null?32:o.batchSize;Kx(n);let s=!0,a=this.standardizeUserDataXY(e,t,s,n);try{let i=a[0].concat(a[1]);this.makeTestFunction();let l=this.testFunction,u=this.testLoop(l,i,n,o.verbose,o.steps);return yr(u)}finally{Il(a[0],e),Il(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Uz(this,e,t)}checkNumSamples(e,t,o,n="steps"){let s;if(o!=null){if(s=null,t!=null)throw new z(`If ${n} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?s=e[0].shape[0]:s=e.shape[0];else throw new z(`Either the input data should have a defined shape, or ${n} shoud be specified.`);return s}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new z("`outputs` is an empty Array, which is not allowed.");let o=Array.isArray(t),n=o?t:[t],s=this.retrieveSymbolicTensors(n),a=new Ss;if(e instanceof Ve&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new z(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let l=0;l<this.inputs.length;++l)a.add(this.inputs[l],e[l])}else for(let l of this.inputs){let u=e[l.name];if(u==null)throw new z(`No value is provided for the model's input ${l.name}`);a.add(l,u)}let i=Gu(s,a);return o?i:i[0]}retrieveSymbolicTensors(e){let t=mn(null,e.length),o=e.length;for(let n of this.layers){let s=Array.isArray(n.output)?n.output:[n.output],a=s.map(i=>i.name);for(let i=0;i<e.length;++i){let l=a.indexOf(e[i]);if(l!==-1&&(t[i]=s[l],o--),o===0)break}if(o===0)break}if(o>0){let n=[];throw t.forEach((s,a)=>{s==null&&n.push(e[a])}),new z(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(n)}`)}return t}predictLoop(e,t=32,o=!1){return V(()=>{let n=this.checkNumSamples(e);if(o)throw new Se("Verbose predictLoop() is not implemented yet.");let s=Yx(n,t),a=this.outputs.map(i=>[]);for(let i=0;i<s.length;++i)V(()=>{let u=s[i][0],c=s[i][1],p=qp(e,u,c),m=[];if(Array.isArray(p))for(let d=0;d<p.length;++d)m.push({key:this.inputs[d],value:p[d]});else m.push({key:this.inputs[0],value:p});let f=new Ss(m);return Gu(this.outputs,f)}).forEach((u,c)=>a[c].push(u));return yr(a.map(i=>Ze(i,0)))})}predict(e,t={}){let o=GC(e);Xz(o,this.inputNames,this.feedInputShapes,!1);try{let n=t.batchSize==null?32:t.batchSize;return Kx(n),this.predictLoop(o,n)}finally{Il(o,e)}}predictOnBatch(e){Xz(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,o=!0,n){if(this.optimizer_==null)throw new Vr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let s=[];for(let a=0;a<this.feedOutputShapes.length;++a){let i=this.feedOutputShapes[a];this.feedLossFns[a]===Up?s.push(i.slice(0,i.length-1).concat([1])):s.push(i)}if(e=Kz(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=Kz(t,this.feedOutputNames,s,!1,"target"),YQ(e,t,null),ZQ(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&n!=null&&n>0&&e[0].shape[0]%n!=0)throw new z(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${n}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,o,n,s=!0,a){let[i,l]=this.standardizeUserDataXY(e,t,s,a);if(o!=null)throw new Error("sample weight is not supported yet.");let u=null;if(n!=null){let c=Hx(n,this.outputNames);u=[];for(let p=0;p<c.length;++p)u.push(await qx(l[p],null,c[p]))}return[i,l,u]}testLoop(e,t,o,n=0,s){return V(()=>{let a=this.checkNumSamples(t,o,s,"steps"),i=[];if(n>0)throw new Se("Verbose mode is not implemented yet.");if(s!=null)throw new Se("steps mode in testLoop() is not implemented yet");{let l=Yx(a,o),u=Vt(Gr(0,a));for(let c=0;c<l.length;++c){let p=l[c][0],m=l[c][1],f=Da(u,p,m-p),d=Xx(t,f),h=e(d);if(c===0)for(let g=0;g<h.length;++g)i.push(le(0));for(let g=0;g<h.length;++g){let x=h[g];i[g]=ee(i[g],P(m-p,x))}}for(let c=0;c<i.length;++c)i[c]=me(i[c],a)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let o=0;o<e.length;++o){let n=e[o],s=n;NC(e,n)>1&&(s+=`_${NC(e.slice(0,o),n)}`),t.push(s)}return t}makeTrainFunction(){return e=>{let t=[],o=e.slice(0,this.inputs.length),n=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],i=()=>{let p=[];for(let h=0;h<this.inputs.length;++h)p.push({key:this.inputs[h],value:o[h]});let m=new Ss(p),f=Gu(this.outputs,m,{training:!0}),d;for(let h=0;h<this.lossFunctions.length;++h){let x=this.lossFunctions[h](n[h],f[h]);s[h]!=null&&(x=Bz(x,s[h]));let b=dt(x);t.push(b),h===0?d=x:d=ee(d,x)}for(let h=0;h<this.metricsTensors.length;++h){let g;if(this.outputs.length>1&&h<this.outputs.length)g=t[h];else{let x=this.metricsTensors[h][0],b=this.metricsTensors[h][1];g=dt(x(n[b],f[b]))}Et(g),a.push(g)}return d=dt(d),this.calculateLosses().forEach(h=>{d=ee(d,h)}),d},l=this.collectedTrainableWeights.map(p=>p.read()),u=!0;return[this.optimizer_.minimize(i,u,l)].concat(a)}}makeTestFunction(){this.testFunction=e=>V(()=>{let t=[],o,n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let u=0;u<this.inputs.length;++u)a.push({key:this.inputs[u],value:n[u]});let i=new Ss(a),l=Gu(this.outputs,i);for(let u=0;u<this.lossFunctions.length;++u){let c=this.lossFunctions[u],p=dt(c(s[u],l[u]));u===0?o=p:o=ee(o,p),t.push(o)}for(let u=0;u<this.metricsTensors.length;++u){let c=this.metricsTensors[u][0],p=this.metricsTensors[u][1],m=dt(c(s[p],l[p]));t.push(m)}return t})}async fit(e,t,o={}){return Hz(this,e,t,o)}async fitDataset(e,t){return jz(this,e,t)}async trainOnBatch(e,t){let o=await this.standardizeUserData(e,t),n=o[0],s=o[1],i=this.makeTrainFunction()(n.concat(s)),l=[];for(let u of i){let c=await u.data();l.push(c[0])}return Ae(i),yr(l)}getNamedWeights(e){let t=[],o=e!=null&&e.trainableOnly,n=o?this.trainableWeights:this.weights,s=this.getWeights(o);for(let a=0;a<n.length;++a)o&&!n[a].trainable||t.push({name:n[a].originalName,tensor:s[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Rm().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Rm().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=fn(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>fn(t))}else{let t=Object.keys(this.loss);e={};let o=this.loss;for(let n of t)if(typeof o[n]=="string")e[n]=fn(o[n]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[fn(ud(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>fn(ud(e)));{let e={};for(let t in this.metrics)e[t]=fn(ud(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Vu(e.optimizer_config),o=no(t),n;if(typeof e.loss=="string")n=Ta(e.loss);else if(Array.isArray(e.loss))n=e.loss.map(a=>Ta(a));else if(e.loss!=null){n={};for(let a in e.loss)n[a]=Ta(e.loss[a])}let s;if(Array.isArray(e.metrics))s=e.metrics.map(a=>Ta(a));else if(e.metrics!=null){s={};for(let a in e.metrics)s[a]=Ta(e.metrics[a])}this.compile({loss:n,metrics:s,optimizer:o})}async save(e,t){if(typeof e=="string"){let u=Tr.getSaveHandlers(e);if(u.length===0)throw new z(`Cannot find any save handlers for URL '${e}'`);if(u.length>1)throw new z(`Found more than one (${u.length}) save handlers for URL '${e}'`);e=u[0]}if(e.save==null)throw new z("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let o=await Tr.encodeWeights(this.getNamedWeights(t)),n=!1,s=null,i={modelTopology:this.toJSON(s,n),format:QQ,generatedBy:`TensorFlow.js tfjs-layers v${cd}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){i.trainingConfig=this.getTrainingConfig();let u="optimizer",{data:c,specs:p}=await Tr.encodeWeights(await this.optimizer.getWeights(),u);o.specs.push(...p),o.data=Tr.concatenateArrayBuffers([o.data,c])}if(this.userDefinedMetadata!=null){let u=!0;BC(this.userDefinedMetadata,this.name,u),i.userDefinedMetadata=this.userDefinedMetadata}return i.weightData=o.data,i.weightSpecs=o.specs,e.save(i)}setUserDefinedMetadata(e){BC(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Wo.className="Model";Q.registerClass(Wo);var jC=class extends Wo{};jC.className="Functional";Q.registerClass(jC);async function Yz(r,e){"modelTopology"in r||(r={modelTopology:r}),r=r;let t=r.modelTopology;t.model_config!=null&&(t=t.model_config);let o=Vu(t),n=no(o,e);if(r.weightsManifest!=null){let s=await Tr.loadWeights(r.weightsManifest,r.pathPrefix,n.weights.map(i=>i.originalName)),a={};for(let i of n.weights)a[i.originalName]=s[i.originalName];n.loadWeights(a),Ae(s)}return n}async function Zz(r,e){if(e==null&&(e={}),typeof r=="string"){let t=Tr.getLoadHandlers(r,e);if(t.length===0)t.push(Tr.browserHTTPRequest(r,e));else if(t.length>1)throw new z(`Found more than one (${t.length}) load handlers for URL '${r}'`);r=t[0]}return eee(r,void 0,e)}async function eee(r,e,t){if(t==null&&(t={}),r.load==null)throw new z("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let o=await r.load(),n=o.modelTopology;n.model_config!=null&&(n=n.model_config);let s=t.strict==null?!0:t.strict,a=o.weightData!=null&&o.weightSpecs!=null&&s,i=no(Vu(n),e,a),l=o.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),o.userDefinedMetadata!=null&&i.setUserDefinedMetadata(o.userDefinedMetadata),o.weightData!=null){if(o.weightSpecs==null)throw new z("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=tee(o.weightData,o.weightSpecs);i.loadWeights(u,s),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),Ae(u),Ae(c.map(p=>p.tensor))}return i}function tee(r,e){let t=Tr.decodeWeights(r,e),o={},n=[];return e.forEach(s=>{s.group==="optimizer"?n.push({name:s.name,tensor:t[s.name]}):o[s.name]=t[s.name]}),{modelWeights:o,optimizerWeights:n}}var $a=class extends Wo{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:_l("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(o=>o<0))throw new z(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof $a||e instanceof Wo,o;if(t){if(o=e,o.outputs.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(o.inputs.length!==1)throw new z("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new z("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let n=Px({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(n)}if(t)this.outputs=o.outputs,this.inputs=o.inputs;else{if(e.inboundNodes.length!==1)throw new z(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new z("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=RC(this.outputs[0])}this.inboundNodes=[],new kl({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:mn(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(n=>n.shape),outputShapes:this.outputs[0].shape})}else{let n=e.apply(this.outputs[0]);if(Array.isArray(n))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[n],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(Je(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Wo({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,o=console.log){this.built||this.build(),super.summary(e,t,o)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,o={}){if(!this.built)throw new Vr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,o)}async evaluateDataset(e,t){if(!this.built)throw new Vr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,o={}){if(!this.built)throw new Vr("The model needs to be compiled before being used.");return this.model.fit(e,t,o)}async fitDataset(e,t){if(!this.built)throw new Vr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,o={},n=!1){let s,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new z("Legacy serialization format not supported yet.");s=t}else y.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),s=t.layers,delete t.layers,a=t;let i=new e(a);if(!(i instanceof $a))throw new Se(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let l of s){let c=no(l,void 0,n);n&&c.setFastWeightInitDuringBuild(!0),i.add(c)}return i}set stopTraining(e){if(this.model==null)throw new z("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new z("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let o={};o.className=t.getClassName(),o.config=t.getConfig(),e.push(o)}return{name:this.name,layers:e}}};$a.className="Sequential";Q.registerClass($a);function ree(r){return new Wo(r)}function oee(r){return new $a(r)}function nee(r,e){return e==null&&(e={}),Zz(r,e)}function UC(r){return Px(r)}function see(r,e){xo.registerCallbackConstructor(r,e)}var yo=class extends Q.Serializable{getConfig(){return{}}},HC=class extends yo{apply(e,t=1){return wz(e,t)}};HC.className="elu";Q.registerClass(HC);var qC=class extends yo{apply(e){return uu(e)}};qC.className="selu";Q.registerClass(qC);var KC=class extends yo{apply(e){return Er(e)}};KC.className="relu";Q.registerClass(KC);var XC=class extends yo{apply(e){return V(()=>ys(6,Er(e)))}};XC.className="relu6";Q.registerClass(XC);var YC=class extends yo{apply(e){return e}};YC.className="linear";Q.registerClass(YC);var ZC=class extends yo{apply(e){return Zr(e)}};ZC.className="sigmoid";Q.registerClass(ZC);var JC=class extends yo{apply(e){return kz(e)}};JC.className="hardSigmoid";Q.registerClass(JC);var QC=class extends yo{apply(e){return xs(e)}};QC.className="softplus";Q.registerClass(QC);var e0=class extends yo{apply(e){return _z(e)}};e0.className="softsign";Q.registerClass(e0);var t0=class extends yo{apply(e){return Qs(e)}};t0.className="tanh";Q.registerClass(t0);var pd=class extends yo{apply(e,t=-1){return ya(e,t)}};pd.className="softmax";Q.registerClass(pd);var r0=class extends yo{apply(e,t=-1){return ou(e,t)}};r0.className="logSoftmax";Q.registerClass(r0);var o0=class extends yo{apply(e,t=1){return V(()=>Zr(e.mul(t)).mul(e))}};o0.className="swish";Q.registerClass(o0);function Ts(r){return r.getClassName()}function n0(r,e={}){return ai(r,Q.SerializationMap.getMap().classNameMap,e,"activation")}function As(r){if(r==null){let e={};return e.className="linear",e.config={},n0(e)}if(typeof r=="string"){let e={};return e.className=r,e.config={},n0(e)}else return r instanceof yo?r:n0(r)}function s0(r){if(r!=null&&typeof r!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${r}`)}var i0=class extends Q.Serializable{},Wu=class extends i0{constructor(e){super();s0(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return V(()=>{let t=ht([1]);return this.hasL1&&(t=ee(t,ge(P(this.l1,It(e))))),this.hasL2&&(t=ee(t,ge(P(this.l2,Lu(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Wu.className="L1L2";Q.registerClass(Wu);function Jz(r){return s0(r),new Wu({l1:r!=null?r.l1:null,l2:0})}function Qz(r){return s0(r),new Wu({l2:r!=null?r.l2:null,l1:0})}var e3={l1l2:"L1L2"};function st(r){return Ep(r)}function t3(r,e={}){return ai(r,Q.SerializationMap.getMap().classNameMap,e,"regularizer")}function bt(r){if(r==null)return null;if(typeof r=="string"){let t={className:r in e3?e3[r]:r,config:{}};return t3(t)}else return r instanceof i0?r:t3(r)}var md=class extends Me{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Fe(e);let o=Er(e);return this.maxValue!=null&&(o=ar(o,0,this.maxValue)),o}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};md.className="ReLU";Q.registerClass(md);var fd=class extends Me{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let o=Fe(e);return fa(o,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};fd.className="LeakyReLU";Q.registerClass(fd);var dd=class extends Me{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=pt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=bt(e.alphaRegularizer),this.alphaConstraint=Ot(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new z(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=Je(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let n of this.sharedAxes)t[n-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let o={};if(this.sharedAxes!=null)for(let n=1;n<e.length;++n)o[n]=e[n];this.inputSpec=[new At({ndim:e.length,axes:o})],this.built=!0}call(e,t){return e=Fe(e),xa(e,this.alpha.read())}getConfig(){let e={alphaInitializer:kt(this.alphaInitializer),alphaRegularizer:st(this.alphaRegularizer),alphaConstraint:Ft(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};dd.className="PReLU";Q.registerClass(dd);var hd=class extends Me{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Se(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let o=Fe(e);return hs(o)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};hd.className="ELU";Q.registerClass(hd);var gd=class extends Me{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let o=Fe(e);return o.mul(Aa(o.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};gd.className="ThresholdedReLU";Q.registerClass(gd);var xd=class extends Me{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new pd().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let o=Fe(e);return this.softmax(o,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};xd.className="Softmax";Q.registerClass(xd);function Nl(r,e,t){if(typeof r=="number")return mn(r,e);if(r.length!==e)throw new z(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${r.length} elements.`);for(let o=0;o<e;++o){let n=r[o];if(!hz(n))throw new z(`The ${t} argument must be an integer or tuple of ${e} integers. Received: ${JSON.stringify(r)} including a non-integer number ${n}`)}return r}function bo(r,e,t,o,n=1){if(r==null)return r;let s=e+(e-1)*(n-1),a;return t==="same"?a=r:a=r-s+1,Math.floor((a+o-1)/o)}function yd(r,e,t,o){if(r==null)return null;if(o==="valid")r=r*e+Ns([t-e,0]);else if(o==="same")r=r*e;else throw new z(`Unsupport padding mode: ${o}.`);return r}function bd(r,e){return V(()=>($t(e),e==="channelsFirst"?Ke(r,[0,2,3,1]):r))}function a0(r,e){return V(()=>($t(e),e==="channelsFirst"?Ke(r,[0,2,3,4,1]):r))}function iee(r,e,t,o=1,n="valid",s,a=1){return V(()=>{if(s==null&&(s=to()),$t(s),r.shape.length!==3)throw new z(`The input of a conv1dWithBias operation should be 3, but is ${r.shape.length} instead.`);if(e.shape.length!==3)throw new z(`The kernel for a conv1dWithBias operation should be 3, but is ${e.shape.length} instead`);if(t!=null&&t.shape.length!==1)throw new z(`The bias for a conv1dWithBias operation should be 1, but is ${e.shape.length} instead`);if(s==="channelsFirst"&&(r=Ke(r,[0,2,1])),n==="causal")throw new Se("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=Yl(r,e,o,n==="same"?"same":"valid","NWC",a);return t!=null&&(i=ho(i,t)),i})}function r3(r,e,t,o=[1,1],n="valid",s,a,i=null){return V(()=>{if(s==null&&(s=to()),$t(s),r.rank!==3&&r.rank!==4)throw new z(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${r.rank}.`);if(e.rank!==3&&e.rank!==4)throw new z(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${r.rank}.`);let l=bd(r,s);if(n==="causal")throw new Se("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=rn.conv2d({x:l,filter:e,strides:o,pad:n==="same"?"same":"valid",dilations:a,dataFormat:"NHWC",bias:t,activation:i}),s==="channelsFirst"&&(l=Ke(l,[0,3,1,2])),l})}function aee(r,e,t,o=[1,1,1],n="valid",s,a){return V(()=>{if(s==null&&(s=to()),$t(s),r.rank!==4&&r.rank!==5)throw new z(`conv3dWithBias expects input to be of rank 4 or 5, but received ${r.rank}.`);if(e.rank!==4&&e.rank!==5)throw new z(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${r.rank}.`);let i=a0(r,s);if(n==="causal")throw new Se("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=jm(i,e,o,n==="same"?"same":"valid","NDHWC",a),t!=null&&(i=ho(i,t)),s==="channelsFirst"&&(i=Ke(i,[0,4,1,2,3])),i})}var Kp=class extends Me{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Kp.verifyArgs(t),this.rank=e,Ut(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Se(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Nl(t.kernelSize,e,"kernelSize"),this.strides=Nl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ro(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,$t(this.dataFormat),this.activation=As(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=pt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Ot(t.biasConstraint),this.biasRegularizer=bt(t.biasRegularizer),this.activityRegularizer=bt(t.activityRegularizer),this.dilationRate=Nl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new z(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new z(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new z(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Vo("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Ix(e.kernelSize,"number",1,3))throw new z(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ts(this.activation),useBias:this.useBias,biasInitializer:kt(this.biasInitializer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),biasConstraint:Ft(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},ju=class extends Kp{constructor(e,t){super(e,t);this.kernel=null,ju.verifyArgs(t),this.filters=t.filters,Ut(this.filters,"filters"),this.kernelInitializer=pt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Ot(t.kernelConstraint),this.kernelRegularizer=bt(t.kernelRegularizer)}build(e){e=Je(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[t]}`);let o=e[t],n=this.kernelSize.concat([o,this.filters]);this.kernel=this.addWeight("kernel",n,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:o}}],this.built=!0}call(e,t){return V(()=>{e=Fe(e);let o,n=this.bias==null?null:this.bias.read(),s=Nx(this.activation.getClassName());if(s!=null&&this.rank===2)o=r3(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate,s);else{if(this.rank===1)o=iee(e,this.kernel.read(),n,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)o=r3(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)o=aee(e,this.kernel.read(),n,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Se("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(o=this.activation.apply(o))}return o})}computeOutputShape(e){e=Je(e);let t=[],o=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let s=0;s<o.length;++s){let a=bo(o[s],this.kernelSize[s],this.padding,this.strides[s],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[s]);t.push(a)}let n=[e[0]];return this.dataFormat==="channelsLast"?(n=n.concat(t),n.push(this.filters)):(n.push(this.filters),n=n.concat(t)),n}getConfig(){let e={filters:this.filters,kernelInitializer:kt(this.kernelInitializer),kernelRegularizer:st(this.kernelRegularizer),kernelConstraint:Ft(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new z(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Sl=class extends ju{constructor(e){super(2,e);Sl.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Ix(e.kernelSize,"number",1,2))throw new z(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Sl.className="Conv2D";Q.registerClass(Sl);var Uu=class extends ju{constructor(e){super(3,e);Uu.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new z(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Uu.className="Conv3D";Q.registerClass(Uu);var wd=class extends Sl{constructor(e){super(e);if(this.inputSpec=[new At({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new z(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=Je(e),e.length!==4)throw new z("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new z("The channel dimension of the inputs should be defined. Found `None`.");let o=e[t],n=this.kernelSize.concat([this.filters,o]);this.kernel=this.addWeight("kernel",n,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new At({ndim:4,axes:{[t]:o}})],this.built=!0}call(e,t){return V(()=>{let o=Fe(e);if(o.shape.length!==4)throw new z(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${o.shape.length}`);let n=o.shape,s=n[0],a,i;this.dataFormat==="channelsFirst"?(a=2,i=3):(a=1,i=2);let l=n[a],u=n[i],c=this.kernelSize[0],p=this.kernelSize[1],m=this.strides[0],f=this.strides[1],d=yd(l,m,c,this.padding),h=yd(u,f,p,this.padding),g=[s,d,h,this.filters];this.dataFormat!=="channelsLast"&&(o=Ke(o,[0,2,3,1]));let x=Zl(o,this.kernel.read(),g,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(x=Ke(x,[0,3,1,2])),this.bias!=null&&(x=ho(x,this.bias.read(),this.dataFormat)),this.activation!=null&&(x=this.activation.apply(x)),x})}computeOutputShape(e){e=Je(e);let t=e.slice(),o,n,s;this.dataFormat==="channelsFirst"?(o=1,n=2,s=3):(o=3,n=1,s=2);let a=this.kernelSize[0],i=this.kernelSize[1],l=this.strides[0],u=this.strides[1];return t[o]=this.filters,t[n]=yd(t[n],l,a,this.padding),t[s]=yd(t[s],u,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};wd.className="Conv2DTranspose";Q.registerClass(wd);var l0=class extends ju{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new z("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new z("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new z(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=pt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=bt(t.depthwiseRegularizer),this.depthwiseConstraint=Ot(t.depthwiseConstraint),this.pointwiseInitializer=pt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=bt(t.pointwiseRegularizer),this.pointwiseConstraint=Ot(t.pointwiseConstraint)}build(e){if(e=Je(e),e.length<this.rank+2)throw new z(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let o=e[t],n=this.kernelSize.concat([o,this.depthMultiplier]),s=[];for(let i=0;i<this.rank;++i)s.push(1);s.push(o*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",n,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",s,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new At({ndim:this.rank+2,axes:{[t]:o}})],this.built=!0}call(e,t){return V(()=>{e=Fe(e);let o;if(this.rank===1)throw new Se("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ke(e,[0,2,3,1])),o=nf(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(o=ho(o,this.bias.read(),this.dataFormat)),this.activation!=null&&(o=this.activation.apply(o)),this.dataFormat==="channelsFirst"&&(o=Ke(o,[0,3,1,2])),o})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.pointwiseInitializer=kt(this.pointwiseInitializer),e.depthwiseRegularizer=st(this.depthwiseRegularizer),e.pointwiseRegularizer=st(this.pointwiseRegularizer),e.depthwiseConstraint=Ft(this.depthwiseConstraint),e.pointwiseConstraint=Ft(this.pointwiseConstraint),e}};l0.className="SeparableConv";var _d=class extends l0{constructor(e){super(2,e)}};_d.className="SeparableConv2D";Q.registerClass(_d);var Hu=class extends ju{constructor(e){super(1,e);Hu.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Ix(e.kernelSize,"number",1,1))throw new z(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Hu.className="Conv1D";Q.registerClass(Hu);var kd=class extends Me{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return V(()=>{if(e=Fe(e),this.dataFormat==="channelsLast"){let o=Kf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Kf(o,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let o=Kf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Kf(o,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};kd.className="Cropping2D";Q.registerClass(kd);var vd=class extends Me{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,mz(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],o=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,o]}else{let t=e[1]==null?null:this.size[0]*e[1],o=e[2]==null?null:this.size[1]*e[2];return[e[0],t,o,e[3]]}}call(e,t){return V(()=>{let o=Fe(e),n=o.shape;if(this.dataFormat==="channelsFirst"){o=Ke(o,[0,2,3,1]);let s=this.size[0]*n[2],a=this.size[1]*n[3],i=this.interpolation==="nearest"?o.resizeNearestNeighbor([s,a]):o.resizeBilinear([s,a]);return Ke(i,[0,3,1,2])}else{let s=this.size[0]*n[1],a=this.size[1]*n[2];return this.interpolation==="nearest"?o.resizeNearestNeighbor([s,a]):o.resizeBilinear([s,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};vd.className="UpSampling2D";Q.registerClass(vd);function lee(r,e,t=[1,1],o="valid",n,s){return V(()=>{n==null&&(n=to()),$t(n);let a=bd(r,n);if(r.rank!==4)throw new z(`Input for depthwiseConv2d is required to be 4-D, but is instead ${r.rank}-D`);if(e.rank!==4)throw new z(`depthwiseKernel is required to be 4-D, but is instead ${e.rank}-D`);return a=ds(a,e,t,o==="same"?"same":"valid","NHWC",s),n==="channelsFirst"&&(a=Ke(a,[0,3,1,2])),a})}var Cd=class extends Kp{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=pt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Ot(e.depthwiseConstraint),this.depthwiseRegularizer=bt(e.depthwiseRegularizer)}build(e){if(e=Je(e),e.length<4)throw new z(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new z(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let o=e[t],n=[this.kernelSize[0],this.kernelSize[1],o,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",n,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[o*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{e=Fe(e);let o=lee(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(o=ho(o,this.bias.read(),this.dataFormat)),this.activation!=null&&(o=this.activation.apply(o)),o})}computeOutputShape(e){e=Je(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,s=bo(t,this.kernelSize[0],this.padding,this.strides[0]),a=bo(o,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],n,s,a]:[e[0],s,a,n]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.depthwiseRegularizer=st(this.depthwiseRegularizer),e.depthwiseConstraint=Ft(this.depthwiseRegularizer),e}};Cd.className="DepthwiseConv2D";Q.registerClass(Cd);function u0(r,e,t,o){if(Array.isArray(r)){if(e!=null||t!=null)throw new z("When inputs is an array, neither initialState or constants should be provided");o!=null&&(t=r.slice(r.length-o,r.length),r=r.slice(0,r.length-o)),r.length>1&&(e=r.slice(1,r.length)),r=r[0]}function n(s){return s==null||Array.isArray(s)?s:[s]}return e=n(e),t=n(t),{inputs:r,initialState:e,constants:t}}function c0(r,e,t,o=!1,n,s,a=!1,i=!1){return V(()=>{let l=e.shape.length;if(l<3)throw new z(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Gr(2,l));if(e=Ke(e,u),s!=null)throw new Se("The rnn() functoin of the deeplearn.js backend does not support constants yet.");a&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),n!=null&&(n=n.asType("bool").asType("float32"),n.rank===l-1&&(n=lr(n,-1)),n=Ke(n,u)),o&&(e=qt(e,0),n!=null&&(n=qt(n,0)));let c=[],p,m=t,f=e.shape[0],d=mr(e),h;n!=null&&(h=mr(n));for(let x=0;x<f;++x){let b=d[x],w=V(()=>r(b,m));if(n==null)p=w[0],m=w[1];else{let _=V(()=>{let k=h[x],D=rr(k).sub(k),T=w[0].mul(k).add(m[0].mul(D)),R=m.map((O,M)=>w[1][M].mul(k).add(O.mul(D)));return{output:T,newStates:R}});p=_.output,m=_.newStates}i&&c.push(p)}let g;return i&&(g=Bt(c,1)),[p,g,m]})}var Eo=class extends Me{constructor(e){super(e);let t;if(e.cell==null)throw new z("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Xp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new z("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new At({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Gr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Fx(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let o=t[0],n;if(this.returnSequences?n=[e[0],e[1],o]:n=[e[0],o],this.returnState){let s=[];for(let a of t)s.push([e[0],a]);return[n].concat(s)}else return n}computeMask(e,t){return V(()=>{Array.isArray(t)&&(t=t[0]);let o=this.returnSequences?t:null;if(this.returnState){let n=this.states.map(s=>null);return[o].concat(n)}else return o})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let o=0;o<e;++o)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Se("Constants support is not implemented in RNN yet.");Fx(e)&&(e=e[0]),e=e;let o=this.stateful?e[0]:null,n=e.slice(2);this.inputSpec[0]=new At({shape:[o,null,...n]});let s=[e[0]].concat(e.slice(2));if(t!=null)throw new Se("Constants support is not implemented in RNN yet.");this.cell.build(s);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!y.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),a))throw new z(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(i=>new At({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new Ao("Cannot call resetStates() on an RNN Layer that is not stateful.");let o=this.inputSpec[0].shape[0];if(o==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>ht([o,n])):this.states_=[ht([o,this.cell.stateSize])];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(n=>ht([o,n])):this.states_[0]=ht([o,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let n=0;n<this.states_.length;++n){let s=e[n],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[n]:this.cell.stateSize,i=[o,a];if(!y.arraysEqual(s.shape,i))throw new z(`State ${n} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${s.shape}`);this.states_[n]=s}}this.states_=this.states_.map(n=>Et(n.clone()))})}apply(e,t){let o=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let s=u0(e,o,n,this.numConstants);e=s.inputs,o=s.initialState,n=s.constants;let a=[],i=[];if(o!=null){t.initialState=o,a=a.concat(o),this.stateSpec=[];for(let u of o)this.stateSpec.push(new At({shape:u.shape}));i=i.concat(this.stateSpec)}if(n!=null&&(t.constants=n,a=a.concat(n),this.numConstants=n.length),a[0]instanceof oo){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return V(()=>{let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;e=Fe(e),s==null&&(this.stateful?s=this.states_:s=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(s.length!==a)throw new z(`RNN Layer has ${a} state(s) but was passed ${s.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:n},u=c0((d,h)=>{let g=this.cell.call([d].concat(h),i);return[g[0],g.slice(1)]},e,s,this.goBackwards,o,null,this.unroll,this.returnSequences),c=u[0],p=u[1],m=u[2];this.stateful&&this.resetStates(m,n);let f=this.returnSequences?p:c;return this.returnState?[f].concat(m):f})}getInitialState(e){return V(()=>{let t=ht(e.shape);return t=ge(t,[1,2]),t=Ea(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(o=>o>1?Ax(t,[1,o]):t):this.cell.stateSize>1?[Ax(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let o=this.cell.getConfig();return this.getClassName()===Eo.className&&(t.cell={className:this.cell.getClassName(),config:o}),Object.assign({},o,e,t)}static fromConfig(e,t,o={}){let n=t.cell,s=no(n,o);return new e(Object.assign(t,{cell:s}))}};Eo.className="RNN";Q.registerClass(Eo);var Tl=class extends Me{},Yp=class extends Tl{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ut(this.units,"units"),this.activation=As(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=bt(e.kernelRegularizer),this.recurrentRegularizer=bt(e.recurrentRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.kernelConstraint=Ot(e.kernelConstraint),this.recurrentConstraint=Ot(e.recurrentConstraint),this.biasConstraint=Ot(e.biasConstraint),this.dropout=Mu([1,Ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Mu([1,Ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Je(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new z(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let o=e[1];e=e[0];let n=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ra({ones:()=>rr(e),rate:this.dropout,training:n})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ra({ones:()=>rr(o),rate:this.recurrentDropout,training:n}));let s,a=this.dropoutMask,i=this.recurrentDropoutMask;a!=null?s=xn(P(e,a),this.kernel.read()):s=xn(e,this.kernel.read()),this.bias!=null&&(s=ho(s,this.bias.read())),i!=null&&(o=P(o,i));let l=ee(s,xn(o,this.recurrentKernel.read()));return this.activation!=null&&(l=this.activation.apply(l)),[l,l]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ts(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:st(this.kernelRegularizer),recurrentRegularizer:st(this.recurrentRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Ft(this.kernelConstraint),recurrentConstraint:Ft(this.recurrentConstraint),biasConstraint:Ft(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Yp.className="SimpleRNNCell";Q.registerClass(Yp);var Id=class extends Eo{constructor(e){e.cell=new Yp(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return new e(t)}};Id.className="SimpleRNN";Q.registerClass(Id);var Zp=class extends Tl{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new z("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Ut(this.units,"units"),this.activation=As(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=As(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=bt(e.kernelRegularizer),this.recurrentRegularizer=bt(e.recurrentRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.kernelConstraint=Ot(e.kernelConstraint),this.recurrentConstraint=Ot(e.recurrentConstraint),this.biasConstraint=Ot(e.biasConstraint),this.dropout=Mu([1,Ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Mu([1,Ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=Je(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new z(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let o=t.training==null?!1:t.training,n=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ra({ones:()=>rr(e),rate:this.dropout,training:o,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ra({ones:()=>rr(n),rate:this.recurrentDropout,training:o,count:3}));let s=this.dropoutMask,a=this.recurrentDropoutMask,i,l,u;0<this.dropout&&this.dropout<1&&(e=P(e,s[0]));let c=xn(e,this.kernel.read());this.useBias&&(c=ho(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(n=P(n,a[0]));let p=this.recurrentKernel.read(),[m,f]=pr(p,[2*this.units,this.units],p.rank-1),d=xn(n,m),[h,g,x]=pr(c,3,c.rank-1),[b,w]=pr(d,2,d.rank-1);i=this.recurrentActivation.apply(ee(h,b)),l=this.recurrentActivation.apply(ee(g,w));let _=xn(P(l,n),f);u=this.activation.apply(ee(x,_));let k=ee(P(i,n),P(ee(1,He(i)),u));return[k,k]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ts(this.activation),recurrentActivation:Ts(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:st(this.kernelRegularizer),recurrentRegularizer:st(this.recurrentRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Ft(this.kernelConstraint),recurrentConstraint:Ft(this.recurrentConstraint),biasConstraint:Ft(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Zp.className="GRUCell";Q.registerClass(Zp);var Nd=class extends Eo{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Zp(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Nd.className="GRU";Q.registerClass(Nd);var Al=class extends Tl{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ut(this.units,"units"),this.activation=As(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=As(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=pt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=bt(e.kernelRegularizer),this.recurrentRegularizer=bt(e.recurrentRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.kernelConstraint=Ot(e.kernelConstraint),this.recurrentConstraint=Ot(e.recurrentConstraint),this.biasConstraint=Ot(e.biasConstraint),this.dropout=Mu([1,Ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Mu([1,Ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=Je(e);let o=e[e.length-1];this.kernel=this.addWeight("kernel",[o,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let n;if(this.useBias){if(this.unitForgetBias){let s=this.biasInitializer,a=this.units;n=new(t=class extends go{apply(l,u){let c=s.apply([a]),p=new zu().apply([a]),m=s.apply([a*2]);return DC(DC(c,p),m)}},t.className="CustomInit",t)}else n=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,n,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return V(()=>{let o=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new z(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=e[1],s=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ra({ones:()=>rr(e),rate:this.dropout,training:o,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ra({ones:()=>rr(n),rate:this.recurrentDropout,training:o,count:4}));let a=this.dropoutMask,i=this.recurrentDropoutMask,l,u,c,p;0<this.dropout&&this.dropout<1&&(e=P(e,a[0]));let m=xn(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(n=P(n,i[0])),m=ee(m,xn(n,this.recurrentKernel.read())),this.useBias&&(m=ho(m,this.bias.read()));let[f,d,h,g]=pr(m,4,m.rank-1);l=this.recurrentActivation.apply(f),u=this.recurrentActivation.apply(d),c=ee(P(u,s),P(l,this.activation.apply(h))),p=this.recurrentActivation.apply(g);let x=P(p,this.activation.apply(c));return[x,x,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ts(this.activation),recurrentActivation:Ts(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:st(this.kernelRegularizer),recurrentRegularizer:st(this.recurrentRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Ft(this.kernelConstraint),recurrentConstraint:Ft(this.recurrentConstraint),biasConstraint:Ft(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Al.className="LSTMCell";Q.registerClass(Al);var Sd=class extends Eo{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Al(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Sd.className="LSTM";Q.registerClass(Sd);var Xp=class extends Tl{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return V(()=>{e=e;let o=e.slice(1),n=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?n.push(o.splice(0,i.stateSize.length)):n.push(o.splice(0,1));n.reverse();let s=[],a;for(let i=0;i<this.cells.length;++i){let l=this.cells[i];o=n[i],i===0?a=[e[0]].concat(o):a=[a[0]].concat(o),a=l.call(a,t),s.push(a.slice(1))}o=[];for(let i of s.slice().reverse())o.push(...i);return[a[0]].concat(o)})}build(e){Fx(e)&&(e=e[0]),e=e;let t;this.cells.forEach((o,n)=>{Is(`RNNCell_${n}`,()=>{o.build(e),Array.isArray(o.stateSize)?t=o.stateSize[0]:t=o.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=s=>({className:s.getClassName(),config:s.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,o={}){let n=[];for(let s of t.cells)n.push(no(s,o));return new e({cells:n})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let o of this.cells)t.push(...o.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return rd(e)}setWeights(e){let t=[];for(let o of this.cells){let n=o.weights.length,s=e.splice(n);for(let a=0;a<o.weights.length;++a)t.push([o.weights[a],s[a]])}Wp(t)}};Xp.className="StackedRNNCells";Q.registerClass(Xp);function Ra(r){let{ones:e,rate:t,training:o=!1,count:n=1}=r,s=()=>Dx(e(),t),a=()=>wl(s,e,o);return!n||n<=1?Et(a().clone()):Array(n).fill(void 0).map(a).map(l=>Et(l.clone()))}var uee=function(r,e){var t={};for(var o in r)Object.prototype.hasOwnProperty.call(r,o)&&e.indexOf(o)<0&&(t[o]=r[o]);if(r!=null&&typeof Object.getOwnPropertySymbols=="function")for(var n=0,o=Object.getOwnPropertySymbols(r);n<o.length;n++)e.indexOf(o[n])<0&&Object.prototype.propertyIsEnumerable.call(r,o[n])&&(t[o[n]]=r[o[n]]);return t};var p0=class extends Eo{constructor(e){if(e.unroll)throw new Se("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Se("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new At({ndim:5})]}call(e,t){return V(()=>{if(this.cell.dropoutMask!=null&&(Ae(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ae(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new z("ConvRNN2D cell does not support constants");let o=t==null?null:t.mask,n=t==null?null:t.training,s=t==null?null:t.initialState;return super.call(e,{mask:o,training:n,initialState:s})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return V(()=>{let{stateSize:t}=this.cell,o=e.shape,n=this.computeSingleOutputShape(o),s=[n[0],...n.slice(2)],a=ht(s);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new Ao("Cannot call resetStates() on an RNN Layer that is not stateful.");let o=this.inputSpec[0].shape,n=this.computeSingleOutputShape(o),s=[n[0],...n.slice(2)];if(o[0]==null)throw new z("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ht(s)):this.states_=[ht(s)];else if(e==null)Ae(this.states_),this.keptStates!=null&&(Ae(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>ht(s)):this.states_[0]=ht(s);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new z(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ae(this.states_);for(let i=0;i<this.states_.length;++i){let l=e[i],u=s;if(!y.arraysEqual(l.shape,u))throw new z(`State ${i} is incompatible with layer ${this.name}: expected shape=${u}, received shape=${l.shape}`);this.states_[i]=l}}this.states_=this.states_.map(i=>Et(i.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:o,kernelSize:n,padding:s,strides:a,dilationRate:i}=this.cell,l=t==="channelsFirst",u=e[l?3:2],c=e[l?4:3],p=bo(u,n[0],s,a[0],i[0]),m=bo(c,n[1],s,a[1],i[1]);return[...e.slice(0,2),...l?[o,p,m]:[p,m,o]]}};p0.className="ConvRNN2D";var Jp=class extends Al{constructor(e){let{filters:t,kernelSize:o,strides:n,padding:s,dataFormat:a,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Ut(this.filters,"filters"),this.kernelSize=Nl(o,2,"kernelSize"),this.kernelSize.forEach(l=>Ut(l,"kernelSize")),this.strides=Nl(n||1,2,"strides"),this.strides.forEach(l=>Ut(l,"strides")),this.padding=s||"valid",ro(this.padding),this.dataFormat=a||"channelsLast",$t(this.dataFormat),this.dilationRate=Nl(i||1,2,"dilationRate"),this.dilationRate.forEach(l=>Ut(l,"dilationRate"))}build(e){var t;e=Je(e);let o=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[o]==null)throw new z(`The channel dimension of the input should be defined. Found ${e[o]}`);let n=e[o],s=4,a=this.kernelSize.concat([n,this.filters*s]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*s]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let l;if(this.unitForgetBias){let u=this.biasInitializer,c=this.filters;l=new(t=class extends go{apply(m,f){let d=u.apply([c]),h=Ar([c]),g=u.apply([c*2]);return Rp([d,h,g])}},t.className="CustomInit",t)}else l=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*s],null,l,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return V(()=>{if(e.length!==3)throw new z(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let o=t.training||!1,n=e[0],s=e[1],a=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ra({ones:()=>rr(n),rate:this.dropout,training:o,count:i}));let l=this.dropoutMask,u=(J,ie,ue)=>!ie||!ie[ue]?J:P(ie[ue],J),c=u(n,l,0),p=u(n,l,1),m=u(n,l,2),f=u(n,l,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ra({ones:()=>rr(s),rate:this.recurrentDropout,training:o,count:i}));let d=this.recurrentDropoutMask,h=u(s,d,0),g=u(s,d,1),x=u(s,d,2),b=u(s,d,3),w=3,[_,k,D,T]=pr(this.kernel.read(),i,w),[R,O,M,G]=this.useBias?pr(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,_,R,this.padding),p=this.inputConv(p,k,O,this.padding),m=this.inputConv(m,D,M,this.padding),f=this.inputConv(f,T,G,this.padding);let[j,U,H,q]=pr(this.recurrentKernel.read(),i,w);h=this.recurrentConv(h,j),g=this.recurrentConv(g,U),x=this.recurrentConv(x,H),b=this.recurrentConv(b,q);let X=this.recurrentActivation.apply(ee(c,h)),oe=this.recurrentActivation.apply(ee(p,g)),Y=ee(P(oe,a),P(X,this.activation.apply(ee(m,x)))),re=P(this.recurrentActivation.apply(ee(f,b)),this.activation.apply(Y));return[re,re,Y]})}getConfig(){let e=super.getConfig(),{units:t}=e,o=uee(e,["units"]),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},o,n)}inputConv(e,t,o,n){let s=Jr(e,t,this.strides,n||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return o?ho(s,o,this.dataFormat):s}recurrentConv(e,t){return Jr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Jp.className="ConvLSTM2DCell";Q.registerClass(Jp);var Td=class extends p0{constructor(e){let t=new Jp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Td.className="ConvLSTM2D";Q.registerClass(Td);var Qp=class extends Me{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,o=[];for(let n=0;n<this.noiseShape.length;++n)o.push(this.noiseShape[n]==null?t[n]:this.noiseShape[n]);return o}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);if(0<this.rate&&this.rate<1){let n=t.training==null?!1:t.training,s=this.getNoiseShape(o);return wl(()=>Dx(o,this.rate,s,this.seed),()=>o,n)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Qp.className="Dropout";Q.registerClass(Qp);var Ad=class extends Qp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Ad.className="SpatialDropout1D";Q.registerClass(Ad);var Ed=class extends Me{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Ut(this.units,"units"),this.activation=As(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=pt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=pt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Ot(e.kernelConstraint),this.biasConstraint=Ot(e.biasConstraint),this.kernelRegularizer=bt(e.kernelRegularizer),this.biasRegularizer=bt(e.biasRegularizer),this.activityRegularizer=bt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=Je(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=Je(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e),n=Nx(this.activation.getClassName()),s;return n!=null?s=xn(o,this.kernel.read(),n,this.bias?this.bias.read():null):(s=xn(o,this.kernel.read()),this.bias!=null&&(s=ho(s,this.bias.read())),this.activation!=null&&(s=this.activation.apply(s))),s})}getConfig(){let e={units:this.units,activation:Ts(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:st(this.kernelRegularizer),biasRegularizer:st(this.biasRegularizer),activityRegularizer:st(this.activityRegularizer),kernelConstraint:Ft(this.kernelConstraint),biasConstraint:Ft(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Ed.className="Dense";Q.registerClass(Ed);var Dd=class extends Me{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=Je(e);for(let t of e.slice(1))if(t==null)throw new z(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],gn(e,1)]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);if(this.dataFormat==="channelsFirst"&&o.rank>1){let n=[0];for(let s=2;s<o.rank;++s)n.push(s);n.push(1),o=o.transpose(n)}return bz(o)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Dd.className="Flatten";Q.registerClass(Dd);var $d=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.activation=As(e.activation)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);return this.activation.apply(o)})}getConfig(){let e={activation:Ts(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};$d.className="Activation";Q.registerClass($d);var Rd=class extends Me{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return V(()=>(e=Fe(e),xz(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Rd.className="RepeatVector";Q.registerClass(Rd);var Fd=class extends Me{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let o="Total size of new array must be unchanged.",n=t.slice(),s=1,a=null;for(let l=0;l<n.length;++l){let u=n[l];if(this.isUnknown(u))if(a===null)a=l;else throw new z("Can only specifiy one unknown dimension.");else s*=u}let i=gn(e);if(a!==null){if(s===0||i%s!=0)throw new z(o);n[a]=i/s}else if(i!==s)throw new z(o);return n}computeOutputShape(e){let t=!1;for(let o=0;o<e.length;++o)if(this.isUnknown(e[o])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e),n=o.shape,s=n.slice(0,1).concat(this.fixUnknownDimension(n.slice(1),this.targetShape));return o.reshape(s)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Fd.className="Reshape";Q.registerClass(Fd);var Od=class extends Me{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Gr(1,e.dims.length+1);if(!y.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new At({ndim:this.dims.length+1})]}computeOutputShape(e){e=Je(e);let t=e.slice();return this.dims.forEach((o,n)=>{t[n+1]=e[o]}),t}call(e,t){return Ke(Fe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Od.className="Permute";Q.registerClass(Od);var Pd=class extends Me{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let o=Fe(e),n=-1;return al(tn(o,this.maskValue),n)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e),n=-1,s=!0,a=al(tn(o,this.maskValue),n,s);return o.mul(a.asType(o.dtype))})}};Pd.className="Masking";Q.registerClass(Pd);var Md=class extends Me{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(yt(e.inputLength))}this.inputDim=e.inputDim,Ut(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Ut(this.outputDim,"outputDim"),this.embeddingsInitializer=pt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=bt(e.embeddingsRegularizer),this.activityRegularizer=bt(e.activityRegularizer),this.embeddingsConstraint=Ot(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return V(()=>this.maskZero?(e=Fe(e),tn(e,Ce(e))):null)}computeOutputShape(e){if(e=Je(e),this.inputLength==null)return[...e,this.outputDim];let t=yt(this.inputLength);if(t.length!==e.length-1)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let o=0;for(let n=0;n<t.length;++n){let s=t[n],a=e[n+1];if(s!=null&&a!=null&&s!==a)throw new z(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);s==null&&(t[o]=a),o++}}return[e[0],...t,this.outputDim]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);return o.dtype!=="int32"&&(o=Aa(o,"int32")),Ex(this.embeddings.read(),o.as1D()).reshape(Je(this.computeOutputShape(o.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:kt(this.embeddingsInitializer),embeddingsRegularizer:st(this.embeddingsRegularizer),activityRegularizer:st(this.activityRegularizer),embeddingsConstraint:Ft(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Md.className="Embedding";Q.registerClass(Md);var El=class extends Me{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Se}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let o=e.slice(0,e.length-t.length);for(let n=0;n<t.length;++n){let s=e[e.length-t.length+n],a=t[n];if(s==null||a==null||s<0||a<0)o.push(null);else if(s===1)o.push(a);else if(a===1)o.push(s);else{if(s!==a)throw new z("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));o.push(s)}}return o}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[Je(e)]),e=e,e.length<2)throw new z(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let s of e)s!=null&&s[0]!==null&&t.push(s[0]);if(t=hn(t),t.length>1)throw new z(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let o=e[0]==null?null:e[0].slice(1);for(let s=1;s<e.length;++s){let a=e[s]==null?null:e[s].slice(1);o=this.computeElementwiseOpOutputShape(o,a)}let n=e.map(s=>s.length);e.indexOf(null)===-1&&hn(n).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return V(()=>{if(e=e,this.reshapeRequired){let o=[],n=e.map(s=>s.rank);if(n.indexOf(null)===-1){let s=Ns(n);for(let a of e){let i=a.rank;for(let l=0;l<s-i;++l)a=Ea(a,1);o.push(a)}return this.mergeFunction(o)}else{let s=!1;for(let l of e){let u=l.rank;if(u==null){let c=l.shape,p=c[0],m=c.slice(1).concat([p]),f=l.reshape([p].concat(gn(c.slice(1))));f=Ke(f,[1,0]),f=f.reshape(m),o.push(f),s=!0}else if(u>1){let c=Gr(1,u).concat([0]);o.push(Ke(l,c)),s=!0}else o.push(l)}let a=this.mergeFunction(o),i=a.rank;if(s){if(i==null){let l=a.shape,u=l.length,c=l[u-1],p=[c].concat(l.slice(0,l.length-1));a=Ke(a.reshape([-1,c]),[1,0]).reshape(p)}else if(i>1){let l=[i-1].concat(Gr(0,i-1));a=Ke(a,l)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let n=1;n<e.length;++n){let s=e[n]==null?null:e[n].slice(1);t=this.computeElementwiseOpOutputShape(t,s)}let o=[];for(let n of e)n!=null&&n[0]!==null&&o.push(n[0]);return o=hn(o),o.length===1?t=o.concat(t):t=[null].concat(t),t}computeMask(e,t){return V(()=>{if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an Array");if(!Array.isArray(e))throw new z("`inputs` should be an Array");if(t.length!==e.length)throw new z(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(n=>n==null))return null;t=t.map(n=>n==null?n:lr(n,0));let o=t[0];for(let n=1;n<t.length-1;++n)o=gr(o,t[n]);return o})}},Ld=class extends El{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let o=1;o<e.length;++o)t=ee(t,e[o]);return t})}};Ld.className="Add";Q.registerClass(Ld);var zd=class extends El{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let o=1;o<e.length;++o)t=P(t,e[o]);return t})}};zd.className="Multiply";Q.registerClass(zd);var Bd=class extends El{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let o=1;o<e.length;++o)t=ee(t,e[o]);return P(1/e.length,t)})}};Bd.className="Average";Q.registerClass(Bd);var Vd=class extends El{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let o=1;o<e.length;++o)t=eo(t,e[o]);return t})}};Vd.className="Maximum";Q.registerClass(Vd);var Gd=class extends El{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let o=1;o<e.length;++o)t=ys(t,e[o]);return t})}};Gd.className="Minimum";Q.registerClass(Gd);var Wd=class extends El{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new z("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let n of e)if(n!=null){t=!1;break}if(t)return;let o=[];for(let n=0;n<e.length;++n){let s=e[n].slice();s.splice(this.axis,1);let a=!1;for(let i of o)if(y.arraysEqual(i,s)){a=!0;break}a||o.push(s)}if(o.length>1)throw new z("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return V(()=>Rp(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new z("A `Concatenate` layer should be called on a list of inputs.");let t=e,o=t[0].slice(),n=this.axis<0?o.length+this.axis:this.axis;for(let s of t.slice(1)){if(o[n]==null||s[n]==null){o[n]=null;break}o[n]+=s[n]}return o}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new z("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new z("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new z(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return V(()=>{let o=!0;if(t.forEach(a=>{if(a!=null){o=!1;return}}),o)return null;let n=[];for(let a=0;a<e.length;++a)t[a]==null?n.push(rr(e[a]).asType("bool")):t[a].rank<e[a].rank?n.push(lr(t[a],-1)):n.push(t[a]);let s=Ze(n,this.axis);return ql(s,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Wd.className="Concatenate";Q.registerClass(Wd);function jd(r,e){for(;r<0;)r+=e;return r}function cee(r,e,t){if(r.shape.length>3||e.shape.length>3)throw new Se("batchDot is not implemented for tensors of 4D or higher rank yet");if(y.assert(r.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${r.shape.length}`),y.assert(r.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${e.shape.length}`),typeof t=="number"&&(t=[t,t]),r.dtype==="complex64"||e.dtype==="complex64")throw new Se("batchDot is not implemented for complex64-type Tensors yet.");let o=r.shape.length,n=e.shape.length;t==null&&(t=[o-1,n-2]);let s=t;return V(()=>{let a;if(o>n){a=o-n;let l=[];for(let u=0;u<a;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else if(n>o){a=n-o;let l=[];for(let u=0;u<a;++u)l.push(1);r=r.reshape(r.shape.concat(l))}else a=0;let i;if(r.shape.length===2&&e.shape.length===2)s[0]===s[1]?i=r.mul(e).sum(s[0]):i=r.transpose([1,0]).mul(e).sum(s[1]);else{let l=s[0]!==r.shape.length-1,u=s[1]===e.shape.length-1;i=r.matMul(e,l,u)}if(a>0){let l;o>n?l=o+n-3:l=o-1;let u=[];for(let c=l;c<l+a;++c)u.push(c);i=i.squeeze(u)}return i.shape.length===1&&(i=i.expandDims(1)),i})}var Ud=class extends El{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){y.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],o=e[1];if(t.length>3||o.length>3)throw new Se("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,o);if(t[n[0]]!==o[n[1]])throw new z(`Dimension incompatibility: ${t[n[0]]} !== ${o[n[1]]}`)}mergeFunction(e){if(e.length!==2)throw new z(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],o=e[1],n;return Array.isArray(this.axes)?n=this.axes.map((s,a)=>jd(s,e[a].shape.length)):n=[jd(this.axes,t.shape.length),jd(this.axes,o.shape.length)],this.normalize&&(t=od(t,n[0]),o=od(o,n[1])),cee(t,o,n)}interpretAxes(e,t){let o;return Array.isArray(this.axes)?o=this.axes:o=[jd(this.axes,e.length),jd(this.axes,t.length)],o}computeOutputShape(e){y.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),o=e[1].slice();if(t.length>3||o.length>3)throw new Se("Dot layer does not support tensors of 4D or higher rank yet.");let n=this.interpretAxes(t,o);t.splice(n[0],1),o.splice(n[1],1),o.splice(0,1);let s=t.concat(o);return s.length===1&&s.push(1),s}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Ud.className="Dot";Q.registerClass(Ud);var Hd=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);return wl(()=>Fp(o.shape,0,this.stddev).add(o),()=>o,t.training||!1)})}};Hd.className="GaussianNoise";Q.registerClass(Hd);var qd=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let o=Fe(e);return this.rate>0&&this.rate<1?wl(()=>{let s=Math.sqrt(this.rate/(1-this.rate));return o.mul(Fp(o.shape,1,s))},()=>o,t.training||!1):o})}};qd.className="GaussianDropout";Q.registerClass(qd);var Kd=class extends Me{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Fe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{if(this.rate<1&&this.rate>0){let o=this._getNoiseShape(e);return wl(()=>{let s=Fe(e),a=1.6732632423543772,i=1.0507009873554805,l=-a*i,u=po(bs(o),this.rate);u=Aa(u,"float32");let c=((1-this.rate)*(1+this.rate*l**2))**-.5,p=-c*l*this.rate;return s.mul(u).add(u.add(-1).mul(l)).mul(c).add(p)},()=>Fe(e),t.training||!1)}return e})}};Kd.className="AlphaDropout";Q.registerClass(Kd);function Xd(r,e,t,o,n,s=.001){let a;if(r.rank===2)a=Sw(r,e,t,o,n,s);else if(r.rank===3)a=Tw(r,e,t,o,n,s);else if(r.rank===4)a=Aw(r,e,t,o,n,s);else throw new Se(`batchNormalization is not implemented for array of rank ${r.rank} yet`);return a}function pee(r,e,t,o,n=.001){return V(()=>{let s=Qc(r,o),a=s.mean,i=s.variance;return[Xd(r,a,i,t,e,n),a,i]})}function mee(r,e,t,o,n=.001){return V(()=>{let s=Qc(r,o),a=s.mean,i=s.variance,l=[];for(let d of Gr(0,r.rank))o.indexOf(d)!==-1?l.push(1):l.push(r.shape[d]);let u=a.reshape(l),c=i.reshape(l),p=e==null?null:e.reshape(l),m=t==null?null:t.reshape(l);return[Xd(r,u,c,m,p,n),a,i]})}function fee(r,e,t,o,n=.001){return y.arraysEqual(o.slice().sort(),Gr(0,r.rank-1))?pee(r,e,t,o,n):mee(r,e,t,o,n)}var Yd=class extends Me{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=pt(e.betaInitializer||"zeros"),this.gammaInitializer=pt(e.gammaInitializer||"ones"),this.movingMeanInitializer=pt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=pt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Ot(e.betaConstraint),this.gammaConstraint=Ot(e.gammaConstraint),this.betaRegularizer=bt(e.betaRegularizer),this.gammaRegularizer=bt(e.gammaRegularizer)}build(e){e=Je(e);let t=this.axis>=0?this.axis:this.axis+e.length,o=e[t];if(o==null)throw new z(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new At({ndim:e.length,axes:{[t]:o}})];let n=[o];this.scale&&(this.gamma=this.addWeight("gamma",n,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",n,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",n,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",n,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return V(()=>{let o=t.training==null?!1:t.training,n=Fe(e),s=n.shape,a=s.length,i=Gr(0,a),l=this.axis>=0?this.axis:this.axis+a;i.splice(l,1);let u=mn(1,a);u[l]=s[l];let c=i.slice();c.sort();let p=!y.arraysEqual(c,Gr(0,a).slice(0,a-1)),m=()=>{if(p){let b=this.movingMean.read().reshape(u),w=this.movingVariance.read().reshape(u),_=this.center?this.beta.read().reshape(u):null,k=this.scale?this.gamma.read().reshape(u):null;return Xd(n,b,w,_,k,this.epsilon)}else return Xd(n,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!o)return m();let[f,d,h]=fee(n,this.gamma.read(),this.beta.read(),i,this.epsilon),g=(b,w,_)=>{V(()=>{let k=1-_,D=b.read(),T=D.sub(w).mul(k);b.write(D.sub(T))})};return(()=>{g(this.movingMean,d,this.momentum),g(this.movingVariance,h,this.momentum)})(),f})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),movingMeanInitializer:kt(this.movingMeanInitializer),movingVarianceInitializer:kt(this.movingVarianceInitializer),betaRegularizer:st(this.betaRegularizer),gammaRegularizer:st(this.gammaRegularizer),betaConstraint:Ft(this.betaConstraint),gammaConstraint:Ft(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Yd.className="BatchNormalization";Q.registerClass(Yd);var Zd=class extends Me{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=pt(e.betaInitializer||"zeros"),this.gammaInitializer=pt(e.gammaInitializer||"ones"),this.betaRegularizer=bt(e.betaRegularizer),this.gammaRegularizer=bt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=Je(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let s=0;s<this.axis.length;++s)this.axis[s]<0&&(this.axis[s]+=t);for(let s of this.axis)if(s<0||s>=t)throw new Error(`Invalid axis: ${s}`);if(this.axis.length!==hn(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let o=this.axis.map(s=>e[s]),n=!0;this.scale?this.gamma=this.addWeight("gamma",o,"float32",this.gammaInitializer,this.gammaRegularizer,n):this.gamma=null,this.center?this.beta=this.addWeight("beta",o,"float32",this.betaInitializer,this.betaRegularizer,n):this.beta=null,this.built=!0}call(e,t){let o=Fe(e),n=o.shape,s=n.length;return V(()=>{let a=!0,{mean:i,variance:l}=Qc(o,this.axis,a),u=mn(1,s);for(let h of this.axis)u[h]=n[h];let c=h=>h!=null&&h.shape.length!==s&&this.axis!==[s-1]?h.reshape(u):h,p=c(this.gamma.read()),m=c(this.beta.read()),f=[],d=[];for(let h=0;h<s;++h)this.axis.indexOf(h)!==-1?(f.push(n[h]),d.push(1)):(f.push(1),d.push(n[h]));return i=i.tile(f),l=l.tile(f),p=p.tile(d),m=m.tile(d),Xd(o,i,l,m,p,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),betaRegularizer:st(this.betaRegularizer),gammaRegularizer:st(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};Zd.className="LayerNormalization";Q.registerClass(Zd);function dee(r,e,t){return V(()=>{if(r.rank!==4)throw new z(`temporalPadding expects input tensor to be 4-D, but received a ${r.rank}-D tensor.`);if(e==null&&(e=[[1,1],[1,1]]),e.length!==2||e[0].length!==2||e[1].length!==2)throw new z("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(t==null&&(t=to()),t!=="channelsLast"&&t!=="channelsFirst")throw new z(`Unknown data format: ${t}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let o;return t==="channelsFirst"?o=[[0,0],[0,0],e[0],e[1]]:o=[[0,0],e[0],e[1],[0,0]],Mr(r,o)})}var Jd=class extends Me{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?to():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new z(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,o;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],o=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new z(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new z(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);o=e.padding[1]}this.padding=[t,o]}this.inputSpec=[new At({ndim:4})]}computeOutputShape(e){e=Je(e);let t,o;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?o=e[3]+this.padding[1][0]+this.padding[1][1]:o=null,[e[0],e[1],t,o]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?o=e[2]+this.padding[1][0]+this.padding[1][1]:o=null,[e[0],t,o,e[3]])}call(e,t){return V(()=>dee(Fe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Jd.className="ZeroPadding2D";Q.registerClass(Jd);function Zx(r,e,t,o,n,s){return V(()=>{$t(n),AC(s),ro(o),t==null&&(t=[1,1]),o==null&&(o="valid"),n==null&&(n=to()),s==null&&(s="max"),r=bd(r,n);let a,i=o==="same"?"same":"valid";return s==="max"?a=ha(r,e,t,i):a=ua(r,e,t,i),n==="channelsFirst"&&(a=Ke(a,[0,3,1,2])),a})}function o3(r,e,t,o,n,s){return V(()=>{$t(n),AC(s),ro(o),t==null&&(t=[1,1,1]),o==null&&(o="valid"),n==null&&(n=to()),s==null&&(s="max"),r=a0(r,n);let a,i=o==="same"?"same":"valid";return s==="max"?a=Qm(r,e,t,i):a=Gm(r,e,t,i),n==="channelsFirst"&&(a=Ke(a,[0,4,1,2,3])),a})}var m0=class extends Me{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new z(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Ut(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new z(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ro(this.padding),this.inputSpec=[new At({ndim:3})]}computeOutputShape(e){e=Je(e);let t=bo(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return V(()=>{this.invokeCallHook(e,t),e=Ea(Fe(e),2);let o=this.poolingFunction(Fe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return No(o,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Qd=class extends m0{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),ro(n),Zx(e,t,o,n,s,"max")}};Qd.className="MaxPooling1D";Q.registerClass(Qd);var eh=class extends m0{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),ro(n),Zx(e,t,o,n,s,"avg")}};eh.className="AveragePooling1D";Q.registerClass(eh);var f0=class extends Me{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new z(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Ut(this.poolSize,"poolSize"),Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),ro(this.padding),this.inputSpec=[new At({ndim:4})]}computeOutputShape(e){e=Je(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=bo(t,this.poolSize[0],this.padding,this.strides[0]),o=bo(o,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,o]:[e[0],t,o,e[3]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Fe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},th=class extends f0{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),ro(n),Zx(e,t,o,n,s,"max")}};th.className="MaxPooling2D";Q.registerClass(th);var rh=class extends f0{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),ro(n),Zx(e,t,o,n,s,"avg")}};rh.className="AveragePooling2D";Q.registerClass(rh);var d0=class extends Me{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new z(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Ut(this.poolSize,"poolSize"),Ut(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),ro(this.padding),this.inputSpec=[new At({ndim:5})]}computeOutputShape(e){e=Je(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],o=this.dataFormat==="channelsFirst"?e[3]:e[2],n=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=bo(t,this.poolSize[0],this.padding,this.strides[0]),o=bo(o,this.poolSize[1],this.padding,this.strides[1]),n=bo(n,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,o,n]:[e[0],t,o,n,e[4]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Fe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},oh=class extends d0{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),ro(n),o3(e,t,o,n,s,"max")}};oh.className="MaxPooling3D";Q.registerClass(oh);var nh=class extends d0{constructor(e){super(e)}poolingFunction(e,t,o,n,s){return $t(s),ro(n),o3(e,t,o,n,s,"avg")}};nh.className="AveragePooling3D";Q.registerClass(nh);var h0=class extends Me{constructor(e){super(e);this.inputSpec=[new At({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Se}},sh=class extends h0{constructor(e){super(e||{})}call(e,t){return V(()=>{let o=Fe(e);return dt(o,1)})}};sh.className="GlobalAveragePooling1D";Q.registerClass(sh);var ih=class extends h0{constructor(e){super(e||{})}call(e,t){return V(()=>{let o=Fe(e);return cr(o,1)})}};ih.className="GlobalMaxPooling1D";Q.registerClass(ih);var g0=class extends Me{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,$t(this.dataFormat),this.inputSpec=[new At({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Se}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},ah=class extends g0{call(e,t){return V(()=>{let o=Fe(e);return this.dataFormat==="channelsLast"?dt(o,[1,2]):dt(o,[2,3])})}};ah.className="GlobalAveragePooling2D";Q.registerClass(ah);var lh=class extends g0{call(e,t){return V(()=>{let o=Fe(e);return this.dataFormat==="channelsLast"?cr(o,[1,2]):cr(o,[2,3])})}};lh.className="GlobalMaxPooling2D";Q.registerClass(lh);var x0=class extends Me{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,o={}){let n=t.layer,s=no(n,o);delete t.layer;let a={layer:s};return Object.assign(a,t),new e(a)}},uh=class extends x0{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=Je(e),e.length<3)throw new z(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=Je(e);let t=[e[0]].concat(e.slice(2)),o=this.layer.computeOutputShape(t),n=e[1];return[o[0],n].concat(o.slice(1))}call(e,t){return V(()=>(e=Fe(e),c0((a,i)=>[Fe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};uh.className="TimeDistributed";Q.registerClass(uh);function hee(r){li(pz,"BidirectionalMergeMode",r)}var gee="concat",ch=class extends x0{constructor(e){super(e);let t=e.layer.getConfig(),o={};o.className=e.layer.getClassName(),o.config=t,this.forwardLayer=no(o),t.goBackwards=t.goBackwards!==!0;let n={};if(n.className=e.layer.getClassName(),n.config=t,this.backwardLayer=no(n),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?gee:e.mergeMode,hee(this.mergeMode),e.weights)throw new Se("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,o=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,o)),this.backwardLayer.setWeights(e.slice(o))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let o,n,s;return this.returnState&&(s=t.slice(1)),o=t[0],o=o,this.mergeMode==="concat"?(o[o.length-1]*=2,n=[o]):this.mergeMode==null?n=[o,o.slice()]:n=[o],this.returnState?this.mergeMode==null?n.concat(s).concat(s.slice()):[o].concat(s).concat(s.slice()):yr(n)}apply(e,t){let o=t==null?null:t.initialState,n=t==null?null:t.constants;t==null&&(t={});let s=u0(e,o,n,this.numConstants);if(e=s.inputs,o=s.initialState,n=s.constants,Array.isArray(e)&&(o=e.slice(1),e=e[0]),(o==null||o.length===0)&&n==null)return super.apply(e,t);let a=[],i=[];if(o!=null){let u=o.length;if(u%2>0)throw new z("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=o,a.push(...o);let c=o.map(p=>new At({shape:p.shape}));this.forwardLayer.stateSpec=c.slice(0,u/2),this.backwardLayer.stateSpec=c.slice(u/2),i.push(...c)}if(n!=null)throw new Se("Support for constants in Bidirectional layers is not implemented yet.");let l=a[0]instanceof oo;for(let u of a)if(u instanceof oo!==l)throw new z("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(l){let u=[e].concat(a),c=this.inputSpec.concat(i),p=this.inputSpec;this.inputSpec=c;let m=super.apply(u,t);return this.inputSpec=p,m}else return super.apply(e,t)}call(e,t){return V(()=>{let o=t.initialState,n,s;if(o==null)n=this.forwardLayer.call(e,t),s=this.backwardLayer.call(e,t);else{let l=o.slice(0,o.length/2),u=o.slice(o.length/2);n=this.forwardLayer.call(e,Object.assign(t,{initialState:l})),s=this.backwardLayer.call(e,Object.assign(t,{initialState:u}))}let a;this.returnState&&(Array.isArray(n)&&(a=n.slice(1).concat(s.slice(1))),n=n[0],s=s[0]),this.returnSequences&&(s=qt(s,1));let i;return this.mergeMode==="concat"?i=Rp([n,s]):this.mergeMode==="sum"?i=ee(n,s):this.mergeMode==="ave"?i=P(.5,ee(n,s)):this.mergeMode==="mul"?i=P(n,s):this.mergeMode==null&&(i=[n,s]),this.returnState?this.mergeMode==null?i.concat(a):[i].concat(a):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Is(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Is(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let o;if(this.returnSequences?this.mergeMode==null?o=[t,t]:o=t:this.mergeMode==null?o=[null,null]:o=null,this.returnState){let s=this.forwardLayer.states.map(a=>null);return Array.isArray(o)?o.concat(s).concat(s):[o].concat(s).concat(s)}else return o}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let o=no(t.layer);if(delete t.layer,t.numConstants!=null)throw new Se("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let n=t;return n.layer=o,new e(n)}};ch.className="Bidirectional";Q.registerClass(ch);function xee(r){return new ui(r)}function yee(r){return new hd(r)}function bee(r){return new md(r)}function wee(r){return new fd(r)}function _ee(r){return new dd(r)}function kee(r){return new xd(r)}function vee(r){return new gd(r)}function Cee(r){return new Hu(r)}function Iee(r){return new Sl(r)}function Nee(r){return new wd(r)}function See(r){return new Uu(r)}function Tee(r){return new _d(r)}function Aee(r){return new kd(r)}function Eee(r){return new vd(r)}function Dee(r){return new Cd(r)}function $ee(r){return new $d(r)}function Ree(r){return new Ed(r)}function Fee(r){return new Qp(r)}function Oee(r){return new Ad(r)}function Pee(r){return new Dd(r)}function Mee(r){return new Rd(r)}function Lee(r){return new Fd(r)}function zee(r){return new Od(r)}function Bee(r){return new Md(r)}function Vee(r){return new Ld(r)}function Gee(r){return new Bd(r)}function Wee(r){return new Wd(r)}function jee(r){return new Vd(r)}function Uee(r){return new Gd(r)}function Hee(r){return new zd(r)}function qee(r){return new Ud(r)}function Kee(r){return new Yd(r)}function Xee(r){return new Zd(r)}function Yee(r){return new Jd(r)}function y0(r){return new eh(r)}function Zee(r){return y0(r)}function Jee(r){return y0(r)}function b0(r){return new rh(r)}function Qee(r){return b0(r)}function ete(r){return b0(r)}function w0(r){return new nh(r)}function tte(r){return w0(r)}function rte(r){return w0(r)}function ote(r){return new sh(r)}function nte(r){return new ah(r)}function s3(r){return new ih(r)}function i3(r){return new lh(r)}function a3(r){return new Qd(r)}function l3(r){return new th(r)}function ste(r){return new oh(r)}function ite(r){return new Nd(r)}function ate(r){return new Zp(r)}function lte(r){return new Sd(r)}function ute(r){return new Al(r)}function cte(r){return new Id(r)}function pte(r){return new Yp(r)}function mte(r){return new Td(r)}function fte(r){return new Jp(r)}function dte(r){return new Eo(r)}function hte(r){return new Xp(r)}function gte(r){return new ch(r)}function xte(r){return new uh(r)}var yte=s3,bte=i3,wte=a3,_te=l3;function kte(r){return new Hd(r)}function vte(r){return new qd(r)}function Cte(r){return new Kd(r)}function Ite(r){return new Pd(r)}var u3={};Ge(u3,{MAPE:()=>Pte,MSE:()=>zte,binaryAccuracy:()=>Nte,binaryCrossentropy:()=>Ste,categoricalAccuracy:()=>Ate,categoricalCrossentropy:()=>Ete,cosineProximity:()=>Rte,mape:()=>Mte,meanAbsoluteError:()=>Fte,meanAbsolutePercentageError:()=>Ote,meanSquaredError:()=>Lte,mse:()=>Bte,precision:()=>Dte,recall:()=>$te,sparseCategoricalAccuracy:()=>Tte});function Nte(r,e){return id(r,e)}function Ste(r,e){return Vx(r,e)}function Tte(r,e){return Gx(r,e)}function Ate(r,e){return ad(r,e)}function Ete(r,e){return ld(r,e)}function Dte(r,e){return MC(r,e)}function $te(r,e){return $z(r,e)}function Rte(r,e){return nd(r,e)}function Fte(r,e){return jp(r,e)}function Ote(r,e){return Cl(r,e)}function Pte(r,e){return Cl(r,e)}function Mte(r,e){return Cl(r,e)}function Lte(r,e){return pi(r,e)}function zte(r,e){return pi(r,e)}function Bte(r,e){return pi(r,e)}var c3={};Ge(c3,{modelFromJSON:()=>Yz});var p3={};Ge(p3,{l1:()=>Gte,l1l2:()=>Vte,l2:()=>Wte});function Vte(r){return new Wu(r)}function Gte(r){return Jz(r)}function Wte(r){return Qz(r)}var _0=class extends vl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Wo))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Jx(r,e){return r<e}function m3(r,e){return r>e}var k0=class extends _0{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Se("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Jx:this.mode==="max"?this.monitorFunc=m3:this.monitor.indexOf("acc")!==-1?this.monitorFunc=m3:this.monitorFunc=Jx,this.monitorFunc===Jx&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Jx?Infinity:-Infinity}async onEpochEnd(e,t){await ci(t);let o=this.getMonitorValue(t);o!=null&&(this.monitorFunc(o-this.minDelta,this.best)?(this.best=o,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function jte(r){return new k0(r)}var Ute={earlyStopping:jte};var yn;(function(r){r[r.DT_INVALID=0]="DT_INVALID",r[r.DT_FLOAT=1]="DT_FLOAT",r[r.DT_DOUBLE=2]="DT_DOUBLE",r[r.DT_INT32=3]="DT_INT32",r[r.DT_UINT8=4]="DT_UINT8",r[r.DT_INT16=5]="DT_INT16",r[r.DT_INT8=6]="DT_INT8",r[r.DT_STRING=7]="DT_STRING",r[r.DT_COMPLEX64=8]="DT_COMPLEX64",r[r.DT_INT64=9]="DT_INT64",r[r.DT_BOOL=10]="DT_BOOL",r[r.DT_QINT8=11]="DT_QINT8",r[r.DT_QUINT8=12]="DT_QUINT8",r[r.DT_QINT32=13]="DT_QINT32",r[r.DT_BFLOAT16=14]="DT_BFLOAT16",r[r.DT_FLOAT_REF=101]="DT_FLOAT_REF",r[r.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",r[r.DT_INT32_REF=103]="DT_INT32_REF",r[r.DT_UINT8_REF=104]="DT_UINT8_REF",r[r.DT_INT16_REF=105]="DT_INT16_REF",r[r.DT_INT8_REF=106]="DT_INT8_REF",r[r.DT_STRING_REF=107]="DT_STRING_REF",r[r.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",r[r.DT_INT64_REF=109]="DT_INT64_REF",r[r.DT_BOOL_REF=110]="DT_BOOL_REF",r[r.DT_QINT8_REF=111]="DT_QINT8_REF",r[r.DT_QUINT8_REF=112]="DT_QUINT8_REF",r[r.DT_QINT32_REF=113]="DT_QINT32_REF",r[r.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(yn||(yn={}));var f3;(function(r){let e;(function(t){t[t.LEGACY=0]="LEGACY",t[t.V1=1]="V1",t[t.V2=2]="V2"})(e=r.CheckpointFormatVersion||(r.CheckpointFormatVersion={}))})(f3||(f3={}));var v0={};function Hte(r,e){let t={tfOpName:r,category:"custom",inputs:[],attrs:[],customExecutor:e};v0[r]=t}function Qx(r){return v0[r]}function qte(r){delete v0[r]}function C(r,e,t,o,n){let s=e.inputParams[r];if(s&&s.inputIndexStart!==void 0){let i=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?i+1:s.inputIndexEnd;if(s.type==="tensor")return br(e.inputNames[s.inputIndexStart],t,o,n);if(s.type==="tensors")return e.inputNames.slice(i,l).map(m=>br(m,t,o,n));let u=br(e.inputNames.slice(i)[0],t,o,n),c=u.dataSync();return s.type==="number"?c[0]:y.toNestedArray(u.shape,c)}let a=e.attrParams[r];return a&&a.value}function br(r,e,t,o){let[n,s]=so(r);if(o!=null){let i=o.getHashTableHandleByName(n);if(i!=null)return i}let a=t.currentContextIds.find(i=>!!e[ey(n,i)]);return a!==void 0?e[ey(n,a)][s]:void 0}function d3(r,e,t){return e[ey(r,t.currentContextId)]}function Es(r,e){let[t,o]=so(r);return[ey(t,e&&e.currentContextId),o]}function ey(r,e){return e?`${r}-${e}`:r}function so(r){let e=r.split(":");return e.length===1?[r,0]:[e[0],Number(e[e.length-1])]}function ph(r,e,t){let o=C("pad",r,e,t);if(o==="explicit"){o=C("explicitPaddings",r,e,t);let n=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)n[s][0]=o[s*2],n[s][1]=o[s*2+1];return n}return o}function Ds(r){return r.kept?r:Po(r)}var C0={};Ge(C0,{json:()=>Kte});var Kte=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var I0={};Ge(I0,{json:()=>Xte});var Xte=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var N0={};Ge(N0,{json:()=>Yte});var Yte=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}];var S0={};Ge(S0,{json:()=>Zte});var Zte=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}];var T0={};Ge(T0,{json:()=>Jte});var Jte=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}];var A0={};Ge(A0,{json:()=>Qte});var Qte=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var E0={};Ge(E0,{json:()=>ere});var ere=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}];var D0={};Ge(D0,{json:()=>tre});var tre=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}];var $0={};Ge($0,{json:()=>rre});var rre=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}];var R0={};Ge(R0,{json:()=>ore});var ore=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}];var F0={};Ge(F0,{json:()=>nre});var nre=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var O0={};Ge(O0,{json:()=>sre});var sre=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}];var P0={};Ge(P0,{json:()=>ire});var ire=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}];var M0={};Ge(M0,{json:()=>are});var are=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}];var L0={};Ge(L0,{json:()=>lre});var lre=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}];var z0={};Ge(z0,{json:()=>ure});var ure=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}];var B0={};Ge(B0,{json:()=>cre});var cre=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}];var ty=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[C0,I0,N0,S0,T0,A0,E0,F0,R0,D0,O0,P0,M0,L0,z0,B0,$0],t=[].concat(...e.map(o=>o.json));this.opMappers=t.reduce((o,n)=>(o[n.tfOpName]=n,o),{})}transformGraph(e,t={}){let o=e.node,n=[],s=[],a=[],i=o.reduce((h,g)=>(h[g.name]=this.mapNode(g),g.op.startsWith("Placeholder")?n.push(h[g.name]):g.op==="Const"?s.push(h[g.name]):(g.input==null||g.input.length===0)&&a.push(h[g.name]),h),{}),l=[],u=[],c={},p={};t!=null&&(c=this.mapSignatureEntries(t.inputs),p=this.mapSignatureEntries(t.outputs));let m=Object.keys(i);m.forEach(h=>{let g=i[h];g.inputNames.forEach(x=>{let[b]=Es(x);g.inputs.push(i[b]),i[b].children.push(g)})}),Object.keys(p).length===0?m.forEach(h=>{let g=i[h];g.children.length===0&&u.push(g)}):Object.keys(p).forEach(h=>{let[g]=Es(h),x=i[g];x!=null&&(x.signatureKey=p[h],u.push(x))}),Object.keys(c).length>0?Object.keys(c).forEach(h=>{let[g]=Es(h),x=i[g];x&&(x.signatureKey=c[h],l.push(x))}):l=n;let f={};e.library!=null&&e.library.function!=null&&(f=e.library.function.reduce((h,g)=>(h[g.signature.name]=this.mapFunction(g),h),{}));let d={nodes:i,inputs:l,outputs:u,weights:s,placeholders:n,signature:t,functions:f};return a.length>0&&(d.initNodes=a),d}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,o)=>(t[e[o].name]=o,t),{})}mapNode(e){let t=Qx(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let o={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(n=>n.startsWith("^")?n.substr(1):n),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(o.inputParams=t.inputs.reduce((n,s)=>(n[s.name]={type:s.type,inputIndexStart:s.start,inputIndexEnd:s.end},n),{})),t.attrs!=null&&(o.attrParams=t.attrs.reduce((n,s)=>{let a=s.type,i;switch(s.type){case"string":i=ry(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ry(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"string[]":i=uy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=uy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number":i=ny(e.attr,s.tfName,s.defaultValue||0),i===void 0&&!!s.tfDeprecatedName&&(i=ny(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"number[]":i=ly(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ly(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool":i=oy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=oy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"bool[]":i=py(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=py(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape":i=ay(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=ay(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"shape[]":i=cy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=cy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype":i=sy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=sy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"dtype[]":i=iy(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=iy(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"func":i=h3(e.attr,s.tfName,s.defaultValue),i===void 0&&!!s.tfDeprecatedName&&(i=h3(e.attr,s.tfDeprecatedName,s.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${s.type} for op: ${e.op}`)}return n[s.name]={value:i,type:a},n},{})),o}mapFunction(e){let t=e.nodeDef,o=[],n=[],s={};t!=null&&(s=t.reduce((p,m)=>(p[m.name]=this.mapNode(m),m.op==="Const"&&n.push(p[m.name]),p),{}));let a=[],i=[];e.signature.inputArg.forEach(p=>{let[m]=Es(p.name),f={name:m,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:V0(p.type),type:"dtype"}},children:[]};f.signatureKey=p.name,a.push(f),s[m]=f}),Object.keys(s).forEach(p=>{let m=s[p];m.inputNames.forEach(f=>{let[d]=Es(f);m.inputs.push(s[d]),s[d].children.push(m)})});let u=e.ret;e.signature.outputArg.forEach(p=>{let[m,f]=Es(u[p.name]),d=s[m];d!=null&&(d.defaultOutput=f,i.push(d))});let c=this.mapArgsToSignature(e);return{nodes:s,inputs:a,outputs:i,weights:n,placeholders:o,signature:c}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,o)=>(t[o.name]=this.mapArgToTensorInfo(o),t),{}),outputs:e.signature.outputArg.reduce((t,o)=>(t[o.name]=this.mapArgToTensorInfo(o,e.ret),t),{})}}mapArgToTensorInfo(e,t){let o=e.name;return t!=null&&(o=t[o]),{name:o,dtype:e.type}}};function pre(r){let e=W().global;if(typeof e.atob!="undefined")return e.atob(r);if(typeof Buffer!="undefined")return new Buffer(r,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function g3(r,e){let t=Array.isArray(r)?String.fromCharCode.apply(null,r):pre(r);return e?t:t.toLowerCase()}function ry(r,e,t,o=!1){let n=r[e];return n!=null?g3(n.s,o):t}function oy(r,e,t){let o=r[e];return o?o.b:t}function ny(r,e,t){let o=r[e]||{},n=o.i!=null?o.i:o.f!=null?o.f:t;return typeof n=="number"?n:parseInt(n,10)}function V0(r){switch(typeof r=="string"&&(r=yn[r]),r){case yn.DT_FLOAT:return"float32";case yn.DT_INT32:case yn.DT_INT64:case yn.DT_INT8:case yn.DT_UINT8:return"int32";case yn.DT_BOOL:return"bool";case yn.DT_DOUBLE:return"float32";case yn.DT_STRING:return"string";default:return null}}function h3(r,e,t){let o=r[e];return o&&o.func?o.func.name:t}function sy(r,e,t){let o=r[e];return o&&o.type?V0(o.type):t}function iy(r,e,t){let o=r[e];return o&&o.list&&o.list.type?o.list.type.map(n=>V0(n)):t}function x3(r){if(!r.unknownRank)return r.dim!=null?r.dim.map(e=>typeof e.size=="number"?e.size:parseInt(e.size,10)):[]}function ay(r,e,t){let o=r[e];return o&&o.shape?x3(o.shape):t}function ly(r,e,t){let o=r[e];return o?((o.list.f&&o.list.f.length?o.list.f:o.list.i)||[]).map(n=>typeof n=="number"?n:parseInt(n,10)):t}function uy(r,e,t,o=!1){let n=r[e];return n&&n.list&&n.list.s?n.list.s.map(s=>g3(s,o)):t}function cy(r,e,t){let o=r[e];return o&&o.list&&o.list.shape?o.list.shape.map(n=>x3(n)):t}function py(r,e,t){let o=r[e];return o&&o.list&&o.list.b?o.list.b:t}var G0=class{constructor(e,t,o){this.node=e,this.tensorMap=t,this.context=o,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(n=>this.getInput(n)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((n,s)=>(n[s]=this.getAttr(s),n),{}))}getInput(e){return br(e,this.tensorMap,this.context)}getAttr(e,t){let o=this.node.rawAttrs[e];if(o.tensor!=null)return br(e,this.tensorMap,this.context);if(o.i!=null||o.f!=null)return ny(this.node.rawAttrs,e,t);if(o.s!=null)return ry(this.node.rawAttrs,e,t);if(o.b!=null)return oy(this.node.rawAttrs,e,t);if(o.shape!=null)return ay(this.node.rawAttrs,e,t);if(o.type!=null)return sy(this.node.rawAttrs,e,t);if(o.list!=null){if(o.list.i!=null||o.list.f!=null)return ly(this.node.rawAttrs,e,t);if(o.list.s!=null)return uy(this.node.rawAttrs,e,t);if(o.list.shape!=null)return cy(this.node.rawAttrs,e,t);if(o.list.b!=null)return py(this.node.rawAttrs,e,t);if(o.list.type!=null)return iy(this.node.rawAttrs,e,t)}return t}};var y3=(r,e,t)=>{switch(r.op){case"BiasAdd":case"AddV2":case"Add":return[ee(C("a",r,e,t),C("b",r,e,t))];case"AddN":return[vw(C("tensors",r,e,t))];case"FloorMod":case"Mod":return[tf(C("a",r,e,t),C("b",r,e,t))];case"Mul":return[P(C("a",r,e,t),C("b",r,e,t))];case"RealDiv":case"Div":return[me(C("a",r,e,t),C("b",r,e,t))];case"DivNoNan":return[qm(C("a",r,e,t),C("b",r,e,t))];case"FloorDiv":return[Hl(C("a",r,e,t),C("b",r,e,t))];case"Sub":return[ce(C("a",r,e,t),C("b",r,e,t))];case"Minimum":return[ys(C("a",r,e,t),C("b",r,e,t))];case"Maximum":return[eo(C("a",r,e,t),C("b",r,e,t))];case"Pow":return[Lr(C("a",r,e,t),C("b",r,e,t))];case"SquaredDifference":return[fu(C("a",r,e,t),C("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var b3=(r,e,t)=>{switch(r.op){case"Abs":case"ComplexAbs":return[It(C("x",r,e,t))];case"Acos":return[Fm(C("x",r,e,t))];case"Acosh":return[Om(C("x",r,e,t))];case"Asin":return[Mm(C("x",r,e,t))];case"Asinh":return[Lm(C("x",r,e,t))];case"Atan":return[zm(C("x",r,e,t))];case"Atan2":return[Bm(C("x",r,e,t),C("y",r,e,t))];case"Atanh":return[Vm(C("x",r,e,t))];case"Ceil":return[Wm(C("x",r,e,t))];case"Complex":return[Co(C("real",r,e,t),C("imag",r,e,t))];case"Cos":return[pa(C("x",r,e,t))];case"Cosh":return[Jl(C("x",r,e,t))];case"Elu":return[hs(C("x",r,e,t))];case"Erf":return[Km(C("x",r,e,t))];case"Exp":return[Zt(C("x",r,e,t))];case"Expm1":return[Xm(C("x",r,e,t))];case"Floor":return[gs(C("x",r,e,t))];case"Log":return[ur(C("x",r,e,t))];case"Log1p":return[ru(C("x",r,e,t))];case"Imag":return[eu(C("x",r,e,t))];case"Neg":return[He(C("x",r,e,t))];case"Reciprocal":return[rf(C("x",r,e,t))];case"Real":return[cl(C("x",r,e,t))];case"Relu":return[Er(C("x",r,e,t))];case"Round":return[of(C("x",r,e,t))];case"Selu":return[uu(C("x",r,e,t))];case"Sigmoid":return[Zr(C("x",r,e,t))];case"Sin":return[cu(C("x",r,e,t))];case"Sign":return[sf(C("x",r,e,t))];case"Sinh":return[pu(C("x",r,e,t))];case"Softplus":return[xs(C("x",r,e,t))];case"Sqrt":return[gt(C("x",r,e,t))];case"Square":return[Oe(C("x",r,e,t))];case"Tanh":return[Qs(C("x",r,e,t))];case"Tan":return[cf(C("x",r,e,t))];case"ClipByValue":return[ar(C("x",r,e,t),C("clipValueMin",r,e,t),C("clipValueMax",r,e,t))];case"Relu6":return[au(C("x",r,e,t))];case"Rsqrt":return[lu(br(r.inputNames[0],e,t))];case"Prod":return[su(C("x",r,e,t),C("axes",r,e,t))];case"LeakyRelu":return[fa(C("x",r,e,t),C("alpha",r,e,t))];case"Prelu":return[xa(C("x",r,e,t),C("alpha",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function Do(r,e,t=""){if(!(typeof r=="number"||typeof e=="number")){y.assert(r.length===e.length,()=>t+` Shapes ${r} and ${e} must match`);for(let o=0;o<r.length;o++){let n=r[o],s=e[o];y.assert(n<0||s<0||n===s,()=>t+` Shapes ${r} and ${e} must match`)}}}function w3(r){return!(typeof r=="number"||r.some(e=>e<0))}function em(r,e,t){let o=my(r,t),n=!w3(o);if(n&&e.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${o}`);if(n&&e.forEach(s=>{o=my(s.shape,o)}),!w3(o))throw new Error(`Non-fully-defined elementShape: ${o}`);return o}function my(r,e){if(typeof r=="number")return e;if(typeof e=="number")return r;if(r.length!==e.length)throw new Error(`Incompatible ranks during merge: ${r} vs. ${e}`);let t=[];for(let o=0;o<r.length;++o){let n=r[o],s=e[o];if(n>=0&&s>=0&&n!==s)throw new Error(`Incompatible shape during merge: ${r} vs. ${e}`);t[o]=n>=0?n:s}return t}var W0=class{constructor(e,t,o,n,s,a,i){this.name=e,this.dtype=t,this.maxSize=o,this.elementShape=n,this.identicalElementShapes=s,this.dynamicSize=a,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=le(0),Et(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let o=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Do(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),o.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(o.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);o.tensor=t,Et(t),o.written=!0,this.tensors[e]=o}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((o,n)=>this.write(o,t[n]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let n=0;n<this.size();n++)e.push(n)}if(e.length===0)return Pr([],[0].concat(this.elementShape));let o=this.readMany(e);return Do(this.elementShape,o[0].shape,"TensorArray shape mismatch: "),Bt(o,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Pr([],[0].concat(this.elementShape));let t=[];for(let n=0;n<this.size();n++)t.push(n);let o=this.readMany(t);return Do(this.elementShape,o[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${o[0].shape})`),Ze(o,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let o=Math.max(...e);if(!this.dynamicSize&&o>=this.maxSize)throw new Error(`Max index must be < array size (${o} vs. ${this.maxSize})`);this.writeMany(e,mr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let o=0,n=e.map(l=>(o+=l,o));if(o!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${o}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let s=o===0?0:t.size/o,a=[];V(()=>{t=L(t,[1,o,s]);for(let l=0;l<e.length;++l){let u=l===0?0:n[l-1],c=[0,u,0],p=[1,e[l],s];a[l]=L(Re(t,c,p),this.elementShape)}return a});let i=[];for(let l=0;l<e.length;l++)i[l]=l;this.writeMany(i,a)}};var qu=class{constructor(e,t,o,n=-1){this.tensors=e,this.elementShape=t,this.elementDtype=o,e!=null&&e.forEach(s=>{if(o!==s.dtype)throw new Error(`Invalid data types; op elements ${o}, but list elements ${s.dtype}`);Do(t,s.shape,"TensorList shape mismatch: "),Et(s)}),this.idTensor=le(0),this.maxNumElements=n,Et(this.idTensor)}get id(){return this.idTensor.id}copy(){return new qu([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,o=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(o!==-1&&this.tensors.length!==o)throw new Error(`Operation expected a list with ${o} elements but got a list with ${this.tensors.length} elements.`);Do(e,this.elementShape,"TensorList shape mismatch: ");let n=em(this.elementShape,this.tensors,e);return V(()=>{let s=this.tensors.map(a=>L(a,n));return Bt(s,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let o=em(this.elementShape,this.tensors,e),n=this.tensors.pop();return Do(n.shape,e,"TensorList shape mismatch: "),L(n,o)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Do(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Et(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,o){if(o!==this.elementDtype)throw new Error(`Invalid data types; op elements ${o}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Do(this.tensors[e].shape,t,"TensorList shape mismatch: ");let n=em(this.elementShape,this.tensors,t);return L(this.tensors[e],n)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Do(this.elementShape,t.shape,"TensorList shape mismatch: "),Et(t),this.tensors[e]=t}gather(e,t,o){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Do(this.elementShape,o,"TensorList shape mismatch: "),e=e.slice(0,this.size());let n=em(this.elementShape,this.tensors,o);return e.length===0?Pr([],[0].concat(n)):V(()=>{let s=e.map(a=>L(this.tensors[a],n));return Bt(s,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Do(this.elementShape,t,"TensorList shape mismatch: ");let o=em(this.elementShape,this.tensors,t);return this.size()===0?Pr([],[0].concat(o)):V(()=>{let n=this.tensors.map(s=>L(s,o));return Ze(n,0)})}};function _3(r,e,t){let o=r.dtype;if(r.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${r.shape}`);if(r.dtype!==t)throw new Error(`Invalid data types; op elements ${r.dtype}, but list elements ${t}`);let n=r.shape.slice(1);Do(n,e,"TensorList shape mismatch: ");let s=mr(r);return new qu(s,e,o)}function k3(r,e,t){return new qu([],r,e,t)}function v3(r,e,t,o){if(e.length!==r.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${r.shape[0]}`);let n=Math.max(...e);if(o!=null&&o!==-1&&n>=o)throw new Error(`Max index must be < array size (${n} vs. ${o})`);let s=new qu([],t,r.dtype,o),a=mr(r,0);return e.forEach((i,l)=>{s.setItem(i,a[l])}),s}function C3(r,e,t){let o=0,n=e.map(c=>(o+=c,o));if(o!==r.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${o}, and tensor's shape is: ${r.shape}`);let s=r.shape.slice(1),a=my(s,t),i=o===0?0:r.size/o,l=V(()=>{let c=[];r=L(r,[1,o,i]);for(let p=0;p<e.length;++p){let m=p===0?0:n[p-1],f=[0,m,0],d=[1,e[p],i];c[p]=L(Re(r,f,d),a)}return r.dispose(),c}),u=new qu([],t,r.dtype,e.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var I3=async(r,e,t)=>{switch(r.op){case"If":case"StatelessIf":{let o=C("thenBranch",r,e,t),n=C("elseBranch",r,e,t),s=C("cond",r,e,t),a=C("args",r,e,t);return(await s.data())[0]?t.functionMap[o].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap):t.functionMap[n].executeFunctionAsync(a,t.tensorArrayMap,t.tensorListMap)}case"While":case"StatelessWhile":{let o=C("body",r,e,t),n=C("cond",r,e,t),s=C("args",r,e,t),a=await t.functionMap[n].executeFunctionAsync(s,t.tensorArrayMap,t.tensorListMap),i=s.map(c=>c.id),l=await a[0].data();a.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await t.functionMap[o].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);let p=u.map(f=>f.id);c.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()});let m=await t.functionMap[n].executeFunctionAsync(u,t.tensorArrayMap,t.tensorListMap);l=await m[0].data(),m.forEach(f=>{!f.kept&&i.indexOf(f.id)===-1&&p.indexOf(f.id)===-1&&f.dispose()})}return u}case"LoopCond":{let o=C("pred",r,e,t);return[Ds(o)]}case"Switch":{let o=C("pred",r,e,t),n=C("data",r,e,t);return n.kept||(n=Ds(n)),(await o.data())[0]?[void 0,n]:[n,void 0]}case"Merge":{let o=r.inputNames.find(n=>br(n,e,t)!==void 0);if(o){let n=br(o,e,t);return[Ds(n)]}return}case"Enter":{let o=C("frameName",r,e,t),n=C("tensor",r,e,t);return t.enterFrame(o),[Ds(n)]}case"Exit":{let o=C("tensor",r,e,t);return t.exitFrame(),[Ds(o)]}case"NextIteration":{let o=C("tensor",r,e,t);return t.nextIteration(),[Ds(o)]}case"TensorArrayV3":{let o=C("size",r,e,t),n=C("dtype",r,e,t),s=C("elementShape",r,e,t),a=C("dynamicSize",r,e,t),i=C("clearAfterRead",r,e,t),l=C("identicalElementShapes",r,e,t),u=C("name",r,e,t),c=new W0(u,n,o,s,l,a,i);return t.addTensorArray(c),[c.idTensor,le(1)]}case"TensorArrayWriteV3":{let o=C("tensorArrayId",r,e,t),n=C("index",r,e,t),s=C("tensor",r,e,t),a=t.getTensorArray(o.id);return a.write(n,s),[a.idTensor]}case"TensorArrayReadV3":{let o=C("tensorArrayId",r,e,t),n=C("index",r,e,t);return[t.getTensorArray(o.id).read(n)]}case"TensorArrayGatherV3":{let o=C("tensorArrayId",r,e,t),n=C("indices",r,e,t),s=C("dtype",r,e,t);return[t.getTensorArray(o.id).gather(n,s)]}case"TensorArrayScatterV3":{let o=C("tensorArrayId",r,e,t),n=C("indices",r,e,t),s=C("tensor",r,e,t),a=t.getTensorArray(o.id);return a.scatter(n,s),[a.idTensor]}case"TensorArrayConcatV3":{let o=C("tensorArrayId",r,e,t),n=t.getTensorArray(o.id),s=C("dtype",r,e,t);return[n.concat(s)]}case"TensorArraySplitV3":{let o=C("tensorArrayId",r,e,t),n=C("tensor",r,e,t),s=C("lengths",r,e,t),a=t.getTensorArray(o.id);return a.split(s,n),[a.idTensor]}case"TensorArraySizeV3":{let o=C("tensorArrayId",r,e,t),n=t.getTensorArray(o.id);return[le(n.size(),"int32")]}case"TensorArrayCloseV3":{let o=C("tensorArrayId",r,e,t),n=t.getTensorArray(o.id);return n.clearAndClose(),[n.idTensor]}case"TensorListSetItem":{let o=C("tensorListId",r,e,t),n=C("index",r,e,t),s=C("tensor",r,e,t),a=t.getTensorList(o.id);return a.setItem(n,s),[a.idTensor]}case"TensorListGetItem":{let o=C("tensorListId",r,e,t),n=C("index",r,e,t),s=C("elementShape",r,e,t),a=C("elementDType",r,e,t);return[t.getTensorList(o.id).getItem(n,s,a)]}case"TensorListScatterV2":case"TensorListScatter":{let o=C("indices",r,e,t),n=C("tensor",r,e,t),s=C("elementShape",r,e,t),a=C("numElements",r,e,t),i=v3(n,o,s,a);return t.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let o=C("elementShape",r,e,t),n=C("elementDType",r,e,t),s;r.op==="TensorListReserve"?s="numElements":s="maxNumElements";let a=C(s,r,e,t),i=k3(o,n,a);return t.addTensorList(i),[i.idTensor]}case"TensorListGather":{let o=C("tensorListId",r,e,t),n=C("indices",r,e,t),s=C("elementShape",r,e,t),a=C("elementDType",r,e,t);return[t.getTensorList(o.id).gather(n,a,s)]}case"TensorListStack":{let o=C("tensorListId",r,e,t),n=C("elementShape",r,e,t),s=C("elementDType",r,e,t),a=C("numElements",r,e,t);return[t.getTensorList(o.id).stack(n,s,a)]}case"TensorListFromTensor":{let o=C("tensor",r,e,t),n=C("elementShape",r,e,t),s=C("elementDType",r,e,t),a=_3(o,n,s);return t.addTensorList(a),[a.idTensor]}case"TensorListConcat":{let o=C("tensorListId",r,e,t),n=t.getTensorList(o.id),s=C("dtype",r,e,t),a=C("elementShape",r,e,t);return[n.concat(s,a)]}case"TensorListPushBack":{let o=C("tensorListId",r,e,t),n=C("tensor",r,e,t),s=t.getTensorList(o.id);return s.pushBack(n),[s.idTensor]}case"TensorListPopBack":{let o=C("tensorListId",r,e,t),n=C("elementShape",r,e,t),s=C("elementDType",r,e,t);return[t.getTensorList(o.id).popBack(n,s)]}case"TensorListSplit":{let o=C("tensor",r,e,t),n=C("elementShape",r,e,t),s=C("lengths",r,e,t),a=C3(o,s,n);return t.addTensorList(a),[a.idTensor]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};function N3(r,e,t){let[o,n]=C("fusedOps",r,e,t),s=o==="biasadd",a=n==="prelu",i=o==="fusedbatchnorm",l=C("numArgs",r,e,t);if(s){if(a&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(i)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=C("strides",r,e,t),c=ph(r,e,t),p=C("dataFormat",r,e,t).toUpperCase(),m=C("dilations",r,e,t),[f,d]=C("args",r,e,t),h=C("leakyreluAlpha",r,e,t);return{stride:u,pad:c,dataFormat:p,dilations:m,biasArg:f,preluArg:d,activationFunc:n,leakyreluAlpha:h}}var S3=(r,e,t)=>{switch(r.op){case"Conv1D":{let o=C("stride",r,e,t),n=C("pad",r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilation",r,e,t);return[Yl(C("x",r,e,t),C("filter",r,e,t),o,n,s,a)]}case"Conv2D":{let o=C("strides",r,e,t),n=ph(r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilations",r,e,t);return[Jr(C("x",r,e,t),C("filter",r,e,t),[o[1],o[2]],n,s,[a[1],a[2]])]}case"_FusedConv2D":{let{stride:o,pad:n,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=N3(r,e,t);return[rn.conv2d({x:C("x",r,e,t),filter:C("filter",r,e,t),strides:[o[1],o[2]],pad:n,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:o,pad:n,dataFormat:s,dilations:a,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=N3(r,e,t);return[rn.depthwiseConv2d({x:C("x",r,e,t),filter:C("filter",r,e,t),strides:[o[1],o[2]],pad:n,dataFormat:s,dilations:[a[1],a[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let o=C("outputShape",r,e,t),n=C("strides",r,e,t),s=ph(r,e,t);return[Zl(C("x",r,e,t),C("filter",r,e,t),o,[n[1],n[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let o=C("strides",r,e,t),n=ph(r,e,t),s=C("dilations",r,e,t),a=C("dataFormat",r,e,t).toUpperCase();return[ds(C("input",r,e,t),C("filter",r,e,t),[o[1],o[2]],n,a,[s[1],s[2]])]}case"Conv3D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("dataFormat",r,e,t).toUpperCase(),a=C("dilations",r,e,t);return[jm(C("x",r,e,t),C("filter",r,e,t),[o[1],o[2],o[3]],n,s,[a[1],a[2],a[3]])]}case"AvgPool":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[ua(C("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n)]}case"MaxPool":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[ha(C("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n)]}case"MaxPoolWithArgmax":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t),a=C("includeBatchInIndex",r,e,t),{result:i,indexes:l}=Hw(C("x",r,e,t),[s[1],s[2]],[o[1],o[2]],n,a);return[i,l]}case"AvgPool3D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[Gm(C("x",r,e,t),[s[1],s[2],s[3]],[o[1],o[2],o[3]],n)]}case"MaxPool3D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("kernelSize",r,e,t);return[Qm(C("x",r,e,t),[s[1],s[2],s[3]],[o[1],o[2],o[3]],n)]}case"Dilation2D":{let o=C("strides",r,e,t),n=C("pad",r,e,t),s=C("dilations",r,e,t),a=o[1],i=o[2],l=s[1],u=s[2];return[Hm(C("x",r,e,t),C("filter",r,e,t),[a,i],n,[l,u],"NHWC")]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var T3=(r,e,t)=>{switch(r.op){case"Fill":{let o=C("shape",r,e,t),n=C("dtype",r,e,t),s=C("value",r,e,t);return[ma(o,s,n)]}case"LinSpace":{let o=C("start",r,e,t),n=C("stop",r,e,t),s=C("num",r,e,t);return[Bw(o,n,s)]}case"Multinomial":{let o=C("logits",r,e,t),n=C("numSamples",r,e,t),s=C("seed",r,e,t);return[qw(o,n,s)]}case"OneHot":{let o=C("indices",r,e,t),n=C("depth",r,e,t),s=C("onValue",r,e,t),a=C("offValue",r,e,t);return[fs(o,n,s,a)]}case"Ones":return[Ar(C("shape",r,e,t),C("dtype",r,e,t))];case"OnesLike":return[rr(C("x",r,e,t))];case"RandomUniform":return[bs(C("shape",r,e,t),C("minval",r,e,t),C("maxval",r,e,t),C("dtype",r,e,t))];case"Range":{let o=C("start",r,e,t),n=C("stop",r,e,t),s=C("step",r,e,t);return[tp(o,n,s,C("dtype",r,e,t))]}case"TruncatedNormal":{let o=C("shape",r,e,t),n=C("mean",r,e,t),s=C("stdDev",r,e,t),a=C("seed",r,e,t);return[du(o,n,s,C("dtype",r,e,t),a)]}case"Zeros":return[ht(C("shape",r,e,t),C("dtype",r,e,t))];case"ZerosLike":return[Ce(C("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function j0(r,e,t){let o=C("boxes",r,e,t),n=C("scores",r,e,t),s=C("maxOutputSize",r,e,t),a=C("iouThreshold",r,e,t),i=C("scoreThreshold",r,e,t),l=C("softNmsSigma",r,e,t);return{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}}var A3=async(r,e,t)=>{switch(r.op){case"NonMaxSuppressionV5":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i,softNmsSigma:l}=j0(r,e,t),u=await oi.nonMaxSuppressionWithScoreAsync(o,n,s,a,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=j0(r,e,t),l=C("padToMaxOutputSize",r,e,t),u=await oi.nonMaxSuppressionPaddedAsync(o,n,s,a,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:o,scores:n,maxOutputSize:s,iouThreshold:a,scoreThreshold:i}=j0(r,e,t);return[await oi.nonMaxSuppressionAsync(o,n,s,a,i)]}case"Where":{let o=ne(C("condition",r,e,t),"bool"),n=[await ff(o)];return o.dispose(),n}case"ListDiff":return s_(C("x",r,e,t),C("y",r,e,t));default:throw TypeError(`Node type ${r.op} is not implemented`)}};var E3=(r,e,t)=>{switch(r.op){case"TopKV2":{let o=C("x",r,e,t),n=C("k",r,e,t),s=C("sorted",r,e,t),a=pf(o,n,s);return[a.values,a.indices]}case"Unique":{let o=C("x",r,e,t),n=op(o);return[n.values,n.indices]}case"UniqueV2":{let o=C("x",r,e,t),n=C("axis",r,e,t),s=op(o,n);return[s.values,s.indices]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var D3=(r,e,t)=>{switch(r.op){case"Const":return e[r.name];case"PlaceholderWithDefault":let o=C("default",r,e,t);return[br(r.name,e,t)||o];case"Placeholder":return[br(r.name,e,t)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=C("x",r,e,t);return[Ds(u)]}case"IdentityN":return C("x",r,e,t).map(u=>Ds(u));case"Snapshot":let n=C("x",r,e,t);return[Ds(n)];case"Shape":return[Vt(C("x",r,e,t).shape,"int32")];case"ShapeN":return C("x",r,e,t).map(u=>Vt(u.shape));case"Size":return[le(C("x",r,e,t).size,"int32")];case"Rank":return[le(C("x",r,e,t).rank,"int32")];case"NoOp":return[le(1)];case"Print":let s=C("x",r,e,t),a=C("data",r,e,t),i=C("message",r,e,t),l=C("summarize",r,e,t);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<a.length;u++)console.log(Array.prototype.slice.call(a[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var U0=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=le(0),this.tensorMap=new Map,Et(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return le(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let o=await e.data();return this.tensorMap.forEach(n=>n.dispose()),this.tensorMap.clear(),V(()=>{let n=mr(t),s=o.length,a=n.length;y.assert(s===a,()=>`The number of elements doesn't match, keys has ${s} elements, the values has ${a} elements.`);for(let i=0;i<s;i++){let l=o[i],u=n[i];Et(u),this.tensorMap.set(l,u)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let o=await e.data();return V(()=>{let n=[];for(let s=0;s<o.length;s++){let a=o[s],i=this.findWithDefault(a,t);n.push(i)}return Bt(n)})}findWithDefault(e,t){let o=this.tensorMap.get(e);return o!=null?o:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}};var $3=async(r,e,t,o)=>{switch(r.op){case"HashTable":case"HashTableV2":{let n=C("keyDType",r,e,t),s=C("valueDType",r,e,t),a=new U0(n,s);return o.addHashTable(r.name,a),[a.handle]}case"LookupTableImport":case"LookupTableImportV2":{let n=C("tableHandle",r,e,t,o),s=C("keys",r,e,t),a=C("values",r,e,t);return[await o.getHashTableById(n.id).import(s,a)]}case"LookupTableFind":case"LookupTableFindV2":{let n=C("tableHandle",r,e,t,o),s=C("keys",r,e,t),a=C("defaultValue",r,e,t);return[await o.getHashTableById(n.id).find(s,a)]}case"LookupTableSize":case"LookupTableSizeV2":{let n=C("tableHandle",r,e,t,o);return[o.getHashTableById(n.id).tensorSize()]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var R3=(r,e,t)=>{switch(r.op){case"ResizeBilinear":{let o=C("images",r,e,t),n=C("size",r,e,t),s=C("alignCorners",r,e,t),a=C("halfPixelCenters",r,e,t);return[oi.resizeBilinear(o,[n[0],n[1]],s,a)]}case"ResizeNearestNeighbor":{let o=C("images",r,e,t),n=C("size",r,e,t),s=C("alignCorners",r,e,t),a=C("halfPixelCenters",r,e,t);return[oi.resizeNearestNeighbor(o,[n[0],n[1]],s,a)]}case"CropAndResize":{let o=C("image",r,e,t),n=C("boxes",r,e,t),s=C("boxInd",r,e,t),a=C("cropSize",r,e,t),i=C("method",r,e,t),l=C("extrapolationValue",r,e,t);return[oi.cropAndResize(o,n,s,a,i,l)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var F3=(r,e,t)=>{switch(r.op){case"Equal":return[Io(C("a",r,e,t),C("b",r,e,t))];case"NotEqual":return[tn(C("a",r,e,t),C("b",r,e,t))];case"Greater":return[tr(C("a",r,e,t),C("b",r,e,t))];case"GreaterEqual":return[po(C("a",r,e,t),C("b",r,e,t))];case"Less":return[tu(C("a",r,e,t),C("b",r,e,t))];case"LessEqual":return[zo(C("a",r,e,t),C("b",r,e,t))];case"LogicalAnd":return[gr(C("a",r,e,t),C("b",r,e,t))];case"LogicalNot":return[da(C("a",r,e,t))];case"LogicalOr":return[nu(C("a",r,e,t),C("b",r,e,t))];case"Select":case"SelectV2":return[Dt(C("condition",r,e,t),C("a",r,e,t),C("b",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var O3=(r,e,t)=>{switch(r.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[je(C("a",r,e,t),C("b",r,e,t),C("transposeA",r,e,t),C("transposeB",r,e,t))];case"Transpose":return[Ke(C("x",r,e,t),C("perm",r,e,t))];case"_FusedMatMul":let[o,n]=C("fusedOps",r,e,t),s=o==="biasadd",a=n==="prelu",i=C("numArgs",r,e,t),l=C("leakyreluAlpha",r,e,t);if(s){if(a&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!a&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=C("args",r,e,t);return[rn.matMul({a:C("a",r,e,t),b:C("b",r,e,t),transposeA:C("transposeA",r,e,t),transposeB:C("transposeB",r,e,t),bias:u,activation:n,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var P3=(r,e,t)=>{switch(r.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Jo(C("x",r,e,t),C("mean",r,e,t),C("variance",r,e,t),C("offset",r,e,t),C("scale",r,e,t),C("epsilon",r,e,t))];case"FusedBatchNormV3":return[Jo(C("x",r,e,t),C("mean",r,e,t),C("variance",r,e,t),C("offset",r,e,t),C("scale",r,e,t),C("epsilon",r,e,t))];case"LRN":return[Ym(C("x",r,e,t),C("radius",r,e,t),C("bias",r,e,t),C("alpha",r,e,t),C("beta",r,e,t))];case"Softmax":return[ya(C("x",r,e,t))];case"LogSoftmax":return[ou(C("x",r,e,t))];case"SparseToDense":return[xg(C("sparseIndices",r,e,t),C("outputShape",r,e,t),C("sparseValues",r,e,t),C("defaultValue",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var M3=(r,e,t)=>{switch(r.op){case"Max":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[cr(C("x",r,e,t),a,i)]}case"Mean":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[dt(C("x",r,e,t),a,i)]}case"Min":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ei(C("x",r,e,t),a,i)]}case"Sum":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ge(C("x",r,e,t),a,i)]}case"All":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[ql(C("x",r,e,t),a,i)]}case"Any":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[al(C("x",r,e,t),a,i)]}case"ArgMax":{let a=C("axis",r,e,t);return[ll(C("x",r,e,t),a)]}case"ArgMin":{let a=C("axis",r,e,t);return[Pm(C("x",r,e,t),a)]}case"Prod":{let a=C("axis",r,e,t),i=C("keepDims",r,e,t);return[su(C("x",r,e,t),a,i)]}case"Cumsum":{let a=C("axis",r,e,t),i=C("exclusive",r,e,t),l=C("reverse",r,e,t);return[Ql(C("x",r,e,t),a,i,l)]}case"Bincount":let o=C("x",r,e,t),n=C("weights",r,e,t),s=C("size",r,e,t);return[Ew(o,n,s)];case"DenseBincount":{let a=C("x",r,e,t),i=C("weights",r,e,t),l=C("size",r,e,t),u=C("binaryOutput",r,e,t);return[Ow(a,i,l,u)]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var L3=(r,e,t)=>{switch(r.op){case"ConcatV2":case"Concat":{let o=C("n",r,e,t),n=C("axis",r,e,t),s=C("tensors",r,e,t);return s=s.slice(0,o),[Ze(s,n)]}case"Gather":{let o=C("x",r,e,t),n=C("indices",r,e,t);return[Qo(o,ne(n,"int32"),0)]}case"GatherV2":{let o=C("axis",r,e,t),n=C("batchDims",r,e,t),s=C("x",r,e,t),a=C("indices",r,e,t);return[Qo(s,ne(a,"int32"),o,n)]}case"Reverse":{let o=C("dims",r,e,t),n=[];for(let a=0;a<o.length;a++)o[a]&&n.push(a);let s=C("x",r,e,t);return[qt(s,n)]}case"ReverseV2":{let o=C("axis",r,e,t),n=C("x",r,e,t);return[qt(n,o)]}case"Slice":{let o=C("begin",r,e,t),n=C("size",r,e,t);return[Re(C("x",r,e,t),o,n)]}case"StridedSlice":{let o=C("begin",r,e,t),n=C("end",r,e,t),s=C("strides",r,e,t),a=C("beginMask",r,e,t),i=C("endMask",r,e,t),l=C("ellipsisMask",r,e,t),u=C("newAxisMask",r,e,t),c=C("shrinkAxisMask",r,e,t),p=C("x",r,e,t);return[uf(p,o,n,s,a,i,l,u,c)]}case"Pack":return V(()=>{let o=C("axis",r,e,t),n=C("tensors",r,e,t),s=n[0].shape,a=No(n[0]).shape,i=n.map(l=>{let u=y.arraysEqual(l.shape,s);if(!u&&!y.arraysEqual(No(l).shape,a))throw new Error("the input tensors shape does not match");return u?l:L(l,s)});return[Bt(i,o)]});case"Unpack":{let o=C("axis",r,e,t),n=C("tensor",r,e,t);return mr(n,o)}case"Tile":{let o=C("reps",r,e,t);return[Lo(C("x",r,e,t),o)]}case"Split":case"SplitV":{let o=C("axis",r,e,t),n=C("numOrSizeSplits",r,e,t),s=C("x",r,e,t);return pr(s,n,o)}case"ScatterNd":{let o=C("indices",r,e,t),n=C("values",r,e,t),s=C("shape",r,e,t);return[OT(o,n,s)]}case"GatherNd":{let o=C("x",r,e,t),n=C("indices",r,e,t);return[MT(o,n)]}case"SparseToDense":{let o=C("sparseIndices",r,e,t),n=C("outputShape",r,e,t),s=C("sparseValues",r,e,t),a=C("defaultValue",r,e,t);return[xg(o,s,n,s.dtype===a.dtype?a:ne(a,s.dtype))]}default:throw TypeError(`Node type ${r.op} is not implemented`)}};var z3=(r,e,t)=>{switch(r.op){case"FFT":return[ba(C("x",r,e,t))];case"IFFT":return[ti(C("x",r,e,t))];case"RFFT":return[wa(C("x",r,e,t))];case"IRFFT":return[mu(C("x",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};var B3=(r,e,t)=>{switch(r.op){case"Cast":return[ne(C("x",r,e,t),C("dtype",r,e,t))];case"ExpandDims":{let o=C("axis",r,e,t);return[lr(C("x",r,e,t),o)]}case"Squeeze":{let o=C("axis",r,e,t);return[No(C("x",r,e,t),o)]}case"Reshape":return[L(C("x",r,e,t),C("shape",r,e,t))];case"MirrorPad":return[ef(C("x",r,e,t),C("padding",r,e,t),C("mode",r,e,t))];case"PadV2":case"Pad":return[Mr(C("x",r,e,t),C("padding",r,e,t),C("constantValue",r,e,t))];case"SpaceToBatchND":{let o=C("blockShape",r,e,t),n=C("paddings",r,e,t);return[ga(C("x",r,e,t),o,n)]}case"BatchToSpaceND":{let o=C("blockShape",r,e,t),n=C("crops",r,e,t);return[ca(C("x",r,e,t),o,n)]}case"DepthToSpace":{let o=C("blockSize",r,e,t),n=C("dataFormat",r,e,t).toUpperCase();return[Um(C("x",r,e,t),o,n)]}case"BroadcastTo":return[ul(C("x",r,e,t),C("shape",r,e,t))];default:throw TypeError(`Node type ${r.op} is not implemented`)}};function H0(r,e,t,o){let n=((s,a,i)=>{switch(s.category){case"arithmetic":return V(()=>y3(s,a,i));case"basic_math":return V(()=>b3(s,a,i));case"control":return I3(s,a,i);case"convolution":return V(()=>S3(s,a,i));case"creation":return V(()=>T3(s,a,i));case"dynamic":return A3(s,a,i);case"evaluation":return V(()=>E3(s,a,i));case"image":return V(()=>R3(s,a,i));case"graph":return V(()=>D3(s,a,i));case"logical":return V(()=>F3(s,a,i));case"matrices":return V(()=>O3(s,a,i));case"normalization":return V(()=>P3(s,a,i));case"reduction":return V(()=>M3(s,a,i));case"slice_join":return V(()=>L3(s,a,i));case"spectral":return V(()=>z3(s,a,i));case"transformation":return V(()=>B3(s,a,i));case"hash_table":return $3(s,a,i,o);case"custom":let l=Qx(s.op);if(l&&l.customExecutor)return l.customExecutor(new G0(s,a,i));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(r,e,t);return y.isPromise(n)?n.then(s=>[].concat(s)):[].concat(n)}var fy=class{constructor(e={},t={},o={},n={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=o,this.functionMap=n,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let o=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(o))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function K0(r,e,t,o){let n=new Set,s=[],a=null,i=null,l=new Set,u=Object.keys(r).map(m=>so(m)[0]),c=[];o!=null&&(c=o.map(m=>so(m.name)[0]));let p=[...e];for(;p.length>0;){let m=p.pop();if((q0(m)||mre(m)||fre(m))&&a==null&&(a=m,i=a.children.map(f=>f.name).filter(f=>n.has(f))),n.add(m.name),t[m.name]==null&&u.indexOf(m.name)===-1&&c.indexOf(m.name)===-1){if(m.inputs.length===0){s.push(m.name);continue}m.inputs.forEach(f=>{l.has(f.name)||(l.add(f.name),p.push(f))})}}return{inputs:r,outputs:e,usedNodes:n,missingInputs:s,dynamicNode:a,syncInputs:i}}function V3(r,e,t){let{usedNodes:o,inputs:n}=t,s=[],a=Object.keys(n).map(c=>so(c)[0]).map(c=>r.nodes[c]),i=r.initNodes;a.forEach(c=>{o.has(c.name)&&s.push(c)}),r.weights.forEach(c=>{o.has(c.name)&&s.push(c)}),i!=null&&i.forEach(c=>{o.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),e[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&o.has(p.name)&&p.inputs.every(m=>l.has(m.name))&&s.push(p)})}return u}var dre=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],hre=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],gre=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function q0(r){return dre.indexOf(r.op)>=0}function mre(r){return hre.indexOf(r.op)>=0}function fre(r){return gre.indexOf(r.op)>=0}var tm=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(o=>{this._functionExecutorMap[o]=new tm(e.functions[o],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(o=>e[o].map(n=>n.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let o=e.map(s=>s.name).sort(),n=t.map(s=>s.name).sort();return o.join(this.SEPERATOR)+"--"+n.join(this.SEPERATOR)}compile(e,t){let o=K0(e,t,this.weightMap,this._initNodes),{missingInputs:n,dynamicNode:s,syncInputs:a}=o;if(s!=null)throw new Error(`This execution contains the node '${s.name}', which has the dynamic op '${s.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(n.length>0){let i=t.map(u=>u.name),l=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${l}]. Missing the following inputs: [${n}]`)}return V3(this.graph,this.weightMap,o)}execute(e,t){e=this.mapInputs(e);let o=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let n=o.map(p=>this.graph.nodes[so(p)[0]]),s=t.map(p=>so(p)[0]),a=s.map(p=>this.graph.nodes[p]);a.length===0&&(a=this._outputs);let i=this.getCompilationKey(n,a),l=this.compiledMap.get(i);l==null&&(l=this.compile(e,a),this.compiledMap.set(i,l));let u={},c={};return V(()=>{let p=new fy(this.weightMap,u,c,this.functionExecutorMap),m=Object.assign({},this.weightMap);Object.keys(e).forEach(h=>{let[g,x]=so(h),b=[];b[x]=e[h],m[g]=b});let f=this.getFrozenTensorIds(m),d={};for(let h=0;h<l.length;h++){let g=l[h];if(!m[g.name]){let x=H0(g,m,p,this._resourceManager);if(y.isPromise(x))throw new Error(`The execution of the op '${g.op}' returned a promise. Please use model.executeAsync() instead.`);m[g.name]=x,this.checkTensorForDisposal(g.name,g,m,p,f,s,d)}}return this.parent==null&&p.dispose(f),t.map(h=>br(h,m,p))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(o=>e[o]).map(o=>o.map(n=>n.id)));return new Set(t)}checkTensorForDisposal(e,t,o,n,s,a,i){t.category==="control"||a.indexOf(e)!==-1||(o[e].forEach(l=>{l!=null&&(i[l.id]=(i[l.id]||0)+t.children.length)}),t.inputs.forEach(l=>{if(l.category!=="control"){let u=d3(l.name,o,n);u!=null&&u.forEach(c=>{if(c&&!s.has(c.id)){let p=i[c.id];p===1?(c.dispose(),delete i[c.id]):p!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,o=!1,n={},s={}){o||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new fy(this.weightMap,n,s,this.functionExecutorMap),i=await this.executeWithControlFlow(e,a,t,o),l=t.map(m=>br(m,i,a)),u=l.map(m=>m.id),c=Object.keys(e).map(m=>e[m].id),p=new Set([...u,...c,...this.weightIds]);return Object.keys(i).forEach(m=>{i[m].forEach(d=>{d&&!d.isDisposed&&!p.has(d.id)&&d.dispose()})}),this.parent==null&&a.dispose(p),l}async executeFunctionAsync(e,t,o){let n=e.reduce((s,a,i)=>(s[this.inputs[i].name]=a,s),{});return this._executeAsync(n,this.outputNodes,!0,t,o)}async executeWithControlFlow(e,t,o,n){let s=Object.keys(e),a=s.map(w=>this.graph.nodes[so(w)[0]]),i=o.map(w=>so(w)[0]),l=i.map(w=>this.graph.nodes[w]);l.length===0&&(l=this._outputs);let{usedNodes:u,missingInputs:c,dynamicNode:p,syncInputs:m}=K0(e,l,this.weightMap,this._initNodes),f=[...a,...this.graph.weights,...this._initNodes||[]].map(w=>({node:w,contexts:t.currentContext})),d=Object.assign({},this.weightMap);Object.keys(e).forEach(w=>{let[_,k]=so(w),D=[];D[k]=e[w],d[_]=D});let h={},g=this.getFrozenTensorIds(d),x={};for(;f.length>0;){let w=this.processStack(a,f,t,d,x,g,i,h,u);await Promise.all(w)}p==null&&!n&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=l.filter(w=>!q0(w)&&!br(w.name,d,t)).map(w=>w.name);if(b.length>0){let w="";throw p!=null&&(w=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${m}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${s}]. Consider providing the following inputs: [${c}]. ${w}`)}return d}processStack(e,t,o,n,s,a,i,l,u){let c=[];for(;t.length>0;){let p=t.pop();o.currentContext=p.contexts;let m="";if(p.node.op==="Enter"&&C("isConstant",p.node,n,o)&&([m]=Es(p.node.name,o)),n[p.node.name]==null){let f=H0(p.node,n,o,this._resourceManager);m||([m]=Es(p.node.name,o));let d=o.currentContext;y.isPromise(f)?c.push(f.then(h=>(n[m]=h,o.currentContext=d,this.checkTensorForDisposal(m,p.node,n,o,a,i,l),this.processChildNodes(p.node,t,o,n,s,u),h))):(n[m]=f,this.checkTensorForDisposal(m,p.node,n,o,a,i,l),this.processChildNodes(p.node,t,o,n,s,u))}else this.processChildNodes(p.node,t,o,n,s,u)}return c}processChildNodes(e,t,o,n,s,a){e.children.forEach(i=>{let[l]=Es(i.name,o);s[l]||!a.has(i.name)||(i.op==="Merge"?i.inputNames.some(u=>!!br(u,n,o))&&(s[l]=!0,t.push({contexts:o.currentContext,node:i})):i.inputNames.every(u=>!!br(u,n,o))&&(s[l]=!0,t.push({contexts:o.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let o=e[t],[n]=so(t),s=this.graph.nodes[n];if(s.attrParams.shape&&s.attrParams.shape.value){let a=s.attrParams.shape.value,i=a.length===o.shape.length&&o.shape.every((l,u)=>a[u]===-1||a[u]===l);y.assert(i,()=>`The shape of dict['${s.name}'] provided in model.execute(dict) must be [${a}], but was [${o.shape}]`)}s.attrParams.dtype&&s.attrParams.dtype.value&&y.assert(o.dtype===s.attrParams.dtype.value,()=>`The dtype of dict['${s.name}'] provided in model.execute(dict) must be ${s.attrParams.dtype.value}, but was ${o.dtype}`)})}mapInputs(e){let t={};for(let o in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[o]!=null){let n=this._signature.inputs[o];t[n.name]=e[o]}else t[o]=e[o];return t}checkInputs(e){let t=Object.keys(e).filter(o=>{let[n]=so(o);return this.graph.nodes[n]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[o]=so(t);if(!this.graph.nodes[o])throw new Error(`The output '${t}' is not found in the graph`)})}};var X0=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}};var xre="?tfjs-format=file",yre="model.json",Y0=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new X0}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Tr.browserHTTPRequest(e,this.loadOptions);else{let t=Tr.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Tr.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,o;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?o=this.artifacts.userDefinedMetadata.signature:o=this.artifacts.signature,this.signature=o,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let n=Tr.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new tm(ty.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(n),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let s=ty.Instance.transformGraph(e.modelInitializer);this.initializer=new tm(s),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let o=Tr.getSaveHandlers(e);if(o.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(o.length>1)throw new Error(`Found more than one (${o.length}) save handlers for URL '${e}'`);e=o[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ve)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,o,n)=>(t[o]=e[n],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let o=this.executor.execute(e,t);return o.length>1?o:o[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let o=await this.executor.executeAsync(e,t);return o.length>1?o:o[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,o)=>(t[o]=[e[o]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function bre(r,e={}){if(r==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");e==null&&(e={}),e.fromTFHub&&r.load==null&&(r.endsWith("/")||(r=r+"/"),r=`${r}${yre}${xre}`);let t=new Y0(r,e);return await t.load(),t}var wre="3.3.0";var pI={};Ge(pI,{CSVDataset:()=>gh,Dataset:()=>mi,FileDataSource:()=>_h,TextLineDataset:()=>dh,URLDataSource:()=>kh,array:()=>CB,csv:()=>FB,func:()=>OB,generator:()=>PB,microphone:()=>LB,version_data:()=>zB,webcam:()=>MB,zip:()=>IB});var vB=ac(oI());var lB=ac(oI());function oB(r,e){return hy(r,e)}function hy(r,e,t=new Map,o=new Set){if(r==null)return null;if(o.has(r))throw new Error("Circular references are not supported.");if(t.has(r))return t.get(r);let n=e(r);if(n.recurse&&n.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(n.recurse)if(Dl(r)){let s=Array.isArray(r)?[]:{};o.add(r);for(let a in r){let i=r[a],l=hy(i,e,t,o);s[a]=l}return o.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return t.set(r,n.value),n.value}function sB(r,e=nI){return nB(r,e)}function nB(r,e,t=new Set){let o=r[0];if(t.has(o))throw new Error("Circular references are not supported.");let n=e(r);if(n.recurse&&n.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(n.recurse)if(Dl(o)){let s=Array.isArray(o)?[]:{};t.add(o);for(let a in o){let i=r.map(u=>u[a]),l=nB(i,e,t);s[a]=l}return t.delete(o),s}else throw new Error(`Can't recurse into non-iterable type: ${o}`);else return n.value}function nI(r){return r===null?null:Dl(r[0])?{value:null,recurse:!0}:{value:r,recurse:!1}}async function gy(r,e){let t=new Map;hy(r,e,t);for(let n of Array.from(t.keys())){let s=t.get(n);if(y.isPromise(s)){let a=await s;t.set(n,a)}}return hy(r,e,t)}function Dl(r){return r!=null&&!ArrayBuffer.isView(r)&&(Array.isArray(r)||typeof r=="object"&&!(r instanceof Ve))}function iB(r){return r==null||Sre(r)||Array.isArray(r)||typeof r=="object"&&r instanceof Ve||y.isTypedArray(r)}function Sre(r){return r===null||typeof r!="object"&&typeof r!="function"}function aB(r){return oB(r,Tre)}function Tre(r){return r instanceof Ve?{value:r.clone(),recurse:!1}:Dl(r)?{value:null,recurse:!0}:{value:r,recurse:!1}}var mh=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),o=this.get(t);return this.set(t,this.pop()),o}};var rm=class extends mh{constructor(){super(rm.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),o=this.length();for(let n=0;n<o;n++)t[n]=this.get(this.wrap(this.begin+n));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=o}};rm.INITIAL_CAPACITY=32;function sI(r){return new uB(r)}function fh(r){return new cB(r)}function pB(r,e){return new iI(r,e)}function fB(r,e=Fa.FAIL){return new mB(r,e)}var Kt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],o=await e.next();for(;!o.done;)t.push(o.value),o=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),o=e(t.value);for(;!t.done&&o;)t=await this.next(),o=e(t.value)}handleErrors(e){return new wB(this,e)}filter(e){return new yB(this,e)}map(e){return new bB(this,e)}mapAsync(e){return new aI(this,e)}serialMapAsync(e){return new aI(this,e).serial()}flatmap(e){return new _B(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new xB(this,e,t)}columnMajorBatch(e,t=!0,o=nI){return this.rowMajorBatch(e,t).map(s=>sB(s,o))}concatenate(e,t){return new iI(sI([this,e]),t)}take(e){return e<0||e==null?this:new gB(this,e)}skip(e){return e<0||e==null?this:new hB(this,e)}prefetch(e){return new lI(this,e)}shuffle(e,t){return new kB(this,e,t)}serial(){return new dB(this)}},uB=class extends Kt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:aB(e),done:!1}}},cB=class extends Kt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},dB=class extends Kt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},hB=class extends Kt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ae(e.value)}return this.upstream.next()}},gB=class extends Kt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},xB=class extends Kt{constructor(e,t,o=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=o,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},yB=class extends Kt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ae(e.value)}}},bB=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Yo.getTensorsInContainer(e.value),o=this.transform(e.value),n=Yo.getTensorsInContainer(o);for(let s of t)Yo.isTensorInList(s,n)||s.dispose();return{value:o,done:!1}}},wB=class extends Kt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},aI=class extends Kt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Yo.getTensorsInContainer(e.value),o=await this.transform(e.value),n=Yo.getTensorsInContainer(o);for(let s of t)Yo.isTensorInList(s,n)||s.dispose();return{value:o,done:!1}}},om=class extends Kt{constructor(){super();this.outputQueue=new rm,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},_B=class extends om{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Yo.getTensorsInContainer(e.value),o=this.transform(e.value),n=Yo.getTensorsInContainer(o);this.outputQueue.pushAll(o);for(let s of t)Yo.isTensorInList(s,n)||s.dispose();return!0}},iI=class extends Kt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let o=await this.moreIterators.next();if(o.done)return{value:null,done:!0};this.iterator=o.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Fa;(function(r){r[r.FAIL=0]="FAIL",r[r.SHORTEST=1]="SHORTEST",r[r.LONGEST=2]="LONGEST"})(Fa||(Fa={}));var mB=class extends Kt{constructor(e,t=Fa.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,o=0;function n(a){return a instanceof Kt?{value:a.next().then(l=>(t++,l.done&&o++,l.value)),recurse:!1}:{value:null,recurse:!0}}let s=await gy(this.iterators,n);if(t===o)return{value:null,done:!0};if(o>0)switch(this.mismatchMode){case Fa.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Fa.SHORTEST:return{value:null,done:!0};case Fa.LONGEST:default:}return this.count++,{value:s,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},lI=class extends Kt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new mh(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},kB=class extends lI{constructor(e,t,o){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=lB.alea(o||y.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}};var mi=class{constructor(){this.size=null}batch(e,t=!0){let o=this;y.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let n;return this.size===Infinity||this.size==null?n=this.size:t?n=Math.ceil(this.size/e):n=Math.floor(this.size/e),wo(async()=>(await o.iterator()).columnMajorBatch(e,t,Are),n)}concatenate(e){let t=this,o;return this.size===Infinity||e.size===Infinity?o=Infinity:this.size!=null&&e.size!=null?o=this.size+e.size:o=null,wo(async()=>(await t.iterator()).concatenate(await e.iterator()),o)}filter(e){let t=this,o;return this.size===Infinity?o=Infinity:o=null,wo(async()=>(await t.iterator()).filter(n=>V(()=>e(n))),o)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return wo(async()=>(await t.iterator()).map(o=>V(()=>e(o))),this.size)}mapAsync(e){let t=this;return wo(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return wo(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,o;return this.size!=null&&e>0?o=this.size*e:e===0?o=0:this.size!=null&&(e===void 0||e<0)?o=Infinity:o=null,wo(async()=>{let n=fh(async()=>({value:await t.iterator(),done:!1}));return pB(n.take(e))},o)}skip(e){let t=this,o;return this.size!=null&&e>=0&&this.size>=e?o=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?o=0:o=null,wo(async()=>(await t.iterator()).skip(e),o)}shuffle(e,t,o=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let n=this,s=vB.alea(t||y.now().toString());return wo(async()=>{let a=s.int32();return o&&(a+=s.int32()),(await n.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,o;return this.size!=null&&this.size>e?o=e:this.size!=null&&this.size<=e?o=this.size:o=null,wo(async()=>(await t.iterator()).take(e),o)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};mi.MAX_BUFFER_SIZE=1e4;function wo(r,e=null){return new class extends mi{constructor(){super(...arguments);this.size=e}async iterator(){return r()}}}function CB(r){return wo(async()=>sI(r),r.length)}function IB(r){if(!Dl(r))throw new Error("The argument to zip() must be an object or array.");let e;if(Array.isArray(r))for(let t=0;t<r.length;t++)e=e==null?r[t].size:Math.min(e,r[t].size);else if(r instanceof Object)for(let t in r)e=e==null?r[t].size:Math.min(e,r[t].size);return wo(async()=>{let t=await gy(r,o=>{if(o instanceof mi)return{value:o.iterator(),recurse:!1};if(Dl(o))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return fB(t,Fa.SHORTEST)},e)}function Are(r){if(r===null)return null;let e=r[0];return iB(e)?{value:Ere(r),recurse:!1}:{value:null,recurse:!0}}function Ere(r){if(r.length===0)throw new Error("Can't make a batch of zero elements.");return r[0]instanceof Ve?Bt(r):Pr(r)}var dh=class extends mi{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(n=>(n.endsWith("\r")&&(n=n.slice(0,-1)),n))}};var xy='"',hh=Symbol("out"),NB=Symbol("field"),yy=Symbol("quote"),uI=Symbol("quoteafterquote"),SB=Symbol("quoteinquote"),gh=class extends mi{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new dh(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(y.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&y.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((n,s)=>(n[s]=n[s]+1||1,n),{}),o=Object.keys(t).filter(n=>t[n]>1);if(y.assert(o.length===0,()=>"Duplicate column names found: "+o.toString()),this.columnConfigs){for(let n of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(n)===-1)throw new Error('The key "'+n+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let o=t.value;return this.parseRow(o,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),o={},n={};for(let s=0;s<this.fullColumnNames.length;s++){let a=this.fullColumnNames[s],i=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!i)){let l=t[s],u=null;if(l==="")if(i&&i.default!==void 0)u=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);u=void 0}else{let c=Number(l);if(isNaN(c))i&&i.dtype==="bool"?u=this.getBoolean(l):u=l;else if(!i||!i.dtype)u=c;else switch(i.dtype){case"float32":u=c;break;case"int32":u=Math.floor(c);break;case"bool":u=this.getBoolean(l);break;default:u=c}}i&&i.isLabel?n[a]=u:o[a]=u}}return Object.keys(n).length===0?o:{xs:o,ys:n}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let o=[],n=0,s=e.length,a=hh;for(let i=0;i<s;i++)switch(a){case hh:switch(e.charAt(i)){case xy:n=i+1,a=yy;break;case this.delimiter:if(n=i+1,this.delimiter===" "&&this.delimWhitespace)break;o.push(""),a=hh;break;default:a=NB,n=i;break}break;case NB:switch(e.charAt(i)){case this.delimiter:o.push(e.substring(n,i)),a=hh,n=i+1;break;default:}break;case yy:switch(e.charAt(i)){case xy:a=uI;break;default:}break;case uI:switch(e.charAt(i)){case this.delimiter:o.push(e.substring(n,i-1)),a=hh,n=i+1;break;case xy:a=yy;break;default:a=SB;break}break;case SB:switch(e.charAt(i)){case xy:a=yy;break;default:}break;default:}if(a===uI?o.push(e.substring(n,s-1)):o.push(e.substring(n)),t&&o.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${o}`);return o}};var xh=class extends Kt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(W().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new xh(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(o){throw new Error(`Error thrown while initializing video stream: ${o.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,o=await this.getAudioData();if(this.includeSpectrogram){let n=this.flattenQueue(o.freqDataQueue);e=this.getTensorFromAudioDataArray(n,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let n=this.flattenQueue(o.timeDataQueue);t=this.getTensorFromAudioDataArray(n,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],o=0;return new Promise(n=>{let s=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&n({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++o===this.numFrames&&(clearInterval(s),n({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,o=new Float32Array(e.length*t);return e.forEach((n,s)=>o.set(n,s*t)),o}getTensorFromAudioDataArray(e,t){let o=new Float32Array(y.sizeFromShape(t));return o.set(e,o.length-e.length),Pr(o,t)}};var yh=class extends Kt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Vt([0],"int32"),this.webcamConfig.centerCrop){let o=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,n=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,s=(1-o)/2,a=(1-n)/2,i=s+o,l=n+a;this.cropBox=ri([a,s,l,i],[1,4])}else this.cropBox=ri([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(W().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let o=new yh(e,t);return await o.start(),o}async start(){this.webcamConfig.facingMode&&y.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=rg.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return V(()=>{let t=lr(ne(e,"float32"),0),o;o=oi.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let n=o.shape;return L(o,n.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}};var bh=class{};var by=class extends Kt{split(e){return new TB(this,e)}},TB=class extends by{constructor(e,t){super();this.upstream=e,this.impl=new AB(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},AB=class extends om{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let o of t.slice(0,-1))this.outputQueue.push(o);return this.carryover=t[t.length-1],!0}};var cI=class extends Kt{decodeUTF8(){return new DB(this)}},DB=class extends by{constructor(e){super();this.upstream=e,this.impl=new $B(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},$B=class extends om{constructor(e){super();if(this.upstream=e,W().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=EB();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let o;return W().get("IS_BROWSER")?o=this.decoder.decode(t,{stream:!0}):o=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(o),!0}};var wh=class extends cI{constructor(e,t={}){super();this.file=e,this.options=t,y.assert(e instanceof Uint8Array||(W().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,o)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,n)));else{let s=new FileReader;s.onload=i=>{let l=s.result;if(l instanceof ArrayBuffer&&(l=new Uint8Array(l)),!(l instanceof Uint8Array))return o(new TypeError("FileReader returned unknown type."));t(l)},s.onabort=i=>o(new Error("Aborted")),s.onerror=i=>o(new Error(i.type));let a=this.file.slice(this.offset,n);s.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function RB(r,e={}){let t,o;typeof r=="string"?t=r:(t=r.url,o=Dre(r));let n=await y.fetch(t,o);if(n.ok){let s=new Uint8Array(await n.arrayBuffer());return new wh(s,e)}else throw new Error(n.statusText)}var Dre=r=>({method:r.method,headers:r.headers,body:r.body,mode:r.mode,credentials:r.credentials,cache:r.cache,redirect:r.redirect,referrer:r.referrer,integrity:r.integrity});function wy(r){return typeof r=="string"&&r.substr(0,7)==="file://"}var _h=class extends bh{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(wy(this.input)&&W().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new wh(this.input,this.options)}};var kh=class extends bh{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return wy(this.url)?new _h(this.url,this.fileOptions).iterator():RB(this.url,this.fileOptions)}};function FB(r,e={}){return new gh(new kh(r),e)}function OB(r){let e=fh(r);return wo(async()=>e)}function PB(r){return wo(async()=>{let e=await r();return fh(()=>e.next())})}async function MB(r,e){return yh.create(r,e)}async function LB(r){return xh.create(r)}var zB="3.3.0";var SGt={tfjs:(dm==null?void 0:dm.version)||void 0,"tfjs-core":(hm==null?void 0:hm.version)||void 0,"tfjs-data":(gm==null?void 0:gm.version)||void 0,"tfjs-layers":(xm==null?void 0:xm.version)||void 0,"tfjs-converter":(ym==null?void 0:ym.version)||void 0,"tfjs-backend-cpu":A_||void 0,"tfjs-backend-webgl":zk||void 0,"tfjs-backend-wasm":wC||void 0};export{Os as Abs,yi as Acos,bi as Acosh,ip as AdadeltaOptimizer,ap as AdagradOptimizer,lp as AdamOptimizer,up as AdamaxOptimizer,Fo as Add,kn as AddN,mc as All,fc as Any,vn as ArgMax,Ga as ArgMin,wi as Asin,_i as Asinh,ki as Atan,Ci as Atan2,vi as Atanh,Cn as AvgPool,Wa as AvgPool3D,hc as AvgPool3DGrad,dc as AvgPoolGrad,_x as BackendWasm,In as BatchMatMul,ja as BatchToSpaceND,gc as Bincount,sS as BroadcastTo,_0 as Callback,FC as CallbackList,Ho as Cast,Nn as Ceil,qo as ClipByValue,xc as Complex,Ua as ComplexAbs,Ps as Concat,Sn as Conv2D,yc as Conv2DBackpropFilter,Tn as Conv2DBackpropInput,Ha as Conv3D,bc as Conv3DBackpropFilterV2,wc as Conv3DBackpropInputV2,An as Cos,Ii as Cosh,Ni as CropAndResize,En as Cumsum,PC as CustomCallback,Va as DataStorage,_c as DenseBincount,Si as DepthToSpace,Dn as DepthwiseConv2dNative,kc as DepthwiseConv2dNativeBackpropFilter,vc as DepthwiseConv2dNativeBackpropInput,Cc as Diag,qa as Dilation2D,Cm as Dilation2DBackpropFilter,vm as Dilation2DBackpropInput,Vb as ENV,k0 as EarlyStopping,Ti as Elu,Ic as EluGrad,Hh as Environment,Ei as Equal,Ai as Erf,Rn as Exp,Ms as ExpandDims,Di as Expm1,Nc as FFT,Ka as Fill,$i as FlipLeftRight,Fn as Floor,On as FloorDiv,Im as FromPixels,Pn as FusedBatchNorm,Xs as FusedConv2D,Ys as FusedDepthwiseConv2D,tx as GPGPUContext,Ri as GatherNd,Ls as GatherV2,Y0 as GraphModel,Fi as Greater,Mn as GreaterEqual,OC as History,Sc as IFFT,Ko as Identity,Tc as Imag,At as InputSpec,Oi as IsFinite,Pi as IsInf,Mi as IsNan,$s as KernelBackend,Xa as LRN,Ec as LRNGrad,Ox as LayerVariable,Wo as LayersModel,Ln as LeakyRelu,Li as Less,zi as LessEqual,Ac as LinSpace,zn as Log,Bi as Log1p,iS as LogSoftmax,Vi as LogicalAnd,Ll as LogicalNot,zl as LogicalOr,wu as MathBackendCPU,Au as MathBackendWebGL,Bn as Max,Gn as MaxPool,Ya as MaxPool3D,$c as MaxPool3DGrad,Dc as MaxPoolGrad,Rc as MaxPoolWithArgmax,Vn as Maximum,Wn as Mean,jn as Min,Un as Minimum,Za as MirrorPad,Gi as Mod,cp as MomentumOptimizer,Fc as Multinomial,Hn as Multiply,zs as Neg,ji as NonMaxSuppressionV3,Ui as NonMaxSuppressionV4,Hi as NonMaxSuppressionV5,Wi as NotEqual,wS as OP_SCOPE_SUFFIX,qn as OneHot,Bs as OnesLike,zr as Optimizer,Vs as Pack,Kn as PadV2,zre as Pool,Xn as Pow,Yn as Prelu,qi as Prod,pp as RMSPropOptimizer,Eo as RNN,Ja as Range,Kb as Rank,Oc as Real,$n as RealDiv,Ki as Reciprocal,Gt as Reduction,Zn as Relu,Qn as Relu6,Gs as Reshape,Jn as ResizeBilinear,Mc as ResizeBilinearGrad,Qa as ResizeNearestNeighbor,Pc as ResizeNearestNeighborGrad,es as Reverse,oa as RotateWithOffset,ts as Round,rs as Rsqrt,pl as SGDOptimizer,Xi as ScatterNd,Ws as Select,Yi as Selu,$a as Sequential,ns as Sigmoid,Ji as Sign,os as Sin,Zi as Sinh,js as Slice,as as Softmax,Qi as Softplus,el as SpaceToBatchND,Lc as SparseToDense,Us as SplitV,ss as Sqrt,tl as Square,ls as SquaredDifference,Xo as Step,ea as StridedSlice,us as Sub,is as Sum,oo as SymbolicTensor,ta as Tan,cs as Tanh,Ve as Tensor,lt as TensorBuffer,Oo as Tile,ra as TopK,zc as Transform,ps as Transpose,Bc as Unique,Hs as Unpack,rl as UnsortedSegmentSum,nl as Variable,qs as ZerosLike,Ks as _FusedMatMul,It as abs,Fm as acos,Om as acosh,ee as add,vw as addN,ql as all,al as any,ll as argMax,Pm as argMin,Mm as asin,Lm as asinh,zm as atan,Bm as atan2,Vm as atanh,ua as avgPool,Gm as avgPool3d,hT as backend,N as backend_util,JW as basicLSTMCell,Jo as batchNorm,Sw as batchNorm2d,Tw as batchNorm3d,Aw as batchNorm4d,ca as batchToSpaceND,Ew as bincount,JCe as booleanMaskAsync,ul as broadcastTo,rg as browser,ve as buffer,Ute as callbacks,ne as cast,Wm as ceil,ar as clipByValue,Po as clone,Co as complex,Ze as concat,Dw as concat1d,$w as concat2d,Rw as concat3d,Fw as concat4d,iz as constraints,Yl as conv1d,Jr as conv2d,Zl as conv2dTranspose,jm as conv3d,bj as conv3dTranspose,Ure as copyRegisteredKernels,pa as cos,Jl as cosh,yg as cosineWindow,Ql as cumsum,Qr as customGrad,pI as data,Ow as denseBincount,kw as deprecationWarn,Um as depthToSpace,ds as depthwiseConv2d,qte as deregisterOp,jl as device_util,Sj as diag,Hm as dilation2d,kie as disableDeprecationWarnings,Ae as dispose,vie as disposeVariables,me as div,qm as divNoNan,Pw as dot,zT as dropout,hs as elu,_ie as enableDebugMode,wie as enableProdMode,BT as enclosingPowerOfTwo,Zo as engine,W as env,Io as equal,Km as erf,Zt as exp,lr as expandDims,Xm as expm1,Jc as eye,ba as fft,ma as fill,Aie as findBackend,Eie as findBackendFactory,gs as floor,Hl as floorDiv,fD as forceHalfFloat,rn as fused,Qo as gather,MT as gatherND,og as gather_util,Sie as getBackend,Ub as getGradient,Sm as getKernel,qh as getKernelsForBackend,w2 as gpgpu_util,r4 as grad,o4 as grads,tr as greater,po as greaterEqual,ti as ifft,eu as imag,oi as image,lIe as inTopKAsync,Sz as initializers,UC as input,Tr as io,mu as irfft,Mw as isFinite,Lw as isInf,zw as isNaN,Et as keep,$r as kernel_impls,n3 as layers,fa as leakyRelu,tu as less,zo as lessEqual,g1 as linalg,Bw as linspace,bre as loadGraphModel,nee as loadLayersModel,Ym as localResponseNormalization,ur as log,ru as log1p,Vw as logSigmoid,ou as logSoftmax,Jm as logSumExp,gr as logicalAnd,da as logicalNot,nu as logicalOr,Uw as logicalXor,IRe as losses,je as matMul,JS as math,cr as max,ha as maxPool,Qm as maxPool3d,Hw as maxPoolWithArgmax,eo as maximum,dt as mean,Rm as memory,u3 as metrics,ei as min,ys as minimum,ef as mirrorPad,tf as mod,ree as model,c3 as models,Qc as moments,C0e as movingAverage,P as mul,$4 as multiRNNCell,qw as multinomial,He as neg,df as nextFrame,np as norm,tn as notEqual,fs as oneHot,Ar as ones,rr as onesLike,S as op,M4 as outerProduct,Mr as pad,B4 as pad1d,G4 as pad2d,j4 as pad3d,H4 as pad4d,Kw as pool,Lr as pow,xa as prelu,mw as print,su as prod,Cie as profile,tU as rand,uU as randomGamma,dg as randomNormal,bs as randomUniform,tp as range,Nie as ready,cl as real,rf as reciprocal,Xc as registerBackend,see as registerCallbackConstructor,aS as registerGradient,Bl as registerKernel,Hte as registerOp,p3 as regularizers,Er as relu,au as relu6,Tie as removeBackend,L as reshape,qt as reverse,yU as reverse1d,wU as reverse2d,kU as reverse3d,CU as reverse4d,wa as rfft,of as round,lu as rsqrt,le as scalar,OT as scatterND,ng as scatter_util,uu as selu,nf as separableConv2d,oee as sequential,Q as serialization,wW as setBackend,Die as setPlatform,AJ as setWasmPath,EJ as setWasmPaths,j_ as setWebGLContext,s_ as setdiff1dAsync,Mg as shared,Zr as sigmoid,sf as sign,CRe as signal,cu as sin,pu as sinh,Re as slice,af as slice1d,hg as slice2d,lf as slice3d,rp as slice4d,er as slice_util,ya as softmax,xs as softplus,ga as spaceToBatchND,xg as sparseToDense,vRe as spectral,pr as split,gt as sqrt,Oe as square,fu as squaredDifference,No as squeeze,Bt as stack,ws as step,uf as stridedSlice,ce as sub,ge as sum,Gl as sumOutType,cf as tan,Qs as tanh,Pr as tensor,Vt as tensor1d,ri as tensor2d,gw as tensor3d,YU as tensor4d,ZU as tensor5d,JU as tensor6d,Yo as tensor_util,mT as test_util,V as tidy,Lo as tile,Iie as time,pf as topk,bu as train,Ke as transpose,du as truncatedNormal,op as unique,jre as unregisterGradient,Wre as unregisterKernel,mf as unsortedSegmentSum,mr as unstack,ir as upcastType,y as util,n4 as valueAndGrad,s4 as valueAndGrads,i_ as variable,pg as variableGrads,SGt as version,wre as version_converter,bW as version_core,A_ as version_cpu,cd as version_layers,wC as version_wasm,zk as version_webgl,kXe as webgl,h2 as webgl_util,Dt as where,ff as whereAsync,ht as zeros,Ce as zerosLike};
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=tfjs.esm.js.map