mirror of https://github.com/vladmandic/human
90 lines
3.5 KiB
JavaScript
90 lines
3.5 KiB
JavaScript
/**
|
|
* Human demo for NodeJS
|
|
* Unsupported sample of using external utility fswebcam to capture screenshot from attached webcam in regular intervals and process it using Human
|
|
*
|
|
* Note that node-webcam is not part of Human dependencies and should be installed manually
|
|
* Working version of fswebcam must be present on the system
|
|
*/
|
|
|
|
const util = require('util');
|
|
const process = require('process');
|
|
const log = require('@vladmandic/pilogger');
|
|
// eslint-disable-next-line node/no-missing-require
|
|
const nodeWebCam = require('node-webcam');
|
|
// for NodeJS, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
|
|
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
|
|
const tf = require('@tensorflow/tfjs-node'); // or const tf = require('@tensorflow/tfjs-node-gpu');
|
|
// load specific version of Human library that matches TensorFlow mode
|
|
const Human = require('../../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default;
|
|
|
|
// options for node-webcam
|
|
const optionsCamera = {
|
|
callbackReturn: 'buffer', // this means whatever `fswebcam` writes to disk, no additional processing so it's fastest
|
|
saveShots: false, // don't save processed frame to disk, note that temp file is still created by fswebcam thus recommendation for tmpfs
|
|
};
|
|
const camera = nodeWebCam.create(optionsCamera);
|
|
|
|
// options for human
|
|
const optionsHuman = {
|
|
backend: 'tensorflow',
|
|
modelBasePath: 'file://models/',
|
|
};
|
|
const human = new Human(optionsHuman);
|
|
|
|
const results = [];
|
|
const list = util.promisify(camera.list);
|
|
const capture = util.promisify(camera.capture);
|
|
|
|
async function init() {
|
|
try {
|
|
const found = await list();
|
|
log.data('Camera data:', found);
|
|
} catch {
|
|
log.error('Could not access camera');
|
|
process.exit(1);
|
|
}
|
|
}
|
|
|
|
const buffer2tensor = human.tf.tidy((buffer) => {
|
|
if (!buffer) return null;
|
|
const decode = human.tf.node.decodeImage(buffer, 3);
|
|
let expand;
|
|
if (decode.shape[2] === 4) { // input is in rgba format, need to convert to rgb
|
|
const channels = human.tf.split(decode, 4, 2); // tf.split(tensor, 4, 2); // split rgba to channels
|
|
const rgb = human.tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb and ignore alpha
|
|
expand = human.tf.reshape(rgb, [1, decode.shape[0], decode.shape[1], 3]); // move extra dim from the end of tensor and use it as batch number instead
|
|
} else {
|
|
expand = human.tf.expandDims(decode, 0); // inpur ia rgb so use as-is
|
|
}
|
|
const cast = human.tf.cast(expand, 'float32');
|
|
return cast;
|
|
});
|
|
|
|
async function detect() {
|
|
// trigger next frame every 5 sec
|
|
// triggered here before actual capture and detection since we assume it will complete in less than 5sec
|
|
// so it's as close as possible to real 5sec and not 5sec + detection time
|
|
// if there is a chance of race scenario where detection takes longer than loop trigger, then trigger should be at the end of the function instead
|
|
setTimeout(() => detect(), 5000);
|
|
|
|
const buffer = await capture(); // gets the (default) jpeg data from from webcam
|
|
const tensor = buffer2tensor(buffer); // create tensor from image buffer
|
|
if (tensor) {
|
|
const res = await human.detect(tensor); // run detection
|
|
|
|
// do whatever here with the res
|
|
// or just append it to results array that will contain all processed results over time
|
|
results.push(res);
|
|
}
|
|
// alternatively to triggering every 5sec sec, simply trigger next frame as fast as possible
|
|
// setImmediate(() => process());
|
|
}
|
|
|
|
async function main() {
|
|
await init();
|
|
detect();
|
|
}
|
|
|
|
log.header();
|
|
main();
|