mirror of https://github.com/vladmandic/human
114 lines
4.8 KiB
TypeScript
114 lines
4.8 KiB
TypeScript
/**
|
|
* FaceRes model implementation
|
|
*
|
|
* Returns Age, Gender, Descriptor
|
|
* Implements Face simmilarity function
|
|
*
|
|
* Based on: [**HSE-FaceRes**](https://github.com/HSE-asavchenko/HSE_FaceRec_tf)
|
|
*/
|
|
|
|
import { log, join, now } from '../util/util';
|
|
import { env } from '../util/env';
|
|
import * as tf from '../../dist/tfjs.esm.js';
|
|
import * as constants from '../tfjs/constants';
|
|
import type { Tensor, GraphModel } from '../tfjs/types';
|
|
import type { Config } from '../config';
|
|
|
|
let model: GraphModel | null;
|
|
const last: Array<{
|
|
age: number,
|
|
gender: string,
|
|
genderScore: number,
|
|
descriptor: number[],
|
|
}> = [];
|
|
|
|
let lastTime = 0;
|
|
let lastCount = 0;
|
|
let skipped = Number.MAX_SAFE_INTEGER;
|
|
|
|
export async function load(config: Config): Promise<GraphModel> {
|
|
const modelUrl = join(config.modelBasePath, config.face.description?.modelPath || '');
|
|
if (env.initial) model = null;
|
|
if (!model) {
|
|
model = await tf.loadGraphModel(modelUrl) as unknown as GraphModel;
|
|
if (!model) log('load model failed:', config.face.description?.modelPath || '');
|
|
else if (config.debug) log('load model:', modelUrl);
|
|
} else if (config.debug) log('cached model:', modelUrl);
|
|
return model;
|
|
}
|
|
|
|
export function enhance(input): Tensor {
|
|
const tensor = (input.image || input.tensor || input) as Tensor; // input received from detector is already normalized to 0..1, input is also assumed to be straightened
|
|
if (!model?.inputs[0].shape) return tensor; // model has no shape so no point continuing
|
|
const crop = tf.image.resizeBilinear(tensor, [model.inputs[0].shape[2], model.inputs[0].shape[1]], false);
|
|
const norm = tf.mul(crop, constants.tf255);
|
|
tf.dispose(crop);
|
|
return norm;
|
|
/*
|
|
// do a tight crop of image and resize it to fit the model
|
|
const box = [[0.05, 0.15, 0.85, 0.85]]; // empyrical values for top, left, bottom, right
|
|
const crop = (tensor.shape.length === 3)
|
|
? tf.image.cropAndResize(tf.expandDims(tensor, 0), box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]) // add batch dimension if missing
|
|
: tf.image.cropAndResize(tensor, box, [0], [model.inputs[0].shape[2], model.inputs[0].shape[1]]);
|
|
*/
|
|
/*
|
|
// convert to black&white to avoid colorization impact
|
|
const rgb = [0.2989, 0.5870, 0.1140]; // factors for red/green/blue colors when converting to grayscale: https://www.mathworks.com/help/matlab/ref/rgb2gray.html
|
|
const [red, green, blue] = tf.split(crop, 3, 3);
|
|
const redNorm = tf.mul(red, rgb[0]);
|
|
const greenNorm = tf.mul(green, rgb[1]);
|
|
const blueNorm = tf.mul(blue, rgb[2]);
|
|
const grayscale = tf.addN([redNorm, greenNorm, blueNorm]);
|
|
const merge = tf.stack([grayscale, grayscale, grayscale], 3).squeeze(4);
|
|
*/
|
|
}
|
|
|
|
export async function predict(image: Tensor, config: Config, idx, count): Promise<{ age: number, gender: string, genderScore: number, descriptor: number[] }> {
|
|
if (!model) return { age: 0, gender: 'unknown', genderScore: 0, descriptor: [] };
|
|
const skipFrame = skipped < (config.face.description?.skipFrames || 0);
|
|
const skipTime = (config.face.description?.skipTime || 0) > (now() - lastTime);
|
|
if (config.skipAllowed && skipFrame && skipTime && (lastCount === count) && last[idx]?.age && (last[idx]?.age > 0)) {
|
|
skipped++;
|
|
return last[idx];
|
|
}
|
|
skipped = 0;
|
|
return new Promise(async (resolve) => {
|
|
const obj = {
|
|
age: <number>0,
|
|
gender: <string>'unknown',
|
|
genderScore: <number>0,
|
|
descriptor: <number[]>[],
|
|
};
|
|
|
|
if (config.face.description?.enabled) {
|
|
const enhanced = enhance(image);
|
|
const resT = model?.execute(enhanced) as Tensor[];
|
|
lastTime = now();
|
|
tf.dispose(enhanced);
|
|
const genderT = await resT.find((t) => t.shape[1] === 1) as Tensor;
|
|
const gender = await genderT.data();
|
|
const confidence = Math.trunc(200 * Math.abs((gender[0] - 0.5))) / 100;
|
|
if (confidence > (config.face.description?.minConfidence || 0)) {
|
|
obj.gender = gender[0] <= 0.5 ? 'female' : 'male';
|
|
obj.genderScore = Math.min(0.99, confidence);
|
|
}
|
|
const argmax = tf.argMax(resT.find((t) => t.shape[1] === 100), 1);
|
|
const age = (await argmax.data())[0];
|
|
tf.dispose(argmax);
|
|
const ageT = resT.find((t) => t.shape[1] === 100) as Tensor;
|
|
const all = await ageT.data();
|
|
obj.age = Math.round(all[age - 1] > all[age + 1] ? 10 * age - 100 * all[age - 1] : 10 * age + 100 * all[age + 1]) / 10;
|
|
|
|
const desc = resT.find((t) => t.shape[1] === 1024);
|
|
// const reshape = desc.reshape([128, 8]); // reshape large 1024-element descriptor to 128 x 8
|
|
// const reduce = reshape.logSumExp(1); // reduce 2nd dimension by calculating logSumExp on it which leaves us with 128-element descriptor
|
|
const descriptor = desc ? await desc.data() : <number[]>[];
|
|
obj.descriptor = Array.from(descriptor);
|
|
resT.forEach((t) => tf.dispose(t));
|
|
}
|
|
last[idx] = obj;
|
|
lastCount = count;
|
|
resolve(obj);
|
|
});
|
|
}
|