human/dist/demo-browser-index.js

5038 lines
1.3 MiB

/*
Human library
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var fv=Object.create,oh=Object.defineProperty,mv=Object.getPrototypeOf,Av=Object.prototype.hasOwnProperty,yv=Object.getOwnPropertyNames,gv=Object.getOwnPropertyDescriptor,K2=e=>oh(e,"__esModule",{value:!0}),ct=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Z2=(e,t)=>{K2(e);for(var n in t)oh(e,n,{get:t[n],enumerable:!0})},xv=(e,t,n)=>{if(K2(e),t&&typeof t=="object"||typeof t=="function")for(let r of yv(t))!Av.call(e,r)&&r!=="default"&&oh(e,r,{get:()=>t[r],enumerable:!(n=gv(t,r))||n.enumerable});return e},We=e=>e&&e.__esModule?e:xv(oh(e!=null?fv(mv(e)):{},"default",{value:e,enumerable:!0}),e),wv=ct(e=>{var t=6;function n(u){let h={strides:[u/16,u/8],anchors:[2,6]},d=[];for(let p=0;p<h.strides.length;p++){let f=h.strides[p],m=Math.floor((u+f-1)/f),A=Math.floor((u+f-1)/f),y=h.anchors[p];for(let g=0;g<m;g++){let w=f*(g+.5);for(let x=0;x<A;x++){let _=f*(x+.5);for(let b=0;b<y;b++)d.push([_,w])}}}return d}var r=u=>{u.startEndTensor.dispose(),u.startPoint.dispose(),u.endPoint.dispose()},a=u=>({startEndTensor:u,startPoint:Fe(u,[0,0],[-1,2]),endPoint:Fe(u,[0,2],[-1,2])}),s=(u,h)=>{let d=B(u.startPoint,h),p=B(u.endPoint,h),f=Xl([d,p],1);return a(f)};function i(u,h,d){let p=Fe(u,[0,1],[-1,2]),f=ie(p,h),m=Fe(u,[0,3],[-1,2]),A=Ne(m,d),y=Ne(f,d),g=Ne(A,2),w=_e(y,g),x=ie(y,g),_=B(w,d),b=B(x,d);return Xl([_,b],1)}function o(u,h){return H(()=>{let d=u.box?u.box:u;return s(d,h).startEndTensor.squeeze()})}var l=class{constructor(u,h){this.blazeFaceModel=u,this.width=h.face.detector.inputSize,this.height=h.face.detector.inputSize,this.anchorsData=n(h.face.detector.inputSize),this.anchors=hr(this.anchorsData),this.inputSize=Qt([this.width,this.height]),this.config=h,this.scaleFaces=.8}async getBoundingBoxes(u){if(!u||u.isDisposedInternal||u.shape.length!==4||u.shape[1]<1||u.shape[2]<1)return null;let[h,d,p]=H(()=>{let w=u.resizeBilinear([this.width,this.height]),x=_e(w.div(127.5),1),_=this.blazeFaceModel.predict(x),b;if(Array.isArray(_)){let C=_.sort((O,V)=>O.size-V.size),$=dt([C[0],C[2]],2),D=dt([C[1],C[3]],2);b=dt([D,$],1).squeeze(0)}else b=_.squeeze();let S=i(b,this.anchors,this.inputSize),T=Fe(b,[0,0],[-1,1]),N=Jn(T).squeeze();return[b,S,N]}),f=await Mt.nonMaxSuppressionAsync(d,p,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),m=f.arraySync();f.dispose();let A=m.map(w=>Fe(d,[w,0],[1,-1])).map(w=>{let x=w.arraySync();return w.dispose(),x}),y=p.dataSync(),g=[];for(let w=0;w<A.length;w++){let x=m[w],_=y[x];if(_>this.config.face.detector.minConfidence){let b=a(A[w]),S=this.anchorsData[x],T=H(()=>Fe(h,[x,t-1],[1,-1]).squeeze().reshape([t,-1]));g.push({box:b,landmarks:T,anchor:S,confidence:_})}}return h.dispose(),d.dispose(),p.dispose(),h.dispose(),{boxes:g,scaleFactor:[u.shape[2]/this.width,u.shape[1]/this.height]}}async estimateFaces(u){let{boxes:h,scaleFactor:d}=await this.getBoundingBoxes(u),p=[];for(let f of h){let m=f.landmarks.arraySync(),A=o(f,d),y=s.arraySync(),g=f.probability.arraySync(),w=f.anchor,[x,_]=d,b=m.map(T=>[(T[0]+w[0])*x,(T[1]+w[1])*_]),S={topLeft:y.slice(0,2),bottomRight:y.slice(2),landmarks:b,probability:g};r(f.box),f.landmarks.dispose(),f.probability.dispose(),A.dispose(),p.push(S)}return p}};async function c(u){let h=await dr(u.face.detector.modelPath,{fromTFHub:u.face.detector.modelPath.includes("tfhub.dev")}),d=new l(h,u);return Ye(`load model: ${u.face.detector.modelPath.match(/\/(.*)\./)[1]}`),d}e.load=c,e.BlazeFaceModel=l,e.disposeBox=r}),_v=ct(e=>{function t(o,l){let c=[o.startPoint[0]*l[0],o.startPoint[1]*l[1]],u=[o.endPoint[0]*l[0],o.endPoint[1]*l[1]];return{startPoint:c,endPoint:u}}e.scaleBoxCoordinates=t;function n(o){return[Math.abs(o.endPoint[0]-o.startPoint[0]),Math.abs(o.endPoint[1]-o.startPoint[1])]}e.getBoxSize=n;function r(o){return[o.startPoint[0]+(o.endPoint[0]-o.startPoint[0])/2,o.startPoint[1]+(o.endPoint[1]-o.startPoint[1])/2]}e.getBoxCenter=r;function a(o,l,c){let u=l.shape[1],h=l.shape[2],d=[[o.startPoint[1]/u,o.startPoint[0]/h,o.endPoint[1]/u,o.endPoint[0]/h]];return Mt.cropAndResize(l,d,[0],c)}e.cutBoxFromImageAndResize=a;function s(o,l=1.5){let c=r(o),u=n(o),h=[l*u[0]/2,l*u[1]/2],d=[c[0]-h[0],c[1]-h[1]],p=[c[0]+h[0],c[1]+h[1]];return{startPoint:d,endPoint:p,landmarks:o.landmarks}}e.enlargeBox=s;function i(o){let l=r(o),c=n(o),u=Math.max(...c)/2,h=[l[0]-u,l[1]-u],d=[l[0]+u,l[1]+u];return{startPoint:h,endPoint:d,landmarks:o.landmarks}}e.squarifyBox=i}),bv=ct(e=>{e.IDENTITY_MATRIX=[[1,0,0],[0,1,0],[0,0,1]];function t(d){return d-2*Math.PI*Math.floor((d+Math.PI)/(2*Math.PI))}e.normalizeRadians=t;function n(d,p){let f=Math.PI/2-Math.atan2(-(p[1]-d[1]),p[0]-d[0]);return t(f)}e.computeRotation=n;function r(d){return d*180/Math.PI}e.radToDegrees=r;function a(d,p){return[[1,0,d],[0,1,p],[0,0,1]]}function s(d,p){let f=0;for(let m=0;m<d.length;m++)f+=d[m]*p[m];return f}e.dot=s;function i(d,p){let f=[];for(let m=0;m<d.length;m++)f.push(d[m][p]);return f}e.getColumnFrom2DArr=i;function o(d,p){let f=[],m=d.length;for(let A=0;A<m;A++){f.push([]);for(let y=0;y<m;y++)f[A].push(s(d[A],i(p,y)))}return f}function l(d,p){let f=Math.cos(d),m=Math.sin(d),A=[[f,-m,0],[m,f,0],[0,0,1]],y=a(p[0],p[1]),g=o(y,A),w=a(-p[0],-p[1]);return o(g,w)}e.buildRotationMatrix=l;function c(d){let p=[[d[0][0],d[1][0]],[d[0][1],d[1][1]]],f=[d[0][2],d[1][2]],m=[-s(p[0],f),-s(p[1],f)];return[p[0].concat(m[0]),p[1].concat(m[1]),[0,0,1]]}e.invertTransformMatrix=c;function u(d,p){return[s(d,p[0]),s(d,p[1])]}e.rotatePoint=u;function h(d,p){return Math.sqrt((d[0]-p[0])**2+(d[1]-p[1])**2)}e.xyDistanceBetweenPoints=h}),Y2=ct(e=>{var t={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},n=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],r=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],a=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255],s=[0,1,36,0,36,17,1,2,41,1,41,36,2,3,31,2,31,41,3,4,48,3,48,31,4,5,48,5,6,48,6,7,59,6,59,48,7,8,58,7,58,59,8,9,56,8,56,57,8,57,58,9,10,55,9,55,56,10,11,54,10,54,55,11,12,54,12,13,54,13,14,35,13,35,54,14,15,46,14,46,35,15,16,45,15,45,46,16,26,45,17,36,18,18,37,19,18,36,37,19,38,20,19,37,38,20,39,21,20,38,39,21,39,27,22,42,23,22,27,42,23,43,24,23,42,43,24,44,25,24,43,44,25,45,26,25,44,45,27,39,28,27,28,42,28,39,29,28,29,42,29,31,30,29,30,35,29,40,31,29,35,47,29,39,40,29,47,42,30,31,32,30,32,33,30,33,34,30,34,35,31,50,32,31,40,41,31,48,49,31,49,50,32,51,33,32,50,51,33,51,34,34,52,35,34,51,52,35,46,47,35,52,53,35,53,54,36,41,37,37,40,38,37,41,40,38,40,39,42,47,43,43,47,44,44,46,45,44,47,46,48,60,49,48,59,60,49,61,50,49,60,61,50,62,51,50,61,62,51,62,52,52,63,53,52,62,63,53,64,54,53,63,64,54,64,55,55,65,56,55,64,65,56,66,57,56,65,66,57,66,58,58,67,59,58,66,67,59,67,60,60,67,61,61,66,62,61,67,66,62,66,63,63,65,64,63,66,65,21,27,22],i=[0,8,7,7,8,1,2,10,9,9,10,3,17,0,18,18,0,7,18,7,19,19,7,1,19,1,11,19,11,20,21,3,22,21,9,3,20,9,21,20,2,9,20,11,2,23,17,18,25,21,22,24,19,20,24,18,19,24,20,21,24,23,18,24,21,25,11,12,4,11,4,13,1,12,11,11,13,2,12,14,4,4,14,13,14,5,15,14,15,6,12,5,14,14,6,13,8,12,1,2,13,10,8,26,12,10,13,27,26,5,12,13,6,27,0,26,8,10,27,3,5,32,16,16,32,6,5,30,32,6,32,31,26,30,5,27,6,31,0,28,26,3,27,29,17,28,0,3,29,22,23,28,17,22,29,25,28,30,26,27,31,29],o=[0,4,1,2,4,3,4,5,6],l=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],c=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],u=[33,133,362,263,1,78,308];e.MESH_ANNOTATIONS=t,e.MESH_TO_IRIS_INDICES_MAP=n,e.TRI468=a,e.TRI68=s,e.TRI33=i,e.TRI7=o,e.UV468=r,e.UV68=l.map(h=>r[h]),e.UV33=c.map(h=>r[h]),e.UV7=u.map(h=>r[h])}),vv=ct(e=>{var t=We(_v()),n=We(bv()),r=We(Y2()),a=468,s=13,i=[s,r.MESH_ANNOTATIONS.midwayBetweenEyes[0]],o=3,l=2,c=[o,l],u=r.MESH_ANNOTATIONS.leftEyeLower0,h=[u[0],u[u.length-1]],d=r.MESH_ANNOTATIONS.rightEyeLower0,p=[d[0],d[d.length-1]],f=3,m=4,A=71,y=76;function g(x,_,b,S){for(let T=0;T<r.MESH_TO_IRIS_INDICES_MAP.length;T++){let{key:N,indices:C}=r.MESH_TO_IRIS_INDICES_MAP[T],$=r.MESH_ANNOTATIONS[`${b}${N}`];if(S==null||S.includes(N))for(let D=0;D<C.length;D++){let O=C[D];x[$[D]]=[_[O][0],_[O][1],(_[O][2]+x[$[D]][2])/2]}}}var w=class{constructor(x,_,b,S){this.storedBoxes=[],this.runsWithoutFaceDetector=0,this.boundingBoxDetector=x,this.meshDetector=_,this.irisModel=b,this.meshWidth=S.face.mesh.inputSize,this.meshHeight=S.face.mesh.inputSize,this.irisSize=S.face.iris.inputSize,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(x,_,b,S){let T=t.getBoxSize({startPoint:_.startPoint,endPoint:_.endPoint}),N=[T[0]/this.meshWidth,T[1]/this.meshHeight],C=x.map(W=>[N[0]*(W[0]-this.meshWidth/2),N[1]*(W[1]-this.meshHeight/2),W[2]]),$=b!==0?n.buildRotationMatrix(b,[0,0]):n.IDENTITY_MATRIX,D=b!==0?C.map(W=>[...n.rotatePoint(W,$),W[2]]):C,O=b!==0?n.invertTransformMatrix(S):n.IDENTITY_MATRIX,V=[...t.getBoxCenter({startPoint:_.startPoint,endPoint:_.endPoint}),1];return D.map(W=>[W[0]+n.dot(V,O[0]),W[1]+n.dot(V,O[1]),W[2]])}getLeftToRightEyeDepthDifference(x){let _=x[h[0]][2],b=x[p[0]][2];return _-b}getEyeBox(x,_,b,S,T=!1){let N=t.squarifyBox(t.enlargeBox(this.calculateLandmarksBoundingBox([x[b],x[S]]),this.irisEnlarge)),C=t.getBoxSize(N),$=Mt.cropAndResize(_,[[N.startPoint[1]/this.meshHeight,N.startPoint[0]/this.meshWidth,N.endPoint[1]/this.meshHeight,N.endPoint[0]/this.meshWidth]],[0],[this.irisSize,this.irisSize]);return T&&($=Mt.flipLeftRight($)),{box:N,boxSize:C,crop:$}}getEyeCoords(x,_,b,S=!1){let T=[];for(let N=0;N<y;N++){let C=x[N*3],$=x[N*3+1],D=x[N*3+2];T.push([(S?1-C/this.irisSize:C/this.irisSize)*b[0]+_.startPoint[0],$/this.irisSize*b[1]+_.startPoint[1],D])}return{rawCoords:T,iris:T.slice(A)}}getAdjustedIrisCoords(x,_,b){let S=x[r.MESH_ANNOTATIONS[`${b}EyeUpper0`][f]][2],T=x[r.MESH_ANNOTATIONS[`${b}EyeLower0`][m]][2],N=(S+T)/2;return _.map((C,$)=>{let D=N;return $===2?D=S:$===4&&(D=T),[C[0],C[1],D]})}async predict(x,_){let b=!1,S;if((this.skipped===0||this.skipped>_.face.detector.skipFrames||!_.face.mesh.enabled||!_.videoOptimized)&&(S=await this.boundingBoxDetector.getBoundingBoxes(x),this.skipped=0),_.videoOptimized&&this.skipped++,S&&S.boxes&&(!_.face.mesh.enabled||S.boxes.length!==this.detectedFaces&&this.detectedFaces!==_.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let N of S.boxes)this.storedBoxes.push({startPoint:N.box.startPoint.dataSync(),endPoint:N.box.endPoint.dataSync(),landmarks:N.landmarks,confidence:N.confidence});this.storedBoxes.length>0&&(b=!0)}if(b){if(!S||!S.boxes||S.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let N=0;N<this.storedBoxes.length;N++){let C=t.scaleBoxCoordinates({startPoint:this.storedBoxes[N].startPoint,endPoint:this.storedBoxes[N].endPoint},S.scaleFactor),$=t.enlargeBox(C),D=t.squarifyBox($),O=this.storedBoxes[N].landmarks.arraySync(),V=this.storedBoxes[N].confidence;this.storedBoxes[N]={...D,confidence:V,landmarks:O}}this.runsWithoutFaceDetector=0}S&&S.boxes&&S.boxes.forEach(N=>{N.box.startPoint.dispose(),N.box.endPoint.dispose(),N.landmarks.dispose()});let T=H(()=>this.storedBoxes.map((N,C)=>{let $,D=0,O;if(_.face.detector.rotation){let[ne,he]=N.landmarks.length>=a?i:c;D=n.computeRotation(N.landmarks[ne],N.landmarks[he]);let le=t.getBoxCenter({startPoint:N.startPoint,endPoint:N.endPoint}),me=[le[0]/x.shape[2],le[1]/x.shape[1]],Ae=Mt.rotateWithOffset(x,D,0,me);O=n.buildRotationMatrix(-D,le),$=t.cutBoxFromImageAndResize({startPoint:N.startPoint,endPoint:N.endPoint},Ae,[this.meshHeight,this.meshWidth]).div(255)}else{O=n.IDENTITY_MATRIX;let ne=x.clone();$=t.cutBoxFromImageAndResize({startPoint:N.startPoint,endPoint:N.endPoint},ne,[this.meshHeight,this.meshWidth]).div(255)}if(!_.face.mesh.enabled)return{coords:null,box:N,faceConfidence:null,confidence:N.confidence,image:$};let[,V,W]=this.meshDetector.predict($),K=V.dataSync()[0];if(K<_.face.detector.minConfidence)return null;let X=q(W,[-1,3]).arraySync();if(_.face.iris.enabled){let{box:ne,boxSize:he,crop:le}=this.getEyeBox(X,$,h[0],h[1],!0),{box:me,boxSize:Ae,crop:we}=this.getEyeBox(X,$,p[0],p[1]),Se=this.irisModel.predict(dt([le,we])).dataSync(),Ce=Se.slice(0,y*3),{rawCoords:De,iris:je}=this.getEyeCoords(Ce,ne,he,!0),Be=Se.slice(y*3),{rawCoords:Qe,iris:st}=this.getEyeCoords(Be,me,Ae),Ue=this.getLeftToRightEyeDepthDifference(X);Math.abs(Ue)<30?(g(X,De,"left"),g(X,Qe,"right")):Ue<1?g(X,De,"left",["EyeUpper0","EyeLower0"]):g(X,Qe,"right",["EyeUpper0","EyeLower0"]);let ot=this.getAdjustedIrisCoords(X,je,"left"),lt=this.getAdjustedIrisCoords(X,st,"right");X=X.concat(ot).concat(lt)}let ee=this.transformRawCoords(X,N,D,O),Z=t.enlargeBox(this.calculateLandmarksBoundingBox(ee)),ae=t.squarifyBox(Z),J=hr(ee),oe={coords:J,box:Z,faceConfidence:K,confidence:N.confidence,image:$};return _.face.mesh.returnRawData&&(oe.rawCoords=X),this.storedBoxes[C]={...ae,landmarks:J.arraySync(),confidence:N.confidence,faceConfidence:K},oe}));return T=T.filter(N=>N!==null),this.detectedFaces=T.length,T}calculateLandmarksBoundingBox(x){let _=x.map(N=>N[0]),b=x.map(N=>N[1]),S=[Math.min(..._),Math.min(...b)],T=[Math.max(..._),Math.max(...b)];return{startPoint:S,endPoint:T,landmarks:x}}};e.Pipeline=w}),kv=ct(e=>{var t=We(wv()),n=We(vv()),r=We(Y2()),a=class{constructor(o,l,c,u){this.facePipeline=new n.Pipeline(o,l,c,u),this.config=u}async estimateFaces(o,l){let c=await this.facePipeline.predict(o,l),u=[];for(let h of c||[]){if(h.isDisposedInternal)continue;let d=h.coords?h.coords.arraySync():null,p=h.rawCoords,f={};if(d&&d.length>0)for(let y of Object.keys(r.MESH_ANNOTATIONS))f[y]=r.MESH_ANNOTATIONS[y].map(g=>d[g]);let m=l.face.mesh.returnRawData&&h.box?{topLeft:h.box.startPoint,bottomRight:h.box.endPoint}:null,A=h.box?[Math.max(0,h.box.startPoint[0]),Math.max(0,h.box.startPoint[1]),Math.min(o.shape[2],h.box.endPoint[0])-h.box.startPoint[0],Math.min(o.shape[1],h.box.endPoint[1])-h.box.startPoint[1]]:0;u.push({confidence:h.confidence||0,box:A,mesh:d,boxRaw:m,meshRaw:p,annotations:f,image:h.image?Nr(h.image):null}),h.coords&&h.coords.dispose(),h.image&&h.image.dispose()}return u}},s=[null,null,null];async function i(o){s=await Promise.all([!s[0]&&o.face.enabled?t.load(o):null,!s[1]&&o.face.mesh.enabled?dr(o.face.mesh.modelPath,{fromTFHub:o.face.mesh.modelPath.includes("tfhub.dev")}):null,!s[2]&&o.face.iris.enabled?dr(o.face.iris.modelPath,{fromTFHub:o.face.iris.modelPath.includes("tfhub.dev")}):null]);let l=new a(s[0],s[1],s[2],o);return o.face.mesh.enabled&&Ye(`load model: ${o.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),o.face.iris.enabled&&Ye(`load model: ${o.face.iris.modelPath.match(/\/(.*)\./)[1]}`),l}e.load=i,e.MediaPipeFaceMesh=a,e.triangulation=r.TRI468}),Kl=ct(e=>{var t={};function n(r,a){if(!a||!a.kernels)return;let s=5,i=a.kernels.filter(u=>u.kernelTimeMs>0).reduce((u,h)=>u+=h.kernelTimeMs,0),o=a.kernels.map((u,h)=>(u.id=h,u)).filter(u=>u.kernelTimeMs>0).sort((u,h)=>h.kernelTimeMs-u.kernelTimeMs),l=a.kernels.map((u,h)=>(u.id=h,u)).filter(u=>u.totalBytesSnapshot>0).sort((u,h)=>h.totalBytesSnapshot-u.totalBytesSnapshot);o.length>s&&(o.length=s),l.length>s&&(l.length=s);let c={newBytes:a.newBytes,newTensors:a.newTensors,peakBytes:a.peakBytes,numKernelOps:a.kernels.length,timeKernelOps:i,slowestKernelOps:o,largestKernelOps:l};t[r]=c,Ye("Human profiler",r,c)}e.run=n}),Iv=ct(e=>{var t=We(Kl()),n={},r={age:0},a=Number.MAX_SAFE_INTEGER;async function s(o){return n.age||(n.age=await dr(o.face.age.modelPath),Ye(`load model: ${o.face.age.modelPath.match(/\/(.*)\./)[1]}`)),n.age}async function i(o,l){return n.age?a<l.face.age.skipFrames&&l.videoOptimized&&r.age&&r.age>0?(a++,r):(l.videoOptimized?a=0:a=Number.MAX_SAFE_INTEGER,new Promise(async c=>{let u=Mt.resizeBilinear(o,[l.face.age.inputSize,l.face.age.inputSize],!1),h=B(u,[255]);Me(u);let d,p={};if(!l.profile)l.face.age.enabled&&(d=await n.age.predict(h));else{let f=l.face.age.enabled?await Zl(()=>n.age.predict(h)):{};d=f.result.clone(),f.result.dispose(),t.run("age",f)}if(h.dispose(),d){let f=d.dataSync();p.age=Math.trunc(10*f[0])/10}d.dispose(),r=p,c(p)})):null}e.predict=i,e.load=s}),Nv=ct(e=>{var t=We(Kl()),n={},r={gender:""},a=Number.MAX_SAFE_INTEGER,s=!1,i=[.2989,.587,.114];async function o(c){return n.gender||(n.gender=await dr(c.face.gender.modelPath),s=n.gender.inputs[0].shape[3]===1,Ye(`load model: ${c.face.gender.modelPath.match(/\/(.*)\./)[1]}`)),n.gender}async function l(c,u){return n.gender?a<u.face.gender.skipFrames&&u.videoOptimized&&r.gender!==""?(a++,r):(u.videoOptimized?a=0:a=Number.MAX_SAFE_INTEGER,new Promise(async h=>{let d=Mt.resizeBilinear(c,[u.face.gender.inputSize,u.face.gender.inputSize],!1),p;s?p=H(()=>{let[A,y,g]=rn(d,3,3),w=B(A,i[0]),x=B(y,i[1]),_=B(g,i[2]);return lh([w,x,_]).sub(.5).mul(2)}):p=B(d,[255]),Me(d);let f,m={};if(!u.profile)u.face.gender.enabled&&(f=await n.gender.predict(p));else{let A=u.face.gender.enabled?await Zl(()=>n.gender.predict(p)):{};f=A.result.clone(),A.result.dispose(),t.run("gender",A)}if(p.dispose(),f){let A=f.dataSync();if(s){let y=Math.trunc(100*Math.abs(A[0]-A[1]))/100;y>u.face.gender.minConfidence&&(m.gender=A[0]>A[1]?"female":"male",m.confidence=y)}else{let y=Math.trunc(200*Math.abs(A[0]-.5))/100;y>u.face.gender.minConfidence&&(m.gender=A[0]<=.5?"female":"male",m.confidence=Math.min(.99,y))}}f.dispose(),r=m,h(m)})):null}e.predict=l,e.load=o}),Tv=ct(e=>{var t=We(Kl()),n=["angry","disgust","fear","happy","sad","surprise","neutral"],r={},a=[],s=Number.MAX_SAFE_INTEGER,i=[.2989,.587,.114],o=1;async function l(u){return r.emotion||(r.emotion=await dr(u.face.emotion.modelPath),Ye(`load model: ${u.face.emotion.modelPath.match(/\/(.*)\./)[1]}`)),r.emotion}async function c(u,h){return r.emotion?s<h.face.emotion.skipFrames&&h.videoOptimized&&a.length>0?(s++,a):(h.videoOptimized?s=0:s=Number.MAX_SAFE_INTEGER,new Promise(async d=>{let p=Mt.resizeBilinear(u,[h.face.emotion.inputSize,h.face.emotion.inputSize],!1),[f,m,A]=rn(p,3,3);p.dispose();let y=B(f,i[0]),g=B(m,i[1]),w=B(A,i[2]);f.dispose(),m.dispose(),A.dispose();let x=lh([y,g,w]);y.dispose(),g.dispose(),w.dispose();let _=H(()=>x.sub(.5).mul(2));x.dispose();let b=[];if(h.face.emotion.enabled){let S;if(h.profile){let T=await Zl(()=>r.emotion.predict(_));S=T.result.dataSync(),T.result.dispose(),t.run("emotion",T)}else{let T=await r.emotion.predict(_);S=T.dataSync(),Me(T)}for(let T=0;T<S.length;T++)o*S[T]>h.face.emotion.minConfidence&&b.push({score:Math.min(.99,Math.trunc(100*o*S[T])/100),emotion:n[T]});b.sort((T,N)=>N.score-T.score)}_.dispose(),a=b,d(b)})):null}e.predict=c,e.load=l}),Sv=ct(e=>{var t=We(Kl()),n={};async function r(i){return n.embedding||(n.embedding=await dr(i.face.embedding.modelPath),Ye(`load model: ${i.face.embedding.modelPath.match(/\/(.*)\./)[1]}`)),n.embedding}function a(i,o){if((i==null?void 0:i.length)!==(o==null?void 0:o.length))return 0;let l=2,c=10*i.map((u,h)=>u-o[h]).reduce((u,h)=>u+h**l,0)**(1/l);return Math.trunc(1e3*(1-c))/1e3}async function s(i,o){return n.embedding?new Promise(async l=>{let c=Mt.resizeBilinear(i,[o.face.embedding.inputSize,o.face.embedding.inputSize],!1),u=[];if(o.face.embedding.enabled)if(o.profile){let h=await Zl(()=>n.embedding.predict({img_inputs:c}));u=[...h.result.dataSync()],h.result.dispose(),t.run("emotion",h)}else{let h=await n.embedding.predict({img_inputs:c});u=[...h.dataSync()],Me(h)}c.dispose(),l(u)}):null}e.predict=s,e.simmilarity=a,e.load=r}),Ev=ct(e=>{var t=[-123.15,-115.9,-103.06];function n(s){let[i,o,l,c]=s;return{offsets:i,heatmap:o,displacementFwd:l,displacementBwd:c}}function r(s){let[i,o,l,c]=s;return{offsets:l,heatmap:c,displacementFwd:i,displacementBwd:o}}var a=class{constructor(s){this.model=s}predict(s,i){return H(()=>{let o=(i.body.modelType==="ResNet"?s.toFloat().add(t):s.toFloat().div(127.5).sub(1)).expandDims(0),l=this.model.predict(o).map(u=>u.squeeze([0])),c=i.body.modelType==="ResNet"?r(l):n(l);return{heatmapScores:c.heatmap.sigmoid(),offsets:c.offsets,displacementFwd:c.displacementFwd,displacementBwd:c.displacementBwd}})}dispose(){this.model.dispose()}};e.BaseModel=a}),Cv=ct(e=>{function t(r){return Math.floor(r/2)}var n=class{constructor(r,a){this.priorityQueue=new Array(r),this.numberOfElements=-1,this.getElementValue=a}enqueue(r){this.priorityQueue[++this.numberOfElements]=r,this.swim(this.numberOfElements)}dequeue(){let r=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,r}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(r){for(;r>0&&this.less(t(r),r);)this.exchange(r,t(r)),r=t(r)}sink(r){for(;2*r<=this.numberOfElements;){let a=2*r;if(a<this.numberOfElements&&this.less(a,a+1)&&a++,!this.less(r,a))break;this.exchange(r,a),r=a}}getValueAt(r){return this.getElementValue(this.priorityQueue[r])}less(r,a){return this.getValueAt(r)<this.getValueAt(a)}exchange(r,a){let s=this.priorityQueue[r];this.priorityQueue[r]=this.priorityQueue[a],this.priorityQueue[a]=s}};e.MaxHeap=n}),Rv=ct(e=>{var t=We(Cv());function n(a,s,i,o,l,c){let[u,h]=c.shape,d=!0,p=Math.max(i-l,0),f=Math.min(i+l+1,u);for(let m=p;m<f;++m){let A=Math.max(o-l,0),y=Math.min(o+l+1,h);for(let g=A;g<y;++g)if(c.get(m,g,a)>s){d=!1;break}if(!d)break}return d}function r(a,s,i){let[o,l,c]=i.shape,u=new t.MaxHeap(o*l*c,({score:h})=>h);for(let h=0;h<o;++h)for(let d=0;d<l;++d)for(let p=0;p<c;++p){let f=i.get(h,d,p);f<a||n(p,f,h,d,s,i)&&u.enqueue({score:f,part:{heatmapY:h,heatmapX:d,id:p}})}return u}e.buildPartWithScoreQueue=r}),Yl=ct(e=>{e.partNames=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],e.NUM_KEYPOINTS=e.partNames.length,e.partIds=e.partNames.reduce((n,r,a)=>(n[r]=a,n),{});var t=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]];e.connectedPartIndices=t.map(([n,r])=>[e.partIds[n],e.partIds[r]]),e.poseChain=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]],e.partChannels=["left_face","right_face","right_upper_leg_front","right_lower_leg_back","right_upper_leg_back","left_lower_leg_front","left_upper_leg_front","left_upper_leg_back","left_lower_leg_back","right_feet","right_lower_leg_front","left_feet","torso_front","torso_back","right_upper_arm_front","right_upper_arm_back","right_lower_arm_back","left_lower_arm_front","left_upper_arm_front","left_upper_arm_back","left_lower_arm_back","right_hand","right_lower_arm_front","left_hand"]}),J2=ct(e=>{var t=We(Yl());function n(c,u,h,d){return{y:d.get(c,u,h),x:d.get(c,u,h+t.NUM_KEYPOINTS)}}e.getOffsetPoint=n;function r(c,u,h){let{heatmapY:d,heatmapX:p,id:f}=c,{y:m,x:A}=n(d,p,f,h);return{x:c.heatmapX*u+A,y:c.heatmapY*u+m}}e.getImageCoords=r;function a(c,u){let h=new Array(u);for(let d=0;d<u;d++)h[d]=c;return h}e.fillArray=a;function s(c,u,h){return c<u?u:c>h?h:c}e.clamp=s;function i(c,u,h,d){let p=h-c,f=d-u;return p*p+f*f}e.squaredDistance=i;function o(c,u){return{x:c.x+u.x,y:c.y+u.y}}e.addVectors=o;function l(c,u,h){return{y:s(c.y,u,h),x:s(c.x,u,h)}}e.clampVector=l}),Fv=ct(e=>{var t=We(Yl());function n(l,c){let u=c.shape[0],h=new Float32Array(u);for(let d=0;d<u;d++){let p=c.get(d,0),f=c.get(d,1);h[d]=l.get(p,f,d)}return h}e.getPointsConfidence=n;function r(l,c,u,h){return{y:h.get(l,c,u),x:h.get(l,c,u+t.NUM_KEYPOINTS)}}function a(l,c){let u=[];for(let h=0;h<t.NUM_KEYPOINTS;h++){let d=l.get(h,0).valueOf(),p=l.get(h,1).valueOf(),{x:f,y:m}=r(d,p,h,c);u.push(m),u.push(f)}return hr(u,[t.NUM_KEYPOINTS,2])}e.getOffsetVectors=a;function s(l,c,u){return H(()=>l.toTensor().mul(Te(c,"int32")).toFloat().add(a(l,u)))}e.getOffsetPoints=s;function i(l,c){return H(()=>{let u=l.div(Te(c,"int32"));return l.sub(u.mul(Te(c,"int32")))})}function o(l){let[c,u,h]=l.shape;return H(()=>{let d=l.reshape([c*u,h]).argMax(0),p=d.div(Te(u,"int32")).expandDims(1),f=i(d,u).expandDims(1);return dt([p,f],1)})}e.argmax2d=o}),Q2=ct(e=>{var t=We(Yl()),n=We(J2()),r=We(Fv()),a=t.poseChain.map(([d,p])=>[t.partIds[d],t.partIds[p]]),s=a.map(([,d])=>d),i=a.map(([d])=>d);function o(d,p,f){let m=f.shape[2]/2;return{y:f.get(p.y,p.x,d),x:f.get(p.y,p.x,m+d)}}function l(d,p,f,m){return{y:n.clamp(Math.round(d.y/p),0,f-1),x:n.clamp(Math.round(d.x/p),0,m-1)}}function c(d,p,f,m,A,y,g,w=2){let[x,_]=m.shape,b=l(p.position,y,x,_),S=o(d,b,g),T=n.addVectors(p.position,S);for(let $=0;$<w;$++){let D=l(T,y,x,_),O=n.getOffsetPoint(D.y,D.x,f,A);T=n.addVectors({x:D.x*y,y:D.y*y},{x:O.x,y:O.y})}let N=l(T,y,x,_),C=m.get(N.y,N.x,f);return{position:T,part:t.partNames[f],score:C}}function u(d,p,f,m,A,y){let g=p.shape[2],w=s.length,x=new Array(g),{part:_,score:b}=d,S=n.getImageCoords(_,m,f);x[_.id]={score:b,part:t.partNames[_.id],position:S};for(let T=w-1;T>=0;--T){let N=s[T],C=i[T];x[N]&&!x[C]&&(x[C]=c(T,x[N],C,p,f,m,y))}for(let T=0;T<w;++T){let N=i[T],C=s[T];x[N]&&!x[C]&&(x[C]=c(T,x[N],C,p,f,m,A))}return x}e.decodePose=u;async function h(d,p,f){let m=0,A=r.argmax2d(d),y=await Promise.all([d.buffer(),p.buffer(),A.buffer()]),g=y[0],w=y[1],x=y[2],_=r.getOffsetPoints(x,f.body.outputStride,w),b=await _.buffer(),S=Array.from(r.getPointsConfidence(g,x)).map((N,C)=>(m+=N,{position:{y:b.get(C,0),x:b.get(C,1)},part:t.partNames[C],score:N})),T=S.filter(N=>N.score>f.body.scoreThreshold);return A.dispose(),_.dispose(),{keypoints:T,score:m/S.length}}e.decodeSinglePose=h}),Mv=ct(e=>{var t=We(Rv()),n=We(Q2()),r=We(J2()),a=1;function s(l,c,{x:u,y:h},d){return l.some(({keypoints:p})=>{let f=p[d].position;return r.squaredDistance(h,u,f.y,f.x)<=c})}function i(l,c,u){return u.reduce((h,{position:d,score:p},f)=>(s(l,c,d,f)||(h+=p),h),0)/u.length}function o(l,c,u,h,d){let p=[],f=t.buildPartWithScoreQueue(d.body.scoreThreshold,a,l),m=d.body.nmsRadius^2;for(;p.length<d.body.maxDetections&&!f.empty();){let A=f.dequeue(),y=r.getImageCoords(A.part,d.body.outputStride,c);if(s(p,m,y,A.part.id))continue;let g=n.decodePose(A,l,c,d.body.outputStride,u,h),w=i(p,m,g);w>d.body.scoreThreshold&&p.push({keypoints:g,score:w})}return p}e.decodeMultiplePoses=o}),eg=ct(e=>{var t=We(Yl());function n(d,p,f){return d<f||p<f}function r(d,p){return t.connectedPartIndices.reduce((f,[m,A])=>(n(d[m].score,d[A].score,p)||f.push([d[m],d[A]]),f),[])}e.getAdjacentKeyPoints=r;var{NEGATIVE_INFINITY:a,POSITIVE_INFINITY:s}=Number;function i(d){return d.reduce(({maxX:p,maxY:f,minX:m,minY:A},{position:{x:y,y:g}})=>({maxX:Math.max(p,y),maxY:Math.max(f,g),minX:Math.min(m,y),minY:Math.min(A,g)}),{maxX:a,maxY:a,minX:s,minY:s})}e.getBoundingBox=i;function o(d){let{minX:p,minY:f,maxX:m,maxY:A}=i(d);return[{x:p,y:f},{x:m,y:f},{x:m,y:A},{x:p,y:A}]}e.getBoundingBoxPoints=o;async function l(d){return Promise.all(d.map(p=>p.buffer()))}e.toTensorBuffers3D=l;function c(d,p,f){return{score:d.score,keypoints:d.keypoints.map(({score:m,part:A,position:y})=>({score:m,part:A,position:{x:y.x*f,y:y.y*p}}))}}e.scalePose=c;function u(d,[p,f]){let m=d.squeeze(0),A=m.resizeBilinear([p,f]);return m.dispose(),A}e.resizeTo=u;function h(d,[p,f],[m,A]){return d.map(y=>c(y,p/m,f/A))}e.scaleAndFlipPoses=h}),$v=ct(e=>{var t=We(Ev()),n=We(Mv()),r=We(Q2()),a=We(eg());async function s(c,u,h){return new Promise(async d=>{let p=c.shape[1],f=c.shape[2],m=await a.toTensorBuffers3D([u.heatmapScores,u.offsets,u.displacementFwd,u.displacementBwd]),A=m[0],y=m[1],g=m[2],w=m[3],x=await n.decodeMultiplePoses(A,y,g,w,h),_=a.scaleAndFlipPoses(x,[p,f],[h.body.inputSize,h.body.inputSize]);d(_)})}async function i(c,u,h){return new Promise(async d=>{let p=c.shape[1],f=c.shape[2],m=[await r.decodeSinglePose(u.heatmapScores,u.offsets,h)],A=a.scaleAndFlipPoses(m,[p,f],[h.body.inputSize,h.body.inputSize]);d(A)})}var o=class{constructor(c){this.baseModel=c}async estimatePoses(c,u){let h=a.resizeTo(c,[u.body.inputSize,u.body.inputSize]),d=this.baseModel.predict(h,u),p=u.body.maxDetections<2?await i(c,d,u):await s(c,d,u);return d.heatmapScores.dispose(),d.offsets.dispose(),d.displacementFwd.dispose(),d.displacementBwd.dispose(),h.dispose(),p}dispose(){this.baseModel.dispose()}};e.PoseNet=o;async function l(c){let u=await dr(c.body.modelPath),h=new t.BaseModel(u);return Ye(`load model: ${c.body.modelPath.match(/\/(.*)\./)[1]}`),new o(h)}e.load=l}),Dv=ct(e=>{var t=We($v()),n=We(Yl()),r=We(eg());e.load=t.load,e.PoseNet=t.PoseNet,e.partChannels=n.partChannels,e.partIds=n.partIds,e.partNames=n.partNames,e.poseChain=n.poseChain,e.getAdjacentKeyPoints=r.getAdjacentKeyPoints,e.getBoundingBox=r.getBoundingBox,e.getBoundingBoxPoints=r.getBoundingBoxPoints,e.scaleAndFlipPoses=r.scaleAndFlipPoses,e.scalePose=r.scalePose}),zv=ct(e=>{var t=class{constructor(n,r,a){this.model=n,this.anchors=a.map(s=>[s.x_center,s.y_center]),this.anchorsTensor=hr(this.anchors),this.inputSizeTensor=Qt([r,r]),this.doubleInputSizeTensor=Qt([r*2,r*2])}normalizeBoxes(n){return H(()=>{let r=Fe(n,[0,0],[-1,2]),a=Fe(n,[0,2],[-1,2]),s=ie(Ne(r,this.inputSizeTensor),this.anchorsTensor),i=Ne(a,this.doubleInputSizeTensor),o=B(_e(s,i),this.inputSizeTensor),l=B(ie(s,i),this.inputSizeTensor);return Xl([o,l],1)})}normalizeLandmarks(n,r){return H(()=>{let a=ie(Ne(n.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[r]);return B(a,this.inputSizeTensor)})}async getBoxes(n,r){let a=this.model.predict(n),s=a.squeeze();a.dispose();let i=H(()=>Jn(Fe(s,[0,0],[-1,1])).squeeze()),o=i.dataSync(),l=Fe(s,[0,1],[-1,4]),c=this.normalizeBoxes(l);l.dispose();let u=await Mt.nonMaxSuppressionAsync(c,o,r.hand.maxHands,r.hand.iouThreshold,r.hand.scoreThreshold),h=u.arraySync();i.dispose(),u.dispose();let d=[];for(let p of h)if(o[p]>=r.hand.minConfidence){let f=Fe(c,[p,0],[1,-1]),m=Fe(s,[p,5],[1,14]),A=H(()=>this.normalizeLandmarks(m,p).reshape([-1,2]));m.dispose(),d.push({box:f,palmLandmarks:A,confidence:o[p]})}return s.dispose(),c.dispose(),d}async estimateHandBounds(n,r){let a=n.shape[1],s=n.shape[2],i=H(()=>n.resizeBilinear([r.hand.inputSize,r.hand.inputSize]).div(127.5).sub(1)),o=await this.getBoxes(i,r);i.dispose();let l=[];if(!o||o.length===0)return l;for(let c of o){let u=c.box.dataSync(),h=u.slice(0,2),d=u.slice(2,4),p=c.palmLandmarks.arraySync();c.box.dispose(),c.palmLandmarks.dispose(),l.push(Ov({startPoint:h,endPoint:d,palmLandmarks:p,confidence:c.confidence},[s/r.hand.inputSize,a/r.hand.inputSize]))}return l}};e.HandDetector=t}),Bv=ct(e=>{var t=5,n=1.65,r=[0,5,9,13,17,1,2],a=0,s=2,i=class{constructor(o,l,c){this.handDetector=o,this.landmarkDetector=l,this.inputSize=c,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}getBoxForPalmLandmarks(o,l){let c=o.map(h=>ng([...h,1],l)),u=this.calculateLandmarksBoundingBox(c);return pf(ff(u),t)}getBoxForHandLandmarks(o){let l=this.calculateLandmarksBoundingBox(o),c=pf(ff(l),n);c.palmLandmarks=[];for(let u=0;u<r.length;u++)c.palmLandmarks.push(o[r[u]].slice(0,2));return c}transformRawCoords(o,l,c,u){let h=df(l),d=[h[0]/this.inputSize,h[1]/this.inputSize,(h[0]+h[1])/this.inputSize/2],p=o.map(w=>[d[0]*(w[0]-this.inputSize/2),d[1]*(w[1]-this.inputSize/2),d[2]*w[2]]),f=tg(c,[0,0]),m=p.map(w=>[...ng(w,f),w[2]]),A=Wv(u),y=[...uh(l),1],g=[qa(y,A[0]),qa(y,A[1])];return m.map(w=>[w[0]+g[0],w[1]+g[1],w[2]])}async estimateHands(o,l){let c=!1,u;(this.skipped===0||this.skipped>l.hand.skipFrames||!l.hand.landmarks||!l.videoOptimized)&&(u=await this.handDetector.estimateHandBounds(o,l),this.skipped=0),l.videoOptimized&&this.skipped++,u&&u.length>0&&(u.length!==this.detectedHands&&this.detectedHands!==l.hand.maxHands||!l.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...u],this.storedBoxes.length>0&&(c=!0));let h=[];for(let d=0;d<this.storedBoxes.length;d++){let p=this.storedBoxes[d];if(p)if(l.hand.landmarks){let f=l.hand.rotation?Lv(p.palmLandmarks[a],p.palmLandmarks[s]):0,m=uh(p),A=[m[0]/o.shape[2],m[1]/o.shape[1]],y=l.hand.rotation?Mt.rotateWithOffset(o,f,0,A):o.clone(),g=tg(-f,m),w=c?this.getBoxForPalmLandmarks(p.palmLandmarks,g):p,x=Pv(w,y,[this.inputSize,this.inputSize]),_=x.div(255);x.dispose(),y.dispose();let[b,S]=await this.landmarkDetector.predict(_);_.dispose();let T=b.dataSync()[0];if(b.dispose(),T>=l.hand.minConfidence){let N=q(S,[-1,3]),C=N.arraySync();S.dispose(),N.dispose();let $=this.transformRawCoords(C,w,f,g),D=this.getBoxForHandLandmarks($);this.storedBoxes[d]=D;let O={landmarks:$,confidence:T,box:{topLeft:D.startPoint,bottomRight:D.endPoint}};h.push(O)}else this.storedBoxes[d]=null;S.dispose()}else{let f=pf(ff(p),n),m={confidence:p.confidence,box:{topLeft:f.startPoint,bottomRight:f.endPoint}};h.push(m)}}return this.storedBoxes=this.storedBoxes.filter(d=>d!==null),this.detectedHands=h.length,h}calculateLandmarksBoundingBox(o){let l=o.map(d=>d[0]),c=o.map(d=>d[1]),u=[Math.min(...l),Math.min(...c)],h=[Math.max(...l),Math.max(...c)];return{startPoint:u,endPoint:h}}};e.HandPipeline=i}),Vv=ct(e=>{e.anchors=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}]}),Uv=ct(e=>{var t=We(zv()),n=We(Bv()),r=We(Vv()),a={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},s=class{constructor(o){this.handPipeline=o}static getAnnotations(){return a}async estimateHands(o,l){let c=await this.handPipeline.estimateHands(o,l);if(!c)return[];let u=[];for(let h of c){let d={};if(h.landmarks)for(let f of Object.keys(a))d[f]=a[f].map(m=>h.landmarks[m]);let p=h.box?[Math.max(0,h.box.topLeft[0]),Math.max(0,h.box.topLeft[1]),Math.min(o.shape[2],h.box.bottomRight[0])-h.box.topLeft[0],Math.min(o.shape[1],h.box.bottomRight[1])-h.box.topLeft[1]]:0;u.push({confidence:h.confidence,box:p,landmarks:h.landmarks,annotations:d})}return u}};e.HandPose=s;async function i(o){let[l,c]=await Promise.all([o.hand.enabled?dr(o.hand.detector.modelPath,{fromTFHub:o.hand.detector.modelPath.includes("tfhub.dev")}):null,o.hand.landmarks?dr(o.hand.skeleton.modelPath,{fromTFHub:o.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),u=new t.HandDetector(l,o.hand.inputSize,r.anchors),h=new n.HandPipeline(u,c,o.hand.inputSize),d=new s(h);return o.hand.enabled&&Ye(`load model: ${o.hand.detector.modelPath.match(/\/(.*)\./)[1]}`),o.hand.landmarks&&Ye(`load model: ${o.hand.skeleton.modelPath.match(/\/(.*)\./)[1]}`),d}e.load=i}),Hv=ct(e=>{e.body=t=>{if(!t)return[];let n=[];for(let r=0;r<t.length;r++){let a=t[r].keypoints.find(c=>c.part==="leftWrist"),s=t[r].keypoints.find(c=>c.part==="rightWrist"),i=t[r].keypoints.find(c=>c.part==="nose");i&&a&&s&&a.position.y<i.position.y&&s.position.y<i.position.y?n.push({body:r,gesture:"i give up"}):i&&a&&a.position.y<i.position.y?n.push({body:r,gesture:"raise left hand"}):i&&s&&s.position.y<i.position.y&&n.push({body:r,gesture:"raise right hand"});let o=t[r].keypoints.find(c=>c.part==="leftShoulder"),l=t[r].keypoints.find(c=>c.part==="rightShoulder");o&&l&&n.push({body:r,gesture:`leaning ${o.position.y>l.position.y?"left":"right"}`})}return n},e.face=t=>{if(!t)return[];let n=[];for(let r=0;r<t.length;r++)if(t[r].mesh&&t[r].mesh.length>0){let a=t[r].mesh[35][2]-t[r].mesh[263][2];Math.abs(a)<10?n.push({face:r,gesture:"facing camera"}):n.push({face:r,gesture:`facing ${a<0?"right":"left"}`}),Math.abs(t[r].mesh[374][1]-t[r].mesh[386][1])/Math.abs(t[r].mesh[443][1]-t[r].mesh[450][1])<.2&&n.push({face:r,gesture:"blink left eye"}),Math.abs(t[r].mesh[145][1]-t[r].mesh[159][1])/Math.abs(t[r].mesh[223][1]-t[r].mesh[230][1])<.2&&n.push({face:r,gesture:"blink right eye"});let s=Math.min(100,500*Math.abs(t[r].mesh[13][1]-t[r].mesh[14][1])/Math.abs(t[r].mesh[10][1]-t[r].mesh[152][1]));s>10&&n.push({face:r,gesture:`mouth ${Math.trunc(s)}% open`});let i=t[r].mesh[152][2];Math.abs(i)>10&&n.push({face:r,gesture:`head ${i<0?"up":"down"}`})}return n},e.iris=t=>{if(!t)return[];let n=[];for(let r=0;r<t.length;r++){if(!t[r].annotations||!t[r].annotations.leftEyeIris||!t[r].annotations.rightEyeIris)continue;let a=t[r].annotations.leftEyeIris[3][0]-t[r].annotations.leftEyeIris[1][0],s=t[r].annotations.leftEyeIris[4][1]-t[r].annotations.leftEyeIris[2][1],i=Math.abs(a*s),o=t[r].annotations.rightEyeIris[3][0]-t[r].annotations.rightEyeIris[1][0],l=t[r].annotations.rightEyeIris[4][1]-t[r].annotations.rightEyeIris[2][1],c=Math.abs(o*l);Math.abs(i-c)/Math.max(i,c)<.25&&n.push({iris:r,gesture:"looking at camera"})}return n},e.hand=t=>{if(!t)return[];let n=[];for(let r=0;r<t.length;r++){let a=[];for(let[s,i]of Object.entries(t[r].annotations))s!=="palmBase"&&a.push({name:s.toLowerCase(),position:i[0]});if(a&&a.length>0){let s=a.reduce((o,l)=>o.position[2]<l.position[2]?o:l),i=a.reduce((o,l)=>o.position[1]<l.position[1]?o:l);n.push({hand:r,gesture:`${s.name} forward ${i.name} up`})}}return n}}),jv=ct(e=>{var t=function(r,a,s){let i=function(u,h,d){let p=new RegExp("\\b"+h+" \\w+ (\\w+)","ig");u.replace(p,(f,m)=>(d[m]=0,f))},o=function(u,h){let d=r.createShader(h);if(r.shaderSource(d,u),r.compileShader(d),!r.getShaderParameter(d,r.COMPILE_STATUS))throw new Error("Filter: GL compile failed",r.getShaderInfoLog(d));return d};this.uniform={},this.attribute={};let l=o(a,r.VERTEX_SHADER),c=o(s,r.FRAGMENT_SHADER);if(this.id=r.createProgram(),r.attachShader(this.id,l),r.attachShader(this.id,c),r.linkProgram(this.id),!r.getProgramParameter(this.id,r.LINK_STATUS))throw new Error("Filter: GL link failed",r.getProgramInfoLog(this.id));r.useProgram(this.id),i(a,"attribute",this.attribute);for(let u in this.attribute)this.attribute[u]=r.getAttribLocation(this.id,u);i(a,"uniform",this.uniform),i(s,"uniform",this.uniform);for(let u in this.uniform)this.uniform[u]=r.getUniformLocation(this.id,u)},n=function(r){r||(r={});let a=0,s=null,i=!1,o=-1,l=[null,null],c=[],u=-1,h=-1,d=null,p=null,f=r.canvas||document.createElement("canvas"),m={},A=f.getContext("webgl");if(!A)throw new Error("Filter: getContext() failed");this.addFilter=function(N){let C=Array.prototype.slice.call(arguments,1),$=T[N];c.push({func:$,args:C})},this.reset=function(){c=[]},this.apply=function(N){if(y(N.width,N.height),a=0,s||(s=A.createTexture()),A.bindTexture(A.TEXTURE_2D,s),A.texParameteri(A.TEXTURE_2D,A.TEXTURE_WRAP_S,A.CLAMP_TO_EDGE),A.texParameteri(A.TEXTURE_2D,A.TEXTURE_WRAP_T,A.CLAMP_TO_EDGE),A.texParameteri(A.TEXTURE_2D,A.TEXTURE_MIN_FILTER,A.NEAREST),A.texParameteri(A.TEXTURE_2D,A.TEXTURE_MAG_FILTER,A.NEAREST),A.texImage2D(A.TEXTURE_2D,0,A.RGBA,A.RGBA,A.UNSIGNED_BYTE,N),c.length===0)return x(),f;for(let C=0;C<c.length;C++){i=C===c.length-1;let $=c[C];$.func.apply(this,$.args||[])}return f};let y=function(N,C){if(!(N===u&&C===h)){if(f.width=N,u=N,f.height=C,h=C,!d){let $=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);d=A.createBuffer(),A.bindBuffer(A.ARRAY_BUFFER,d),A.bufferData(A.ARRAY_BUFFER,$,A.STATIC_DRAW),A.pixelStorei(A.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}A.viewport(0,0,u,h),l=[null,null]}},g=function(N){return l[N]=l[N]||w(u,h),l[N]},w=function(N,C){let $=A.createFramebuffer();A.bindFramebuffer(A.FRAMEBUFFER,$);let D=A.createRenderbuffer();A.bindRenderbuffer(A.RENDERBUFFER,D);let O=A.createTexture();return A.bindTexture(A.TEXTURE_2D,O),A.texImage2D(A.TEXTURE_2D,0,A.RGBA,N,C,0,A.RGBA,A.UNSIGNED_BYTE,null),A.texParameteri(A.TEXTURE_2D,A.TEXTURE_MAG_FILTER,A.LINEAR),A.texParameteri(A.TEXTURE_2D,A.TEXTURE_MIN_FILTER,A.LINEAR),A.texParameteri(A.TEXTURE_2D,A.TEXTURE_WRAP_S,A.CLAMP_TO_EDGE),A.texParameteri(A.TEXTURE_2D,A.TEXTURE_WRAP_T,A.CLAMP_TO_EDGE),A.framebufferTexture2D(A.FRAMEBUFFER,A.COLOR_ATTACHMENT0,A.TEXTURE_2D,O,0),A.bindTexture(A.TEXTURE_2D,null),A.bindFramebuffer(A.FRAMEBUFFER,null),{fbo:$,texture:O}},x=function(N){var C,$;let D=null,O=null,V=!1;a===0?D=s:D=(C=g(o))==null?void 0:C.texture,a++,i&&!(N&b.INTERMEDIATE)?(O=null,V=a%2==0):(o=(o+1)%2,O=($=g(o))==null?void 0:$.fbo),A.bindTexture(A.TEXTURE_2D,D),A.bindFramebuffer(A.FRAMEBUFFER,O),A.uniform1f(p.uniform.flipY,V?-1:1),A.drawArrays(A.TRIANGLES,0,6)},_=function(N){if(m[N])return p=m[N],A.useProgram(p.id),p;p=new t(A,S.VERTEX_IDENTITY,N);let C=Float32Array.BYTES_PER_ELEMENT,$=4*C;return A.enableVertexAttribArray(p.attribute.pos),A.vertexAttribPointer(p.attribute.pos,2,A.FLOAT,!1,$,0*C),A.enableVertexAttribArray(p.attribute.uv),A.vertexAttribPointer(p.attribute.uv,2,A.FLOAT,!1,$,2*C),m[N]=p,p},b={INTERMEDIATE:1},S={};S.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
`),S.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
`);let T={};T.colorMatrix=function(N){let C=new Float32Array(N);C[4]/=255,C[9]/=255,C[14]/=255,C[19]/=255;let $=C[18]===1&&C[3]===0&&C[8]===0&&C[13]===0&&C[15]===0&&C[16]===0&&C[17]===0&&C[19]===0?T.colorMatrix.SHADER.WITHOUT_ALPHA:T.colorMatrix.SHADER.WITH_ALPHA,D=_($);A.uniform1fv(D.uniform.m,C),x()},T.colorMatrix.SHADER={},T.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
`),T.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
`),T.brightness=function(N){let C=(N||0)+1;T.colorMatrix([C,0,0,0,0,0,C,0,0,0,0,0,C,0,0,0,0,0,1,0])},T.saturation=function(N){let C=(N||0)*2/3+1,$=(C-1)*-.5;T.colorMatrix([C,$,$,0,0,$,C,$,0,0,$,$,C,0,0,0,0,0,1,0])},T.desaturate=function(){T.saturation(-1)},T.contrast=function(N){let C=(N||0)+1,$=-128*(C-1);T.colorMatrix([C,0,0,0,$,0,C,0,0,$,0,0,C,0,$,0,0,0,1,0])},T.negative=function(){T.contrast(-2)},T.hue=function(N){N=(N||0)/180*Math.PI;let C=Math.cos(N),$=Math.sin(N),D=.213,O=.715,V=.072;T.colorMatrix([D+C*(1-D)+$*-D,O+C*-O+$*-O,V+C*-V+$*(1-V),0,0,D+C*-D+$*.143,O+C*(1-O)+$*.14,V+C*-V+$*-.283,0,0,D+C*-D+$*-(1-D),O+C*-O+$*O,V+C*(1-V)+$*V,0,0,0,0,0,1,0])},T.desaturateLuminance=function(){T.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},T.sepia=function(){T.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},T.brownie=function(){T.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},T.vintagePinhole=function(){T.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},T.kodachrome=function(){T.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},T.technicolor=function(){T.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},T.polaroid=function(){T.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},T.shiftToBGR=function(){T.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},T.convolution=function(N){let C=new Float32Array(N),$=1/u,D=1/h,O=_(T.convolution.SHADER);A.uniform1fv(O.uniform.m,C),A.uniform2f(O.uniform.px,$,D),x()},T.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
`),T.detectEdges=function(){T.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},T.sobelX=function(){T.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},T.sobelY=function(){T.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},T.sharpen=function(N){let C=N||1;T.convolution.call(this,[0,-1*C,0,-1*C,1+4*C,-1*C,0,-1*C,0])},T.emboss=function(N){let C=N||1;T.convolution.call(this,[-2*C,-1*C,0,-1*C,1,1*C,0,1*C,2*C])},T.blur=function(N){let C=N/7/u,$=N/7/h,D=_(T.blur.SHADER);A.uniform2f(D.uniform.px,0,$),x(b.INTERMEDIATE),A.uniform2f(D.uniform.px,C,0),x()},T.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
`),T.pixelate=function(N){let C=N/u,$=N/h,D=_(T.pixelate.SHADER);A.uniform2f(D.uniform.size,C,$),x()},T.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
`)};e.Canvas=n}),Gv=ct(e=>{var t=We(jv()),n=null,r=null;function a(s,i){let o;if(s instanceof tt)o=Nr(s);else{let l=s.naturalWidth||s.videoWidth||s.width||s.shape&&s.shape[1]>0,c=s.naturalHeight||s.videoHeight||s.height||s.shape&&s.shape[2]>0,u=l,h=c;if(i.filter.width>0?u=i.filter.width:i.filter.height>0&&(u=l*(i.filter.height/c)),i.filter.height>0?h=i.filter.height:i.filter.width>0&&(h=c*(i.filter.width/l)),!u||!h)return Ye("Human: invalid input",s),null;(!n||n.width!==u||n.height!==h)&&(n=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(u,h):document.createElement("canvas"),n.width!==u&&(n.width=u),n.height!==h&&(n.height=h));let d=n.getContext("2d");if(s instanceof ImageData?d.putImageData(s,0,0):d.drawImage(s,0,0,l,c,0,0,n.width,n.height),i.filter.enabled){if((!this.fx||!r||n.width!==r.width||n.height!==r.height)&&(r=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n.width,n.height):document.createElement("canvas"),r.width!==n.width&&(r.width=n.width),r.height!==n.height&&(r.height=n.height),this.fx=bn.flags.IS_BROWSER?new t.Canvas({canvas:r}):null),!this.fx)return n;this.fx.reset(),this.fx.addFilter("brightness",i.filter.brightness),i.filter.contrast!==0&&this.fx.addFilter("contrast",i.filter.contrast),i.filter.sharpness!==0&&this.fx.addFilter("sharpen",i.filter.sharpness),i.filter.blur!==0&&this.fx.addFilter("blur",i.filter.blur),i.filter.saturation!==0&&this.fx.addFilter("saturation",i.filter.saturation),i.filter.hue!==0&&this.fx.addFilter("hue",i.filter.hue),i.filter.negative&&this.fx.addFilter("negative"),i.filter.sepia&&this.fx.addFilter("sepia"),i.filter.vintage&&this.fx.addFilter("brownie"),i.filter.sepia&&this.fx.addFilter("sepia"),i.filter.kodachrome&&this.fx.addFilter("kodachrome"),i.filter.technicolor&&this.fx.addFilter("technicolor"),i.filter.polaroid&&this.fx.addFilter("polaroid"),i.filter.pixelate!==0&&this.fx.addFilter("pixelate",i.filter.pixelate),this.fx.apply(n)}else r=n;let p;if(r.data){let m=[r.height,r.width,3];p=mf(r.data,m,"int32")}else if(i.backend==="webgl"||r instanceof ImageData)p=Jl.fromPixels(r);else{let m=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(u,h):document.createElement("canvas");m.width=u,m.height=h;let A=m.getContext("2d");A==null||A.drawImage(r,0,0);let y=A==null?void 0:A.getImageData(0,0,u,h);p=Jl.fromPixels(y)}let f=p.toFloat();o=f.expandDims(0),p.dispose(),f.dispose()}return{tensor:o,canvas:i.filter.return?r:null}}e.process=a});function Ye(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var rg={};Z2(rg,{Abs:()=>Mi,Acos:()=>$i,Acosh:()=>Di,AdadeltaOptimizer:()=>xd,AdagradOptimizer:()=>wd,AdamOptimizer:()=>_d,AdamaxOptimizer:()=>bd,Add:()=>da,AddN:()=>Xa,All:()=>hh,Any:()=>dh,ArgMax:()=>Ka,ArgMin:()=>eu,Asin:()=>Oi,Asinh:()=>zi,Atan:()=>Pi,Atan2:()=>Wi,Atanh:()=>Li,AvgPool:()=>Za,AvgPool3D:()=>tu,AvgPool3DGrad:()=>fh,AvgPoolGrad:()=>ph,BackendWasm:()=>Zg,BatchMatMul:()=>Ya,BatchToSpaceND:()=>nu,Bincount:()=>mh,BroadcastTo:()=>sg,Callback:()=>c0,CallbackList:()=>r0,Cast:()=>Ja,Ceil:()=>Bi,ClipByValue:()=>pa,Complex:()=>Ah,ComplexAbs:()=>ru,Concat:()=>Vi,Conv2D:()=>Qa,Conv2DBackpropFilter:()=>yh,Conv2DBackpropInput:()=>es,Conv3D:()=>au,Conv3DBackpropFilterV2:()=>gh,Conv3DBackpropInputV2:()=>xh,Cos:()=>ts,Cosh:()=>Ui,CropAndResize:()=>Hi,Cumsum:()=>ns,CustomCallback:()=>s0,DataStorage:()=>ch,DenseBincount:()=>wh,DepthToSpace:()=>ji,DepthwiseConv2dNative:()=>rs,DepthwiseConv2dNativeBackpropFilter:()=>_h,DepthwiseConv2dNativeBackpropInput:()=>bh,Diag:()=>vh,Dilation2D:()=>su,Dilation2DBackpropFilter:()=>Ih,Dilation2DBackpropInput:()=>kh,ENV:()=>bn,EarlyStopping:()=>h0,Elu:()=>Gi,EluGrad:()=>Nh,Environment:()=>ag,Equal:()=>Xi,Erf:()=>qi,Exp:()=>ss,ExpandDims:()=>Ki,Expm1:()=>Zi,FFT:()=>Th,Fill:()=>iu,FlipLeftRight:()=>Yi,Floor:()=>is,FloorDiv:()=>os,FromPixels:()=>Bh,FusedBatchNorm:()=>ls,FusedConv2D:()=>Ls,FusedDepthwiseConv2D:()=>Ws,GPGPUContext:()=>am,GatherNd:()=>Qi,GatherV2:()=>Ji,GraphModel:()=>d0,Greater:()=>eo,GreaterEqual:()=>us,History:()=>a0,IFFT:()=>Sh,Identity:()=>to,Imag:()=>Eh,InputSpec:()=>Ut,IsFinite:()=>no,IsInf:()=>ro,IsNan:()=>ao,KernelBackend:()=>Ql,LRN:()=>uu,LRNGrad:()=>Rh,LayerVariable:()=>n0,LayersModel:()=>Qr,LeakyRelu:()=>cs,Less:()=>so,LessEqual:()=>io,LinSpace:()=>Ch,Log:()=>hs,Log1p:()=>oo,LogSoftmax:()=>ig,LogicalAnd:()=>lo,LogicalNot:()=>ou,LogicalOr:()=>lu,MathBackendCPU:()=>Hg,MathBackendWebGL:()=>sm,Max:()=>ds,MaxPool:()=>fs,MaxPool3D:()=>cu,MaxPool3DGrad:()=>Mh,MaxPoolGrad:()=>Fh,MaxPoolWithArgmax:()=>$h,Maximum:()=>ps,Mean:()=>ms,Min:()=>As,Minimum:()=>ys,MirrorPad:()=>hu,Mod:()=>uo,MomentumOptimizer:()=>vd,Multinomial:()=>Dh,Multiply:()=>gs,Neg:()=>co,NonMaxSuppressionV3:()=>po,NonMaxSuppressionV4:()=>fo,NonMaxSuppressionV5:()=>mo,NotEqual:()=>ho,OP_SCOPE_SUFFIX:()=>lg,OneHot:()=>xs,OnesLike:()=>Ao,Optimizer:()=>Jr,Pack:()=>yo,PadV2:()=>ws,Pool:()=>qv,Pow:()=>_s,Prelu:()=>bs,Prod:()=>go,RMSPropOptimizer:()=>kd,RNN:()=>Fr,Range:()=>du,Rank:()=>yf,Real:()=>Oh,RealDiv:()=>as,Reciprocal:()=>xo,Reduction:()=>sn,Relu:()=>vs,Relu6:()=>Is,Reshape:()=>wo,ResizeBilinear:()=>ks,ResizeBilinearGrad:()=>Ph,ResizeNearestNeighbor:()=>pu,ResizeNearestNeighborGrad:()=>zh,Reverse:()=>Ns,RotateWithOffset:()=>$o,Round:()=>Ts,Rsqrt:()=>Ss,SGDOptimizer:()=>zu,ScatterNd:()=>_o,Select:()=>bo,Selu:()=>vo,Sequential:()=>qo,Sigmoid:()=>Cs,Sign:()=>No,Sin:()=>Es,Sinh:()=>Io,Slice:()=>ko,Softmax:()=>Ms,Softplus:()=>To,SpaceToBatchND:()=>fu,SparseToDense:()=>Lh,SplitV:()=>So,Sqrt:()=>Rs,Square:()=>mu,SquaredDifference:()=>$s,Step:()=>ma,StridedSlice:()=>Eo,Sub:()=>Ds,Sum:()=>Fs,SymbolicTensor:()=>mr,Tan:()=>Co,Tanh:()=>Os,Tensor:()=>tt,TensorBuffer:()=>$t,Tile:()=>fa,TopK:()=>Ro,Transpose:()=>zs,Unique:()=>Wh,Unpack:()=>Fo,UnsortedSegmentSum:()=>Au,Variable:()=>gu,ZerosLike:()=>Mo,_FusedMatMul:()=>Ps,abs:()=>Dt,acos:()=>bf,acosh:()=>vf,add:()=>ie,addN:()=>lh,all:()=>Xh,any:()=>wu,argMax:()=>_u,argMin:()=>kf,asin:()=>If,asinh:()=>Nf,atan:()=>Tf,atan2:()=>Sf,atanh:()=>Ef,avgPool:()=>bu,avgPool3d:()=>Cf,backend:()=>_f,backend_util:()=>R,basicLSTMCell:()=>a4,batchNorm:()=>Bs,batchNorm2d:()=>yg,batchNorm3d:()=>gg,batchNorm4d:()=>xg,batchToSpaceND:()=>vu,bincount:()=>wg,booleanMaskAsync:()=>N4,broadcastTo:()=>ku,browser:()=>Jl,buffer:()=>Ve,callbacks:()=>P4,cast:()=>ye,ceil:()=>Rf,clipByValue:()=>pn,clone:()=>Nr,complex:()=>Aa,concat:()=>dt,concat1d:()=>_g,concat2d:()=>Xl,concat3d:()=>bg,concat4d:()=>vg,constraints:()=>Qg,conv1d:()=>Kh,conv2d:()=>Kr,conv2dTranspose:()=>Zh,conv3d:()=>Ff,conv3dTranspose:()=>s4,copyRegisteredKernels:()=>Zv,cos:()=>Iu,cosh:()=>Yh,cosineWindow:()=>tm,cumsum:()=>Jh,customGrad:()=>Tr,data:()=>p0,denseBincount:()=>kg,deprecationWarn:()=>wf,depthToSpace:()=>Mf,depthwiseConv2d:()=>Po,deregisterOp:()=>W4,device_util:()=>Hh,diag:()=>i4,dilation2d:()=>$f,disableDeprecationWarnings:()=>Jv,dispose:()=>Me,disposeVariables:()=>Qv,div:()=>Ne,divNoNan:()=>Df,dot:()=>Ig,dropout:()=>Bg,elu:()=>Lo,enableDebugMode:()=>Yv,enableProdMode:()=>pg,enclosingPowerOfTwo:()=>Vg,engine:()=>Ln,env:()=>Q,equal:()=>ya,erf:()=>Of,exp:()=>Wn,expandDims:()=>vn,expm1:()=>zf,eye:()=>Pf,fft:()=>Du,fill:()=>Nu,findBackend:()=>Ag,findBackendFactory:()=>n4,floor:()=>Wo,floorDiv:()=>qh,forceHalfFloat:()=>Kg,fused:()=>_a,gather:()=>Vs,gatherND:()=>Wg,gather_util:()=>gf,getBackend:()=>Gh,getGradient:()=>Af,getKernel:()=>Vh,getKernelsForBackend:()=>yu,gpgpu_util:()=>qg,grad:()=>o4,grads:()=>l4,greater:()=>er,greaterEqual:()=>xa,ifft:()=>jo,imag:()=>Qh,image:()=>Mt,inTopKAsync:()=>S4,initializers:()=>e0,input:()=>i0,io:()=>dn,irfft:()=>fd,isFinite:()=>Ng,isInf:()=>Tg,isNaN:()=>Sg,keep:()=>Vt,kernel_impls:()=>Rr,layers:()=>t0,leakyRelu:()=>Tu,less:()=>ed,lessEqual:()=>Us,linalg:()=>Ug,linspace:()=>Eg,loadGraphModel:()=>dr,loadLayersModel:()=>O4,localResponseNormalization:()=>Lf,log:()=>kn,log1p:()=>td,logSigmoid:()=>Rg,logSoftmax:()=>nd,logSumExp:()=>Wf,logicalAnd:()=>tr,logicalNot:()=>Su,logicalOr:()=>rd,logicalXor:()=>Fg,losses:()=>R4,matMul:()=>Xe,math:()=>cg,max:()=>Bn,maxPool:()=>Eu,maxPool3d:()=>Bf,maxPoolWithArgmax:()=>Mg,maximum:()=>Sr,mean:()=>kt,memory:()=>jh,metrics:()=>o0,min:()=>Vo,minimum:()=>Uo,mirrorPad:()=>Vf,mod:()=>Uf,model:()=>$4,models:()=>l0,moments:()=>ad,movingAverage:()=>T4,mul:()=>B,multiRNNCell:()=>h4,multinomial:()=>$g,neg:()=>vt,nextFrame:()=>Id,norm:()=>gd,notEqual:()=>Hs,oneHot:()=>Oo,ones:()=>Er,onesLike:()=>In,op:()=>L,outerProduct:()=>d4,pad:()=>Zr,pad1d:()=>p4,pad2d:()=>f4,pad3d:()=>m4,pad4d:()=>A4,pool:()=>Dg,pow:()=>Yr,prelu:()=>Ru,print:()=>ug,prod:()=>sd,profile:()=>Zl,rand:()=>y4,randomGamma:()=>g4,randomNormal:()=>Og,randomUniform:()=>Ho,range:()=>id,ready:()=>mg,real:()=>Fu,reciprocal:()=>Hf,registerBackend:()=>xu,registerCallbackConstructor:()=>z4,registerGradient:()=>og,registerKernel:()=>Do,registerOp:()=>L4,regularizers:()=>u0,relu:()=>Cr,relu6:()=>od,removeBackend:()=>t4,reshape:()=>q,reverse:()=>Nn,reverse1d:()=>x4,reverse2d:()=>w4,reverse3d:()=>_4,reverse4d:()=>b4,rfft:()=>Ou,round:()=>jf,rsqrt:()=>ld,scalar:()=>Te,scatterND:()=>Lg,scatter_util:()=>xf,selu:()=>ud,separableConv2d:()=>Gf,sequential:()=>D4,serialization:()=>re,setBackend:()=>fg,setPlatform:()=>r4,setWasmPath:()=>M4,setWasmPaths:()=>Yg,setWebGLContext:()=>rm,setdiff1dAsync:()=>zg,shared:()=>nm,sigmoid:()=>Jn,sign:()=>qf,signal:()=>C4,sin:()=>cd,sinh:()=>hd,slice:()=>Fe,slice1d:()=>dd,slice2d:()=>Xf,slice3d:()=>pd,slice4d:()=>Mu,slice_util:()=>an,softmax:()=>$u,softplus:()=>Bo,spaceToBatchND:()=>Cu,sparseToDense:()=>em,spectral:()=>E4,split:()=>rn,sqrt:()=>Kt,square:()=>ht,squaredDifference:()=>md,squeeze:()=>wa,stack:()=>Tn,step:()=>Go,stridedSlice:()=>Kf,sub:()=>_e,sum:()=>Ee,sumOutType:()=>Uh,tan:()=>Zf,tanh:()=>zo,tensor:()=>fr,tensor1d:()=>Qt,tensor2d:()=>hr,tensor3d:()=>mf,tensor4d:()=>v4,tensor5d:()=>k4,tensor6d:()=>I4,tensor_util:()=>pr,test_util:()=>hg,tidy:()=>H,tile:()=>ga,time:()=>e4,topk:()=>Yf,train:()=>js,transpose:()=>it,truncatedNormal:()=>Ad,unique:()=>yd,unregisterGradient:()=>Kv,unregisterKernel:()=>Xv,unsortedSegmentSum:()=>Jf,unstack:()=>nr,upcastType:()=>Qn,util:()=>k,valueAndGrad:()=>u4,valueAndGrads:()=>c4,variable:()=>Pg,variableGrads:()=>Cg,version:()=>V4,version_converter:()=>B4,version_core:()=>dg,version_cpu:()=>jg,version_layers:()=>im,version_wasm:()=>Jg,version_webgl:()=>Xg,webgl:()=>F4,webgl_util:()=>Gg,where:()=>fn,whereAsync:()=>Qf,zeros:()=>Ct,zerosLike:()=>Ge});var U4=Object.create,Nd=Object.defineProperty,H4=Object.getPrototypeOf,j4=Object.prototype.hasOwnProperty,G4=Object.getOwnPropertyNames,q4=Object.getOwnPropertyDescriptor,f0=e=>Nd(e,"__esModule",{value:!0}),at=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),ze=(e,t)=>{f0(e);for(var n in t)Nd(e,n,{get:t[n],enumerable:!0})},X4=(e,t,n)=>{if(f0(e),t&&typeof t=="object"||typeof t=="function")for(let r of G4(t))!j4.call(e,r)&&r!=="default"&&Nd(e,r,{get:()=>t[r],enumerable:!(n=q4(t,r))||n.enumerable});return e},Xo=e=>e&&e.__esModule?e:X4(Nd(e!=null?U4(H4(e)):{},"default",{value:e,enumerable:!0}),e),K4=at(()=>{}),Z4=at((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=h.toString();for(var d=0;d<h.length;d++){c+=h.charCodeAt(d);var p=.02519603282416938*c;c=p>>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Y4=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),J4=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,h==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Q4=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,c.i=d+1&7,f};function u(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),e8=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,f,m;return c.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,c.i=p,m+(h^h>>>16)|0};function u(h,d){var p,f,m,A,y,g=[],w=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,w=Math.max(w,d.length)),m=0,A=-32;A<w;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),t8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,f=c.d,m=c.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-f|0,c.d=f<<16^p>>>16^m,c.a=m-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h<u.length+20;h++)c.b^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),om=at(()=>{}),n8=at((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),h=u*2,d=s-1,p;function f(_,b,S){var T=[];b=b==!0?{entropy:!0}:b||{};var N=g(y(b.entropy?[_,x(n)]:_==null?w():_,3),T),C=new m(T),$=function(){for(var D=C.g(i),O=c,V=0;D<u;)D=(D+V)*s,O*=s,V=C.g(1);for(;D>=h;)D/=2,O/=2,V>>>=1;return(D+V)/O};return $.int32=function(){return C.g(4)|0},$.quick=function(){return C.g(4)/4294967296},$.double=$,g(x(C.S),n),(b.pass||S||function(D,O,V,W){return W&&(W.S&&A(W,C),D.state=function(){return A(C,{})}),V?(r[l]=D,O):D})($,N,"global"in b?b.global:this==r,b.state)}r["seed"+l]=f;function m(_){var b,S=_.length,T=this,N=0,C=T.i=T.j=0,$=T.S=[];for(S||(_=[S++]);N<s;)$[N]=N++;for(N=0;N<s;N++)$[N]=$[C=d&C+_[N%S]+(b=$[N])],$[C]=b;(T.g=function(D){for(var O,V=0,W=T.i,K=T.j,X=T.S;D--;)O=X[W=d&W+1],V=V*s+X[d&(X[W]=X[K=d&K+O])+(X[K]=O)];return T.i=W,T.j=K,V})(s)}function A(_,b){return b.i=_.i,b.j=_.j,b.S=_.S.slice(),b}function y(_,b){var S=[],T=typeof _,N;if(b&&T=="object")for(N in _)try{S.push(y(_[N],b-1))}catch(C){}return S.length?S:T=="string"?_:_+"\0"}function g(_,b){for(var S=_+"",T,N=0;N<S.length;)b[d&N]=d&(T^=b[d&N]*19)+S.charCodeAt(N++);return x(b)}function w(){try{var _;return p&&(_=p.randomBytes)?_=_(s):(_=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(_)),x(_)}catch(T){var b=a.navigator,S=b&&b.plugins;return[+new Date,a,S,a.screen,x(n)]}}function x(_){return String.fromCharCode.apply(0,_)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{p=om()}catch(_){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}),r8=at((e,t)=>{var n=Z4(),r=Y4(),a=J4(),s=Q4(),i=e8(),o=t8(),l=n8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),a8=at((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=h.toString();for(var d=0;d<h.length;d++){c+=h.charCodeAt(d);var p=.02519603282416938*c;c=p>>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),s8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),i8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,h==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),o8=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,c.i=d+1&7,f};function u(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),l8=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,f,m;return c.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,c.i=p,m+(h^h>>>16)|0};function u(h,d){var p,f,m,A,y,g=[],w=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,w=Math.max(w,d.length)),m=0,A=-32;A<w;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),u8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,f=c.d,m=c.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-f|0,c.d=f<<16^p>>>16^m,c.a=m-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h<u.length+20;h++)c.b^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),c8=at((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),h=u*2,d=s-1,p;function f(_,b,S){var T=[];b=b==!0?{entropy:!0}:b||{};var N=g(y(b.entropy?[_,x(n)]:_==null?w():_,3),T),C=new m(T),$=function(){for(var D=C.g(i),O=c,V=0;D<u;)D=(D+V)*s,O*=s,V=C.g(1);for(;D>=h;)D/=2,O/=2,V>>>=1;return(D+V)/O};return $.int32=function(){return C.g(4)|0},$.quick=function(){return C.g(4)/4294967296},$.double=$,g(x(C.S),n),(b.pass||S||function(D,O,V,W){return W&&(W.S&&A(W,C),D.state=function(){return A(C,{})}),V?(r[l]=D,O):D})($,N,"global"in b?b.global:this==r,b.state)}r["seed"+l]=f;function m(_){var b,S=_.length,T=this,N=0,C=T.i=T.j=0,$=T.S=[];for(S||(_=[S++]);N<s;)$[N]=N++;for(N=0;N<s;N++)$[N]=$[C=d&C+_[N%S]+(b=$[N])],$[C]=b;(T.g=function(D){for(var O,V=0,W=T.i,K=T.j,X=T.S;D--;)O=X[W=d&W+1],V=V*s+X[d&(X[W]=X[K=d&K+O])+(X[K]=O)];return T.i=W,T.j=K,V})(s)}function A(_,b){return b.i=_.i,b.j=_.j,b.S=_.S.slice(),b}function y(_,b){var S=[],T=typeof _,N;if(b&&T=="object")for(N in _)try{S.push(y(_[N],b-1))}catch(C){}return S.length?S:T=="string"?_:_+"\0"}function g(_,b){for(var S=_+"",T,N=0;N<S.length;)b[d&N]=d&(T^=b[d&N]*19)+S.charCodeAt(N++);return x(b)}function w(){try{var _;return p&&(_=p.randomBytes)?_=_(s):(_=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(_)),x(_)}catch(T){var b=a.navigator,S=b&&b.plugins;return[+new Date,a,S,a.screen,x(n)]}}function x(_){return String.fromCharCode.apply(0,_)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{p=om()}catch(_){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}),h8=at((e,t)=>{var n=a8(),r=s8(),a=i8(),s=o8(),i=l8(),o=u8(),l=c8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Pu=at(()=>{}),d8=at(()=>{}),p8=at(()=>{}),f8=at((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return J.buffer!=et&&_n(J.buffer),xn}function i(){return J.buffer!=et&&_n(J.buffer),Xt}function o(){return J.buffer!=et&&_n(J.buffer),hn}function l(){return J.buffer!=et&&_n(J.buffer),nn}function c(){return J.buffer!=et&&_n(J.buffer),kr}var u=typeof a!="undefined"?a:{},h={},d;for(d in u)u.hasOwnProperty(d)&&(h[d]=u[d]);var p=[],f="./this.program",m=function(v,E){throw E},A=!1,y=!1,g=!1,w=!1;A=typeof window=="object",y=typeof importScripts=="function",g=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",w=!A&&!g&&!y;var x=u.ENVIRONMENT_IS_PTHREAD||!1;x&&(et=u.buffer,Kn=u.DYNAMIC_BASE,cr=u.DYNAMICTOP_PTR);var _="";function b(v){return u.locateFile?u.locateFile(v,_):_+v}var S,T,N,C,$,D;if(g){y?_=Pu().dirname(_)+"/":_=__dirname+"/",S=function(v,E){return $||($=require("fs")),D||(D=Pu()),v=D.normalize(v),$.readFileSync(v,E?null:"utf8")},N=function(v){var E=S(v,!0);return E.buffer||(E=new Uint8Array(E)),we(E.buffer),E},process.argv.length>1&&(f=process.argv[1].replace(/\\/g,"/")),p=process.argv.slice(2),process.on("uncaughtException",function(v){if(!(v instanceof q2))throw v}),process.on("unhandledRejection",Gr),m=function(v){process.exit(v)},u.inspect=function(){return"[Emscripten Module object]"};var O;try{O=d8()}catch(v){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),v}Worker=O.Worker}else w?(typeof read!="undefined"&&(S=function(v){return read(v)}),N=function(v){var E;return typeof readbuffer=="function"?new Uint8Array(readbuffer(v)):(E=read(v,"binary"),we(typeof E=="object"),E)},typeof scriptArgs!="undefined"?p=scriptArgs:typeof arguments!="undefined"&&(p=arguments),typeof quit=="function"&&(m=function(v){quit(v)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(A||y)&&(y?_=self.location.href:document.currentScript&&(_=document.currentScript.src),typeof r!="undefined"&&r&&(_=r),_.indexOf("blob:")!==0?_=_.substr(0,_.lastIndexOf("/")+1):_="",g?(S=function(v,E){return $||($=require("fs")),D||(D=Pu()),v=D.normalize(v),$.readFileSync(v,E?null:"utf8")},N=function(v){var E=S(v,!0);return E.buffer||(E=new Uint8Array(E)),we(E.buffer),E}):(S=function(v){var E=new XMLHttpRequest;return E.open("GET",v,!1),E.send(null),E.responseText},y&&(N=function(v){var E=new XMLHttpRequest;return E.open("GET",v,!1),E.responseType="arraybuffer",E.send(null),new Uint8Array(E.response)}),T=function(v,E,z){var G=new XMLHttpRequest;G.open("GET",v,!0),G.responseType="arraybuffer",G.onload=function(){if(G.status==200||G.status==0&&G.response){E(G.response);return}z()},G.onerror=z,G.send(null)}),C=function(v){document.title=v});g&&typeof performance=="undefined"&&(performance=p8().performance);var V=u.print||console.log.bind(console),W=u.printErr||console.warn.bind(console);for(d in h)h.hasOwnProperty(d)&&(u[d]=h[d]);h=null,u.arguments&&(p=u.arguments),u.thisProgram&&(f=u.thisProgram),u.quit&&(m=u.quit);var K=Atomics.load,X=Atomics.store,ee=Atomics.compareExchange,Z;u.wasmBinary&&(Z=u.wasmBinary);var ae;u.noExitRuntime&&(ae=u.noExitRuntime),typeof WebAssembly!="object"&&W("no native wasm support detected");var J,oe=new WebAssembly.Table({initial:169,maximum:169+0,element:"anyfunc"}),ne,he=0,le=0,me=!1,Ae=0;function we(v,E){v||Gr("Assertion failed: "+E)}function Se(v){var E=u["_"+v];return we(E,"Cannot call unknown function "+v+", make sure it is exported"),E}function Ce(v,E,z,G,pe){var ce={string:function(Pn){var ha=0;if(Pn!=null&&Pn!==0){var ql=(Pn.length<<2)+1;ha=Ei(ql),st(Pn,ha,ql)}return ha},array:function(Pn){var ha=Ei(Pn.length);return ot(Pn,ha),ha}};function ue(Pn){return E==="string"?Be(Pn):E==="boolean"?Boolean(Pn):Pn}var ve=Se(v),nt=[],Ft=0;if(G)for(var Jt=0;Jt<G.length;Jt++){var Ri=ce[z[Jt]];Ri?(Ft===0&&(Ft=Hl()),nt[Jt]=Ri(G[Jt])):nt[Jt]=G[Jt]}var Gl=ve.apply(null,nt);return Gl=ue(Gl),Ft!==0&&Ci(Ft),Gl}function De(v,E,z,G){z=z||[];var pe=z.every(function(ue){return ue==="number"}),ce=E!=="string";return ce&&pe&&!G?Se(v):function(){return Ce(v,E,z,arguments,G)}}function je(v,E,z){for(var G=E+z,pe="";!(E>=G);){var ce=v[E++];if(!ce)return pe;if(!(ce&128)){pe+=String.fromCharCode(ce);continue}var ue=v[E++]&63;if((ce&224)==192){pe+=String.fromCharCode((ce&31)<<6|ue);continue}var ve=v[E++]&63;if((ce&240)==224?ce=(ce&15)<<12|ue<<6|ve:ce=(ce&7)<<18|ue<<12|ve<<6|v[E++]&63,ce<65536)pe+=String.fromCharCode(ce);else{var nt=ce-65536;pe+=String.fromCharCode(55296|nt>>10,56320|nt&1023)}}return pe}function Be(v,E){return v?je(i(),v,E):""}function Qe(v,E,z,G){if(!(G>0))return 0;for(var pe=z,ce=z+G-1,ue=0;ue<v.length;++ue){var ve=v.charCodeAt(ue);if(ve>=55296&&ve<=57343){var nt=v.charCodeAt(++ue);ve=65536+((ve&1023)<<10)|nt&1023}if(ve<=127){if(z>=ce)break;E[z++]=ve}else if(ve<=2047){if(z+1>=ce)break;E[z++]=192|ve>>6,E[z++]=128|ve&63}else if(ve<=65535){if(z+2>=ce)break;E[z++]=224|ve>>12,E[z++]=128|ve>>6&63,E[z++]=128|ve&63}else{if(z+3>=ce)break;E[z++]=240|ve>>18,E[z++]=128|ve>>12&63,E[z++]=128|ve>>6&63,E[z++]=128|ve&63}}return E[z]=0,z-pe}function st(v,E,z){return Qe(v,i(),E,z)}function Ue(v){for(var E=0,z=0;z<v.length;++z){var G=v.charCodeAt(z);G>=55296&&G<=57343&&(G=65536+((G&1023)<<10)|v.charCodeAt(++z)&1023),G<=127?++E:G<=2047?E+=2:G<=65535?E+=3:E+=4}return E}function ot(v,E){s().set(v,E)}var lt=65536;function On(v,E){return v%E>0&&(v+=E-v%E),v}var et,xn,Xt,wn,qn,hn,nn,Xn,kr;function _n(v){et=v,u.HEAP8=xn=new Int8Array(v),u.HEAP16=wn=new Int16Array(v),u.HEAP32=hn=new Int32Array(v),u.HEAPU8=Xt=new Uint8Array(v),u.HEAPU16=qn=new Uint16Array(v),u.HEAPU32=nn=new Uint32Array(v),u.HEAPF32=Xn=new Float32Array(v),u.HEAPF64=kr=new Float64Array(v)}var wi=5256480,El=wi,ur=13600,Kn=5256480,cr=12672,_i=u.INITIAL_MEMORY||16777216;if(x)J=u.wasmMemory,et=u.buffer;else if(u.wasmMemory)J=u.wasmMemory;else if(J=new WebAssembly.Memory({initial:_i/lt,maximum:2147483648/lt,shared:!0}),!(J.buffer instanceof SharedArrayBuffer))throw W("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),g&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");J&&(et=J.buffer),_i=et.byteLength,_n(et),x||(o()[cr>>2]=Kn);function bi(v){for(;v.length>0;){var E=v.shift();if(typeof E=="function"){E(u);continue}var z=E.func;typeof z=="number"?E.arg===void 0?u.dynCall_v(z):u.dynCall_vi(z,E.arg):z(E.arg===void 0?null:E.arg)}}var Wa=[],Cl=[],n1=[],Rl=[],Wc=[],Fl=!1;x&&(Fl=!0);function Zn(){if(!x){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)s1(u.preRun.shift());bi(Wa)}}function Bc(){Fl=!0,bi(Cl)}function r1(){x||bi(n1)}function a1(){if(!x){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)Ba(u.postRun.shift());bi(Wc)}}function s1(v){Wa.unshift(v)}function Ba(v){Wc.unshift(v)}var vi=Math.ceil,i1=Math.floor,jr=0,Ml=null,Va=null;function o1(v){we(!x,"addRunDependency cannot be used in a pthread worker"),jr++,u.monitorRunDependencies&&u.monitorRunDependencies(jr)}function l1(v){if(jr--,u.monitorRunDependencies&&u.monitorRunDependencies(jr),jr==0&&(Ml!==null&&(clearInterval(Ml),Ml=null),Va)){var E=Va;Va=null,E()}}u.preloadedImages={},u.preloadedAudios={};function Gr(v){throw u.onAbort&&u.onAbort(v),x&&console.error("Pthread aborting at "+new Error().stack),v+="",V(v),W(v),me=!0,Ae=1,v="abort("+v+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(v)}function $l(v,E){return String.prototype.startsWith?v.startsWith(E):v.indexOf(E)===0}var u1="data:application/octet-stream;base64,";function Vc(v){return $l(v,u1)}var c1="file://";function Uc(v){return $l(v,c1)}var Yn="tfjs-backend-wasm-threaded-simd.wasm";Vc(Yn)||(Yn=b(Yn));function Hc(){try{if(Z)return new Uint8Array(Z);if(N)return N(Yn);throw"both async and sync fetching of the wasm failed"}catch(v){Gr(v)}}function h1(){return!Z&&(A||y)&&typeof fetch=="function"&&!Uc(Yn)?fetch(Yn,{credentials:"same-origin"}).then(function(v){if(!v.ok)throw"failed to load wasm binary file at '"+Yn+"'";return v.arrayBuffer()}).catch(function(){return Hc()}):new Promise(function(v,E){v(Hc())})}function d1(){var v={a:rf};function E(ue,ve){var nt=ue.exports;if(u.asm=nt,ne=ve,!x){var Ft=fe.unusedWorkers.length;fe.unusedWorkers.forEach(function(Jt){fe.loadWasmModuleToWorker(Jt,function(){--Ft||l1("wasm-instantiate")})})}}x||o1("wasm-instantiate");function z(ue){E(ue.instance,ue.module)}function G(ue){return h1().then(function(ve){return WebAssembly.instantiate(ve,v)}).then(ue,function(ve){W("failed to asynchronously prepare wasm: "+ve),Gr(ve)})}function pe(){if(!Z&&typeof WebAssembly.instantiateStreaming=="function"&&!Vc(Yn)&&!Uc(Yn)&&typeof fetch=="function")fetch(Yn,{credentials:"same-origin"}).then(function(ue){var ve=WebAssembly.instantiateStreaming(ue,v);return ve.then(z,function(nt){W("wasm streaming compile failed: "+nt),W("falling back to ArrayBuffer instantiation"),G(z)})});else return G(z)}if(u.instantiateWasm)try{var ce=u.instantiateWasm(v,E);return ce}catch(ue){return W("Module.instantiateWasm callback failed with error: "+ue),!1}return pe(),{}}var p1={};function f1(){fe.initRuntime()}x||Cl.push({func:function(){zl()}});var jc=0,Gc=0,qc=0;function ki(v,E,z){v=v|0,E=E|0,z=z|0,jc=v,qc=E,Gc=z}u.__register_pthread_ptr=ki;var Dl={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135},Ii=13584;function Ni(v,E){if(v<=0||v>s().length||v&!0||E<0)return-28;if(E==0)return 0;E>=2147483647&&(E=Infinity);var z=Atomics.load(o(),Ii>>2),G=0;if(z==v){var pe=Atomics.compareExchange(o(),Ii>>2,z,0);if(pe==z&&(--E,G=1,E<=0))return 1}var ce=Atomics.notify(o(),v>>2,E);if(ce>=0)return ce+G;throw"Atomics.notify returned an unexpected value "+ce}u._emscripten_futex_wake=Ni;function m1(v){if(x)throw"Internal Error! _kill_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _kill_thread!";o()[v+12>>2]=0;var E=fe.pthreads[v];E.worker.terminate(),fe.freeThreadData(E),fe.runningWorkers.splice(fe.runningWorkers.indexOf(E.worker),1),E.worker.pthread=void 0}function A1(v){if(x)throw"Internal Error! _cancel_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _cancel_thread!";var E=fe.pthreads[v];E.worker.postMessage({cmd:"cancel"})}function y1(v){if(x)throw"Internal Error! _cleanup_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _cleanup_thread!";o()[v+12>>2]=0;var E=fe.pthreads[v];if(E){var z=E.worker;fe.returnWorkerToPool(z)}}var fe={MAIN_THREAD_ID:1,mainThreadInfo:{schedPolicy:0,schedPrio:0},unusedWorkers:[],runningWorkers:[],initRuntime:function(){ki(fe.mainThreadBlock,!y,1),U2(fe.mainThreadBlock)},initMainThreadBlock:function(){for(var v=8,E=0;E<v;++E)fe.allocateUnusedWorker();fe.mainThreadBlock=12832;for(var E=0;E<232/4;++E)l()[fe.mainThreadBlock/4+E]=0;o()[fe.mainThreadBlock+12>>2]=fe.mainThreadBlock;var z=fe.mainThreadBlock+156;o()[z>>2]=z;for(var G=13072,E=0;E<128;++E)l()[G/4+E]=0;Atomics.store(l(),fe.mainThreadBlock+104>>2,G),Atomics.store(l(),fe.mainThreadBlock+40>>2,fe.mainThreadBlock),Atomics.store(l(),fe.mainThreadBlock+44>>2,42)},initWorker:function(){},pthreads:{},exitHandlers:null,setThreadStatus:function(){},runExitHandlers:function(){if(fe.exitHandlers!==null){for(;fe.exitHandlers.length>0;)fe.exitHandlers.pop()();fe.exitHandlers=null}x&&he&&V2()},threadExit:function(v){var E=Ir();E&&(Atomics.store(l(),E+4>>2,v),Atomics.store(l(),E+0>>2,1),Atomics.store(l(),E+60>>2,1),Atomics.store(l(),E+64>>2,0),fe.runExitHandlers(),Ni(E+0,2147483647),ki(0,0,0),he=0,x&&postMessage({cmd:"exit"}))},threadCancel:function(){fe.runExitHandlers(),Atomics.store(l(),he+4>>2,-1),Atomics.store(l(),he+0>>2,1),Ni(he+0,2147483647),he=le=0,ki(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var v in fe.pthreads){var E=fe.pthreads[v];E&&E.worker&&fe.returnWorkerToPool(E.worker)}fe.pthreads={};for(var z=0;z<fe.unusedWorkers.length;++z){var G=fe.unusedWorkers[z];G.terminate()}fe.unusedWorkers=[];for(var z=0;z<fe.runningWorkers.length;++z){var G=fe.runningWorkers[z],E=G.pthread;fe.freeThreadData(E),G.terminate()}fe.runningWorkers=[]},freeThreadData:function(v){if(v){if(v.threadInfoStruct){var E=o()[v.threadInfoStruct+104>>2];o()[v.threadInfoStruct+104>>2]=0,Ul(E),Ul(v.threadInfoStruct)}v.threadInfoStruct=0,v.allocatedOwnStack&&v.stackBase&&Ul(v.stackBase),v.stackBase=0,v.worker&&(v.worker.pthread=null)}},returnWorkerToPool:function(v){delete fe.pthreads[v.pthread.thread],fe.unusedWorkers.push(v),fe.runningWorkers.splice(fe.runningWorkers.indexOf(v),1),fe.freeThreadData(v.pthread),v.pthread=void 0},receiveObjectTransfer:function(v){},loadWasmModuleToWorker:function(v,E){v.onmessage=function(z){var G=z.data,pe=G.cmd;if(v.pthread&&(fe.currentProxiedOperationCallerThread=v.pthread.threadInfoStruct),G.targetThread&&G.targetThread!=Ir()){var ce=fe.pthreads[G.targetThread];ce?ce.worker.postMessage(z.data,G.transferList):console.error('Internal error! Worker sent a message "'+pe+'" to target pthread '+G.targetThread+", but that thread no longer exists!"),fe.currentProxiedOperationCallerThread=void 0;return}if(pe==="processQueuedMainThreadWork")of();else if(pe==="spawnThread")Qc(z.data);else if(pe==="cleanupThread")y1(G.thread);else if(pe==="killThread")m1(G.thread);else if(pe==="cancelThread")A1(G.thread);else if(pe==="loaded")v.loaded=!0,E&&E(v),v.runPthread&&(v.runPthread(),delete v.runPthread);else if(pe==="print")V("Thread "+G.threadId+": "+G.text);else if(pe==="printErr")W("Thread "+G.threadId+": "+G.text);else if(pe==="alert")alert("Thread "+G.threadId+": "+G.text);else if(pe==="exit"){var ue=v.pthread&&Atomics.load(l(),v.pthread.thread+68>>2);ue&&fe.returnWorkerToPool(v)}else pe==="cancelDone"?fe.returnWorkerToPool(v):pe==="objectTransfer"?fe.receiveObjectTransfer(z.data):z.data.target==="setimmediate"?v.postMessage(z.data):W("worker sent an unknown command "+pe);fe.currentProxiedOperationCallerThread=void 0},v.onerror=function(z){W("pthread sent an error! "+z.filename+":"+z.lineno+": "+z.message)},g&&(v.on("message",function(z){v.onmessage({data:z})}),v.on("error",function(z){v.onerror(z)}),v.on("exit",function(z){console.log("worker exited - TODO: update the worker queue?")})),v.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||r,wasmMemory:J,wasmModule:ne,DYNAMIC_BASE:Kn,DYNAMICTOP_PTR:cr})},allocateUnusedWorker:function(){var v=b("tfjs-backend-wasm-threaded-simd.worker.js");fe.unusedWorkers.push(new Worker(v))},getNewWorker:function(){return fe.unusedWorkers.length==0&&(fe.allocateUnusedWorker(),fe.loadWasmModuleToWorker(fe.unusedWorkers[0])),fe.unusedWorkers.length>0?fe.unusedWorkers.pop():null},busySpinWait:function(v){for(var E=performance.now()+v;performance.now()<E;);}};function g1(v,E){wi=El=v,ur=E,Ci(v)}u.establishStackSpace=g1;function x1(){return ae}u.getNoExitRuntime=x1;function w1(v,E,z,G){Gr("Assertion failed: "+Be(v)+", at: "+[E?Be(E):"unknown filename",z,G?Be(G):"unknown function"])}function _1(v,E){var z=_main(v,E)}var Ua;g?Ua=function(){var v=process.hrtime();return v[0]*1e3+v[1]/1e6}:x?Ua=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?Ua=dateNow:Ua=function(){return performance.now()};function b1(v){return o()[L2()>>2]=v,v}function v1(v,E){if(x)return la(1,1,v,E);Rl.unshift({func:v,arg:E})}function k1(v,E){if(v==E)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:v,cmd:"processThreadQueue"});else{var z=fe.pthreads[v],G=z&&z.worker;if(!G)return;G.postMessage({cmd:"processThreadQueue"})}return 1}function I1(){Gr()}function N1(v,E){v=v|0,E=E|0}function T1(v,E,z){if(v<=0||v>s().length||v&!0)return-28;if(y){var G=Atomics.wait(o(),v>>2,E,z);if(G==="timed-out")return-73;if(G==="not-equal")return-6;if(G==="ok")return 0;throw"Atomics.wait returned an unexpected value "+G}else{var pe=Atomics.load(o(),v>>2);if(E!=pe)return-6;var ce=performance.now(),ue=ce+z;Atomics.store(o(),Ii>>2,v);for(var ve=v;v==ve;){if(ce=performance.now(),ce>ue)return-73;of(),v=Atomics.load(o(),Ii>>2)}return 0}}function S1(){return qc|0}function E1(){return Gc|0}function C1(v,E,z){i().copyWithin(v,E,E+z)}function R1(){return navigator.hardwareConcurrency}function la(v,E){for(var z=arguments.length-2,G=Hl(),pe=Ei(z*8),ce=pe>>3,ue=0;ue<z;ue++)c()[ce+ue]=arguments[2+ue];var ve=j2(v,z,pe,E);return Ci(G),ve}var Ha=[];function Ti(v,E){Ti.array||(Ti.array=[]);var z=Ti.array;z.length=0;for(var G;G=i()[v++];)G===100||G===102?(E=E+7&~7,z.push(c()[E>>3]),E+=8):(E=E+3&~3,z.push(o()[E>>2]),E+=4);return z}function F1(v,E,z){Ha.length=E;for(var G=z>>3,pe=0;pe<E;pe++)Ha[pe]=c()[G+pe];var ce=v<0,ue=ce?p1[-v-1]:nf[v];if(ce){var ve=Ha[1],nt=Ha[2],Ft=Ti(ve,nt);return ue.apply(null,Ft)}return ue.apply(null,Ha)}function M1(){return i().length}function $1(v){try{return J.grow(v-et.byteLength+65535>>>16),_n(J.buffer),1}catch(E){}}function D1(v){v=v>>>0;var E=M1();if(v<=E)return!1;var z=65536,G=2147483648;if(v>G)return!1;for(var pe=16777216,ce=1;ce<=4;ce*=2){var ue=E*(1+.2/ce);ue=Math.min(ue,v+100663296);var ve=Math.min(G,On(Math.max(pe,v,ue),z)),nt=$1(ve);if(nt)return!0}return!1}var Le={keyEvent:0,mouseEvent:0,wheelEvent:0,uiEvent:0,focusEvent:0,deviceOrientationEvent:0,deviceMotionEvent:0,fullscreenChangeEvent:0,pointerlockChangeEvent:0,visibilityChangeEvent:0,touchEvent:0,previousFullscreenElement:null,previousScreenX:null,previousScreenY:null,removeEventListenersRegistered:!1,removeAllEventListeners:function(){for(var v=Le.eventHandlers.length-1;v>=0;--v)Le._removeHandler(v);Le.eventHandlers=[],Le.deferredCalls=[]},registerRemoveEventListeners:function(){Le.removeEventListenersRegistered||(Rl.push(Le.removeAllEventListeners),Le.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(v,E,z){function G(ue,ve){if(ue.length!=ve.length)return!1;for(var nt in ue)if(ue[nt]!=ve[nt])return!1;return!0}for(var pe in Le.deferredCalls){var ce=Le.deferredCalls[pe];if(ce.targetFunction==v&&G(ce.argsList,z))return}Le.deferredCalls.push({targetFunction:v,precedence:E,argsList:z}),Le.deferredCalls.sort(function(ue,ve){return ue.precedence<ve.precedence})},removeDeferredCalls:function(v){for(var E=0;E<Le.deferredCalls.length;++E)Le.deferredCalls[E].targetFunction==v&&(Le.deferredCalls.splice(E,1),--E)},canPerformEventHandlerRequests:function(){return Le.inEventHandler&&Le.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Le.canPerformEventHandlerRequests())for(var v=0;v<Le.deferredCalls.length;++v){var E=Le.deferredCalls[v];Le.deferredCalls.splice(v,1),--v,E.targetFunction.apply(null,E.argsList)}},inEventHandler:0,currentEventHandler:null,eventHandlers:[],removeAllHandlersOnTarget:function(v,E){for(var z=0;z<Le.eventHandlers.length;++z)Le.eventHandlers[z].target==v&&(!E||E==Le.eventHandlers[z].eventTypeString)&&Le._removeHandler(z--)},_removeHandler:function(v){var E=Le.eventHandlers[v];E.target.removeEventListener(E.eventTypeString,E.eventListenerFunc,E.useCapture),Le.eventHandlers.splice(v,1)},registerOrRemoveHandler:function(v){var E=function(G){++Le.inEventHandler,Le.currentEventHandler=v,Le.runDeferredCalls(),v.handlerFunc(G),Le.runDeferredCalls(),--Le.inEventHandler};if(v.callbackfunc)v.eventListenerFunc=E,v.target.addEventListener(v.eventTypeString,E,v.useCapture),Le.eventHandlers.push(v),Le.registerRemoveEventListeners();else for(var z=0;z<Le.eventHandlers.length;++z)Le.eventHandlers[z].target==v.target&&Le.eventHandlers[z].eventTypeString==v.eventTypeString&&Le._removeHandler(z--)},queueEventHandlerOnThread_iiii:function(v,E,z,G,pe){var ce=Hl(),ue=Ei(12);o()[ue>>2]=z,o()[ue+4>>2]=G,o()[ue+8>>2]=pe,lf(v,637534208,E,G,ue),Ci(ce)},getTargetThreadForEventCallback:function(v){switch(v){case 1:return 0;case 2:return fe.currentProxiedOperationCallerThread;default:return v}},getNodeNameForTarget:function(v){return v?v==window?"#window":v==screen?"#screen":v&&v.nodeName?v.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function O1(v){var E=Ue(v)+1,z=Vl(E);return st(v,z,E),z}function z1(v,E,z,G){var pe=Hl(),ce=Ei(12),ue=0;E&&(ue=O1(E)),o()[ce>>2]=ue,o()[ce+4>>2]=z,o()[ce+8>>2]=G,lf(v,657457152,0,ue,ce),Ci(pe)}function P1(v,E,z,G){E=E?Be(E):"",z1(v,E,z,G)}function L1(v){return v>2?Be(v):v}var W1=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function B1(v){v=L1(v);var E=W1[v]||(typeof document!="undefined"?document.querySelector(v):void 0);return E}function Ol(v){return B1(v)}function Xc(v,E,z){var G=Ol(v);if(!G)return-4;if(G.canvasSharedPtr&&(o()[G.canvasSharedPtr>>2]=E,o()[G.canvasSharedPtr+4>>2]=z),G.offscreenCanvas||!G.controlTransferredOffscreen){G.offscreenCanvas&&(G=G.offscreenCanvas);var pe=!1;if(G.GLctxObject&&G.GLctxObject.GLctx){var ce=G.GLctxObject.GLctx.getParameter(2978);pe=ce[0]===0&&ce[1]===0&&ce[2]===G.width&&ce[3]===G.height}G.width=E,G.height=z,pe&&G.GLctxObject.GLctx.viewport(0,0,E,z)}else if(G.canvasSharedPtr){var ue=o()[G.canvasSharedPtr+8>>2];return P1(ue,v,E,z),1}else return-4;return 0}function Kc(v,E,z){return x?la(2,1,v,E,z):Xc(v,E,z)}function V1(v,E,z){var G=Ol(v);return G?Xc(v,E,z):Kc(v,E,z)}function U1(v){v=v|0}function H1(v,E){v=v|0,E=E|0}function j1(v){var E=v.getExtension("ANGLE_instanced_arrays");if(E)return v.vertexAttribDivisor=function(z,G){E.vertexAttribDivisorANGLE(z,G)},v.drawArraysInstanced=function(z,G,pe,ce){E.drawArraysInstancedANGLE(z,G,pe,ce)},v.drawElementsInstanced=function(z,G,pe,ce,ue){E.drawElementsInstancedANGLE(z,G,pe,ce,ue)},1}function G1(v){var E=v.getExtension("OES_vertex_array_object");if(E)return v.createVertexArray=function(){return E.createVertexArrayOES()},v.deleteVertexArray=function(z){E.deleteVertexArrayOES(z)},v.bindVertexArray=function(z){E.bindVertexArrayOES(z)},v.isVertexArray=function(z){return E.isVertexArrayOES(z)},1}function q1(v){var E=v.getExtension("WEBGL_draw_buffers");if(E)return v.drawBuffers=function(z,G){E.drawBuffersWEBGL(z,G)},1}var He={counter:1,lastError:0,buffers:[],mappedBuffers:{},programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},currentContext:null,offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,init:function(){for(var v=new Float32Array(He.MINI_TEMP_BUFFER_SIZE),E=0;E<He.MINI_TEMP_BUFFER_SIZE;E++)He.miniTempBufferFloatViews[E]=v.subarray(0,E+1);for(var z=new Int32Array(He.MINI_TEMP_BUFFER_SIZE),E=0;E<He.MINI_TEMP_BUFFER_SIZE;E++)He.miniTempBufferIntViews[E]=z.subarray(0,E+1)},recordError:function(v){He.lastError||(He.lastError=v)},getNewId:function(v){for(var E=He.counter++,z=v.length;z<E;z++)v[z]=null;return E},MINI_TEMP_BUFFER_SIZE:256,miniTempBufferFloatViews:[0],miniTempBufferIntViews:[0],getSource:function(v,E,z,G){for(var pe="",ce=0;ce<E;++ce){var ue=G?o()[G+ce*4>>2]:-1;pe+=Be(o()[z+ce*4>>2],ue<0?void 0:ue)}return pe},createContext:function(v,E){var z=v.getContext("webgl",E);if(!z)return 0;var G=He.registerContext(z,E);return G},registerContext:function(v,E){var z=Vl(8);o()[z+4>>2]=Ir();var G={handle:z,attributes:E,version:E.majorVersion,GLctx:v};return v.canvas&&(v.canvas.GLctxObject=G),He.contexts[z]=G,(typeof E.enableExtensionsByDefault=="undefined"||E.enableExtensionsByDefault)&&He.initExtensions(G),z},makeContextCurrent:function(v){return He.currentContext=He.contexts[v],u.ctx=ua=He.currentContext&&He.currentContext.GLctx,!(v&&!ua)},getContext:function(v){return He.contexts[v]},deleteContext:function(v){He.currentContext===He.contexts[v]&&(He.currentContext=null),typeof Le=="object"&&Le.removeAllHandlersOnTarget(He.contexts[v].GLctx.canvas),He.contexts[v]&&He.contexts[v].GLctx.canvas&&(He.contexts[v].GLctx.canvas.GLctxObject=void 0),Ul(He.contexts[v].handle),He.contexts[v]=null},initExtensions:function(v){if(v||(v=He.currentContext),!v.initExtensionsDone){v.initExtensionsDone=!0;var E=v.GLctx;j1(E),G1(E),q1(E),E.disjointTimerQueryExt=E.getExtension("EXT_disjoint_timer_query");var z=["OES_texture_float","OES_texture_half_float","OES_standard_derivatives","OES_vertex_array_object","WEBGL_compressed_texture_s3tc","WEBGL_depth_texture","OES_element_index_uint","EXT_texture_filter_anisotropic","EXT_frag_depth","WEBGL_draw_buffers","ANGLE_instanced_arrays","OES_texture_float_linear","OES_texture_half_float_linear","EXT_blend_minmax","EXT_shader_texture_lod","EXT_texture_norm16","WEBGL_compressed_texture_pvrtc","EXT_color_buffer_half_float","WEBGL_color_buffer_float","EXT_sRGB","WEBGL_compressed_texture_etc1","EXT_disjoint_timer_query","WEBGL_compressed_texture_etc","WEBGL_compressed_texture_astc","EXT_color_buffer_float","WEBGL_compressed_texture_s3tc_srgb","EXT_disjoint_timer_query_webgl2","WEBKIT_WEBGL_compressed_texture_pvrtc"],G=E.getSupportedExtensions()||[];G.forEach(function(pe){z.indexOf(pe)!=-1&&E.getExtension(pe)})}},populateUniformTable:function(v){for(var E=He.programs[v],z=He.programInfos[v]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},G=z.uniforms,pe=ua.getProgramParameter(E,35718),ce=0;ce<pe;++ce){var ue=ua.getActiveUniform(E,ce),ve=ue.name;z.maxUniformLength=Math.max(z.maxUniformLength,ve.length+1),ve.slice(-1)=="]"&&(ve=ve.slice(0,ve.lastIndexOf("[")));var nt=ua.getUniformLocation(E,ve);if(nt){var Ft=He.getNewId(He.uniforms);G[ve]=[ue.size,Ft],He.uniforms[Ft]=nt;for(var Jt=1;Jt<ue.size;++Jt){var Ri=ve+"["+Jt+"]";nt=ua.getUniformLocation(E,Ri),Ft=He.getNewId(He.uniforms),He.uniforms[Ft]=nt}}}}},X1=["default","low-power","high-performance"];function K1(v,E){var z={},G=E>>2;z.alpha=!!o()[G+(0>>2)],z.depth=!!o()[G+(4>>2)],z.stencil=!!o()[G+(8>>2)],z.antialias=!!o()[G+(12>>2)],z.premultipliedAlpha=!!o()[G+(16>>2)],z.preserveDrawingBuffer=!!o()[G+(20>>2)];var pe=o()[G+(24>>2)];z.powerPreference=X1[pe],z.failIfMajorPerformanceCaveat=!!o()[G+(28>>2)],z.majorVersion=o()[G+(32>>2)],z.minorVersion=o()[G+(36>>2)],z.enableExtensionsByDefault=o()[G+(40>>2)],z.explicitSwapControl=o()[G+(44>>2)],z.proxyContextToMainThread=o()[G+(48>>2)],z.renderViaOffscreenBackBuffer=o()[G+(52>>2)];var ce=Ol(v);if(!ce)return-4;if(z.explicitSwapControl)return-1;var ue=He.createContext(ce,z);return ue}function Z1(v,E){return K1(v,E)}var ja={splitPath:function(v){var E=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return E.exec(v).slice(1)},normalizeArray:function(v,E){for(var z=0,G=v.length-1;G>=0;G--){var pe=v[G];pe==="."?v.splice(G,1):pe===".."?(v.splice(G,1),z++):z&&(v.splice(G,1),z--)}if(E)for(;z;z--)v.unshift("..");return v},normalize:function(v){var E=v.charAt(0)==="/",z=v.substr(-1)==="/";return v=ja.normalizeArray(v.split("/").filter(function(G){return!!G}),!E).join("/"),!v&&!E&&(v="."),v&&z&&(v+="/"),(E?"/":"")+v},dirname:function(v){var E=ja.splitPath(v),z=E[0],G=E[1];return!z&&!G?".":(G&&(G=G.substr(0,G.length-1)),z+G)},basename:function(v){if(v==="/")return"/";var E=v.lastIndexOf("/");return E===-1?v:v.substr(E+1)},extname:function(v){return ja.splitPath(v)[3]},join:function(){var v=Array.prototype.slice.call(arguments,0);return ja.normalize(v.join("/"))},join2:function(v,E){return ja.normalize(v+"/"+E)}},Si={mappings:{},buffers:[null,[],[]],printChar:function(v,E){var z=Si.buffers[v];E===0||E===10?((v===1?V:W)(je(z,0)),z.length=0):z.push(E)},varargs:void 0,get:function(){Si.varargs+=4;var v=o()[Si.varargs-4>>2];return v},getStr:function(v){var E=Be(v);return E},get64:function(v,E){return v}};function Zc(v){return x?la(3,1,v):0}function Yc(v,E,z,G,pe){if(x)return la(4,1,v,E,z,G,pe)}function Jc(v,E,z,G){if(x)return la(5,1,v,E,z,G);for(var pe=0,ce=0;ce<z;ce++){for(var ue=o()[E+ce*8>>2],ve=o()[E+(ce*8+4)>>2],nt=0;nt<ve;nt++)Si.printChar(v,i()[ue+nt]);pe+=ve}return o()[G>>2]=pe,0}function Y1(v){var E=fe.exitHandlers.pop();v&&E()}function J1(v,E){fe.exitHandlers===null&&(fe.exitHandlers=[]),fe.exitHandlers.push(function(){G2(v,E)})}function Qc(v){if(x)throw"Internal Error! _spawn_thread() can only ever be called from main application thread!";var E=fe.getNewWorker();if(E.pthread!==void 0)throw"Internal error!";if(!v.pthread_ptr)throw"Internal error, no pthread ptr!";fe.runningWorkers.push(E);for(var z=Vl(128*4),G=0;G<128;++G)o()[z+G*4>>2]=0;var pe=v.stackBase+v.stackSize,ce=fe.pthreads[v.pthread_ptr]={worker:E,stackBase:v.stackBase,stackSize:v.stackSize,allocatedOwnStack:v.allocatedOwnStack,thread:v.pthread_ptr,threadInfoStruct:v.pthread_ptr},ue=ce.threadInfoStruct>>2;Atomics.store(l(),ue+(0>>2),0),Atomics.store(l(),ue+(4>>2),0),Atomics.store(l(),ue+(8>>2),0),Atomics.store(l(),ue+(68>>2),v.detached),Atomics.store(l(),ue+(104>>2),z),Atomics.store(l(),ue+(48>>2),0),Atomics.store(l(),ue+(40>>2),ce.threadInfoStruct),Atomics.store(l(),ue+(44>>2),42),Atomics.store(l(),ue+(108>>2),v.stackSize),Atomics.store(l(),ue+(84>>2),v.stackSize),Atomics.store(l(),ue+(80>>2),pe),Atomics.store(l(),ue+(108+8>>2),pe),Atomics.store(l(),ue+(108+12>>2),v.detached),Atomics.store(l(),ue+(108+20>>2),v.schedPolicy),Atomics.store(l(),ue+(108+24>>2),v.schedPrio);var ve=W2(),nt=ve+40;Atomics.store(l(),ue+(176>>2),nt),E.pthread=ce;var Ft={cmd:"run",start_routine:v.startRoutine,arg:v.arg,threadInfoStruct:v.pthread_ptr,selfThreadId:v.pthread_ptr,parentThreadId:v.parent_pthread_ptr,stackBase:v.stackBase,stackSize:v.stackSize};E.runPthread=function(){Ft.time=performance.now(),E.postMessage(Ft,v.transferList)},E.loaded&&(E.runPthread(),delete E.runPthread)}function Q1(v,E,z){if(!E&&!z)return Dl.EINVAL;if(!v)return W("pthread_getschedparam called with a null thread pointer!"),Dl.ESRCH;var G=o()[v+12>>2];if(G!==v)return W("pthread_getschedparam attempted on thread "+v+", which does not point to a valid thread, or does not exist anymore!"),Dl.ESRCH;var pe=Atomics.load(l(),v+108+20>>2),ce=Atomics.load(l(),v+108+24>>2);return E&&(o()[E>>2]=pe),z&&(o()[z>>2]=ce),0}function Ir(){return jc|0}u._pthread_self=Ir;function ef(v,E,z,G){if(typeof SharedArrayBuffer=="undefined")return W("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!v)return W("pthread_create called with a null thread pointer!"),28;var pe=[],ce=0;if(x&&(pe.length===0||ce))return H2(687865856,v,E,z,G);if(ce)return ce;var ue=0,ve=0,nt=0,Ft=0,Jt=0;if(E){ue=o()[E>>2],ue+=81920,ve=o()[E+8>>2],nt=o()[E+12>>2]!==0;var Ri=o()[E+16>>2]===0;if(Ri){var Gl=o()[E+20>>2],Pn=o()[E+24>>2],ha=fe.currentProxiedOperationCallerThread?fe.currentProxiedOperationCallerThread:Ir();Q1(ha,E+20,E+24),Ft=o()[E+20>>2],Jt=o()[E+24>>2],o()[E+20>>2]=Gl,o()[E+24>>2]=Pn}else Ft=o()[E+20>>2],Jt=o()[E+24>>2]}else ue=2097152;var ql=ve==0;ql?ve=B2(16,ue):(ve-=ue,we(ve>0));for(var Fi=Vl(232),cf=0;cf<232>>2;++cf)l()[(Fi>>2)+cf]=0;o()[v>>2]=Fi,o()[Fi+12>>2]=Fi;var X2=Fi+156;o()[X2>>2]=X2;var hf={stackBase:ve,stackSize:ue,allocatedOwnStack:ql,schedPolicy:Ft,schedPrio:Jt,detached:nt,startRoutine:z,pthread_ptr:Fi,parent_pthread_ptr:Ir(),arg:G,transferList:pe};return x?(hf.cmd="spawnThread",postMessage(hf,pe)):Qc(hf),0}function tf(v){return v=+v,v>=0?+i1(v+.5):+vi(v-.5)}function eh(v){if(x)return la(6,1,v);switch(v){case 30:return 16384;case 85:var E=2147483648;return E/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 80:case 81:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:case 79:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return b1(28),-1}x?fe.initWorker():fe.initMainThreadBlock();var ua;He.init();var nf=[null,v1,Kc,Zc,Yc,Jc,eh],rf={e:w1,r:_1,w:k1,a:I1,l:N1,d:T1,c:Ni,h:Ua,g:S1,x:E1,q:C1,B:R1,t:F1,A:D1,u:V1,k:U1,s:H1,v:Z1,m:Zc,o:Yc,i:Jc,p:f1,memory:J||u.wasmMemory,y:Y1,z:J1,j:ef,b:Ir,f:tf,n:eh,table:oe},th=d1();u.asm=th;var zl=u.___wasm_call_ctors=function(){return(zl=u.___wasm_call_ctors=u.asm.C).apply(null,arguments)},Pl=u._init=function(){return(Pl=u._init=u.asm.D).apply(null,arguments)},nh=u._register_tensor=function(){return(nh=u._register_tensor=u.asm.E).apply(null,arguments)},Ga=u._dispose_data=function(){return(Ga=u._dispose_data=u.asm.F).apply(null,arguments)},Ll=u._dispose=function(){return(Ll=u._dispose=u.asm.G).apply(null,arguments)},af=u._Abs=function(){return(af=u._Abs=u.asm.H).apply(null,arguments)},sf=u._Add=function(){return(sf=u._Add=u.asm.I).apply(null,arguments)},Wl=u._AddN=function(){return(Wl=u._AddN=u.asm.J).apply(null,arguments)},rh=u._ArgMax=function(){return(rh=u._ArgMax=u.asm.K).apply(null,arguments)},ah=u._AvgPool=function(){return(ah=u._AvgPool=u.asm.L).apply(null,arguments)},j=u._BatchMatMul=function(){return(j=u._BatchMatMul=u.asm.M).apply(null,arguments)},te=u._ClipByValue=function(){return(te=u._ClipByValue=u.asm.N).apply(null,arguments)},Ie=u._Conv2D=function(){return(Ie=u._Conv2D=u.asm.O).apply(null,arguments)},Re=u._Conv2DBackpropInput=function(){return(Re=u._Conv2DBackpropInput=u.asm.P).apply(null,arguments)},rt=u._Cos=function(){return(rt=u._Cos=u.asm.Q).apply(null,arguments)},Tt=u._CropAndResize=function(){return(Tt=u._CropAndResize=u.asm.R).apply(null,arguments)},Ze=u._Cumsum=function(){return(Ze=u._Cumsum=u.asm.S).apply(null,arguments)},qe=u._DepthToSpace=function(){return(qe=u._DepthToSpace=u.asm.T).apply(null,arguments)},Bt=u._DepthwiseConv2dNative=function(){return(Bt=u._DepthwiseConv2dNative=u.asm.U).apply(null,arguments)},qr=u._Equal=function(){return(qr=u._Equal=u.asm.V).apply(null,arguments)},Xr=u._Exp=function(){return(Xr=u._Exp=u.asm.W).apply(null,arguments)},sh=u._FlipLeftRight=function(){return(sh=u._FlipLeftRight=u.asm.X).apply(null,arguments)},Bl=u._Floor=function(){return(Bl=u._Floor=u.asm.Y).apply(null,arguments)},zn=u._FloorDiv=function(){return(zn=u._FloorDiv=u.asm.Z).apply(null,arguments)},ca=u._FusedBatchNorm=function(){return(ca=u._FusedBatchNorm=u.asm._).apply(null,arguments)},ih=u._FusedConv2D=function(){return(ih=u._FusedConv2D=u.asm.$).apply(null,arguments)},e6=u._FusedDepthwiseConv2D=function(){return(e6=u._FusedDepthwiseConv2D=u.asm.aa).apply(null,arguments)},t6=u._Gather=function(){return(t6=u._Gather=u.asm.ba).apply(null,arguments)},n6=u._GatherNd=function(){return(n6=u._GatherNd=u.asm.ca).apply(null,arguments)},r6=u._Greater=function(){return(r6=u._Greater=u.asm.da).apply(null,arguments)},a6=u._GreaterEqual=function(){return(a6=u._GreaterEqual=u.asm.ea).apply(null,arguments)},s6=u._LeakyRelu=function(){return(s6=u._LeakyRelu=u.asm.fa).apply(null,arguments)},i6=u._Less=function(){return(i6=u._Less=u.asm.ga).apply(null,arguments)},o6=u._LessEqual=function(){return(o6=u._LessEqual=u.asm.ha).apply(null,arguments)},l6=u._Log=function(){return(l6=u._Log=u.asm.ia).apply(null,arguments)},u6=u._LogicalAnd=function(){return(u6=u._LogicalAnd=u.asm.ja).apply(null,arguments)},c6=u._Max=function(){return(c6=u._Max=u.asm.ka).apply(null,arguments)},h6=u._MaxPool=function(){return(h6=u._MaxPool=u.asm.la).apply(null,arguments)},d6=u._Maximum=function(){return(d6=u._Maximum=u.asm.ma).apply(null,arguments)},p6=u._Mean=function(){return(p6=u._Mean=u.asm.na).apply(null,arguments)},f6=u._Min=function(){return(f6=u._Min=u.asm.oa).apply(null,arguments)},m6=u._Minimum=function(){return(m6=u._Minimum=u.asm.pa).apply(null,arguments)},A6=u._Multiply=function(){return(A6=u._Multiply=u.asm.qa).apply(null,arguments)},y6=u._Neg=function(){return(y6=u._Neg=u.asm.ra).apply(null,arguments)},g6=u._NonMaxSuppressionV3=function(){return(g6=u._NonMaxSuppressionV3=u.asm.sa).apply(null,arguments)},x6=u._NonMaxSuppressionV4=function(){return(x6=u._NonMaxSuppressionV4=u.asm.ta).apply(null,arguments)},w6=u._NonMaxSuppressionV5=function(){return(w6=u._NonMaxSuppressionV5=u.asm.ua).apply(null,arguments)},_6=u._NotEqual=function(){return(_6=u._NotEqual=u.asm.va).apply(null,arguments)},b6=u._OneHot=function(){return(b6=u._OneHot=u.asm.wa).apply(null,arguments)},v6=u._PadV2=function(){return(v6=u._PadV2=u.asm.xa).apply(null,arguments)},k6=u._Pow=function(){return(k6=u._Pow=u.asm.ya).apply(null,arguments)},I6=u._Prelu=function(){return(I6=u._Prelu=u.asm.za).apply(null,arguments)},N6=u._Prod=function(){return(N6=u._Prod=u.asm.Aa).apply(null,arguments)},T6=u._RealDiv=function(){return(T6=u._RealDiv=u.asm.Ba).apply(null,arguments)},S6=u._Relu=function(){return(S6=u._Relu=u.asm.Ca).apply(null,arguments)},E6=u._Relu6=function(){return(E6=u._Relu6=u.asm.Da).apply(null,arguments)},C6=u._ResizeBilinear=function(){return(C6=u._ResizeBilinear=u.asm.Ea).apply(null,arguments)},R6=u._Reverse=function(){return(R6=u._Reverse=u.asm.Fa).apply(null,arguments)},F6=u._RotateWithOffset=function(){return(F6=u._RotateWithOffset=u.asm.Ga).apply(null,arguments)},M6=u._Round=function(){return(M6=u._Round=u.asm.Ha).apply(null,arguments)},$6=u._Rsqrt=function(){return($6=u._Rsqrt=u.asm.Ia).apply(null,arguments)},D6=u._ScatterNd=function(){return(D6=u._ScatterNd=u.asm.Ja).apply(null,arguments)},O6=u._SelectV2=function(){return(O6=u._SelectV2=u.asm.Ka).apply(null,arguments)},z6=u._Sigmoid=function(){return(z6=u._Sigmoid=u.asm.La).apply(null,arguments)},P6=u._Sin=function(){return(P6=u._Sin=u.asm.Ma).apply(null,arguments)},L6=u._Softmax=function(){return(L6=u._Softmax=u.asm.Na).apply(null,arguments)},W6=u._Sqrt=function(){return(W6=u._Sqrt=u.asm.Oa).apply(null,arguments)},B6=u._Square=function(){return(B6=u._Square=u.asm.Pa).apply(null,arguments)},V6=u._SquaredDifference=function(){return(V6=u._SquaredDifference=u.asm.Qa).apply(null,arguments)},U6=u._Step=function(){return(U6=u._Step=u.asm.Ra).apply(null,arguments)},H6=u._StridedSlice=function(){return(H6=u._StridedSlice=u.asm.Sa).apply(null,arguments)},j6=u._Sub=function(){return(j6=u._Sub=u.asm.Ta).apply(null,arguments)},G6=u._Sum=function(){return(G6=u._Sum=u.asm.Ua).apply(null,arguments)},q6=u._Tanh=function(){return(q6=u._Tanh=u.asm.Va).apply(null,arguments)},X6=u._Tile=function(){return(X6=u._Tile=u.asm.Wa).apply(null,arguments)},K6=u._TopK=function(){return(K6=u._TopK=u.asm.Xa).apply(null,arguments)},Z6=u._Transpose=function(){return(Z6=u._Transpose=u.asm.Ya).apply(null,arguments)},Y6=u.__FusedMatMul=function(){return(Y6=u.__FusedMatMul=u.asm.Za).apply(null,arguments)},Vl=u._malloc=function(){return(Vl=u._malloc=u.asm._a).apply(null,arguments)},Ul=u._free=function(){return(Ul=u._free=u.asm.$a).apply(null,arguments)},J6=u.___em_js__initPthreadsJS=function(){return(J6=u.___em_js__initPthreadsJS=u.asm.ab).apply(null,arguments)},L2=u.___errno_location=function(){return(L2=u.___errno_location=u.asm.bb).apply(null,arguments)},W2=u._emscripten_get_global_libc=function(){return(W2=u._emscripten_get_global_libc=u.asm.cb).apply(null,arguments)},B2=u._memalign=function(){return(B2=u._memalign=u.asm.db).apply(null,arguments)},V2=u.___pthread_tsd_run_dtors=function(){return(V2=u.___pthread_tsd_run_dtors=u.asm.eb).apply(null,arguments)},of=u._emscripten_main_thread_process_queued_calls=function(){return(of=u._emscripten_main_thread_process_queued_calls=u.asm.fb).apply(null,arguments)},Q6=u._emscripten_current_thread_process_queued_calls=function(){return(Q6=u._emscripten_current_thread_process_queued_calls=u.asm.gb).apply(null,arguments)},U2=u._emscripten_register_main_browser_thread_id=function(){return(U2=u._emscripten_register_main_browser_thread_id=u.asm.hb).apply(null,arguments)},ev=u._emscripten_main_browser_thread_id=function(){return(ev=u._emscripten_main_browser_thread_id=u.asm.ib).apply(null,arguments)},tv=u._emscripten_async_run_in_main_thread=function(){return(tv=u._emscripten_async_run_in_main_thread=u.asm.jb).apply(null,arguments)},nv=u._emscripten_sync_run_in_main_thread=function(){return(nv=u._emscripten_sync_run_in_main_thread=u.asm.kb).apply(null,arguments)},rv=u._emscripten_sync_run_in_main_thread_0=function(){return(rv=u._emscripten_sync_run_in_main_thread_0=u.asm.lb).apply(null,arguments)},av=u._emscripten_sync_run_in_main_thread_1=function(){return(av=u._emscripten_sync_run_in_main_thread_1=u.asm.mb).apply(null,arguments)},sv=u._emscripten_sync_run_in_main_thread_2=function(){return(sv=u._emscripten_sync_run_in_main_thread_2=u.asm.nb).apply(null,arguments)},iv=u._emscripten_sync_run_in_main_thread_xprintf_varargs=function(){return(iv=u._emscripten_sync_run_in_main_thread_xprintf_varargs=u.asm.ob).apply(null,arguments)},ov=u._emscripten_sync_run_in_main_thread_3=function(){return(ov=u._emscripten_sync_run_in_main_thread_3=u.asm.pb).apply(null,arguments)},H2=u._emscripten_sync_run_in_main_thread_4=function(){return(H2=u._emscripten_sync_run_in_main_thread_4=u.asm.qb).apply(null,arguments)},lv=u._emscripten_sync_run_in_main_thread_5=function(){return(lv=u._emscripten_sync_run_in_main_thread_5=u.asm.rb).apply(null,arguments)},uv=u._emscripten_sync_run_in_main_thread_6=function(){return(uv=u._emscripten_sync_run_in_main_thread_6=u.asm.sb).apply(null,arguments)},cv=u._emscripten_sync_run_in_main_thread_7=function(){return(cv=u._emscripten_sync_run_in_main_thread_7=u.asm.tb).apply(null,arguments)},j2=u._emscripten_run_in_main_runtime_thread_js=function(){return(j2=u._emscripten_run_in_main_runtime_thread_js=u.asm.ub).apply(null,arguments)},lf=u._emscripten_async_queue_on_thread_=function(){return(lf=u._emscripten_async_queue_on_thread_=u.asm.vb).apply(null,arguments)},hv=u._emscripten_tls_init=function(){return(hv=u._emscripten_tls_init=u.asm.wb).apply(null,arguments)},Hl=u.stackSave=function(){return(Hl=u.stackSave=u.asm.xb).apply(null,arguments)},Ei=u.stackAlloc=function(){return(Ei=u.stackAlloc=u.asm.yb).apply(null,arguments)},Ci=u.stackRestore=function(){return(Ci=u.stackRestore=u.asm.zb).apply(null,arguments)},G2=u.dynCall_vi=function(){return(G2=u.dynCall_vi=u.asm.Ab).apply(null,arguments)},dv=u.dynCall_v=function(){return(dv=u.dynCall_v=u.asm.Bb).apply(null,arguments)},pv=u.dynCall_ii=function(){return(pv=u.dynCall_ii=u.asm.Cb).apply(null,arguments)};u.asm=th,u.cwrap=De,u.PThread=fe,u.PThread=fe,u._pthread_self=Ir,u.wasmMemory=J,u.ExitStatus=q2;var jl;u.then=function(v){if(jl)v(u);else{var E=u.onRuntimeInitialized;u.onRuntimeInitialized=function(){E&&E(),v(u)}}return u};function q2(v){this.name="ExitStatus",this.message="Program terminated with exit("+v+")",this.status=v}Va=function v(){jl||uf(),jl||(Va=v)};function uf(v){if(v=v||p,jr>0||(Zn(),jr>0))return;function E(){jl||(jl=!0,u.calledRun=!0,!me&&(Bc(),r1(),u.onRuntimeInitialized&&u.onRuntimeInitialized(),a1()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),E()},1)):E()}if(u.run=uf,u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return x||(ae=!0),x||uf(),a}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),m8=at((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i={},o;for(o in s)s.hasOwnProperty(o)&&(i[o]=s[o]);var l=[],c="./this.program",u=function(j,te){throw te},h=!1,d=!1,p=!1,f=!1;h=typeof window=="object",d=typeof importScripts=="function",p=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f=!h&&!p&&!d;var m="";function A(j){return s.locateFile?s.locateFile(j,m):m+j}var y,g,w,x,_,b;p?(d?m=Pu().dirname(m)+"/":m=__dirname+"/",y=function(j,te){return _||(_=require("fs")),b||(b=Pu()),j=b.normalize(j),_.readFileSync(j,te?null:"utf8")},w=function(j){var te=y(j,!0);return te.buffer||(te=new Uint8Array(te)),W(te.buffer),te},process.argv.length>1&&(c=process.argv[1].replace(/\\/g,"/")),l=process.argv.slice(2),process.on("uncaughtException",function(j){if(!(j instanceof Ll))throw j}),process.on("unhandledRejection",Wa),u=function(j){process.exit(j)},s.inspect=function(){return"[Emscripten Module object]"}):f?(typeof read!="undefined"&&(y=function(j){return read(j)}),w=function(j){var te;return typeof readbuffer=="function"?new Uint8Array(readbuffer(j)):(te=read(j,"binary"),W(typeof te=="object"),te)},typeof scriptArgs!="undefined"?l=scriptArgs:typeof arguments!="undefined"&&(l=arguments),typeof quit=="function"&&(u=function(j){quit(j)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||d)&&(d?m=self.location.href:document.currentScript&&(m=document.currentScript.src),r&&(m=r),m.indexOf("blob:")!==0?m=m.substr(0,m.lastIndexOf("/")+1):m="",y=function(j){var te=new XMLHttpRequest;return te.open("GET",j,!1),te.send(null),te.responseText},d&&(w=function(j){var te=new XMLHttpRequest;return te.open("GET",j,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),g=function(j,te,Ie){var Re=new XMLHttpRequest;Re.open("GET",j,!0),Re.responseType="arraybuffer",Re.onload=function(){if(Re.status==200||Re.status==0&&Re.response){te(Re.response);return}Ie()},Re.onerror=Ie,Re.send(null)},x=function(j){document.title=j});var S=s.print||console.log.bind(console),T=s.printErr||console.warn.bind(console);for(o in i)i.hasOwnProperty(o)&&(s[o]=i[o]);i=null,s.arguments&&(l=s.arguments),s.thisProgram&&(c=s.thisProgram),s.quit&&(u=s.quit);var N;s.wasmBinary&&(N=s.wasmBinary);var C;s.noExitRuntime&&(C=s.noExitRuntime),typeof WebAssembly!="object"&&T("no native wasm support detected");var $,D=new WebAssembly.Table({initial:151,maximum:151+0,element:"anyfunc"}),O=!1,V=0;function W(j,te){j||Wa("Assertion failed: "+te)}function K(j){var te=s["_"+j];return W(te,"Cannot call unknown function "+j+", make sure it is exported"),te}function X(j,te,Ie,Re,rt){var Tt={string:function(zn){var ca=0;if(zn!=null&&zn!==0){var ih=(zn.length<<2)+1;ca=Pl(ih),ne(zn,ca,ih)}return ca},array:function(zn){var ca=Pl(zn.length);return he(zn,ca),ca}};function Ze(zn){return te==="string"?J(zn):te==="boolean"?Boolean(zn):zn}var qe=K(j),Bt=[],qr=0;if(Re)for(var Xr=0;Xr<Re.length;Xr++){var sh=Tt[Ie[Xr]];sh?(qr===0&&(qr=zl()),Bt[Xr]=sh(Re[Xr])):Bt[Xr]=Re[Xr]}var Bl=qe.apply(null,Bt);return Bl=Ze(Bl),qr!==0&&nh(qr),Bl}function ee(j,te,Ie,Re){Ie=Ie||[];var rt=Ie.every(function(Ze){return Ze==="number"}),Tt=te!=="string";return Tt&&rt&&!Re?K(j):function(){return X(j,te,Ie,arguments,Re)}}var Z=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ae(j,te,Ie){for(var Re=te+Ie,rt=te;j[rt]&&!(rt>=Re);)++rt;if(rt-te>16&&j.subarray&&Z)return Z.decode(j.subarray(te,rt));for(var Tt="";te<rt;){var Ze=j[te++];if(!(Ze&128)){Tt+=String.fromCharCode(Ze);continue}var qe=j[te++]&63;if((Ze&224)==192){Tt+=String.fromCharCode((Ze&31)<<6|qe);continue}var Bt=j[te++]&63;if((Ze&240)==224?Ze=(Ze&15)<<12|qe<<6|Bt:Ze=(Ze&7)<<18|qe<<12|Bt<<6|j[te++]&63,Ze<65536)Tt+=String.fromCharCode(Ze);else{var qr=Ze-65536;Tt+=String.fromCharCode(55296|qr>>10,56320|qr&1023)}}return Tt}function J(j,te){return j?ae(Ae,j,te):""}function oe(j,te,Ie,Re){if(!(Re>0))return 0;for(var rt=Ie,Tt=Ie+Re-1,Ze=0;Ze<j.length;++Ze){var qe=j.charCodeAt(Ze);if(qe>=55296&&qe<=57343){var Bt=j.charCodeAt(++Ze);qe=65536+((qe&1023)<<10)|Bt&1023}if(qe<=127){if(Ie>=Tt)break;te[Ie++]=qe}else if(qe<=2047){if(Ie+1>=Tt)break;te[Ie++]=192|qe>>6,te[Ie++]=128|qe&63}else if(qe<=65535){if(Ie+2>=Tt)break;te[Ie++]=224|qe>>12,te[Ie++]=128|qe>>6&63,te[Ie++]=128|qe&63}else{if(Ie+3>=Tt)break;te[Ie++]=240|qe>>18,te[Ie++]=128|qe>>12&63,te[Ie++]=128|qe>>6&63,te[Ie++]=128|qe&63}}return te[Ie]=0,Ie-rt}function ne(j,te,Ie){return oe(j,Ae,te,Ie)}function he(j,te){me.set(j,te)}var le,me,Ae,we,Se,Ce,De,je,Be;function Qe(j){le=j,s.HEAP8=me=new Int8Array(j),s.HEAP16=we=new Int16Array(j),s.HEAP32=Ce=new Int32Array(j),s.HEAPU8=Ae=new Uint8Array(j),s.HEAPU16=Se=new Uint16Array(j),s.HEAPU32=De=new Uint32Array(j),s.HEAPF32=je=new Float32Array(j),s.HEAPF64=Be=new Float64Array(j)}var st=s.INITIAL_MEMORY||16777216;function Ue(j){for(;j.length>0;){var te=j.shift();if(typeof te=="function"){te(s);continue}var Ie=te.func;typeof Ie=="number"?te.arg===void 0?s.dynCall_v(Ie):s.dynCall_vi(Ie,te.arg):Ie(te.arg===void 0?null:te.arg)}}var ot=[],lt=[],On=[],et=[],xn=!1,Xt=!1;function wn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)kr(s.preRun.shift());Ue(ot)}function qn(){xn=!0,Ue(lt)}function hn(){Ue(On)}function nn(){Xt=!0}function Xn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)_n(s.postRun.shift());Ue(et)}function kr(j){ot.unshift(j)}function _n(j){et.unshift(j)}var wi=Math.ceil,El=Math.floor,ur=0,Kn=null,cr=null;function _i(j){ur++,s.monitorRunDependencies&&s.monitorRunDependencies(ur)}function bi(j){if(ur--,s.monitorRunDependencies&&s.monitorRunDependencies(ur),ur==0&&(Kn!==null&&(clearInterval(Kn),Kn=null),cr)){var te=cr;cr=null,te()}}s.preloadedImages={},s.preloadedAudios={};function Wa(j){throw s.onAbort&&s.onAbort(j),j+="",S(j),T(j),O=!0,V=1,j="abort("+j+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(j)}function Cl(j,te){return String.prototype.startsWith?j.startsWith(te):j.indexOf(te)===0}var n1="data:application/octet-stream;base64,";function Rl(j){return Cl(j,n1)}var Wc="file://";function Fl(j){return Cl(j,Wc)}var Zn="tfjs-backend-wasm.wasm";Rl(Zn)||(Zn=A(Zn));function Bc(){try{if(N)return new Uint8Array(N);if(w)return w(Zn);throw"both async and sync fetching of the wasm failed"}catch(j){Wa(j)}}function r1(){return!N&&(h||d)&&typeof fetch=="function"&&!Fl(Zn)?fetch(Zn,{credentials:"same-origin"}).then(function(j){if(!j.ok)throw"failed to load wasm binary file at '"+Zn+"'";return j.arrayBuffer()}).catch(function(){return Bc()}):new Promise(function(j,te){j(Bc())})}function a1(){var j={env:Gr,wasi_snapshot_preview1:Gr};function te(Ze,qe){var Bt=Ze.exports;s.asm=Bt,$=Bt.memory,Qe($.buffer),bi("wasm-instantiate")}_i("wasm-instantiate");function Ie(Ze){te(Ze.instance)}function Re(Ze){return r1().then(function(qe){return WebAssembly.instantiate(qe,j)}).then(Ze,function(qe){T("failed to asynchronously prepare wasm: "+qe),Wa(qe)})}function rt(){if(!N&&typeof WebAssembly.instantiateStreaming=="function"&&!Rl(Zn)&&!Fl(Zn)&&typeof fetch=="function")fetch(Zn,{credentials:"same-origin"}).then(function(Ze){var qe=WebAssembly.instantiateStreaming(Ze,j);return qe.then(Ie,function(Bt){T("wasm streaming compile failed: "+Bt),T("falling back to ArrayBuffer instantiation"),Re(Ie)})});else return Re(Ie)}if(s.instantiateWasm)try{var Tt=s.instantiateWasm(j,te);return Tt}catch(Ze){return T("Module.instantiateWasm callback failed with error: "+Ze),!1}return rt(),{}}lt.push();function s1(j){Qe($.buffer)}var Ba={splitPath:function(j){var te=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return te.exec(j).slice(1)},normalizeArray:function(j,te){for(var Ie=0,Re=j.length-1;Re>=0;Re--){var rt=j[Re];rt==="."?j.splice(Re,1):rt===".."?(j.splice(Re,1),Ie++):Ie&&(j.splice(Re,1),Ie--)}if(te)for(;Ie;Ie--)j.unshift("..");return j},normalize:function(j){var te=j.charAt(0)==="/",Ie=j.substr(-1)==="/";return j=Ba.normalizeArray(j.split("/").filter(function(Re){return!!Re}),!te).join("/"),!j&&!te&&(j="."),j&&Ie&&(j+="/"),(te?"/":"")+j},dirname:function(j){var te=Ba.splitPath(j),Ie=te[0],Re=te[1];return!Ie&&!Re?".":(Re&&(Re=Re.substr(0,Re.length-1)),Ie+Re)},basename:function(j){if(j==="/")return"/";var te=j.lastIndexOf("/");return te===-1?j:j.substr(te+1)},extname:function(j){return Ba.splitPath(j)[3]},join:function(){var j=Array.prototype.slice.call(arguments,0);return Ba.normalize(j.join("/"))},join2:function(j,te){return Ba.normalize(j+"/"+te)}},vi={mappings:{},buffers:[null,[],[]],printChar:function(j,te){var Ie=vi.buffers[j];te===0||te===10?((j===1?S:T)(ae(Ie,0)),Ie.length=0):Ie.push(te)},varargs:void 0,get:function(){vi.varargs+=4;var j=Ce[vi.varargs-4>>2];return j},getStr:function(j){var te=J(j);return te},get64:function(j,te){return j}};function i1(j){return 0}function jr(j,te,Ie,Re,rt){}function Ml(j,te,Ie,Re){for(var rt=0,Tt=0;Tt<Ie;Tt++){for(var Ze=Ce[te+Tt*8>>2],qe=Ce[te+(Tt*8+4)>>2],Bt=0;Bt<qe;Bt++)vi.printChar(j,Ae[Ze+Bt]);rt+=qe}return Ce[Re>>2]=rt,0}function Va(j){rh(j)}function o1(j){Va(j)}function l1(j){return j=+j,j>=0?+El(j+.5):+wi(j-.5)}var Gr={emscripten_notify_memory_growth:s1,fd_close:i1,fd_seek:jr,fd_write:Ml,proc_exit:o1,roundf:l1},$l=a1();s.asm=$l;var u1=s._init=function(){return(u1=s._init=s.asm.init).apply(null,arguments)},Vc=s._register_tensor=function(){return(Vc=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},c1=s._dispose_data=function(){return(c1=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},Uc=s._dispose=function(){return(Uc=s._dispose=s.asm.dispose).apply(null,arguments)},Yn=s._Abs=function(){return(Yn=s._Abs=s.asm.Abs).apply(null,arguments)},Hc=s._Add=function(){return(Hc=s._Add=s.asm.Add).apply(null,arguments)},h1=s._AddN=function(){return(h1=s._AddN=s.asm.AddN).apply(null,arguments)},d1=s._ArgMax=function(){return(d1=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},p1=s._AvgPool=function(){return(p1=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},f1=s._BatchMatMul=function(){return(f1=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},jc=s._ClipByValue=function(){return(jc=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},Gc=s._Conv2D=function(){return(Gc=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},qc=s._Conv2DBackpropInput=function(){return(qc=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},ki=s._Cos=function(){return(ki=s._Cos=s.asm.Cos).apply(null,arguments)},Dl=s._CropAndResize=function(){return(Dl=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},Ii=s._Cumsum=function(){return(Ii=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Ni=s._DepthToSpace=function(){return(Ni=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},m1=s._DepthwiseConv2dNative=function(){return(m1=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},A1=s._Equal=function(){return(A1=s._Equal=s.asm.Equal).apply(null,arguments)},y1=s._Exp=function(){return(y1=s._Exp=s.asm.Exp).apply(null,arguments)},fe=s._FlipLeftRight=function(){return(fe=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},g1=s._Floor=function(){return(g1=s._Floor=s.asm.Floor).apply(null,arguments)},x1=s._FloorDiv=function(){return(x1=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},w1=s._FusedBatchNorm=function(){return(w1=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},_1=s._FusedConv2D=function(){return(_1=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},Ua=s._FusedDepthwiseConv2D=function(){return(Ua=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},b1=s._Gather=function(){return(b1=s._Gather=s.asm.Gather).apply(null,arguments)},v1=s._GatherNd=function(){return(v1=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},k1=s._Greater=function(){return(k1=s._Greater=s.asm.Greater).apply(null,arguments)},I1=s._GreaterEqual=function(){return(I1=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},N1=s._LeakyRelu=function(){return(N1=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},T1=s._Less=function(){return(T1=s._Less=s.asm.Less).apply(null,arguments)},S1=s._LessEqual=function(){return(S1=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},E1=s._Log=function(){return(E1=s._Log=s.asm.Log).apply(null,arguments)},C1=s._LogicalAnd=function(){return(C1=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},R1=s._Max=function(){return(R1=s._Max=s.asm.Max).apply(null,arguments)},la=s._MaxPool=function(){return(la=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},Ha=s._Maximum=function(){return(Ha=s._Maximum=s.asm.Maximum).apply(null,arguments)},Ti=s._Mean=function(){return(Ti=s._Mean=s.asm.Mean).apply(null,arguments)},F1=s._Min=function(){return(F1=s._Min=s.asm.Min).apply(null,arguments)},M1=s._Minimum=function(){return(M1=s._Minimum=s.asm.Minimum).apply(null,arguments)},$1=s._Multiply=function(){return($1=s._Multiply=s.asm.Multiply).apply(null,arguments)},D1=s._Neg=function(){return(D1=s._Neg=s.asm.Neg).apply(null,arguments)},Le=s._NonMaxSuppressionV3=function(){return(Le=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},O1=s._NonMaxSuppressionV4=function(){return(O1=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},z1=s._NonMaxSuppressionV5=function(){return(z1=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},P1=s._NotEqual=function(){return(P1=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},L1=s._OneHot=function(){return(L1=s._OneHot=s.asm.OneHot).apply(null,arguments)},W1=s._PadV2=function(){return(W1=s._PadV2=s.asm.PadV2).apply(null,arguments)},B1=s._Pow=function(){return(B1=s._Pow=s.asm.Pow).apply(null,arguments)},Ol=s._Prelu=function(){return(Ol=s._Prelu=s.asm.Prelu).apply(null,arguments)},Xc=s._Prod=function(){return(Xc=s._Prod=s.asm.Prod).apply(null,arguments)},Kc=s._RealDiv=function(){return(Kc=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},V1=s._Relu=function(){return(V1=s._Relu=s.asm.Relu).apply(null,arguments)},U1=s._Relu6=function(){return(U1=s._Relu6=s.asm.Relu6).apply(null,arguments)},H1=s._ResizeBilinear=function(){return(H1=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},j1=s._Reverse=function(){return(j1=s._Reverse=s.asm.Reverse).apply(null,arguments)},G1=s._RotateWithOffset=function(){return(G1=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},q1=s._Round=function(){return(q1=s._Round=s.asm.Round).apply(null,arguments)},He=s._Rsqrt=function(){return(He=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},X1=s._ScatterNd=function(){return(X1=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},K1=s._SelectV2=function(){return(K1=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},Z1=s._Sigmoid=function(){return(Z1=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},ja=s._Sin=function(){return(ja=s._Sin=s.asm.Sin).apply(null,arguments)},Si=s._Softmax=function(){return(Si=s._Softmax=s.asm.Softmax).apply(null,arguments)},Zc=s._Sqrt=function(){return(Zc=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Yc=s._Square=function(){return(Yc=s._Square=s.asm.Square).apply(null,arguments)},Jc=s._SquaredDifference=function(){return(Jc=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},Y1=s._Step=function(){return(Y1=s._Step=s.asm.Step).apply(null,arguments)},J1=s._StridedSlice=function(){return(J1=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},Qc=s._Sub=function(){return(Qc=s._Sub=s.asm.Sub).apply(null,arguments)},Q1=s._Sum=function(){return(Q1=s._Sum=s.asm.Sum).apply(null,arguments)},Ir=s._Tanh=function(){return(Ir=s._Tanh=s.asm.Tanh).apply(null,arguments)},ef=s._Tile=function(){return(ef=s._Tile=s.asm.Tile).apply(null,arguments)},tf=s._TopK=function(){return(tf=s._TopK=s.asm.TopK).apply(null,arguments)},eh=s._Transpose=function(){return(eh=s._Transpose=s.asm.Transpose).apply(null,arguments)},ua=s.__FusedMatMul=function(){return(ua=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},nf=s._malloc=function(){return(nf=s._malloc=s.asm.malloc).apply(null,arguments)},rf=s._free=function(){return(rf=s._free=s.asm.free).apply(null,arguments)},th=s.__start=function(){return(th=s.__start=s.asm._start).apply(null,arguments)},zl=s.stackSave=function(){return(zl=s.stackSave=s.asm.stackSave).apply(null,arguments)},Pl=s.stackAlloc=function(){return(Pl=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},nh=s.stackRestore=function(){return(nh=s.stackRestore=s.asm.stackRestore).apply(null,arguments)};s.asm=$l,s.cwrap=ee;var Ga;s.then=function(j){if(Ga)j(s);else{var te=s.onRuntimeInitialized;s.onRuntimeInitialized=function(){te&&te(),j(s)}}return s};function Ll(j){this.name="ExitStatus",this.message="Program terminated with exit("+j+")",this.status=j}var af=!1;cr=function j(){Ga||Wl(),Ga||(cr=j)};function sf(j){var te=s.__start;try{te();var Ie=0;rh(Ie,!0)}catch(rt){if(rt instanceof Ll)return;if(rt=="unwind"){C=!0;return}else{var Re=rt;rt&&typeof rt=="object"&&rt.stack&&(Re=[rt,rt.stack]),T("exception thrown: "+Re),u(1,rt)}}finally{af=!0}}function Wl(j){if(j=j||l,ur>0||(wn(),ur>0))return;function te(){Ga||(Ga=!0,s.calledRun=!0,!O&&(qn(),hn(),s.onRuntimeInitialized&&s.onRuntimeInitialized(),ah&&sf(j),Xn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),te()},1)):te()}s.run=Wl;function rh(j,te){te&&C&&j===0||(C||(O=!0,V=j,nn(),s.onExit&&s.onExit(j)),u(j,new Ll(j)))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();var ah=!0;return s.noInitialRun&&(ah=!1),C=!0,Wl(),a}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),A8=at((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var d=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=d-(u.c=d|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),d=u&&u.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var c=4022871197,u=function(h){h=String(h);for(var d=0;d<h.length;d++){c+=h.charCodeAt(d);var p=.02519603282416938*c;c=p>>>0,p-=c,p*=c,c=p>>>0,p-=c,c+=p*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),y8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var d=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^d^d>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),g8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(d^d<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,h==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),x8=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,d=c.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,c.i=d+1&7,f};function u(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.x&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),w8=at((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,d=c.X,p=c.i,f,m;return c.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,c.i=p,m+(h^h>>>16)|0};function u(h,d){var p,f,m,A,y,g=[],w=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,w=Math.max(w,d.length)),m=0,A=-32;A<w;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=f+y,m=p==0?m+1:0);for(m>=128&&(g[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],p=g[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,g[m]=f^p;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(h.X&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),_8=at((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var d=c.b,p=c.c,f=c.d,m=c.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,c.b=d=d<<20^d>>>12^p,c.c=p=p-f|0,c.d=f<<16^p>>>16^m,c.a=m-d|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h<u.length+20;h++)c.b^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,d=function(){return(u.next()>>>0)/4294967296};return d.double=function(){do var p=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=u.next,d.quick=d,h&&(typeof h=="object"&&i(h,u),d.state=function(){return i(u,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),b8=at((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",c=a.pow(s,i),u=a.pow(2,o),h=u*2,d=s-1,p;function f(_,b,S){var T=[];b=b==!0?{entropy:!0}:b||{};var N=g(y(b.entropy?[_,x(r)]:_==null?w():_,3),T),C=new m(T),$=function(){for(var D=C.g(i),O=c,V=0;D<u;)D=(D+V)*s,O*=s,V=C.g(1);for(;D>=h;)D/=2,O/=2,V>>>=1;return(D+V)/O};return $.int32=function(){return C.g(4)|0},$.quick=function(){return C.g(4)/4294967296},$.double=$,g(x(C.S),r),(b.pass||S||function(D,O,V,W){return W&&(W.S&&A(W,C),D.state=function(){return A(C,{})}),V?(a[l]=D,O):D})($,N,"global"in b?b.global:this==a,b.state)}function m(_){var b,S=_.length,T=this,N=0,C=T.i=T.j=0,$=T.S=[];for(S||(_=[S++]);N<s;)$[N]=N++;for(N=0;N<s;N++)$[N]=$[C=d&C+_[N%S]+(b=$[N])],$[C]=b;(T.g=function(D){for(var O,V=0,W=T.i,K=T.j,X=T.S;D--;)O=X[W=d&W+1],V=V*s+X[d&(X[W]=X[K=d&K+O])+(X[K]=O)];return T.i=W,T.j=K,V})(s)}function A(_,b){return b.i=_.i,b.j=_.j,b.S=_.S.slice(),b}function y(_,b){var S=[],T=typeof _,N;if(b&&T=="object")for(N in _)try{S.push(y(_[N],b-1))}catch(C){}return S.length?S:T=="string"?_:_+"\0"}function g(_,b){for(var S=_+"",T,N=0;N<S.length;)b[d&N]=d&(T^=b[d&N]*19)+S.charCodeAt(N++);return x(b)}function w(){try{var _;return p&&(_=p.randomBytes)?_=_(s):(_=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(_)),x(_)}catch(T){var b=n.navigator,S=b&&b.plugins;return[+new Date,n,S,n.screen,x(r)]}}function x(_){return String.fromCharCode.apply(0,_)}if(g(a.random(),r),typeof t=="object"&&t.exports){t.exports=f;try{p=om()}catch(_){}}else typeof define=="function"&&define.amd?define(function(){return f}):a["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}),m0=at((e,t)=>{var n=A8(),r=y8(),a=g8(),s=x8(),i=w8(),o=_8(),l=b8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),v8=at(()=>{}),k8="3.0.0",I8="3.0.0",N8="3.0.0",T8="3.0.0",S8="3.0.0",E8=1e-7,C8=1e-4,ch=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Ql=class{decComplexRef(e){}time(e){return Mr("time")}read(e){return Mr("read")}readSync(e){return Mr("readSync")}numDataIds(){return Mr("numDataIds")}disposeData(e){return Mr("disposeData")}write(e,t,n){return Mr("write")}move(e,t,n,r){return Mr("move")}memory(){return Mr("memory")}floatPrecision(){return Mr("floatPrecision")}epsilon(){return this.floatPrecision()===32?E8:C8}dispose(){return Mr("dispose")}};function Mr(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function A0(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function R8(e,t){if(e.length!==t.length)throw Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,a,s=0;for(;n>0;)s=Math.random()*n|0,n--,r=e[n],a=t[n],e[n]=e[s],t[n]=t[s],e[s]=r,t[s]=a}function Lu(e,t,n){return Math.max(e,Math.min(t,n))}function F8(e){return e%2==0?e:e+1}function M8(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function $8(e,t){let n=Math.random();return t*n+(1-n)*e}function D8(e,t){let n=0;for(let r=0;r<e.length;r++){let a=Number(e[r])-Number(t[r]);n+=a*a}return n}function M(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function en(e,t,n=""){M(ea(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Gs(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function qs(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||tn(e)&&!n)for(let r=0;r<e.length;++r)qs(e[r],t,n);else t.push(e);return t}function Ot(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function O8(e){return e.length===0}function ea(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Ht(e){return e%1==0}function z8(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function P8(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function L8(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return A0(t),t}function Wu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function W8(e,t=r=>0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function B8(e,t){let n=1,r=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function rr(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),M(e.every(r=>r>=-n&&r<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(r=>Ht(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function y0(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:rr(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function g0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function x0(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function w0(e,t){for(let n=0;n<e.length;n++){let r=e[n];if(isNaN(r)||!isFinite(r))throw Error(`A tensor of type ${t} being uploaded contains ${r}.`)}}function _0(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function V8(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function tn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function b0(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function v0(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function ba(e){return typeof e=="string"||e instanceof String}function k0(e){return typeof e=="boolean"}function I0(e){return typeof e=="number"}function Td(e){return Array.isArray(e)?Td(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":I0(e)?"float32":ba(e)?"string":k0(e)?"bool":"float32"}function va(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Sd(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Ko(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let r=t-3;r>=0;--r)n[r]=n[r+1]*e[r+1];return n}function N0(e,t,n){let r=new Array;if(t.length===1){let a=t[0];for(let s=0;s<a;s++)r[s]=n[e+s]}else{let a=t[0],s=t.slice(1),i=s.reduce((o,l)=>o*l);for(let o=0;o<a;o++)r[o]=N0(e+o*i,s,n)}return r}function Zo(e,t){if(e.length===0)return t[0];let n=e.reduce((r,a)=>r*a);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return N0(0,e,t)}function lm(e,t){let n=Ed(e,t);for(let r=0;r<n.length;r++)n[r]=1;return n}function Ed(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function U8(e,t){let n=e.reduce((r,a)=>r*a,1);if(t==null||t==="float32")return Zo(e,new Float32Array(n));if(t==="int32")return Zo(e,new Int32Array(n));if(t==="bool")return Zo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function um(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function H8(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a<e.length-1;++a)r+=n[a]*e[a];return r}function j8(e,t,n){if(t===0)return[];if(t===1)return[e];let r=new Array(t);for(let a=0;a<r.length-1;++a)r[a]=Math.floor(e/n[a]),e-=r[a]*n[a];return r[r.length-1]=e,r}function cm(e){return e&&e.then&&typeof e.then=="function"}var T0="tfjsflags",ag=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let r=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${r}.`),this.set(e,r)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(cm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=G8(this.global.location.search);T0 in e&&e[T0].split(",").forEach(t=>{let[n,r]=t.split(":");this.urlFlags[n]=q8(n,r)})}};function G8(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(X8(t,r[0],r[1]),r.join("="))),t}function X8(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function q8(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Q(){return bn}var bn=null;function K8(e){bn=e}var hm;function S0(){if(hm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");hm=e}return hm}function Z8(){let e=S0();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function dm(e,t){let n=Z8();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var Mi="Abs",$i="Acos",Di="Acosh",da="Add",Xa="AddN",hh="All",dh="Any",Ka="ArgMax",eu="ArgMin",Oi="Asin",zi="Asinh",Pi="Atan",Li="Atanh",Wi="Atan2",Za="AvgPool",ph="AvgPoolGrad",tu="AvgPool3D",fh="AvgPool3DGrad",Ya="BatchMatMul",nu="BatchToSpaceND",mh="Bincount",sg="BroadcastTo",Ja="Cast",Bi="Ceil",pa="ClipByValue",Ah="Complex",ru="ComplexAbs",Vi="Concat",Qa="Conv2D",yh="Conv2DBackpropFilter",es="Conv2DBackpropInput",au="Conv3D",gh="Conv3DBackpropFilterV2",xh="Conv3DBackpropInputV2",ts="Cos",Ui="Cosh",ns="Cumsum",Hi="CropAndResize",wh="DenseBincount",ji="DepthToSpace",rs="DepthwiseConv2dNative",_h="DepthwiseConv2dNativeBackpropFilter",bh="DepthwiseConv2dNativeBackpropInput",vh="Diag",su="Dilation2D",kh="Dilation2DBackpropInput",Ih="Dilation2DBackpropFilter",as="RealDiv",Gi="Elu",Nh="EluGrad",qi="Erf",Xi="Equal",ss="Exp",Ki="ExpandDims",Zi="Expm1",Th="FFT",iu="Fill",Yi="FlipLeftRight",is="Floor",os="FloorDiv",ls="FusedBatchNorm",Ji="GatherV2",Qi="GatherNd",eo="Greater",us="GreaterEqual",to="Identity",Sh="IFFT",Eh="Imag",no="IsFinite",ro="IsInf",ao="IsNan",cs="LeakyRelu",so="Less",io="LessEqual",Ch="LinSpace",hs="Log",oo="Log1p",lo="LogicalAnd",ou="LogicalNot",lu="LogicalOr",ig="LogSoftmax",uu="LRN",Rh="LRNGrad",ds="Max",ps="Maximum",fs="MaxPool",Fh="MaxPoolGrad",cu="MaxPool3D",Mh="MaxPool3DGrad",$h="MaxPoolWithArgmax",ms="Mean",As="Min",ys="Minimum",hu="MirrorPad",uo="Mod",Dh="Multinomial",gs="Multiply",co="Neg",ho="NotEqual",po="NonMaxSuppressionV3",fo="NonMaxSuppressionV4",mo="NonMaxSuppressionV5",Ao="OnesLike",xs="OneHot",yo="Pack",ws="PadV2",qv="Pool",_s="Pow",bs="Prelu",go="Prod",du="Range",Oh="Real",xo="Reciprocal",vs="Relu",wo="Reshape",pu="ResizeNearestNeighbor",zh="ResizeNearestNeighborGrad",ks="ResizeBilinear",Ph="ResizeBilinearGrad",Is="Relu6",Ns="Reverse",Ts="Round",Ss="Rsqrt",_o="ScatterNd",bo="Select",vo="Selu",ko="Slice",Es="Sin",Io="Sinh",No="Sign",Cs="Sigmoid",To="Softplus",Rs="Sqrt",Fs="Sum",fu="SpaceToBatchND",So="SplitV",Ms="Softmax",$s="SquaredDifference",mu="Square",Ds="Sub",Lh="SparseToDense",Eo="StridedSlice",Co="Tan",Os="Tanh",fa="Tile",Ro="TopK",zs="Transpose",Wh="Unique",Fo="Unpack",Au="UnsortedSegmentSum",Mo="ZerosLike",ma="Step",Bh="FromPixels",$o="RotateWithOffset",Ps="_FusedMatMul",Ls="FusedConv2D",Ws="FusedDepthwiseConv2D",Yo=dm("kernelRegistry",()=>new Map),Bu=dm("gradRegistry",()=>new Map);function Vh(e,t){let n=pm(e,t);return Yo.get(n)}function Af(e){return Bu.get(e)}function yu(e){let t=Yo.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function Do(e){let{kernelName:t,backendName:n}=e,r=pm(t,n);Yo.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Yo.set(r,e)}function og(e){let{kernelName:t}=e;Bu.has(t)&&Q().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Bu.set(t,e)}function Xv(e,t){let n=pm(e,t);if(!Yo.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Yo.delete(n)}function Kv(e){if(!Bu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Bu.delete(e)}function Zv(e,t){yu(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});Do(r)})}function pm(e,t){return`${t}_${e}`}var k={};ze(k,{arraysEqual:()=>ea,assert:()=>M,assertNonNegativeIntegerDimensions:()=>um,assertNonNull:()=>Gs,assertShapesMatch:()=>en,bytesFromStringArray:()=>v0,bytesPerElement:()=>b0,checkConversionForErrors:()=>w0,clamp:()=>Lu,computeStrides:()=>Ko,createScalarValue:()=>Y8,createShuffledIndices:()=>L8,decodeString:()=>Rd,distSquared:()=>D8,encodeString:()=>Vu,fetch:()=>J8,flatten:()=>qs,getArrayFromDType:()=>x0,getTypedArrayFromDType:()=>g0,hasEncodingLoss:()=>V8,indexToLoc:()=>j8,inferDtype:()=>Td,inferFromImplicitShape:()=>B8,isBoolean:()=>k0,isFunction:()=>va,isInt:()=>Ht,isNumber:()=>I0,isPromise:()=>cm,isScalarShape:()=>O8,isString:()=>ba,isTypedArray:()=>tn,isValidDtype:()=>_0,locToIndex:()=>H8,makeOnesTypedArray:()=>lm,makeZerosNestedTypedArray:()=>U8,makeZerosTypedArray:()=>Ed,nearestDivisor:()=>Sd,nearestLargerEven:()=>F8,now:()=>fm,parseAxisParam:()=>rr,randUniform:()=>$8,repeatedTry:()=>W8,rightPad:()=>Wu,shuffle:()=>A0,shuffleCombo:()=>R8,sizeFromShape:()=>Ot,sizeToSquarishShape:()=>P8,squeezeShape:()=>y0,sum:()=>M8,tanh:()=>z8,toNestedArray:()=>Zo,toTypedArray:()=>Cd});function Y8(e,t){return t==="string"?Vu(e):Cd([e],t)}function Q8(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Cd(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=qs(e)),Q().getBool("DEBUG")&&w0(e,t),Q8(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r<n.length;++r)Math.round(e[r])!==0&&(n[r]=1);return n}else throw new Error(`Unknown data type ${t}`)}function fm(){return Q().platform.now()}function J8(e,t){return Q().platform.fetch(e,t)}function Vu(e,t="utf-8"){return t=t||"utf-8",Q().platform.encode(e,t)}function Rd(e,t="utf-8"){return t=t||"utf-8",Q().platform.decode(e,t)}var nk=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new tk)}profileKernel(e,t,n){let r,a=()=>{r=n()},s=this.backendTimer.time(a);if(Q().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let i=0;i<r.length;i++){let o=r[i];o.data().then(l=>{ek(l,o.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(i=>i.kernelMs),extraInfo:s.then(i=>i.getExtraProfileInfo!=null?i.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function ek(e,t,n){if(t!=="float32")return!1;for(let r=0;r<e.length;r++){let a=e[r];if(isNaN(a)||!isFinite(a))return console.warn(`Found ${a} in the result of '${n}'`),!0}return!1}var tk=class{logKernelProfile(e,t,n,r,a,s){let i=typeof r=="number"?Wu(`${r}ms`,9):r.error,o=Wu(e,25),l=t.rank,c=t.size,u=Wu(t.shape.toString(),14),h="";for(let d in a){let p=a[d];if(p!=null){let f=p.shape||t.shape,m=f.length;h+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${c} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function rk(e,t,n){let r={},a={};for(let l=0;l<t.length;l++)r[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let h in u){let d=u[h],p=!1;for(let f=0;f<t.length;f++)if(r[d.id]){c.outputs.forEach(m=>r[m.id]=!0),p=!0,a[c.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let h=0;h<c.outputs.length;h++)if(s[c.outputs[h].id]){for(let d in u)s[u[d].id]=!0,i[c.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let c=e[l];if(a[c.id]&&i[c.id]){let u={};for(let d in c.inputs){let p=c.inputs[d];r[p.id]&&(u[d]=p)}let h=Object.assign({},c);h.inputs=u,h.outputs=c.outputs,o.push(h)}}return o}function ak(e,t,n,r){for(let a=t.length-1;a>=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let c=e[l.id];c!=null?i.push(c):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let c=n(()=>o[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=s.inputs[l];if(!ea(c.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let h=e[u.id];e[u.id]=r(h,c),h.dispose()}}}}var E0=20,Uu=3,mm=7;function ik(e,t,n,r){let a=Ko(t),s=sk(e,t,n,a),i=t.length,o=Fd(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(c=>" "+c).join(`
`)),l.join(`
`)}function sk(e,t,n,r){let a=Ot(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?ju(e):e;if(o>1)for(let c=0;c<a/s;c++){let u=c*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],Hu(l[u+h],0,n).length)}return i}function Hu(e,t,n){let r;return Array.isArray(e)?r=`${parseFloat(e[0].toFixed(mm))} + ${parseFloat(e[1].toFixed(mm))}j`:ba(e)?r=`'${e}'`:n==="bool"?r=C0(e):r=parseFloat(e.toFixed(mm)).toString(),Wu(r,t)}function C0(e){return e===0?"false":"true"}function Fd(e,t,n,r,a,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=ju(e);return[Hu(m[0],0,n)]}return n==="bool"?[C0(e[0])]:[e[0].toString()]}if(l===1){if(o>E0){let A=Uu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-Uu)*i,o*i));return n==="complex64"&&(y=ju(y),g=ju(g)),["["+y.map((w,x)=>Hu(w,a[x],n)).join(", ")+", ..., "+g.map((w,x)=>Hu(w,a[o-Uu+x],n)).join(", ")+"]"]}let m=n==="complex64"?ju(e):Array.from(e);return["["+m.map((A,y)=>Hu(A,a[y],n)).join(", ")+"]"]}let c=t.slice(1),u=r.slice(1),h=r[0]*i,d=[];if(o>E0){for(let m=0;m<Uu;m++){let A=m*h,y=A+h;d.push(...Fd(e.slice(A,y),c,n,u,a,!1))}d.push("...");for(let m=o-Uu;m<o;m++){let A=m*h,y=A+h;d.push(...Fd(e.slice(A,y),c,n,u,a,m===o-1))}}else for(let m=0;m<o;m++){let A=m*h,y=A+h;d.push(...Fd(e.slice(A,y),c,n,u,a,m===o-1))}let p=l===2?",":"";d[0]="["+d[0]+p;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+p;let f=`,
`;for(let m=2;m<l;m++)f+=`
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":f),d}function ju(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var $t=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Ot(e),n!=null){let r=n.length;M(r===this.size,()=>`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||x0(t,this.size),this.strides=Ko(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;r<e.length-1;++r)n+=this.strides[r]*e[r];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return $r().makeTensor(this.values,this.shape,this.dtype)}},$r=null,Jo=null,ok=null;function lk(e){$r=e}function uk(e){Jo=e}function ck(e){ok=e}var tt=class{constructor(e,t,n,r){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Ot(e),this.strides=Ko(e),this.dataId=n,this.id=r,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Jo.buffer(this.shape,this.dtype,e)}bufferSync(){return Jo.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Zo(this.shape,e)}arraySync(){return Zo(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=$r().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Rd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=$r().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Rd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await $r().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||($r().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Jo.print(this,e)}clone(){return this.throwIfDisposed(),Jo.clone(this)}toString(e=!1){let t=this.dataSync();return ik(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Jo.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),$r().makeVariable(this,e,t,n)}};Object.defineProperty(tt,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Y(){return dm("Tensor",()=>tt)}Y();var gu=class extends tt{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!ea(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);$r().disposeTensor(this),this.dataId=e.dataId,$r().incRef(this,null)}dispose(){$r().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(gu,Symbol.hasInstance,{value:e=>e instanceof tt&&e.assign!=null&&e.assign instanceof Function});var pr={};ze(pr,{assertTypesMatch:()=>R0,getTensorsInContainer:()=>Am,isTensorInList:()=>hk,makeTypesMatch:()=>It});var yf;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(yf||(yf={}));var ym;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(ym||(ym={}));var gm;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(gm||(gm={}));var xm;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(xm||(xm={}));var wm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(wm||(wm={}));var dk={float32:xm,int32:ym,bool:gm,complex64:wm};function Qn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return dk[e][t]}function Uh(e){return Qn(e,"int32")}function It(e,t){if(e.dtype===t.dtype)return[e,t];let n=Qn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function R0(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function hk(e,t){return t.some(n=>n.id===e.id)}function Am(e){let t=[],n=new Set;return F0(e,t,n),t}function F0(e,t,n){if(e==null)return;if(e instanceof tt){t.push(e);return}if(!pk(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),F0(s,t,n))}}function pk(e){return Array.isArray(e)||typeof e=="object"}function _m(e){return e.kernelName!=null}var M0=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Gu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new M0}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new nk(this.backendInstance),!0}setupRegisteredKernels(){yu(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){yu(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Ql)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(r<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=a,{success:a,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:r,asyncInit:a}=this.initializeBackend(n);if(a||r)return{name:n,asyncInit:a}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),r=n.backend,a=this.readSync(t);r.disposeData(t),n.backend=e,e.move(t,a,n.shape,n.dtype),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let r;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Gu.nextTensorId++}nextVariableId(){return Gu.nextVariableId++}clone(e){let t=this.makeTensorFromDataId(e.dataId,e.shape,e.dtype),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return P.runKernel(Ja,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(Vh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=_m(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(_m(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let A=Vh(p,this.backendName);M(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:f,attrs:m,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let w=g.map(x=>{if(x.rank!=null)return x;let{dataId:_,shape:b,dtype:S}=x;return this.makeTensorFromDataId(_,b,S)});if(r){let x=this.getTensorsForGradient(p,f,w);n=this.saveTensorsForBackwardMode(x)}return w}}else{let{forwardFunc:p}=e,f=m=>{!r||(n=m.map(A=>this.keep(this.clone(A))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,f));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,A),A}}let{inputs:c,attrs:u}=e,h=_m(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,c,t,h,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(p=>c[p]!=null?c[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=Af(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&ba(e[0])&&(a=e.map(o=>Vu(o)));let s=r.write(a,t,n),i=new tt(t,n,s,this.nextTensorId());if(this.incRef(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=v0(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new tt(t,n,e,this.nextTensorId());return this.incRef(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new gu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}incRef(e,t){let n=this.state.tensorInfo.has(e.dataId)?this.state.tensorInfo.get(e.dataId).refCount:0;if(this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++,n===0){this.state.numDataBuffers++;let r=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(r=e.size*b0(e.dtype)),this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:r,refCount:0}),this.state.numBytes+=r}this.state.tensorInfo.get(e.dataId).refCount++,e instanceof gu||this.track(e)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;this.state.numTensors--,e.dtype==="string"&&this.state.numStringTensors--;let t=this.state.tensorInfo.get(e.dataId);t.refCount<=1?(e.dtype!=="complex64"&&(this.state.numBytes-=t.bytes),this.state.numDataBuffers--,t.backend.disposeData(e.dataId),this.state.tensorInfo.delete(e.dataId)):(t.backend.decComplexRef(e.dataId),this.state.tensorInfo.get(e.dataId).refCount--)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=Af(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let h=n[u],d=Ed(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return c}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Am(e),n=new Set(t.map(a=>a.id));for(let a=0;a<this.state.activeScope.track.length;a++){let s=this.state.activeScope.track[a];!s.kept&&!n.has(s.id)&&s.dispose()}let r=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(a=>{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(a instanceof tt,()=>"The result y returned by f() must be a tensor.");let s=rk(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?fk(a.shape):n,ak(i,s,l=>this.tidy(l),mk);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return M(va(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(i=>i instanceof tt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),M(n.value instanceof tt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(va(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];M(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(c.every(h=>h instanceof tt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((h,d)=>{u[d]=()=>h}),u};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=fm(),n=await this.backend.time(e);return n.wallMs=fm()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new M0;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Gu.nextTensorId=0;Gu.nextVariableId=0;function fk(e){let t=lm(Ot(e),"float32");return P.makeTensor(t,e,"float32")}function $0(){let e=S0();if(e._tfengine==null){let t=new ag(e);e._tfengine=new Gu(t)}return K8(e._tfengine.ENV),lk(()=>e._tfengine),e._tfengine}var P=$0();function mk(e,t){let n={a:e,b:t};return P.runKernel(da,n)}var Hh={};ze(Hh,{isBrowser:()=>D0,isMobile:()=>Ak});function yk(){return typeof navigator!="undefined"&&navigator!=null}function Ak(){if(yk()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function D0(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Dr=Q();Dr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Dr.registerFlag("IS_BROWSER",()=>D0());Dr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Dr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Dr.registerFlag("PROD",()=>!1);Dr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Dr.getBool("DEBUG"));Dr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Dr.registerFlag("IS_TEST",()=>!1);Dr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function Or(e,t){let n=e;if(tn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||tn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&Q().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&O0(e,r,[]),r}function O0(e,t,n){if(n=n||[],!Array.isArray(e)&&!tn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a<e.length;++a)O0(e[a],r,n.concat(a))}function z0(e,t,n,r){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${r}' must be ${e} tensor, but got ${t} tensor`)}}function F(e,t,n,r="numeric"){if(e instanceof tt)return z0(r,e.dtype,t,n),e;let a=Td(e);if(a!=="string"&&["bool","int32","float32"].indexOf(r)>=0&&(a=r),z0(r,a,t,n),e==null||!tn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Or(e,a);!tn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?Cd(e,a):qs(e,[],!0);return P.makeTensor(i,s,a)}function qu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>F(a,`${t}[${s}]`,n,r))}var lg="__op";function L(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+lg;let a=(...s)=>{P.startScope(n);try{let i=r(...s);return cm(i)&&console.error("Cannot return a Promise inside of tidy."),P.endScope(i),i}catch(i){throw P.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function gk(e,t){let n=F(e,"real","complex"),r=F(t,"imag","complex");en(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return P.runKernel(Ah,a)}var Aa=L({complex_:gk});function ka(e,t,n,r){if(r==null&&(r=Td(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!tn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){um(t);let a=Ot(t),s=Ot(n);M(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Ot(t.slice(i)):!0;M(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!tn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?Cd(e,r):qs(e,[],!0),P.makeTensor(e,t,r)}function fr(e,t,n){let r=Or(e,n);return ka(e,t,r,n)}var bm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Md=4;async function wk(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<a.length;++i){let o=a[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let c={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async h=>{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+Md*d.length,f=new Uint8Array(p),m=0;for(let A=0;A<d.length;A++){let y=d[A],g=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(g,m),m+=Md,f.set(y,m),m+=y.length}h(f)});r.push(u)}else r.push(l.data());t!=null&&(c.group=t),n.push(c)}let s=await Promise.all(r);return{data:xk(s),specs:n}}function P0(e,t){let n={},r,a=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,c=Ot(l),u;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=bm[h.dtype],p=e.slice(a,a+c*d),f=h.dtype==="uint8"?new Uint8Array(p):new Uint16Array(p);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){u=new Float32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];u[m]=A*h.scale+h.min}}else if(h.dtype==="float16")r===void 0&&(r=_k()),u=r(f);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);u=new Int32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];u[m]=Math.round(A*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=c*d}else if(o==="string"){let h=Ot(s.shape);u=[];for(let d=0;d<h;d++){let p=new Uint32Array(e.slice(a,a+Md))[0];a+=Md;let f=new Uint8Array(e.slice(a,a+p));u.push(f),a+=p}}else{let h=bm[o],d=e.slice(a,a+c*h);if(o==="float32")u=new Float32Array(d);else if(o==="int32")u=new Int32Array(d);else if(o==="bool")u=new Uint8Array(d);else if(o==="complex64"){u=new Float32Array(d);let p=new Float32Array(u.length/2),f=new Float32Array(u.length/2);for(let y=0;y<p.length;y++)p[y]=u[y*2],f[y]=u[y*2+1];let m=fr(p,l,"float32"),A=fr(f,l,"float32");n[i]=Aa(m,A),m.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=c*h}o!=="complex64"&&(n[i]=fr(u,l,o))}return n}function xk(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var vm=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function L0(e){return vm?Buffer.byteLength(e):new Blob([e]).size}function bk(e){if(vm)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r<a;r++)n+=String.fromCharCode(t[r]);return btoa(n)}function vk(e){if(vm){let r=Buffer.from(e,"base64");return r.buffer.slice(r.byteOffset,r.byteOffset+r.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let r=0;r<t.length;++r)n.set([t.charCodeAt(r)],r);return n.buffer}function km(e){if(e.length===1)return e[0];let t=0;e.forEach(a=>{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function W0(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Xu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:L0(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:L0(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function kk(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function Ik(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function Nk(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function _k(){let e=kk(),t=Ik(),n=Nk();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i<r.length;i++){let o=r[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var St=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return St.instance==null&&(St.instance=new St),St.instance}static registerSaveRouter(e){St.getInstance().saveRouters.push(e)}static registerLoadRouter(e){St.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return St.getHandlers(e,"save")}static getLoadHandlers(e,t){return St.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?St.getInstance().loadRouters:St.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},Tk=e=>St.registerSaveRouter(e),Sk=e=>St.registerLoadRouter(e),Ek=e=>St.getSaveHandlers(e),Ck=(e,t)=>St.getLoadHandlers(e,t),Im="tensorflowjs",Nm=1,Xs="models_store",Ia="model_info_store";function B0(){if(!Q().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Tm(e){let t=e.result;t.createObjectStore(Xs,{keyPath:"modelPath"}),t.createObjectStore(Ia,{keyPath:"modelPath"})}var Ks=class{constructor(e){if(this.indexedDB=B0(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(Im,Nm);a.onupgradeneeded=()=>Tm(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(Xs,"readonly"),o=i.objectStore(Xs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=Xu(t),o=s.transaction(Ia,"readwrite"),l=o.objectStore(Ia),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(Xs,"readwrite");let h=u.objectStore(Xs).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(Ia);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=f=>(s.close(),r(h.error))}},c.onerror=h=>(s.close(),r(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};Ks.URL_SCHEME="indexeddb://";var V0=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ks.URL_SCHEME)?Rk(e.slice(Ks.URL_SCHEME.length)):null;St.registerSaveRouter(V0);St.registerLoadRouter(V0);function Rk(e){return new Ks(e)}function Fk(e){return e.startsWith(Ks.URL_SCHEME)?e.slice(Ks.URL_SCHEME.length):e}var Mk=class{constructor(){this.indexedDB=B0()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Im,Nm);n.onupgradeneeded=()=>Tm(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(Ia,"readonly"),s=a.objectStore(Ia).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=Fk(e),new Promise((t,n)=>{let r=this.indexedDB.open(Im,Nm);r.onupgradeneeded=()=>Tm(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(Ia,"readwrite"),i=s.objectStore(Ia),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=a.transaction(Xs,"readwrite");let h=l.objectStore(Xs).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};c.onsuccess=u,c.onerror=h=>(u(),a.close(),n(o.error))}},o.onerror=c=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},ta="/",Qo="tensorflowjs_models",U0="info",$k="model_topology",Dk="weight_specs",Ok="weight_data",zk="model_metadata";function H0(e){return{info:[Qo,e,U0].join(ta),topology:[Qo,e,$k].join(ta),weightSpecs:[Qo,e,Dk].join(ta),weightData:[Qo,e,Ok].join(ta),modelMetadata:[Qo,e,zk].join(ta)}}function Pk(e){let t=e.split(ta);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ta)}function Lk(e){return e.startsWith(Zs.URL_SCHEME)?e.slice(Zs.URL_SCHEME.length):e}var Zs=class{constructor(e){if(!Q().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=H0(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=Xu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,bk(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=vk(s),t}};Zs.URL_SCHEME="localstorage://";var j0=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Zs.URL_SCHEME)?Wk(e.slice(Zs.URL_SCHEME.length)):null;St.registerSaveRouter(j0);St.registerLoadRouter(j0);function Wk(e){return new Zs(e)}var Bk=class{constructor(){M(Q().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Qo+ta,n=ta+U0;for(let r=0;r<this.LS.length;++r){let a=this.LS.key(r);if(a.startsWith(t)&&a.endsWith(n)){let s=Pk(a);e[s]=JSON.parse(this.LS.getItem(a))}}return e}async removeModel(e){e=Lk(e);let t=H0(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},el="://",Vn=class{constructor(){this.managers={}}static getInstance(){return Vn.instance==null&&(Vn.instance=new Vn),Vn.instance}static registerManager(e,t){M(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(el)&&(e=e.slice(0,e.indexOf(el))),M(e.length>0,()=>"scheme must not be an empty string.");let n=Vn.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function $d(e){if(e.indexOf(el)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Vn.getSchemes().join(",")}`);return{scheme:e.split(el)[0],path:e.split(el)[1]}}async function G0(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=St.getLoadHandlers(e);M(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=St.getSaveHandlers(t);M(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=$d(e).scheme,l=$d(e).path,c=o===$d(e).scheme,u=await a.load();n&&c&&await Vn.getManager(o).removeModel(l);let h=await i.save(u);return n&&!c&&await Vn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function Vk(){let e=Vn.getSchemes(),t={};for(let n of e){let r=await Vn.getManager(n).listModels();for(let a in r){let s=n+el+a;t[s]=r[a]}}return t}async function Uk(e){let t=$d(e);return Vn.getManager(t.scheme).removeModel(t.path)}async function Hk(e,t){return G0(e,t,!1)}async function jk(e,t){return G0(e,t,!0)}var Gk=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Q().get("IS_BROWSER")){Q().setPlatform("browser",new Gk);try{Vn.registerManager(Zs.URL_SCHEME,new Bk)}catch(e){}try{Vn.registerManager(Ks.URL_SCHEME,new Mk)}catch(e){}}var qk={importFetch:()=>K4()},Sm,Xk=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Q().global.fetch!=null?Q().global.fetch(e,t):(Sm==null&&(Sm=qk.importFetch()),Sm(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Q().get("IS_NODE")&&Q().setPlatform("node",new Xk);function Ve(e,t="float32",n){return t=t||"float32",um(e),new $t(e,t,n)}function Kk(e,t){let n=F(e,"x","cast");if(!_0(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return P.runKernel(Ja,r,a)}var ye=L({cast_:Kk});function Zk(e){let t={x:F(e,"x","clone","string_or_numeric")};return P.runKernel(to,t)}var Nr=L({clone_:Zk});function ug(e,t=!1){console.log(e.toString(t))}$0();var Yk={buffer:Ve,cast:ye,clone:Nr,print:ug};uk(Yk);var dn={};ze(dn,{browserFiles:()=>Jk,browserHTTPRequest:()=>e9,concatenateArrayBuffers:()=>km,copyModel:()=>Hk,decodeWeights:()=>P0,encodeWeights:()=>wk,fromMemory:()=>t9,getLoadHandlers:()=>Ck,getModelArtifactsInfoForJSON:()=>Xu,getSaveHandlers:()=>Ek,http:()=>Cm,isHTTPScheme:()=>Em,listModels:()=>Vk,loadWeights:()=>Qk,moveModel:()=>jk,registerLoadRouter:()=>Sk,registerSaveRouter:()=>Tk,removeModel:()=>Uk,weightsLoaderFactory:()=>q0,withSaveHandler:()=>n9});var r9="model",a9=".json",s9=".weights.bin";function X0(e){return new Promise(t=>setTimeout(t)).then(e)}var tl=class{constructor(e){if(!Q().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(tl.URL_SCHEME)&&(e=e.slice(tl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=r9),this.modelTopologyFileName=e+a9,this.weightDataFileName=e+s9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await X0(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await X0(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Xu(e)}}}};tl.URL_SCHEME="downloads://";var i9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let u=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(f=>{h.push(f),d.push(null)}),u.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(f=>{let m=new FileReader;m.onload=A=>{let y=A.target.result,g=h.indexOf(f);if(d[g]=y,d.indexOf(null)===-1){let w={modelTopology:o,weightSpecs:u,weightData:km(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(w.signature=i.signature),i.userDefinedMetadata!=null&&(w.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(w.modelInitializer=i.modelInitializer),n(w)}},m.onerror=A=>r(`Failed to weights data from file of path '${f}'.`),m.readAsArrayBuffer(c[f])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>W0(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=W0(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},l9=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(tl.URL_SCHEME)?o9(e.slice(tl.URL_SCHEME.length)):null;St.registerSaveRouter(l9);function o9(e="model"){return new tl(e)}function Jk(e){return new i9(e)}function K0(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(c=>{let u=n+ ++a/e.length*(r-n);return t(u),c}),l);function i(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),M(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function Z0(e,t){t==null&&(t={});let n=t.fetchFunc==null?Q().platform.fetch:t.fetchFunc,r=e.map(c=>n(c,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await K0(r,t.onProgress,a,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await K0(i,t.onProgress,o,l)}async function Qk(e,t="",n,r){return q0(a=>Z0(a,{requestInit:r}))(e,t,n)}function q0(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=bm[y]*Ot(A.shape),w=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:A,groupOffset:m,sizeBytes:g})};r!=null?r.forEach((x,_)=>{x===A.name&&(w(),i[_]=!0)}):w(),o.push(A.name),m+=g})}),!i.every(p=>p)){let p=r.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,f,m)=>(f&&p.push(m),p),[]),c=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),h={},d=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let w=0;w<f;w++)m+=u[d+w].byteLength;let A=new ArrayBuffer(m),y=new Uint8Array(A),g=0;for(let w=0;w<f;w++){let x=new Uint8Array(u[d+w]);y.set(x,g),g+=x.byteLength}s[p].forEach(w=>{let x=A.slice(w.groupOffset,w.groupOffset+w.sizeBytes),_=P0(x,[w.manifestEntry]);for(let b in _)h[b]=_[b]}),d+=f}),h}}var u9="application/octet-stream",c9="application/json",Rm=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Q().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:c9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:u9}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:Xu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let f=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?f+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":f+=" Please make sure the server is serving valid JSON for this request.",new Error(f)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;r!=null&&([c,u]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=h9(t),a=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(a+u+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await Z0(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,km(l)]}};Rm.URL_SCHEME_REGEX=/^https?:\/\//;function h9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Em(e){return e.match(Rm.URL_SCHEME_REGEX)!=null}var Y0=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Em(r)):n=Em(e),n)return Cm(e,t)}return null};St.registerSaveRouter(Y0);St.registerLoadRouter(Y0);function Cm(e,t){return new Rm(e,t)}function e9(e,t){return Cm(e,t)}var Fm=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},d9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function t9(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Fm(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Fm({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Fm({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function n9(e){return new d9(e)}var cg={};ze(cg,{confusionMatrix:()=>p9});function f9(e,t,n=!1,r=!1){let a=F(e,"a","matMul"),s=F(t,"b","matMul");[a,s]=It(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return P.runKernel(Ya,i,o)}var Xe=L({matMul_:f9});function m9(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:F(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return P.runKernel(xs,a,s)}var Oo=L({oneHot_:m9});function A9(e,t){let n=F(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{M(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return P.runKernel(zs,r,a)}var it=L({transpose_:A9});function y9(e,t,n){let r=F(e,"labels","confusionMatrix"),a=F(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),M(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),M(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=Oo(ye(r,"int32"),n),i=Oo(ye(a,"int32"),n),o=it(s),l=Xe(o,i);return ye(l,"int32")}var p9=L({confusionMatrix_:y9}),Jl={};ze(Jl,{fromPixels:()=>x9,toPixels:()=>g9});function mf(e,t,n){if(Gs(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Or(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ka(e,t,r,n)}var nl;function w9(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Vh(Bh,P.backendName)!=null){let d={pixels:e},p={numChannels:t};return P.runKernel(Bh,d,p)}let[l,c]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:r||n?u=e.data:(s||a||o)&&(nl==null&&(nl=document.createElement("canvas").getContext("2d")),nl.canvas.width=l,nl.canvas.height=c,nl.drawImage(e,0,0,l,c),u=nl.getImageData(0,0,l,c).data);let h;if(t===4)h=new Int32Array(u);else{let d=l*c;h=new Int32Array(d*t);for(let p=0;p<d;p++)for(let f=0;f<t;++f)h[p*t+f]=u[p*4+f]}return mf(h,[c,l,t],"int32")}async function g9(e,t){let n=F(e,"img","toPixels");if(!(e instanceof tt)){let c=n;n=ye(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[r,a]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let c=0;c<r*a;++c){let u=[0,0,0,255];for(let d=0;d<s;d++){let p=i[c*s+d];if(n.dtype==="float32"){if(p<0||p>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(u[0]=p*o,u[1]=p*o,u[2]=p*o):u[d]=p*o}let h=c*4;l[h+0]=Math.round(u[0]),l[h+1]=Math.round(u[1]),l[h+2]=Math.round(u[2]),l[h+3]=Math.round(u[3])}if(t!=null){t.width=a,t.height=r;let c=t.getContext("2d"),u=new ImageData(l,a,r);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var x9=L({fromPixels_:w9}),gf={};ze(gf,{prepareAndValidate:()=>J0});function J0(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Ot(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;h<a.length-1;++h)i*=a[h];let o=e.shape,l=a.slice();l.pop();let c=1;for(let h=s;h<n;++h)c*=o[h],l.push(o[h]);let u=[...Ko(e.shape).map(h=>h/c),1].slice(0,s);return[l,i,c,u]}var xf={};ze(xf,{calculateShapes:()=>Q0,validateInput:()=>$m,validateUpdateShape:()=>Mm});function Mm(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank<a)throw new Error(s+` update.rank < ${a}. `);if(e.length<r+(n.rank-a))throw new Error(s+` Output shape length < ${r+(n.rank-a)}`);if(n.rank!==a+e.length-r)throw new Error(s+` update.rank != ${a+e.length-r}`);for(let i=0;i<a;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-a;++i)if(n.shape[i+a]!==e[i+r])throw new Error(s+` updates.shape[${i+a}] (${n.shape[i+a]}) != shape[${i+a}] (${e[i+a]})`)}function $m(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Mm(n,t,e)}function Q0(e,t,n){let r=t.shape.length,a=r>1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;h<s;++h)i*=n[h];let o=a<1?1:a,l=Ot(t.shape)/o,c=[...Ko(n.slice(0,a)),1],u=Ot(n);return{sliceRank:a,numUpdates:l,sliceSize:i,strides:c,outputSize:u}}var an={};ze(an,{assertParamsValid:()=>_9,computeFlatOffset:()=>v9,computeOutShape:()=>e5,getNormalizedAxes:()=>n5,isSliceContinous:()=>b9,maskToAxes:()=>Dd,parseSliceParams:()=>l5,sliceInfo:()=>k9,startForAxis:()=>i5,startIndicesWithElidedDims:()=>r5,stopForAxis:()=>o5,stopIndicesWithElidedDims:()=>a5,stridesForAxis:()=>s5,stridesWithElidedDims:()=>t5});function _9(e,t,n){let r=e.shape.length;M(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),M(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a<r;++a)M(t[a]+n[a]<=e.shape[a],()=>`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function Dd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function e5(e,t,n){let r=[];for(let a=0;a<e.length;a++)r[a]=Math.ceil((t[a]-e[a])/n[a]);return r}function t5(e,t,n,r){let a=[...e];for(let s=a.length;s<r.length;s++)a.push(1);for(let s=0;s<n;s++)s===0?a[t]=1:(a.splice(t,0,1),a.pop());return a}function u5(e,t,n){return n<=e?n:n-(t-1)}function c5(e,t){let n=[];for(let r=0;r<e;r++)n.push(t+r);return n}function n5(e,t,n,r,a,s,i,o,l){let c=e.length,u=new Array(c),h=new Array(c),d=new Array(c);if(t.length&&n>0){let p=t[0],f=n+1;u=r5(i,p,f,r,e),h=a5(o,p,f,a,e),d=t5(s,p,f,e)}else for(let p=0;p<c;p++)u[p]=i5(i,r,s,e,p,l),h[p]=o5(o,a,s,e,p,l),d[p]=s5(s,p,l);return{begin:u,end:h,strides:d}}function r5(e,t,n,r,a){let s=[...a],i=c5(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=u5(t,n,o),c=r[l];e&1<<l&&(c=0),s[o]=c}return s}function a5(e,t,n,r,a){let s=[...a],i=c5(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=u5(t,n,o),c=r[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),s[o]=c}for(let o=0;o<s.length;o++){let l=a[o];s[o]<0&&(s[o]+=l),s[o]=Lu(0,s[o],a[o])}return s}function s5(e,t,n){let r=e[t];return(n&1<<t||r==null)&&(r=1),r}function i5(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=Lu(0,i,l-1),i}function o5(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=Lu(0,i,l):i=Lu(-1,i,l-1),i}function b9(e,t,n){let r=n.length;for(let a=0;a<n.length;a++)if(n[a]>1){r=a;break}for(let a=r+1;a<n.length;a++)if(t[a]>0||n[a]!==e[a])return!1;return!0}function v9(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r<e.length-1;r++)n+=e[r]*t[r];return n}function l5(e,t,n){let r,a=e.shape.length;typeof t=="number"?r=[t,...new Array(a-1).fill(0)]:t.length<a?r=t.concat(new Array(a-t.length).fill(0)):r=t.slice(),r.forEach(i=>{M(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.length<a?s=n.concat(new Array(a-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(M(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function k9(e,t,n,r,a,s,i,o,l){let c=t.slice(),u=n.slice(),h=r;r==null&&(h=new Array(c.length));let d=Dd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-c.length,f=Dd(o),m=e.slice();f.forEach(b=>{c[b]=0,u[b]=1,m.splice(b,0,1)});let{begin:A,end:y,strides:g}=n5(m,d,p,c,u,h,a,s,i);c=A,u=y,h=g;let w=Dd(l);w.forEach(b=>{u[b]=c[b]+1,h[b]=1});let x=e5(c,u,h),_=x.filter((b,S)=>w.indexOf(S)===-1);return{nonStrided:h.every(b=>b===1),$begin:c,$end:u,$strides:h,size:x,newShape:m,outShape:_}}var re={};ze(re,{Serializable:()=>h5,SerializationMap:()=>Ys,registerClass:()=>Na});var h5=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Ys=class{constructor(){this.classNameMap={}}static getMap(){return Ys.instance==null&&(Ys.instance=new Ys),Ys.instance}static register(e){Ys.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Na(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ys.register(e)}var hg={};ze(hg,{TEST_EPSILON_FLOAT16:()=>d5,encodeStrings:()=>p5,expectArrayBuffersEqual:()=>C9,expectArraysClose:()=>I9,expectArraysEqual:()=>T9,expectNumbersClose:()=>S9,expectPromiseToFail:()=>N9,expectValuesInRange:()=>E9,testEpsilon:()=>Dm});var R9=.001,d5=.1;function I9(e,t,n){return n==null&&(n=Dm()),Om(e,t,(r,a)=>zm(r,a,n))}function Dm(){return P.backend.floatPrecision()===32?R9:d5}function Om(e,t,n){let r=!0;if((tn(e)||tn(t))&&(r=!1),tn(e)&&tn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Or(e),o=Or(t);if(!ea(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=tn(e)?e:qs(e),s=tn(t)?t:qs(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}.
Actual: ${a}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=a[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${a}.
Expected: ${s}.`)}}function N9(e,t){e().then(()=>t.fail(),()=>t())}function T9(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return ba(e)||ba(e[0])||ba(t)||ba(t[0])?Om(e,n,(r,a)=>r==a):Om(e,t,(r,a)=>zm(r,a,0))}function S9(e,t,n){if(n==null&&(n=Dm()),!zm(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function zm(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function E9(e,t,n){for(let r=0;r<e.length;r++)if(e[r]<t||e[r]>n)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function C9(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function p5(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?p5(n):e[t]=Vu(n)}return e}var dg="3.0.0";function pg(){Q().set("PROD",!0)}function Yv(){Q().set("DEBUG",!0)}function Jv(){Q().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function wf(e){Q().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}ck(wf);function Qv(){P.disposeVariables()}function Ln(){return P}function jh(){return P.memory()}function Zl(e){return P.profile(e)}function H(e,t){return P.tidy(e,t)}function Me(e){Am(e).forEach(t=>t.dispose())}function Vt(e){return P.keep(e)}function e4(e){return P.time(e)}function fg(e){return P.setBackend(e)}function mg(){return P.ready()}function Gh(){return P.backendName}function t4(e){P.removeBackend(e)}function Ag(e){return P.findBackend(e)}function n4(e){return P.findBackendFactory(e)}function xu(e,t,n=1){return P.registerBackend(e,t,n)}function _f(){return P.backend}function r4(e,t){Q().setPlatform(e,t)}function F9(e,t){let n=F(e,"a","add"),r=F(t,"b","add");[n,r]=It(n,r);let a={a:n,b:r};return P.runKernel(da,a)}var ie=L({add_:F9});function M9(e,t){let n=F(e,"a","floorDiv"),r=F(t,"b","floorDiv");[n,r]=It(n,r);let a={a:n,b:r};return P.runKernel(os,a)}var qh=L({floorDiv_:M9});function $9(e,t){let n=F(e,"a","div"),r=F(t,"b","div");if([n,r]=It(n,r),n.dtype==="int32"&&r.dtype==="int32")return qh(n,r);let a={a:n,b:r},s={};return P.runKernel(as,a,s)}var Ne=L({div_:$9});function D9(e,t){let n=F(e,"a","mul"),r=F(t,"b","mul");[n,r]=It(n,r);let a={a:n,b:r};return P.runKernel(gs,a)}var B=L({mul_:D9});function O9(e){let t=F(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return P.runKernel(ru,n)}else{let n={x:t};return P.runKernel(Mi,n)}}var Dt=L({abs_:O9});function z9(e){let t={x:F(e,"x","acos")};return P.runKernel($i,t)}var bf=L({acos_:z9});function P9(e){let t={x:F(e,"x","acosh")};return P.runKernel(Di,t)}var vf=L({acosh_:P9});function L9(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>F(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!ea(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return P.runKernel(Xa,r)}var lh=L({addN_:L9});function W9(e,t=null,n=!1){let r={x:F(e,"x","all","bool")},a={axis:t,keepDims:n};return P.runKernel(hh,r,a)}var Xh=L({all_:W9});function B9(e,t=null,n=!1){let r={x:F(e,"x","any","bool")},a={axis:t,keepDims:n};return P.runKernel(dh,r,a)}var wu=L({any_:B9});function V9(e,t=0){let n={x:F(e,"x","argMax")},r={axis:t};return P.runKernel(Ka,n,r)}var _u=L({argMax_:V9});function U9(e,t=0){let n={x:F(e,"x","argMin")},r={axis:t};return P.runKernel(eu,n,r)}var kf=L({argMin_:U9});function H9(e){let t={x:F(e,"x","asin")};return P.runKernel(Oi,t)}var If=L({asin_:H9});function j9(e){let t={x:F(e,"x","asinh")};return P.runKernel(zi,t)}var Nf=L({asinh_:j9});function G9(e){let t={x:F(e,"x","atan")};return P.runKernel(Pi,t)}var Tf=L({atan_:G9});function q9(e,t){let n=F(e,"a","atan2"),r=F(t,"b","atan2");[n,r]=It(n,r);let a={a:n,b:r};return P.runKernel(Wi,a)}var Sf=L({atan2_:q9});function X9(e){let t={x:F(e,"x","atanh")};return P.runKernel(Li,t)}var Ef=L({atanh_:X9});function K9(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=f5(a);return Ku(e,o,n,s,r,null,null,l)}function m5(e,t,n,r,a,s,i="channelsLast"){let[o,l]=Od(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Ku(e,c,n,r,a,s,!1,i)}function Z9(e,t,n,r,a,s,i="NDHWC"){let[o,l,c]=Pm(t),u,h;if(i==="NDHWC")h="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return A5(e,u,n,r,a,!1,h,s)}function Ku(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,c,u,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,h]=e;else if(o==="channelsFirst")[l,h,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,f]=t,[m,A]=Od(n),[y,g]=Od(r),w=rl(d,y),x=rl(p,g),{padInfo:_,outHeight:b,outWidth:S}=Y9(a,c,u,m,A,w,x,s,o),T=i?f*h:f,N;return o==="channelsFirst"?N=[l,T,b,S]:o==="channelsLast"&&(N=[l,b,S,T]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:h,outHeight:b,outWidth:S,outChannels:T,padInfo:_,strideHeight:m,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:w,effectiveFilterWidth:x,dilationHeight:y,dilationWidth:g,inShape:e,outShape:N,filterShape:t}}function A5(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,c,u,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,h,d]=e;else if(i==="channelsFirst")[l,d,c,u,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,f,m,,A]=t,[y,g,w]=Pm(n),[x,_,b]=Pm(r),S=rl(p,x),T=rl(f,_),N=rl(m,b),{padInfo:C,outDepth:$,outHeight:D,outWidth:O}=J9(a,c,u,h,y,g,w,S,T,N,o),V=s?A*d:A,W;return i==="channelsFirst"?W=[l,V,$,D,O]:i==="channelsLast"&&(W=[l,$,D,O,V]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:h,inChannels:d,outDepth:$,outHeight:D,outWidth:O,outChannels:V,padInfo:C,strideDepth:y,strideHeight:g,strideWidth:w,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:S,effectiveFilterHeight:T,effectiveFilterWidth:N,dilationDepth:x,dilationHeight:_,dilationWidth:b,inShape:e,outShape:W,filterShape:t}}function Q9(e,t,n,r,a){r==null&&(r=Lm(e,t,n));let s=e[0],i=e[1],o=Js((s-t+2*r)/n+1,a),l=Js((i-t+2*r)/n+1,a);return[o,l]}function eI(e,t,n,r,a,s){a==null&&(a=Lm(e,t,r));let i=e[0],o=e[1],l=e[2],c=Js((i-t+2*a)/r+1,s),u=Js((o-t+2*a)/r+1,s),h=Js((l-t+2*a)/r+1,s);return[c,u,h,n]}function Lm(e,t,n,r=1){let a=rl(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function Od(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Pm(e){return typeof e=="number"?[e,e,e]:e}function rl(e,t){return t<=1?e:e+(e-1)*(t-1)}function Y9(e,t,n,r,a,s,i,o,l){let c,u,h;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=Q9([t,n],s,r,e,o);u=d[0],h=d[1]}else if(e==="same"){u=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(u-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),f=Math.floor(d/2),m=d-f,A=Math.floor(p/2),y=p-A;c={top:f,bottom:m,left:A,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:d,bottom:p,left:f,right:m,type:d===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=Js((t-s+d+p)/r+1,o),h=Js((n-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:h}}function J9(e,t,n,r,a,s,i,o,l,c,u){let h,d,p,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=eI([t,n,r,1],o,1,a,e,u);d=m[0],p=m[1],f=m[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),f=Math.ceil(r/i);let m=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(f-1)*i+c-r,g=Math.floor(m/2),w=m-g,x=Math.floor(A/2),_=A-x,b=Math.floor(y/2),S=y-b;h={top:x,bottom:_,left:b,right:S,front:g,back:w,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),f=Math.ceil((r-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:f}}function Js(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Ta(e){let[t,n,r]=Od(e);return t===1&&n===1&&r===1}function zr(e,t){return Ta(e)||Ta(t)}function f5(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function tI(e,t){let n={x:F(e,"x","reshape","string_or_numeric")},r={shape:t};return P.runKernel(wo,n,r)}var q=L({reshape_:tI});function nI(e,t,n,r,a){let s=F(e,"x","avgPool","float32"),i=1;M(zr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&M(Ht(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=P.runKernel(Za,c,u);return h=ye(h,s.dtype),l?q(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var bu=L({avgPool_:nI});function rI(e,t,n,r,a,s="NDHWC"){let i=F(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ht(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=P.runKernel(tu,c,u);return h=ye(h,o.dtype),l?q(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Cf=L({avgPool3d_:rI});function aI(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=qu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return Nr(n[0]);let r=n,a={axis:t};return P.runKernel(Vi,r,a)}var dt=L({concat_:aI});function sI(e){let t={x:F(e,"x","sigmoid")};return P.runKernel(Cs,t)}var Jn=L({sigmoid_:sI});function iI(e,t,n){let r=F(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return P.runKernel(ko,a,s)}var Fe=L({slice_:iI});function oI(e){let t={x:F(e,"x","tanh")};return P.runKernel(Os,t)}var zo=L({tanh_:oI});function lI(e,t,n,r,a,s){let i=F(e,"forgetBias","basicLSTMCell"),o=F(t,"lstmKernel","basicLSTMCell"),l=F(n,"lstmBias","basicLSTMCell"),c=F(r,"data","basicLSTMCell"),u=F(a,"c","basicLSTMCell"),h=F(s,"h","basicLSTMCell"),d=dt([c,h],1),p=Xe(d,o),f=ie(p,l),m=f.shape[0],A=f.shape[1]/4,y=[m,A],g=Fe(f,[0,0],y),w=Fe(f,[0,A],y),x=Fe(f,[0,A*2],y),_=Fe(f,[0,A*3],y),b=ie(B(Jn(g),zo(w)),B(u,Jn(ie(i,x)))),S=B(zo(b),Jn(_));return[b,S]}var a4=L({basicLSTMCell_:lI});function uI(e,t,n){let r=F(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);M(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return P.runKernel(nu,s,i)}var vu=L({batchToSpaceND_:uI});function cI(e){let t;return e.rank===0||e.rank===1?t=q(e,[1,1,1,e.size]):e.rank===2?t=q(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=q(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function hI(e,t,n,r,a,s){s==null&&(s=.001);let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),c;a!=null&&(c=F(a,"scale","batchNorm"));let u;r!=null&&(u=F(r,"offset","batchNorm")),M(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:cI(i),scale:c,offset:u,mean:o,variance:l},d={varianceEpsilon:s},p=P.runKernel(ls,h,d);return q(p,i.shape)}var Bs=L({batchNorm_:hI});function dI(e,t,n,r,a,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),c;a!=null&&(c=F(a,"scale","batchNorm"));let u;return r!=null&&(u=F(r,"offset","batchNorm")),M(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),M(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),Bs(i,o,l,u,c,s)}var yg=L({batchNorm2d_:dI});function pI(e,t,n,r,a,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),c;a!=null&&(c=F(a,"scale","batchNorm"));let u;return r!=null&&(u=F(r,"offset","batchNorm")),M(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),M(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),Bs(i,o,l,u,c,s)}var gg=L({batchNorm3d_:pI});function fI(e,t,n,r,a,s){let i=F(e,"x","batchNorm"),o=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),c;a!=null&&(c=F(a,"scale","batchNorm"));let u;return r!=null&&(u=F(r,"offset","batchNorm")),M(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),M(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),Bs(i,o,l,u,c,s)}var xg=L({batchNorm4d_:fI});function mI(e,t,n){let r=F(e,"x","bincount"),a=F(t,"weights","bincount");M(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return P.runKernel(mh,s,i)}var wg=L({bincount_:mI});function AI(e,t){let n=F(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=q(n,l)}let a=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Nr(n);let i={x:n},o={reps:s};return P.runKernel(fa,i,o)}var ku=L({broadcastTo_:AI});function yI(e){let t={x:F(e,"x","ceil")};return P.runKernel(Bi,t)}var Rf=L({ceil_:yI});function gI(e,t,n){let r=F(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return P.runKernel(pa,a,s)}var pn=L({clipByValue_:gI});function xI(e){return dt(e,0)}var _g=L({concat1d_:xI});function wI(e,t){return dt(e,t)}var Xl=L({concat2d_:wI});function _I(e,t){return dt(e,t)}var bg=L({concat3d_:_I});function bI(e,t){return dt(e,t)}var vg=L({concat4d_:bI});function vI(e,t,n,r,a="NHWC",s=[1,1],i){let o=F(e,"x","conv2d"),l=F(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=q(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&M(Ht(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?c.shape[3]:c.shape[1];M(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),M(zr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:c,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},f=P.runKernel(Qa,d,p);return u?q(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Kr=L({conv2d_:vI});function kI(e,t,n,r,a="NWC",s=1,i){let o=F(e,"x","conv1d"),l=F(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=q(o,[1,o.shape[0],o.shape[1]])),M(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&M(Ht(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(zr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),M(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=q(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=q(c,[c.shape[0],1,c.shape[1],c.shape[2]]),p=Kr(d,h,[1,n],r,"NHWC",[1,s],i);return u?q(p,[p.shape[2],p.shape[3]]):q(p,[p.shape[0],p.shape[2],p.shape[3]])}var Kh=L({conv1d_:kI});function II(e,t,n,r,a,s="NHWC",i){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=q(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),M(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];M(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),M(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&M(Ht(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=P.runKernel(es,d,p);return c?q(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Wm=L({conv2DBackpropInput_:II});function NI(e,t,n,r,a,s){let i=F(e,"x","conv2dTranspose"),o=F(t,"filter","conv2dTranspose");return Wm(n,i,o,r,a,"NHWC",s)}var Zh=L({conv2dTranspose_:NI});function TI(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=F(e,"x","conv3d"),o=F(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),M(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),M(zr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let u={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=P.runKernel(au,u,h);return c?q(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var Ff=L({conv3d_:TI});function SI(e,t,n,r,a){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=q(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];M(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),M(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=P.runKernel(xh,u,h);return o?q(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var y5=L({conv3DBackpropInput_:SI});function EI(e,t,n,r,a){let s=F(e,"x","conv3dTranspose"),i=F(t,"filter","conv3dTranspose");return y5(n,s,i,r,a)}var s4=L({conv3dTranspose_:EI});function CI(e){let t={x:F(e,"x","cos")};return P.runKernel(ts,t)}var Iu=L({cos_:CI});function RI(e){let t={x:F(e,"x","cosh")};return P.runKernel(Ui,t)}var Yh=L({cosh_:RI});function FI(e,t=0,n=!1,r=!1){let a={x:F(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return P.runKernel(ns,a,s)}var Jh=L({cumsum_:FI});function MI(e,t,n,r=!1){let a=F(e,"x","denseBincount"),s=F(t,"weights","denseBincount");M(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),M(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return P.runKernel(wh,i,o)}var kg=L({denseBincount_:MI});function $I(e,t,n="NHWC"){let r=F(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${a} and ${t} for depthToSpace with input shape
${r.shape}`),M(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${r.shape}`),M(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return P.runKernel(ji,o,l)}var Mf=L({depthToSpace_:$I});function DI(e,t,n,r,a="NHWC",s=[1,1],i){let o=F(e,"x","depthwiseConv2d"),l=F(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=q(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&M(Ht(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:c,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=P.runKernel(rs,h,d);return u?q(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Po=L({depthwiseConv2d_:DI});function OI(e){let t={x:F(e,"x","diag")};return P.runKernel(vh,t)}var i4=L({diag_:OI});function zI(e,t,n,r,a=[1,1],s="NHWC"){let i=F(e,"x","dilation2d"),o=F(t,"filter","dilation2d");M(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),M(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),M(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=q(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=P.runKernel(su,u,h);return c?q(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var $f=L({dilation2d_:zI});function PI(e,t){let n=e.length,r=[];for(let a=0;a<n;a++){let s=n-1-a,i=e[s]||1;(t[t.length-1-a]||1)>1&&i===1&&r.unshift(s)}return r}function zt(e,t){let n=[];for(let r=0;r<t.length;r++){let a=e[e.length-r-1],s=t.length-r-1,i=t[s];(a==null||a===1&&i>1)&&n.unshift(s)}return n}function gt(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a<r;a++){let s=e[e.length-a-1];s==null&&(s=1);let i=t[t.length-a-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function LI(e,t){let n=F(e,"a","equal"),r=F(t,"b","equal");[n,r]=It(n,r),gt(n.shape,r.shape);let a={a:n,b:r};return P.runKernel(Xi,a)}var ya=L({equal_:LI});function WI(e,t,n){let r=F(t,"a","where"),a=F(n,"b","where"),s=F(e,"condition","where","bool"),i=gt(r.shape,a.shape),o=ku(r,i),l=ku(a,i);s.rank===1&&M(s.shape[0]===r.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&en(s.shape,l.shape,"Error in where: ");let c={condition:s,t:o,e:l};return P.runKernel(bo,c)}var fn=L({where_:WI});function BI(e){let t={x:F(e,"x","zerosLike")};return P.runKernel(Mo,t)}var Ge=L({zerosLike_:BI});function VI(e,t){let n=F(e,"a","div"),r=F(t,"b","div");[n,r]=It(n,r);let a=Ne(n,r),s=Ge(a),i=ya(r,s);return fn(i,s,a)}var Df=L({divNoNan_:VI});function UI(e,t){let n=F(e,"t1","dot"),r=F(t,"t2","dot");M((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(M(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=q(n,[1,-1]),o=q(r,[-1,1]),l=Xe(i,o);return q(l,[])}else if(n.rank===1&&r.rank===2){let i=q(n,[1,-1]),o=q(r,[r.shape[0],r.shape[1]]),l=Xe(i,o);return q(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=q(r,[-1,1]),o=Xe(n,i);return q(o,[o.size])}else{let i=q(r,[r.shape[0],r.shape[1]]);return Xe(n,i)}}var Ig=L({dot_:UI});function HI(e){let t={x:F(e,"x","elu")};return P.runKernel(Gi,t)}var Lo=L({elu_:HI});function jI(e){let t=F(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ye(t,"float32"));let n={x:t};return P.runKernel(qi,n)}var Of=L({erf_:jI});function GI(e){let t={x:F(e,"x","exp")};return P.runKernel(ss,t)}var Wn=L({exp_:GI});function qI(e,t=0){let n=F(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return P.runKernel(Ki,r,a)}var vn=L({expandDims_:qI});function XI(e){let t={x:F(e,"x","expm1")};return P.runKernel(Zi,t)}var zf=L({expm1_:XI});function KI(e,t){let n=F(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return P.runKernel(fa,r,a)}var ga=L({tile_:KI});function ZI(e,t,n,r="float32"){t==null&&(t=e);let a=Ve([e,t],r),s=e<=t?e:t;for(let o=0;o<s;++o)a.set(1,o,o);let i=q(a.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return ga(vn(i,0),[n[0],1,1]);if(n.length===2)return ga(vn(vn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return ga(vn(vn(vn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Pf=L({eye_:ZI});function Nu(e,t,n){let r={shape:e,value:t,dtype:n};return P.runKernel(iu,{},r)}function YI(e){let t={x:F(e,"x","floor")};return P.runKernel(is,t)}var Wo=L({floor_:YI});function JI(e,t,n=0,r=0){let a=F(e,"x","gather"),s=F(t,"indices","gather","int32"),i={x:a,indices:s},o={axis:n,batchDims:r};return P.runKernel(Ji,i,o)}var Vs=L({gather_:JI});function QI(e,t){let n=F(e,"a","greater"),r=F(t,"b","greater");[n,r]=It(n,r),gt(n.shape,r.shape);let a={a:n,b:r};return P.runKernel(eo,a)}var er=L({greater_:QI});function eN(e,t){let n=F(e,"a","greaterEqual"),r=F(t,"b","greaterEqual");[n,r]=It(n,r),gt(n.shape,r.shape);let a={a:n,b:r};return P.runKernel(us,a)}var xa=L({greaterEqual_:eN});function tN(e){let t={input:F(e,"input","imag")};return P.runKernel(Eh,t)}var Qh=L({imag_:tN});function nN(e){let t={x:F(e,"x","isFinite")};return P.runKernel(no,t)}var Ng=L({isFinite_:nN});function rN(e){let t={x:F(e,"x","isInf")};return P.runKernel(ro,t)}var Tg=L({isInf_:rN});function aN(e){let t={x:F(e,"x","isNaN")};return P.runKernel(ao,t)}var Sg=L({isNaN_:aN});function sN(e,t=.2){let n={x:F(e,"x","leakyRelu")},r={alpha:t};return P.runKernel(cs,n,r)}var Tu=L({leakyRelu_:sN});function iN(e,t){let n=F(e,"a","less"),r=F(t,"b","less");[n,r]=It(n,r),gt(n.shape,r.shape);let a={a:n,b:r};return P.runKernel(so,a)}var ed=L({less_:iN});function oN(e,t){let n=F(e,"a","lessEqual"),r=F(t,"b","lessEqual");[n,r]=It(n,r),gt(n.shape,r.shape);let a={a:n,b:r};return P.runKernel(io,a)}var Us=L({lessEqual_:oN});function Eg(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let r={start:e,stop:t,num:n};return P.runKernel(Ch,{},r)}function lN(e,t=5,n=1,r=1,a=.5){let s=F(e,"x","localResponseNormalization");M(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),M(Ht(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=q(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:r,beta:a},u=P.runKernel(uu,l,c);return o?q(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Lf=L({localResponseNormalization_:lN});function uN(e){let t={x:F(e,"x","log")};return P.runKernel(hs,t)}var kn=L({log_:uN});function cN(e){let t={x:F(e,"x","log1p")};return P.runKernel(oo,t)}var td=L({log1p_:cN});function o4(e){return M(va(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=F(t,"x","tf.grad","string_or_numeric"),a=n!=null?F(n,"dy","tf.grad"):null;return P.tidy(()=>{let{value:s,grads:i}=P.gradients(()=>e(r),[r],a);return a!=null&&en(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),zd(i),i[0]})}}function l4(e){return M(va(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=qu(t,"args","tf.grads","string_or_numeric"),a=n!=null?F(n,"dy","tf.grads"):null;return P.tidy(()=>{let{value:s,grads:i}=P.gradients(()=>e(...r),r,a);return a!=null&&en(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),zd(i),i})}}function u4(e){return M(va(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof tt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof tt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=P.gradients(()=>e(t),[t],n);return zd(r),{grad:r[0],value:a}}}function c4(e){return M(va(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(a=>a instanceof tt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof tt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=P.gradients(()=>e(...t),t,n);return n!=null&&en(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),zd(r.grads),r}}function Cg(e,t){M(va(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(c=>c instanceof gu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in P.registeredVariables)t.push(P.registeredVariables[c])}let r=n?t.filter(c=>!c.trainable):null,a=t.length;t=t.filter(c=>c.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=P.gradients(e,t,null,s);M(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),r!=null&&r.forEach(c=>l[c.name]=null),{value:i,grads:l}}function Tr(e){return P.customGrad(e)}function zd(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function hN(e){let t={x:F(e,"x","neg")};return P.runKernel(co,t)}var vt=L({neg_:hN});function dN(e){let t={x:F(e,"x","softplus")};return P.runKernel(To,t)}var Bo=L({softplus_:dN});function pN(e){let t=F(e,"x","logSigmoid");return Tr(n=>({value:vt(Bo(vt(n))),gradFunc:r=>B(r,Jn(vt(n)))}))(t)}var Rg=L({logSigmoid_:pN});function fN(e,t=null,n=!1){let r={x:F(e,"x","max")},a={reductionIndices:t,keepDims:n};return P.runKernel(ds,r,a)}var Bn=L({max_:fN});function mN(e,t){let n=F(e,"a","sub"),r=F(t,"b","sub");[n,r]=It(n,r);let a={a:n,b:r};return P.runKernel(Ds,a)}var _e=L({sub_:mN});function AN(e,t=null,n=!1){let r=F(e,"x","sum");r.dtype==="bool"&&(r=ye(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return P.runKernel(Fs,a,s)}var Ee=L({sum_:AN});function yN(e,t=-1){let n=F(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Tr((r,a)=>{let s=!0,i=Bn(r,t,!0),o=_e(r,i),l=_e(ye(o,"float32"),kn(Ee(Wn(o),t,s)));return a([l]),{value:l,gradFunc:(c,u)=>{let[h]=u,d=!0,p=Wn(h);return _e(c,B(Ee(c,t,d),p))}}})(n)}var nd=L({logSoftmax_:yN});function Bm(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function g5(e,t,n){let r=e.length+t.length,a=[],s=0,i=0;for(let o=0;o<r;o++)n.indexOf(o)===-1?a.push(e[s++]):a.push(t[i++]);return a}function x5(e,t){let n=[],r=e.length;for(let s=0;s<r;s++)t.indexOf(s)===-1&&n.push(e[s]);let a=t.map(s=>e[s]);return[n,a]}function Qs(e,t){let n=t.map(r=>1);return g5(e,n,t)}function gN(e,t,n){M(Bm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function w5(e,t){if(Bm(e,t))return null;let n=[];for(let r=0;r<t;++r)e.indexOf(r)===-1&&n.push(r);return e.forEach(r=>n.push(r)),n}function Vm(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function xN(e,t){let n=[];for(let r=t-e;r<t;++r)n.push(r);return n}function wN(e,t=null,n=!1){let r=F(e,"x","logSumExp"),a=rr(t,r.shape),s=Bn(r,a,!0),i=_e(r,s),o=Wn(i),l=Ee(o,a),c=kn(l),u=ie(q(s,c.shape),c);if(n){let h=Qs(u.shape,a);return q(u,h)}return u}var Wf=L({logSumExp_:wN});function _N(e,t){let n=F(e,"a","logicalAnd","bool"),r=F(t,"b","logicalAnd","bool");gt(n.shape,r.shape);let a={a:n,b:r};return P.runKernel(lo,a)}var tr=L({logicalAnd_:_N});function bN(e){let t={x:F(e,"x","logicalNot","bool")};return P.runKernel(ou,t)}var Su=L({logicalNot_:bN});function vN(e,t){let n=F(e,"a","logicalOr","bool"),r=F(t,"b","logicalOr","bool");gt(n.shape,r.shape);let a={a:n,b:r};return P.runKernel(lu,a)}var rd=L({logicalOr_:vN});function kN(e,t){let n=F(e,"a","logicalXor","bool"),r=F(t,"b","logicalXor","bool");return gt(n.shape,r.shape),tr(rd(e,t),Su(tr(e,t)))}var Fg=L({logicalXor_:kN});function IN(e,t,n,r,a){let s=F(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),M(zr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&M(Ht(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=P.runKernel(fs,c,u);return l?q(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Eu=L({maxPool_:IN});function NN(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=F(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),M(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&M(Ht(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=P.runKernel(cu,c,u);return l?q(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Bf=L({maxPool3d_:NN});function TN(e,t,n,r,a=!1){let s={x:F(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=P.runKernel($h,s,i);return{result:o[0],indexes:o[1]}}var Mg=L({maxPoolWithArgmax_:TN});function SN(e,t){let n=F(e,"a","maximum"),r=F(t,"b","maximum");[n,r]=It(n,r),n.dtype==="bool"&&(n=ye(n,"int32"),r=ye(r,"int32")),gt(n.shape,r.shape);let a={a:n,b:r};return P.runKernel(ps,a)}var Sr=L({maximum_:SN});function EN(e,t=null,n=!1){let r={x:F(e,"x","mean")},a={axis:t,keepDims:n};return P.runKernel(ms,r,a)}var kt=L({mean_:EN});function CN(e,t=null,n=!1){let r={x:F(e,"x","min")},a={axis:t,keepDims:n};return P.runKernel(As,r,a)}var Vo=L({min_:CN});function RN(e,t){let n=F(e,"a","minimum"),r=F(t,"b","minimum");[n,r]=It(n,r),n.dtype==="bool"&&(n=ye(n,"int32"),r=ye(r,"int32")),gt(n.shape,r.shape);let a={a:n,b:r};return P.runKernel(ys,a)}var Uo=L({minimum_:RN});function FN(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=F(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o<r.rank;o++)M(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),M(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return P.runKernel(hu,i,s)}var Vf=L({mirrorPad_:FN});function MN(e,t){let n=F(e,"a","mod"),r=F(t,"b","mod");[n,r]=It(n,r);let a={a:n,b:r};return P.runKernel(uo,a)}var Uf=L({mod_:MN});function $N(e){let t=F(e,"x","square"),n={};return P.runKernel("Square",{x:t},n)}var ht=L({square_:$N});function DN(e,t=null,n=!1){e=F(e,"x","moments");let r=rr(t,e.shape),a=kt(e,r,n),s=a.shape;n||(s=Qs(a.shape,r));let i=ht(_e(ye(e,"float32"),q(a,s))),o=kt(i,r,n);return{mean:a,variance:o}}var ad=L({moments_:DN});function ON(e,t,n,r){let a=F(t,"data","multiRNNCell"),s=qu(n,"c","multiRNNCell"),i=qu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h<e.length;h++){let d=e[h](o,s[h],i[h]);l.push(d[0]),l.push(d[1]),o=d[1]}let c=[],u=[];for(let h=0;h<l.length;h+=2)c.push(l[h]),u.push(l[h+1]);return[c,u]}var h4=L({multiRNNCell_:ON});function zN(e,t,n,r=!1){let a=F(e,"logits","multinomial"),s=a.size,i=a.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?q(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},c=P.runKernel(Dh,o,l);return i===1?q(c,[c.size]):c}var $g=L({multinomial_:zN});function PN(e,t){let n=F(e,"a","notEqual"),r=F(t,"b","notEqual");[n,r]=It(n,r),gt(n.shape,r.shape);let a={a:n,b:r};return P.runKernel(ho,a)}var Hs=L({notEqual_:PN});function Ct(e,t="float32"){if(t==="complex64"){let r=Ct(e,"float32"),a=Ct(e,"float32");return Aa(r,a)}let n=Ed(Ot(e),t);return P.makeTensor(n,e,t)}function Er(e,t="float32"){if(t==="complex64"){let r=Er(e,"float32"),a=Ct(e,"float32");return Aa(r,a)}let n=lm(Ot(e),t);return P.makeTensor(n,e,t)}function LN(e){let t={x:F(e,"x","onesLike")};return P.runKernel(Ao,t)}var In=L({onesLike_:LN});function WN(e,t){let n=F(e,"v1","outerProduct"),r=F(t,"v2","outerProduct");M(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=q(n,[-1,1]),s=q(r,[1,-1]);return Xe(a,s)}var d4=L({outerProduct_:WN});function BN(e,t,n=0){let r=F(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return P.runKernel(ws,s,a)}var Zr=L({pad_:BN});function VN(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Zr(e,[t],n)}var p4=L({pad1d_:VN});function UN(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Zr(e,t,n)}var f4=L({pad2d_:UN});function HN(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Zr(e,t,n)}var m4=L({pad3d_:HN});function jN(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Zr(e,t,n)}var A4=L({pad4d_:jN});function GN(e,t,n){let r=F(e,"x","spaceToBatchND");M(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return P.runKernel(fu,a,s)}var Cu=L({spaceToBatchND_:GN});function KN(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=F(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(zr(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let c=m5(o.shape,t,s,a,r),u=[c.dilationHeight,c.dilationWidth],h;r==="same"?h=XN([c.filterHeight,c.filterWidth],u):h=[[0,0],[0,0]];let d=u[0]===1&&u[1]===1,[p,f]=qN([c.inHeight,c.inWidth],u,h),m=d?r:"valid",A=d?o:Cu(o,u,p),y=(n==="avg"?()=>bu(A,t,s,m):()=>Eu(A,t,s,m))(),g=d?y:vu(y,u,f);return l?q(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function qN(e,t,n){let r=n.map(u=>u[0]),a=n.map(u=>u[1]),s=e.concat(r,a),i=t.map((u,h)=>(u-s[h]%u)%u),o=a.map((u,h)=>u+i[h]),l=t.map((u,h)=>[r[h],o[h]]),c=t.map((u,h)=>[0,i[h]]);return[l,c]}function XN(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var Dg=L({pool_:KN});function ZN(e,t){let n=F(e,"base","pow"),r=F(t,"exp","pow");[n,r]=It(n,r);let a={a:n,b:r};return P.runKernel(_s,a)}var Yr=L({pow_:ZN});function YN(e,t){let n=F(e,"x","prelu"),r=F(t,"alpha","prelu"),a={x:n,alpha:r};return P.runKernel(bs,a)}var Ru=L({prelu_:YN});function JN(e,t=null,n=!1){let r=F(e,"x","prod");r.dtype==="bool"&&(r=ye(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return P.runKernel(go,a,s)}var sd=L({prod_:JN});function QN(e,t,n){let r=Ot(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<r;s++)a[s]=t();return P.makeTensor(a,e,n)}var y4=L({rand_:QN}),Um=Xo(r8()),Hm=class{constructor(e,t,n,r,a){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=r,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=a||Math.random();this.random=Um.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let r=this.nextVal;return this.nextVal=NaN,r}let e,t,n=!1;for(;!n;){let r,a,s;do r=2*this.random()-1,a=2*this.random()-1,s=r*r+a*a;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},eT=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Um.alea(a.toString()),this.randn=new Hm(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),a<t||Math.log(a)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},tT=class{constructor(e=0,t=1,n,r){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Um.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function nT(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new eT(t,n,r,a),i=Ve(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var g4=L({randomGamma_:nT});function rT(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error(`Unsupported data type ${r}`);let s=new Hm(t,n,r,!1,a),i=Ve(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Og=L({randomNormal_:rT});function aT(e,t=0,n=1,r="float32",a){let s=Ve(e,r),i=new tT(t,n,null,a);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Ho=L({randomUniform_:aT});function id(e,t,n=1,r="float32"){if(n===0)throw new Error("Cannot have a step of zero");let a={start:e,stop:t,step:n,dtype:r};return P.runKernel(du,{},a)}function sT(e){let t={input:F(e,"input","real")};return P.runKernel(Oh,t)}var Fu=L({real_:sT});function iT(e){let t={x:F(e,"x","reciprocal")};return P.runKernel(xo,t)}var Hf=L({reciprocal_:iT});function oT(e){let t={x:F(e,"x","relu")};return P.runKernel(vs,t)}var Cr=L({relu_:oT});function lT(e){let t={x:F(e,"x","relu6")};return P.runKernel(Is,t)}var od=L({relu6_:lT});function uT(e,t){let n={x:F(e,"x","reverse")},r={dims:t};return P.runKernel(Ns,n,r)}var Nn=L({reverse_:uT});function cT(e){let t=F(e,"x","reverse");return M(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Nn(t,0)}var x4=L({reverse1d_:cT});function hT(e,t){let n=F(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Nn(n,t)}var w4=L({reverse2d_:hT});function dT(e,t){let n=F(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Nn(n,t)}var _4=L({reverse3d_:dT});function pT(e,t){let n=F(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Nn(n,t)}var b4=L({reverse4d_:pT});function fT(e){let t={x:F(e,"x","round")};return P.runKernel(Ts,t)}var jf=L({round_:fT});function mT(e){let t={x:F(e,"x","rsqrt")};return P.runKernel(Ss,t)}var ld=L({rsqrt_:mT});function Te(e,t){if((tn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&tn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ka(e,[],[],t)}function AT(e){let t={x:F(e,"x","selu")};return P.runKernel(vo,t)}var ud=L({selu_:AT});function yT(e,t,n,r,a,s=[1,1],i="NHWC"){let o=F(e,"x","separableConv2d"),l=F(t,"depthwiseFilter","separableConv2d"),c=F(n,"pointwiseFilter","separableConv2d"),u=o,h=!1;if(o.rank===3&&(h=!0,u=q(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),M(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let d=l.shape[2],p=l.shape[3];M(c.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${c.shape[2]}.`);let f=Po(u,l,r,a,i,s),m=Kr(f,c,1,"valid",i);return h?q(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Gf=L({separableConv2d_:yT});async function gT(e,t){let n=F(e,"x","setdiff1d"),r=F(t,"y","setdiff1d");M(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let u=0;u<a.length;u++)i.has(a[u])||o++;let l=new $t([o],n.dtype),c=new $t([o],"int32");for(let u=0,h=0;u<a.length;u++)i.has(a[u])||(l.values[h]=a[u],c.values[h]=u,h++);return[l.toTensor(),c.toTensor()]}var zg=gT;function xT(e){let t={x:F(e,"x","sign")};return P.runKernel(No,t)}var qf=L({sign_:xT});function wT(e){let t={x:F(e,"x","sin")};return P.runKernel(Es,t)}var cd=L({sin_:wT});function _T(e){let t={x:F(e,"x","sinh")};return P.runKernel(Io,t)}var hd=L({sinh_:_T});function bT(e,t,n){let r=F(e,"x","slice1d");return M(r.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Fe(r,[t],[n])}var dd=L({slice1d_:bT});function vT(e,t,n){let r=F(e,"x","slice2d");return M(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Fe(r,t,n)}var Xf=L({slice2d_:vT});function kT(e,t,n){let r=F(e,"x","slice3d");return M(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Fe(r,t,n)}var pd=L({slice3d_:kT});function IT(e,t,n){let r=F(e,"x","slice4d");return M(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Fe(r,t,n)}var Mu=L({slice4d_:IT});function NT(e,t=-1){let n=F(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return P.runKernel(Ms,r,a)}var $u=L({softmax_:NT});function TT(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return P.runKernel(Th,t)}var Du=L({fft_:TT});function ST(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return P.runKernel(Sh,t)}var jo=L({ifft_:ST});function ET(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=q(e,[n,t]);r=jo(a)}else{let a=[n,2*(t-1)],s=q(Fu(e),[n,t]),i=q(Qh(e),[n,t]),o=Nn(Fe(s,[0,1],[n,t-2]),1),l=B(Nn(Fe(i,[0,1],[n,t-2]),1),Te(-1)),c=dt([s,o],1),u=dt([i,l],1),h=q(Aa(c,u),[a[0],a[1]]);r=jo(h)}if(r=Fu(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=q(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var fd=L({irfft_:ET});function CT(e,t,n=0){let r={x:F(e,"x","split")},a={numOrSizeSplits:t,axis:n};return P.runKernel(So,r,a)}var rn=L({split_:CT});function RT(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t<n){let f=e.shape.map(A=>0),m=e.shape.map(A=>A);m[e.shape.length-1]=t,a=Fe(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,a=dt([e,Ct(f)],e.shape.length-1),n=t}else a=e;let s=Ge(a),i=q(Aa(a,s),[r,n]),o=Du(i),l=Math.floor(n/2)+1,c=Fu(o),u=Qh(o),h=rn(c,[l,n-l],c.shape.length-1),d=rn(u,[l,n-l],u.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,q(Aa(h[0],d[0]),p)}var Ou=L({rfft_:RT});function FT(e){let t={x:F(e,"x","sqrt")};return P.runKernel(Rs,t)}var Kt=L({sqrt_:FT});function MT(e,t){let n=F(e,"a","squaredDifference"),r=F(t,"b","squaredDifference");[n,r]=It(n,r),gt(n.shape,r.shape);let a={a:n,b:r},s={};return P.runKernel($s,a,s)}var md=L({squaredDifference_:MT});function $T(e,t){let n=F(e,"x","squeeze");return q(n,y0(n.shape,t).newShape)}var wa=L({squeeze_:$T});function DT(e,t=0){let n=qu(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return P.runKernel(yo,r,a)}var Tn=L({stack_:DT});function OT(e,t=0){let n={x:F(e,"x","step")},r={alpha:t};return P.runKernel(ma,n,r)}var Go=L({step_:OT});function zT(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let c={x:F(e,"x","stridedSlice")},u={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return P.runKernel(Eo,c,u)}var Kf=L({stridedSlice_:zT});function PT(e){let t={x:F(e,"x","tan")};return P.runKernel(Co,t)}var Zf=L({tan_:PT});function Qt(e,t){Gs(e);let n=Or(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ka(e,null,n,t)}function hr(e,t,n){if(Gs(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Or(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ka(e,t,r,n)}function v4(e,t,n){if(Gs(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Or(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ka(e,t,r,n)}function k4(e,t,n){if(Gs(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Or(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ka(e,t,r,n)}function I4(e,t,n){if(Gs(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Or(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,ka(e,t,r,n)}function LT(e,t=1,n=!0){let r=F(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=P.runKernel(Ro,s,i);return{values:o,indices:l}}var Yf=L({topk_:LT});function WT(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Hm(t,n,r,!0,a),i=Ve(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Ad=L({truncatedNormal_:WT});function BT(e,t=0){let n=F(e,"x","unique","string_or_numeric");M(n.rank>0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=P.runKernel(Wh,r,a);return{values:s,indices:i}}var yd=L({unique_:BT});function VT(e,t,n){let r=F(e,"x","unsortedSegmentSum"),a=F(t,"segmentIds","unsortedSegmentSum","int32");M(Ht(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return P.runKernel(Au,s,i)}var Jf=L({unsortedSegmentSum_:VT});function UT(e,t=0){let n=F(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return P.runKernel(Fo,r,a)}var nr=L({unstack_:UT});function Pg(e,t=!0,n,r){return P.makeVariable(e,t,n,r)}function _5(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let r=Ve(e,"int32"),a=Ve([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=r.indexToLoc(n[s]),o=s*e.length;a.values.set(i,o)}return a.toTensor()}async function HT(e){let t=F(e,"condition","whereAsync","bool"),n=await t.data(),r=_5(t.shape,n);return e!==t&&t.dispose(),r}var Qf=HT;async function jT(e,t,n){let r=F(e,"tensor","boolMask"),a=F(t,"mask","boolMask","bool"),s=n==null?0:n,i=a.rank,o=r.shape;M(i>0,()=>"mask cannot be scalar"),en(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m<s+i;m++)l*=o[m];let c=o.slice(0,s).concat([l],o.slice(s+i)),u=q(r,c),h=q(a,[-1]),d=await Qf(h),p=wa(d,[1]),f=Vs(u,p,s);return e!==r&&r.dispose(),t!==a&&a.dispose(),p.dispose(),u.dispose(),h.dispose(),d.dispose(),f}var N4=jT;function GT(e,t="euclidean",n=null,r=!1){e=F(e,"x","norm");let a=b5(e,t,n),s=a.shape;if(r){let i=rr(n,e.shape);s=Qs(a.shape,i)}return q(a,s)}function b5(e,t,n=null){if(e.rank===0)return Dt(e);if(e.rank!==1&&n===null)return b5(q(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Ee(Dt(e),n);if(t===Infinity)return Bn(Dt(e),n);if(t===-Infinity)return Vo(Dt(e),n);if(t==="euclidean"||t===2)return Kt(Ee(Yr(Dt(e),Te(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Bn(Ee(Dt(e),n[0]),n[1]-1);if(t===Infinity)return Bn(Ee(Dt(e),n[1]),n[0]);if(t===-Infinity)return Vo(Ee(Dt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Kt(Ee(ht(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var gd=L({norm_:GT});function qT(e,t,n,r,a=!0){let s=F(e,"v","movingAverage"),i=F(t,"x","movingAverage"),o=F(n,"decay","movingAverage");R0(s,i),M(ea(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=Te(1),c=_e(l,o),u=B(_e(i,s),c);if(a){M(r!=null,()=>"When using zeroDebias: true, step is required.");let h=F(r,"step","movingAverage");u=Ne(u,_e(l,Yr(o,h)))}return ie(s,u)}var T4=L({movingAverage_:qT});function XT(e,t,n){let r=F(e,"indices","scatterND","int32"),a=F(t,"updates","scatterND");$m(a,r,n);let s={indices:r,updates:a},i={shape:n};return P.runKernel(_o,s,i)}var Lg=L({scatterND_:XT});function KT(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function ZT(e,t,n,r=0){let a=F(e,"sparseIndices","sparseToDense","int32"),s=F(t,"sparseValues","sparseToDense"),i=F(r,"defaultValue","sparseToDense",s.dtype);KT(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return P.runKernel(Lh,o,l)}var em=L({sparseToDense_:ZT});function YT(e,t){let n=F(t,"indices","gatherND","int32"),r={params:F(e,"x","gatherND"),indices:n};return P.runKernel(Qi,r)}var Wg=L({gatherND_:YT});function JT(e,t){if(t==null)return e.shape.slice();if(ea(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r<e.shape.length;r++)t[r]==null&&e.shape[r]!=null?n.push(e.shape[r]):n.push(t[r]);return n}return t}function QT(e,t,n,r){let a=F(e,"x","dropout");if(M(a.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof tt?a.clone():a;let s=JT(a,n),i=1-t,o=Ne(Wo(ie(Ho(s,0,1,"float32",r),i)),i);return B(a,o)}var Bg=L({dropout_:QT});function Vg(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function tm(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+r-1);a[s]=t-n*Math.cos(i)}return Qt(a,"float32")}async function eS(e,t,n=1){let r=F(e,"predictions","inTopK"),a=F(t,"targets","inTopK");M(r.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),M(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),en(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];M(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,c]=[i.length/s,s],u=g0("bool",l);for(let h=0;h<l;h++){let d=h*c,p=i.subarray(d,d+c),f=[];for(let m=0;m<p.length;m++)f.push({value:p[m],index:m});f.sort((m,A)=>A.value-m.value),u[h]=0;for(let m=0;m<n;m++)if(f[m].index===o[h]){u[h]=1;break}}return e!==r&&r.dispose(),t!==a&&a.dispose(),fr(u,a.shape,"bool")}var S4=eS,_a={};ze(_a,{conv2d:()=>tS,depthwiseConv2d:()=>nS,matMul:()=>rS});function aS(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=q(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=q(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];M(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),M(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&M(Ht(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return P.runKernel(yh,h,d)}var jm=L({conv2DBackpropFilter_:aS});function Pd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return B(e,Go(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Ld(e,t){let n=t,r=zt(e.shape,t.shape);return r.length>0&&(n=Ee(n,r)),q(n,e.shape)}function Wd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Cr(e);if(t==="elu")return Lo(e);if(t==="relu6")return od(e);if(t==="prelu")return Ru(e,n);if(t==="leakyrelu")return Tu(e,r);throw new Error(`Unknown fused activation ${t}.`)}var Bd=(e,t)=>!(e>0)||t==="linear";function sS({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Bd(P.state.gradientDepth,l)===!1){let _=Kr(e,t,n,r,a,s,i);return o!=null&&(_=ie(_,o)),Wd(_,l,c,u)}let h=F(e,"x","conv2d"),d=F(t,"filter","conv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=q(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&M(Ht(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),M(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),M(zr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),M(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=Ku(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=F(o,"bias","fused conv2d"),[A]=It(A,h),gt(m.outShape,A.shape));let y;c!=null&&(y=F(c,"prelu weights","fused conv2d"));let g=(_,b)=>{let[S,T,N,C]=b,$=Pd(_,N,l);M(Ta(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let D=Wm(T.shape,$,S,n,r),O=jm(T,$,S.shape,n,r),V=[D,O];if(C!=null){let W=Ld(C,$);V.push(W)}return V},w={x:p,filter:d,bias:A,preluActivationWeights:y},x={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Tr((_,b,S)=>{let T=P.runKernel(Ls,w,x);return S([b,_,T]),f&&(T=q(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Tr((_,b,S,T)=>{let N=P.runKernel(Ls,w,x);return T([b,_,N,S]),f&&(N=q(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d,A)}var tS=L({fusedConv2d_:sS});function iS(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=q(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=q(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return P.runKernel(_h,c,u)}var v5=L({depthwiseConv2dNativeBackpropFilter_:iS});function oS(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=q(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=P.runKernel(bh,c,u);return l?q(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var k5=L({depthwiseConv2dNativeBackpropInput_:oS});function lS({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Bd(P.state.gradientDepth,l)===!1){let _=Po(e,t,n,r,a,s,i);return o!=null&&(_=ie(_,o)),Wd(_,l,c,u)}let h=F(e,"x","depthwiseConv2d"),d=F(t,"filter","depthwiseConv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=q(h,[1,h.shape[0],h.shape[1],h.shape[2]])),M(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),M(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),M(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),M(zr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&M(Ht(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let m=Ku(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=F(o,"bias","fused conv2d"),[A]=It(A,h),gt(m.outShape,A.shape));let y;c!=null&&(y=F(c,"prelu weights","fused depthwiseConv2d"));let g=(_,b)=>{M(Ta(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[S,T,N,C]=b,$=Pd(_,N,l),D=k5(T.shape,$,S,n,r,s,i),O=v5(T,$,S.shape,n,r,s,i);if(C!=null){let V=Ld(A,$);return[D,O,V]}return[D,O]},w={x:p,filter:d,bias:A,preluActivationWeights:y},x={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Tr((_,b,S)=>{let T=P.runKernel(Ws,w,x);return S([b,_,T]),f&&(T=q(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Tr((_,b,S,T)=>{let N=P.runKernel(Ws,w,x);return T([b,_,N,S]),f&&(N=q(N,[N.shape[1],N.shape[2],N.shape[3]])),{value:N,gradFunc:g}})(p,d,A)}var nS=L({fusedDepthwiseConv2d_:lS});function uS({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Bd(P.state.gradientDepth,s)===!1){let C=Xe(e,t,n,r);return a!=null&&(C=ie(C,a)),Wd(C,s,i,o)}let l=F(e,"a","fused matMul"),c=F(t,"b","fused matMul");[l,c]=It(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?c.shape[c.rank-1]:c.shape[c.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),A=Ot(f),y=Ot(m);M(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),M(ea(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),M(u===h,()=>`Error in fused matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),w=n?q(l,[A,u,d]):q(l,[A,d,u]),x=r?q(c,[y,p,h]):q(c,[y,h,p]),_;a!=null&&(_=F(a,"bias","fused matMul"),[_]=It(_,l),gt(g,_.shape));let b;i!=null&&(b=F(i,"prelu weights","fused matMul"));let S=(C,$)=>{let[D,O,V,W]=$,K=Pd(q(C,V.shape),V,s),X,ee;if(!n&&!r?(X=Xe(K,O,!1,!0),ee=Xe(D,K,!0,!1)):!n&&r?(X=Xe(K,O,!1,!1),ee=Xe(K,D,!0,!1)):n&&!r?(X=Xe(O,K,!1,!0),ee=Xe(D,K,!1,!1)):(X=Xe(O,K,!0,!0),ee=Xe(K,D,!0,!0)),a!=null){let Z=Ld(W,K);return[X,ee,Z]}else return[X,ee]},T={a:w,b:x,bias:_,preluActivationWeights:b},N={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Tr((C,$,D)=>{let O=P.runKernel(Ps,T,N);return D([C,$,O]),{value:q(O,g),gradFunc:S}})(w,x):Tr((C,$,D,O)=>{let V=P.runKernel(Ps,T,N);return O([C,$,V,D]),{value:q(V,g),gradFunc:S}})(w,x,_)}var rS=L({fusedMatMul_:uS});function cS(e){return tm(e,.54,.46)}var hS=L({hammingWindow_:cS});function dS(e){return tm(e,.5,.5)}var I5=L({hannWindow_:dS});function pS(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Fe(e,s,t)),s+=n;if(r)for(;s<e.size;){let o=s+t-e.size,l=dt([Fe(e,s,t-o),Nu([o],a)]);i.push(l),s+=n}return i.length===0?hr([],[0,t]):q(dt(i),[i.length,t])}var N5=L({frame_:pS});function fS(e,t,n,r,a=I5){r==null&&(r=Vg(t));let s=N5(e,t,n),i=B(s,a(t)),o=[];for(let l=0;l<s.shape[0];l++)o.push(Ou(Fe(i,[l,0],[1,t]),r));return dt(o)}var mS=L({stft_:fS});function AS(e,t,n,r,a="bilinear",s=0){let i=F(e,"image","cropAndResize"),o=F(t,"boxes","cropAndResize","float32"),l=F(n,"boxInd","cropAndResize","int32"),c=o.shape[0];M(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),M(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),M(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),M(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),M(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),M(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let u={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return P.runKernel(Hi,u,h)}var yS=L({cropAndResize_:AS});function gS(e){let t=F(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return P.runKernel(Yi,n,{})}var xS=L({flipLeftRight_:gS});function wS(e,t,n=0,r=.5){let a=F(e,"image","rotateWithOffset","float32");M(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return P.runKernel($o,s,i)}var _S=L({rotateWithOffset_:wS});function al(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),M(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),M(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function bS(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=F(e,"boxes","nonMaxSuppression"),i=F(t,"scores","nonMaxSuppression"),o=al(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return P.runKernel(po,{boxes:s,scores:i},l)}var vS=L({nonMaxSuppression_:bS});function IS(e,t,n){let r=kS(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function kS(e,t,n){return TS(e,t,n||NS)}function NS(e,t){return e>t?1:e<t?-1:0}function TS(e,t,n){let r=0,a=e.length,s=0,i=!1;for(;r<a;){s=r+(a-r>>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function T5(e,t,n,r,a){return Gm(e,t,n,r,a,0)}function S5(e,t,n,r,a,s){return Gm(e,t,n,r,a,0,!1,s,!0)}function E5(e,t,n,r,a,s){return Gm(e,t,n,r,a,s,!0)}function Gm(e,t,n,r,a,s,i=!1,o=!1,l=!1){let c=[];for(let A=0;A<t.length;A++)t[A]>a&&c.push({score:t[A],boxIndex:A,suppressBeginIndex:0});c.sort(C5);let u=s>0?-.5/s:0,h=[],d=[];for(;h.length<n&&c.length>0;){let A=c.pop(),{score:y,boxIndex:g,suppressBeginIndex:w}=A;if(y<a)break;let x=!1;for(let _=h.length-1;_>=w;--_){let b=SS(e,g,h[_]);if(b>=r){x=!0;break}if(A.score=A.score*ES(r,u,b),A.score<=a)break}A.suppressBeginIndex=h.length,x||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&IS(c,A,C5))}let p=h.length,f=n-p;o&&f>0&&(h.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=d),l&&(m.validOutputs=p),m}function SS(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),c=Math.min(a[0],a[2]),u=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),f=(h-c)*(d-u);if(p<=0||f<=0)return 0;let m=Math.max(s,c),A=Math.max(i,u),y=Math.min(o,h),g=Math.min(l,d),w=Math.max(y-m,0)*Math.max(g-A,0);return w/(p+f-w)}function ES(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function C5(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function CS(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=F(e,"boxes","nonMaxSuppressionAsync"),i=F(t,"scores","nonMaxSuppressionAsync"),o=al(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:h}=T5(c,u,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),Qt(h,"int32")}var RS=CS;function FS(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),l=al(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=P.runKernel(mo,c,u);return{selectedIndices:h[0],selectedScores:h[1]}}var MS=L({nonMaxSuppressionWithScore_:FS});async function $S(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),l=al(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],h=c[1],{selectedIndices:d,selectedScores:p}=E5(u,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Qt(d,"int32"),selectedScores:Qt(p)}}var DS=$S;function OS(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),l=al(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:c,iouThreshold:u,scoreThreshold:h,padToMaxOutputSize:s},f=P.runKernel(fo,d,p);return{selectedIndices:f[0],validOutputs:f[1]}}var zS=L({nonMaxSuppressionPadded_:OS});async function PS(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),l=al(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=S5(d,p,c,u,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Qt(f,"int32"),validOutputs:Te(m,"int32")}}var LS=PS;function WS(e,t,n=!1,r=!1){let a=F(e,"images","resizeBilinear");M(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=q(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=P.runKernel(ks,o,l);return i?q(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var R5=L({resizeBilinear_:WS});function BS(e,t,n=!1,r=!1){let a=F(e,"images","resizeNearestNeighbor");M(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=q(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=P.runKernel(pu,o,l);return i?q(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var F5=L({resizeNearestNeighbor_:BS});function VS(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=F(e,"a","bandPart");M(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=q(id(0,s,1,"int32"),[-1,1]),l=id(0,i,1,"int32"),c=_e(o,l),u=tr(Us(c,Te(+t,"int32")),xa(c,Te(-n,"int32"))),h=Ct([s,i],r.dtype);return q(Tn(nr(q(r,[-1,s,i])).map(d=>fn(u,d,h))),a)}var US=L({bandPart_:VS});function HS(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s<e.length;++s)M(e[s].shape[0]===a,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=rn(e,e.shape[0],0).map(a=>wa(a,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a<e.length;++a)n.push(P.tidy(()=>{let s=r[a];if(a>0)for(let i=0;i<a;++i){let o=B(Ee(B(n[i],s)),n[i]);s=_e(s,o)}return Ne(s,gd(s,"euclidean"))}));return t?Tn(n,0):n}var jS=L({gramSchmidt_:HS});function GS(e,t=!1){if(M(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return M5(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),r=nr(q(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[c,u]=M5(l,t);a.push(c),s.push(u)});let i=q(Tn(a,0),e.shape),o=q(Tn(s,0),e.shape);return[i,o]}}function M5(e,t=!1){return P.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Pf(n),s=Nr(e),i=hr([[1]],[1,1]),o=Nr(i),l=n>=r?r:n;for(let c=0;c<l;++c){let u=s,h=o,d=a;[o,s,a]=P.tidy(()=>{let p=Fe(s,[c,c],[n-c,1]),f=gd(p),m=Fe(s,[c,c],[1,1]),A=fn(er(m,0),hr([[-1]]),hr([[1]])),y=_e(m,B(A,f)),g=Ne(p,y);g.shape[0]===1?o=Nr(i):o=dt([i,Fe(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let w=vt(Ne(Xe(A,y),f)),x=Fe(s,[c,0],[n-c,r]),_=B(w,o),b=it(o);if(c===0)s=_e(x,Xe(_,Xe(b,x)));else{let N=_e(x,Xe(_,Xe(b,x)));s=dt([Fe(s,[0,0],[c,r]),N],0)}let S=it(_),T=Fe(a,[0,c],[n,a.shape[1]-c]);if(c===0)a=_e(T,Xe(Xe(T,o),S));else{let N=_e(T,Xe(Xe(T,o),S));a=dt([Fe(a,[0,0],[n,c]),N],1)}return[o,s,a]}),Me([u,h,d])}return!t&&n>r&&(a=Fe(a,[0,0],[n,r]),s=Fe(s,[0,0],[r,r])),[a,s]})}var qS=L({qr_:GS}),sn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(sn||(sn={}));function XS(e,t,n=sn.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=F(t,"weights","computeWeightedLoss"));let s=a==null?r:B(r,a);if(n===sn.NONE)return s;if(n===sn.SUM)return Ee(s);if(n===sn.MEAN){if(a==null)return kt(s);{let i=r.size/a.size,o=Ne(Ee(s),Ee(a));return i>1?Ne(o,Te(i)):o}}if(n===sn.SUM_BY_NONZERO_WEIGHTS){if(a==null)return Ne(Ee(s),Te(r.size));{let i=B(a,Er(r.shape)),o=ye(Ee(Hs(i,Te(0))),"float32");return Ne(Ee(s),o)}}throw Error(`Unknown reduction: ${n}`)}var na=L({computeWeightedLoss_:XS});function KS(e,t,n,r=sn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","absoluteDifference"),s=F(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=F(n,"weights","absoluteDifference")),en(a.shape,s.shape,"Error in absoluteDifference: ");let o=Dt(_e(a,s));return na(o,i,r)}var ZS=L({absoluteDifference_:KS});function YS(e,t,n,r,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"labels","cosineDistance"),i=F(t,"predictions","cosineDistance"),o=null;r!=null&&(o=F(r,"weights","cosineDistance")),en(s.shape,i.shape,"Error in cosineDistance: ");let l=Te(1),c=_e(l,Ee(B(s,i),n,!0));return na(c,o,a)}var JS=L({cosineDistance_:YS});function QS(e,t,n,r=sn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","hingeLoss"),s=F(t,"predictions","hingeLoss"),i=null;n!=null&&(i=F(n,"weights","hingeLoss")),en(a.shape,s.shape,"Error in hingeLoss: ");let o=Te(1);a=_e(B(Te(2),a),o);let l=Cr(_e(o,B(a,s)));return na(l,i,r)}var eE=L({hingeLoss_:QS});function tE(e,t,n,r=1,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"labels","huberLoss"),i=F(t,"predictions","huberLoss"),o=null;n!=null&&(o=F(n,"weights","huberLoss")),en(s.shape,i.shape,"Error in huberLoss: ");let l=Te(r),c=Dt(_e(i,s)),u=Uo(c,l),h=_e(c,u),d=ie(B(Te(.5),ht(u)),B(l,h));return na(d,o,a)}var nE=L({huberLoss_:tE});function rE(e,t,n,r=1e-7,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"labels","logLoss"),i=F(t,"predictions","logLoss"),o=null;n!=null&&(o=F(n,"weights","logLoss")),en(s.shape,i.shape,"Error in logLoss: ");let l=Te(1),c=Te(r),u=vt(B(s,kn(ie(i,c)))),h=B(_e(l,s),kn(ie(_e(l,i),c))),d=_e(u,h);return na(d,o,a)}var aE=L({logLoss_:rE});function sE(e,t,n,r=sn.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","meanSquaredError"),s=F(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=F(n,"weights","meanSquaredError")),en(a.shape,s.shape,"Error in meanSquaredError: ");let o=md(a,s);return na(o,i,r)}var iE=L({meanSquaredError_:sE});function oE(e,t){let n=F(e,"labels","sigmoidCrossEntropyWithLogits"),r=F(t,"logits","sigmoidCrossEntropyWithLogits");en(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Cr(r),s=B(r,n),i=td(Wn(vt(Dt(r))));return ie(_e(a,s),i)}function lE(e,t,n,r=0,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"multiClassLabels","sigmoidCrossEntropy"),i=F(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=F(n,"weights","sigmoidCrossEntropy")),en(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let c=Te(r),u=Te(1),h=Te(.5);s=ie(B(s,_e(u,c)),B(h,c))}let l=oE(s,i);return na(l,o,a)}var uE=L({sigmoidCrossEntropy_:lE});function cE(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Tr((r,a,s)=>{let i=Wf(a,[n],!0),o=_e(ye(a,"float32"),i);s([r,o]);let l=vt(B(o,r));return{value:Ee(l,[n]),gradFunc:(c,u)=>{let[h,d]=u,p=Qs(c.shape,[n]);return[B(q(c,p),_e(ye(h,"float32"),Wn(d))),B(q(c,p),_e(Wn(d),ye(h,"float32")))]}}})(e,t)}function hE(e,t,n,r=0,a=sn.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"onehotLabels","softmaxCrossEntropy"),i=F(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=F(n,"weights","softmaxCrossEntropy")),en(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let c=Te(r),u=Te(1),h=Te(s.shape[1]);s=ie(B(s,_e(u,c)),Ne(c,h))}let l=cE(s,i);return na(l,o,a)}var dE=L({softmaxCrossEntropy_:hE}),E4={fft:Du,ifft:jo,rfft:Ou,irfft:fd},C4={hammingWindow:hS,hannWindow:I5,frame:N5,stft:mS},Mt={flipLeftRight:xS,resizeNearestNeighbor:F5,resizeBilinear:R5,rotateWithOffset:_S,cropAndResize:yS,nonMaxSuppression:vS,nonMaxSuppressionAsync:RS,nonMaxSuppressionWithScore:MS,nonMaxSuppressionWithScoreAsync:DS,nonMaxSuppressionPadded:zS,nonMaxSuppressionPaddedAsync:LS},Ug={bandPart:US,gramSchmidt:jS,qr:qS},R4={absoluteDifference:ZS,computeWeightedLoss:na,cosineDistance:JS,hingeLoss:eE,huberLoss:nE,logLoss:aE,meanSquaredError:iE,sigmoidCrossEntropy:uE,softmaxCrossEntropy:dE},Jr=class extends h5{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Me(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Cg(e,t)}dispose(){this.iterations_!=null&&Me(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Te(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Jr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var xd=class extends Jr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=P.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=P.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:H(()=>Ge(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:H(()=>Ge(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;H(()=>{let l=ie(B(i,this.rho),B(ht(s),1-this.rho)),c=B(Ne(Kt(ie(o,this.epsilon)),Kt(ie(i,this.epsilon))),s),u=ie(B(o,this.rho),B(ht(c),1-this.rho));i.assign(l),o.assign(u);let h=ie(B(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Me(this.accumulatedGrads.map(e=>e.variable)),Me(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};xd.className="Adadelta";Na(xd);var wd=class extends Jr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=P.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:H(()=>Nu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;H(()=>{let i=ie(s,ht(a));s.assign(i);let o=ie(B(Ne(a,Kt(ie(i,P.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Me(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};wd.className="Adagrad";Na(wd);var _d=class extends Jr{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],H(()=>{this.accBeta1=Te(t).variable(),this.accBeta2=Te(n).variable()}),r==null&&(this.epsilon=P.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=_e(1,this.accBeta1),r=_e(1,this.accBeta2);t.forEach((a,s)=>{let i=P.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:H(()=>Ge(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:H(()=>Ge(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,h=ie(B(c,this.beta1),B(l,1-this.beta1)),d=ie(B(u,this.beta2),B(ht(l),1-this.beta2)),p=Ne(h,n),f=Ne(d,r);c.assign(h),u.assign(d);let m=ie(B(Ne(p,ie(Kt(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(B(this.accBeta1,this.beta1)),this.accBeta2.assign(B(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Me(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Me(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),H(()=>{this.accBeta1.assign(Yr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Yr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};_d.className="Adam";Na(_d);var bd=class extends Jr{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],H(()=>{this.iteration=Te(0).variable(),this.accBeta1=Te(t).variable()}),r==null&&(this.epsilon=P.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=_e(1,this.accBeta1),r=Ne(-this.learningRate,ie(B(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=P.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:Ge(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:Ge(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,h=ie(B(c,this.beta1),B(l,1-this.beta1)),d=B(u,this.beta2),p=Dt(l),f=Sr(d,p);c.assign(h),u.assign(f);let m=ie(B(Ne(r,n),Ne(h,ie(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(ie(this.iteration,1)),this.accBeta1.assign(B(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Me(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Me(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};bd.className="Adamax";Na(bd);var zu=class extends Jr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=P.registeredVariables[t];H(()=>{let s=ie(B(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Vt(Te(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};zu.className="SGD";Na(zu);var vd=class extends zu{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Te(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=P.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:H(()=>Ge(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&H(()=>{let i,o=ie(B(this.m,a),s);this.useNesterov?i=ie(B(this.c,ie(s,B(o,this.m))),r):i=ie(B(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Me(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};vd.className="Momentum";Na(vd);var kd=class extends Jr{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=P.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=P.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:H(()=>Ge(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:H(()=>Ge(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:H(()=>Ge(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;H(()=>{let l=ie(B(i,this.decay),B(ht(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=ie(B(c,this.decay),B(s,1-this.decay)),h=Ne(B(s,this.learningRate),Kt(_e(l,ie(ht(u),this.epsilon)))),d=ie(B(o,this.momentum),h);i.assign(l),c.assign(u),o.assign(d);let p=_e(r,d);r.assign(p)}else{let c=ie(B(i,this.decay),B(ht(s),1-this.decay)),u=ie(B(o,this.momentum),Ne(B(s,this.learningRate),Kt(ie(c,this.epsilon))));i.assign(c),o.assign(u);let h=_e(r,u);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Me(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Me(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Me(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};kd.className="RMSProp";Na(kd);var ei=class{static sgd(e){return new zu(e)}static momentum(e,t,n=!1){return new vd(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new kd(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new _d(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new xd(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new bd(e,t,n,r,a)}static adagrad(e,t=.1){return new wd(e,t)}},js={sgd:ei.sgd,momentum:ei.momentum,adadelta:ei.adadelta,adagrad:ei.adagrad,rmsprop:ei.rmsprop,adamax:ei.adamax,adam:ei.adam},pE=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Id(){return new Promise(e=>pE(()=>e()))}var R={};ze(R,{ERF_A1:()=>kE,ERF_A2:()=>IE,ERF_A3:()=>NE,ERF_A4:()=>TE,ERF_A5:()=>SE,ERF_P:()=>vE,PARALLELIZE_THRESHOLD:()=>qm,SELU_SCALE:()=>D5,SELU_SCALEALPHA:()=>$5,applyActivation:()=>Wd,assertAndGetBroadcastShape:()=>gt,assertAxesAreInnerMostDims:()=>gN,assertParamsConsistent:()=>fE,assignToTypedArray:()=>OE,axesAreInnerMostDims:()=>Bm,calculateShapes:()=>Q0,combineLocations:()=>g5,complexWithEvenIndex:()=>ME,complexWithOddIndex:()=>$E,computeConv2DInfo:()=>Ku,computeConv3DInfo:()=>A5,computeDefaultPad:()=>Lm,computeDilation2DInfo:()=>K9,computeOptimalWindowSize:()=>AE,computeOutAndReduceShapes:()=>x5,computeOutShape:()=>mE,computePool2DInfo:()=>m5,computePool3DInfo:()=>Z9,convertConv2DDataFormat:()=>f5,eitherStridesOrDilationsAreOne:()=>zr,expandShapeToKeepDim:()=>Qs,exponent:()=>PE,exponents:()=>zE,fromStringArrayToUint8:()=>BE,fromUint8ToStringArray:()=>WE,getAxesPermutation:()=>w5,getBroadcastDims:()=>PI,getComplexWithIndex:()=>DE,getFusedBiasGradient:()=>Ld,getFusedDyActivation:()=>Pd,getImageCenter:()=>yE,getInnerMostAxes:()=>xN,getPermuted:()=>xE,getReductionAxes:()=>zt,getReshaped:()=>gE,getReshapedPermuted:()=>wE,getSliceBeginCoords:()=>_E,getSliceSize:()=>bE,getUndoAxesPermutation:()=>Vm,log:()=>CE,mergeRealAndImagArrays:()=>RE,prepareAndValidate:()=>J0,prepareSplitSize:()=>LE,segment_util:()=>O5,shouldFuse:()=>Bd,slice_util:()=>an,splitRealAndImagArrays:()=>FE,tupleValuesAreOne:()=>Ta,upcastType:()=>Qn,validateInput:()=>$m,validateUpdateShape:()=>Mm,warn:()=>EE});function fE(e,t){let n=e[0].length;e.forEach((a,s)=>{M(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i<n;i++)M(i===t||a[i]===r[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function mE(e,t){let n=e[0].slice();for(let r=1;r<e.length;r++)n[t]+=e[r][t];return n}var qm=30;function AE(e){return e<=qm?e:Sd(e,Math.floor(Math.sqrt(e)))}function yE(e,t,n){let r=n*(typeof e=="number"?e:e[0]),a=t*(typeof e=="number"?e:e[1]);return[r,a]}function gE(e,t,n,r=!0){let a=[];if(r)a=a.concat(t.slice(0)),a.push(e[0]/n),a=a.concat(e.slice(1));else{a=a.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)a=a.concat([e[i+1]/t[i],t[i]]);a=a.concat(e.slice(s+1))}return a}function xE(e,t,n=!0){let r=[];if(n){r.push(t);for(let a=t+1;a<e;++a)a<=2*t?(r.push(a),r.push(a-(t+1))):r.push(a)}else{let a=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function wE(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?r?a.push(t[s-1]*e[s]):a.push(e[s]/t[s-1]):a.push(e[s]);return a}function _E(e,t){let n=[0];for(let r=0;r<t;++r)n.push(e[r][0]);return n}function bE(e,t,n){let r=e.slice(0,1);for(let a=0;a<n;++a)r.push(e[a+1]-t[a][0]-t[a][1]);return r}var $5=1.7580993408473768,D5=1.0507009873554805,vE=.3275911,kE=.254829592,IE=-.284496736,NE=1.421413741,TE=-1.453152027,SE=1.061405429;function EE(...e){Q().getBool("IS_TEST")||console.warn(...e)}function CE(...e){Q().getBool("IS_TEST")||console.log(...e)}function RE(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let r=0;r<n.length;r+=2)n[r]=e[r/2],n[r+1]=t[r/2];return n}function FE(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let r=0;r<e.length;r+=2)t[r/2]=e[r],n[r/2]=e[r+1];return{real:t,imag:n}}function ME(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=0;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function $E(e){let t=Math.floor(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=2;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function DE(e,t){let n=e[t*2],r=e[t*2+1];return{real:n,imag:r}}function OE(e,t,n,r){e[r*2]=t,e[r*2+1]=n}function zE(e,t){let n=new Float32Array(e/2),r=new Float32Array(e/2);for(let a=0;a<Math.ceil(e/2);a++){let s=(t?2:-2)*Math.PI*(a/e);n[a]=Math.cos(s),r[a]=Math.sin(s)}return{real:n,imag:r}}function PE(e,t,n){let r=(n?2:-2)*Math.PI*(e/t),a=Math.cos(r),s=Math.sin(r);return{real:a,imag:s}}function LE(e,t,n=0){let r=[];if(typeof t=="number")M(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);M(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}M(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var O5={};ze(O5,{collectGatherOpShapeInfo:()=>HE,computeOutShape:()=>UE,segOpComputeOptimalWindowSize:()=>VE});function VE(e,t){let n=!1,r;for(e<=qm?(r=e,n=!0):r=Sd(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Sd(e,r+1);return r}function UE(e,t,n){let r=[],a=e.length;for(let s=0;s<a;s++)s!==t?r.push(e[s]):r.push(n);return r}function HE(e,t,n,r){let a=t.shape.length,s=e.shape.length;if(r!==0&&(r<-a||r>a))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) (
${s}).`);if(n<r)throw new Error(`batchDims (${r}) must be less than or equal to axis (${n}).`);for(let h=0;h<r;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[n],o=[],l=1,c=1,u=1;for(let h=0;h<r;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=r;h<n;h++)o.push(e.shape[h]),c*=e.shape[h];for(let h=r;h<a;h++)o.push(t.shape[h]);for(let h=n+1;h<s;h++)o.push(e.shape[h]),u*=e.shape[h];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:i,outputShape:o}}function WE(e){try{return e.map(t=>Rd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function BE(e){return e.map(t=>Vu(t))}var Rr={};ze(Rr,{nonMaxSuppressionV3Impl:()=>T5,nonMaxSuppressionV4Impl:()=>S5,nonMaxSuppressionV5Impl:()=>E5,whereImpl:()=>_5});function ke(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var jE=Rr.whereImpl,Hg=class extends Ql{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new ch(this,Ln())}write(e,t,n){this.firstUse&&(this.firstUse=!1,Q().get("IS_NODE")&&R.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let r={};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let a=n.map(s=>k.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r){this.data.set(e,{values:t,dtype:r,refCount:1})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return R.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Ln().makeTensorFromDataId(r,t,n,this)}disposeData(e){if(this.data.has(e)){let{complexTensorInfos:t}=this.data.get(e);t!=null&&(this.disposeData(t.real.dataId),this.disposeData(t.imag.dataId)),this.data.delete(e)}}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.data.has(t)){let n=this.data.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ke([e],"where");let t=this.readSync(e.dataId);return jE(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},nm={};ze(nm,{addImpl:()=>P5,bincountImpl:()=>Xm,bincountReduceImpl:()=>L5,ceilImpl:()=>W5,concatImpl:()=>Km,expImpl:()=>B5,expm1Impl:()=>V5,floorImpl:()=>U5,gatherV2Impl:()=>H5,greaterImpl:()=>j5,lessImpl:()=>G5,linSpaceImpl:()=>q5,logImpl:()=>X5,maxImpl:()=>K5,maximumImpl:()=>Z5,minimumImpl:()=>Y5,multiplyImpl:()=>Zm,negImpl:()=>J5,notEqualImpl:()=>Q5,prodImpl:()=>ex,rangeImpl:()=>Jm,rsqrtImpl:()=>tx,simpleAbsImpl:()=>z5,sliceImpl:()=>Vd,squaredDifferenceImpl:()=>nx,stridedSliceImpl:()=>rx,subImpl:()=>ax,tileImpl:()=>sx,topKImpl:()=>ix,transposeImpl:()=>Ym,uniqueImpl:()=>ox});function z5(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var GE=e=>{let{x:t}=e.inputs,n=e.backend;ke(t,"abs");let r=new Float32Array(k.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=z5(a),n.makeOutput(r,t.shape,"float32")},qE={kernelName:Mi,backendName:"cpu",kernelFunc:GE};function Rt(e){return(t,n,r,a,s)=>{let i=R.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),c=k.sizeFromShape(i),u=k.getTypedArrayFromDType(s,c),h=t.length,d=n.length,p=k.computeStrides(t),f=k.computeStrides(n),m=R.getBroadcastDims(t,i),A=R.getBroadcastDims(n,i);if(m.length+A.length===0)for(let y=0;y<u.length;++y)u[y]=e(r[y%r.length],a[y%a.length]);else for(let y=0;y<u.length;++y){let g=k.indexToLoc(y,o,l),w=g.slice(-h);m.forEach(S=>w[S]=0);let x=k.locToIndex(w,h,p),_=g.slice(-d);A.forEach(S=>_[S]=0);let b=k.locToIndex(_,d,f);u[y]=e(r[x],a[b])}return[u,i]}}function Sn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var XE={kernelName:Ah,backendName:"cpu",kernelFunc:Sn};function Ud(e,t,n="float32"){if(n==="complex64"){let a=Ud(e,t,"float32"),s=Ud(e,t,"float32");return Sn({inputs:{real:a,imag:s},backend:e})}let r=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Pr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var KE={kernelName:to,backendName:"cpu",kernelFunc:Pr};function ti(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var ZE={kernelName:Oh,backendName:"cpu",kernelFunc:ti};function Sa(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Pr({inputs:{x:a},backend:n});let i=Ud(n,a.shape,a.dtype),o=Sa({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Sn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=ti({inputs:{input:a},backend:n}),o=Sa({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(a.dtype,s)){let i=Pr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=k.toTypedArray([0],a.dtype),[l,c]=Rt((u,h)=>u!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var YE={kernelName:Ja,backendName:"cpu",kernelFunc:Sa};function jt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;ke([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=Sa({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),h=u.complexTensorInfos.real,d=u.complexTensorInfos.imag,p=l.data.get(h.dataId).values,f=l.data.get(d.dataId).values,m=Sa({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(m.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,w=l.data.get(y.dataId).values,x=l.data.get(g.dataId).values,[_,b,S]=n(i.shape,o.shape,p,f,w,x),T=l.makeTensorInfo(S,"float32",_),N=l.makeTensorInfo(S,"float32",b),C=Sn({inputs:{real:T,imag:N},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(N),C}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(p,h,d)}}}function Qm(e){return(t,n,r,a,s,i)=>{let o=R.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),c=o.length,u=k.computeStrides(o),h=k.getTypedArrayFromDType("float32",l),d=k.getTypedArrayFromDType("float32",l),p=R.getBroadcastDims(t,o),f=R.getBroadcastDims(n,o),m=R.mergeRealAndImagArrays(r,a),A=R.mergeRealAndImagArrays(s,i),y=t.length,g=k.computeStrides(t),w=n.length,x=k.computeStrides(n);if(p.length+f.length===0)for(let _=0;_<h.length;_++){let b=_%m.length,S=_%A.length,T=e(m[b*2],m[b*2+1],A[S*2],A[S*2+1]);h[_]=T.real,d[_]=T.imag}else for(let _=0;_<h.length;_++){let b=k.indexToLoc(_,c,u),S=b.slice(-y);p.forEach(D=>S[D]=0);let T=k.locToIndex(S,y,g),N=b.slice(-w);f.forEach(D=>N[D]=0);let C=k.locToIndex(N,w,x),$=e(m[T*2],m[T*2+1],A[C*2],A[C*2+1]);h[_]=$.real,d[_]=$.imag}return[h,d,o]}}var P5=Rt((e,t)=>e+t),JE=Qm((e,t,n,r)=>({real:e+n,imag:t+r})),Zu=jt(da,P5,JE),QE={kernelName:da,backendName:"cpu",kernelFunc:Zu};function Xm(e,t,n,r,a){let s=k.sizeFromShape(r),i=k.makeZerosTypedArray(a,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function L5(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Ve([a,n],t.dtype);for(let o=0;o<a;o++)for(let l=0;l<s;l++){let c=e.get(o,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(r?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function sl(e){return(t,n,r)=>{let a=k.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)a[s]=e(t[s],r);return a}}function ut(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(ke(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=k.sizeFromShape(i.shape),u=n||i.dtype,h=k.getArrayFromDType(u,c);for(let d=0;d<c;++d)h[d]=t(l[d],a);return o.makeTensorInfo(i.shape,u,h)}}function il(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(ke(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,a);return o.makeTensorInfo(i.shape,c,u)}}var W5=sl(e=>Math.ceil(e)),eC=il(Bi,W5),tC={kernelName:Bi,backendName:"cpu",kernelFunc:eC};function Km(e,t,n,r){let a=k.getArrayFromDType(n,k.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?R.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;c<i.shape[0];++c){let u=c*t[1]+s;for(let h=0;h<i.shape[1];++h)a[u+h]=o[l++]}s+=i.shape[1]})}return a}var B5=sl(e=>Math.exp(e)),lx=il(ss,B5),nC={kernelName:ss,backendName:"cpu",kernelFunc:lx},V5=sl(e=>Math.expm1(e)),rC=il(Zi,V5),aC={kernelName:Zi,backendName:"cpu",kernelFunc:rC},U5=sl(e=>Math.floor(e)),sC=il(is,U5),iC={kernelName:is,backendName:"cpu",kernelFunc:sC};function H5(e,t,n){let r=Ve(n,e.dtype);for(let a=0;a<r.size;++a){let s=r.indexToLoc(a).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let c=e.locToIndex(s);r.values[a]=e.values[c]}return r}var j5=Rt((e,t)=>e>t?1:0),oC=jt(eo,j5,null,"bool"),lC={kernelName:eo,backendName:"cpu",kernelFunc:oC},G5=Rt((e,t)=>e<t?1:0),uC=jt(so,G5,null,"bool"),cC={kernelName:so,backendName:"cpu",kernelFunc:uC};function q5(e,t,n){let r=(t-e)/(n-1),a=k.makeZerosTypedArray(n,"float32");a[0]=e;for(let s=1;s<a.length;s++)a[s]=a[s-1]+r;return a}var X5=sl(e=>Math.log(e)),hC=il(hs,X5),dC={kernelName:hs,backendName:"cpu",kernelFunc:hC};function K5(e,t,n,r){let a=k.getTypedArrayFromDType(r,k.sizeFromShape(n));for(let s=0;s<a.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let c=e[i+l];c>o&&(o=c)}a[s]=o}return a}var Z5=Rt((e,t)=>Math.max(e,t)),pC=jt(ps,Z5),fC={kernelName:ps,backendName:"cpu",kernelFunc:pC},Y5=Rt((e,t)=>Math.min(e,t)),mC=jt(ys,Y5),AC={kernelName:ys,backendName:"cpu",kernelFunc:mC},Zm=Rt((e,t)=>e*t),yC=Qm((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),eA=jt(gs,Zm,yC),gC={kernelName:gs,backendName:"cpu",kernelFunc:eA};function J5(e,t,n){let r=k.createScalarValue(-1,n);return Zm([],t,r,e,n)}function xC(e){let{inputs:t,backend:n}=e,{x:r}=t;ke(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=J5(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var wC={kernelName:co,backendName:"cpu",kernelFunc:xC},Q5=Rt((e,t)=>e!==t?1:0),_C=jt(ho,Q5,null,"bool"),bC={kernelName:ho,backendName:"cpu",kernelFunc:_C};function Ym(e,t,n,r,a){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(a),c=k.getTypedArrayFromDType(n,k.sizeFromShape(a));for(let u=0;u<i;++u){let h=k.indexToLoc(u,s,o),d=new Array(h.length);for(let f=0;f<d.length;f++)d[f]=h[r[f]];let p=k.locToIndex(d,s,l);c[p]=e[u]}return c}function ar(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{perm:s}=n;ke(a,"transpose");let i=a.shape.length,o=new Array(i);for(let u=0;u<o.length;u++)o[u]=a.shape[s[u]];let l=r.data.get(a.dataId).values,c=Ym(l,a.shape,a.dtype,s,o);return{dataId:r.write(c,o,a.dtype),shape:o,dtype:a.dtype}}var vC={kernelName:zs,backendName:"cpu",kernelFunc:ar};function ex(e,t,n,r){let[a,s]=R.computeOutAndReduceShapes(e,r),i=Qn(t,"int32"),o=k.makeZerosTypedArray(k.sizeFromShape(a),i),l=k.sizeFromShape(s);for(let c=0;c<o.length;++c){let u=c*l,h=1;for(let d=0;d<l;++d)h*=n[u+d];o[c]=h}return{outVals:o,outShape:a,outDtype:i}}function kC(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ke(a,"prod");let o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=R.getAxesPermutation(l,o),u=l,h=a,d=[];c!=null&&(h=ar({inputs:{x:a},backend:n,attrs:{perm:c}}),d.push(h),u=R.getInnerMostAxes(u.length,o));let p=n.data.get(h.dataId).values,{outVals:f,outShape:m,outDtype:A}=ex(h.shape,h.dtype,p,u),y=m;return i&&(y=R.expandShapeToKeepDim(m,l)),d.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,f)}var IC={kernelName:go,backendName:"cpu",kernelFunc:kC};function Jm(e,t,n,r){let a=e===t,s=e<t&&n<0,i=t<e&&n>1;if(a||s||i)return k.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,r);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var tx=sl(e=>1/Math.sqrt(e)),NC=il(Ss,tx),TC={kernelName:Ss,backendName:"cpu",kernelFunc:NC};function Vd(e,t,n,r,a){let s=an.isSliceContinous(r,t,n),i=k.sizeFromShape(n),o=k.computeStrides(r);if(s){let h=an.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?R.fromUint8ToStringArray(e):e,c=Ve(r,a,l),u=Ve(n,a);for(let h=0;h<u.size;++h){let d=u.indexToLoc(h),p=d.map((f,m)=>f+t[m]);u.set(c.get(...p),...d)}return a==="string"?R.fromStringArrayToUint8(u.values):u.values}function ni(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;ke(a,"slice");let[o,l]=an.parseSliceParams(a,s,i);an.assertParamsValid(a,o,l);let c=n.data.get(a.dataId).values,u=Vd(c,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,u)}var SC={kernelName:ko,backendName:"cpu",kernelFunc:ni},nx=Rt((e,t)=>{let n=e-t;return n*n}),EC=jt($s,nx),CC={kernelName:$s,backendName:"cpu",kernelFunc:EC};function rx(e,t,n,r){let a=Ve(e,t.dtype);for(let s=0;s<a.size;s++){let i=a.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+r[l];a.set(t.get(...o),...i)}return a}var ax=Rt((e,t)=>e-t),RC=Qm((e,t,n,r)=>({real:e-n,imag:t-r})),tA=jt(Ds,ax,RC),FC={kernelName:Ds,backendName:"cpu",kernelFunc:tA};function sx(e,t){let n=new Array(e.rank);for(let a=0;a<n.length;a++)n[a]=e.shape[a]*t[a];let r=Ve(n,e.dtype);for(let a=0;a<r.values.length;++a){let s=r.indexToLoc(a),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);r.values[a]=e.values[o]}return r}function ix(e,t,n,r,a){let s=t[t.length-1],[i,o]=[e.length/s,s],l=k.getTypedArrayFromDType(n,i*r),c=k.getTypedArrayFromDType("int32",i*r);for(let h=0;h<i;h++){let d=h*o,p=e.subarray(d,d+o),f=[];for(let g=0;g<p.length;g++)f.push({value:p[g],index:g});f.sort((g,w)=>w.value-g.value);let m=h*r,A=l.subarray(m,m+r),y=c.subarray(m,m+r);for(let g=0;g<r;g++)A[g]=f[g].value,y[g]=f[g].index}let u=t.slice();return u[u.length-1]=r,[Ve(u,n,l),Ve(u,"int32",c)]}function ox(e,t,n,r){let a=k.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let f=0;f<a;f++)s[0]*=n[f];s[1]=n[a];for(let f=a+1;f<n.length;f++)s[2]*=n[f];let i={},o=new Int32Array(n[a]),l=new $t(s,r,e),c=[],u=s[0]===1&&s[2]===1;for(let f=0;f<n[a];f++){let m;if(u)m=e[f].toString();else{let A=[];for(let y=0;y<s[0];y++)for(let g=0;g<s[2];g++)A.push(l.get(y,f,g));m=A.join(",")}if(i[m]!==void 0)o[f]=i[m];else{let A=Object.keys(i).length;i[m]=A,o[f]=A,c.push(f)}}let h=s.slice();h[1]=Object.keys(i).length;let d=new $t(h,r);c.forEach((f,m)=>{for(let A=0;A<s[0];A++)for(let y=0;y<s[2];y++)d.set(l.get(A,f,y),A,m,y)});let p=n.slice();return p[a]=h[1],{outputValues:d.values,outputShape:p,indices:o}}var jg="3.0.0";xu("cpu",()=>new Hg,1);var ux=ut(Gi,e=>e>=0?e:Math.exp(e)-1),MC={kernelName:Gi,backendName:"cpu",kernelFunc:ux};function cx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;ke([a],"leakyRelu");let i=k.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let c=0;c<o.length;c++)l[c]=o[c]<0?s*o[c]:o[c];return n.makeTensorInfo(a.shape,"float32",l)}var $C={kernelName:cs,backendName:"cpu",kernelFunc:cx},DC=Rt((e,t)=>e<0?t*e:e);function hx(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;ke([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=DC(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var OC={kernelName:bs,backendName:"cpu",kernelFunc:hx},dx=ut(vs,e=>Math.max(0,e)),zC={kernelName:vs,backendName:"cpu",kernelFunc:dx},px=ut(Is,e=>Math.min(Math.max(0,e),6)),PC={kernelName:Is,backendName:"cpu",kernelFunc:px};function nA(e,t,n,r,a){if(n==="linear")return Pr({inputs:{x:t},backend:e});if(n==="relu")return dx({inputs:{x:t},backend:e});if(n==="elu")return ux({inputs:{x:t},backend:e});if(n==="relu6")return px({inputs:{x:t},backend:e});if(n==="prelu")return hx({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return cx({inputs:{x:t},backend:e,attrs:{alpha:a}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function xt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=k.sizeFromShape(a.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let c=n.data.get(a.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,h=c.complexTensorInfos.imag;u.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var LC={kernelName:wo,backendName:"cpu",kernelFunc:xt};function fx(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;ke([a,s],"matMul");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=k.sizeFromShape(f),y=k.sizeFromShape(m),g=A===y||A===1||y===1;k.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let w=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);k.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[A,u,d]:[A,d,u],_=o?[y,p,h]:[y,h,p],b=xt({inputs:{x:a},backend:n,attrs:{shape:x}}),S=xt({inputs:{x:s},backend:n,attrs:{shape:_}}),T=i?b.shape[1]:b.shape[2],N=i?b.shape[2]:b.shape[1],C=o?S.shape[1]:S.shape[2],$=Math.max(A,y),D=n.data.get(b.dataId).values,O=n.data.get(S.dataId).values,V=k.computeStrides(b.shape),W=k.computeStrides(S.shape),[K,X,ee]=i?[V[0],1,V[1]]:[V[0],V[1],1],[Z,ae,J]=o?[1,W[1],W[0]]:[W[1],1,W[0]],oe=N*C,ne=Ve([$,N,C],b.dtype),he=ne.values,le=n.blockSize;for(let me=0;me<$;me++)for(let Ae=0;Ae<N;Ae+=le)for(let we=0;we<C;we+=le)for(let Se=0;Se<T;Se+=le){let Ce=Math.min(Ae+le,N),De=Math.min(we+le,C),je=Math.min(Se+le,T);for(let Be=Ae;Be<Ce;Be++)for(let Qe=we;Qe<De;Qe++){let st=0;for(let Ue=Se;Ue<je;Ue++){let ot=Math.min(me,A-1)*K,lt=Math.min(me,y-1)*J,On=D[ot+Be*X+Ue*ee],et=O[Ue*Z+Qe*ae+lt];st+=On*et}he[me*oe+(Be*C+Qe)]+=st}}return n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(S),n.makeTensorInfo(w,ne.dtype,ne.values)}var WC={kernelName:Ya,backendName:"cpu",kernelFunc:fx};function BC(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,d,p,f,m=[];d=fx({inputs:{a,b:s},attrs:{transposeA:l,transposeB:c},backend:n}),i&&(p=Zu({inputs:{a:d,b:i},backend:n}),m.push(d),d=p),u&&(f=nA(n,d,u,o,h),m.push(d),d=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return d}var VC={kernelName:Ps,backendName:"cpu",kernelFunc:BC},UC=ut($i,e=>Math.acos(e)),HC={kernelName:$i,backendName:"cpu",kernelFunc:UC},jC=ut(Di,e=>Math.acosh(e)),GC={kernelName:Di,backendName:"cpu",kernelFunc:jC};function qC(e){let{inputs:t,backend:n}=e,r=t;ke(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Ve(r[0].shape,r[0].dtype),i=s.values;for(let o=0;o<r.length;o++){let l=a[o];for(let c=0;c<i.length;c++)i[c]+=l[c]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var XC={kernelName:Xa,backendName:"cpu",kernelFunc:qC};function KC(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ke(a,"all");let o=k.parseAxisParam(s,a.shape),l=o,c=R.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=ar({inputs:{x:a},backend:n,attrs:{perm:c}}),l=R.getInnerMostAxes(l.length,a.shape.length)),R.assertAxesAreInnerMostDims("all",l,u.shape.length);let[h,d]=R.computeOutAndReduceShapes(u.shape,l),p=k.sizeFromShape(d),f=k.makeZerosTypedArray(k.sizeFromShape(h),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,w=m[g];for(let x=0;x<p;++x){let _=m[g+x];w=w&&_}f[y]=w}c!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(h,u.dtype,f);if(i){let y=R.expandShapeToKeepDim(h,o),g=xt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var ZC={kernelName:hh,backendName:"cpu",kernelFunc:KC};function YC(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ke(a,"any");let o=k.parseAxisParam(s,a.shape),l=o,c=R.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=ar({inputs:{x:a},backend:n,attrs:{perm:c}}),l=R.getInnerMostAxes(l.length,a.shape.length)),R.assertAxesAreInnerMostDims("any",l,u.shape.length);let[h,d]=R.computeOutAndReduceShapes(u.shape,l),p=k.sizeFromShape(d),f=k.makeZerosTypedArray(k.sizeFromShape(h),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,w=m[g];for(let x=0;x<p;++x){let _=m[g+x];w=w||_}f[y]=w}c!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(h,u.dtype,f);if(i){let y=R.expandShapeToKeepDim(h,o),g=xt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var JC={kernelName:dh,backendName:"cpu",kernelFunc:YC};function QC(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;ke(a,"argMax");let i=k.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=ar({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],R.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[u,h]=R.computeOutAndReduceShapes(l.shape,i),d=k.sizeFromShape(u),p=k.makeZerosTypedArray(d,"int32"),f=k.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*f,g=m[y],w=0;for(let x=0;x<f;++x){let _=m[y+x];_>g&&(g=_,w=x)}p[A]=w}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var eR={kernelName:Ka,backendName:"cpu",kernelFunc:QC};function tR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;ke(a,"argMin");let i=k.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=ar({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],R.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,h]=R.computeOutAndReduceShapes(l.shape,i),d=k.sizeFromShape(u),p=k.makeZerosTypedArray(d,"int32"),f=k.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*f,g=m[y],w=0;for(let x=0;x<f;++x){let _=m[y+x];_<g&&(g=_,w=x)}p[A]=w}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",p)}var nR={kernelName:eu,backendName:"cpu",kernelFunc:tR},rR=ut(Oi,e=>Math.asin(e)),aR={kernelName:Oi,backendName:"cpu",kernelFunc:rR},sR=ut(zi,e=>Math.asinh(e)),iR={kernelName:zi,backendName:"cpu",kernelFunc:sR},oR=ut(Pi,e=>Math.atan(e)),lR={kernelName:Pi,backendName:"cpu",kernelFunc:oR},uR=Rt((e,t)=>Math.atan2(e,t)),cR=jt(Wi,uR),hR={kernelName:Wi,backendName:"cpu",kernelFunc:cR},dR=ut(Li,e=>Math.atanh(e)),pR={kernelName:Li,backendName:"cpu",kernelFunc:dR};function rA(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,c=a.dilationWidth,u=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Ve(a.outShape,n),A=m.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],w=a.outShape[3];for(let x=0;x<a.batchSize;++x){let _=x*y,b=x*r[0];for(let S=0;S<a.inChannels;++S)for(let T=0;T<a.outHeight;++T){let N=T*i-d,C=Math.max(0,N),$=Math.min(a.inHeight,u+N),D=_+T*g;for(let O=0;O<a.outWidth;++O){let V=O*o-p,W=Math.max(0,V),K=Math.min(a.inWidth,h+V),X=f,ee=0,Z=0;for(let J=C;J<$;J+=l){let oe=b+J*r[1];for(let ne=W;ne<K;ne+=c){let he=oe+ne*r[2],le=e[he+S];s==="max"&&le>X?X=le:s==="avg"&&(ee+=le,Z++)}if(isNaN(X))break}let ae=D+O*w+S;A[ae]=s==="avg"?ee/Z:X}}}return m}function mx(e,t,n,r,a=!1,s=!1){let i=Ve(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,c=r.dilationHeight,u=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,f=r.padInfo.left,m=Ve(t,n,e);for(let A=0;A<r.batchSize;++A)for(let y=0;y<r.inChannels;++y)for(let g=0;g<r.outHeight;++g){let w=g*o-p,x=w;for(;x<0;)x+=c;let _=Math.min(r.inHeight,h+w);for(let b=0;b<r.outWidth;++b){let S=b*l-f,T=S;for(;T<0;)T+=u;let N=Math.min(r.inWidth,d+S),C=Number.NEGATIVE_INFINITY,$=-1;for(let D=x;D<_;D+=c){let O=D-w;for(let V=T;V<N;V+=u){let W=V-S,K=m.get(A,D,V,y);K>C&&(C=K,a?$=s?((A*r.inHeight+D)*r.inWidth+V)*r.inChannels+y:(D*r.inWidth+V)*r.inChannels+y:$=O*d+W)}}i.set($,A,g,b,y)}}return i}function Ax(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,c=a.dilationDepth,u=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=Ve(a.outShape,n),x=w.values,_=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],b=a.outShape[2]*a.outShape[3]*a.outShape[4],S=a.outShape[3]*a.outShape[4],T=a.outShape[4];for(let N=0;N<a.batchSize;++N){let C=N*_,$=N*r[0];for(let D=0;D<a.inChannels;++D)for(let O=0;O<a.outDepth;++O){let V=O*i-m,W=V;for(;W<0;)W+=c;let K=Math.min(a.inDepth,d+V),X=C+O*b;for(let ee=0;ee<a.outHeight;++ee){let Z=ee*o-A,ae=Z;for(;ae<0;)ae+=u;let J=Math.min(a.inHeight,p+Z),oe=X+ee*S;for(let ne=0;ne<a.outWidth;++ne){let he=ne*l-y,le=he;for(;le<0;)le+=h;let me=Math.min(a.inWidth,f+he),Ae=oe+ne*T,we=g,Se=0,Ce=0;for(let je=W;je<K;je+=c){let Be=$+je*r[1];for(let Qe=ae;Qe<J;Qe+=u){let st=Be+Qe*r[2];for(let Ue=le;Ue<me;Ue+=h){let ot=st+Ue*r[3],lt=e[ot+D];if(s==="max"&&lt>we?we=lt:s==="avg"&&(Se+=lt,Ce++),isNaN(we))break}if(isNaN(we))break}if(isNaN(we))break}let De=Ae+D;x[De]=s==="avg"?Se/Ce:we}}}}return w}function fR(e,t){let n=Ve(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let A=0;A<t.inChannels;++A)for(let y=0;y<t.outDepth;++y){let g=y*r-d,w=g;for(;w<0;)w+=i;let x=Math.min(t.inDepth,c+g);for(let _=0;_<t.outHeight;++_){let b=_*a-p,S=b;for(;S<0;)S+=o;let T=Math.min(t.inHeight,u+b);for(let N=0;N<t.outWidth;++N){let C=N*s-f,$=C;for(;$<0;)$+=l;let D=Math.min(t.inWidth,h+C),O=Number.NEGATIVE_INFINITY,V=-1;for(let W=w;W<x;W+=i){let K=W-g;for(let X=S;X<T;X+=o){let ee=X-b;for(let Z=$;Z<D;Z+=l){let ae=Z-C,J=e.get(m,W,X,Z,A);J>=O&&(O=J,V=K*u*h+ee*u+ae)}}}n.set(V,m,y,_,N,A)}}}return n}function mR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ke(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;k.assert(R.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=R.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))h=Pr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=k.computeStrides(a.shape),f=rA(d,a.shape,a.dtype,p,u,"avg");h=n.makeTensorInfo(u.outShape,a.dtype,f.values)}return h}var AR={kernelName:Za,backendName:"cpu",kernelFunc:mR};function yR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;ke(a,"avgPool3d");let u=R.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=Ax(h,a.shape,a.dtype,k.computeStrides(a.shape),u,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var gR={kernelName:tu,backendName:"cpu",kernelFunc:yR};function xR(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;ke([a,s],"avgPool3DGrad");let u=R.computePool3DInfo(s.shape,i,o,1,l,c),h=u.strideDepth,d=u.strideHeight,p=u.strideWidth,f=u.filterDepth,m=u.filterHeight,A=u.filterWidth,y=u.dilationDepth,g=u.dilationHeight,w=u.dilationWidth,x=u.effectiveFilterDepth,_=u.effectiveFilterHeight,b=u.effectiveFilterWidth,S=x-1-u.padInfo.front,T=b-1-u.padInfo.left,N=_-1-u.padInfo.top,C=Ve(s.shape,"float32"),$=1/(f*m*A),D=n.bufferSync(a);for(let O=0;O<u.batchSize;++O)for(let V=0;V<u.inChannels;++V)for(let W=0;W<u.inDepth;++W)for(let K=0;K<u.inHeight;++K)for(let X=0;X<u.inWidth;++X){let ee=W-S,Z=K-N,ae=X-T,J=0;for(let oe=0;oe<x;oe+=y){let ne=(ee+oe)/h;if(!(ne<0||ne>=u.outDepth||Math.floor(ne)!==ne))for(let he=0;he<_;he+=g){let le=(Z+he)/d;if(!(le<0||le>=u.outHeight||Math.floor(le)!==le))for(let me=0;me<b;me+=w){let Ae=(ae+me)/p;Ae<0||Ae>=u.outWidth||Math.floor(Ae)!==Ae||(J+=D.get(O,ne,le,Ae,V))}}}C.set(J*$,O,W,K,X,V)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var wR={kernelName:fh,backendName:"cpu",kernelFunc:xR};function _R(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;ke([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=R.computePool2DInfo(i.shape,o,l,1,c),h=u.strideHeight,d=u.strideWidth,p=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,A=u.dilationWidth,y=u.effectiveFilterHeight,g=u.effectiveFilterWidth,w=g-1-u.padInfo.left,x=y-1-u.padInfo.top,_=Ve(i.shape,"float32"),b=1/(p*f),S=n.data.get(a.dataId).values,T=Ve(a.shape,"float32",S);for(let N=0;N<u.batchSize;++N)for(let C=0;C<u.inChannels;++C)for(let $=0;$<u.inHeight;++$)for(let D=0;D<u.inWidth;++D){let O=$-x,V=D-w,W=0;for(let K=0;K<y;K+=m){let X=(O+K)/h;if(!(X<0||X>=u.outHeight||Math.floor(X)!==X))for(let ee=0;ee<g;ee+=A){let Z=(V+ee)/d;Z<0||Z>=u.outWidth||Math.floor(Z)!==Z||(W+=T.get(N,X,Z,C))}}_.set(W*b,N,$,D,C)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var bR={kernelName:ph,backendName:"cpu",kernelFunc:_R};function vR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ke([a,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=r;c==null&&(c=.001);let u=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),A=f.length,y=p.length,g=d.length,w=h.length,x=0,_=0,b=0,S=0;for(let T=0;T<u.length;++T)m[T]=f[x++]+(u[T]-h[_++])*p[b++]/Math.sqrt(d[S++]+c),x>=A&&(x=0),_>=w&&(_=0),b>=y&&(b=0),S>=g&&(S=0);return n.makeTensorInfo(a.shape,a.dtype,m)}var kR={kernelName:ls,backendName:"cpu",kernelFunc:vR};function IR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;ke([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=R.getReshaped(a.shape,s,o),c=R.getPermuted(l.length,s.length),u=R.getReshapedPermuted(a.shape,s,o),h=R.getSliceBeginCoords(i,s.length),d=R.getSliceSize(u,i,s.length),p=xt({inputs:{x:a},backend:n,attrs:{shape:l}}),f=ar({inputs:{x:p},backend:n,attrs:{perm:c}}),m=xt({inputs:{x:f},backend:n,attrs:{shape:u}}),A=ni({inputs:{x:m},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var NR={kernelName:nu,backendName:"cpu",kernelFunc:IR};function TR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,c=Xm(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var SR={kernelName:mh,backendName:"cpu",kernelFunc:TR},ER=ut(pa,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),CR={kernelName:pa,backendName:"cpu",kernelFunc:ER},RR=e=>{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(k.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;c<o.length;c++){let u=o[c],h=l[c];r[c]=Math.hypot(u,h)}return n.makeOutput(r,t.shape,"float32")},FR={kernelName:ru,backendName:"cpu",kernelFunc:RR};function ol(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.imag,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var MR={kernelName:Eh,backendName:"cpu",kernelFunc:ol};function ll(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=k.parseAxisParam(a,t[0].shape)[0],i=R.computeOutShape(t.map(m=>m.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>k.sizeFromShape(m.shape)>0);if(o.length===1)return Pr({inputs:{x:o[0]},backend:n});let l=o.map(m=>m.shape);if(R.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(x=>ti({inputs:{input:x},backend:n})),A=o.map(x=>ol({inputs:{input:x},backend:n})),y=ll({inputs:m,backend:n,attrs:{axis:s}}),g=ll({inputs:A,backend:n,attrs:{axis:s}}),w=Sn({inputs:{real:y,imag:g},backend:n});return m.forEach(x=>n.disposeIntermediateTensorInfo(x)),A.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),w}let c=o.map(m=>{let A=k.sizeFromShape(m.shape.slice(s));return xt({inputs:{x:m},backend:n,attrs:{shape:[-1,A]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=R.computeOutShape(c.map(m=>m.shape),1);let h=c[0].shape[0]===1,d=Km(u,i,t[0].dtype,h),p=R.computeOutShape(o.map(m=>m.shape),s),f=n.makeTensorInfo(p,t[0].dtype,d);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var $R={kernelName:Vi,backendName:"cpu",kernelFunc:ll};function yx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r;ke([a,s],"conv2d");let h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,w=d.dataFormat==="channelsLast",x=new $t(d.outShape,a.dtype),_=k.computeStrides(a.shape),b=k.computeStrides(s.shape),S=_[0],T=w?_[1]:_[2],N=w?_[2]:1,C=w?1:_[1],$=x.strides[0],D=w?x.strides[1]:x.strides[2],O=w?x.strides[2]:1,V=w?1:x.strides[1],W=n.data.get(a.dataId).values,K=n.data.get(s.dataId).values,X=x.values;for(let ee=0;ee<d.batchSize;++ee){let Z=ee*S,ae=ee*$;for(let J=0;J<d.outHeight;++J){let oe=ae+J*D,ne=J*d.strideHeight-g;for(let he=0;he<p;++he){let le=ne+he*m;if(le<0||le>=d.inHeight)continue;let me=he*b[0],Ae=Z+le*T;for(let we=0;we<d.outWidth;++we){let Se=oe+we*O,Ce=we*d.strideWidth-y;for(let De=0;De<f;++De){let je=Ce+De*A;if(je<0||je>=d.inWidth)continue;let Be=me+De*b[1],Qe=Ae+je*N,st=Be;for(let Ue=0;Ue<d.inChannels;++Ue){let ot=W[Qe+Ue*C];for(let lt=0;lt<d.outChannels;++lt)X[Se+lt*V]+=ot*K[st+lt];st+=d.outChannels}}}}}}return n.makeTensorInfo(x.shape,x.dtype,X)}var DR={kernelName:Qa,backendName:"cpu",kernelFunc:yx};function OR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r;ke([a,s],"conv2dBackpropFilter");let h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),{strideHeight:p,strideWidth:f,filterHeight:m,filterWidth:A}=d,y=d.dataFormat==="channelsLast",g=new $t(d.filterShape,"float32"),w=d.padInfo.left,x=d.padInfo.top,_=n.data.get(a.dataId).values,b=n.data.get(s.dataId).values,S=new $t(a.shape,a.dtype,_),T=new $t(s.shape,s.dtype,b);for(let N=0;N<m;++N){let C=Math.max(0,Math.ceil((x-N)/p)),$=Math.min(d.outHeight,(d.inHeight+x-N)/p);for(let D=0;D<A;++D){let O=Math.max(0,Math.ceil((w-D)/f)),V=Math.min(d.outWidth,(d.inWidth+w-D)/f);for(let W=0;W<d.inChannels;++W)for(let K=0;K<d.outChannels;++K){let X=0;for(let ee=0;ee<d.batchSize;++ee)for(let Z=C;Z<$;++Z){let ae=N+Z*p-x;for(let J=O;J<V;++J){let oe=D+J*f-w;y?X+=S.get(ee,ae,oe,W)*T.get(ee,Z,J,K):X+=S.get(ee,W,ae,oe)*T.get(ee,K,Z,J)}}g.set(X,N,D,W,K)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var zR={kernelName:yh,backendName:"cpu",kernelFunc:OR};function PR(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r;ke([a,s],"conv2dBackpropInput");let h=k.computeStrides(s.shape),d=k.computeStrides(a.shape),p=R.convertConv2DDataFormat(c),f=R.computeConv2DInfo(i,s.shape,o,1,l,u,!1,p),m=new $t(f.inShape,"float32"),A=m.values,y=n.data.get(a.dataId).values,g=n.data.get(s.dataId).values,[w,x,_]=h,{batchSize:b,filterHeight:S,filterWidth:T,inChannels:N,inHeight:C,inWidth:$,outChannels:D,outHeight:O,outWidth:V,strideHeight:W,strideWidth:K}=f;p=f.dataFormat;let X=S-1-f.padInfo.top,ee=T-1-f.padInfo.left,Z=p==="channelsLast",ae=m.strides[0],J=Z?m.strides[1]:m.strides[2],oe=Z?m.strides[2]:1,ne=Z?1:m.strides[1],he=d[0],le=Z?d[1]:d[2],me=Z?d[2]:1,Ae=Z?1:d[1];for(let we=0;we<b;++we)for(let Se=0;Se<N;++Se)for(let Ce=0;Ce<C;++Ce){let De=Ce-X,je=Math.max(0,Math.ceil(De/W)),Be=Math.min(O,(S+De)/W);for(let Qe=0;Qe<$;++Qe){let st=Qe-ee,Ue=Math.max(0,Math.ceil(st/K)),ot=Math.min(V,(T+st)/K),lt=0;for(let et=je;et<Be;++et){let xn=et*W-De;for(let Xt=Ue;Xt<ot;++Xt){let wn=Xt*K-st,qn=he*we+le*et+me*Xt,hn=w*(S-1-xn)+x*(T-1-wn)+_*Se;for(let nn=0;nn<D;++nn){let Xn=y[qn+Ae*nn],kr=g[hn+nn];lt+=Xn*kr}}}let On=ae*we+J*Ce+oe*Qe+ne*Se;A[On]=lt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var LR={kernelName:es,backendName:"cpu",kernelFunc:PR};function WR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r;ke([a,s],"conv3d");let c=R.computeConv3DInfo(a.shape,s.shape,i,l,o),{filterDepth:u,filterHeight:h,filterWidth:d,dilationDepth:p,dilationHeight:f,dilationWidth:m,padInfo:A}=c,y=A.front,g=A.left,w=A.top,x=new $t(c.outShape,a.dtype),_=n.data.get(a.dataId).values,b=n.data.get(s.dataId).values,S=x.values,T=k.computeStrides(a.shape),N=k.computeStrides(s.shape);for(let C=0;C<c.batchSize;++C){let $=C*T[0],D=C*x.strides[0];for(let O=0;O<c.outDepth;++O){let V=D+O*x.strides[1],W=O*c.strideDepth-y;for(let K=0;K<u;++K){let X=W+K*p;if(X<0||X>=c.inDepth)continue;let ee=K*N[0],Z=$+X*T[1];for(let ae=0;ae<c.outHeight;++ae){let J=V+ae*x.strides[2],oe=ae*c.strideHeight-w;for(let ne=0;ne<h;++ne){let he=oe+ne*f;if(he<0||he>=c.inHeight)continue;let le=ee+ne*N[1],me=Z+he*T[2];for(let Ae=0;Ae<c.outWidth;++Ae){let we=J+Ae*c.outChannels,Se=Ae*c.strideWidth-g;for(let Ce=0;Ce<d;++Ce){let De=Se+Ce*m;if(De<0||De>=c.inWidth)continue;let je=le+Ce*N[2],Be=me+De*c.inChannels,Qe=je;for(let st=0;st<c.inChannels;++st){let Ue=_[Be+st];for(let ot=0;ot<c.outChannels;++ot)S[we+ot]+=Ue*b[Qe+ot];Qe+=c.outChannels}}}}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var BR={kernelName:au,backendName:"cpu",kernelFunc:WR};function VR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r;ke([a,s],"conv3dBackpropFilterV2");let c=k.computeStrides(a.shape),u=k.computeStrides(s.shape),h=R.computeConv3DInfo(a.shape,l,i,1,o),d=h.strideDepth,p=h.strideHeight,f=h.strideWidth,m=h.filterDepth,A=h.filterHeight,y=h.filterWidth,g=new $t(h.filterShape,"float32"),w=g.values,[x,_,b,S]=g.strides,T=n.data.get(s.dataId).values,[N,C,$,D]=u,O=n.data.get(a.dataId).values,[V,W,K,X]=c,ee=h.padInfo.front,Z=h.padInfo.left,ae=h.padInfo.top;for(let J=0;J<m;++J){let oe=Math.max(0,Math.ceil((ee-J)/d)),ne=Math.min(h.outDepth,(h.inDepth+ee-J)/d),he=J*x;for(let le=0;le<A;++le){let me=Math.max(0,Math.ceil((ae-le)/p)),Ae=Math.min(h.outHeight,(h.inHeight+ae-le)/p),we=le*_+he;for(let Se=0;Se<y;++Se){let Ce=Math.max(0,Math.ceil((Z-Se)/f)),De=Math.min(h.outWidth,(h.inWidth+Z-Se)/f),je=Se*b+we;for(let Be=0;Be<h.inChannels;++Be){let Qe=Be*S+je;for(let st=0;st<h.outChannels;++st){let Ue=0;for(let ot=0;ot<h.batchSize;++ot){let lt=ot*V,On=ot*N;for(let et=oe;et<ne;++et){let xn=(J+et*d-ee)*W+lt,Xt=et*C+On;for(let wn=me;wn<Ae;++wn){let qn=(le+wn*p-ae)*K+xn,hn=wn*$+Xt;for(let nn=Ce;nn<De;++nn){let Xn=(Se+nn*f-Z)*X+qn,kr=nn*D+hn;Ue+=O[Xn+Be]*T[kr+st]}}}}w[Qe+st]=Ue}}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var UR={kernelName:gh,backendName:"cpu",kernelFunc:VR};function HR(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r;ke([a],"conv3dBackpropInputV2");let c=k.computeStrides(a.shape),u=k.computeStrides(s.shape),h=R.computeConv3DInfo(l,s.shape,o,1,i),d=new $t(h.inShape,"float32"),p=d.values,[f,m,A,y]=d.strides,g=n.data.get(a.dataId).values,[w,x,_,b]=c,S=n.data.get(s.dataId).values,[T,N,C,$]=u,{batchSize:D,filterDepth:O,filterHeight:V,filterWidth:W,inChannels:K,inDepth:X,inHeight:ee,inWidth:Z,outChannels:ae,outDepth:J,outHeight:oe,outWidth:ne,strideDepth:he,strideHeight:le,strideWidth:me}=h,Ae=O-1-h.padInfo.front,we=V-1-h.padInfo.top,Se=W-1-h.padInfo.left;for(let Ce=0;Ce<D;++Ce)for(let De=0;De<K;++De)for(let je=0;je<X;++je){let Be=je-Ae,Qe=Math.max(0,Math.ceil(Be/he)),st=Math.min(J,(O+Be)/he);for(let Ue=0;Ue<ee;++Ue){let ot=Ue-we,lt=Math.max(0,Math.ceil(ot/le)),On=Math.min(oe,(V+ot)/le);for(let et=0;et<Z;++et){let xn=et-Se,Xt=Math.max(0,Math.ceil(xn/me)),wn=Math.min(ne,(W+xn)/me),qn=0;for(let hn=Qe;hn<st;++hn){let nn=hn*he-Be;for(let Xn=lt;Xn<On;++Xn){let kr=Xn*le-ot;for(let _n=Xt;_n<wn;++_n){let wi=_n*me-xn,El=w*Ce+x*hn+_*Xn+b*_n,ur=T*(O-1-nn)+N*(V-1-kr)+C*(W-1-wi)+$*De;for(let Kn=0;Kn<ae;++Kn){let cr=g[El+Kn],_i=S[ur+Kn];qn+=cr*_i}}}}p[f*Ce+m*je+A*Ue+y*et+De]=qn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var jR={kernelName:xh,backendName:"cpu",kernelFunc:HR},GR=ut(ts,e=>Math.cos(e)),qR={kernelName:ts,backendName:"cpu",kernelFunc:GR},XR=ut(Ui,e=>Math.cosh(e)),KR={kernelName:Ui,backendName:"cpu",kernelFunc:XR};function ZR(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,[u,h,d,p]=a.shape,f=s.shape[0],[m,A]=o,y=Ve([f,m,A,p],"float32"),g=n.data.get(s.dataId).values,w=n.data.get(i.dataId).values,x=n.data.get(a.dataId).values,_=k.computeStrides(a.shape),b=k.computeStrides(y.shape);for(let S=0;S<f;S++){let T=S*4,N=g[T],C=g[T+1],$=g[T+2],D=g[T+3],O=w[S];if(O>=u)continue;let V=m>1?($-N)*(h-1)/(m-1):0,W=A>1?(D-C)*(d-1)/(A-1):0;for(let K=0;K<m;K++){let X=m>1?N*(h-1)+K*V:.5*(N+$)*(h-1);if(X<0||X>h-1){for(let ee=0;ee<A;ee++)for(let Z=0;Z<p;Z++){let ae=Z+ee*b[2]+K*b[1]+S*b[0];y.values[ae]=c}continue}if(l==="bilinear"){let ee=Math.floor(X),Z=Math.ceil(X),ae=X-ee;for(let J=0;J<A;J++){let oe=A>1?C*(d-1)+J*W:.5*(C+D)*(d-1);if(oe<0||oe>d-1){for(let me=0;me<p;me++){let Ae=me+J*b[2]+K*b[1]+S*b[0];y.values[Ae]=c}continue}let ne=Math.floor(oe),he=Math.ceil(oe),le=oe-ne;for(let me=0;me<p;me++){let Ae=me+ne*_[2]+ee*_[1]+O*_[0],we=x[Ae];Ae=me+he*_[2]+ee*_[1]+O*_[0];let Se=x[Ae];Ae=me+ne*_[2]+Z*_[1]+O*_[0];let Ce=x[Ae];Ae=me+he*_[2]+Z*_[1]+O*_[0];let De=x[Ae],je=we+(Se-we)*le,Be=Ce+(De-Ce)*le;Ae=me+J*b[2]+K*b[1]+S*b[0],y.values[Ae]=je+(Be-je)*ae}}}else for(let ee=0;ee<A;++ee){let Z=A>1?C*(d-1)+ee*W:.5*(C+D)*(d-1);if(Z<0||Z>d-1){for(let oe=0;oe<p;oe++){let ne=oe+ee*b[2]+K*b[1]+S*b[0];y.values[ne]=c}continue}let ae=Math.round(Z),J=Math.round(X);for(let oe=0;oe<p;oe++){let ne=oe+ae*_[2]+J*_[1]+O*_[0],he=oe+ee*b[2]+K*b[1]+S*b[0];y.values[he]=x[ne]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var YR={kernelName:Hi,backendName:"cpu",kernelFunc:ZR};function JR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r;ke(a,"cumsum");let l=R.getAxesPermutation([s],a.shape.length),c=a;l!=null&&(c=ar({inputs:{x:a},backend:n,attrs:{perm:l}}));let u=R.getInnerMostAxes(1,a.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let h=Qn(c.dtype,"int32"),d=k.makeZerosTypedArray(k.sizeFromShape(c.shape),h),p=n.data.get(c.dataId).values,f=c.shape[c.shape.length-1],m=o?(y,g)=>y+f-g-1:(y,g)=>y+g;for(let y=0;y<p.length;y+=f)for(let g=0;g<f;g++){let w=m(y,g);if(g===0)d[w]=i?0:p[w];else{let x=m(y,g-1);d[w]=i?p[x]+d[x]:p[w]+d[x]}}let A=n.makeTensorInfo(c.shape,h,d);if(l!=null){let y=R.getUndoAxesPermutation(l),g=ar({inputs:{x:A},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(c),g}return A}var QR={kernelName:ns,backendName:"cpu",kernelFunc:JR};function eF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.data.get(a.dataId).values,c=n.data.get(s.dataId).values,u=Xm(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=L5(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var tF={kernelName:wh,backendName:"cpu",kernelFunc:eF};function nF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;k.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],c=a.shape[2],u=a.shape[3],h=l*s,d=c*s,p=u/(s*s),f=n.data.get(a.dataId).values,m=new Float32Array(o*h*d*p),A=0;for(let y=0;y<o;++y)for(let g=0;g<h;++g){let w=Math.floor(g/s),x=g%s;for(let _=0;_<d;++_){let b=Math.floor(_/s),S=_%s,T=(x*s+S)*p;for(let N=0;N<p;++N){let C=N+T+u*(b+c*(w+l*y));m[A++]=f[C]}}}return n.makeTensorInfo([o,h,d,p],a.dtype,m)}var rF={kernelName:ji,backendName:"cpu",kernelFunc:nF};function gx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=r;ke([a,s],"depthwiseConv2DNative");let u=k.computeStrides(a.shape),h=k.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=R.computeConv2DInfo(a.shape,s.shape,i,d,o,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:A,dilationWidth:y,padInfo:g}=p,w=g.left,x=g.top,_=p.outChannels/p.inChannels,b=new $t(p.outShape,a.dtype),S=n.data.get(a.dataId).values,T=n.data.get(s.dataId).values,N=b.values;for(let C=0;C<p.batchSize;++C){let $=C*u[0],D=C*b.strides[0];for(let O=0;O<p.outHeight;++O){let V=D+O*b.strides[1],W=O*p.strideHeight-w;for(let K=0;K<f;++K){let X=W+K*A;if(X<0||X>=p.inHeight)continue;let ee=K*h[0],Z=$+X*u[1];for(let ae=0;ae<p.outWidth;++ae){let J=V+ae*b.strides[2],oe=ae*p.strideWidth-x;for(let ne=0;ne<m;++ne){let he=oe+ne*y;if(he<0||he>=p.inWidth)continue;let le=ee+ne*h[1],me=Z+he*p.inChannels,Ae=J,we=le;for(let Se=0;Se<p.inChannels;++Se){let Ce=S[me+Se];for(let De=0;De<_;++De)N[Ae+De]+=Ce*T[we+De];Ae+=_,we+=_}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var aF={kernelName:rs,backendName:"cpu",kernelFunc:gx};function sF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r;ke([a,s],"depthwiseConv2dNativeBackpropFilter");let h=R.computeConv2DInfo(a.shape,u,i,o,l,c,!0),{strideHeight:d,strideWidth:p,filterHeight:f,filterWidth:m}=h,A=new $t(h.filterShape,"float32"),y=h.padInfo.left,g=h.padInfo.top,w=h.outChannels/h.inChannels,x=n.data.get(a.dataId).values,_=new $t(a.shape,a.dtype,x),b=n.data.get(s.dataId).values,S=new $t(s.shape,s.dtype,b);for(let T=0;T<f;++T){let N=Math.max(0,Math.ceil((g-T)/d)),C=Math.min(h.outHeight,(h.inHeight+g-T)/d);for(let $=0;$<m;++$){let D=Math.max(0,Math.ceil((y-$)/p)),O=Math.min(h.outWidth,(h.inWidth+y-$)/p);for(let V=0;V<h.outChannels;++V){let W=Math.trunc(V/w),K=V%w,X=0;for(let ee=0;ee<h.batchSize;++ee)for(let Z=N;Z<C;++Z){let ae=T+Z*d-g;for(let J=D;J<O;++J){let oe=$+J*p-y;X+=_.get(ee,ae,oe,W)*S.get(ee,Z,J,V)}}A.set(X,T,$,W,K)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var iF={kernelName:_h,backendName:"cpu",kernelFunc:sF};function oF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r;ke([a,s],"depthwiseConv2DNativeBackpropInput");let h=k.computeStrides(a.shape),d=k.computeStrides(s.shape),p=R.computeConv2DInfo(u,s.shape,i,o,l,c,!0),f=new $t(p.inShape,"float32"),m=f.values,[A,y,g]=f.strides,w=n.data.get(a.dataId).values,[x,_,b]=h,S=n.data.get(s.dataId).values,[T,N,C]=d,{batchSize:$,filterHeight:D,filterWidth:O,inChannels:V,inHeight:W,inWidth:K,outChannels:X,outHeight:ee,outWidth:Z,strideHeight:ae,strideWidth:J}=p,oe=D-1-p.padInfo.top,ne=O-1-p.padInfo.left,he=X/V;for(let le=0;le<$;++le)for(let me=0;me<V;++me)for(let Ae=0;Ae<W;++Ae){let we=Ae-oe,Se=Math.max(0,Math.ceil(we/ae)),Ce=Math.min(ee,(D+we)/ae);for(let De=0;De<K;++De){let je=De-ne,Be=Math.max(0,Math.ceil(je/J)),Qe=Math.min(Z,(O+je)/J),st=0;for(let Ue=Se;Ue<Ce;++Ue){let ot=Ue*ae-we;for(let lt=Be;lt<Qe;++lt){let On=lt*J-je,et=x*le+_*Ue+b*lt,xn=T*(D-1-ot)+N*(O-1-On)+C*me;for(let Xt=0;Xt<he;++Xt){let wn=me*he+Xt,qn=w[et+wn],hn=S[xn+Xt];st+=qn*hn}}}m[A*le+y*Ae+g*De+me]=st}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var lF={kernelName:bh,backendName:"cpu",kernelFunc:oF};function uF(e){let{inputs:t,backend:n}=e,{x:r}=t,a=k.sizeFromShape(r.shape),s=n.data.get(r.dataId).values,i=Ve([a,a],r.dtype),o=i.values;for(let c=0;c<s.length;c++)o[c*a+c]=s[c];let l=[...r.shape,...r.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var cF={kernelName:vh,backendName:"cpu",kernelFunc:uF},hF={kernelName:su,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(r.dataId).values,u=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:A,outHeight:y,outWidth:g,padInfo:w,strideHeight:x,strideWidth:_,filterHeight:b,filterWidth:S,dilationHeight:T,dilationWidth:N,outShape:C}=R.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),$=k.sizeFromShape(C),D=C.length,O=k.getArrayFromDType(r.dtype,$);for(let V=0;V<p;++V)for(let W=0;W<y;++W){let K=W*x-w.top;for(let X=0;X<g;++X){let ee=X*_-w.left;for(let Z=0;Z<A;++Z){let ae=Number.MIN_SAFE_INTEGER;for(let oe=0;oe<b;++oe){let ne=K+oe*T;if(ne>=0&&ne<f)for(let he=0;he<S;++he){let le=ee+he*N;if(le>=0&&le<m){let me=k.locToIndex([V,ne,le,Z],u,k.computeStrides(r.shape)),Ae=k.locToIndex([oe,he,Z],d,k.computeStrides(a.shape)),we=c[me]+h[Ae];we>ae&&(ae=we)}}}let J=k.locToIndex([V,W,X,Z],D,k.computeStrides(C));O[J]=ae}}}return{dataId:l.write(k.toTypedArray(O,r.dtype),C,r.dtype),shape:C,dtype:r.dtype}}},dF={kernelName:Ih,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=k.toNestedArray(r.shape,c.data.get(r.dataId).values),h=k.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:w,strideWidth:x,filterHeight:_,filterWidth:b,dilationHeight:S,dilationWidth:T,outShape:N}=R.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);k.assert(s.rank===N.length,()=>`Error in ${Ih}, dy must have the same rank as output ${N.length}, but got ${s.rank}`);let C=k.toNestedArray(N,c.data.get(s.dataId).values),$=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let D=0;D<d;++D)for(let O=0;O<A;++O){let V=O*w-g.top;for(let W=0;W<y;++W){let K=W*x-g.left;for(let X=0;X<m;++X){let ee=Number.MIN_SAFE_INTEGER,Z=0,ae=0;for(let J=0;J<_;++J){let oe=V+J*S;if(oe>=0&&oe<p)for(let ne=0;ne<b;++ne){let he=K+ne*T;if(he>=0&&he<f){let le=u[D][oe][he][X]+h[J][ne][X];le>ee&&(ee=le,Z=J,ae=ne)}}}$[Z][ae][X]+=C[D][O][W][X]}}}return{dataId:c.write(k.toTypedArray($,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},pF={kernelName:kh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=k.toNestedArray(r.shape,c.data.get(r.dataId).values),h=k.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:w,strideWidth:x,filterHeight:_,filterWidth:b,dilationHeight:S,dilationWidth:T,outShape:N}=R.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);k.assert(s.rank===N.length,()=>`Error in ${kh}, dy must have the same rank as output ${N.length}, but got ${s.rank}`);let C=k.toNestedArray(N,c.data.get(s.dataId).values),$=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let D=0;D<d;++D)for(let O=0;O<A;++O){let V=O*w-g.top;for(let W=0;W<y;++W){let K=W*x-g.left;for(let X=0;X<m;++X){let ee=Number.MIN_SAFE_INTEGER,Z=V<0?0:V,ae=K<0?0:K;for(let J=0;J<_;++J){let oe=V+J*S;if(oe>=0&&oe<p)for(let ne=0;ne<b;++ne){let he=K+ne*T;if(he>=0&&he<f){let le=u[D][oe][he][X]+h[J][ne][X];le>ee&&(ee=le,Z=oe,ae=he)}}}$[D][Z][ae][X]+=C[D][O][W][X]}}}return{dataId:c.write(k.toTypedArray($,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function fF(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;ke([r,a],"eluGrad");let s=new Float32Array(k.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l<i.length;++l){let c=i[l];c>=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(a.shape,"float32",s)}var mF={kernelName:Nh,backendName:"cpu",kernelFunc:fF},AF=Rt((e,t)=>e===t?1:0),xx=jt(Xi,AF,null,"bool"),yF={kernelName:Xi,backendName:"cpu",kernelFunc:xx},gF=R.ERF_P,xF=R.ERF_A1,wF=R.ERF_A2,_F=R.ERF_A3,bF=R.ERF_A4,vF=R.ERF_A5,kF=ut(qi,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+gF*n);return t*(1-((((vF*r+bF)*r+_F)*r+wF)*r+xF)*r*Math.exp(-n*n))}),IF={kernelName:qi,backendName:"cpu",kernelFunc:kF};function Hd(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),xt({inputs:{x:a},backend:n,attrs:{shape:o}})}var NF={kernelName:Ki,backendName:"cpu",kernelFunc:Hd},TF=Rt((e,t)=>e/t),aA=jt(as,TF),sA={kernelName:as,backendName:"cpu",kernelFunc:aA};function wx(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[a,s],u=k.sizeFromShape(c),h=k.getTypedArrayFromDType("float32",u),d=k.getTypedArrayFromDType("float32",u);for(let A=0;A<a;A++){let y=ni({inputs:{x:o},backend:n,attrs:{begin:[A,0],size:[1,s]}}),g=ni({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,s]}}),w=Sn({inputs:{real:y,imag:g},backend:n}),{real:x,imag:_}=SF(w,t,n),b=R.mergeRealAndImagArrays(x,_);for(let S=0;S<s;S++){let T=R.getComplexWithIndex(b,S);h[A*s+S]=T.real,d[A*s+S]=T.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(w)}let p=n.makeTensorInfo(c,"float32",h),f=n.makeTensorInfo(c,"float32",d),m=Sn({inputs:{real:p,imag:f},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}function SF(e,t,n){let r=k.sizeFromShape(e.shape),a=n.data.get(e.dataId),s=n.data.get(a.complexTensorInfos.real.dataId).values,i=n.data.get(a.complexTensorInfos.imag.dataId).values;if(EF(r)){let o=iA(s,i,r,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",o.real),u=n.makeTensorInfo(l,"float32",o.imag),h=n.makeTensorInfo([],"float32",k.createScalarValue(r,"float32")),d=Pr({inputs:{x:h},backend:n}),p=sA.kernelFunc({inputs:{a:c,b:h},backend:n}),f=sA.kernelFunc({inputs:{a:u,b:d},backend:n}),m=n.data.get(p.dataId).values,A=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),{real:m,imag:A}}return o}else{let o=R.mergeRealAndImagArrays(s,i),l=CF(o,r,t);return R.splitRealAndImagArrays(l)}}function EF(e){return(e&e-1)==0}function iA(e,t,n,r,a){if(n===1)return{real:e,imag:t};let s=R.mergeRealAndImagArrays(e,t),i=n/2,o=R.complexWithEvenIndex(s),l=o.real,c=o.imag,u=[l.length],h=a.makeTensorInfo(u,"float32",l),d=a.makeTensorInfo(u,"float32",c),p=Sn({inputs:{real:h,imag:d},backend:a}),f=R.complexWithOddIndex(s),m=f.real,A=f.imag,y=[m.length],g=a.makeTensorInfo(y,"float32",m),w=a.makeTensorInfo(y,"float32",A),x=Sn({inputs:{real:g,imag:w},backend:a}),_=iA(l,c,i,r,a),b=_.real,S=_.imag,T=[b.length],N=a.makeTensorInfo(T,"float32",b),C=a.makeTensorInfo(T,"float32",S),$=Sn({inputs:{real:N,imag:C},backend:a}),D=iA(m,A,i,r,a),O=D.real,V=D.imag,W=[O.length],K=a.makeTensorInfo(W,"float32",O),X=a.makeTensorInfo(W,"float32",V),ee=Sn({inputs:{real:K,imag:X},backend:a}),Z=R.exponents(n,r),ae=[Z.real.length],J=a.makeTensorInfo(ae,"float32",Z.real),oe=a.makeTensorInfo(ae,"float32",Z.imag),ne=Sn({inputs:{real:J,imag:oe},backend:a}),he=eA({inputs:{a:ne,b:ee},backend:a}),le=Zu({inputs:{a:$,b:he},backend:a}),me=tA({inputs:{a:$,b:he},backend:a}),Ae=ti({inputs:{input:le},backend:a}),we=ti({inputs:{input:me},backend:a}),Se=ol({inputs:{input:le},backend:a}),Ce=ol({inputs:{input:me},backend:a}),De=ll({inputs:[Ae,we],backend:a,attrs:{axis:0}}),je=ll({inputs:[Se,Ce],backend:a,attrs:{axis:0}}),Be=a.data.get(De.dataId).values,Qe=a.data.get(je.dataId).values;return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(w),a.disposeIntermediateTensorInfo(x),a.disposeIntermediateTensorInfo(N),a.disposeIntermediateTensorInfo(C),a.disposeIntermediateTensorInfo($),a.disposeIntermediateTensorInfo(K),a.disposeIntermediateTensorInfo(X),a.disposeIntermediateTensorInfo(ee),a.disposeIntermediateTensorInfo(J),a.disposeIntermediateTensorInfo(oe),a.disposeIntermediateTensorInfo(ne),a.disposeIntermediateTensorInfo(he),a.disposeIntermediateTensorInfo(le),a.disposeIntermediateTensorInfo(me),a.disposeIntermediateTensorInfo(Ae),a.disposeIntermediateTensorInfo(Se),a.disposeIntermediateTensorInfo(we),a.disposeIntermediateTensorInfo(Ce),a.disposeIntermediateTensorInfo(De),a.disposeIntermediateTensorInfo(je),{real:Be,imag:Qe}}function CF(e,t,n){let r=new Float32Array(t*2);for(let a=0;a<t;a++){let s=0,i=0;for(let o=0;o<t;o++){let l=R.exponent(a*o,t,n),c=R.getComplexWithIndex(e,o);s+=c.real*l.real-c.imag*l.imag,i+=c.real*l.imag+c.imag*l.real}n&&(s/=t,i/=t),R.assignToTypedArray(r,s,i,a)}return r}function RF(e){let{inputs:t,backend:n}=e,{input:r}=t,a=k.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=xt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=wx(o,!1,n),c=xt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var FF={kernelName:Th,backendName:"cpu",kernelFunc:RF};function oA(e){let{backend:t,attrs:n}=e,{shape:r,value:a,dtype:s}=n,i=s||k.inferDtype(a),o=k.getArrayFromDType(i,k.sizeFromShape(r));return MF(o,a,i),t.makeTensorInfo(r,i,o)}var $F={kernelName:iu,backendName:"cpu",kernelFunc:oA};function MF(e,t,n){e.fill(t)}var DF={kernelName:Yi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,a=n,s=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[i,o,l,c]=r.shape,u=a.data.get(r.dataId).values;for(let h=0;h<i;h++){let d=h*l*o*c;for(let p=0;p<o;p++){let f=p*(l*c);for(let m=0;m<l;m++){let A=m*c;for(let y=0;y<c;y++){let g=[i,p,m,y][2],w=Math.round(l-g),x=d+f+A+y,_=u[x];if(w>=0&&w<l){let b=w*c,S=d+f+b+y;_=u[S]}s[x]=_}}}}return{dataId:a.write(s,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},OF=Rt((e,t)=>Math.floor(e/t)),zF=jt(os,OF,null,"int32"),PF={kernelName:os,backendName:"cpu",kernelFunc:zF};function LF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=yx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=Zu({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=nA(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var WF={kernelName:Ls,backendName:"cpu",kernelFunc:LF};function BF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=gx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=Zu({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=nA(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var VF={kernelName:Ws,backendName:"cpu",kernelFunc:BF};function UF(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=k.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,c,u,h]=R.prepareAndValidate(r,a);if(c===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Ve([c,u],r.dtype),p=n.data.get(a.dataId).values,f=n.data.get(r.dataId).values;for(let m=0;m<c;m++){let A=[],y=0;for(let g=0;g<o;g++){let w=p[m*o+g];y+=w*h[g],A.push(w)}if(y<0||y>=s/u)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;g<u;g++)d.values[m*u+g]=f[y*u+g]}return n.makeTensorInfo(l,d.dtype,d.values)}var HF={kernelName:Qi,backendName:"cpu",kernelFunc:UF};function jF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r;ke([a,s],"gatherV2");let l=o;o==null&&(l=0);let c=k.sizeFromShape(s.shape),u=k.parseAxisParam(i,a.shape)[0],h=R.segment_util.collectGatherOpShapeInfo(a,s,u,l),d=xt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),p=xt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),f=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],m=n.bufferSync(p),A=n.bufferSync(d),y=H5(A,m,f);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var GF={kernelName:Ji,backendName:"cpu",kernelFunc:jF},qF=Rt((e,t)=>e>=t?1:0),XF=jt(us,qF,null,"bool"),KF={kernelName:us,backendName:"cpu",kernelFunc:XF};function ZF(e){let{inputs:t,backend:n}=e,{input:r}=t,a=k.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=xt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=wx(o,!0,n),c=xt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var YF={kernelName:Sh,backendName:"cpu",kernelFunc:ZF},JF=ut(no,e=>Number.isFinite(e)?1:0,"bool"),QF={kernelName:no,backendName:"cpu",kernelFunc:JF},eM=ut(ro,e=>Math.abs(e)===Infinity?1:0,"bool"),tM={kernelName:ro,backendName:"cpu",kernelFunc:eM},nM=ut(ao,e=>Number.isNaN(e)?1:0,"bool"),rM={kernelName:ao,backendName:"cpu",kernelFunc:nM},aM=Rt((e,t)=>e<=t?1:0),sM=jt(io,aM,null,"bool"),iM={kernelName:io,backendName:"cpu",kernelFunc:sM};function oM(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=q5(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var lM={kernelName:Ch,backendName:"cpu",kernelFunc:oM},uM=ut(oo,e=>Math.log1p(e)),cM={kernelName:oo,backendName:"cpu",kernelFunc:uM},hM=Rt((e,t)=>e&&t),dM=jt(lo,hM,null,"bool"),pM={kernelName:lo,backendName:"cpu",kernelFunc:dM},fM=ut(ou,e=>e?0:1,"bool"),mM={kernelName:ou,backendName:"cpu",kernelFunc:fM},AM=Rt((e,t)=>e||t),yM=jt(lu,AM,null,"bool"),gM={kernelName:lu,backendName:"cpu",kernelFunc:yM};function xM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;ke(a,"LRN");let c=a.shape[3],u=c-1,h=n.data.get(a.dataId).values,d=k.sizeFromShape(a.shape),p=new Float32Array(d);function f(m){let A=m%c,y=m-A+Math.max(0,A-s),g=m-A+Math.min(A+s,u),w=0;for(;y<=g;y++){let x=h[y];w+=x*x}return w}for(let m=0;m<d;m++){let A=f(m),y=h[m]*Math.pow(i+o*A,-l);p[m]=y}return n.makeTensorInfo(a.shape,a.dtype,p)}var wM={kernelName:uu,backendName:"cpu",kernelFunc:xM};function _M(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r;ke(i,"LRNGrad");let h=k.sizeFromShape(i.shape),d=i.shape[3],p=n.data.get(i.dataId).values,f=n.data.get(a.dataId).values,m=n.data.get(s.dataId).values,A=new Float32Array(h),y=h;for(let g=0;g<y;g++){let w=g%d,x=g-w+Math.max(0,w-o),_=g-w+Math.min(d,w+o+1),b=0;for(let S=x;S<_;S++)b+=Math.pow(f[S],2);b=c*b+l;for(let S=x;S<_;S++){let T=-2*c*u*f[S]*m[g]/b;g===S&&(T+=Math.pow(b,-u)),T*=p[g],A[S]+=T}}return n.makeTensorInfo(i.shape,a.dtype,A)}var bM={kernelName:Rh,backendName:"cpu",kernelFunc:_M};function _x(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=n,l=a.shape,c=l.length,u=k.parseAxisParam(s,l),h=u,d=R.getAxesPermutation(h,c),p=o.data.get(a.dataId).values;if(d!=null){let x=new Array(c);for(let _=0;_<x.length;_++)x[_]=l[d[_]];p=Ym(p,l,a.dtype,d,x),h=R.getInnerMostAxes(h.length,c),l=x}ke(a,"max"),R.assertAxesAreInnerMostDims("max",h,c);let[f,m]=R.computeOutAndReduceShapes(l,h),A=k.sizeFromShape(m),y=K5(p,A,f,a.dtype),g=o.write(y,f,a.dtype),w=f;return i&&(w=R.expandShapeToKeepDim(f,u)),{dataId:g,shape:w,dtype:a.dtype}}var vM={kernelName:ds,backendName:"cpu",kernelFunc:_x};function kM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ke(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;k.assert(R.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=R.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))h=Pr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=k.computeStrides(a.shape),f=rA(d,a.shape,a.dtype,p,u,"max");h=n.makeTensorInfo(u.outShape,a.dtype,f.values)}return h}var IM={kernelName:fs,backendName:"cpu",kernelFunc:kM};function NM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;ke(a,"maxPool3d");let u=R.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,d=Ax(h,a.shape,a.dtype,k.computeStrides(a.shape),u,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var TM={kernelName:cu,backendName:"cpu",kernelFunc:NM};function SM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;ke([a,s],"maxPool3DGrad");let u=R.computePool3DInfo(s.shape,i,o,1,l,c),h=n.bufferSync(s),d=fR(h,u),p=u.strideDepth,f=u.strideHeight,m=u.strideWidth,A=u.dilationDepth,y=u.dilationHeight,g=u.dilationWidth,w=u.effectiveFilterDepth,x=u.effectiveFilterHeight,_=u.effectiveFilterWidth,b=w-1-u.padInfo.front,S=_-1-u.padInfo.left,T=x-1-u.padInfo.top,N=Ve(s.shape,"float32"),C=n.bufferSync(a);for(let $=0;$<u.batchSize;++$)for(let D=0;D<u.inChannels;++D)for(let O=0;O<u.inDepth;++O)for(let V=0;V<u.inHeight;++V)for(let W=0;W<u.inWidth;++W){let K=O-b,X=V-T,ee=W-S,Z=0;for(let ae=0;ae<w;ae+=A){let J=(K+ae)/p;if(!(J<0||J>=u.outDepth||Math.floor(J)!==J))for(let oe=0;oe<x;oe+=y){let ne=(X+oe)/f;if(!(ne<0||ne>=u.outHeight||Math.floor(ne)!==ne))for(let he=0;he<_;he+=g){let le=(ee+he)/m;if(le<0||le>=u.outWidth||Math.floor(le)!==le)continue;let me=w*x*_-1-d.get($,J,ne,le,D),Ae=ae*x*_+oe*_+he,we=me===Ae?1:0;we!==0&&(Z+=C.get($,J,ne,le,D)*we)}}}N.set(Z,$,O,V,W,D)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var EM={kernelName:Mh,backendName:"cpu",kernelFunc:SM};function CM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;ke([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=R.computePool2DInfo(o.shape,l,c,1,u,h),p=n.data.get(o.dataId).values,f=Ve(d.outShape,o.dtype,mx(p,o.shape,o.dtype,d).values),m=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,w=d.effectiveFilterHeight,x=d.effectiveFilterWidth,_=x-1-d.padInfo.left,b=w-1-d.padInfo.top,S=Ve(o.shape,"float32"),T=n.data.get(a.dataId).values,N=Ve(a.shape,"float32",T);for(let C=0;C<d.batchSize;++C)for(let $=0;$<d.inChannels;++$)for(let D=0;D<d.inHeight;++D)for(let O=0;O<d.inWidth;++O){let V=D-b,W=O-_,K=0;for(let X=0;X<w;X+=y){let ee=(V+X)/m;if(!(ee<0||ee>=d.outHeight||Math.floor(ee)!==ee))for(let Z=0;Z<x;Z+=g){let ae=(W+Z)/A;if(ae<0||ae>=d.outWidth||Math.floor(ae)!==ae)continue;let J=w*x-1-f.get(C,ee,ae,$),oe=X*x+Z,ne=J===oe?1:0;ne!==0&&(K+=N.get(C,ee,ae,$)*ne)}}S.set(K,C,D,O,$)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var RM={kernelName:Fh,backendName:"cpu",kernelFunc:CM};function FM(e,t,n,r,a){let s=k.computeStrides(t),i=rA(e,t,n,s,a,"max"),o=mx(e,t,n,a,!0,r);return[i.values,o.values]}var MM={kernelName:$h,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ke(r,"MaxPoolWithArgmax");let c=l.data.get(r.dataId).values,u=R.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=FM(c,r.shape,r.dtype,o,u),p=l.write(h,u.outShape,r.dtype),f=l.write(d,u.outShape,r.dtype);return[{dataId:p,shape:u.outShape,dtype:r.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function jd(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ke(a,"sum");let o;a.dtype==="bool"?o=Sa({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Pr({inputs:{x:a},backend:n});let l=o.shape.length,c=k.parseAxisParam(s,o.shape),u=R.getAxesPermutation(c,l),h=c,d=o;u!=null&&(d=ar({inputs:{x:o},backend:n,attrs:{perm:u}}),h=R.getInnerMostAxes(h.length,l)),R.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,f]=R.computeOutAndReduceShapes(d.shape,h),m=R.upcastType(d.dtype,"int32"),A=Ud(n,p,m),y=k.sizeFromShape(f),g=n.data.get(A.dataId).values,w=n.data.get(d.dataId).values;for(let x=0;x<g.length;++x){let _=x*y,b=0;for(let S=0;S<y;++S)b+=w[_+S];g[x]=b}if(i){let x=R.expandShapeToKeepDim(A.shape,c),_=A;A=xt({inputs:{x:A},backend:n,attrs:{shape:x}}),n.disposeIntermediateTensorInfo(_)}return n.disposeIntermediateTensorInfo(o),u!=null&&n.disposeIntermediateTensorInfo(d),A}var $M={kernelName:Fs,backendName:"cpu",kernelFunc:jd};function DM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=k.parseAxisParam(s,a.shape),l=R.computeOutAndReduceShapes(a.shape,o)[1],c=k.sizeFromShape(l),u=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(h);let d=Sa({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});u.push(d);let p=aA({inputs:{a:d,b:h},backend:n});u.push(p);let f=jd({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var OM={kernelName:ms,backendName:"cpu",kernelFunc:DM};function zM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;ke(a,"min");let o=k.parseAxisParam(s,a.shape),l=o,c=R.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=ar({inputs:{x:a},backend:n,attrs:{perm:c}}),l=R.getInnerMostAxes(l.length,a.shape.length)),R.assertAxesAreInnerMostDims("min",l,u.shape.length);let[h,d]=R.computeOutAndReduceShapes(u.shape,l),p=k.sizeFromShape(d),f=k.makeZerosTypedArray(k.sizeFromShape(h),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;y<f.length;++y){let g=y*p,w=m[g];for(let x=0;x<p;++x){let _=m[g+x];_<w&&(w=_)}f[y]=w}c!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(h,u.dtype,f);if(i){let y=R.expandShapeToKeepDim(h,o),g=xt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var PM={kernelName:As,backendName:"cpu",kernelFunc:zM};function LM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,mode:i}=r;ke(a,"mirrorPad");let o=s.map((g,w)=>g[0]+a.shape[w]+g[1]),l=s.map(g=>g[0]),c=s.map((g,w)=>g[0]+a.shape[w]),u=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=k.computeStrides(a.shape),f=k.sizeFromShape(o),m=o.length,A=k.computeStrides(o),y=k.getTypedArrayFromDType(a.dtype,f);for(let g=0;g<f;g++){let w=k.indexToLoc(g,m,A);for(let _=0;_<m;_++)w[_]<l[_]?w[_]=l[_]*2-w[_]-u:w[_]>=c[_]&&(w[_]=(c[_]-1)*2-w[_]+u);w=w.map((_,b)=>_-l[b]);let x=k.locToIndex(w,d,p);y[g]=h[x]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var WM={kernelName:hu,backendName:"cpu",kernelFunc:LM},BM=Rt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),VM=jt(uo,BM),UM={kernelName:uo,backendName:"cpu",kernelFunc:VM},HM=Xo(h8());function bx(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],a.shape),c=_x({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=R.expandShapeToKeepDim(c.shape,l),h=xt({inputs:{x:c},backend:n,attrs:{shape:u}}),d=tA({inputs:{a,b:h},backend:n}),p=lx({inputs:{x:d},backend:n}),f=jd({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=xt({inputs:{x:f},backend:n,attrs:{shape:u}}),A=aA({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var jM={kernelName:Ms,backendName:"cpu",kernelFunc:bx};function GM(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;ke(a,"multinomial");let l=o?a:bx({inputs:{logits:a},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],h=n.data.get(l.dataId).values,d=[c,s],p=k.makeZerosTypedArray(k.sizeFromShape(d),"int32");for(let f=0;f<c;++f){let m=f*u,A=new Float32Array(u-1);A[0]=h[m];for(let w=1;w<A.length;++w)A[w]=A[w-1]+h[m+w];let y=HM.alea(i.toString()),g=f*s;for(let w=0;w<s;++w){let x=y();p[g+w]=A.length;for(let _=0;_<A.length;_++)if(x<A[_]){p[g+w]=_;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",p)}var qM={kernelName:Dh,backendName:"cpu",kernelFunc:GM},XM=Rr.nonMaxSuppressionV3Impl;function KM(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r;ke(a,"NonMaxSuppression");let c=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,{selectedIndices:h}=XM(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var ZM={kernelName:po,backendName:"cpu",kernelFunc:KM},YM=Rr.nonMaxSuppressionV4Impl;function JM(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r;ke(a,"NonMaxSuppressionPadded");let u=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,{selectedIndices:d,validOutputs:p}=YM(u,h,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var QM={kernelName:fo,backendName:"cpu",kernelFunc:JM},e$=Rr.nonMaxSuppressionV5Impl;function t$(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r;ke(a,"NonMaxSuppressionWithScore");let u=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,d=i,p=o,f=l,m=c,{selectedIndices:A,selectedScores:y}=e$(u,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var n$={kernelName:mo,backendName:"cpu",kernelFunc:t$};function r$(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r;ke(a,"oneHot");let l=k.sizeFromShape(a.shape),c=new Float32Array(l*s);c.fill(o);let u=n.data.get(a.dataId).values;for(let h=0;h<l;++h)u[h]>=0&&u[h]<s&&(c[h*s+u[h]]=i);return n.makeTensorInfo([...a.shape,s],"int32",c)}var a$={kernelName:xs,backendName:"cpu",kernelFunc:r$};function Gd(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(r.dtype==="complex64"){let a=ti({inputs:{input:r},backend:n}),s=Gd({inputs:{x:a},backend:n}),i=ol({inputs:{input:r},backend:n}),o=Gd({inputs:{x:i},backend:n}),l=Sn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return oA({backend:n,attrs:{shape:r.shape,value:0,dtype:r.dtype}})}var s$={kernelName:Mo,backendName:"cpu",kernelFunc:Gd};function vx(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(r.dtype==="complex64"){let a=ti({inputs:{input:r},backend:n}),s=vx({inputs:{x:a},backend:n}),i=ol({inputs:{input:r},backend:n}),o=Gd({inputs:{x:i},backend:n}),l=Sn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return oA({backend:n,attrs:{shape:r.shape,value:1,dtype:r.dtype}})}var i$={kernelName:Ao,backendName:"cpu",kernelFunc:vx};function kx(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return Hd({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=Hd({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=ll({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var o$={kernelName:yo,backendName:"cpu",kernelFunc:kx};function l$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;ke(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),c=n.data.get(a.dataId).values,u=k.sizeFromShape(a.shape),h=a.shape.length,d=k.computeStrides(a.shape),p=k.sizeFromShape(o),f=o.length,m=k.computeStrides(o),A=k.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;y<u;y++){let g=k.indexToLoc(y,h,d).map((x,_)=>x+l[_]),w=k.locToIndex(g,f,m);A[w]=c[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var Ix={kernelName:ws,backendName:"cpu",kernelFunc:l$},u$=Rt((e,t)=>Math.pow(e,t)),c$=jt(_s,u$),h$={kernelName:_s,backendName:"cpu",kernelFunc:c$};function d$(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=Jm(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var p$={kernelName:du,backendName:"cpu",kernelFunc:d$},f$=ut(xo,e=>1/e),m$={kernelName:xo,backendName:"cpu",kernelFunc:f$};function A$(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;ke(a,"resizeBilinear");let l=k.computeStrides(a.shape),[c,u]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(k.sizeFromShape([h,c,u,f])),y=[s&&c>1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],w=0,x=y[0]/g[0],_=y[1]/g[1];for(let b=0;b<h;b++)for(let S=0;S<c;S++){let T;i?T=x*(S+.5)-.5:T=x*S;let N=Math.max(0,Math.floor(T)),C=T-N,$=Math.min(d-1,Math.ceil(T)),D=b*l[0]+N*l[1],O=b*l[0]+$*l[1];for(let V=0;V<u;V++){let W;i?W=_*(V+.5)-.5:W=_*V;let K=Math.max(0,Math.floor(W)),X=W-K,ee=Math.min(p-1,Math.ceil(W)),Z=D+K*l[2],ae=O+K*l[2],J=D+ee*l[2],oe=O+ee*l[2];for(let ne=0;ne<f;ne++){let he=m[Z+ne],le=m[ae+ne],me=m[J+ne],Ae=m[oe+ne],we=he+(me-he)*X,Se=le+(Ae-le)*X,Ce=we+(Se-we)*C;A[w++]=Ce}}}return n.makeTensorInfo([h,c,u,f],"float32",A)}var y$={kernelName:ks,backendName:"cpu",kernelFunc:A$};function g$(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;ke([s,a],"resizeBilinearGrad");let o=k.computeStrides(a.shape),[l,c,u,h]=a.shape,[,d,p]=s.shape,f=new Float32Array(l*c*u*h),m=[i&&d>1?c-1:c,i&&p>1?u-1:u],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=m[0]/A[0],g=m[1]/A[1],w=n.data.get(s.dataId).values,x=0;for(let _=0;_<l;_++){let b=_*o[0];for(let S=0;S<d;S++){let T=S*y,N=Math.floor(T),C=Math.min(Math.ceil(T),c-1),$=b+N*o[1],D=b+C*o[1],O=T-N,V=1-O;for(let W=0;W<p;W++){let K=W*g,X=Math.floor(K),ee=Math.min(Math.ceil(K),u-1),Z=K-X,ae=1-Z,J=$+X*o[2],oe=$+ee*o[2],ne=D+X*o[2],he=D+ee*o[2],le=V*ae,me=V*Z,Ae=O*ae,we=O*Z;for(let Se=0;Se<h;Se++){let Ce=w[x++];f[J+Se]+=Ce*le,f[oe+Se]+=Ce*me,f[ne+Se]+=Ce*Ae,f[he+Se]+=Ce*we}}}}return n.makeTensorInfo([l,u,c,h],"float32",f)}var x$={kernelName:Ph,backendName:"cpu",kernelFunc:g$};function w$(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;ke(a,"resizeNearestNeighbor");let l=k.computeStrides(a.shape),[c,u]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(h*c*u*f),y=[s&&c>1?d-1:d,s&&u>1?p-1:p],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],w=y[0]/g[0],x=y[1]/g[1],_=0;for(let b=0;b<h;b++){let S=b*l[0];for(let T=0;T<c;T++){let N=i?w*(T+.5):w*T,C=Math.min(d-1,s?Math.round(N):Math.floor(N));i&&(C=Math.max(0,C));let $=S+C*l[1];for(let D=0;D<u;D++){let O=i?x*(D+.5):x*D,V=Math.min(p-1,s?Math.round(O):Math.floor(O));i&&(V=Math.max(0,V));let W=$+V*l[2];for(let K=0;K<f;K++){let X=m[W+K];A[_++]=X}}}}return n.makeTensorInfo([h,c,u,f],a.dtype,A)}var _$={kernelName:pu,backendName:"cpu",kernelFunc:w$};function b$(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;ke([s,a],"resizeNearestNeighborGrad");let o=k.computeStrides(a.shape),l=k.computeStrides(s.shape),[c,u,h,d]=a.shape,[,p,f]=s.shape,m=new Float32Array(c*u*h*d),A=n.data.get(s.dataId).values,y=[i&&p>1?u-1:u,i&&f>1?h-1:h],g=[i&&p>1?p-1:p,i&&f>1?f-1:f],w=y[0]/g[0],x=y[1]/g[1],_=1/w,b=1/x,S=Math.ceil(_)*2+2,T=Math.ceil(b)*2+2;for(let N=0;N<c;N++){let C=N*o[0];for(let $=0;$<u;$++){let D=C+$*o[1],O=Math.floor($*_),V=Math.floor(O-S/2);for(let W=0;W<h;W++){let K=D+W*o[2],X=Math.floor(W*b),ee=Math.floor(X-T/2);for(let Z=0;Z<d;Z++){let ae=0;for(let J=0;J<S;J++){let oe=J+V;if(oe<0||oe>=p)continue;let ne=C+oe*l[1],he=oe*w,le=Math.min(u-1,i?Math.round(he):Math.floor(he));if($===le)for(let me=0;me<T;me++){let Ae=me+ee;if(Ae<0||Ae>=f)continue;let we=ne+Ae*l[2],Se=Ae*x,Ce=Math.min(h-1,i?Math.round(Se):Math.floor(Se));W===Ce&&(ae+=A[we+Z])}}m[K+Z]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,m)}var v$={kernelName:zh,backendName:"cpu",kernelFunc:b$};function k$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;ke(a,"reverse");let i=a.shape.length,o=k.parseAxisParam(s,a.shape);if(i===0)return Pr({inputs:{x:a},backend:n});let l=new $t(a.shape,a.dtype),c=n.bufferSync(a);for(let u=0;u<l.size;u++){let h=l.indexToLoc(u),d=h.slice();o.forEach(p=>d[p]=a.shape[p]-1-d[p]),l.set(c.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var I$={kernelName:Ns,backendName:"cpu",kernelFunc:k$},N$={kernelName:$o,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[c,u,h,d]=r.shape,[p,f]=R.getImageCenter(i,u,h),m=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let w=0;w<c;w++){let x=w*h*u*d;for(let _=0;_<u;_++){let b=_*(h*d);for(let S=0;S<h;S++){let T=S*d;for(let N=0;N<d;N++){let C=[c,_,S,N],$=C[2],D=C[1],O=($-p)*y-(D-f)*A,V=($-p)*A+(D-f)*y;O=Math.round(O+p),V=Math.round(V+f);let W=s;if(typeof s!="number"&&(N===3?W=m:W=s[N]),O>=0&&O<h&&V>=0&&V<u){let X=V*(h*d),ee=O*d,Z=x+X+ee+N;W=g[Z]}let K=x+b+T+N;l[K]=W}}}}return{dataId:o.write(l,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},T$=ut(Ts,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),S$={kernelName:Ts,backendName:"cpu",kernelFunc:T$};function Nx(e,t,n,r,a,s,i,o,l,c){let u=[r/a,a],h=e.values,d=t.values;if(r===0)return Ve(n,t.dtype);let p=Ve(u,t.dtype);p.values.fill(l);for(let f=0;f<s;f++){let m=[],A=0;for(let y=0;y<i;y++){let g=h[f*i+y];m.push(g),A+=g*o[y]}if(A<0||A>=r/a)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y<a;y++)c?p.values[A*a+y]+=d[f*a+y]:p.values[A*a+y]=t.rank===0?d[0]:d[f*a+y]}return p}function E$(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:h}=R.calculateShapes(s,a,i),d=!0,p=n.bufferSync(a),f=n.bufferSync(s),m=Nx(p,f,i,h,c,l,o,u,0,d);return n.makeTensorInfo(i,m.dtype,m.values)}var C$={kernelName:_o,backendName:"cpu",kernelFunc:E$};function R$(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t;ke([r,a,s],"select");let i=r.shape.length,o=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=n.data.get(s.dataId).values,u=Qn(a.dtype,s.dtype),h=k.makeZerosTypedArray(k.sizeFromShape(a.shape),u),d=0,p=i===0||i>1||a.shape.length===1?1:k.sizeFromShape(a.shape.slice(1));for(let f=0;f<o.length;f++)for(let m=0;m<p;m++)o[f]===1?h[d++]=l[f]:h[d++]=c[f];return n.makeTensorInfo(a.shape,u,h)}var F$={kernelName:bo,backendName:"cpu",kernelFunc:R$},M$=R.SELU_SCALEALPHA,$$=R.SELU_SCALE,D$=ut(vo,e=>e>=0?$$*e:M$*(Math.exp(e)-1)),O$={kernelName:vo,backendName:"cpu",kernelFunc:D$},z$=ut(Cs,e=>1/(1+Math.exp(-e))),P$={kernelName:Cs,backendName:"cpu",kernelFunc:z$},L$=ut(No,e=>e<0?-1:e>0?1:0),W$={kernelName:No,backendName:"cpu",kernelFunc:L$},B$=ut(Es,e=>Math.sin(e)),V$={kernelName:Es,backendName:"cpu",kernelFunc:B$},U$=ut(Io,e=>Math.sinh(e)),H$={kernelName:Io,backendName:"cpu",kernelFunc:U$},j$=11920928955078125e-23,Tx=Math.log(j$)+2,G$=ut(To,e=>{let t=e>-Tx,n=e<Tx,r=Math.exp(e),a;return n?a=r:t?a=e:a=Math.log(1+r),a}),q$={kernelName:To,backendName:"cpu",kernelFunc:G$};function X$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;ke([a],"spaceToBatchND");let o=k.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<a.shape.length;++A)l.push([0,0]);let c=Ix.kernelFunc({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),u=R.getReshaped(c.shape,s,o,!1),h=R.getPermuted(u.length,s.length,!1),d=R.getReshapedPermuted(c.shape,s,o,!1),p=xt({inputs:{x:c},backend:n,attrs:{shape:u}}),f=ar({inputs:{x:p},backend:n,attrs:{perm:h}}),m=xt({inputs:{x:f},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}var K$={kernelName:fu,backendName:"cpu",kernelFunc:X$};function Z$(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=R.calculateShapes(s,a,o),p=!1,f=n.bufferSync(a),m=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=Nx(f,m,o,d,u,c,l,h,A,p);return n.makeTensorInfo(o,y.dtype,y.values)}var Y$={kernelName:Lh,backendName:"cpu",kernelFunc:Z$};function J$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=k.parseAxisParam(i,a.shape)[0],l=R.prepareSplitSize(a,s,o),c=new Array(a.shape.length).fill(0),u=a.shape.slice();return l.map(h=>{let d=[...u];d[o]=h;let p=ni({inputs:{x:a},backend:n,attrs:{begin:c,size:d}});return c[o]+=h,p})}var Q$={kernelName:So,backendName:"cpu",kernelFunc:J$},eD=ut(Rs,e=>Math.sqrt(e)),tD={kernelName:Rs,backendName:"cpu",kernelFunc:eD},nD={kernelName:mu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;ke(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i<a.length;++i){let o=a[i];s[i]=o*o}return{dataId:r.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},rD=ut(ma,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),aD={kernelName:ma,backendName:"cpu",kernelFunc:rD};function sD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r;ke(a,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=an.sliceInfo(a.shape,s,i,o,l,c,u,h,d),w=xt({inputs:{x:a},backend:n,attrs:{shape:y}}),x;if(p){let b=ni({inputs:{x:w},backend:n,attrs:{begin:f,size:A}});x=xt({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))x=n.makeTensorInfo(g,a.dtype,[]);else{let b=n.bufferSync(w),S=rx(g,b,m,f);x=n.makeTensorInfo(S.shape,S.dtype,S.values)}let _=xt({inputs:{x},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(x),_}var iD={kernelName:Eo,backendName:"cpu",kernelFunc:sD},oD=ut(Co,e=>Math.tan(e)),lD={kernelName:Co,backendName:"cpu",kernelFunc:oD},uD=ut(Os,e=>Math.tanh(e)),cD={kernelName:Os,backendName:"cpu",kernelFunc:uD};function hD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;ke(a,"tile");let i=sx(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var dD={kernelName:fa,backendName:"cpu",kernelFunc:hD};function pD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;ke(a,"topk");let o=n.data.get(a.dataId).values,[l,c]=ix(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var fD={kernelName:Ro,backendName:"cpu",kernelFunc:pD};function mD(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;ke(s,"unique");let i=r.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:c}=ox(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var AD={kernelName:Wh,backendName:"cpu",kernelFunc:mD};function yD(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),c=0;for(let p=0;p<i;p++)p!==s&&(l[c++]=a.shape[p]);let u=new Array(i).fill(0),h=a.shape.slice();h[s]=1;let d=new Array(o);for(let p=0;p<d.length;p++){u[s]=p;let f=ni({inputs:{x:a},backend:n,attrs:{begin:u,size:h}});d[p]=xt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return d}var gD={kernelName:Fo,backendName:"cpu",kernelFunc:yD};function xD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r;ke(a,"unsortedSegmentSum");let o=a.shape.length,l=s.shape.length,c=[],u=[],h=o-l,d=s;for(let f=0;f<h;++f){let m=Hd({inputs:{input:d},backend:n,attrs:{dim:f+1}});d=m,u.push(m)}for(let f=0;f<i;++f){let m=k.createScalarValue(f,"int32"),A=n.makeTensorInfo([],"int32",m),y=xx({inputs:{a:A,b:d},backend:n}),g=Sa({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),w=eA({inputs:{a:g,b:a},backend:n}),x=jd({inputs:{x:w},backend:n,attrs:{axis:0,keepDims:!1}});c.push(x),u.push(A),u.push(y),u.push(g),u.push(w),u.push(x)}let p=kx({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var wD={kernelName:Au,backendName:"cpu",kernelFunc:xD},_D=[VC,qE,HC,GC,QE,XC,ZC,JC,eR,nR,aR,iR,lR,hR,pR,AR,gR,wR,bR,WC,kR,NR,SR,YE,tC,CR,XE,FR,$R,zR,LR,DR,UR,jR,BR,qR,KR,YR,QR,tF,rF,aF,iF,lF,cF,hF,pF,dF,sA,MC,mF,yF,IF,nC,NF,aC,FF,$F,DF,iC,PF,WF,VF,HF,GF,lC,KF,KE,YF,MR,QF,tM,rM,$C,cC,iM,lM,dC,cM,pM,mM,gM,wM,bM,fC,IM,TM,EM,RM,MM,vM,OM,PM,AC,WM,UM,qM,gC,wC,ZM,QM,n$,bC,a$,i$,o$,Ix,h$,OC,IC,p$,ZE,m$,zC,PC,LC,y$,x$,_$,v$,I$,N$,S$,TC,C$,F$,O$,P$,W$,V$,H$,SC,jM,q$,K$,Y$,Q$,tD,nD,CC,aD,iD,FC,$M,lD,cD,dD,fD,vC,AD,gD,wD,s$];for(let e of _D)Do(e);var Gg={};ze(Gg,{assertNotComplex:()=>ul,bindCanvasToFramebuffer:()=>kD,bindColorTextureToFramebuffer:()=>Xd,bindTextureToProgramUniformSampler:()=>Vx,bindTextureUnit:()=>Lx,bindVertexBufferToProgramAttribute:()=>lA,callAndCheck:()=>be,canBeRepresented:()=>Sx,createFragmentShader:()=>Rx,createFramebuffer:()=>Px,createProgram:()=>Fx,createStaticIndexBuffer:()=>Dx,createStaticVertexBuffer:()=>$x,createTexture:()=>Ox,createVertexShader:()=>Cx,getBatchDim:()=>ri,getExtensionOrThrow:()=>Yu,getFramebufferErrorMessage:()=>Ux,getMaxTexturesInShader:()=>Gx,getNumChannels:()=>bD,getProgramUniformLocation:()=>Bx,getProgramUniformLocationOrThrow:()=>Wx,getRowsCols:()=>ai,getShapeAs3D:()=>Kd,getTextureShapeFromLogicalShape:()=>Hx,getWebGLDisjointQueryTimerVersion:()=>qx,getWebGLErrorMessage:()=>Ex,getWebGLMaxTextureSize:()=>jx,hasExtension:()=>Un,isCapableOfRenderingToFloatTexture:()=>Xx,isDownloadFloatTextureEnabled:()=>Kx,isReshapeFree:()=>Qu,isWebGLFenceEnabled:()=>Zx,isWebGLVersionEnabled:()=>cA,linkProgram:()=>Mx,resetMaxTextureSize:()=>ID,resetMaxTexturesInShader:()=>ND,unbindColorTextureFromFramebuffer:()=>uA,unbindTextureUnit:()=>vD,validateFramebuffer:()=>Ju,validateProgram:()=>qd,validateTextureSize:()=>zx});var si={},hA={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function rm(e,t){si[e]=t}function Lr(e){if(!(e in si)){let n=TD(e);if(n!==null)si[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=si[e];return t.isContextLost()?(delete si[e],Lr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),si[e])}function SD(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function TD(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=SD(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete si[e]},!1),e===1?t.getContext("webgl",hA)||t.getContext("experimental-webgl",hA):t.getContext("webgl2",hA)}var ec;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(ec||(ec={}));var Hn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Hn||(Hn={}));var Zt;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Zt||(Zt={}));function tc(e,t){return[t,e]}function ED(e,t){return e*t}function nc(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function cl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function CD(e,t){let[n,r]=cl(e,t);return n*r*4}function dA(e,t){let n=e,r,a,s,i,o,l,c,u,h,d;return Q().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:h,textureTypeFloat:d}}function be(e,t){let n=t();return Q().getBool("DEBUG")&&RD(e),n}function RD(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Ex(e,t))}var FD=596e-10,MD=65504;function Sx(e){return!!(Q().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||FD<Math.abs(e)&&Math.abs(e)<MD)}function Ex(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Yu(e,t){return ra(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Cx(e,t){let n=ra(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Rx(e,t){let n=ra(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw $D(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var DD=/ERROR: [0-9]+:([0-9]+):/g;function $D(e,t){let n=DD.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(`
`),s=a.length.toString().length+2,i=a.map((h,d)=>k.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,r-1),c=i.slice(r-1,r),u=i.slice(r);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${k.rightPad(c[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
`))}function Fx(e){return ra(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function Mx(e,t){if(be(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function qd(e,t){if(be(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function $x(e,t){let n=ra(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Dx(e,t){let n=ra(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function bD(){return Q().getNumber("WEBGL_VERSION")===2?1:4}function Ox(e){return ra(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function zx(e,t){let n=Q().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function Px(e){return ra(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function lA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),be(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),be(e,()=>e.enableVertexAttribArray(o)),!0)}function Lx(e,t,n){Yx(e,n),be(e,()=>e.activeTexture(e.TEXTURE0+n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function vD(e,t){Yx(e,t),be(e,()=>e.activeTexture(e.TEXTURE0+t)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Wx(e,t,n){return ra(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function Bx(e,t,n){return e.getUniformLocation(t,n)}function Vx(e,t,n,r){be(e,()=>Lx(e,t,r)),be(e,()=>e.uniform1i(n,r))}function kD(e){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),be(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Xd(e,t,n){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function uA(e,t){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Ju(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+Ux(e,t))}function Ux(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ra(e,t,n){let r=be(e,()=>t());if(r==null)throw new Error(n);return r}function Yx(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(r<e.TEXTURE0||r>n){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function ri(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function ai(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Kd(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ri(e),...ai(e)]),t}function Hx(e,t=!1){let n=Q().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let r=k.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=ri(e),s=2,i=2;return e.length&&([s,i]=ai(e)),r=a*(s/2)*(i/2),k.sizeToSquarishShape(r).map(o=>o*2)}return k.sizeToSquarishShape(r)}function Zd(e){return e%2==0}function Qu(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||Zd(n)&&Zd(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Zd(e[0])&&Zd(t[0])}var Yd,Jd;function jx(e){if(Yd==null){let t=Lr(e);Yd=t.getParameter(t.MAX_TEXTURE_SIZE)}return Yd}function ID(){Yd=null}function ND(){Jd=null}function Gx(e){if(Jd==null){let t=Lr(e);Jd=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Jd)}function qx(e){if(e===0)return 0;let t,n=Lr(e);return Un(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Un(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Un(e,t){return e.getExtension(t)!=null}function cA(e){try{if(Lr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function Xx(e){if(e===0)return!1;let t=Lr(e);if(e===1){if(!Un(t,"OES_texture_float"))return!1}else if(!Un(t,"EXT_color_buffer_float"))return!1;return pA(t)}function Kx(e){if(e===0)return!1;let t=Lr(e);if(e===1){if(!Un(t,"OES_texture_float")||!Un(t,"WEBGL_color_buffer_float"))return!1}else{if(Un(t,"EXT_color_buffer_float"))return pA(t);let n="EXT_color_buffer_half_float";if(Un(t,n)){let r=t.getExtension(n);return OD(t,r)}return!1}return pA(t)}function pA(e){let t=dA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function OD(e,t){let n=dA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function Zx(e){return e!==2?!1:Lr(e).fenceSync!=null}function ul(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var $e=Q();$e.registerFlag("HAS_WEBGL",()=>$e.getNumber("WEBGL_VERSION")>0);$e.registerFlag("WEBGL_VERSION",()=>cA(2)?2:cA(1)?1:0);$e.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);$e.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>$e.get("WEBGL_VERSION")===2);$e.registerFlag("WEBGL_CPU_FORWARD",()=>!0);$e.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);$e.registerFlag("WEBGL_PACK",()=>$e.getBool("HAS_WEBGL"));$e.registerFlag("WEBGL_PACK_NORMALIZATION",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_CLIP",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);$e.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_REDUCE",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_LAZILY_UNPACK",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_CONV_IM2COL",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>jx($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>Gx($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=$e.getNumber("WEBGL_VERSION");return e===0?0:qx(e)});$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>$e.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Hh.isMobile());$e.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>Xx($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>$e.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:$e.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));$e.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>Kx($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Zx($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>$e.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);$e.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});function on(){let e,t,n,r,a,s,i,o,l,c;return Q().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",c=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",r="varying",a="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,c=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function ii(e,t,n="index"){let r=k.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function fA(e){let t=k.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}var Jx=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,zD=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=ec.DENSE;let t=nc(e),n=on();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${ii(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${n.output} = result;
}
`}},PD=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=ec.DENSE;let t=nc(e),n=on();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${ii(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${n.output} = result;
}
`}},LD=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Hn.DOWNLOAD;let t=on();this.outputShape=e,this.userCode=`
${Jx}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},WD=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Hn.DOWNLOAD;let t=on();this.outputShape=e,this.userCode=`
${Jx}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},BD=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=on(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
${fA(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${s};
int c = imod(flatIndex, ${s});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
vec4 values = ${r.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${r.output} = vec4(${i}, 0., 0., 0.);
}
`}},VD=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=on(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=`
localCoords = coords;
if(localCoords[2] + ${c} < ${e[2]}) {
localCoords[2] += ${c};
if(localCoords[1] + ${l} < ${e[1]}) {
localCoords[1] += ${l};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${s};
c = imod(flatIndex, ${s});
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
values = ${r.texture2D}(A, uv);
if(offset == 0) {
result[${u}] = values[0];
} else if(offset == 1) {
result[${u}] = values[1];
} else if(offset == 2) {
result[${u}] = values[2];
} else {
result[${u}] = values[3];
}
}
}
`}this.userCode=`
${fA(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${i}
${r.output} = ${o};
}
`}},qg={};ze(qg,{bindVertexProgramAttributeStreams:()=>ow,createBufferFromOutputTexture:()=>cw,createFloat16MatrixTexture:()=>rw,createFloat16PackedMatrixTexture:()=>iw,createFloat32MatrixTexture:()=>nw,createIndexBuffer:()=>tw,createPackedMatrixTexture:()=>sw,createUnsignedBytesMatrixTexture:()=>aw,createVertexBuffer:()=>ew,createVertexShader:()=>Qx,downloadByteEncodedFloatMatrixFromOutputTexture:()=>dw,downloadFloat32MatrixFromBuffer:()=>hw,downloadMatrixFromPackedOutputTexture:()=>fw,downloadPackedMatrixFromBuffer:()=>pw,getInternalFormatForFloat16MatrixTexture:()=>AA,getInternalFormatForFloat16PackedMatrixTexture:()=>xA,getInternalFormatForFloat32MatrixTexture:()=>mA,getInternalFormatForPackedMatrixTexture:()=>gA,getInternalFormatForUnsignedBytesMatrixTexture:()=>yA,uploadDenseMatrixToTexture:()=>lw,uploadPixelDataToTexture:()=>uw});function Qx(e){let t=on(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return Cx(e,n)}function ew(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return $x(e,t)}function tw(e){let t=new Uint16Array([0,1,2,2,1,3]);return Dx(e,t)}function rc(e,t,n,r,a,s){zx(t,n);let i=Ox(e),o=e.TEXTURE_2D;return be(e,()=>e.bindTexture(o,i)),be(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),be(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),be(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function mA(e){return e.internalFormatFloat}function nw(e,t,n,r){let[a,s]=tc(t,n);return rc(e,a,s,mA(r),r.textureFormatFloat,e.FLOAT)}function AA(e){return e.internalFormatHalfFloat}function rw(e,t,n,r){let[a,s]=tc(t,n);return rc(e,a,s,AA(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function yA(e){return e.downloadTextureFormat}function aw(e,t,n,r){let[a,s]=tc(t,n);return rc(e,a,s,yA(r),e.RGBA,e.UNSIGNED_BYTE)}function gA(e){return e.internalFormatPackedFloat}function sw(e,t,n,r){let[a,s]=cl(t,n);return rc(e,a,s,gA(r),e.RGBA,e.FLOAT)}function xA(e){return e.internalFormatPackedHalfFloat}function iw(e,t,n,r){let[a,s]=cl(t,n);return rc(e,a,s,xA(r),e.RGBA,r.textureTypeHalfFloat)}function ow(e,t,n){let r=0,a=3*4,s=3*4+2*4;return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),lA(e,t,"clipSpacePos",n,3,s,r)&&lA(e,t,"uv",n,2,s,a)}function lw(e,t,n,r,a,s){be(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),be(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function uw(e,t,n){be(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function cw(e,t,n,r){let a=e.createBuffer();be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return be(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function hw(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function dw(e,t,n,r){let[a,s]=tc(t,n),i=4,o=new Uint8Array(ED(t*n,i));return be(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function pw(e,t,n,r,a,s,i,o){let l=e,c=new Float32Array(CD(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function fw(e,t,n){let r=new Float32Array(t*n*4);return be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var am=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Q().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,rm(t,e)):this.gl=Lr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(Q().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Yu(this.gl,a),Un(this.gl,s))this.textureHalfFloatExtension=Yu(this.gl,s);else if(Q().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Un(this.gl,r))this.colorBufferHalfFloatExtension=Yu(this.gl,r);else if(Q().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Un(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Un(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=ew(this.gl),this.indexBuffer=tw(this.gl),this.framebuffer=Px(this.gl),this.textureConfig=dA(this.gl,this.textureHalfFloatExtension)}get debug(){return Q().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;be(e,()=>e.finish()),be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.deleteFramebuffer(this.framebuffer)),be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),be(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),nw(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),rw(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),aw(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),uw(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),lw(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),iw(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),sw(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(uA(this.gl,this.framebuffer),this.outputTexture=null),be(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>dw(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return pw(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return hw(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=cw(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Q().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>fw(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=Rx(t,e),r=Qx(t),a=Fx(t);return be(t,()=>t.attachShader(a,r)),be(t,()=>t.attachShader(a,n)),Mx(t,a),this.debug&&qd(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=ow(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&be(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&qd(this.gl,this.program),be(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?Wx(this.gl,e,t):Bx(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),be(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),Vx(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=cl(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&qd(this.gl,this.program),Ju(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),be(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),be(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Yu(this.gl,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=UD(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Xd(this.gl,e,this.framebuffer),this.debug&&Ju(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Xd(this.gl,this.outputTexture,this.framebuffer),this.debug&&Ju(this.gl)):uA(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;Xd(r,e,this.framebuffer),this.debug&&Ju(r),this.outputTexture=e,be(r,()=>r.viewport(0,0,t,n)),be(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),be(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function UD(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:mw}=R;function JD(e,t,n,r){let a=[];e.forEach(p=>{let f=k.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(`
`),i=e.map(p=>HD(p,t,r)).join(`
`),o=t.texShape,l=on(),c=qD(l),u,h,d=ZD(l);return t.isPacked?(u=jD(t.logicalShape,o),h=KD(l)):(u=GD(t.logicalShape,o),h=XD(l)),r&&(d+=YD),[d,c,h,s,u,i,n].join(`
`)}function hl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return QD(e);case 1:return eO(e);case 2:return tO(e);case 3:return nO(e);case 4:return rO(e);case 5:return aO(e);case 6:return sO(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function Aw(e){switch(e.shapeInfo.logicalShape.length){case 0:return iO(e);case 1:return oO(e);case 2:return lO(e);case 3:return uO(e);default:return cO(e)}}function HD(e,t,n=!1){let r="";n?r+=Aw(e):r+=hl(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=hO(e,t):r+=dO(e,t)),r}function jD(e,t){switch(e.length){case 0:return yw();case 1:return pO(e,t);case 2:return AO(e,t);case 3:return fO(e,t);default:return mO(e,t)}}function GD(e,t){switch(e.length){case 0:return yw();case 1:return yO(e,t);case 2:return bO(e,t);case 3:return gO(e,t);case 4:return xO(e,t);case 5:return wO(e,t);case 6:return _O(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function qD(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function XD(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function KD(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function ZD(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${vO}
${kO}
${IO}
`}var vO=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,kO=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,IO=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,YD=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function yw(){return`
int getOutputCoords() {
return 0;
}
`}function pO(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function yO(e,t){return t[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function fO(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function gO(e,t){let n=ii(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function mO(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
int b${l} = index / ${s};
index -= b${l} * ${s};
`+i,o=`b${l}, `+o;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${i}
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${o});
}
`}function xO(e,t){let n=ii(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function wO(e,t){let n=ii(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function _O(e,t){let n=ii(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function AO(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(k.arraysEqual(e,t))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;let r=Math.ceil(e[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function bO(e,t){return k.arraysEqual(e,t)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function oi(e){return`offset${e}`}function iO(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=on();return`
vec4 ${n}() {
return ${r.texture2D}(${t}, halfCR);
}
`}function QD(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
float ${n}() {
return sampleTexture(${t}, halfCR);
}
`;let[s,i]=e.shapeInfo.texShape,o=oi(t);return`
float ${n}() {
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
return sampleTexture(${t}, uv);
}
`}function oO(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=e.shapeInfo.texShape,a=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],s=on();return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${a[0]}, ${a[1]}, index);
return ${s.texture2D}(${t}, uv);
}
`}function eO(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
float ${n}(int index) {
${dl(e)}
}
`;let r=e.shapeInfo.texShape,a=r[0],s=r[1];if(s===1&&a===1)return`
float ${n}(int index) {
return sampleTexture(${t}, halfCR);
}
`;let i=oi(t);return s===1?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
return sampleTexture(${t}, uv);
}
`:a===1?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${a}, ${s}, index + ${i});
return sampleTexture(${t}, uv);
}
`}function lO(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=a[0],i=a[1],o=on();if(a!=null&&k.arraysEqual(t,a))return`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
return ${o.texture2D}(${n}, uv);
}
`;let l=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(t[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
return ${o.texture2D}(${n}, uv);
}
`}function tO(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape;if(a!=null&&k.arraysEqual(t,a)){let h=a[0],d=a[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`}let{newShape:s,keptDims:i}=k.squeezeShape(t),o=s;if(o.length<t.length){let h=pl(e,o),d=["row","col"];return`
${hl(h)}
float ${r}(int row, int col) {
return ${r}(${fl(d,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
${dl(e)}
}
`;let l=a[0],c=a[1],u=oi(n);return c===1?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${n}, uv);
}
`:l===1?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${t[1]} + col + ${u};
vec2 uv = uvFromFlat(${l}, ${c}, index);
return sampleTexture(${n}, uv);
}
`}function uO(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(t[0]===1){let h=t.slice(1),d=[1,2],p=pl(e,h),f=["b","row","col"];return`
${Aw(p)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${fl(f,d)});
}
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),c=l*Math.ceil(t[1]/2),u=on();return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${i}, ${o}, ${c}, ${l}, b, row, col);
return ${u.texture2D}(${n}, uv);
}
`}function nO(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=k.squeezeShape(t),l=i;if(l.length<t.length){let f=pl(e,l),m=["row","col","depth"];return`
${hl(f)}
float ${r}(int row, int col, int depth) {
return ${r}(${fl(m,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${a}, ${s}, 1)));
${dl(e)}
}
`;let c=e.shapeInfo.texShape,u=c[0],h=c[1],d=e.shapeInfo.flatOffset;if(h===a&&d==null)return`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${u}.0);
return sampleTexture(${n}, uv);
}
`;if(h===s&&d==null)return`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}.0, ${u}.0);
return sampleTexture(${n}, uv);
}
`;let p=oi(n);return`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${s} + depth + ${p};
vec2 uv = uvFromFlat(${u}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function cO(e){let t=e.shapeInfo.logicalShape,n=t.length,r=e.name,a="get"+r.charAt(0).toUpperCase()+r.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],c=Math.ceil(t[n-1]/2),u=c*Math.ceil(t[n-2]/2),h="int b, int row, int col",d=`b * ${u} + (row / 2) * ${c} + (col / 2)`;for(let f=2;f<n-1;f++)h=`int b${f}, `+h,u*=t[n-f-1],d=`b${f} * ${u} + `+d;let p=on();return`
vec4 ${a}(${h}) {
int index = ${d};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
return ${p.texture2D}(${r}, uv);
}
`}function rO(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[3],s=t[2]*a,i=t[1]*s,{newShape:o,keptDims:l}=k.squeezeShape(t);if(o.length<t.length){let f=pl(e,o),m=["row","col","depth","depth2"];return`
${hl(f)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${fl(m,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${s}, ${a}, 1)));
${dl(e)}
}
`;let c=e.shapeInfo.flatOffset,u=e.shapeInfo.texShape,h=u[0],d=u[1];if(d===i&&c==null)return`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${s}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(d===a&&c==null)return`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${t[1]*t[2]}, ${t[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let p=oi(n);return`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${s} +
depth * ${a} + depth2;
vec2 uv = uvFromFlat(${h}, ${d}, index + ${p});
return sampleTexture(${n}, uv);
}
`}function aO(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[4],s=t[3]*a,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:c}=k.squeezeShape(t);if(l.length<t.length){let m=pl(e,l),A=["row","col","depth","depth2","depth3"];return`
${hl(m)}
float ${r}(int row, int col, int depth, int depth2, int depth3) {
return ${r}(${fl(A,c)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${a})) +
depth3;
${dl(e)}
}
`;let u=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,d=h[0],p=h[1];if(p===o&&u==null)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;if(p===a&&u==null)return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;let f=oi(n);return`
float ${r}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${a} + depth3 + ${f};
vec2 uv = uvFromFlat(${d}, ${p}, index);
return sampleTexture(${n}, uv);
}
`}function sO(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:a,keptDims:s}=k.squeezeShape(t);if(a.length<t.length){let A=pl(e,a),y=["row","col","depth","depth2","depth3","depth4"];return`
${hl(A)}
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${r}(${fl(y,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${u}, ${c}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${dl(e)}
}
`;let h=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],f=d[1];if(f===u&&h==null)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${c}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(f===i&&h==null)return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let m=oi(n);return`
float ${r}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${u} + col * ${c} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${m};
vec2 uv = uvFromFlat(${p}, ${f}, index);
return sampleTexture(${n}, uv);
}
`}function dl(e){let t=e.name,n=k.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function hO(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=mw(e.shapeInfo.logicalShape,t.logicalShape),l=pt(i),c=i-s,u,h=["x","y","z","w","u","v"];s===0?u="":i<2&&o.length>=1?u="coords = 0;":u=o.map(A=>`coords.${h[A+c]} = 0;`).join(`
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+c]}`).join(", ");let p="return outputValue;",f=k.sizeFromShape(e.shapeInfo.logicalShape)===1,m=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)p=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(f&&!m)i===1?p=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:p=`
return vec4(outputValue.x);
`;else if(o.length){let A=s-2,y=s-1;o.indexOf(A)>-1&&o.indexOf(y)>-1?p="return vec4(outputValue.x);":o.indexOf(A)>-1?p="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(p="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${a}() {
${l} coords = getOutputCoords();
${u}
vec4 outputValue = get${r}(${d});
${p}
}
`}function dO(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return`
float ${a}() {
return sampleTexture(${n}, resultUV);
}
`;let c=pt(l),u=mw(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&u.length>=1?d="coords = 0;":d=u.map(m=>`coords.${p[m+h]} = 0;`).join(`
`);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,A)=>`coords.${p[A+h]}`).join(", "),`
float ${a}() {
${c} coords = getOutputCoords();
${d}
return get${r}(${f});
}
`}function pt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function pl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function fl(e,t){return t.map(n=>e[n]).join(", ")}function NO(e,t,n,r){let a=t.userCode,s=n.map((p,f)=>{let m={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(m.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[f],shapeInfo:m}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=JD(s,o,a,t.packedInputs),c=e.createProgram(l),u=null,h=e.getUniformLocation(c,"NAN",!1);Q().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let d={};for(let p=0;p<t.variableNames.length;p++){let f=t.variableNames[p],m=!1;d[f]=e.getUniformLocation(c,f,m),d[`offset${f}`]=e.getUniformLocation(c,`offset${f}`,m)}return{program:t,source:l,webGLProgram:c,uniformLocations:d,inShapeInfos:i,outShapeInfo:o,infLoc:u,nanLoc:h}}function gw(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,r)=>{let a=n.logicalShape,s=t[r],i=s.shape;if(!k.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function TO(e,t,n,r,a){gw(t.inShapeInfos,n),gw([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),Q().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(k.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(u,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function SO(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:EO,bincountImpl:xw,bincountReduceImpl:CO,ceilImpl:RO,concatImpl:FO,expImpl:MO,expm1Impl:$O,floorImpl:DO,gatherV2Impl:OO,greaterImpl:zO,lessImpl:PO,linSpaceImpl:LO,logImpl:WO,maxImpl:BO,maximumImpl:VO,minimumImpl:UO,multiplyImpl:HO,negImpl:jO,prodImpl:GO,rangeImpl:qO,rsqrtImpl:XO,simpleAbsImpl:ww,sliceImpl:KO,stridedSliceImpl:ZO,subImpl:YO,tileImpl:JO,topKImpl:QO,transposeImpl:wA,uniqueImpl:ez}=nm;function _w(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function ln(e,t){return t===1?[e]:_w(e,t)}function tz(e,t){if(e===1)return"rc";let n="";for(let r=0;r<e;r++)n+=t[r],r<e-1&&(n+=",");return n}var sz=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=ln("rc",t),r=pt(t),a=nz(t,e,n),s=rz(t,e[e.length-1],e[e.length-2],n),i=az(e,n);this.userCode=`
void main() {
${r} rc = getOutputCoords();
if(${a}) {
setOutput(vec4(0));
} else {
${s}
setOutput(vec4(${i}));
}
}
`}}};function iz(e,t){let n=[];for(let r=0;r<=1;r++)for(let a=0;a<=1;a++){let s=`${r===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function nz(e,t,n){if(e===1)return`rc > ${t[0]}`;let r="";for(let a=e-2;a<e;a++)r+=`${n[a]} >= ${t[a]}`,a<e-1&&(r+="||");return r}function rz(e,t,n,r){if(e===1)return"";let a=r.slice(-2);return`
int r = ${a[0]};
int c = ${a[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${n};
`}function az(e,t){let n=e.length,r=iz(n,t);return n===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${r[0]}),
cEdge ? 0. : getA(${r[1]}),
rEdge ? 0. : getA(${r[2]}),
rEdge || cEdge ? 0. : getA(${r[3]})`}var bw=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=`
${a}
${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${r}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${r>0?"}":""}
`}this.userCode=`
${oz(t)}
${fA(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${n}
setOutput(result);
}
`}};function oz(e){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${ii(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var lz=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=kw(t,n),a=Iw(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=vw(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===Zt.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===Zt.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===Zt.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===Zt.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===Zt.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=kw(n,r),s=Iw(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=vw(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=Q().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function uz(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function vw(e,t,n,r,a){let s=cz(t,r),i;if(a){let[l,c]=cl(e[0],e[1]);i=l*c}else{let[l,c]=tc(e[0],e[1]);i=l*c}let o=uz(n,s);return i*o}function cz(e,t){switch(e){case Zt.PACKED_2X2_FLOAT32:return gA(t);case Zt.PACKED_2X2_FLOAT16:return xA(t);case Zt.UNPACKED_FLOAT32:return mA(t);case Zt.UNPACKED_FLOAT16:return AA(t);case Zt.PACKED_4X1_UNSIGNED_BYTE:return yA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function hz(e){return Q().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Zt.PACKED_2X2_FLOAT32:Zt.UNPACKED_FLOAT32:e?Zt.PACKED_2X2_FLOAT16:Zt.UNPACKED_FLOAT16}function kw(e,t){if(e===Hn.UPLOAD)return Zt.PACKED_2X2_FLOAT32;if(e===Hn.RENDER||e==null)return hz(t);if(e===Hn.DOWNLOAD||e===Hn.PIXELS)return Zt.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Iw(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Ea=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},Ar="if (isnan(x)) return x;",dz="return x;",Nw="return abs(x);",pz="return (x >= 0.0) ? x : (exp(x) - 1.0);",fz=Ar+`
return (x < 0.0) ? 0.0 : x;
`,mz=Ar+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Qd="return x;",Az="return x;",yz=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,gz=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,xz=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,ml=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},wz=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=ln("rc",t),r=pt(t),a=tz(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${r} rc = getOutputCoords();
vec4 packedInput = getA(${a});
setOutput(getChannel(packedInput, ${i}));
}
`}},_z=Rr.whereImpl,bz=1e-7,vz=1e-4,_A={};function kz(e){return e in _A||(_A[e]={}),_A[e]}var Iz=128,Nz=600;function Tz(){return Q().global.screen==null?1024:Q().global.screen.height*Q().global.screen.width*window.devicePixelRatio*Nz/1024/1024}var sm=class extends Ql{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!Q().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Lr(Q().getNumber("WEBGL_VERSION"));this.binaryCache=kz(Q().getNumber("WEBGL_VERSION")),this.gpgpu=new am(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new lz(this.gpgpu),this.numMBBeforeWarning=Tz(),this.texData=new ch(this,Ln())}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((Q().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Q().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:Hn.UPLOAD,refCount:1,complexParentRefCount:0}),r}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}decComplexRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.complexParentRefCount>0&&t.refCount--}}move(e,t,n,r){if(Q().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:Hn.UPLOAD,refCount:1,complexParentRefCount:0})}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.texData.has(t)){let n=this.texData.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new ml(i,Qd):h=new Ea(i,Qd);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,c;l&&(c=k.now());let u;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);u=R.mergeRealAndImagArrays(h,d)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new ml(r,Qd):p=new Ea(r,Qd);let f=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Q().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Q().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&Q().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let p=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...nc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=p[0],m=p[1];u=R.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let p=k.sizeFromShape(r);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}c!=null&&this.disposeIntermediateTensorInfo(c);let h=this.convertAndCacheOnCPU(e,u),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!Sx(n))throw Q().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:r}=this.texData.get(e),a=k.sizeFromShape(t);if(Q().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),d=this.texData.get(h.dataId),p=this.gpgpu.downloadMatrixFromPackedTexture(d.texture,...nc(t)).subarray(0,a);return this.disposeIntermediateTensorInfo(h),p}let s=Q().getBool("WEBGL_PACK")&&r===!0,i=s?Kd(t):t,o=s?new WD(i):new LD(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,a);return this.disposeIntermediateTensorInfo(l),u}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=k.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e){if(this.pendingDisposal.has(e))return;if(this.pendingRead.has(e)){this.pendingDisposal.add(e),this.pendingDeletes++;return}if(!this.texData.has(e))return;if(this.texData.get(e).complexParentRefCount>0){this.texData.get(e).refCount--;return}this.releaseGPUData(e);let{complexTensorInfos:t}=this.texData.get(e);t!=null&&(this.texData.get(t.real.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.real),this.texData.get(t.imag.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.imag)),this.texData.delete(e)}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return Q().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Ln().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=Iz){let n=this.getCPUBackend();return!Q().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(r=>this.texData.get(r.dataId).texture==null&&k.sizeFromShape(r.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){R.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return _z(e.shape,t)}packedUnaryOp(e,t,n){let r=new ml(e.shape,t);return this.compileAndRun(r,[e],n)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=ww(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(Q().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Nw,e.dtype);let t=new Ea(e.shape,Nw);return this.compileAndRun(t,[e])}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let a=n.map(s=>k.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return Ln().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new wz(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new sz(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[ri(e.shape),...ai(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[ri(t),...ai(t)],s=new bw(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=Kd(r),i;n?i=new PD(s):i=new zD(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===ec.DENSE){let f=nc(e.outputShape);i.texShape=f.map(m=>m*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(s.shape)===0)return i.values=k.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let m=this.texData.get(f.dataId);if(m.texture==null){if(!e.packedInputs&&k.sizeFromShape(f.shape)<=Q().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:m.values};e.packedInputs&&(m.isPacked=!0,m.shape=f.shape)}else if(!!m.isPacked!=!!e.packedInputs)f=m.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),m=this.texData.get(f.dataId);else if(m.isPacked&&!Qu(m.shape,f.shape)){let A=f,y=f.shape;f.shape=m.shape,f=this.packedReshape(f,y),o.push(f),m=this.texData.get(f.dataId),A.shape=y}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:m,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=SO(e,l,c),h=this.getAndSaveBinary(u,()=>NO(this.gpgpu,e,l,c)),d=this.activeTimers!=null,p;if(d&&(p=this.startTimer()),TO(this.gpgpu,h,l,c,r),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)})),!Q().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,r,a=!1){n=n||t[0].dtype;let s=this.runWebGLProgram(e,t,n,r,a);return Ln().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Q().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=H(()=>{if(!Q().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Q().getBool("DEBUG");Q().set("DEBUG",!1);let t=this.abs(Te(1e-8)).dataSync()[0];if(Q().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?bz:vz}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=k.now());let u=t.texShape;if(u==null&&(u=Hx(n,o),t.texShape=u),a!=null){let h=Kd(n),d,p=u[1],f=u[0],m=a instanceof Uint8Array;o?([p,f]=cl(u[0],u[1]),d=new VD(h,[f,p],m)):d=new BD(h,[f,p],m);let A=this.makeTensorInfo([f,p],r);m?this.texData.get(A.dataId).usage=Hn.PIXELS:this.texData.get(A.dataId).usage=Hn.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,f,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),w=this.texData.get(g.dataId);t.texture=w.texture,t.texShape=w.texShape,t.isPacked=w.isPacked,t.usage=w.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-c)}else{let h=this.acquireTexture(u,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=Sz(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};function Sz(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;r<n.length;++r)n[r]=Math.round(e[r]);return n}else throw new Error(`Unknown dtype ${t}`)}var Xg="3.0.0";function Kg(){Q().set("WEBGL_FORCE_F16_TEXTURES",!0)}Hh.isBrowser()&&xu("webgl",()=>new sm,2);var F4={forceHalfFloat:Kg},Tw=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,Al=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},ep=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,ac=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=R.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||k.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${pt(a)} coords = getOutputCoords();
`,a===1)s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=ln("coords",a);s+=`
bool nextRowOutOfBounds =
(${i[a-2]} + 1) >= ${this.outputShape[a-2]};
bool nextColOutOfBounds =
(${i[a-1]} + 1) >= ${this.outputShape[a-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function En(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var Ez={kernelName:to,backendName:"webgl",kernelFunc:En};function Ca(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=En({inputs:{x:r},backend:n}),l=n.texData.get(o.dataId);l.complexParentRefCount++;let c=En({inputs:{x:a},backend:n}),u=n.texData.get(c.dataId);return u.complexParentRefCount++,i.complexTensorInfos={real:o,imag:c},s}var Cz={kernelName:Ah,backendName:"webgl",kernelFunc:Ca},Sw="return (a < 0.) ? b * a : a;",Ew=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function Rz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ac(Ew,a.shape,i.shape):new Al(Sw,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var Fz={kernelName:cs,backendName:"webgl",kernelFunc:Rz},Cw="return (a < 0.) ? b * a : a;",Rw=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function Mz(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ac(Rw,r.shape,a.shape):new Al(Cw,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var $z={kernelName:bs,backendName:"webgl",kernelFunc:Mz},Fw="if (isnan(x)) return x;",Dz=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,Oz=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function Je({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let c=Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new ml(i.shape,t):u=new Ea(i.shape,e),o.runWebGLProgram(u,[i],l)}}function Yt({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(r&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[A,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(w=>{let[x,_]=w,b={dataId:x.dataId,dtype:x.dtype,shape:l.shape},S={dataId:_.dataId,dtype:_.dtype,shape:c.shape},T=new Al(e,l.shape,c.shape);return u.runWebGLProgram(T,[b,S],Qn(x.dtype,_.dtype))}),g=Ca({inputs:{real:A,imag:y},backend:u});return u.disposeIntermediateTensorInfo(A),u.disposeIntermediateTensorInfo(y),g}let h=s||Qn(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&a!=null){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[A,y]=a(l.shape,c.shape,f.values,m.values,h),g=u.makeTensorInfo(y,h),w=u.texData.get(g.dataId);return w.values=A,g}let d=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new ac(t,l.shape,c.shape,n):p=new Al(e,l.shape,c.shape),u.runWebGLProgram(p,[l,c],h)}}function tp(e,t=!1){if(e==="linear")return t?Az:dz;if(e==="relu")return t?gz:fz;if(e==="elu")return t?yz:pz;if(e==="relu6")return t?xz:mz;if(e==="prelu")return t?Rw:Cw;if(e==="leakyrelu")return t?Ew:Sw;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var Mw=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=r?e[1]:e[2],u=Math.ceil(c/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",A="";i&&(o?m=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?m=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:m=`vec4 activation(vec4 x) {
${i}
}`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",w="rc.x";e[0]<t[0]?g=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(w=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${m}
const float sharedDimension = ${u}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${u}; i++) {
int batchA = ${g};
int batchB = ${w};
vec4 a = getMatrixA(batchA, ${h});
vec4 b = getMatrixB(batchB, ${d});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${p[0]} * ${f[0]});
result += (${p[1]} * ${f[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${A}
setOutput(result);
}
`}},$w={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Dw=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},Ow="return a * b;";function zw(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=R.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),c=new Dw($w.REAL,r.shape,a.shape),u=new Dw($w.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),f=Ca({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[c,u]=HO(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(u,s),d=n.texData.get(h.dataId);return d.values=c,h}let i;return Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new ac(Ow,r.shape,a.shape):i=new Al(Ow,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var zz={kernelName:gs,backendName:"webgl",kernelFunc:zw};function Pz(e,t,n){let r=[ri(e.shape),...ai(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[ri(t),...ai(t)],i=new bw(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ge(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=k.sizeFromShape(a.shape),l=k.inferFromImplicitShape(s,o),c=k.sizeFromShape(l);k.assert(o===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(a.dataId);return u.isPacked&&!Qu(a.shape,l)&&!(u.texture!==null&&Qu(u.shape,l))?Pz(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var Lz={kernelName:wo,backendName:"webgl",kernelFunc:ge},Pw=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${k.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";a%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${a}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},Wz=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,h=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
}
`,d="vec4";t==="all"?(i="1.0",h=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,d="bvec4"):t==="any"&&(i="0.0",h=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,d="bvec4");let p="";a%n>0&&(p=`
if (inIdx < 0 || inIdx >= ${a}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${p}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${h}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
${d} values = ${d}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${h}
} else if (${u===2}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${h}
} else if (${u===3}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${h}
}
setOutput(${l});
}
`}};function Bz(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=R.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function li(e,t,n,r){let a=Bz(e.shape),s=e;for(let i=0;i<a.length;i++){let{inSize:o,windowSize:l,outSize:c}=a[i],u,h;n==="mean"?u=i===0?new Pw({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},o):new Pw({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c}):u=new Wz({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},n),h=s,s=r.runWebGLProgram(u,[s],t),h.dataId!==e.dataId&&r.disposeIntermediateTensorInfo(h)}return s}var Uz=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let r=pt(this.rank),a=Vz(t);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function Vz(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a<e.length;a++)r[e[a]]=n[a];return r.join()}var Hz=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=pt(this.rank),a=_w("rc",this.rank),s=new Array(this.rank);for(let c=0;c<t.length;c++)s[t[c]]=a[c];let i=`vec2(${s.slice(-2).join()})`,o=`++${a[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${r} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${a[this.rank-1]};
if(++${a[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function np(e,t,n){let r=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Hz(e.shape,t):new Uz(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function jz(e,t,n,r){let a=t,s=e.shape.length,i=k.parseAxisParam(a,e.shape),o=i,l=R.getAxesPermutation(o,s),c=l!=null,u=e;c&&(u=np(e,l,r),o=R.getInnerMostAxes(o.length,s)),R.assertAxesAreInnerMostDims("sum",o,s);let[h,d]=R.computeOutAndReduceShapes(u.shape,o),p=h;n&&(p=R.expandShapeToKeepDim(h,i));let f=k.sizeFromShape(d),m=k.sizeFromShape(e.shape)/f,A=ge({inputs:{x:u},attrs:{shape:[m,f]},backend:r}),y=Uh(e.dtype),g=li(A,y,"sum",r),w=ge({inputs:{x:g},attrs:{shape:p},backend:r});return r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(g),c&&r.disposeIntermediateTensorInfo(u),w}function bA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;return jz(a,s,i,n)}var Gz={kernelName:Fs,backendName:"webgl",kernelFunc:bA};function mn(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{perm:s}=r,i=n,o=a.shape.length,l=new Array(o);for(let u=0;u<l.length;u++)l[u]=a.shape[s[u]];let c;if(i.shouldExecuteOnCPU([a])){let u=i.texData.get(a.dataId).values,h=wA(u,a.shape,a.dtype,s,l);c=i.makeTensorInfo(l,a.dtype);let d=i.texData.get(c.dataId);d.values=h}else c=np(a,s,i);return c}var qz={kernelName:zs,backendName:"webgl",kernelFunc:mn},Lw=1e3;function rp({a:e,b:t,transposeA:n,transposeB:r,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,h=n?e.shape[c-2]:e.shape[c-1],d=r?t.shape[u-1]:t.shape[u-2],p=n?e.shape[c-1]:e.shape[c-2],f=r?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),A=t.shape.slice(0,-2),y=k.sizeFromShape(m),g=k.sizeFromShape(A),w=y===g||y===1||g===1;k.assert(c>=2&&u>=2&&w,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${A}).`);let x=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);k.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let _=n?[y,h,p]:[y,p,h],b=r?[g,f,d]:[g,d,f],S=ge({inputs:{x:e},backend:a,attrs:{shape:_}}),T=ge({inputs:{x:t},backend:a,attrs:{shape:b}}),N=[S,T],C=Math.max(y,g),$=n?S.shape[1]:S.shape[2],D=s!=null,O=i!=null,V=l==="leakyrelu",W=l!=null?tp(l,!0):null,K=D||O||V||W!=null,X;if((p===1||f===1)&&$>Lw&&K===!1){let Z=S,ae=T;n&&(Z=mn({inputs:{x:S},backend:a,attrs:{perm:[0,2,1]}}),N.push(Z)),r&&(ae=mn({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),N.push(ae));let J=f!==1,oe=f===1,ne=Z;J&&(ne=ge({inputs:{x:Z},backend:a,attrs:{shape:[C,$,1]}}),N.push(ne));let he=f===1?2:1,le=ae;oe&&(le=ge({inputs:{x:ae},backend:a,attrs:{shape:[C,1,$]}}),N.push(le));let me=zw({inputs:{a:ne,b:le},backend:a});X=bA({inputs:{x:me},backend:a,attrs:{axis:he,keepDims:!0}}),N.push(me)}else{let Z=Qn(e.dtype,t.dtype),ae=new Mw(_,b,[C,p,f],n,r,D,W,O,V),J=[S,T];if(s!=null&&J.push(s),O&&J.push(i),V){let oe=a.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));J.push(oe),N.push(oe)}X=a.runWebGLProgram(ae,J,Z)}let ee=ge({inputs:{x:X},backend:a,attrs:{shape:x}});N.push(X);for(let Z of N)a.disposeIntermediateTensorInfo(Z);return ee}function Xz(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r;return rp({a,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:u})}var Kz={kernelName:Ps,backendName:"webgl",kernelFunc:Xz},Ww="return abs(x);";function Zz(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=ww(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new ml(r.shape,Ww):a=new Ea(r.shape,Ww),n.runWebGLProgram(a,[r],r.dtype)}var Yz={kernelName:Mi,backendName:"webgl",kernelFunc:Zz},Jz=Ar+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,Qz=Je({opSnippet:Jz}),eP={kernelName:$i,backendName:"webgl",kernelFunc:Qz},tP=Ar+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,nP=Je({opSnippet:tP}),rP={kernelName:Di,backendName:"webgl",kernelFunc:nP},Bw="return a + b;",aP=Yt({opSnippet:Bw,packedOpSnippet:Bw,supportsComplex:!0,cpuKernelImpl:EO}),sP={kernelName:da,backendName:"webgl",kernelFunc:aP},iP=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${r};
setOutput(result);
}
`}},oP=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${r};
setOutput(result);
}
`}};function ap(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return En({inputs:{x:r[0]},backend:n});if(r.length>Q().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=ap({inputs:r.slice(0,o),backend:n}),c=ap({inputs:r.slice(o),backend:n});return ap({inputs:[l,c],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>Qn(o,l)),s=r.map(o=>o.shape),i=Q().getBool("WEBGL_PACK")?new oP(r[0].shape,s):new iP(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var lP={kernelName:Xa,backendName:"webgl",kernelFunc:ap};function uP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=R.getAxesPermutation(c,o),h=a;u!=null&&(h=mn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=R.getInnerMostAxes(c.length,o)),R.assertAxesAreInnerMostDims("all",c,o);let[d,p]=R.computeOutAndReduceShapes(h.shape,c),f=k.sizeFromShape(p),m=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=li(m,m.dtype,"all",n),y;if(i){let g=R.expandShapeToKeepDim(d,l);y=ge({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ge({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var cP={kernelName:hh,backendName:"webgl",kernelFunc:uP};function hP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=R.getAxesPermutation(c,o),h=a;u!=null&&(h=mn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=R.getInnerMostAxes(c.length,o)),R.assertAxesAreInnerMostDims("any",c,o);let[d,p]=R.computeOutAndReduceShapes(h.shape,c),f=k.sizeFromShape(p),m=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=li(m,m.dtype,"any",n),y;if(i){let g=R.expandShapeToKeepDim(d,l);y=ge({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ge({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var dP={kernelName:dh,backendName:"webgl",kernelFunc:hP},pP=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${r};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${r}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},fP=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=pt(o),c=ln("coords",o),u,h;if(s===1){h=o+1;let S=pt(h);u=`
${S} sourceLocR = ${S}(${c.join()}, 0);
++${c[o-1]};
${S} sourceLocG = ${S}(${c.join()}, 0);
++${c[o-2]};
${S} sourceLocA = ${S}(${c.join()}, 0);
--${c[o-1]};
${S} sourceLocB = ${S}(${c.join()}, 0);
--${c[o-2]};`}else h=o,u=`
${l} sourceLocR = coords;
++${c[o-1]};
${l} sourceLocG = coords;
++${c[o-2]};
${l} sourceLocA = coords;
--${c[o-1]};
${l} sourceLocB = coords;
--${c[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],f=d.map(S=>"int "+S),m=ln("sourceLocR",h-1).concat("inIdx.r"),A=ln("sourceLocG",h-1).concat("inIdx.g"),y=ln("sourceLocB",h-1).concat("inIdx.b"),g=ln("sourceLocA",h-1).concat("inIdx.a"),w=n==="max"?"greaterThan":"lessThan",x=r?"":`
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
getBestIndicesAChannel(${A.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${g.join()})));`,_=`vec4(
getAChannel(${m.join()}),
hasNextCol ? getAChannel(${A.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,b=r?"":`
float getBestIndicesAChannel(${f.join()}) {
return getChannel(getBestIndicesA(${d.join()}),
vec2(${d.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${f.join()}) {
return getChannel(getA(${d.join()}),
vec2(${d.slice(-2).join()}));
}
${b}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${c[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${c[o-2]} < ${i[o-2]-1};
${u}
ivec4 srcIdx = ivec4(sourceLocR${p}, sourceLocG${p},
sourceLocB${p}, sourceLocA${p}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${_};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${x}
vec4 candidate = ${_};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${w}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function Vw(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=R.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new pP(o,n,r==null),c=[t];r!=null&&c.push(r);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let h=Vw(e,t,n,u);return e.disposeIntermediateTensorInfo(u),h}function Uw(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=R.computeOptimalWindowSize(s),o=new fP(a,i,n,r==null),l=r==null?[t]:[t,r],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=Uw(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function Hw(e,t,n,r){let a=[n];if(R.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!Q().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=R.computeOutAndReduceShapes(t.shape,a),l=k.sizeFromShape(o),c=ge({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=Vw(e,c,r);s.push(u);let h=ge({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return Uw(e,t,r)}function mP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=k.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=mn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=Hw(n,l,i[0],"max");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var AP={kernelName:Ka,backendName:"webgl",kernelFunc:mP};function yP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=k.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=mn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=Hw(n,l,i[0],"min");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var gP={kernelName:eu,backendName:"webgl",kernelFunc:yP},xP=Ar+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,wP=Je({opSnippet:xP}),_P={kernelName:Oi,backendName:"webgl",kernelFunc:wP},bP=Ar+"return log(x + sqrt(x * x + 1.0));",vP=Je({opSnippet:bP}),kP={kernelName:zi,backendName:"webgl",kernelFunc:vP},IP=Ar+`
return atan(x);
`,NP=Je({opSnippet:IP}),TP={kernelName:Pi,backendName:"webgl",kernelFunc:NP},SP=Dz+`
return atan(a, b);
`,EP=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Oz+`
return result;
`,CP=Yt({opSnippet:SP,packedOpSnippet:EP}),RP={kernelName:Wi,backendName:"webgl",kernelFunc:CP},FP=Ar+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,MP=Je({opSnippet:FP}),$P={kernelName:Li,backendName:"webgl",kernelFunc:MP},sc=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let S=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${p});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${h};
wC += ${c}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${S} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${r?a?m:A:`wR * ${h} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let g="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let x=Math.floor(s/4)*4,_=s%4,b=`
if (${f}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${g}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${d}, ${p});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${x}; wC += 4) {
int xC = xCCorner + wC * ${c};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
getValue(batch, xR, xC + 3 * ${c}, d)
);
${b}
}
int xC = xCCorner + ${x};
if (${_===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${b}
} else if (${_===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
initializationValue,
initializationValue
);
${b}
} else if (${_===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${c}, d),
getValue(batch, xR, xC + 2 * ${c}, d),
initializationValue
);
${b}
}
}
setOutput(${w});
}
`}},vA=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",w="0.0";if(g||(w="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${m}, ${A}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${d};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f};
wC += ${h}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${N} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${f} +
wR * ${f} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let x="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let b=Math.floor(s/4)*4,S=s%4,T=`
if (${g}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${x}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${m}, ${A}, ${y});
const float initializationValue = ${w};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${w});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${d};
wD += ${c}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${b}; wC += 4) {
int xC = xCCorner + wC * ${h};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
);
${T}
}
int xC = xCCorner + ${b};
if (${S===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${S===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
initializationValue,
initializationValue
);
${T}
} else if (${S===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${h}, ch),
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
initializationValue
);
${T}
}
}
setOutput(${_});
}
}
`}};function DP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ul(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;k.assert(R.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=R.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return En({inputs:{x:a},backend:n});let h=new sc(u,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var OP={kernelName:Za,backendName:"webgl",kernelFunc:DP};function zP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r,u=[1,1,1],h=R.computePool3DInfo(a.shape,s,i,u,o,l,c),d=new vA(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var PP={kernelName:tu,backendName:"webgl",kernelFunc:zP},LP=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,h=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${c}, ${u});
const float avgMultiplier = float(${h});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},WP=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=u-1-e.padInfo.front,f=h-1-e.padInfo.top,m=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=`
const ivec3 pads = ivec3(${p}, ${f}, ${m});
const float avgMultiplier = float(${A});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${u};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${a}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${h};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${d};
wC += ${c}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function BP(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=R.computePool3DInfo(i.shape,o,l,h,c,u),p=new WP(d);return n.runWebGLProgram(p,[a],i.dtype)}var VP={kernelName:fh,backendName:"webgl",kernelFunc:BP};function UP(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;ul([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=R.computePool2DInfo(i.shape,o,l,1,c),h=new LP(u);return n.runWebGLProgram(h,[a],i.dtype)}var HP={kernelName:ph,backendName:"webgl",kernelFunc:UP};function jP(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return rp({a,b:s,transposeA:i,transposeB:o,backend:n})}var GP={kernelName:Ya,backendName:"webgl",kernelFunc:jP},qP=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},XP=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},KP=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;k.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[r,a,s],u=null;i!=null&&(u=i.shape,c.push(i));let h=null;o!=null&&(h=o.shape,c.push(o));let d=Q().getBool("WEBGL_PACK_NORMALIZATION")?new XP(r.shape,a.shape,s.shape,u,h,l):new qP(r.shape,a.shape,s.shape,u,h,l);return t.runWebGLProgram(d,c,c[0].dtype)},ZP={kernelName:ls,backendName:"webgl",kernelFunc:KP},JP=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=pt(this.rank),n=`uniform int start[${this.rank}];`,r=YP(this.rank),a,s=e.map((i,o)=>`sourceLoc.${kA[o]} = start[${o}] + coords.${kA[o]};`);a=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${s.join(`
`)}
`,this.userCode=`
${n}
void main() {
${a}
setOutput(getSource(${r}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},kA=["x","y","z","w","u","v"];function YP(e){if(e===1)return"sourceLoc";if(e<=6)return kA.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var QP=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=pt(this.rank),n=ln("coords",this.rank),r=ln("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${r[this.rank-1]};
result.y = ${s};
--${r[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${r[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${r[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${r[u]} = ${n[u]} + start[${u}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function eL(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.complexParentRefCount=0,i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=an.computeFlatOffset(t,k.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function ic(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=an.parseSliceParams(a,s,i);if(an.assertParamsValid(a,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=KO(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:c}=n.texData.get(a.dataId),u=an.isSliceContinous(a.shape,o,l);if(c||!u){let h=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new QP(l):new JP(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),eL(a,o,l,n)}var tL={kernelName:ko,backendName:"webgl",kernelFunc:ic},nL=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;k.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,w)=>g*w),l=R.getReshaped(a.shape,s,o),c=R.getPermuted(l.length,s.length),u=R.getReshapedPermuted(a.shape,s,o),h=R.getSliceBeginCoords(i,s.length),d=R.getSliceSize(u,i,s.length),p=[],f=ge({inputs:{x:a},backend:n,attrs:{shape:l}}),m=mn({inputs:{x:f},backend:n,attrs:{perm:c}}),A=ge({inputs:{x:m},backend:n,attrs:{shape:u}}),y=ic({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(f),p.push(m),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},rL={kernelName:nu,backendName:"webgl",kernelFunc:nL};function aL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),c=xw(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var sL={kernelName:mh,backendName:"webgl",kernelFunc:aL},iL="return float(a != b);",jw=Yt({opSnippet:iL,dtype:"bool"}),oL={kernelName:ho,backendName:"webgl",kernelFunc:jw};function oc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return En({inputs:{x:a.complexTensorInfos.real},backend:n})}var lL={kernelName:Oh,backendName:"webgl",kernelFunc:oc},uL="return float(int(x));";function cL(e,t){let n=new Ea(e.shape,uL),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function IA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return En({inputs:{x:a},backend:n});let i=Ct(a.shape),o=IA({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Ca({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=oc({inputs:{input:a},backend:n}),o=IA({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(a.dtype,s)){let i=En({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return cL(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=jw({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var hL={kernelName:Ja,backendName:"webgl",kernelFunc:IA},Gw="return ceil(x);",dL=Je({opSnippet:Gw,packedOpSnippet:Gw,cpuKernelImpl:RO}),pL={kernelName:Bi,backendName:"webgl",kernelFunc:dL},fL=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},mL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function AL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;Q().getBool("WEBGL_PACK_CLIP")?o=new mL(a.shape):o=new fL(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var yL={kernelName:pa,backendName:"webgl",kernelFunc:AL},gL=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function qw(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function xL(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new gL(r.shape),i=[qw(r,a.complexTensorInfos.real),qw(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var wL={kernelName:ru,backendName:"webgl",kernelFunc:xL},_L=class{constructor(e){this.outputShape=[],this.outputShape=R.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let r=t.length,a=t[t.length-1];n.push(`else setOutput(getT${r}(yR, yC-${a}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},bL=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=R.computeOutShape(e,t);let n=this.outputShape,r=n.length,a=pt(r),s=ln("coords",r),i=["x","y","z","w","u","v"].slice(0,r);this.variableNames=e.map((f,m)=>`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f<o.length;f++)o[f]=o[f-1]+e[f][t];let l=i[t],c=i.slice(-2),u=i.join(),h=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${u}), vec2(${c.join()}));
}`;for(let f=1;f<o.length;f++){let m=o[f-1];h+=`
if (${l} < ${o[f]} && ${l} >= ${o[f-1]}) {
return getChannel(
getT${f}(${sp(i,l,m)}),
vec2(${sp(c,l,m)}));
}`}let d=o.length,p=o[o.length-1];h+=`
return getChannel(
getT${d}(${sp(i,l,p)}),
vec2(${sp(c,l,p)}));`,this.userCode=`
float getValue(${i.map(f=>"int "+f)}) {
${h}
}
void main() {
${a} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[r-1]} = ${s[r-1]} + 1;
if (${s[r-1]} < ${n[r-1]}) {
result.g = getValue(${s});
}
${s[r-2]} = ${s[r-2]} + 1;
if (${s[r-2]} < ${n[r-2]}) {
result.a = getValue(${s});
}
${s[r-1]} = ${s[r-1]} - 1;
if (${s[r-2]} < ${n[r-2]} &&
${s[r-1]} < ${n[r-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function sp(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function ip(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return En({inputs:{x:a.complexTensorInfos.imag},backend:n})}var vL={kernelName:Eh,backendName:"webgl",kernelFunc:ip};function yl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let c=e.map(f=>oc({inputs:{input:f},backend:n})),u=e.map(f=>ip({inputs:{input:f},backend:n})),h=yl(c,t,n),d=yl(u,t,n),p=Ca({inputs:{real:h,imag:d},backend:n});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),u.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(r==="string"){let{tensors2D:c,outShape:u}=Xw(e,t,n),h=c.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),d=c[0].shape[0]===1,p=FO(h,u,r,d),f=R.computeOutShape(e.map(A=>A.shape),t),m=n.makeTensorInfo(f,r,p);return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),m}if(e.length>Q().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),u=yl(e.slice(0,c),t,n),h=yl(e.slice(c),t,n),d=yl([u,h],t,n);return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),d}if(Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new bL(e.map(u=>u.shape),t);return n.runWebGLProgram(c,e,r)}let{tensors2D:a,outShape:s}=Xw(e,t,n),i=new _L(a.map(c=>c.shape)),o=n.runWebGLProgram(i,a,r);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let l=ge({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function Xw(e,t,n){let r=R.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ge({inputs:{x:a},attrs:{shape:[-1,k.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function Kw(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=k.parseAxisParam(a,t[0].shape)[0],i=R.computeOutShape(t.map(c=>c.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>k.sizeFromShape(c.shape)>0);if(o.length===1)return En({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return R.assertParamsConsistent(l,s),yl(o,s,n)}var kL={kernelName:Vi,backendName:"webgl",kernelFunc:Kw},Zw=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",A=m?1:2,y=m?2:3,g=m?3:1,w="",x="";n&&(r?w=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:a?w=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:w=`
float activation(float x) {
${n}
}
`,x="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${w}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${g}];
ivec2 xRCCorner =
ivec2(coords[${A}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${c};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${p}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${m}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${f===1}) {
if (${m}) {
dotProd +=
getX(batch, xR, xC, ${p}) *
getW(wR, wC, ${p}, d2);
} else {
dotProd +=
getX(batch, ${p}, xR, xC) *
getW(wR, wC, ${p}, d2);
}
} else if (${f===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${p}, d2),
getW(wR, wC, ${p} + 1, d2)
);
if (${m}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${p}),
getX(batch, xR, xC, ${p} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${p}, xR, xC),
getX(batch, ${p} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${f===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${p}, d2),
getW(wR, wC, ${p} + 1, d2),
getW(wR, wC, ${p} + 2, d2)
);
if (${m}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${p}),
getX(batch, xR, xC, ${p} + 1),
getX(batch, xR, xC, ${p} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${p}, xR, xC),
getX(batch, ${p} + 1, xR, xC),
getX(batch, ${p} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${_}
${x}
setOutput(result);
}
`}},IL=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${a}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${r});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${u}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${p}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${f===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${p}) *
getW(wF, wR, wC, ${p}, d2);
} else if (${f===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${p}),
getX(batch, xF, xR, xC, ${p} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${p}, d2),
getW(wF, wR, wC, ${p} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${f===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${p}),
getX(batch, xF, xR, xC, ${p} + 1),
getX(batch, xF, xR, xC, ${p} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${p}, d2),
getW(wF, wR, wC, ${p} + 1, d2),
getW(wF, wR, wC, ${p} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},NL=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:h}=n,{left:d,top:p}=o,f=a*r,m=on(),A=h==="channelsLast",y=A?0:1,g=A?1:2,w="";for(let x=0;x<=1;x++)for(let _=0;_<=1;_++)w+=`
blockIndex = rc.y + ${_};
pos = rc.x + ${x};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${l})) * ${i} - ${p};
d0 = offsetY + ${u} * (pos / ${f});
if(d0 < ${t[y]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.);
d1 = offsetX + ${c} * (int(mod(float(pos), ${f}.) / ${a}.));
if(d1 < ${t[g]} && d1 >= 0) {
ch = int(mod(float(pos), ${a}.));
if (${A}) {
innerDims = vec2(d1, ch);
result[${x*2+_}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${x*2+_}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${w}
${m.output} = result;
}
`}};function Yw({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=r.texData.get(e.dataId),u=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,A,y=[],g=(h===1||d===1)&&u>Lw,w=l[2]%2!=0&&!!c.isPacked;if(g||!Q().getBool("WEBGL_LAZILY_UNPACK")||!Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!w){let x=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],_=ge({inputs:{x:e},backend:r,attrs:{shape:[1,x,n.inChannels]}}),b=ge({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=rp({a:_,b,transposeA:f,transposeB:m,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=ge({inputs:{x:S},backend:r,attrs:{shape:n.outShape}}),y.push(_),y.push(b),y.push(S)}else{let x=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),_={dataId:e.dataId,shape:[1,x,n.inChannels],dtype:e.dtype},b=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,k.assert(Qu(c.shape,_.shape),()=>`packed reshape ${c.shape} to ${_.shape} isn't free`);let S=ge({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(S);let T=rp({a:_,b:S,backend:r,transposeA:f,transposeB:m,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),N=r.texData.get(T.dataId);k.assert(N.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=b,N.shape=n.outShape,A=En({inputs:{x:T},backend:r}),A.shape=n.outShape,y.push(T)}for(let x of y)r.disposeIntermediateTensorInfo(x);return A}function Jw({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:h,outHeight:d,dataFormat:p}=n,f=p==="channelsLast",m=l*c*u,A=d*h,y=[m,A],g=!0,w=!1,x=[],_=ge({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),b=ge({inputs:{x:t},backend:r,attrs:{shape:[1,m,k.sizeFromShape(t.shape)/m]}});x.push(_),x.push(b);let S=new NL(y,_.shape,n),T=r.runWebGLProgram(S,[_],"float32"),N=ge({inputs:{x:T},backend:r,attrs:{shape:[1,y[0],y[1]]}});x.push(T),x.push(N);let C=a!=null,$=s!=null,D=o==="leakyrelu",O=o?tp(o,!0):null,V=new Mw(N.shape,b.shape,[1,A,n.outChannels],g,w,C,O,$,D),W=[N,b];if(a&&W.push(a),$&&W.push(s),D){let Z=r.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));W.push(Z),x.push(Z)}let K=r.runWebGLProgram(V,W,"float32"),X=f?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=ge({inputs:{x:K},backend:r,attrs:{shape:X}});x.push(K);for(let Z of x)r.disposeIntermediateTensorInfo(Z);return ee}function TL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r,h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=Yw({x:a,filter:s,convInfo:d,backend:n});else if(Q().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=Jw({x:a,filter:s,convInfo:d,backend:n});else{let m=new Zw(d);p=n.runWebGLProgram(m,[a,s],"float32")}let f=ge({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),f}var SL={kernelName:Qa,backendName:"webgl",kernelFunc:TL},EL=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${r};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${a};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},CL=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${u}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},RL=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${a};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${r} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},FL=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=r-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${a}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${r}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${r} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function ML(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r,h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),p=new EL(d);return n.runWebGLProgram(p,[a,s],"float32")}var $L={kernelName:yh,backendName:"webgl",kernelFunc:ML};function DL(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r,h=R.convertConv2DDataFormat(c),d=R.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),p=new CL(d);return n.runWebGLProgram(p,[a,s],"float32")}var OL={kernelName:es,backendName:"webgl",kernelFunc:DL};function zL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=R.computeConv3DInfo(a.shape,s.shape,i,l,o),u=new IL(c);return n.runWebGLProgram(u,[a,s],"float32")}var PL={kernelName:au,backendName:"webgl",kernelFunc:zL};function LL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,c=R.computeConv3DInfo(a.shape,l,i,1,o),u=new RL(c);return n.runWebGLProgram(u,[a,s],"float32")}var WL={kernelName:gh,backendName:"webgl",kernelFunc:LL};function BL(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,c=R.computeConv3DInfo(l,s.shape,o,1,i),u=new FL(c);return n.runWebGLProgram(u,[a,s],"float32")}var VL={kernelName:xh,backendName:"webgl",kernelFunc:BL},UL=Fw+`
return cos(x);
`,HL=Je({opSnippet:UL}),jL={kernelName:ts,backendName:"webgl",kernelFunc:HL},GL=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,qL=Je({opSnippet:GL}),XL={kernelName:Ui,backendName:"webgl",kernelFunc:qL},KL=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,h]=n;this.outputShape=[c,u,h,l];let d=r==="bilinear"?1:0,[p,f]=[`${i-1}.0`,`${o-1}.0`],[m,A,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,w,x]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
const float height_ratio = float(${m});
const float width_ratio = float(${g});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${A};
float width_scale = ${w};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${p} ) {
setOutput(float(${a}));
return;
}
float in_x = ${x};
if( in_x < 0.0 || in_x > ${f} ) {
setOutput(float(${a}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${d} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},ZL=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,u=new KL(a.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[a,s,i],"float32")},YL={kernelName:Hi,backendName:"webgl",kernelFunc:ZL},t_=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${Qw(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${pt(r)} coords = getOutputCoords();
int end = ${e_(r,"coords")};
float val = ${a};
int pow2 = int(pow(2.0, index));
if (${i}) {
int idx = ${o};
${e_(r,"coords")} = idx;
val += getX(${Qw(r,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function Qw(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function e_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function JL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,c=R.getAxesPermutation([s],l),u=a;c!=null&&(u=mn({inputs:{x:a},backend:n,attrs:{perm:c}}));let h=R.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=a.shape[h],p=En({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(d))-1;f++){let m=new t_(u.shape,!1,o),A=m.getCustomSetupFunc(f),y=p;p=n.runWebGLProgram(m,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let f=new t_(u.shape,i,o),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=R.getUndoAxesPermutation(c),m=mn({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(u),m}return p}var QL={kernelName:ns,backendName:"webgl",kernelFunc:JL};function eW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),c=n.readSync(s.dataId),u=xw(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=CO(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var tW={kernelName:wh,backendName:"webgl",kernelFunc:eW},nW=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function rW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=new nW(f,s,i);return n.runWebGLProgram(m,[a],a.dtype)}var aW={kernelName:ji,backendName:"webgl",kernelFunc:rW},n_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:a?A=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:A=`
float activation(float x) {
${n}
}
`,y="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${A}
const ivec2 strides = ivec2(${c}, ${u});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${m};
int q = d2 - d1 * ${m};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${h};
if (xR < 0 || xR >= ${s}) {
continue;
}
for (int wC = 0; wC < ${f}; wC++) {
int xC = xCCorner + wC * ${d};
if (xC < 0 || xC >= ${i}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${g}
${y}
setOutput(result);
}
`}},r_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=f,A="int xR; int xC; int xCOffset;";for(let x=0;x<p;x++)for(let _=0;_<f;_++)A+=`
vec4 xTexelR${x}C${_*2} = vec4(0.);
vec4 wR${x}C${_} = vec4(0.);
vec4 xR${x}C${_} = vec4(0.);`;for(let x=0;x<p;x++)for(let _=0;_<m;_++){let b=_*2;if(A+=`
xR = xRCorner + ${x*h};
xC = xCCorner + ${b*d};
`,u===1){if(b<f&&(l%2==1?A+=`
xCOffset = xC + 1;
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${b} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
xTexelR${x}C${b}.zw = vec2(0.);
}
} else {
xTexelR${x}C${b} = vec4(0.);
}
xCOffset = xC + 1 - 2;
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
vec4 previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if(xCOffset + 1 >= ${i}) {
previous.zw = vec2(0.);
}
xR${x}C${b} = vec4(previous.zw, xTexelR${x}C${b}.xy);
} else {
xR${x}C${b} = vec4(0, 0, xTexelR${x}C${b}.xy);
}
`:A+=`
if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) {
xTexelR${x}C${b} = getX(batch, xR, xC, d1);
} else {
xTexelR${x}C${b} = vec4(0.);
}
xR${x}C${b} = xTexelR${x}C${b};
`,b+1<f)){let S=l%2==0?k.nearestLargerEven(d):d;d%2==0&&l%2==1||d%2!=0&&l%2!=1?(A+=`
xCOffset = xC + ${l%2} + ${S};
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${b+2} = getX(batch, xR, xCOffset, d1);
}
`,d>1&&(A+=`
xCOffset -= 2;
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${b} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${x}C${b} = vec4(0.);
}
`),A+=`
xR${x}C${b+1} = vec4(
xTexelR${x}C${b}.zw, xTexelR${x}C${b+2}.xy);
`):A+=`
xCOffset = xC + ${S};
if(xR >= 0 && xR < ${s} &&
xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${b+2} = getX(batch, xR, xCOffset, d1);
}
xR${x}C${b+1} = xTexelR${x}C${b+2};
`}}else b<f&&(A+=`
if(xR >= 0 && xR < ${s}) {
`,l%2==1?(A+=`
xCOffset = xC + 1 - ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${b} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${x}C${b} = vec4(0.);
}
if(xC + 1 >= 0 && xC + 1 < ${i}) {
xTexelR${x}C${b+2} = getX(batch, xR, xC + 1, d1);
} else {
xTexelR${x}C${b+2} = vec4(0.);
}
xR${x}C${b} = vec4(
xTexelR${x}C${b}.zw, xTexelR${x}C${b+2}.zw);
`,b+1<f&&(A+=`
vec4 final = vec4(0.);
xCOffset = xC + 1 + ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
final = getX(batch, xR, xCOffset, d1);
}
xR${x}C${b+1} = vec4(xTexelR${x}C${b+2}.xy, final.xy);
`)):(A+=`
if(xC >= 0 && xC < ${i}) {
xTexelR${x}C${b} = getX(batch, xR, xC, d1);
} else {
xTexelR${x}C${b} = vec4(0.);
}
xCOffset = xC + ${u};
if(xCOffset >= 0 && xCOffset < ${i}) {
xTexelR${x}C${b+2} = getX(batch, xR, xCOffset, d1);
} else {
xTexelR${x}C${b+2} = vec4(0.);
}
xR${x}C${b} = vec4(
xTexelR${x}C${b}.xy, xTexelR${x}C${b+2}.xy);
`,b+1<f&&(A+=`
xR${x}C${b+1} = vec4(
xTexelR${x}C${b}.zw, xTexelR${x}C${b+2}.zw);
`)),A+="}");b<f&&(A+=`
vec4 wTexelR${x}C${b} = getW(${x}, ${b}, d1, q);
wR${x}C${b} = vec4(wTexelR${x}C${b}.xz, wTexelR${x}C${b}.xz);
`,b+1<f&&(A+=`
vec4 wTexelR${x}C${b+1} = getW(${x}, ${b+1}, d1, q);
wR${x}C${b+1} =
vec4(wTexelR${x}C${b+1}.xz, wTexelR${x}C${b+1}.xz);`))}for(let x=0;x<p;x++)for(let _=0;_<f;_++)A+=`dotProd += xR${x}C${_} * wR${x}C${_};`;let y="",g="";n&&(r?y=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:a?y=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:y=`vec4 activation(vec4 x) {
${n}
}`,g="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${y}
const ivec2 strides = ivec2(${c}, ${u});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2;
int q = 0;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
vec4 dotProd = vec4(0.);
${A}
vec4 result = dotProd;
${w}
${g}
setOutput(result);
}
`}};function sW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=r,u=l;u==null&&(u=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let h=R.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!0),d;return Q().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new r_(h):d=new n_(h),n.runWebGLProgram(d,[a,s],"float32")}var iW={kernelName:rs,backendName:"webgl",kernelFunc:sW},oW=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${r};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${a};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},lW=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${r}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function uW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r,h=R.computeConv2DInfo(a.shape,u,i,o,l,c,!0),d=new oW(h);return n.runWebGLProgram(d,[a,s],"float32")}var cW={kernelName:_h,backendName:"webgl",kernelFunc:uW};function hW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r,h=R.computeConv2DInfo(u,s.shape,i,o,l,c,!0),d=new lW(h);return n.runWebGLProgram(d,[a,s],"float32")}var dW={kernelName:bh,backendName:"webgl",kernelFunc:hW},pW=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function fW(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=k.sizeFromShape(r.shape),i=ge({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new pW(s),l=n.runWebGLProgram(o,[i],i.dtype),c=ge({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var mW={kernelName:vh,backendName:"webgl",kernelFunc:fW},AW=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:h}=r;this.userCode=`
const ivec2 strides = ivec2(${a}, ${s});
const ivec2 pads = ivec2(${u}, ${h});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${c};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function yW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=R.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),u,h=new AW(c);u=n.runWebGLProgram(h,[a,s],"float32");let d=ge({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),d}var gW={kernelName:su,backendName:"webgl",kernelFunc:yW},xW="return (x >= 0.0) ? x : (exp(x) - 1.0);",wW=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,_W=Je({opSnippet:xW,packedOpSnippet:wW}),bW={kernelName:Gi,backendName:"webgl",kernelFunc:_W},vW="return (b >= 1.0) ? a : a * (b + 1.0);",kW=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,IW=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ac(kW,r.shape,a.shape):new Al(vW,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},NW={kernelName:Nh,backendName:"webgl",kernelFunc:IW},TW=`
return vec4(equal(a, b));
`,SW="return float(a == b);",EW=Yt({opSnippet:SW,packedOpSnippet:TW,dtype:"bool"}),CW={kernelName:Xi,backendName:"webgl",kernelFunc:EW},RW=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${R.ERF_P};
float a1 = ${R.ERF_A1};
float a2 = ${R.ERF_A2};
float a3 = ${R.ERF_A3};
float a4 = ${R.ERF_A4};
float a5 = ${R.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,FW=Je({opSnippet:RW}),MW={kernelName:qi,backendName:"webgl",kernelFunc:FW},a_="return exp(x);",s_=Je({opSnippet:a_,packedOpSnippet:a_,cpuKernelImpl:MO}),$W={kernelName:ss,backendName:"webgl",kernelFunc:s_};function NA(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(k.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),ge({inputs:{x:s},backend:r,attrs:{shape:o}})}var DW={kernelName:Ki,backendName:"webgl",kernelFunc:NA},i_="return exp(x) - 1.0;",OW=Je({opSnippet:i_,packedOpSnippet:i_,cpuKernelImpl:$O}),zW={kernelName:Zi,backendName:"webgl",kernelFunc:OW},o_=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${a};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${r});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${r}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function l_(e,t,n){let r=n.texData.get(e.dataId),a=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=ge({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new o_("real",l,t),u=new o_("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(c,h,"float32"),p=n.runWebGLProgram(u,h,"float32"),f=Ca({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let m=ge({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(f),m}function PW(e){let{inputs:t,backend:n}=e,{input:r}=t;return l_(r,!1,n)}var LW={kernelName:Th,backendName:"webgl",kernelFunc:PW},WW=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function TA(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||k.inferDtype(a),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new WW(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var BW={kernelName:iu,backendName:"webgl",kernelFunc:TA},VW=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},UW={kernelName:Yi,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new VW(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},u_="return floor(x);",HW=Je({opSnippet:u_,packedOpSnippet:u_,cpuKernelImpl:DO}),jW={kernelName:is,backendName:"webgl",kernelFunc:HW},GW=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,qW=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,XW=Yt({opSnippet:GW,packedOpSnippet:qW,dtype:"int32"}),KW={kernelName:os,backendName:"webgl",kernelFunc:XW},ZW=class{constructor(e){this.variableNames=["A"];let t=on(),[n,r]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},YW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=on(),[n,r]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${r}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},QW={kernelName:Bh,backendName:"webgl",kernelFunc:JW},gl;function JW(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&a instanceof ImageBitmap,[c,u]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],h=[u,c],d=[u,c,s];(o||i||l)&&(gl==null&&(gl=document.createElement("canvas").getContext("2d")),gl.canvas.width=c,gl.canvas.height=u,gl.drawImage(a,0,0,c,u),a=gl.canvas);let p=n.makeTensorInfo(h,"int32");n.texData.get(p.dataId).usage=Hn.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),a);let f=Q().getBool("WEBGL_PACK")?new YW(d):new ZW(d),m=n.runWebGLProgram(f,[p],"int32");return n.disposeData(p.dataId),m}function eB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=R.convertConv2DDataFormat(u),A=R.computeConv2DInfo(a.shape,s.shape,l,h,c,d,!1,m),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=Yw({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else if(Q().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=Jw({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else{let x=i!=null,_=o!=null,b=p==="leakyrelu",S=p?tp(p,!1):null,T=new Zw(A,x,S,_,b),N=[a,s];if(i&&N.push(i),o&&N.push(o),b){let C=n.makeTensorInfo([],"float32",k.createScalarValue(f,"float32"));N.push(C),g.push(C)}y=n.runWebGLProgram(T,N,"float32")}let w=ge({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(x=>n.disposeIntermediateTensorInfo(x)),w}var tB={kernelName:Ls,backendName:"webgl",kernelFunc:eB};function nB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,f=[],m=u;m==null&&(m=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let A=R.computeConv2DInfo(a.shape,s.shape,l,m,c,h,!0),y=Q().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?tp(d,y):null,w=[a,s],x=i!=null,_=o!=null,b=d==="leakyrelu";if(x&&w.push(i),_&&w.push(o),b){let N=n.makeTensorInfo([],"float32",k.createScalarValue(p,"float32"));w.push(N),f.push(N)}let S;y?S=new r_(A,x,g,_,b):S=new n_(A,x,g,_,b);let T=n.runWebGLProgram(S,w,"float32");return f.forEach(N=>n.disposeIntermediateTensorInfo(N)),T}var rB={kernelName:Ws,backendName:"webgl",kernelFunc:nB},aB=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=pt(t.length),a=pt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${r} strides = ${r}(${this.strides});
void main() {
${a} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${s};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function sB(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,c,u]=R.prepareAndValidate(r,a),h=ge({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=ge({inputs:{x:r},backend:n,attrs:{shape:[k.sizeFromShape(r.shape)/c,c]}}),p=new aB(i,u,[l,c]),f=n.runWebGLProgram(p,[d,h],d.dtype),m=ge({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),m}var iB={kernelName:Qi,backendName:"webgl",kernelFunc:sB},lB=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=pt(this.rank),r=oB(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function oB(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;a<e.length;a++)a===2?r.push("int(getIndices(resRC.x, resRC.z))"):r.push(`${n[a]}`);return r.join()}function uB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r,l=k.parseAxisParam(i,a.shape)[0],c=R.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=k.sizeFromShape(s.shape),h=[],d=ge({inputs:{x:a},backend:n,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),p=ge({inputs:{x:s},backend:n,attrs:{shape:[c.batchSize,u/c.batchSize]}});h.push(d),h.push(p);let f=[c.batchSize,c.outerSize,u/c.batchSize,c.sliceSize];if(n.shouldExecuteOnCPU([a,s])||a.dtype==="string"){let g=n.bufferSync(p),w=n.bufferSync(d),x=OO(w,g,f);return h.forEach(_=>n.disposeIntermediateTensorInfo(_)),n.makeTensorInfo(c.outputShape,x.dtype,x.values)}let m=new lB(d.shape,f),A=n.runWebGLProgram(m,[d,p],d.dtype);h.push(A);let y=ge({inputs:{x:A},backend:n,attrs:{shape:c.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var cB={kernelName:Ji,backendName:"webgl",kernelFunc:uB},hB="return float(a > b);",dB=`
return vec4(greaterThan(a, b));
`,pB=Yt({opSnippet:hB,packedOpSnippet:dB,cpuKernelImpl:zO,dtype:"bool"}),fB={kernelName:eo,backendName:"webgl",kernelFunc:pB},mB="return float(a >= b);",AB=`
return vec4(greaterThanEqual(a, b));
`,yB=Yt({opSnippet:mB,packedOpSnippet:AB,dtype:"bool"}),gB={kernelName:us,backendName:"webgl",kernelFunc:yB};function xB(e){let{inputs:t,backend:n}=e,{input:r}=t;return l_(r,!0,n)}var wB={kernelName:Sh,backendName:"webgl",kernelFunc:xB},_B="return float(!isnan(x) && !isinf(x));",bB=Je({opSnippet:_B,dtype:"bool"}),vB={kernelName:no,backendName:"webgl",kernelFunc:bB},kB="return float(isinf(x));",IB=Je({opSnippet:kB,dtype:"bool"}),NB={kernelName:ro,backendName:"webgl",kernelFunc:IB},TB="return float(isnan(x));",SB=Je({opSnippet:TB,dtype:"bool"}),EB={kernelName:ao,backendName:"webgl",kernelFunc:SB},CB="return float(a < b);",RB=`
return vec4(lessThan(a, b));
`,FB=Yt({opSnippet:CB,packedOpSnippet:RB,cpuKernelImpl:PO,dtype:"bool"}),MB={kernelName:so,backendName:"webgl",kernelFunc:FB},$B="return float(a <= b);",DB=`
return vec4(lessThanEqual(a, b));
`,OB=Yt({opSnippet:$B,packedOpSnippet:DB,dtype:"bool"}),zB={kernelName:io,backendName:"webgl",kernelFunc:OB};function PB(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=LO(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var LB={kernelName:Ch,backendName:"webgl",kernelFunc:PB},WB=`if (x < 0.0) return NAN;
return log(x);`,BB=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,VB=Je({opSnippet:WB,packedOpSnippet:BB,cpuKernelImpl:WO}),UB={kernelName:hs,backendName:"webgl",kernelFunc:VB},HB="return log(1.0 + x);",jB=Je({opSnippet:HB}),GB={kernelName:oo,backendName:"webgl",kernelFunc:jB},qB="return float(a >= 1.0 && b >= 1.0);",XB=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,KB=Yt({opSnippet:qB,packedOpSnippet:XB,dtype:"bool"}),ZB={kernelName:lo,backendName:"webgl",kernelFunc:KB},YB="return float(!(x >= 1.0));",JB=Je({opSnippet:YB}),QB={kernelName:ou,backendName:"webgl",kernelFunc:JB},eV="return float(a >= 1.0 || b >= 1.0);",tV=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,nV=Yt({opSnippet:eV,packedOpSnippet:tV,dtype:"bool"}),rV={kernelName:lu,backendName:"webgl",kernelFunc:nV},aV=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},sV=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},iV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,c=Q().getBool("WEBGL_PACK_NORMALIZATION")?new sV(a.shape,s,i,o,l):new aV(a.shape,s,i,o,l);return n.runWebGLProgram(c,[a],a.dtype)},oV={kernelName:uu,backendName:"webgl",kernelFunc:iV},lV=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${r}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${r})
* float(${a})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${a});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},uV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r,h=new lV(a.shape,o,l,c,u);return n.runWebGLProgram(h,[a,s,i],a.dtype)},cV={kernelName:Rh,backendName:"webgl",kernelFunc:uV};function hV(e,t,n,r){let a=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/a,i=ge({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=li(i,e.dtype,"max",r),l=ge({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function c_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=R.getAxesPermutation(c,o),h=u!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,w=new Array(o);for(let b=0;b<w.length;b++)w[b]=a.shape[u[b]];let x=wA(g,a.shape,a.dtype,u,w);p=n.makeTensorInfo(w,a.dtype);let _=n.texData.get(p.dataId);_.values=x}else p=np(a,u,n);c=R.getInnerMostAxes(c.length,o)}R.assertAxesAreInnerMostDims("max",c,o);let[f,m]=R.computeOutAndReduceShapes(p.shape,c),A=f;i&&(A=R.expandShapeToKeepDim(f,l));let y;if(d){let g=n.texData.get(p.dataId).values,w=BO(g,k.sizeFromShape(m),A,a.dtype);y=n.makeTensorInfo(A,a.dtype);let x=n.texData.get(y.dataId);x.values=w}else y=hV(p,m,A,n);return h&&n.disposeIntermediateTensorInfo(p),y}var dV={kernelName:ds,backendName:"webgl",kernelFunc:c_},pV=Tw+`
return max(a, b);
`,fV=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+ep+`
return result;
`,mV=Yt({opSnippet:pV,packedOpSnippet:fV,cpuKernelImpl:VO}),AV={kernelName:ps,backendName:"webgl",kernelFunc:mV};function yV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ul(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;k.assert(R.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=R.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return En({inputs:{x:a},backend:n});let h=new sc(u,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var gV={kernelName:fs,backendName:"webgl",kernelFunc:yV};function xV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=r,u=[1,1,1],h=R.computePool3DInfo(a.shape,s,i,u,o,c,l),d=new vA(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var wV={kernelName:cu,backendName:"webgl",kernelFunc:xV},_V=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${a};
wR += ${r}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},bV=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=c-1-e.padInfo.left,p=o*l*c-1;this.userCode=`
const ivec3 pads = ivec3(${u}, ${h}, ${d});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${a}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${p} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${c} +
wR * ${c} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function vV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],d=R.computePool3DInfo(i.shape,o,l,h,c,u),p=new vA(d,"max",!0),f=n.runWebGLProgram(p,[i],i.dtype),m=new bV(d),A=n.runWebGLProgram(m,[a,f],i.dtype);return n.disposeIntermediateTensorInfo(f),A}var kV={kernelName:Mh,backendName:"webgl",kernelFunc:vV};function IV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;ul([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,d=R.computePool2DInfo(o.shape,l,c,1,u,h),p=!0,f=new sc(d,"max",p),m=n.runWebGLProgram(f,[o],o.dtype),A=new _V(d),y=n.runWebGLProgram(A,[a,m],o.dtype);return n.disposeIntermediateTensorInfo(m),y}var NV={kernelName:Fh,backendName:"webgl",kernelFunc:IV};function TV(e,t,n,r){let a=new sc(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new sc(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var SV={kernelName:$h,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let c=[1,1];k.assert(R.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=R.computePool2DInfo(r.shape,a,s,c,i),[h,d]=TV(r,o,u,l);return[h,d]}};function EV(e,t,n,r){let a=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/a,i=ge({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=li(i,"float32","mean",r),l=ge({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var CV={kernelName:ms,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=k.parseAxisParam(s,r.shape),c=l,u=R.getAxesPermutation(c,o),h=u!=null,d=i.shouldExecuteOnCPU([r]),p=[],f=r;if(h){if(d){let w=i.texData.get(f.dataId).values,x=new Array(o);for(let S=0;S<x.length;S++)x[S]=r.shape[u[S]];let _=wA(w,r.shape,r.dtype,u,x);f=i.makeTensorInfo(x,r.dtype);let b=i.texData.get(f.dataId);b.values=_}else f=np(r,u,i);p.push(f),c=R.getInnerMostAxes(c.length,o)}R.assertAxesAreInnerMostDims("sum",c,o);let[m,A]=R.computeOutAndReduceShapes(f.shape,c),y=m;a&&(y=R.expandShapeToKeepDim(m,l));let g=EV(f,A,y,i);for(let w of p)i.disposeIntermediateTensorInfo(w);return g}};function RV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=R.getAxesPermutation(c,o),h=a;u!=null&&(h=mn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=R.getInnerMostAxes(c.length,a.shape.length)),R.assertAxesAreInnerMostDims("min",c,o);let[d,p]=R.computeOutAndReduceShapes(h.shape,c),f=k.sizeFromShape(p),m=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=li(m,m.dtype,"min",n),y;if(i){let g=R.expandShapeToKeepDim(d,l);y=ge({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ge({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var FV={kernelName:As,backendName:"webgl",kernelFunc:RV},MV=Tw+`
return min(a, b);
`,$V=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+ep+`
return result;
`,DV=Yt({opSnippet:MV,packedOpSnippet:$V,cpuKernelImpl:UO}),OV={kernelName:ys,backendName:"webgl",kernelFunc:DV},zV=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let r=e.length,a=pt(r),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${a} start = ${a}(${s});
${a} end = ${a}(${i});
void main() {
${a} outC = getOutputCoords();
for (int i = 0; i < ${r}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${a} coords = outC - start;
setOutput(getX(${o}));
}
`}},PV=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let r=e.length,a=pt(r),s=t.map(p=>p[0]).join(","),i=t.map((p,f)=>p[0]+e[f]).join(","),o=ln("rc",r),l=ln("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=`
${a} source = rc;
if (source < start) {
source = start * 2 - source - ${h};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${h};
}
source -= start;
`;d=`
${a} rc = outputLoc;
${p}
result[0] = getChannel(getX(${l.join()}), ${u});
${o[r-1]} += 1;
if(${c}) {
${p}
result[1] = getChannel(getX(${l.join()}), ${u});
}
`}else{let p=`
${a} source = rc;
${a} lt = ${a}(lessThan(source, start));
${a} gte = ${a}(greaterThanEqual(source, end));
${a} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${h}) +
gte * ((end - 1) * 2 - source + ${h});
source -= start;
`;d=`
${a} rc = outputLoc;
${p}
result[0] = getChannel(getX(${l.join()}), ${u});
${o[r-1]} += 1;
if(${c}) {
${p}
result[1] = getChannel(getX(${l.join()}), ${u});
}
rc = outputLoc;
${o[r-2]} += 1;
if(${o[r-2]} < ${this.outputShape[r-2]}) {
${p}
result[2] = getChannel(getX(${l.join()}), ${u});
${o[r-1]} += 1;
if(${c}) {
${p}
result[3] = getChannel(getX(${l.join()}), ${u});
}
}
`}this.userCode=`
const ${a} start = ${a}(${s});
const ${a} end = ${a}(${i});
void main() {
${a} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}},LV=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new PV(r.shape,a,s):new zV(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},WV={kernelName:hu,backendName:"webgl",kernelFunc:LV},BV=`if (b == 0.0) return NAN;
return mod(a, b);`,VV=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+ep+`
return result;
`,UV=Yt({opSnippet:BV,packedOpSnippet:VV}),HV={kernelName:uo,backendName:"webgl",kernelFunc:UV},jV=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},GV=`
if (a == b) {
return 1.0;
};
return a / b;`,qV=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,h_=Yt({opSnippet:GV,packedOpSnippet:qV,checkOutOfBounds:!0}),XV={kernelName:as,backendName:"webgl",kernelFunc:h_},d_="return a - b;",p_=Yt({opSnippet:d_,packedOpSnippet:d_,supportsComplex:!0,cpuKernelImpl:YO}),KV={kernelName:Ds,backendName:"webgl",kernelFunc:p_};function f_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=k.parseAxisParam([s],a.shape),o=c_({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=R.expandShapeToKeepDim(o.shape,i),c=ge({inputs:{x:o},backend:n,attrs:{shape:l}}),u=p_({inputs:{a,b:c},backend:n}),h=s_({inputs:{x:u},backend:n}),d=bA({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=ge({inputs:{x:d},backend:n,attrs:{shape:l}}),f=h_({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}var ZV={kernelName:Ms,backendName:"webgl",kernelFunc:f_};function YV(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:f_({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),c=l.shape[0],u=l.shape[1],h=new jV(c,u,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var JV={kernelName:Dh,backendName:"webgl",kernelFunc:YV},m_="return -x;";function QV(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=jO(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new ml(r.shape,m_):a=new Ea(r.shape,m_),n.runWebGLProgram(a,[r],r.dtype)}var eU={kernelName:co,backendName:"webgl",kernelFunc:QV},tU=Rr.nonMaxSuppressionV3Impl;function nU(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,c=n.readSync(a.dataId),u=n.readSync(s.dataId),{selectedIndices:h}=tU(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var rU={kernelName:po,backendName:"webgl",kernelFunc:nU},aU=Rr.nonMaxSuppressionV4Impl;function sU(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=aU(u,h,i,o,l,c);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var iU={kernelName:fo,backendName:"webgl",kernelFunc:sU},oU=Rr.nonMaxSuppressionV5Impl;function lU(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,f=l,m=c,{selectedIndices:A,selectedScores:y}=oU(u,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var uU={kernelName:mo,backendName:"webgl",kernelFunc:lU},cU=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${r}), float(${n}),
float(index == coords.y)));
}
`}},hU=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=k.sizeFromShape(a.shape),c=new cU(l,s,i,o),u=ge({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(c,[u],a.dtype);n.disposeIntermediateTensorInfo(u);let d=[...a.shape,s],p=ge({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},dU={kernelName:xs,backendName:"webgl",kernelFunc:hU};function op(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=oc({inputs:{input:r},backend:n}),s=op({inputs:{x:a},backend:n}),i=ip({inputs:{input:r},backend:n}),o=op({inputs:{x:i},backend:n}),l=Ca({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return TA({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var pU={kernelName:Mo,backendName:"webgl",kernelFunc:op};function A_(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=oc({inputs:{input:r},backend:n}),s=A_({inputs:{x:a},backend:n}),i=ip({inputs:{input:r},backend:n}),o=op({inputs:{x:i},backend:n}),l=Ca({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return TA({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var fU={kernelName:Ao,backendName:"webgl",kernelFunc:A_};function mU(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return NA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=NA({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=Kw({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var AU={kernelName:yo,backendName:"webgl",kernelFunc:mU},yU=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let r=e.length,a=pt(r),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(float(${n}));
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${a} start = ${a}(${s});
${a} end = ${a}(${i});
void main() {
${a} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(float(${n}));
} else {
${a} coords = outC - start;
setOutput(getX(${o}));
}
}
`}},gU=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,a=pt(r),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=ln("rc",r),l=ln("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1;
if(${c}) {
`,r===1?"":`}
rc = outputLoc;
${o[r-2]} += 1;
if(${o[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${o[r-1]} += 1;
if(${c}) {`],d=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let f=0,m=r===1?2:4;f<m;f++)p+=`
${h[f]}
if (${d}) {
result[${f}] = float(${n});
} else {
${a} source = rc - start;
result[${f}] = getChannel(getX(${l.join()}), ${u});
}
`;p+=r===1?"} ":"}}",this.userCode=`
const ${a} start = ${a}(${s});
const ${a} end = ${a}(${i});
void main() {
${a} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${p}
setOutput(result);
}
`}},y_=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new gU(a.shape,s,i):new yU(a.shape,s,i);return n.runWebGLProgram(o,[a],a.dtype)},xU={kernelName:ws,backendName:"webgl",kernelFunc:y_},wU=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,_U=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+ep+`
return result;
`,bU=Yt({opSnippet:wU,packedOpSnippet:_U}),vU={kernelName:_s,backendName:"webgl",kernelFunc:bU};function kU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],c=k.parseAxisParam(s,a.shape),u=c,h=R.getAxesPermutation(u,o),d=a;h!=null&&(d=mn({inputs:{x:a},backend:n,attrs:{perm:h}}),u=R.getInnerMostAxes(u.length,o),l.push(d)),R.assertAxesAreInnerMostDims("prod",u,o);let p;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:A,outDtype:y}=GO(d.shape,d.dtype,f,u);p=n.makeTensorInfo(A,y,m)}else{let[f,m]=R.computeOutAndReduceShapes(d.shape,u),A=k.sizeFromShape(m),y=ge({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=Uh(a.dtype),w=li(y,g,"prod",n);p=ge({inputs:{x:w},backend:n,attrs:{shape:f}}),l.push(y),l.push(w)}if(i){l.push(p);let f=R.expandShapeToKeepDim(p.shape,c);p=ge({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var IU={kernelName:go,backendName:"webgl",kernelFunc:kU},g_=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=qO(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},NU={kernelName:du,backendName:"webgl",kernelFunc:g_},TU="return 1.0 / x;",SU=Je({opSnippet:TU}),EU={kernelName:xo,backendName:"webgl",kernelFunc:SU},CU=Ar+`
return (x < 0.0) ? 0.0 : x;
`,RU=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,FU=Je({opSnippet:CU,packedOpSnippet:RU}),MU={kernelName:vs,backendName:"webgl",kernelFunc:FU},$U=Ar+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,DU=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,OU=Je({opSnippet:$U,packedOpSnippet:DU}),zU={kernelName:Is,backendName:"webgl",kernelFunc:OU},PU=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${h};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},LU=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${c[0]/u[0]},
${c[1]/u[1]},
${c[1]/u[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${h};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function WU(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=Q().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new LU(a.shape,l,c,s,i):new PU(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],"float32")}var BU={kernelName:ks,backendName:"webgl",kernelFunc:WU},VU=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${h});
const float invWidthScale = float(${d});
const int winHeight = int(${p});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function UU(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new VU(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var HU={kernelName:Ph,backendName:"webgl",kernelFunc:UU},jU=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${c[0]/u[0]},
${c[1]/u[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}};function GU(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=new jU(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],a.dtype)}var qU={kernelName:pu,backendName:"webgl",kernelFunc:GU},XU=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,d=1/u,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${c});
const float widthScale = float(${u});
const float invHeightScale = float(${h});
const float invWidthScale = float(${d});
const int winHeight = int(${p});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function KU(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new XU(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var ZU={kernelName:zh,backendName:"webgl",kernelFunc:KU},YU=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let r=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>r(o)).join(","),s=pt(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${a}));
}
`}},JU=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=ln("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=pt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${a}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(r.slice())};
if(${a}){
result.g = ${l(r.slice())};
}
if(${s}) {
result.b = ${c(r.slice())};
if(${a}) {
result.a = ${u(r.slice())};
}
}
setOutput(result);
}
`;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function c(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function u(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let f=e.map((y,g)=>d(g,p)),m=f.join(","),A=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${A}))`}function d(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function QU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=k.parseAxisParam(s,a.shape);if(i===0)return En({inputs:{x:a},backend:n});let l=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new JU(a.shape,o):new YU(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var eH={kernelName:Ns,backendName:"webgl",kernelFunc:QU},tH=class{constructor(e,t,n,r){this.variableNames=["Image"],this.outputShape=[];let a=e[1],s=e[2],i=Math.sin(t).toFixed(3),o=Math.cos(t).toFixed(3);this.outputShape=e;let[l,c]=R.getImageCenter(r,a,s),u=l.toFixed(3),h=c.toFixed(3),d="";typeof n=="number"?d=`float outputValue = ${n.toFixed(2)};`:d=`
vec3 fill = vec3(${n.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - ${u}) * ${o} - (float(y) - ${h}) * ${i};
float coordYFloat = (float(x) - ${u}) * ${i} + (float(y) - ${h}) * ${o};
int coordX = int(round(coordXFloat + ${u}));
int coordY = int(round(coordYFloat + ${h}));
${d}
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${a}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},nH={kernelName:$o,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new tH(r.shape,a,s,i);return o.runWebGLProgram(l,[r],r.dtype)}},rH=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,aH=Je({opSnippet:rH}),sH={kernelName:Ts,backendName:"webgl",kernelFunc:aH},iH="return inversesqrt(x);",oH=Je({opSnippet:iH,cpuKernelImpl:XO}),lH={kernelName:Ss,backendName:"webgl",kernelFunc:oH},x_=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=pt(a.length),l=pt(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${a});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${u});
flattenedIndex += index * ${p};
}
if (flattenedIndex == coords[0]) {
sum += ${d};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function uH(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:h}=R.calculateShapes(s,a,i),d=[h/c,c];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=ge({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),f=ge({inputs:{x:s},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new x_(l,o,p.shape.length,f.shape.length,u,d),y=n.runWebGLProgram(A,[f,p,m],f.dtype),g=ge({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),g}var cH={kernelName:_o,backendName:"webgl",kernelFunc:uH},hH=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c<t.length;c++)l.push(`${i[c]}`),c<e&&o.push(`${i[c]}`);r=o.join(),a=l.join()}let s=pt(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${r});
if (cVal >= 1.0) {
setOutput(getA(${a}));
} else {
setOutput(getB(${a}));
}
}
`}};function dH(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=new hH(r.shape.length,a.shape,a.shape.length);return n.runWebGLProgram(i,[r,a,s],Qn(a.dtype,s.dtype))}var pH={kernelName:bo,backendName:"webgl",kernelFunc:dH},fH=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${R.SELU_SCALEALPHA};
float scale = ${R.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,mH=Je({opSnippet:fH}),AH={kernelName:vo,backendName:"webgl",kernelFunc:mH},yH="return 1.0 / (1.0 + exp(-1.0 * x));",gH=Je({opSnippet:yH}),xH={kernelName:Cs,backendName:"webgl",kernelFunc:gH},wH=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,_H=Je({opSnippet:wH}),bH={kernelName:No,backendName:"webgl",kernelFunc:_H},vH=Fw+`
return sin(x);
`,kH=Je({opSnippet:vH}),IH={kernelName:Es,backendName:"webgl",kernelFunc:kH},NH=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,TH=Je({opSnippet:NH}),SH={kernelName:Io,backendName:"webgl",kernelFunc:TH},EH=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,CH=Je({opSnippet:EH}),RH={kernelName:To,backendName:"webgl",kernelFunc:CH},FH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;k.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let c=[],u=y_({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),h=R.getReshaped(u.shape,s,o,!1),d=R.getPermuted(h.length,s.length,!1),p=R.getReshapedPermuted(u.shape,s,o,!1),f=ge({inputs:{x:u},backend:n,attrs:{shape:h}}),m=mn({inputs:{x:f},backend:n,attrs:{perm:d}}),A=ge({inputs:{x:m},backend:n,attrs:{shape:p}});return c.push(u),c.push(f),c.push(m),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},MH={kernelName:fu,backendName:"webgl",kernelFunc:FH};function $H(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,strides:u,outputSize:h}=R.calculateShapes(s,a,o),d=!1,p=new x_(c,l,a.shape.length,s.shape.length,u,[h,1],d),f=n.runWebGLProgram(p,[s,a,i],s.dtype),m=ge({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),m}var DH={kernelName:Lh,backendName:"webgl",kernelFunc:$H};function OH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=k.parseAxisParam(i,a.shape)[0],l=R.prepareSplitSize(a,s,o),c=a.shape.length,u=new Array(c).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let f=ic({inputs:{x:a},backend:n,attrs:{begin:u,size:p}});return u[o]+=d,f})}var zH={kernelName:So,backendName:"webgl",kernelFunc:OH},PH="return sqrt(x);",LH=Je({opSnippet:PH}),WH={kernelName:Rs,backendName:"webgl",kernelFunc:LH},BH="return x * x;",VH=Je({opSnippet:BH}),UH={kernelName:mu,backendName:"webgl",kernelFunc:VH},w_="return (a - b) * (a - b);",HH=Yt({opSnippet:w_,packedOpSnippet:w_}),jH={kernelName:$s,backendName:"webgl",kernelFunc:HH};function GH({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=Ar+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new Ea(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var qH={kernelName:ma,backendName:"webgl",kernelFunc:GH},XH=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=pt(n.length),s=pt(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
${a} begin = ${a}(${e});
${a} strides = ${a}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function KH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=an.sliceInfo(a.shape,s,i,o,l,c,u,h,d),w=ge({inputs:{x:a},backend:n,attrs:{shape:y}}),x;if(p){let b=ic({inputs:{x:w},backend:n,attrs:{begin:f,size:A}});x=ge({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))x=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([w])){let b=n.texData.get(w.dataId).values,S=Ve(w.shape,w.dtype,b),T=ZO(g,S,m,f);x=n.makeTensorInfo(g,w.dtype,T.values)}else{let b=new XH(f,m,g);x=n.runWebGLProgram(b,[w],w.dtype)}let _=ge({inputs:{x},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(x),_}var ZH={kernelName:Eo,backendName:"webgl",kernelFunc:KH},YH="return tan(x);",JH=Je({opSnippet:YH}),QH={kernelName:Co,backendName:"webgl",kernelFunc:JH},ej=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,tj=Je({opSnippet:ej}),nj={kernelName:Os,backendName:"webgl",kernelFunc:tj},aj=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let r=pt(this.rank),a=rj(e);this.userCode=`
void main() {
${r} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function rj(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a<e.length;a++)r.push(`imod(${n[a]}, ${e[a]})`);return r.join()}function __(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;if(a.dtype==="string"){let o=n.readSync(a.dataId).map(u=>k.decodeString(u)),l=Ve(a.shape,a.dtype,o),c=JO(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new aj(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var sj={kernelName:fa,backendName:"webgl",kernelFunc:__};function ij(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,c]=QO(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var oj={kernelName:Ro,backendName:"webgl",kernelFunc:ij};function lj(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;ul(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=ez(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var uj={kernelName:Wh,backendName:"webgl",kernelFunc:lj};function cj(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],c=new Array(o-1),u=0;for(let m=0;m<o;m++)m!==s&&(c[u++]=i.shape[m]);let h=[],d=new Array(o).fill(0),p=i.shape.slice();p[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[s]=m;let A=ic({inputs:{x:i},backend:n,attrs:{begin:d,size:p}}),y=ge({inputs:{x:A},backend:n,attrs:{shape:c}});f[m]=y,h.push(A)}return h.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var hj={kernelName:Fo,backendName:"webgl",kernelFunc:cj},dj=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,h=`
sumValue += dot(values, segFilter);
`,d="";a%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${a}) {
return initializationValue;
}
`);let p="";a%n>0&&(p=`
if (inIdx < 0 || inIdx >= ${a}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${p}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${c}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${h}
}
int inIdx = inOffset + ${c};
if (${u===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${h}
} else if (${u===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${h}
} else if (${u===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${h}
}
setOutput(${l});
}
`}};function pj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],c=0,u=R.getAxesPermutation([c],o),h=a;u!=null&&(h=mn({inputs:{x:a},backend:n,attrs:{perm:u}}),l.push(h),c=R.getInnerMostAxes(1,o)[0]);let d=R.segment_util.computeOutShape(h.shape,c,i),p=k.sizeFromShape([h.shape[c]]),f=ge({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(f);let m=Uh(a.dtype),A=(x,_,b,S,T)=>{let N=x.shape[0],C=x.shape[1],$=R.segment_util.segOpComputeOptimalWindowSize(C,T),D={windowSize:$,inSize:C,batchSize:N,numSegments:T},O=new dj(D,_),V=n.compileAndRun(O,[x,b],S);if(l.push(V),V.shape[1]===T)return V;let W=g_({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),K=__({inputs:{x:W},backend:n,attrs:{reps:[C/$]}});return l.push(W),l.push(K),A(V,_,K,S,T)},y=A(f,"unsortedSegmentSum",s,m,i),g=ge({inputs:{x:y},backend:n,attrs:{shape:d}}),w=g;if(u!=null){l.push(g);let x=R.getUndoAxesPermutation(u);w=mn({inputs:{x:w},backend:n,attrs:{perm:x}})}return l.forEach(x=>n.disposeIntermediateTensorInfo(x)),w}var fj={kernelName:Au,backendName:"webgl",kernelFunc:pj},mj=[oV,cV,Kz,Yz,eP,rP,sP,lP,cP,dP,AP,gP,_P,kP,RP,TP,$P,PP,OP,VP,HP,GP,ZP,rL,sL,hL,pL,yL,wL,Cz,kL,$L,OL,SL,WL,VL,PL,jL,XL,YL,QL,tW,aW,cW,dW,iW,mW,gW,bW,NW,CW,MW,$W,DW,zW,LW,BW,UW,jW,KW,QW,tB,rB,iB,cB,fB,gB,Ez,wB,vL,vB,NB,EB,Fz,MB,zB,LB,GB,UB,ZB,QB,rV,dV,wV,gV,kV,NV,SV,AV,CV,FV,OV,WV,HV,JV,zz,eU,rU,iU,uU,oL,dU,fU,AU,xU,vU,$z,IU,NU,lL,XV,EU,zU,MU,Lz,BU,HU,qU,ZU,eH,nH,sH,lH,cH,pH,AH,xH,bH,IH,SH,tL,ZV,RH,MH,DH,zH,WH,UH,jH,qH,ZH,KV,Gz,QH,nj,sj,oj,qz,uj,hj,fj,pU];for(let e of mj)Do(e);var Cn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Cn||(Cn={}));var lc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(lc||(lc={}));var b_;function Aj(e){b_=e.wasm.cwrap(Ps,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function yj(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);f=T.id}let m=o==null?0:n.dataIdMap.get(o.dataId).id,A=lc[u];if(A==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=c?s.shape[1]:s.shape[2],w=a.shape[0],x=n.makeOutput([w,y,g],a.dtype),_=n.dataIdMap.get(x.dataId).id,b=new Uint8Array(new Int32Array(a.shape).buffer),S=new Uint8Array(new Int32Array(s.shape).buffer);return b_(d,b,a.shape.length,p,S,s.shape.length,l,c,A,f,m,h||0,_),x}var gj={kernelName:Ps,backendName:"wasm",setupFunc:Aj,kernelFunc:yj};function Rn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var xj=Rn(Mi);function un(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,h=o.dataIdMap.get(c.dataId).id,d=o.dataIdMap.get(u.dataId).id,p=n!=null?n:c.dtype,f=R.assertAndGetBroadcastShape(c.shape,u.shape),m=o.makeOutput(f,p);if(k.sizeFromShape(f)===0)return m;let A=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),g=o.dataIdMap.get(m.dataId).id,w=()=>r(h,A,c.shape.length,d,y,u.shape.length,Cn[c.dtype],g);if(t&&c.dtype==="float32")return w(),m;let x=R.getBroadcastDims(c.shape,f),_=R.getBroadcastDims(u.shape,f),b=x.every((T,N)=>T===N),S=_.every((T,N)=>T===N);if(b&&S)return w(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var wj=!0,_j=un(da,wj),v_;function bj(e){v_=e.wasm.cwrap(Xa,null,["array","number","number","number"])}function vj(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return v_(s,a.length,Cn[r.dtype],i),r}var kj={kernelName:Xa,backendName:"wasm",setupFunc:bj,kernelFunc:vj};function lp(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var Ij={kernelName:to,backendName:"wasm",kernelFunc:lp},k_;function Nj(e){k_=e.wasm.cwrap(zs,null,["number","array","number","number","number","array","number"])}function up(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=Sj(t.x.shape,r.perm),i=!0;for(let f=0;f<s.length;f++)s[f]!==f&&(i=!1);let o=Tj(t.x.shape,r.perm),l={dataId:t.x.dataId,shape:a,dtype:t.x.dtype};if(i){let f=lp({inputs:t,backend:n});return f.shape=o,f}let c=n.makeOutput(o,l.dtype),u=n.dataIdMap.get(l.dataId).id,h=n.dataIdMap.get(c.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),p=new Uint8Array(new Int32Array(l.shape).buffer);return k_(u,p,l.shape.length,Cn[l.dtype],h,d,s.length),c}function Tj(e,t){let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[t[r]];return n}function Sj(e,t){let n=[],r=[];for(let a=0;a<e.length;++a)e[a]!==1&&n.push(e[a]),e[t[a]]!==1&&r.push(t[a]);for(let a=0;a<r.length;++a){let s=-1;for(let i=0;i<r.length;++i)r[i]>=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var Ej={kernelName:zs,backendName:"wasm",kernelFunc:up,setupFunc:Nj};function xl(e,t,n){let r=e.shape,a=e.shape.length,s=k.parseAxisParam(t,r),i=s,o=R.getAxesPermutation(i,a),l=null,c=!1;if(o!=null){let u=new Array(a);for(let d=0;d<u.length;d++)u[d]=r[o[d]];i=R.getInnerMostAxes(i.length,a),l=up({inputs:{x:e},attrs:{perm:o},backend:n});let h=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==h&&(c=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:c}}var I_;function Cj(e){I_=e.wasm.cwrap(Ka,null,["number","number","number","number","number"])}function Rj(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:c,axes:u,inputWasTransposed:h}=xl(s,a,t);if(h){let y=t.dataIdMap.get(c.dataId).id;y!==i&&(l=c,o=y)}let d=l.shape.slice(0,-1),p=t.makeOutput(d,"int32"),f=t.dataIdMap.get(p.dataId).id,m=k.sizeFromShape(p.shape),A=l.shape[u[0]];return I_(o,Cn[l.dtype],m,A,f),h&&t.disposeData(c.dataId),p}var Fj={kernelName:Ka,backendName:"wasm",kernelFunc:Rj,setupFunc:Cj},N_;function Mj(e){N_=e.wasm.cwrap(Za,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $j(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=R.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,d=u.filterWidth,p=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,A=u.padInfo.left,y=u.strideHeight,g=u.strideWidth,w=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let x=r.makeOutput(u.outShape,"float32"),_=r.dataIdMap.get(x.dataId).id;return N_(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,y,g,w,_),x}var Dj={kernelName:Za,backendName:"wasm",setupFunc:Mj,kernelFunc:$j};function yr(e){let{inputs:t,attrs:n}=e,{x:r}=t,{shape:a}=n,s=k.sizeFromShape(r.shape),i=k.inferFromImplicitShape(a,s);return k.assert(s===k.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),{dataId:r.dataId,shape:i,dtype:r.dtype}}var Oj={kernelName:wo,backendName:"wasm",kernelFunc:yr},T_;function zj(e){T_=e.wasm.cwrap(Ya,null,["number","array","number","number","array","number","number","number","number"])}function Pj(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[c-2]:s.shape[c-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=k.sizeFromShape(f),y=k.sizeFromShape(m),g=A===y||A===1||y===1;k.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let w=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);k.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[A,u,d]:[A,d,u],_=o?[y,p,h]:[y,h,p],b=yr({inputs:{x:a},backend:n,attrs:{shape:x}}),S=yr({inputs:{x:s},backend:n,attrs:{shape:_}}),T=n.dataIdMap.get(b.dataId).id,N=n.dataIdMap.get(S.dataId).id,C=i?b.shape[2]:b.shape[1],$=o?S.shape[1]:S.shape[2],D=Math.max(A,y),O=n.makeOutput([D,C,$],b.dtype),V=n.dataIdMap.get(O.dataId).id,W=new Uint8Array(new Int32Array(b.shape).buffer),K=new Uint8Array(new Int32Array(S.shape).buffer);return T_(T,W,b.shape.length,N,K,S.shape.length,i,o,V),O.shape=w,O}var Lj={kernelName:Ya,backendName:"wasm",setupFunc:zj,kernelFunc:Pj};function cp(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var Wj={kernelName:Ja,backendName:"wasm",kernelFunc:cp},S_;function Bj(e){S_=e.wasm.cwrap(pa,null,["number","number","number","number"])}function Vj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(l.dataId).id;return S_(o,s,i,c),l}var Uj={kernelName:pa,backendName:"wasm",setupFunc:Bj,kernelFunc:Vj};function E_(e){let{inputs:t,backend:n}=e,r=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=R.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>k.sizeFromShape(p.shape)>0);if(s.length===1)return lp({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(k.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(R.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(w=>{let x=k.sizeFromShape(w.shape.slice(r));return yr({inputs:{x:w},backend:n,attrs:{shape:[-1,x]}})}),f=p.map(w=>({vals:n.readSync(w.dataId),shape:w.shape}));a=R.computeOutShape(p.map(w=>w.shape),1);let m=p[0].shape[0]===1,A=Km(f,a,t[0].dtype,m),y=R.computeOutShape(s.map(w=>w.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=R.fromStringArrayToUint8(A),i}let l=k.sizeFromShape(s[0].shape.slice(0,r)),c=0,u=s.map(p=>{let f=k.sizeFromShape(p.shape.slice(r));return c+=f,f}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p<l;p++){let f=p*c;for(let m=0;m<h.length;m++){let A=u[m],y=p*A,g=h[m].subarray(y,y+A);d.set(g,f),f+=A}}return i}var Hj={kernelName:Vi,backendName:"wasm",kernelFunc:E_},C_;function jj(e){C_=e.wasm.cwrap(Qa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Gj(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h,dataFormat:d}=n,p=R.convertConv2DDataFormat(d),f=R.computeConv2DInfo(a.shape,s.shape,l,c,u,h,!1,p),m=f.filterHeight,A=f.filterWidth,y=f.padInfo.top,g=f.padInfo.right,w=f.padInfo.bottom,x=f.padInfo.left,_=f.dilationHeight,b=f.dilationWidth,S=f.strideHeight,T=f.strideWidth,N=f.inChannels,C=f.outChannels,$=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let D=r.makeOutput(f.outShape,"float32"),O=r.dataIdMap.get(D.dataId).id;return C_(i,a.shape[0],a.shape[1],a.shape[2],o,m,A,y,g,w,x,$,_,b,S,T,N,C,O),D}var qj={kernelName:Qa,backendName:"wasm",setupFunc:jj,kernelFunc:Gj},R_;function Xj(e){R_=e.wasm.cwrap(es,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Kj(e){let{backend:t,inputs:n,attrs:r}=e,{dy:a,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,inputShape:u}=r,h=1,d=R.convertConv2DDataFormat(l),p=R.computeConv2DInfo(u,s.shape,i,h,o,c,!1,d),{batchSize:f,filterHeight:m,filterWidth:A,inChannels:y,inHeight:g,inWidth:w,outChannels:x,outHeight:_,outWidth:b,strideHeight:S,strideWidth:T}=p,N=m-1-p.padInfo.top,C=A-1-p.padInfo.left,$=p.dataFormat==="channelsLast",D=k.computeStrides(p.inShape),O=k.computeStrides(a.shape),[V,W,K]=k.computeStrides(s.shape),X=D[0],ee=$?D[1]:D[2],Z=$?D[2]:1,ae=$?1:D[1],J=O[0],oe=$?O[1]:O[2],ne=$?O[2]:1,he=$?1:O[1],le=t.makeOutput(p.inShape,"float32"),me=t.dataIdMap.get(le.dataId).id,Ae=t.dataIdMap.get(a.dataId).id,we=t.dataIdMap.get(s.dataId).id;return R_(Ae,we,f,m,A,g,w,y,_,b,x,S,T,N,C,V,W,K,X,ee,Z,ae,J,oe,ne,he,me),le}var Zj={kernelName:es,backendName:"wasm",setupFunc:Xj,kernelFunc:Kj},Yj=Rn(ts),SA;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(SA||(SA={}));var F_;function Jj(e){F_=e.wasm.cwrap(Hi,null,["number","number","number","number","array","number","number","number","number","number"])}function Qj(e){let{backend:t,inputs:n,attrs:r}=e,{method:a,extrapolationValue:s,cropSize:i}=r,{image:o,boxes:l,boxInd:c}=n,u=l.shape[0],[h,d]=i,p=[u,h,d,o.shape[3]],f=t.dataIdMap.get(o.dataId),m;o.dtype!=="float32"&&(m=cp({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let A=f.id,y=t.dataIdMap.get(l.dataId).id,g=t.dataIdMap.get(c.dataId).id,w=t.makeOutput(p,"float32"),x=t.dataIdMap.get(w.dataId).id,_=new Uint8Array(new Int32Array(o.shape).buffer);return F_(A,y,g,u,_,h,d,SA[a],s,x),m!=null&&t.disposeData(m.dataId),w}var eG={kernelName:Hi,backendName:"wasm",setupFunc:Jj,kernelFunc:Qj},M_;function tG(e){M_=e.wasm.cwrap(ns,null,["number","number","number","number","number","number"])}function nG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length;k.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumsum does not support ${a.dtype} tensors in the WASM backend`);let c=R.getAxesPermutation([s],l),u=a;c!==null&&(u=up({inputs:{x:a},attrs:{perm:c},backend:n}));let h=R.getInnerMostAxes(1,l)[0];R.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(u.shape,u.dtype),p=u.shape[h],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(d.dataId).id;M_(f,i?1:0,o?1:0,p,m,Cn[a.dtype]);let A=d;if(c!==null){let y=R.getUndoAxesPermutation(c);A=up({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(d.dataId)}return A}var rG={kernelName:ns,backendName:"wasm",setupFunc:tG,kernelFunc:nG},$_;function aG(e){$_=e.wasm.cwrap(ji,null,["number","number","number","array","number","array","array","number","number"])}function sG(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=c*s,p=u/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(f).buffer),w=new Uint8Array(new Int32Array(k.computeStrides(f)).buffer),x=t.dataIdMap.get(m.dataId).id;return $_(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,w,f.length,x),m}var iG={kernelName:ji,backendName:"wasm",setupFunc:aG,kernelFunc:sG},D_;function oG(e){D_=e.wasm.cwrap(rs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function lG(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h}=n,d=c==null?[1,1]:c,p=R.computeConv2DInfo(a.shape,s.shape,l,d,u,h,!0),f=p.filterHeight,m=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,w=p.padInfo.left,x=p.dilationHeight,_=p.dilationWidth,b=p.strideHeight,S=p.strideWidth,T=p.inChannels,N=p.outChannels,C=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let $=r.makeOutput(p.outShape,"float32"),D=r.dataIdMap.get($.dataId).id;return D_(i,a.shape[0],a.shape[1],a.shape[2],o,f,m,A,y,g,w,C,x,_,b,S,T,N,D),$}var uG={kernelName:rs,backendName:"wasm",setupFunc:oG,kernelFunc:lG},cG=!1,hG=un(Xi,cG,"bool"),dG=Rn(ss);function EA(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),yr({inputs:{x:a},backend:r,attrs:{shape:o}})}var pG={kernelName:Ki,backendName:"wasm",kernelFunc:EA};function fG(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var mG={kernelName:iu,backendName:"wasm",kernelFunc:fG},O_;function AG(e){O_=e.wasm.cwrap(Yi,null,["number","number","number","number","number","number"])}function yG(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,c,u]=r.shape;return O_(s,o,l,c,u,i),a}var gG={kernelName:Yi,backendName:"wasm",kernelFunc:yG,setupFunc:AG},xG=Rn(is),wG=!1,_G=un(os,wG),z_;function bG(e){z_=e.wasm.cwrap(ls,null,["number","number","number","number","number","number","number"])}function vG(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return m;let A=t.dataIdMap.get(m.dataId).id;return z_(u,h,d,p,f,a,A),m}var kG={kernelName:ls,backendName:"wasm",setupFunc:bG,kernelFunc:vG},P_;function IG(e){P_=e.wasm.cwrap(Ls,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function NG(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(a.shape,s.shape,l,u,c,d),A=lc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,w=m.outChannels,x=0;if(i!=null){let ne=r.dataIdMap.get(i.dataId);if(ne.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${ne.shape}) does not match the number of output channels (${w})`);x=ne.id}let _=m.filterHeight,b=m.filterWidth,S=m.padInfo.top,T=m.padInfo.right,N=m.padInfo.bottom,C=m.padInfo.left,$=m.dilationHeight,D=m.dilationWidth,O=m.strideHeight,V=m.strideWidth,W=m.inChannels,K=m.padInfo.type==="SAME"?1:0,X=m.batchSize,ee=m.inHeight,Z=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),J=r.dataIdMap.get(ae.dataId).id,oe=o==null?0:r.dataIdMap.get(o.dataId).id;return P_(y,X,ee,Z,g,_,b,x,S,T,N,C,K,$,D,O,V,W,w,A,oe,f||0,J),ae}var TG={kernelName:Ls,backendName:"wasm",setupFunc:IG,kernelFunc:NG},L_;function SG(e){L_=e.wasm.cwrap(Ws,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function EG(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(a.shape,s.shape,l,u,c,d,!0),A=lc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,w=m.outChannels,x=0;if(i!=null){let ne=r.dataIdMap.get(i.dataId);if(ne.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${ne.shape}) does not match the number of output channels (${w})`);x=ne.id}let _=m.filterHeight,b=m.filterWidth,S=m.padInfo.top,T=m.padInfo.right,N=m.padInfo.bottom,C=m.padInfo.left,$=m.dilationHeight,D=m.dilationWidth,O=m.strideHeight,V=m.strideWidth,W=m.inChannels,K=m.padInfo.type==="SAME"?1:0,X=m.batchSize,ee=m.inHeight,Z=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),J=r.dataIdMap.get(ae.dataId).id,oe=o==null?0:r.dataIdMap.get(o.dataId).id;return L_(y,X,ee,Z,g,_,b,x,S,T,N,C,K,$,D,O,V,W,w,A,oe,f||0,J),ae}var CG={kernelName:Ws,backendName:"wasm",setupFunc:SG,kernelFunc:EG},W_;function RG(e){W_=e.wasm.cwrap(Qi,null,["number","number","number","number","number","number","array","number"])}function FG(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=gf.prepareAndValidate(r,a),c=t.makeOutput(s,r.dtype);if(i===0)return c;let u=a.shape,h=u[u.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(c.dataId).id;return W_(d,Cn[r.dtype],p,i,h,o,f,m),c}var MG={kernelName:Qi,backendName:"wasm",setupFunc:RG,kernelFunc:FG},B_;function $G(e){B_=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function DG(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=k.parseAxisParam(i,a.shape)[0],c=R.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=yr({inputs:{x:a},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),h=k.sizeFromShape(s.shape),d=yr({inputs:{x:s},attrs:{shape:[c.batchSize,h/c.batchSize]},backend:t}),p=[c.batchSize,c.outerSize,h/c.batchSize,c.sliceSize],f=t.makeOutput(p,a.dtype);if(k.sizeFromShape(a.shape)===0)return f;let m=u.shape.length-1,A=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(f.dataId).id,w=new Uint8Array(new Int32Array(k.computeStrides(u.shape)).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(p)).buffer);return B_(A,Cn[a.dtype],w,m,y,c.batchSize,x,g),f.shape=c.outputShape,f}var OG={kernelName:Ji,backendName:"wasm",setupFunc:$G,kernelFunc:DG},zG=!1,PG=un(eo,zG,"bool"),LG=!1,WG=un(us,LG,"bool"),V_;function BG(e){V_=e.wasm.cwrap(cs,null,["number","number","number"])}function VG(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;V_(a,n,i)}return s}var UG={kernelName:cs,backendName:"wasm",setupFunc:BG,kernelFunc:VG},HG=!1,jG=un(so,HG,"bool"),GG=!1,qG=un(io,GG,"bool"),XG=Rn(hs),KG=!1,ZG=un(lo,KG,"bool"),U_;function YG(e){U_=e.wasm.cwrap(ds,null,["number, number, number"])}function JG(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:h,inputWasTransposed:d}=xl(i,a,t);if(d){let g=t.dataIdMap.get(c.dataId).id;l=c,o=g}let p=l.shape.length;R.assertAxesAreInnerMostDims("max",u,p);let[f,m]=R.computeOutAndReduceShapes(l.shape,u),A=k.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;U_(o,A,g)}if(d&&t.disposeData(c.dataId),s){let g=R.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var QG={kernelName:ds,backendName:"wasm",setupFunc:YG,kernelFunc:JG},eq=!1,tq=un(ps,eq),H_;function nq(e){H_=e.wasm.cwrap(fs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function rq(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=R.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,d=u.filterWidth,p=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,A=u.padInfo.left,y=u.dilationHeight,g=u.dilationWidth,w=u.strideHeight,x=u.strideWidth,_=u.inChannels,b=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let S=r.makeOutput(u.outShape,"float32"),T=r.dataIdMap.get(S.dataId).id;return H_(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,y,g,w,x,_,b,T),S}var aq={kernelName:fs,backendName:"wasm",setupFunc:nq,kernelFunc:rq},j_;function sq(e){j_=e.wasm.cwrap(ms,null,["number, number, number"])}function iq(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=xl(i,a,t),f=h;if(p){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,f=R.getInnerMostAxes(f.length,c.shape.length))}R.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,A]=R.computeOutAndReduceShapes(c.shape,f),y=k.sizeFromShape(A),g=c;c.dtype!=="float32"&&(g=cp({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let w=t.makeOutput(m,"float32");if(k.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(w.dataId).id;j_(l,y,x)}if(p&&t.disposeData(u.dataId),s){let x=R.expandShapeToKeepDim(w.shape,d);w.shape=x}return c.dtype!=="float32"&&t.disposeData(g.dataId),w}var oq={kernelName:ms,backendName:"wasm",setupFunc:sq,kernelFunc:iq},G_;function lq(e){G_=e.wasm.cwrap(As,null,["number, number, number"])}function uq(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=xl(i,a,t);if(p){let w=t.dataIdMap.get(u.dataId).id;w!==o&&(c=u,l=w)}let f=c.shape.length;R.assertAxesAreInnerMostDims("min",h,f);let[m,A]=R.computeOutAndReduceShapes(c.shape,h),y=k.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(k.sizeFromShape(c.shape)!==0){let w=t.dataIdMap.get(g.dataId).id;G_(l,y,w)}if(p&&t.disposeData(u.dataId),s){let w=R.expandShapeToKeepDim(g.shape,d);g.shape=w}return g}var cq={kernelName:As,backendName:"wasm",setupFunc:lq,kernelFunc:uq},hq=!1,dq=un(ys,hq),pq=!0,fq=un(gs,pq),mq=Rn(co);function CA(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var q_;function Aq(e){q_=e.wasm.cwrap(po,"number",["number","number","number","number","number"])}function yq(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,h=q_(c,u,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=CA(t,h);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",d)}var gq={kernelName:po,backendName:"wasm",setupFunc:Aq,kernelFunc:yq},X_;function xq(e){X_=e.wasm.cwrap(fo,"number",["number","number","number","number","number","bool"])}function wq(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=X_(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=CA(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var _q={kernelName:fo,backendName:"wasm",setupFunc:xq,kernelFunc:wq},K_;function bq(e){K_=e.wasm.cwrap(mo,"number",["number","number","number","number","number","number"])}function vq(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,d=K_(u,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=CA(t,d);t.wasm._free(A);let y=t.makeOutput([f],"int32",p),g=t.makeOutput([f],"float32",m);return[y,g]}var kq={kernelName:mo,backendName:"wasm",setupFunc:bq,kernelFunc:vq},Iq=!1,Nq=un(ho,Iq,"bool"),Z_;function Tq(e){Z_=e.wasm.cwrap(xs,null,["number","number","number","number","number"])}function Sq(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(a.dataId).id;return Z_(u,s,i,o,c),l}var Eq={kernelName:xs,backendName:"wasm",setupFunc:Tq,kernelFunc:Sq};function Cq(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var Rq={kernelName:Ao,backendName:"wasm",kernelFunc:Cq};function Fq(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return EA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(l=>{k.assertShapesMatch(s,l.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=t.map(l=>EA({inputs:{input:l},backend:n,attrs:{dim:a}}));return E_({inputs:o,backend:n,attrs:{axis:a}})}var Mq={kernelName:yo,backendName:"wasm",kernelFunc:Fq},Y_;function $q(e){Y_=e.wasm.cwrap(ws,null,["number","array","number","number","array","array","number","number"])}function Dq(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(f=>f[0]),h=r.map(f=>f[1]),d=new Uint8Array(new Int32Array(u).buffer),p=new Uint8Array(new Int32Array(h).buffer);return Y_(i,c,t.shape.length,Cn[t.dtype],d,p,a,l),o}var Oq={kernelName:ws,backendName:"wasm",kernelFunc:Dq,setupFunc:$q},zq=!1,Pq=un(_s,zq),J_;function Lq(e){J_=e.wasm.cwrap(bs,null,["number","number","number"])}function Wq(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return J_(s,i,l),o}var Bq={kernelName:bs,backendName:"wasm",setupFunc:Lq,kernelFunc:Wq},Q_;function Vq(e){Q_=e.wasm.cwrap(go,null,["number","number","number","number"])}function Uq(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=xl(i,a,t),f=h;if(p){let w=t.dataIdMap.get(u.dataId).id;w!==o&&(c=u,l=w,f=R.getInnerMostAxes(f.length,c.shape.length))}R.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,A]=R.computeOutAndReduceShapes(c.shape,f),y=k.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(k.sizeFromShape(c.shape)!==0){let w=t.dataIdMap.get(g.dataId).id;Q_(l,y,Cn[g.dtype],w)}if(p&&t.disposeData(u.dataId),s){let w=R.expandShapeToKeepDim(g.shape,d);g.shape=w}return g}var Hq={kernelName:go,backendName:"wasm",setupFunc:Vq,kernelFunc:Uq},jq=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=Jm(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},Gq={kernelName:du,backendName:"wasm",kernelFunc:jq},qq=!0,Xq=un(as,qq),Kq=Rn(vs),Zq=Rn(Is),eb;function Yq(e){eb=e.wasm.cwrap(ks,null,["number","number","number","number","number","number","number","number","number","number"])}function Jq(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,[u,h,d,p]=a.shape,f=[u,l,c,p],m=t.dataIdMap.get(a.dataId),A;m.dtype!=="float32"&&(A=cp({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(A.dataId));let y=m.id,g=t.makeOutput(f,"float32");if(k.sizeFromShape(a.shape)===0)return g;let w=t.dataIdMap.get(g.dataId).id;return eb(y,u,h,d,p,l,c,s?1:0,i?1:0,w),A!=null&&t.disposeData(A.dataId),g}var Qq={kernelName:ks,backendName:"wasm",setupFunc:Yq,kernelFunc:Jq},tb;function eX(e){tb=e.wasm.cwrap(Ns,null,["number","array","number","array","number","number"])}function tX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=k.parseAxisParam(s,a.shape);if(a.shape.length===0)return lp({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);return tb(l,u,i.length,h,a.shape.length,c),yr({inputs:{x:o},attrs:{shape:a.shape},backend:n})}var nX={kernelName:Ns,backendName:"wasm",kernelFunc:tX,setupFunc:eX},nb;function rX(e){nb=e.wasm.cwrap($o,null,["number","number","number","number","number","number","number","number","array","number","number"])}function aX(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(l.dataId).id,[h,d,p,f]=a.shape,[m,A]=R.getImageCenter(o,d,p),y=i===0,g=255,w=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],x=new Uint8Array(new Int32Array(w).buffer);return nb(c,h,d,p,f,s,m,A,x,w.length,u),l}var sX={kernelName:$o,backendName:"wasm",kernelFunc:aX,setupFunc:rX},iX=Rn(Ts),oX=Rn(Ss),rb;function lX(e){rb=e.wasm.cwrap(_o,null,["number","number","number","number","number","number","array","number","number"])}function uX(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:d}=xf.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return rb(p,f,Cn[s.dtype],l,c,u,m,d,A),o}var cX={kernelName:_o,backendName:"wasm",setupFunc:lX,kernelFunc:uX},ab;function hX(e){ab=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function dX(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(c.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:k.sizeFromShape(a.shape.slice(1));return ab(i,o,l,p,u),c}var pX={kernelName:bo,backendName:"wasm",kernelFunc:dX,setupFunc:hX},sb;function fX(e){sb=e.wasm.cwrap(Cs,null,["number","number"])}function mX(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return k.sizeFromShape(a.shape)===0||sb(r,s),a}var AX={kernelName:"Sigmoid",backendName:"wasm",setupFunc:fX,kernelFunc:mX},yX=Rn(Es);function hp(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=an.parseSliceParams(t,n,r),o=an.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),c=a.makeOutput(i,t.dtype),u=k.computeStrides(t.shape),h=a.dataIdMap.get(c.dataId);if(o){let f=an.computeFlatOffset(s,u);return t.dtype==="string"?h.stringBytes=l.slice(f,f+k.sizeFromShape(i)):a.typedArrayFromHeap(c).set(l.subarray(f,f+k.sizeFromShape(i))),c}if(t.dtype==="string"){let f=Vd(l,s,i,t.shape,t.dtype);return h.stringBytes=f,c}let d=a.typedArrayFromHeap(c),p=t.shape.length;if(p===2)gX(l,u[0],d,s,i);else if(p===3)xX(l,u[0],u[1],d,s,i);else if(p===4)wX(l,u[0],u[1],u[2],d,s,i);else{let f=Vd(l,s,i,t.shape,t.dtype);d.set(f)}return c}function gX(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let c=i;c<l;c++){let u=c*t+o;n.set(e.subarray(u,u+a[1]),s),s+=a[1]}}function xX(e,t,n,r,a,s){let i=0,o=a[0],l=a[1],c=a[2],u=o+s[0],h=l+s[1];for(let d=o;d<u;d++)for(let p=l;p<h;p++){let f=d*t+p*n+c;r.set(e.subarray(f,f+s[2]),i),i+=s[2]}}function wX(e,t,n,r,a,s,i){let o=0,l=s[0],c=s[1],u=s[2],h=l+i[0],d=c+i[1],p=u+i[2],f=s[3];for(let m=l;m<h;m++)for(let A=c;A<d;A++)for(let y=u;y<p;y++){let g=m*t+A*n+y*r+f;a.set(e.subarray(g,g+i[3]),o),o+=i[3]}}var _X={kernelName:ko,backendName:"wasm",kernelFunc:hp},ib;function bX(e){ib=e.wasm.cwrap(Ms,null,["number","number","number","number"])}function vX(e){let{backend:t,inputs:{logits:n},attrs:{dim:r}}=e,a=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[r],l=k.sizeFromShape(n.shape)/o;return k.sizeFromShape(s.shape)===0||ib(a,i,o,l),s}var kX={kernelName:Ms,backendName:"wasm",setupFunc:bX,kernelFunc:vX};function IX(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=k.parseAxisParam(i,a.shape)[0],l=R.prepareSplitSize(a,s,o),c=new Array(a.shape.length).fill(0),u=a.shape.slice();return l.map(h=>{let d=[...u];d[o]=h;let p=hp({inputs:{x:a},attrs:{begin:c,size:d},backend:r});return c[o]+=h,p})}var NX={kernelName:So,backendName:"wasm",kernelFunc:IX},TX=Rn(Rs),SX=Rn(mu),EX=!0,CX=un($s,EX),ob;function RX(e){ob=e.wasm.cwrap(ma,null,["number","number","number"])}function FX(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return ob(i,a,l),o}var MX={kernelName:ma,backendName:"wasm",setupFunc:RX,kernelFunc:FX},lb;function $X(e){lb=e.wasm.cwrap(Eo,null,["number","array","number","array","array","array","array","array","number","number"])}function DX(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:d}=r,p=R.slice_util.maskToAxes(u);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=a.shape.length-s.length,m=R.slice_util.maskToAxes(h),A=a.shape.slice();m.forEach(N=>{s[N]=0,i[N]=1,A.splice(N,0,1)});let y=yr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:w,strides:x}=R.slice_util.getNormalizedAxes(y.shape,p,f,s,i,o,l,c,u);s=g,i=w,o=x;let _=R.slice_util.maskToAxes(d);_.forEach(N=>{i[N]=s[N]+1,o[N]=1});let b=R.slice_util.computeOutShape(s,i,o),S=b.filter((N,C)=>_.indexOf(C)===-1);if(o.every(N=>N===1)){let N=hp({inputs:{x:a},attrs:{begin:s,size:b},backend:t});return yr({inputs:{x:N},attrs:{shape:S},backend:t})}let T=t.makeOutput(S,"float32");if(!S.some(N=>N===0)){let N=t.dataIdMap.get(y.dataId).id,C=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),$=new Uint8Array(new Int32Array(s).buffer),D=new Uint8Array(new Int32Array(i).buffer),O=new Uint8Array(new Int32Array(o).buffer),V=new Uint8Array(new Int32Array(S).buffer),W=new Uint8Array(new Int32Array(k.computeStrides(S)).buffer),K=t.dataIdMap.get(T.dataId).id;lb(N,C,y.shape.length,$,D,O,V,W,S.length,K)}return yr({inputs:{x:T},attrs:{shape:S},backend:t})}var OX={kernelName:Eo,backendName:"wasm",setupFunc:$X,kernelFunc:DX},zX=!0,PX=un(Ds,zX),ub;function LX(e){ub=e.wasm.cwrap(Fs,null,["number, number, number"])}function WX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:d,inputWasTransposed:p}=xl(i,a,t),f=h;if(p){let w=t.dataIdMap.get(u.dataId).id;w!==o&&(c=u,l=w,f=R.getInnerMostAxes(f.length,c.shape.length))}R.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,A]=R.computeOutAndReduceShapes(c.shape,f),y=k.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(k.sizeFromShape(c.shape)!==0){let w=t.dataIdMap.get(g.dataId).id;ub(l,y,w)}if(p&&t.disposeData(u.dataId),s){let w=R.expandShapeToKeepDim(g.shape,d);g.shape=w}return g}var BX={kernelName:Fs,backendName:"wasm",setupFunc:LX,kernelFunc:WX},VX=Rn(Os),cb;function UX(e){cb=e.wasm.cwrap(fa,null,["number","array","number","array","number","number"])}function HX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d<o.length;d++)o[d]=a.shape[d]*i[d];let l=new Uint8Array(new Int32Array(a.shape).buffer),c=new Uint8Array(new Int32Array(o).buffer),u=n.makeOutput(o,a.dtype),h=n.dataIdMap.get(u.dataId).id;return cb(s,l,a.shape.length,c,o.length,Cn[u.dtype],h),u}var jX={kernelName:fa,backendName:"wasm",setupFunc:UX,kernelFunc:HX},hb;function GX(e){hb=e.wasm.cwrap(Ro,null,["number","array","number","number","number","bool","number","number"])}var qX=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let c=t.makeOutput(l,r.dtype),u=t.dataIdMap.get(c.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return hb(i,o,r.shape.length,Cn[r.dtype],a,s,u,d),[c,h]},XX={kernelName:Ro,backendName:"wasm",setupFunc:GX,kernelFunc:qX};function KX(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),c=0;for(let p=0;p<o;p++)p!==s&&(l[c++]=a.shape[p]);let u=new Array(i),h=new Array(o).fill(0),d=a.shape.slice();d[s]=1;for(let p=0;p<u.length;p++)h[s]=p,u[p]=hp({inputs:{x:a},attrs:{begin:h,size:d},backend:n});return u.map(({dataId:p,dtype:f})=>({dataId:p,dtype:f,shape:l}))}var ZX={kernelName:Fo,backendName:"wasm",kernelFunc:KX};function YX(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var JX={kernelName:Mo,backendName:"wasm",kernelFunc:YX},QX=[xj,_j,kj,Fj,Dj,Lj,Wj,Uj,Hj,qj,Zj,Yj,eG,rG,iG,uG,hG,dG,pG,mG,gG,xG,_G,gj,kG,TG,CG,MG,OG,PG,WG,Ij,UG,jG,qG,XG,ZG,QG,tq,aq,oq,cq,dq,fq,mq,gq,_q,kq,Nq,Eq,Rq,Mq,Oq,Pq,Bq,Hq,Gq,Xq,Kq,Zq,Oj,Qq,nX,sX,oX,iX,cX,pX,AX,yX,_X,kX,NX,TX,SX,CX,MX,OX,PX,BX,VX,jX,XX,Ej,ZX,JX];for(let e of QX)Do(e);var RA=Q();RA.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));RA.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(RA.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var db=Xo(f8()),eK='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',tK=Xo(m8()),Zg=class extends Ql{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new ch(this,Ln())}write(e,t,n){let r={};return this.move(r,e,t,n),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,r){let a=this.dataIdNextNumber++;if(r==="string"){let l=t;this.dataIdMap.set(e,{id:a,stringBytes:l,shape:n,dtype:r,memoryOffset:null});return}let s=k.sizeFromShape(n),i=s*k.bytesPerElement(r),o=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:o,shape:n,dtype:r}),this.wasm.tfjs.registerTensor(a,s,o),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),o)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(r)*k.bytesPerElement(n));return nK(s.buffer,n)}disposeData(e){let t=this.dataIdMap.get(e);this.wasm._free(t.memoryOffset),this.wasm.tfjs.disposeData(t.id),this.dataIdMap.delete(e)}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{r={};let a=this.dataIdNextNumber++;this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function rK(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance)})})}),{})}function pb(e,t,n){if(dp!=null)return dp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),uc!=null&&uc[r]!=null?uc[r]:n+r}async function aK(){let[e,t]=await Promise.all([Q().getAsync("WASM_HAS_SIMD_SUPPORT"),Q().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(l,c)=>{if(l.endsWith(".worker.js")){let u=eK,h=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(h)}return l.endsWith(".wasm")?pb(e,t,cc!=null?cc:c):c+l},FA&&(a.instantiateWasm=rK(pb(e,t,cc!=null?cc:"")));let s;t&&e&&dp==null?(s=db.default(a),s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+db.default.toString()],{type:"text/javascript"})):s=tK.default(a);let i=null;s.tfjs={init:s.cwrap("init",null,[]),registerTensor:s.cwrap("register_tensor",null,["number","number","number"]),disposeData:s.cwrap("dispose_data",i,["number"]),dispose:s.cwrap("dispose",i,[])};let o=!1;s.onRuntimeInitialized=()=>{o=!0,hc=!1,n({wasm:s})},s.onAbort=()=>{o||hc||(hc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))}})}function nK(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var sK=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],dp=null,cc=null,uc={},hc=!1,FA=!1;function M4(e,t=!1){if(wf("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),hc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");dp=e,FA=t}function Yg(e,t=!1){if(hc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")cc=e;else{uc=e;let n=sK.filter(r=>uc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}FA=t}var Jg="3.0.0",iK=2;xu("wasm",async()=>{let{wasm:e}=await aK();return new Zg(e)},iK);Y().prototype.abs=function(){return this.throwIfDisposed(),Dt(this)};Y().prototype.acos=function(){return this.throwIfDisposed(),bf(this)};Y().prototype.acosh=function(){return this.throwIfDisposed(),vf(this)};Y().prototype.add=function(e){return this.throwIfDisposed(),ie(this,e)};Y().prototype.all=function(e,t){return this.throwIfDisposed(),Xh(this,e,t)};Y().prototype.any=function(e,t){return this.throwIfDisposed(),wu(this,e,t)};Y().prototype.argMax=function(e){return this.throwIfDisposed(),_u(this,e)};Y().prototype.argMin=function(e){return this.throwIfDisposed(),kf(this,e)};Y().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),q(this,[])};Y().prototype.asType=function(e){return this.throwIfDisposed(),ye(this,e)};Y().prototype.as1D=function(){return this.throwIfDisposed(),q(this,[this.size])};Y().prototype.as2D=function(e,t){return this.throwIfDisposed(),q(this,[e,t])};Y().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),q(this,[e,t,n])};Y().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),q(this,[e,t,n,r])};Y().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),q(this,[e,t,n,r,a])};Y().prototype.asin=function(){return this.throwIfDisposed(),If(this)};Y().prototype.asinh=function(){return this.throwIfDisposed(),Nf(this)};Y().prototype.atan=function(){return this.throwIfDisposed(),Tf(this)};Y().prototype.atan2=function(e){return this.throwIfDisposed(),Sf(this,e)};Y().prototype.atanh=function(){return this.throwIfDisposed(),Ef(this)};Y().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),bu(this,e,t,n,r)};Y().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),vu(this,e,t)};Y().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),Bs(this,e,t,n,r,a)};Y().prototype.broadcastTo=function(e){return this.throwIfDisposed(),ku(this,e)};Y().prototype.cast=function(e){return this.throwIfDisposed(),ye(this,e)};Y().prototype.ceil=function(){return this.throwIfDisposed(),Rf(this)};Y().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),pn(this,e,t)};Y().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof tt&&(e=[e]),dt([this,...e],t)};Y().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Kh(this,e,t,n,r,a,s)};Y().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),Zh(this,e,t,n,r,a)};Y().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Kr(this,e,t,n,r,a,s)};Y().prototype.cos=function(){return this.throwIfDisposed(),Iu(this)};Y().prototype.cosh=function(){return this.throwIfDisposed(),Yh(this)};Y().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Jh(this,e,t,n)};Y().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),Mf(this,e,t)};Y().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Po(this,e,t,n,r,a,s)};Y().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),$f(this,e,t,n,r,a)};Y().prototype.divNoNan=function(e){return this.throwIfDisposed(),Df(this,e)};Y().prototype.div=function(e){return this.throwIfDisposed(),Ne(this,e)};Y().prototype.dot=function(e){return this.throwIfDisposed(),Ig(this,e)};Y().prototype.elu=function(){return this.throwIfDisposed(),Lo(this)};Y().prototype.equal=function(e){return this.throwIfDisposed(),ya(this,e)};Y().prototype.erf=function(){return this.throwIfDisposed(),Of(this)};Y().prototype.exp=function(){return this.throwIfDisposed(),Wn(this)};Y().prototype.expandDims=function(e){return this.throwIfDisposed(),vn(this,e)};Y().prototype.expm1=function(){return this.throwIfDisposed(),zf(this)};Y().prototype.fft=function(){return this.throwIfDisposed(),Du(this)};Y().prototype.flatten=function(){return this.throwIfDisposed(),q(this,[this.size])};Y().prototype.floor=function(){return this.throwIfDisposed(),Wo(this)};Y().prototype.floorDiv=function(e){return this.throwIfDisposed(),qh(this,e)};Y().prototype.gather=function(e,t){return this.throwIfDisposed(),Vs(this,e,t)};Y().prototype.greaterEqual=function(e){return this.throwIfDisposed(),xa(this,e)};Y().prototype.greater=function(e){return this.throwIfDisposed(),er(this,e)};Y().prototype.ifft=function(){return this.throwIfDisposed(),jo(this)};Y().prototype.irfft=function(){return this.throwIfDisposed(),fd(this)};Y().prototype.isFinite=function(){return this.throwIfDisposed(),Ng(this)};Y().prototype.isInf=function(){return this.throwIfDisposed(),Tg(this)};Y().prototype.isNaN=function(){return this.throwIfDisposed(),Sg(this)};Y().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Tu(this,e)};Y().prototype.lessEqual=function(e){return this.throwIfDisposed(),Us(this,e)};Y().prototype.less=function(e){return this.throwIfDisposed(),ed(this,e)};Y().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Lf(this,e,t,n,r)};Y().prototype.logSigmoid=function(){return this.throwIfDisposed(),Rg(this)};Y().prototype.logSoftmax=function(e){return this.throwIfDisposed(),nd(this,e)};Y().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Wf(this,e,t)};Y().prototype.log=function(){return this.throwIfDisposed(),kn(this)};Y().prototype.log1p=function(){return this.throwIfDisposed(),td(this)};Y().prototype.logicalAnd=function(e){return this.throwIfDisposed(),tr(this,e)};Y().prototype.logicalNot=function(){return this.throwIfDisposed(),Su(this)};Y().prototype.logicalOr=function(e){return this.throwIfDisposed(),rd(this,e)};Y().prototype.logicalXor=function(e){return this.throwIfDisposed(),Fg(this,e)};Y().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Xe(this,e,t,n)};Y().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),Eu(this,e,t,n,r)};Y().prototype.max=function(e,t){return this.throwIfDisposed(),Bn(this,e,t)};Y().prototype.maximum=function(e){return this.throwIfDisposed(),Sr(this,e)};Y().prototype.mean=function(e,t){return this.throwIfDisposed(),kt(this,e,t)};Y().prototype.min=function(e,t){return this.throwIfDisposed(),Vo(this,e,t)};Y().prototype.minimum=function(e){return this.throwIfDisposed(),Uo(this,e)};Y().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Vf(this,e,t)};Y().prototype.mod=function(e){return this.throwIfDisposed(),Uf(this,e)};Y().prototype.mul=function(e){return this.throwIfDisposed(),B(this,e)};Y().prototype.neg=function(){return this.throwIfDisposed(),vt(this)};Y().prototype.norm=function(e,t,n){return this.throwIfDisposed(),gd(this,e,t,n)};Y().prototype.notEqual=function(e){return this.throwIfDisposed(),Hs(this,e)};Y().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Oo(this,e,t,n)};Y().prototype.onesLike=function(){return this.throwIfDisposed(),In(this)};Y().prototype.pad=function(e,t){return this.throwIfDisposed(),Zr(this,e,t)};Y().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),Dg(this,e,t,n,r,a)};Y().prototype.pow=function(e){return this.throwIfDisposed(),Yr(this,e)};Y().prototype.prelu=function(e){return this.throwIfDisposed(),Ru(this,e)};Y().prototype.prod=function(e,t){return this.throwIfDisposed(),sd(this,e,t)};Y().prototype.reciprocal=function(){return this.throwIfDisposed(),Hf(this)};Y().prototype.relu=function(){return this.throwIfDisposed(),Cr(this)};Y().prototype.relu6=function(){return this.throwIfDisposed(),od(this)};Y().prototype.reshapeAs=function(e){return this.throwIfDisposed(),q(this,e.shape)};Y().prototype.reshape=function(e){return this.throwIfDisposed(),q(this,e)};Y().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),R5(this,e,t,n)};Y().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),F5(this,e,t,n)};Y().prototype.reverse=function(e){return this.throwIfDisposed(),Nn(this,e)};Y().prototype.rfft=function(){return this.throwIfDisposed(),Ou(this)};Y().prototype.round=function(){return this.throwIfDisposed(),jf(this)};Y().prototype.rsqrt=function(){return this.throwIfDisposed(),ld(this)};Y().prototype.selu=function(){return this.throwIfDisposed(),ud(this)};Y().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Gf(this,e,t,n,r,a,s)};Y().prototype.sigmoid=function(){return this.throwIfDisposed(),Jn(this)};Y().prototype.sign=function(){return this.throwIfDisposed(),qf(this)};Y().prototype.sin=function(){return this.throwIfDisposed(),cd(this)};Y().prototype.sinh=function(){return this.throwIfDisposed(),hd(this)};Y().prototype.slice=function(e,t){return this.throwIfDisposed(),Fe(this,e,t)};Y().prototype.softmax=function(e){return this.throwIfDisposed(),$u(this,e)};Y().prototype.softplus=function(){return this.throwIfDisposed(),Bo(this)};Y().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Cu(this,e,t)};Y().prototype.split=function(e,t){return this.throwIfDisposed(),rn(this,e,t)};Y().prototype.sqrt=function(){return this.throwIfDisposed(),Kt(this)};Y().prototype.square=function(){return this.throwIfDisposed(),ht(this)};Y().prototype.squaredDifference=function(e){return this.throwIfDisposed(),md(this,e)};Y().prototype.squeeze=function(e){return this.throwIfDisposed(),wa(this,e)};Y().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof tt?[this,e]:[this,...e];return Tn(n,t)};Y().prototype.step=function(e){return this.throwIfDisposed(),Go(this,e)};Y().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),Kf(this,e,t,n,r,a,s,i,o)};Y().prototype.sub=function(e){return this.throwIfDisposed(),_e(this,e)};Y().prototype.sum=function(e,t){return this.throwIfDisposed(),Ee(this,e,t)};Y().prototype.tan=function(){return this.throwIfDisposed(),Zf(this)};Y().prototype.tanh=function(){return this.throwIfDisposed(),zo(this)};Y().prototype.tile=function(e){return this.throwIfDisposed(),ga(this,e)};Y().prototype.toBool=function(){return this.throwIfDisposed(),ye(this,"bool")};Y().prototype.toFloat=function(){return this.throwIfDisposed(),ye(this,"float32")};Y().prototype.toInt=function(){return this.throwIfDisposed(),ye(this,"int32")};Y().prototype.topk=function(e,t){return this.throwIfDisposed(),Yf(this,e,t)};Y().prototype.transpose=function(e){return this.throwIfDisposed(),it(this,e)};Y().prototype.unique=function(e){return this.throwIfDisposed(),yd(this,e)};Y().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Jf(this,e,t)};Y().prototype.unstack=function(e){return this.throwIfDisposed(),nr(this,e)};Y().prototype.where=function(e,t){return this.throwIfDisposed(),fn(e,this,t)};Y().prototype.zerosLike=function(){return this.throwIfDisposed(),Ge(this)};var fb={kernelName:Mi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Go(ye(n,"float32"),-1))}}},oK={kernelName:$i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ht(ye(n,"float32")),a=Kt(_e(Te(1),r));return vt(Ne(e,a))}}}},lK={kernelName:Di,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Kt(_e(ht(ye(n,"float32")),1));return Ne(e,r)}}}},uK={kernelName:da,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=gt(n.shape,r.shape);return{a:()=>{let s=e,i=zt(n.shape,a);return i.length>0&&(s=Ee(s,i)),q(s,n.shape)},b:()=>{let s=e,i=zt(r.shape,a);return i.length>0&&(s=Ee(s,i)),q(s,r.shape)}}}},cK={kernelName:Xa,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},hK={kernelName:Ka,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},dK={kernelName:eu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},pK={kernelName:Oi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,Kt(_e(Te(1),ht(ye(n,"float32")))))}}},fK={kernelName:zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Kt(ie(Te(1),ht(ye(n,"float32"))));return Ne(e,r)}}}},mK={kernelName:Wi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=gt(n.shape,r.shape);return{a:()=>{let s=ie(ht(n),ht(r)),i=B(e,Ne(r,s)),o=zt(n.shape,a);return o.length>0&&(i=Ee(i,o)),q(i,n.shape)},b:()=>{let s=ie(ht(n),ht(r)),i=vt(B(e,Ne(n,s))),o=zt(r.shape,a);return o.length>0&&(i=Ee(i,o)),q(i,r.shape)}}}},AK={kernelName:Pi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,ie(ht(ye(n,"float32")),1))}}},yK={kernelName:Li,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,_e(Te(1),ht(ye(n,"float32"))))}}};function gK(e,t,n,r,a,s){let i=F(e,"dy","avgPool3dGrad"),o=F(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=q(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&M(Ht(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:c},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=P.runKernel(fh,h,d);return u?q(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var xK=L({avgPool3dGrad_:gK}),wK={kernelName:tu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>xK(e,r,a,s,i,o)}}};function _K(e,t,n,r,a){let s=F(e,"dy","avgPoolGrad"),i=F(t,"input","avgPoolGrad");M(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=P.runKernel(ph,u,h);return c?q(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var bK=L({avgPoolGrad_:_K}),vK={kernelName:Za,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>bK(e,r,a,s,i)}}},kK={kernelName:Ya,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Xe(e,a,!1,!0),b:()=>Xe(r,e,!0,!1)}:!s&&i?{a:()=>Xe(e,a,!1,!1),b:()=>Xe(e,r,!0,!1)}:s&&!i?{a:()=>Xe(a,e,!1,!0),b:()=>Xe(r,e,!1,!1)}:{a:()=>Xe(a,e,!0,!0),b:()=>Xe(e,r,!0,!0)}}},IK={kernelName:nu,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>Cu(e,r,a)}}},NK={kernelName:sg,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Ee(e,o,!0)}}},TK={kernelName:Ja,gradFunc:e=>({x:()=>e.clone()})},SK={kernelName:Bi,gradFunc:e=>({x:()=>Ge(e)})},EK={kernelName:pa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>fn(tr(xa(r,a),Us(r,s)),e,Ge(e))}}},CK={kernelName:ru,inputsToSave:["x"],gradFunc:fb.gradFunc},RK={kernelName:Vi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=rr(a,t[0].shape)[0],i=r.map(o=>o[s]);return rn(e,i,s).map(o=>()=>o)}},FK={kernelName:Qa,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return M(Ta(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>Wm(r.shape,e,a,i,o,l),filter:()=>jm(r,e,a.shape,i,o,l)}}},MK={kernelName:es,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Kr(e,a,s,i,o,1,l),filter:()=>jm(e,r,a.shape,s,i,o,l)}}};function $K(e,t,n,r,a){let s=e;e.rank===4&&(s=q(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=q(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),M(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),M(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return P.runKernel(gh,o,l)}var DK=L({conv3DBackpropFilter_:$K}),OK={kernelName:au,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;M(Ta(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>y5(i.shape,e,o,a,s),filter:()=>DK(i,e,o.shape,a,s)}}},zK={kernelName:ts,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(vt(cd(ye(n,"float32"))),e)}}},PK={kernelName:Ui,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(hd(ye(n,"float32")),e)}}},LK={kernelName:ns,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=w5([a],r.rank),l=Jh(e,a,s,!i);return o!=null&&(l=it(l,o)),l}}}},WK={kernelName:rs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;M(Ta(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),M(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),M(zr(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&M(Ht(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>k5(l.shape,e,c,a,s,r,i),filter:()=>v5(l,e,c.shape,a,s,r,i)}}},BK={kernelName:su,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>P.runKernel(kh,s,n),filter:()=>P.runKernel(Ih,i,n)}}},VK={kernelName:Gi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>P.runKernel(Nh,r)}}},UK={kernelName:qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=B(Wn(vt(ht(n))),2/Math.sqrt(Math.PI));return{x:()=>B(e,r)}}},HK={kernelName:ss,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n)}}},jK={kernelName:Ki,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>q(e,n.shape)}}},GK={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Wn(n))}}},qK={kernelName:is,gradFunc:e=>({x:()=>Ge(e)})},XK={kernelName:os,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=gt(n.shape,r.shape);return{a:()=>{let s=Ne(e,ye(r,"float32")),i=zt(n.shape,a);return i.length>0?q(Ee(s,i),n.shape):s},b:()=>{let s=B(e,ye(n,"float32")),i=zt(r.shape,a);i.length>0&&(s=q(Ee(s,i),r.shape));let o=ht(r);return vt(Ne(s,ye(o,"float32")))}}}},KK={kernelName:ls,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?Te(1):o,c=zt(s.shape,a.shape),u=[];if(s.rank===1){for(let m=0;m<a.shape.length-1;++m)u.push(a.shape[m]);u.push(1)}let h=_e(a,s),d=B(e,l),p=ld(ie(i,Te(r))),f=B(B(B(p,p),p),Te(-.5));return{x:()=>s.rank===1?q(B(B(e,ga(q(p,[1,1,1,s.shape[0]]),u)),l),a.shape):q(B(B(e,p),l),a.shape),mean:()=>{let m=B(B(p,Te(-1)),d);return s.rank===1&&(m=Ee(m,c)),q(m,s.shape)},variance:()=>{let m=B(B(f,h),d);return s.rank===1&&(m=Ee(m,c)),q(m,s.shape)},scale:()=>{let m=B(h,p),A=B(e,m);return s.rank===1&&(A=Ee(A,c)),q(A,s.shape)},offset:()=>{let m=e;return s.rank===1&&(m=Ee(m,c)),q(m,s.shape)}}}},ZK={kernelName:Ji,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=rr(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,c=o.slice(0,i),u=c.length,h=o.slice(s,o.length).slice(1),d=h.length,p=mb(0,u),f=mb(u+1,u+1+d),m=Ab([c,[l],h]),A=q(e,m),y=q(a,[l]),g=Ab([[u],p,f]),w=it(A,g),x=Jf(w,y,r.shape[i]),_=Vm(g);return x=it(x,_),x},indices:()=>a}}};function mb(e,t){let n=[];for(let r=e;r<t;++r)n.push(r);return n}function Ab(e){let t=[];for(let n=0;n<e.length;++n)for(let r=0;r<e[n].length;++r)t.push(e[n][r]);return t}var YK={kernelName:us,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>Ge(n),b:()=>Ge(r)}}},JK={kernelName:to,gradFunc:e=>({x:()=>ye(e,"float32")})},QK={kernelName:no,gradFunc:e=>({x:()=>Ge(e)})},eZ={kernelName:ro,gradFunc:e=>({x:()=>Ge(e)})},tZ={kernelName:ao,gradFunc:e=>({x:()=>Ge(e)})},nZ={kernelName:cs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=er(r,0);return{x:()=>fn(s,e,B(e,a))}}},rZ={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,ie(n,1))}}},aZ={kernelName:hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,ye(n,"float32"))}}},sZ={kernelName:ig,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=Wn(r);return _e(e,B(Ee(e,a,s),i))}}}};function iZ(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return P.runKernel(Rh,o,l)}var oZ=L({localResponseNormalizationBackprop_:iZ}),lZ={kernelName:uu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>oZ(r,a,e,s,i,o,l)}}};function yb(e,t,n,r){return t.rank<n.rank&&(t=q(t,Qs(t.shape,r))),e.rank<n.rank&&(e=q(e,Qs(e.shape,r))),{x:()=>B(e,ye(ya(n,t),e.dtype))}}var gb={kernelName:ds,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=rr(a,s.shape),l=yb(e,i,s,o);return{x:()=>l.x()}}},uZ={kernelName:ps,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>B(e,ye(xa(n,r),"float32")),b:()=>B(e,ye(ed(n,r),"float32"))}}};function cZ(e,t,n,r,a,s,i){let o=F(e,"dy","maxPool3dGrad"),l=F(t,"input","maxPool3dGrad"),c=F(n,"output","maxPool3dGrad"),u=o,h=l,d=c,p=!1;l.rank===4&&(p=!0,u=q(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=q(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=q(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),M(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),M(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&M(Ht(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let f={dy:u,input:h,output:d},m={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=P.runKernel(Mh,f,m);return p?q(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var hZ=L({maxPool3dGrad_:cZ}),dZ={kernelName:cu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>hZ(e,r,a,s,i,o,l)}}};function pZ(e,t,n,r,a,s,i){let o=F(e,"dy","maxPoolGrad"),l=F(t,"input","maxPoolGrad"),c=F(n,"output","maxPoolGrad");M(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),M(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&M(Ht(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return P.runKernel(Fh,u,h)}var fZ=L({maxPoolGrad_:pZ}),mZ={kernelName:fs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>fZ(e,r,a,s,i,o)}}},AZ={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=rr(a,r.shape),i=x5(r.shape,s)[1],o=Ot(i);return{x:()=>{let l=r.shape.slice();s.forEach(u=>{l[u]=1});let c=q(e,l);return Ne(B(c,Er(r.shape,"float32")),o)}}}},yZ={kernelName:As,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=rr(a,s.shape),l=yb(e,i,s,o);return{x:()=>l.x()}}},gZ={kernelName:ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>B(e,ye(Us(n,r),"float32")),b:()=>B(e,ye(er(n,r),"float32"))}}},xZ={kernelName:hu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Fe(e,s,r.shape)}}},wZ={kernelName:uo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=gt(n.shape,r.shape);return{a:()=>{let s=zt(n.shape,a);return s.length>0?q(Ee(e,s),n.shape):e},b:()=>{let s=B(e,vt(Wo(Ne(n,r)))),i=zt(r.shape,a);return i.length>0?q(Ee(s,i),r.shape):s}}}},_Z={kernelName:gs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=gt(n.shape,r.shape);return{a:()=>{let s=B(e,ye(r,"float32")),i=zt(n.shape,a);return i.length>0?q(Ee(s,i),n.shape):s},b:()=>{let s=B(e,ye(n,"float32")),i=zt(r.shape,a);return i.length>0?q(Ee(s,i),r.shape):s}}}},bZ={kernelName:co,gradFunc:e=>({x:()=>vt(e)})},vZ={kernelName:xs,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ct(n.shape,"float32")}}},kZ={kernelName:Ao,gradFunc:e=>({x:()=>Ge(e)})},IZ={kernelName:yo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return nr(e,r).map(a=>()=>a)}},xb={kernelName:ws,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Fe(e,s,r.shape)}}},NZ={kernelName:_s,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=gt(s.shape,i.shape);return{a:()=>{let l=ye(i,"float32"),c=B(e,B(l,Yr(s,_e(l,Te(1))))),u=zt(s.shape,o);return u.length>0&&(c=Ee(c,u)),q(c,s.shape)},b:()=>{let l=er(s,0),c=fn(l,kn(s),Ge(s)),u=B(e,B(a,c)),h=zt(i.shape,o);return h.length>0&&(u=Ee(u,h)),q(u,i.shape)}}}},TZ={kernelName:bs,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=er(n,0);return{x:()=>fn(a,e,B(e,r)),alpha:()=>{let s=fn(a,Ge(e),B(e,n)),i=zt(r.shape,e.shape);return i.length>0&&(s=Ee(s,i)),q(s,r.shape)}}}},SZ={kernelName:as,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=gt(n.shape,r.shape);return{a:()=>{let s=Ne(e,ye(r,"float32")),i=zt(n.shape,a);return i.length>0?q(Ee(s,i),n.shape):s},b:()=>{let s=B(e,ye(n,"float32")),i=zt(r.shape,a);i.length>0&&(s=q(Ee(s,i),r.shape));let o=ht(r);return vt(Ne(s,ye(o,"float32")))}}}},EZ={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,vt(ht(n)))}}},CZ={kernelName:Is,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=B(Us(n,6),Go(n));return{x:()=>B(e,ye(r,"float32"))}}},RZ={kernelName:vs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,ye(Go(n),"float32"))}}},FZ={kernelName:wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>q(e,n.shape)}}},MZ={kernelName:ks,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>P.runKernel(Ph,a,n)}}},$Z={kernelName:pu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>P.runKernel(zh,a,n)}}},DZ={kernelName:Ns,gradFunc:(e,t,n)=>{let{dims:r}=n,a=rr(r,e.shape);return{x:()=>Nn(e,a)}}},OZ={kernelName:Ts,gradFunc:e=>({x:()=>Ge(e)})},zZ={kernelName:Ss,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>vt(Ne(e,B(Yr(n,1.5),2)))}}},PZ={kernelName:bo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ye(Ge(n),"float32"),t:()=>B(e,ye(n,e.dtype)),e:()=>B(e,ye(Su(n),e.dtype))}}},LZ={kernelName:vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=er(n,Te(0)),a=Te($5),s=Te(D5),i=B(e,s),o=B(B(e,a),Wn(ye(n,"float32")));return fn(r,i,o)}}}},WZ={kernelName:Cs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(n,_e(Te(1),n)))}}},BZ={kernelName:No,gradFunc:e=>({x:()=>Ge(e)})},VZ={kernelName:Es,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Iu(ye(n,"float32")),e)}}},UZ={kernelName:Io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Yh(ye(n,"float32")),e)}}},HZ={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=l5(r,a,s),c=[];for(let u=0;u<e.rank;u++)c.push([o[u],i[u]-o[u]-l[u]]);return{x:()=>Zr(e,c)}}},jZ={kernelName:Ms,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=B(e,r);return{logits:()=>_e(i,B(Ee(i,[a],s),r))}}},GZ={kernelName:To,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Jn(n))}}},wb={kernelName:fu,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>vu(e,r,a)}}},_b={kernelName:So,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>dt(e,r)}}},qZ={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,B(Kt(ye(n,"float32")),2))}}},XZ={kernelName:mu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(ye(n,"float32"),2))}}},KZ={kernelName:$s,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=Te(2);return{a:()=>B(e,B(a,_e(n,r))),b:()=>B(e,B(a,_e(r,n)))}}},ZZ={kernelName:ma,gradFunc:e=>({x:()=>Ge(e)})},YZ={kernelName:Ds,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=gt(n.shape,r.shape);return{a:()=>{let s=e,i=zt(n.shape,a);return i.length>0&&(s=Ee(s,i)),q(s,n.shape)},b:()=>{let s=e,i=zt(r.shape,a);return i.length>0&&(s=Ee(s,i)),q(vt(s),r.shape)}}}},JZ={kernelName:Fs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;rr(s,r.shape).forEach(l=>{a[l]=1});let i=q(e,a),o=B(i,Er(r.shape,"float32"));return{x:()=>o}}},QZ={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ne(e,ht(Iu(n)))}}},eY={kernelName:Os,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(_e(Te(1),ht(n)),e)}}},tY={kernelName:fa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=Ge(r);if(r.rank===1)for(let i=0;i<a[0];++i)s=ie(s,Fe(e,[i*r.shape[0]],[r.shape[0]]));else if(r.rank===2)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)s=ie(s,Fe(e,[i*r.shape[0],o*r.shape[1]],[r.shape[0],r.shape[1]]));else if(r.rank===3)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)s=ie(s,Fe(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2]],[r.shape[0],r.shape[1],r.shape[2]]));else if(r.rank===4)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)for(let c=0;c<a[3];++c)s=ie(s,Fe(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2],c*r.shape[3]],[r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${r.rank} tensors yet.`);return s}}}},nY={kernelName:zs,gradFunc:(e,t,n)=>{let r=n,{perm:a}=r,s=Vm(a);return{x:()=>it(e,s)}}},rY={kernelName:Fo,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>Tn(e,a)}}},sY={kernelName:Au,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>aY(e,n)}}};function aY(e,t){let n=Sr(t,Ge(t)),r=Vs(e,n),a=xa(t,Te(0,"int32")),s=r.rank-a.rank;for(let o=0;o<s;++o)a=vn(a,o+1);a=tr(a,Er(r.shape,"bool"));let i=Ge(r);return fn(a,r,i)}var iY={kernelName:Mo,gradFunc:e=>({x:()=>Ge(e)})},oY=[fb,oK,lK,uK,cK,hK,dK,pK,fK,mK,AK,yK,wK,vK,kK,IK,NK,TK,SK,EK,CK,RK,MK,FK,OK,zK,PK,LK,WK,BK,SZ,VK,UK,HK,jK,GK,XK,qK,KK,ZK,YK,JK,QK,eZ,tZ,nZ,rZ,aZ,sZ,lZ,gb,gb,uZ,dZ,mZ,AZ,yZ,gZ,xZ,wZ,_Z,bZ,vZ,kZ,IZ,xb,xb,NZ,TZ,EZ,CZ,RZ,FZ,MZ,$Z,DZ,OZ,zZ,PZ,LZ,WZ,BZ,VZ,UZ,HZ,jZ,GZ,wb,wb,_b,_b,qZ,KZ,XZ,ZZ,YZ,JZ,QZ,eY,tY,nY,rY,sY,iY];for(let e of oY)og(e);var Qg={};ze(Qg,{maxNorm:()=>lY,minMaxNorm:()=>hY,nonNeg:()=>cY,unitNorm:()=>uY});var MA;function Pt(){return MA==null&&(MA=_f().epsilon()),MA}function gr(){return"channelsLast"}var aa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,aa.prototype)}},xr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,xr.prototype)}},U=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,U.prototype)}},Oe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Oe.prototype)}},bb=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,bb.prototype)}},dY=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,dY.prototype)}};function ui(e,t){if(Array.isArray(e)){let n=[];for(let r=0;r<t;r++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Wr(e,t){if(!e)throw new bb(t)}function vb(e,t){let n=0;for(let r of e)r===t&&n++;return n}function An(e){return e.length===1?e[0]:e}function yt(e){return Array.isArray(e)?e:[e]}function sa(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function ci(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var sr={};function $A(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function DA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>DA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:DA(r))}}}function dc(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in sr)i=sr[s];else if(i=t[s],i==null)throw new U(`Unknown ${r}: ${e}. This may be due to one of the following reasons:
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new U(`${r}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in sr?[o,l]=sr.className:i in t&&([o,l]=t[i]),o==null)throw new U(`Unknown ${r}: ${i}. This may be due to one of the following reasons:
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let p of Object.keys(sr))c[p]=sr[p];for(let p of Object.keys(n))c[p]=n[p];let u=s.config;u.customObjects=c;let h=Object.assign({},sr);for(let p of Object.keys(n))sr[p]=n[p];DA(s.config);let d=l(o,s.config,n,a);return sr=Object.assign({},h),d}else{let c=Object.assign({},sr);for(let h of Object.keys(n))sr[h]=n[h];let u=new o(s.config);return sr=Object.assign({},c),u}}}function pY(e,t){return e<t?-1:e>t?1:0}function pp(e,t){return-1*pY(e,t)}function Ra(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function fY(e){if(e==null)throw new U(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function hi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new U(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function OA(e,t,n=0,r=Infinity){return Wr(n>=0),Wr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function Gt(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>Gt(n,`element ${r+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${kb(e)}.`)}function kb(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>kb(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function mY(e,t){let n=k.now(),r;return(...a)=>{let s=k.now();return s-n<t||(n=s,r=e(...a)),r}}function Ib(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function zA(e,t){return H(()=>Kt(Ee(B(e,e),t,!0)))}var pc=class extends re.Serializable{getConfig(){return{}}},PA=class extends pc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=zA(e,this.axis),n=pn(t,0,this.maxValue);return B(e,Ne(n,ie(Pt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};PA.className="MaxNorm";re.registerClass(PA);var LA=class extends pc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>Ne(e,ie(Pt(),zA(e,this.axis))))}getConfig(){return{axis:this.axis}}};LA.className="UnitNorm";re.registerClass(LA);var WA=class extends pc{apply(e){return Cr(e)}};WA.className="NonNeg";re.registerClass(WA);var BA=class extends pc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=zA(e,this.axis),n=ie(B(this.rate,pn(t,this.minValue,this.maxValue)),B(1-this.rate,t));return B(e,Ne(n,ie(Pt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};BA.className="MinMaxNorm";re.registerClass(BA);var Nb={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Lt(e){return $A(e)}function Tb(e,t={}){return dc(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Wt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in Nb?Nb[e]:e,config:{}};return Tb(t)}else return e instanceof pc?e:Tb(e)}function lY(e){return new PA(e)}function uY(e){return new LA(e)}function cY(){return new WA}function hY(e){return new BA(e)}var e0={};ze(e0,{constant:()=>gY,glorotNormal:()=>IY,glorotUniform:()=>kY,heNormal:()=>NY,heUniform:()=>TY,identity:()=>bY,leCunNormal:()=>SY,leCunUniform:()=>EY,ones:()=>yY,orthogonal:()=>CY,randomNormal:()=>wY,randomUniform:()=>xY,truncatedNormal:()=>_Y,varianceScaling:()=>vY,zeros:()=>AY});var RY=["channelsFirst","channelsLast"],FY=["nearest","bilinear"],MY=["valid","same","causal"],$Y=["max","avg"],DY=["sum","mul","concat","ave"],wl=new Map;function Et(e){hi(RY,"DataFormat",e)}function OY(e){hi(FY,"InterpolationFormat",e)}function jn(e){hi(MY,"PaddingMode",e)}function Sb(e){hi($Y,"PoolMode",e)}var fc=[],Eb="/";function di(e,t){fc.push(e);try{let n=t();return fc.pop(),n}catch(n){throw fc.pop(),n}}function zY(){return fc.length===0?"":fc.join(Eb)+Eb}function Rb(e){if(!Cb(e))throw new Error("Not a valid tensor name: '"+e+"'");return zY()+e}function Fb(e){if(!Cb(e))throw new Error("Not a valid tensor name: '"+e+"'");wl.has(e)||wl.set(e,0);let t=wl.get(e);if(wl.set(e,wl.get(e)+1),t>0){let n=`${e}_${t}`;return wl.set(n,1),n}else return e}var PY=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Cb(e){return!!e.match(PY)}function LY(e){return e===parseInt(e.toString(),10)}function Fa(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a<n;++a)r*=e[a];return r}function Mb(e){return e=Array.isArray(e)?new Float32Array(e):e,Qt(e)}function _l(e){return Vo(Mb(e)).dataSync()[0]}function Ma(e){return Bn(Mb(e)).dataSync()[0]}function wr(e,t){if(t<e)throw new U(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let r=e;r<t;++r)n.push(r);return n}function mc(e,t){return e.asType(t)}function Ac(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function WY(e,t){return H(()=>{if(e.shape.length!==2)throw new U(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Ac(e,1);return VA(n,[1,t,1])})}function BY(e){let t=[Fa(e.shape)];return e.reshape(t)}function VY(e){if(e.rank<=1)throw new U(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Fa(e.shape,1)];return e.reshape(t)}function pi(e,t,n){return H(()=>{switch(e.rank){case 1:return dd(e,t,n);case 2:return Xf(e,[t,0],[n,e.shape[1]]);case 3:return pd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Mu(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Fe(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Fe(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new U(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function UA(e,t,n){return H(()=>{switch(e.rank){case 1:return dd(e,t,n);case 2:return Xf(e,[0,t],[e.shape[0],n]);case 3:return pd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Mu(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new U(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function fp(e,t,n,r){return H(()=>{switch(e.rank){case 1:return dd(e,t,n);case 2:switch(r){case 1:return pi(e,t,n);case 2:return UA(e,t,n);default:throw new U(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return pi(e,t,n);case 2:return pd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return UA(e,t,n);default:throw new U(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return pi(e,t,n);case 2:return Mu(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Mu(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return UA(e,t,n);default:throw new U(`The axis is not within the rank of the tensor ${r}`)}default:throw new U(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function HA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),dt(e,t)}function $b(e,t){switch(e.rank){case 1:return _g([e,t]);case 2:return Xl([e,t],0);case 3:return bg([e,t],0);case 4:return vg([e,t],0);default:throw new U(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function VA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new U(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return ga(e,t)}function mp(e,t=0,n=1,r,a){return Og(e,t,n,r,a)}function Br(e,t,n,r){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return _a.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?jA(e.rank,r,gr()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=t.transpose(u).reshape([l,-1]);let h=[...a,...c],d=!1,p=!1;return _a.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?jA(e.rank,r,gr()):null,activation:n}).reshape(h)}}function Db(e,t,n){return H(()=>(Array.isArray(t)?t=Qt(t,"int32"):t=t.toInt(),Vs(e,t,n)))}function yc(e){return B(e,e)}function jA(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new U(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new U(`Unsupported input rank by biasAdd: ${t.rank}`)}function Vr(e,t,n){return H(()=>(n==null&&(n=gr()),Et(n),e.add(jA(e.rank,t,n))))}function UY(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Lo(e)}function HY(e){return H(()=>Ne(e,Dt(e).add(1)))}function Ob(e,t,n,r){return H(()=>Bg(e,t,n,r))}function jY(e){return H(()=>{let t=ie(.5,B(.2,e));return pn(t,0,1)})}function gc(e,t,n=!1){return n?e():t()}var GY=["fanIn","fanOut","fanAvg"],qY=["normal","uniform","truncatedNormal"];function XY(e){hi(GY,"FanMode",e)}function KY(e){hi(qY,"Distribution",e)}var ir=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},GA=class extends ir{apply(e,t){return Ct(e,t)}};GA.className="Zeros";re.registerClass(GA);var Ap=class extends ir{apply(e,t){return Er(e,t)}};Ap.className="Ones";re.registerClass(Ap);var qA=class extends ir{constructor(e){super();if(typeof e!="object")throw new U(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new U(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return H(()=>B(Te(this.value),Er(e,t)))}getConfig(){return{value:this.value}}};qA.className="Constant";re.registerClass(qA);var XA=class extends ir{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Ho(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};XA.className="RandomUniform";re.registerClass(XA);var KA=class extends ir{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return mp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};KA.className="RandomNormal";re.registerClass(KA);var ZA=class extends ir{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return Ad(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};ZA.className="TruncatedNormal";re.registerClass(ZA);var YA=class extends ir{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return H(()=>{if(e.length!==2||e[0]!==e[1])throw new U("Identity matrix initializer can only be used for 2D square matrices.");return B(this.gain,Pf(e[0]))})}getConfig(){return{gain:this.gain}}};YA.className="Identity";re.registerClass(YA);function ZY(e,t="channelsLast"){let n,r;if(Et(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Fa(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Fa(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Fa(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var yn=class extends ir{constructor(e){super();if(e.scale<0)throw new U(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,XY(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,KY(this.distribution),this.seed=e.seed}apply(e,t){let n=ZY(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return Ad(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Ho(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};yn.className="VarianceScaling";re.registerClass(yn);var yp=class extends yn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return yn.className}};yp.className="GlorotUniform";re.registerClass(yp);var gp=class extends yn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return yn.className}};gp.className="GlorotNormal";re.registerClass(gp);var xp=class extends yn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return yn.className}};xp.className="HeNormal";re.registerClass(xp);var wp=class extends yn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return yn.className}};wp.className="HeUniform";re.registerClass(wp);var _p=class extends yn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return yn.className}};_p.className="LeCunNormal";re.registerClass(_p);var bp=class extends yn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return yn.className}};bp.className="LeCunNormal";re.registerClass(bp);var JA=class extends ir{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return H(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=mp(n,0,1,"float32"),a=Ug.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),B(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};JA.className="Orthogonal";re.registerClass(JA);var zb={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Pb(e,t={}){return dc(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function Nt(e){return $A(e)}function wt(e){if(typeof e=="string"){let t=e in zb?zb[e]:e;if(t==="GlorotNormal")return new gp;if(t==="GlorotUniform")return new yp;if(t==="HeNormal")return new xp;if(t==="HeUniform")return new wp;if(t==="LeCunNormal")return new _p;if(t==="LeCunUniform")return new bp;{let n={};return n.className=t,n.config={},Pb(n)}}else return e instanceof ir?e:Pb(e)}function AY(){return new GA}function yY(){return new Ap}function gY(e){return new qA(e)}function xY(e){return new XA(e)}function wY(e){return new KA(e)}function _Y(e){return new ZA(e)}function bY(e){return new YA(e)}function vY(e){return new yn(e)}function kY(e){return new yp(e)}function IY(e){return new gp(e)}function NY(e){return new xp(e)}function TY(e){return new wp(e)}function SY(e){return new _p(e)}function EY(e){return new bp(e)}function CY(e){return new JA(e)}var t0={};ze(t0,{Layer:()=>Ke,RNN:()=>Fr,RNNCell:()=>xc,activation:()=>dJ,add:()=>_J,alphaDropout:()=>aQ,average:()=>bJ,averagePooling1d:()=>QA,averagePooling2d:()=>ey,averagePooling3d:()=>ty,avgPool1d:()=>RJ,avgPool2d:()=>MJ,avgPool3d:()=>DJ,avgPooling1d:()=>FJ,avgPooling2d:()=>$J,avgPooling3d:()=>OJ,batchNormalization:()=>SJ,bidirectional:()=>ZJ,concatenate:()=>vJ,conv1d:()=>aJ,conv2d:()=>sJ,conv2dTranspose:()=>iJ,conv3d:()=>oJ,convLstm2d:()=>GJ,convLstm2dCell:()=>qJ,cropping2D:()=>uJ,dense:()=>pJ,depthwiseConv2d:()=>hJ,dot:()=>TJ,dropout:()=>fJ,elu:()=>JY,embedding:()=>wJ,flatten:()=>AJ,gaussianDropout:()=>rQ,gaussianNoise:()=>nQ,globalAveragePooling1d:()=>zJ,globalAveragePooling2d:()=>PJ,globalMaxPool1d:()=>JJ,globalMaxPool2d:()=>QJ,globalMaxPooling1d:()=>Lb,globalMaxPooling2d:()=>Wb,gru:()=>WJ,gruCell:()=>BJ,input:()=>i0,inputLayer:()=>YY,layerNormalization:()=>EJ,leakyReLU:()=>eJ,lstm:()=>VJ,lstmCell:()=>UJ,masking:()=>sQ,maxPool1d:()=>eQ,maxPool2d:()=>tQ,maxPooling1d:()=>Bb,maxPooling2d:()=>Vb,maxPooling3d:()=>LJ,maximum:()=>kJ,minimum:()=>IJ,multiply:()=>NJ,permute:()=>xJ,prelu:()=>tJ,reLU:()=>QY,repeatVector:()=>yJ,reshape:()=>gJ,rnn:()=>XJ,separableConv2d:()=>lJ,simpleRNN:()=>HJ,simpleRNNCell:()=>jJ,softmax:()=>nJ,spatialDropout1d:()=>mJ,stackedRNNCells:()=>KJ,thresholdedReLU:()=>rJ,timeDistributed:()=>YJ,upSampling2d:()=>cJ,zeroPadding2d:()=>CJ});var iQ=0;function Ub(){return iQ++}var vp={};function kp(e=""){return e in vp||(vp[e]=0),vp[e]+=1,e+vp[e].toString()}function ny(e){return Array.isArray(e)&&Array.isArray(e[0])}function Ip(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Pe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new U(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ft(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new U(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Np(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var Hb="Variable",n0=class{constructor(e,t="float32",n=Hb,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Ub(),n=n==null?Hb:n,this.originalName=Rb(n),this.name=Fb(this.originalName),this.trainable_=r,this.constraint=a,this.val=Pg(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),oQ(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function oQ(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function ry(e){return e.map(t=>t.read())}function ay(e){e.forEach(t=>{t[0].write(t[1])})}var Ut=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},mr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=Ub(),s!=null&&(this.originalName=Rb(s),this.name=Fb(this.originalName)),this.rank=t.length}},lQ=0,Tp=class{constructor(e,t){this.callArgs=t,this.id=lQ++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},uQ=0,Ke=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=uQ++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=sa(n)+"_"+kp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new xr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new U(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return An(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return An(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new aa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new aa(`Layer ${this.name} is not connected, no input to return.`);return An(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new aa(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new aa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return An(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=yt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=yt(this.inputSpec);if(e.length!==t.length)throw new U(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let r=e[n],a=t[n];if(a==null)continue;let s=r.rank;if(a.ndim!=null&&s!==a.ndim)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${a.ndim}, found ndim=${s}`);if(a.maxNDim!=null&&s>a.maxNDim)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s<a.minNDim)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${a.minNDim}, found ndim=${s}.`);if(a.dtype!=null&&r.dtype!==a.dtype)throw new U(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${a.dtype}, found dtype=${r.dtype}.`);if(a.axes){let i=r.shape;for(let o in a.axes){let l=Number(o),c=a.axes[o],u=l>=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i<a.shape.length;++i){let o=a.shape[i],l=r.shape[i];if(o!=null&&l!=null&&o!==l)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected shape=${a.shape}, found shape=${r.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=yt(e),r=!0;for(let s of n)if(!(s instanceof mr)){r=!1;break}let a=!0;for(let s of n)if(s instanceof mr){a=!1;break}if(r===a)throw new U("Arguments to apply() must be all SymbolicTensors or all Tensors");return di(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of yt(e))s.push(i.shape);this.build(An(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=yt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=An(o),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=cQ(e),i=this.computeOutputShape(s),o,l=hQ(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new mr(l,c,this,yt(e),t,this.name,u)):o=new mr(l,i,this,yt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new aa(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new aa(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new xr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Np(this.weights)}build(e){this.built=!0}getWeights(e=!1){return ry(e?this.trainableWeights:this.weights)}setWeights(e){H(()=>{let t=this.weights;if(t.length!==e.length)throw new U(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=ry(t);for(let a=0;a<r.length;++a){let s=r[a],i=t[a],o=e[a];if(!k.arraysEqual(s.shape,o.shape))throw new U(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}ay(n)})}addWeight(e,t,n,r,a,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new U(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(r=wt("zeros"));let o=r.apply(t,n),l=new n0(o,n,e,s,i);return o.dispose(),a!=null&&this.addLoss(()=>a.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=yt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=yt(e);t=yt(t),n=yt(n),r=yt(r),a=Ip(a),s=Ip(s);let l=[],c=[],u=[];for(let h of o)l.push(h.sourceLayer),c.push(h.nodeIndex),u.push(h.tensorIndex);new Tp({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function cQ(e){e=yt(e);let t=[];for(let n of e)t.push(n.shape);return An(t)}function hQ(e){return"float32"}function jb(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s<r.inboundLayers.length;s++){let i=r.inputTensors[s],o=r.inboundLayers[s],l=r.nodeIndices[s],c=jb(i,o,l);for(let u of c)a.indexOf(u)===-1&&a.push(u)}return a}}}var bl=class extends Ke{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:kp("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new U("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new U("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new U("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let r=new mr(this.dtype,this.batchInputShape,this,[],{},this.name);r.nodeIndex=0,r.tensorIndex=0,new Tp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[r],outputTensors:[r],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new U(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};bl.className="InputLayer";re.registerClass(bl);function Gb(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new U("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new bl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function $a(e){if(e==null)return;let t=[],n=[],r=[];for(let a in e){let s=e[a];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(a),r.push(i)}}if(t.length>0){let a=await Promise.all(t);for(let s=0;s<a.length;++s)e[n[s]]=a[s][0];Me(r)}}function qb(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var Xb;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Xb||(Xb={}));var dQ=125,vl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},r0=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},pQ=class extends vl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let r in t){let a=t[r];if(typeof a=="number")this.totals.hasOwnProperty(r)||(this.totals[r]=0),this.totals[r]=this.totals[r]+a*n;else{let s;r in this.totals?s=this.totals[r]:this.totals[r]=0;let i=H(()=>ie(this.totals[r],B(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:H(()=>{let r=B(Ne(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Vt(t[n])}))}},a0=class extends vl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(a),n.push(i)}}let r=await Promise.all(e);for(let a=0;a<r.length;++a)this.history[t[a]][n[a]].dispose(),this.history[t[a]][n[a]]=r[a][0]}},s0=class extends vl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=dQ),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");k.isNumber(this.yieldEvery)&&(this.maybeWait=mY(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let r=[];this.yield!=null&&(await $a(n),r.push(this.yield(e,t,n))),r.push(Id()),await Promise.all(r)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await $a(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await $a(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(Id()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await $a(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await $a(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(Id()):k.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await $a(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await $a(e),await this.trainEnd(e))}};function Kb(e,t){return e==null&&(e={}),e instanceof vl?[e]:Array.isArray(e)&&e[0]instanceof vl?e:yt(e).map(n=>new s0(n,t))}var or=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),or.checkForDuplicate(t),or.constructors[e]==null&&(or.constructors[e]=[]),or.constructors[e].push(t)}static checkForDuplicate(e){for(let t in or.constructors)or.constructors[+t].forEach(n=>{if(n===e)throw new U("Duplicate callback constructor.")})}static clear(){or.constructors={}}static createCallbacks(e){let t=[];for(let n in or.constructors){let r=+n;e>=r&&t.push(...or.constructors[r])}return t.map(n=>new n)}};or.constructors={};function Zb(e,t,n,r,a,s,i,o,l){let c=new a0,u=[new pQ,...or.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let h=new r0(u);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:c}}function _r(e,t={},n=!1){return dc(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Sp(e,t){return H(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Ee(yc(e),t,!0),r=Nu(n.shape,Pt()),a=Kt(Sr(n,r));return Ne(e,a)})}function fi(e,t){return H(()=>kt(yc(_e(t,e)),-1))}function Ep(e,t){return H(()=>kt(Dt(_e(t,e)),-1))}function kl(e,t){return H(()=>{let n=_e(e,t),r=pn(Dt(e),Pt(),Number.MAX_VALUE),a=Dt(Ne(n,r));return B(100,kt(a,-1))})}function fQ(e,t){return H(()=>{let n=pn(t,Pt(),Number.MAX_VALUE),r=kn(ie(1,n)),a=pn(e,Pt(),Number.MAX_VALUE),s=kn(ie(1,a));return kt(yc(_e(r,s)),-1)})}function mQ(e,t){return H(()=>{let n=Sr(0,_e(1,B(e,t)));return kt(yc(n),-1)})}function AQ(e,t){return H(()=>{let n=Sr(0,_e(1,B(e,t)));return kt(n,-1)})}function yQ(e,t){return H(()=>{let n=Ee(B(e,t),-1),r=Bn(B(_e(1,e),t),-1);return Sr(0,ie(1,_e(r,n)))})}function gQ(e,t){return H(()=>{let n=Math.log(2),r=_e(t,e),a=_e(ie(r,Bo(B(-2,r))),n);return kt(a,-1)})}function wc(e,t,n=!1){return H(()=>{if(n)t=$u(t);else{let r=Ee(t,t.shape.length-1,!0);t=Ne(t,r)}return t=pn(t,Pt(),1-Pt()),vt(Ee(B(e.toFloat(),kn(t)),t.shape.length-1))})}function Cp(e,t,n=!1){return H(()=>{let r=Wo(BY(e)).toInt();t=pn(t,Pt(),1-Pt());let a=t.shape,s=Oo(r,a[a.length-1]).reshape(a);return wc(s,t,n)})}function xQ(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new U(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return H(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function Rp(e,t){return H(()=>{let n;return n=pn(t,Pt(),1-Pt()),n=kn(Ne(n,_e(1,n))),kt(xQ(e,n),-1)})}function wQ(e,t){return H(()=>{let n=pn(e,Pt(),1),r=pn(t,Pt(),1);return Ee(B(e,kn(Ne(n,r))),-1)})}function _Q(e,t){return H(()=>{let n=kn(ie(Pt(),t));return kt(_e(t,B(e,n)),-1)})}function sy(e,t){return H(()=>{let n=Sp(e,-1),r=Sp(t,-1),a=B(n,r);return vt(Ee(a,-1))})}var Fp={meanSquaredError:fi,meanAbsoluteError:Ep,meanAbsolutePercentageError:kl,meanSquaredLogarithmicError:fQ,squaredHinge:mQ,hinge:AQ,categoricalHinge:yQ,logcosh:gQ,categoricalCrossentropy:wc,sparseCategoricalCrossentropy:Cp,binaryCrossentropy:Rp,kullbackLeiblerDivergence:wQ,poisson:_Q,cosineProximity:sy};function iy(e){if(typeof e=="string"){if(e in Fp)return Fp[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new U(t)}else return e}function oy(e,t){return H(()=>{let n=B(.5,In(t)),r=mc(er(t,n),e.dtype);return kt(ya(e,r),-1)})}function ly(e,t){return H(()=>mc(ya(_u(e,-1),_u(t,-1)),"float32"))}function Yb(e,t){return H(()=>tr(e.equal(1),t.equal(1)).sum().cast("float32"))}function bQ(e,t){return H(()=>tr(e.equal(1),t.equal(0)).sum().cast("float32"))}function vQ(e,t){return H(()=>tr(e.equal(0),t.equal(1)).sum().cast("float32"))}function Jb(e,t){return H(()=>{let n=Yb(e,t),r=vQ(e,t),a=n.add(r);return fn(er(a,0),n.div(a),0).cast("float32")})}function kQ(e,t){return H(()=>{let n=Yb(e,t),r=bQ(e,t),a=n.add(r);return fn(er(a,0),n.div(a),0).cast("float32")})}function Qb(e,t){return Rp(e,t)}function e3(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),ya(e,t).asType("float32")}var IQ=fi,NQ=fi,TQ=Ep,SQ=Ep,EQ=kl,CQ=kl,uy=wc,RQ=sy,t3=Cp,Mp={binaryAccuracy:oy,categoricalAccuracy:ly,precision:Jb,categoricalCrossentropy:uy,sparseCategoricalCrossentropy:t3,mse:IQ,MSE:NQ,mae:TQ,MAE:SQ,mape:EQ,MAPE:CQ,cosine:RQ};function FQ(e){if(typeof e=="string"&&e in Mp)return Mp[e];if(typeof e!="string"&&e!=null)return e;throw new U(`Unknown metric ${e}`)}function $p(e){if(Wr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Fp))if(Fp[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Mp))if(Mp[n]===e){t=n;break}return t!==void 0?t:e.name}}function MQ(e){let t={Adagrad:()=>js.adagrad(.01),Adadelta:()=>js.adadelta(1,.95,Pt()),Adam:()=>js.adam(.001,.9,.999,Pt()),Adamax:()=>js.adamax(.002,.9,.999,Pt(),0),RMSProp:()=>js.rmsprop(.001,.9,0,Pt()),SGD:()=>js.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new U(`Unknown Optimizer ${e}`)}var n3=1*1024*1024;function r3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!cy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>n3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${n3}.`)}}function cy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!cy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!cy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function PQ(e,t,n,r=console.log){let a=DQ(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!a){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}r("_".repeat(t)),Dp(s,n,r),r("=".repeat(t));let o=e.layers;for(let u=0;u<o.length;++u)a?OQ(o[u],n,r):zQ(o[u],n,i,r),r((u===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=$Q(e),c=Np(e.nonTrainableWeights);r(`Total params: ${l+c}`),r(`Trainable params: ${l}`),r(`Non-trainable params: ${c}`),r("_".repeat(t))}function $Q(e){let t;return e.collectedTrainableWeights!=null?t=Np(e.collectedTrainableWeights):t=Np(e.trainableWeights),t}function DQ(e){let t=!0,n=[],r=[];for(let a in e.nodesByDepth)n.push(e.nodesByDepth[a]);for(let a of n){if(a.length>1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Dp(e,t,n=console.log){let r="";for(let a=0;a<e.length;++a)a>0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function OQ(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];Dp(i,t,n)}function zQ(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(u){a="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let h=0;h<u.inboundLayers.length;++h){let d=u.inboundLayers[h].name,p=u.nodeIndices[h],f=u.tensorIndices[h];s.push(`${d}[${p}][${f}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],c=[`${i} (${o})`,a,e.countParams().toString(),l];Dp(c,t,r);for(let u=1;u<s.length;++u)Dp(["","","",s[u]],t,r)}function a3(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function _c(e,t){if(e===null)return null;if(typeof e=="string")return ci(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];a3(t,a,s)?n.push(s):n.push(_c(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r];if(r==="name"&&typeof a=="string")n[r]=a;else{let s=ci(r);n[s]=_c(a,s)}}return n}}function hy(e,t){if(e==null)return null;if(typeof e=="string")return sa(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];a3(t,a,s)?n.push(s):n.push(hy(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r],s=sa(r);(r==="name"||r==="className")&&typeof a=="string"?n[s]=a:n[s]=hy(a,r)}return n}}var im="3.0.0";function LQ(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ye(t,e.dtype)}catch(n){throw new U(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var mi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof mi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=LQ(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new U(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof mr){if(this.id2Value[e.id]==null)throw new U(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new U(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof mr){if(this.id2Value[e.id]==null)throw new U(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new U(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Me(this.id2Mask)}},dy={},s3={};function bc(e,t,n,r){let a=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(f=>f.name),l=[],c=t.names();for(let f of o)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),h,d;if(dy[u]==null){let f=WQ(i,t);h=f.sorted,d=f.recipientCounts,dy[u]=h,s3[u]=d}h=dy[u],d={},a||Object.assign(d,s3[u]);let p=new mi(t);for(let f=0;f<h.length;++f){if(r!=null){let N=jh().numTensors;N>r.maxNumTensors&&(r.maxNumTensors=N),N<r.minNumTensors&&(r.minNumTensors=N)}let m=h[f],A=m.sourceLayer;if(A instanceof bl)continue;let y=[],g=[],w=[],x=!1;for(let N of m.inputs){let C=p.getValue(N),$=p.getMask(N);y.push(C),g.push($),$!=null&&(x=!0),a||(d[N.name]--,d[N.name]===0&&!t.hasKey(N)&&o.indexOf(N.name)===-1&&!C.isDisposed&&N.sourceLayer.stateful!==!0&&w.push(C))}x&&(n=n||{},n.mask=g[0]);let _=yt(A.apply(y,n)),b=null;A.supportsMasking&&(b=A.computeMask(y,g));let S=BQ(m),T=Array.isArray(S)?S:[S];for(let N=0;N<T.length;++N){p.hasKey(T[N])||p.add(T[N],_[N],Array.isArray(b)?b[0]:b);let C=o.indexOf(T[N].name);C!==-1&&(l[C]=_[N])}a||Me(w)}return p.disposeMasks(),s?l:l[0]}function WQ(e,t){k.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=i3(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=i3(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(c=>r[l].add(c))}}return{sorted:n,recipientCounts:VQ(r)}}function VQ(e){let t={};for(let n in e)t[n]=e[n].size;return t}function i3(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)a[c.name]==null&&(a[c.name]=new Set),a[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:r,recipientMap:a}}function BQ(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;r<e.sourceLayer.inboundNodes.length;++r)for(let a of e.sourceLayer.inboundNodes[r].outputTensors)if(a.id===e.id){n=r;break}t=e.sourceLayer.getOutputAt(n)}return t}var Ur=class extends Ke{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=kp(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Ra(this.inputs).length!==this.inputs.length)throw new U(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Ra(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,w=y.nodeIndex,x=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(w),this.outputLayersTensorIndices.push(x)}for(let y of this.inputs){let g=y.sourceLayer,w=y.nodeIndex,x=y.tensorIndex;Wr(w===0,"input layer has >1 nodes"),Wr(x===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(w),this.inputLayersTensorIndices.push(x)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let g=this.inputLayers[y];if(!(g instanceof bl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${g.getClassName()}.`);this.inputNames.push(g.name),this.feedInputShapes.push(g.batchInputShape),this.feedInputNames.push(g.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,w,x,_,b)=>{(x==null||_==null||b==null)&&(x=y.sourceLayer,_=y.nodeIndex,b=y.tensorIndex);let S=x.inboundNodes[_];if(w.indexOf(S)!==-1)throw new xr(`The tensor ${y.name} at layer "${x.name}" is part of a cycle.`);if(g.indexOf(S)!==-1)return;this.containerNodes.add(Ur.nodeKey(x,_)),x.id in s||(s[x.id]=Object.keys(s).length),w.indexOf(S)===-1&&w.push(S);let T=S.inboundLayers.length;for(let N=0;N<T;N++){let C=S.inputTensors[N],$=S.inboundLayers[N],D=S.nodeIndices[N],O=S.tensorIndices[N];o(C,g,w,$,D,O)}for(g.push(S);w.indexOf(S)>=0;)w.splice(w.indexOf(S),1);i.push(S)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],w=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,w),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let x=0;x<y.inboundLayers.length;x++){let _=y.inboundLayers[x],b=y.nodeIndices[x],S=_.inboundNodes[b],T=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(g+1,T),n[S.id]=S}}let h={};for(let y in t){let g=t[y];g in h||(h[g]=[]),h[g].push(n[y])}let d={};for(let y in r){let g=r[y];g in d||(d[g]=[]),d[g].push(a[y])}let p=Object.keys(d).map(y=>parseInt(y,10)).sort(pp);this.layers=[];for(let y of p){let g=d[y];g.sort((w,x)=>{let _=s[w.id],b=s[x.id];return _<b?-1:_>b?1:0});for(let w of g)w instanceof Ur&&this.internalContainerRefs.push(w),this.layers.push(w)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(pp);let f=this.inputs.slice(),m=[];for(let y of p)for(let g of h[y]){let w=g.outboundLayer;if(w!=null){for(let x of g.inputTensors)if(f.indexOf(x)===-1)throw new xr(`Graph disconnected: cannot obtain value for tensor ${x} at layer "${w.name}". The following previous layers were accessed without issue: ${m}`);for(let x of g.outputTensors)f.push(x);m.push(w.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(w=>w===y).length;if(g!==1)throw new xr(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Tp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new U("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new U(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new U(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new U(`${s.length} of ${r} weights are not set: ${s}`)}ay(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${im}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=hy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return H(()=>{e=yt(e);let n=new mi;for(let r=0;r<this.inputs.length;++r)n.add(this.inputs[r],e[r]);return bc(this.outputs,n,t)})}computeMask(e,t){return H(()=>{e=yt(e);let n;return t==null?n=ui(null,e.length):n=yt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Ip(e);if(t.length!==this.inputLayers.length)throw new U(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],c=o.name+"_0_0";n[c]=l}let r=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(pp);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],A=l.nodeIndices[f],y=l.tensorIndices[f],g=`${m.name}_${A}_${y}`,w=n[g];u.push(w)}let h=c.computeOutputShape(An(u)),d=Ip(h),p=c.inboundNodes.indexOf(l);for(let f=0;f<d.length;f++){let m=`${c.name}_${p}_${f}`;n[m]=d[f]}}}let a=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],u=`${o.name}_${l}_${c}`;s.push(u)}for(let i=0;i<s.length;i++){let o=s[i];Wr(o in n),a.push(n[o])}return An(a)}runInternalGraph(e,t){t==null&&(t=ui(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],c=e[o],u=t[o];n[l.id]=[c,u]}let r=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(pp);for(let o of r){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,h=c.inputTensors,d=c.outputTensors,p=new Array;for(let f of h)f.id in n&&p.push(n[f.id]);if(p.length===h.length){let f={},m,A,y,g;if(c.callArgs!=null&&(f=c.callArgs),p.length===1){let[w,x]=p[0];f.mask==null&&(f.mask=x),y=yt(u.call(w,f)),g=yt(u.computeMask(w,x)),m=[w],A=[x]}else m=p.map(w=>w[0]),A=p.map(w=>w[1]),f.mask==null&&(f.mask=A),y=yt(u.call(m,f)),g=yt(u.computeMask(m,A));if(u.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let w=0;w<d.length;++w){let x=d[w],_=y[w],b=g[w];n[x.id]=[_,b]}}}}let a=[],s=[],i=[];for(let o of this.outputs){Wr(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,c]=n[o.id];i.push(l.shape),a.push(l),s.push(c)}return[a,s,i]}buildNodeConversionMap(e){let t={},n;for(let r of this.layers){n=r instanceof Ur?1:0;for(let a=0;a<r.inboundNodes.length;a++){let s=Ur.nodeKey(r,a);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new U(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new U("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new U(`No such layer: ${e}`)}calculateLosses(){return H(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let r=Ur.nodeKey(t,n);this.containerNodes.has(r)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let u=0;u<s.inboundNodes.length;u++){let h=s.inboundNodes[u],d=Ur.nodeKey(s,u),p={};if(this.containerNodes.has(d)){if(h.callArgs)try{JSON.stringify(h.callArgs),p=h.callArgs}catch(f){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),p={}}if(h.inboundLayers.length>0){let f=[];for(let m=0;m<h.inboundLayers.length;m++){let A=h.inboundLayers[m],y=h.nodeIndices[m],g=h.tensorIndices[m],w=Ur.nodeKey(A,y),x=t[w];x==null&&(x=0),f.push([A.name,x,g,p])}l.push(f)}}}let c={};c.name=s.name,c.className=i,c.config=o,c.inboundNodes=l,n.push(c)}e.layers=n;let r=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Ur.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[s];r.push([i.name,c,u])}e.inputLayers=r;let a=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Ur.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[s];a.push([i.name,c,u])}return e.outputLayers=a,e}static fromConfig(e,t,n={},r=!1){let a={},s={};function i(m,A){m.name in s?s[m.name].push(A):s[m.name]=[A]}function o(m,A){let y=[],g;for(let w of A){let x=w[0],_=w[1],b=w[2];if(g=w[3]==null?{}:w[3],!(x in a)){i(m,A);return}let S=a[x];if(S.inboundNodes.length<=_){i(m,A);return}let T=S.inboundNodes[_];y.push(T.outputTensors[b])}y.length>0&&m.apply(An(y),g)}function l(m){let A=m.name,y=_r(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,m.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new U(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!fY(s);)for(let m of u){let A=a[m.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let m of p){let A=m[0],y=m[1],g=m[2];Wr(A in a);let w=a[A].inboundNodes[y].outputTensors;h.push(w[g])}let f=t.outputLayers;for(let m of f){let A=m[0],y=m[1],g=m[2];Wr(A in a);let w=a[A].inboundNodes[y].outputTensors;d.push(w[g])}return new e({inputs:h,outputs:d,name:c})}get stateful(){if(this._stateful)throw new U("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){H(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function UQ(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function o3(e,t){return UQ(e,t,"classWeight")}async function l3(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=H(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());Me(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Qt(i,"float32")}else return null}function HQ(e,t){return B(e,t)}var jQ=32;function c3(e,t){let n,r,a=t;n=a.xs,r=a.ys,k.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=u3("input",e.inputNames,n),i=u3("output",e.outputNames,r),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)k.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)k.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function u3(e,t,n){if(n instanceof tt)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new U(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function GQ(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function XQ(e,t,n){let r=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(h3(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=GQ(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;a?c=l.slice().concat(l.map(A=>"val_"+A)):c=l.slice();let u=Kb(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=Zb(u,h,n.epochs,null,null,qQ(t,n),null,a,c);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let A={};await d.onEpochBegin(f);let y=0,g=0;for(r||(m=await t.iterator());r?y<n.batchesPerEpoch:!0;){let w=await m.next();if(r&&w.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(w.value!=null){let{xs:x,ys:_}=c3(e,w.value),b={};b.batch=g,b.size=x[0].shape[0],await d.onBatchBegin(g,b);let S=[];if(n.classWeight!=null){let C=o3(n.classWeight,e.outputNames);for(let $=0;$<C.length;++$)S.push(await l3(_[$],null,C[$]))}let T=x.concat(_).concat(S),N=o(T);Me(T);for(let C=0;C<l.length;++C){let $=l[C],D=N[C];b[$]=D,Vt(D)}await d.onBatchEnd(g,b),qb(b),g++,y++}if(r?y>=n.batchesPerEpoch:w.done){if(a){let x;h3(n.validationData)?x=yt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):x=yt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?jQ:n.validationBatchSize,verbose:0}));for(let _=0;_<e.metricsNames.length;++_)A[`val_${e.metricsNames[_]}`]=x[_]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(f,A),f++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function qQ(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function h3(e){return typeof e.iterator=="function"}function KQ(e){return typeof e.next=="function"}async function ZQ(e,t,n){n=n||{};let r=n.batches!=null,a=e.testFunction,s=[];if(n.verbose>0)throw new Oe("Verbose mode is not implemented yet.");k.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=KQ(t)?t:await t.iterator(),o=0,l=0;for(;r?l<n.batches:!0;){let c=await i.next();if(s=H(()=>{if(c.value){let{xs:u,ys:h}=c3(e,c.value),d=u.concat(h),p=H(()=>a(d));if(Me(d),l===0)for(let m=0;m<p.length;++m)s.push(Te(0));let f=d[0].shape[0];for(let m=0;m<p.length;++m){let A=p[m],y=s[m];s[m]=H(()=>ie(s[m],B(f,A))),l>0&&Me(y)}Me(p),o+=f,++l}return s}),c.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<s.length;++c){let u=s[c];s[c]=Ne(s[c],o),Me(u)}return An(s)}function py(e){k.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function vc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>pi(r,t,n-t)):pi(e,t,n-t)}function fy(e,t){return H(()=>e==null?null:Array.isArray(e)?e.map(n=>fy(n,t)):Db(e,t.dtype==="int32"?t:t.toInt()))}function my(e,t){let n=[],r=0,a=null;for(;r<e;)a=r+t,a>=e&&(a=e),n.push([r,a]),r=a;return n}async function YQ(e,t,n,r,a,s,i,o,l,c,u,h,d,p,f){a==null&&(a=32),s==null&&(s=1),u==null&&(u=!0),d==null&&(d=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new U("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=wr(0,A)),i==null&&(i=1);let{callbackList:g,history:w}=Zb(o,i,s,d,A,p,a,m,h);g.setModel(e),e.history=w,await g.onTrainBegin(),e.stopTraining_=!1;for(let x=d;x<s;++x){await g.onEpochBegin(x);let _={};if(p!=null)throw new Oe("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Oe("batch shuffling is not implemneted yet");u&&k.shuffle(y);let b=Qt(y),S=my(A,a);for(let T=0;T<S.length;++T){let N={};if(await g.onBatchBegin(T,N),H(()=>{let C=S[T][0],$=S[T][1],D=pi(b,C,$-C);N.batch=T,N.size=$-C;let O=fy(n,D),V=t(O);for(let W=0;W<r.length;++W){let K=r[W],X=V[W];N[K]=X,Vt(X)}if(T===S.length-1&&m){let W=e.testLoop(l,c,a);for(let K=0;K<r.length;++K){let X=r[K],ee=W[K];Vt(ee),_["val_"+X]=ee}}}),await g.onBatchEnd(T,N),qb(N),e.stopTraining_)break}b.dispose()}if(await g.onEpochEnd(x,_),e.stopTraining_)break}return await g.onTrainEnd(),await e.history.syncData(),e.history}async function JQ(e,t,n,r={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let a,s,i,o,l,c,u;try{let h=r.batchSize==null?32:r.batchSize;py(h);let d=!1,p=await e.standardizeUserData(t,n,r.sampleWeight,r.classWeight,d,h);a=p[0],s=p[1],u=p[2];let f=!1,m;if(r.validationData!=null&&r.validationData.length>0){if(f=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new U(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let b=!0,S=await e.standardizeUserData(i,o,null,null,b,h);l=S[0],c=S[1],m=l.concat(c)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let b=Math.floor(a[0].shape[0]*(1-r.validationSplit)),S=a[0].shape[0];l=vc(a,b,S),a=vc(a,0,b),c=vc(s,b,S),s=vc(s,0,b),m=l.concat(c)}else r.validationSteps!=null&&(f=!0);let A=a.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),w,x;f?(e.makeTestFunction(),w=e.testFunction,x=g.slice().concat(g.map(b=>"val_"+b))):(w=null,m=[],x=g.slice());let _=Kb(r.callbacks,r.yieldEvery);return await YQ(e,y,A,g,h,r.epochs,r.verbose,_,w,m,r.shuffle,x,r.initialEpoch,null,null)}finally{e.isTraining=!1,Ai(a,t),Ai(s,n),Ai(l,i),Ai(c,o),u!=null&&Me(u)}}function d3(e){let t=[];e instanceof tt&&(e=[e]);for(let n=0;n<e.length;++n){let r=e[n];if(r.rank===1)t.push(Ac(r,1));else{if(r.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(r)}}return t}function Ai(e,t){if(e==null)return;let n=[];if(t instanceof tt)n.push(t.id);else if(Array.isArray(t))t.forEach(a=>n.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof tt)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function QQ(e){return e instanceof tt}function Ay(e){return Array.isArray(e)}function p3(e){return!QQ(e)&&!Ay(e)}function f3(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Ay(e)&&e.length>0)i=!0;else if(p3(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new U(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(p3(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new U(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Ay(e)){if(e=e,e.length!==t.length)throw new U(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new U(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=d3(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new U(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u>=0&&c!==u)throw new U(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function eee(e,t,n){let r=Ra(e.map(s=>s.shape[0]));r.sort();let a=Ra(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new U(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new U(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!k.arraysEqual(r,a))throw new U(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function tee(e,t,n){let r=[fi,Rp,wc];for(let a=0;a<e.length;++a){let s=e[a],i=t[a],o=n[a];if(i!=null){if(i===wc&&s.shape[s.shape.length-1]===1)throw new U(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(r.indexOf(i)!==-1){let l=s.shape.slice(1),c=o.slice(1);for(let u=0;u<l.length;++u){let h=l[u],d=c[u];if(d!=null&&h!==d)throw new U(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function m3(e,t,n,r=!0,a=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new U(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new U(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new U(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u!==c)throw new U(`Error when checking ${a}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function nee(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var ree="layers-model",Qr=class extends Ur{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new U("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");PQ(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=MQ(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Jr))throw new U("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new U(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(iy(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new U(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>iy(s))}else{let s=iy(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],di("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=nee(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};di("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=r[s];(o=>{let l="",c,u,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let f=this.internalOutputShapes[s];f[f.length-1]===1||this.lossFunctions[s]===Rp?["accuracy","acc"].indexOf(d)!==-1?u=oy:["crossentropy","ce"].indexOf(d)!==-1&&(u=Qb):this.lossFunctions[s]===Cp?["accuracy","acc"].indexOf(d)!==-1?u=e3:["crossentropy","ce"].indexOf(d)!==-1&&(u=t3):["accuracy","acc"].indexOf(d)!==-1?u=ly:["crossentropy","ce"].indexOf(d)!==-1&&(u=uy);let m;["accuracy","acc"].indexOf(d)!==-1?m="acc":["crossentropy","ce"].indexOf(d)!==-1&&(m="ce"),h=u,c=l+m}else h=FQ(d),c=l+$p(d);let p;di(c,()=>{p=h}),a(s,c,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;py(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return An(l)}finally{Ai(s[0],e),Ai(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),ZQ(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new U(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new U(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new U("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new mi;if(e instanceof tt&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new U(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new U(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=bc(a,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=ui(null,e.length),n=e.length;for(let r of this.layers){let a=Array.isArray(r.output)?r.output:[r.output],s=a.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=a[o],n--),n===0)break}if(n===0)break}if(n>0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new U(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return H(()=>{let r=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let a=my(r,t),s=this.outputs.map(i=>[]);for(let i=0;i<a.length;++i)H(()=>{let o=a[i][0],l=a[i][1],c=vc(e,o,l),u=[];if(Array.isArray(c))for(let d=0;d<c.length;++d)u.push({key:this.inputs[d],value:c[d]});else u.push({key:this.inputs[0],value:c});let h=new mi(u);return bc(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return An(s.map(i=>dt(i,0)))})}predict(e,t={}){let n=d3(e);m3(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return py(r),this.predictLoop(n,r)}finally{Ai(n,e)}}predictOnBatch(e){m3(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new xr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Cp?a.push(i.slice(0,i.length-1).concat([1])):a.push(i)}if(e=f3(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=f3(t,this.feedOutputNames,a,!1,"target"),eee(e,t,null),tee(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&r!=null&&r>0&&e[0].shape[0]%r!=0)throw new U(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let c=o3(r,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await l3(o[u],null,c[u]))}return[i,o,l]}testLoop(e,t,n,r=0,a){return H(()=>{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new Oe("Verbose mode is not implemented yet.");if(a!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let o=my(s,n),l=Qt(wr(0,s));for(let c=0;c<o.length;++c){let u=o[c][0],h=o[c][1],d=pi(l,u,h-u),p=fy(t,d),f=e(p);if(c===0)for(let m=0;m<f.length;++m)i.push(Te(0));for(let m=0;m<f.length;++m){let A=f[m];i[m]=ie(i[m],B(h-u,A))}}for(let c=0;c<i.length;++c)i[c]=Ne(i[c],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let r=e[n],a=r;vb(e,r)>1&&(a+=`_${vb(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let p=0;p<this.inputs.length;++p)c.push({key:this.inputs[p],value:n[p]});let u=new mi(c),h=bc(this.outputs,u,{training:!0}),d;for(let p=0;p<this.lossFunctions.length;++p){let f=this.lossFunctions[p](r[p],h[p]);a[p]!=null&&(f=HQ(f,a[p]));let m=kt(f);t.push(m),p===0?d=f:d=ie(d,f)}for(let p=0;p<this.metricsTensors.length;++p){let f;if(this.outputs.length>1&&p<this.outputs.length)f=t[p];else{let m=this.metricsTensors[p][0],A=this.metricsTensors[p][1];f=kt(m(r[A],h[A]))}Vt(f),s.push(f)}return d=kt(d),this.calculateLosses().forEach(p=>{d=ie(d,p)}),d},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>H(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:r[l]});let i=new mi(s),o=bc(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=kt(c(a[l],o[l]));l===0?n=u:n=ie(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],h=kt(c(a[u],o[u]));t.push(h)}return t})}async fit(e,t,n={}){return JQ(this,e,t,n)}async fitDataset(e,t){return XQ(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),r=n[0],a=n[1],s=this.makeTrainFunction()(r.concat(a)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Me(s),An(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,r=n?this.trainableWeights:this.weights,a=this.getWeights(n);for(let s=0;s<r.length;++s)n&&!r[s].trainable||t.push({name:r[s].originalName,tensor:a[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=jh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-jh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=sa(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>sa(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=sa(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[sa($p(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>sa($p(e)));{let e={};for(let t in this.metrics)e[t]=sa($p(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=_c(e.optimizer_config),n=_r(t),r;if(typeof e.loss=="string")r=ci(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>ci(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=ci(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>ci(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=ci(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=dn.getSaveHandlers(e);if(i.length===0)throw new U(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new U(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new U("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await dn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:ree,generatedBy:`TensorFlow.js tfjs-layers v${im}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await dn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=dn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;r3(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){r3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};Qr.className="Model";re.registerClass(Qr);var A3=class extends Qr{};A3.className="Functional";re.registerClass(A3);async function aee(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=_c(n),a=_r(r,t);if(e.weightsManifest!=null){let s=await dn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),Me(s)}return a}async function iee(e,t){if(t==null&&(t={}),typeof e=="string"){let n=dn.getLoadHandlers(e,t);if(n.length===0)n.push(dn.browserHTTPRequest(e,t));else if(n.length>1)throw new U(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return see(e,void 0,t)}async function see(e,t,n){if(n==null&&(n={}),e.load==null)throw new U("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=_r(_c(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new U("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=oee(r.weightData,r.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),Me(c),Me(u.map(h=>h.tensor))}return o}function oee(e,t){let n=dn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var qo=class extends Qr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:kp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new U(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof qo||e instanceof Qr,n;if(t){if(n=e,n.outputs.length!==1)throw new U("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new U("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new U("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=Gb({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new U(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new U("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=jb(this.outputs[0])}this.inboundNodes=[],new Tp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:ui(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ft(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new Qr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new U("Legacy serialization format not supported yet.");a=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof qo))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=_r(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new U("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new U("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};qo.className="Sequential";re.registerClass(qo);function $4(e){return new Qr(e)}function D4(e){return new qo(e)}function O4(e,t){return t==null&&(t={}),iee(e,t)}function i0(e){return Gb(e)}function z4(e,t){or.registerCallbackConstructor(e,t)}var Fn=class extends re.Serializable{getConfig(){return{}}},y3=class extends Fn{apply(e,t=1){return UY(e,t)}};y3.className="elu";re.registerClass(y3);var g3=class extends Fn{apply(e){return ud(e)}};g3.className="selu";re.registerClass(g3);var x3=class extends Fn{apply(e){return Cr(e)}};x3.className="relu";re.registerClass(x3);var w3=class extends Fn{apply(e){return H(()=>Uo(6,Cr(e)))}};w3.className="relu6";re.registerClass(w3);var _3=class extends Fn{apply(e){return e}};_3.className="linear";re.registerClass(_3);var b3=class extends Fn{apply(e){return Jn(e)}};b3.className="sigmoid";re.registerClass(b3);var v3=class extends Fn{apply(e){return jY(e)}};v3.className="hardSigmoid";re.registerClass(v3);var k3=class extends Fn{apply(e){return Bo(e)}};k3.className="softplus";re.registerClass(k3);var I3=class extends Fn{apply(e){return HY(e)}};I3.className="softsign";re.registerClass(I3);var N3=class extends Fn{apply(e){return zo(e)}};N3.className="tanh";re.registerClass(N3);var yy=class extends Fn{apply(e,t=-1){return $u(e,t)}};yy.className="softmax";re.registerClass(yy);var T3=class extends Fn{apply(e,t=-1){return nd(e,t)}};T3.className="logSoftmax";re.registerClass(T3);var S3=class extends Fn{apply(e,t=1){return H(()=>Jn(e.mul(t)).mul(e))}};S3.className="swish";re.registerClass(S3);function Da(e){return e.getClassName()}function gy(e,t={}){return dc(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function Oa(e){if(e==null){let t={};return t.className="linear",t.config={},gy(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},gy(t)}else return e instanceof Fn?e:gy(e)}function xy(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var E3=class extends re.Serializable{},kc=class extends E3{constructor(e){super();xy(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return H(()=>{let t=Ct([1]);return this.hasL1&&(t=ie(t,Ee(B(this.l1,Dt(e))))),this.hasL2&&(t=ie(t,Ee(B(this.l2,yc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};kc.className="L1L2";re.registerClass(kc);function lee(e){return xy(e),new kc({l1:e!=null?e.l1:null,l2:0})}function uee(e){return xy(e),new kc({l2:e!=null?e.l2:null,l1:0})}var C3={l1l2:"L1L2"};function mt(e){return $A(e)}function R3(e,t={}){return dc(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function _t(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in C3?C3[e]:e,config:{}};return R3(t)}else return e instanceof E3?e:R3(e)}var wy=class extends Ke{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Pe(e);let n=Cr(e);return this.maxValue!=null&&(n=pn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};wy.className="ReLU";re.registerClass(wy);var _y=class extends Ke{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Pe(e);return Tu(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};_y.className="LeakyReLU";re.registerClass(_y);var by=class extends Ke{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=wt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=_t(e.alphaRegularizer),this.alphaConstraint=Wt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new U(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ft(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r<e.length;++r)n[r]=e[r];this.inputSpec=[new Ut({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Pe(e),Ru(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Nt(this.alphaInitializer),alphaRegularizer:mt(this.alphaRegularizer),alphaConstraint:Lt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};by.className="PReLU";re.registerClass(by);var vy=class extends Ke{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Oe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Pe(e);return Lo(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};vy.className="ELU";re.registerClass(vy);var ky=class extends Ke{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Pe(e);return n.mul(mc(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};ky.className="ThresholdedReLU";re.registerClass(ky);var Iy=class extends Ke{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new yy().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Pe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Iy.className="Softmax";re.registerClass(Iy);function Il(e,t,n){if(typeof e=="number")return ui(e,t);if(e.length!==t)throw new U(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let r=0;r<t;++r){let a=e[r];if(!LY(a))throw new U(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${a}`)}return e}function br(e,t,n,r,a=1){if(e==null)return e;let s=t+(t-1)*(a-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+r-1)/r)}function Op(e,t,n,r){if(e==null)return null;if(r==="valid")e=e*t+Ma([n-t,0]);else if(r==="same")e=e*t;else throw new U(`Unsupport padding mode: ${r}.`);return e}function Ny(e,t){return H(()=>(Et(t),t==="channelsFirst"?it(e,[0,2,3,1]):e))}function F3(e,t){return H(()=>(Et(t),t==="channelsFirst"?it(e,[0,2,3,4,1]):e))}function cee(e,t,n,r=1,a="valid",s,i=1){return H(()=>{if(s==null&&(s=gr()),Et(s),e.shape.length!==3)throw new U(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new U(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new U(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=it(e,[0,2,1])),a==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Kh(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Vr(o,n)),o})}function M3(e,t,n,r=[1,1],a="valid",s,i,o=null){return H(()=>{if(s==null&&(s=gr()),Et(s),e.rank!==3&&e.rank!==4)throw new U(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new U(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Ny(e,s);if(a==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=_a.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=it(l,[0,3,1,2])),l})}function hee(e,t,n,r=[1,1,1],a="valid",s,i){return H(()=>{if(s==null&&(s=gr()),Et(s),e.rank!==4&&e.rank!==5)throw new U(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new U(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=F3(e,s);if(a==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=Ff(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Vr(o,n)),s==="channelsFirst"&&(o=it(o,[0,4,1,2,3])),o})}var Ty=class extends Ke{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Ty.verifyArgs(t),this.rank=e,Gt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Il(t.kernelSize,e,"kernelSize"),this.strides=Il(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,jn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Et(this.dataFormat),this.activation=Oa(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=wt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Wt(t.biasConstraint),this.biasRegularizer=_t(t.biasRegularizer),this.activityRegularizer=_t(t.activityRegularizer),this.dilationRate=Il(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new U(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new U(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new U(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Wr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!OA(e.kernelSize,"number",1,3))throw new U(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Da(this.activation),useBias:this.useBias,biasInitializer:Nt(this.biasInitializer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),biasConstraint:Lt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Ic=class extends Ty{constructor(e,t){super(e,t);this.kernel=null,Ic.verifyArgs(t),this.filters=t.filters,Gt(this.filters,"filters"),this.kernelInitializer=wt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Wt(t.kernelConstraint),this.kernelRegularizer=_t(t.kernelRegularizer)}build(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new U(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return H(()=>{e=Pe(e);let n,r=this.bias==null?null:this.bias.read(),a=Ib(this.activation.getClassName());if(a!=null&&this.rank===2)n=M3(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=cee(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=M3(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=hee(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ft(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a<n.length;++a){let s=br(n[a],this.kernelSize[a],this.padding,this.strides[a],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[a]);t.push(s)}let r=[e[0]];return this.dataFormat==="channelsLast"?(r=r.concat(t),r.push(this.filters)):(r.push(this.filters),r=r.concat(t)),r}getConfig(){let e={filters:this.filters,kernelInitializer:Nt(this.kernelInitializer),kernelRegularizer:mt(this.kernelRegularizer),kernelConstraint:Lt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new U(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Nc=class extends Ic{constructor(e){super(2,e);Nc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!OA(e.kernelSize,"number",1,2))throw new U(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Nc.className="Conv2D";re.registerClass(Nc);var zp=class extends Ic{constructor(e){super(3,e);zp.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new U(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};zp.className="Conv3D";re.registerClass(zp);var Sy=class extends Nc{constructor(e){super(e);if(this.inputSpec=[new Ut({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new U(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ft(e),e.length!==4)throw new U("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new U("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ut({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=Pe(e);if(n.shape.length!==4)throw new U(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],c=this.kernelSize[0],u=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=Op(o,h,c,this.padding),f=Op(l,d,u,this.padding),m=[a,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=it(n,[0,2,3,1]));let A=Zh(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=it(A,[0,3,1,2])),this.bias!=null&&(A=Vr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=ft(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Op(t[r],o,s,this.padding),t[a]=Op(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Sy.className="Conv2DTranspose";re.registerClass(Sy);var $3=class extends Ic{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new U("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new U("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new U(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=wt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=_t(t.depthwiseRegularizer),this.depthwiseConstraint=Wt(t.depthwiseConstraint),this.pointwiseInitializer=wt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=_t(t.pointwiseRegularizer),this.pointwiseConstraint=Wt(t.pointwiseConstraint)}build(e){if(e=ft(e),e.length<this.rank+2)throw new U(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new U(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],r=this.kernelSize.concat([n,this.depthMultiplier]),a=[];for(let i=0;i<this.rank;++i)a.push(1);a.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",r,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",a,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Ut({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{e=Pe(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=it(e,[0,2,3,1])),n=Gf(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Vr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=it(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.pointwiseInitializer=Nt(this.pointwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.pointwiseRegularizer=mt(this.pointwiseRegularizer),e.depthwiseConstraint=Lt(this.depthwiseConstraint),e.pointwiseConstraint=Lt(this.pointwiseConstraint),e}};$3.className="SeparableConv";var Ey=class extends $3{constructor(e){super(2,e)}};Ey.className="SeparableConv2D";re.registerClass(Ey);var Pp=class extends Ic{constructor(e){super(1,e);Pp.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!OA(e.kernelSize,"number",1,1))throw new U(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Pp.className="Conv1D";re.registerClass(Pp);var Cy=class extends Ke{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return H(()=>{if(e=Pe(e),this.dataFormat==="channelsLast"){let n=fp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return fp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=fp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return fp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Cy.className="Cropping2D";re.registerClass(Cy);var Ry=class extends Ke{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,OY(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return H(()=>{let n=Pe(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=it(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return it(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ry.className="UpSampling2D";re.registerClass(Ry);function dee(e,t,n=[1,1],r="valid",a,s){return H(()=>{a==null&&(a=gr()),Et(a);let i=Ny(e,a);if(e.rank!==4)throw new U(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new U(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Po(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=it(i,[0,3,1,2])),i})}var Fy=class extends Ty{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=wt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Wt(e.depthwiseConstraint),this.depthwiseRegularizer=_t(e.depthwiseRegularizer)}build(e){if(e=ft(e),e.length<4)throw new U(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new U(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{e=Pe(e);let n=dee(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Vr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=br(t,this.kernelSize[0],this.padding,this.strides[0]),s=br(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.depthwiseConstraint=Lt(this.depthwiseRegularizer),e}};Fy.className="DepthwiseConv2D";re.registerClass(Fy);function D3(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new U("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function O3(e,t,n,r=!1,a,s,i=!1,o=!1){return H(()=>{let l=t.shape.length;if(l<3)throw new U(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(wr(2,l));if(t=it(t,c),s!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=vn(a,-1)),a=it(a,c)),r&&(t=Nn(t,0),a!=null&&(a=Nn(a,0)));let u=[],h,d=n,p=t.shape[0],f=nr(t),m;a!=null&&(m=nr(a));for(let y=0;y<p;++y){let g=f[y],w=H(()=>e(g,d));if(a==null)h=w[0],d=w[1];else{let x=H(()=>{let _=m[y],b=In(_).sub(_),S=w[0].mul(_).add(d[0].mul(b)),T=d.map((N,C)=>w[1][C].mul(_).add(N.mul(b)));return{output:S,newStates:T}});h=x.output,d=x.newStates}o&&u.push(h)}let A;return o&&(A=Tn(u,1)),[h,A,d]})}var Fr=class extends Ke{constructor(e){super(e);let t;if(e.cell==null)throw new U("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Lp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new U("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ut({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return wr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){ny(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return H(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Oe("Constants support is not implemented in RNN yet.");ny(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new Ut({shape:[n,null,...r]});let a=[e[0]].concat(e.slice(2));if(t!=null)throw new Oe("Constants support is not implemented in RNN yet.");this.cell.build(a);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!k.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new U(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Ut({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new aa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new U("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Ct([n,r])):this.states_=[Ct([n,this.cell.stateSize])];else if(e==null)Me(this.states_),this.keptStates!=null&&(Me(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Ct([n,r])):this.states_[0]=Ct([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new U(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Me(this.states_);for(let r=0;r<this.states_.length;++r){let a=e[r],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[r]:this.cell.stateSize,i=[n,s];if(!k.arraysEqual(a.shape,i))throw new U(`State ${r} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${a.shape}`);this.states_[r]=a}}this.states_=this.states_.map(r=>Vt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=D3(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Ut({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof mr){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=Pe(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new U(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=O3((d,p)=>{let f=this.cell.call([d].concat(p),i);return[f[0],f.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,r);let h=this.returnSequences?c:l;return this.returnState?[h].concat(u):h})}getInitialState(e){return H(()=>{let t=Ct(e.shape);return t=Ee(t,[1,2]),t=Ac(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?VA(t,[1,n]):t):this.cell.stateSize>1?[VA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Fr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=_r(r,n);return new e(Object.assign(t,{cell:a}))}};Fr.className="RNN";re.registerClass(Fr);var xc=class extends Ke{},Wp=class extends xc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Gt(this.units,"units"),this.activation=Oa(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=Wt(e.kernelConstraint),this.recurrentConstraint=Wt(e.recurrentConstraint),this.biasConstraint=Wt(e.biasConstraint),this.dropout=_l([1,Ma([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=_l([1,Ma([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ft(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new U(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=za({ones:()=>In(e),rate:this.dropout,training:r})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=za({ones:()=>In(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Br(B(e,s),this.kernel.read()):a=Br(e,this.kernel.read()),this.bias!=null&&(a=Vr(a,this.bias.read())),i!=null&&(n=B(n,i));let o=ie(a,Br(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Da(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Lt(this.kernelConstraint),recurrentConstraint:Lt(this.recurrentConstraint),biasConstraint:Lt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Wp.className="SimpleRNNCell";re.registerClass(Wp);var My=class extends Fr{constructor(e){e.cell=new Wp(e),super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(Me(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Me(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};My.className="SimpleRNN";re.registerClass(My);var Bp=class extends xc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new U("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Gt(this.units,"units"),this.activation=Oa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Oa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=Wt(e.kernelConstraint),this.recurrentConstraint=Wt(e.recurrentConstraint),this.biasConstraint=Wt(e.biasConstraint),this.dropout=_l([1,Ma([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=_l([1,Ma([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ft(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new U(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=za({ones:()=>In(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=za({ones:()=>In(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=B(e,a[0]));let c=Br(e,this.kernel.read());this.useBias&&(c=Vr(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(r=B(r,s[0]));let u=this.recurrentKernel.read(),[h,d]=rn(u,[2*this.units,this.units],u.rank-1),p=Br(r,h),[f,m,A]=rn(c,3,c.rank-1),[y,g]=rn(p,2,p.rank-1);i=this.recurrentActivation.apply(ie(f,y)),o=this.recurrentActivation.apply(ie(m,g));let w=Br(B(o,r),d);l=this.activation.apply(ie(A,w));let x=ie(B(i,r),B(ie(1,vt(i)),l));return[x,x]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Da(this.activation),recurrentActivation:Da(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Lt(this.kernelConstraint),recurrentConstraint:Lt(this.recurrentConstraint),biasConstraint:Lt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Bp.className="GRUCell";re.registerClass(Bp);var $y=class extends Fr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Bp(e),super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(Me(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Me(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};$y.className="GRU";re.registerClass($y);var Tc=class extends xc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Gt(this.units,"units"),this.activation=Oa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Oa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=wt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=Wt(e.kernelConstraint),this.recurrentConstraint=Wt(e.recurrentConstraint),this.biasConstraint=Wt(e.biasConstraint),this.dropout=_l([1,Ma([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=_l([1,Ma([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ft(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends ir{apply(i,o){let l=a.apply([s]),c=new Ap().apply([s]),u=a.apply([s*2]);return $b($b(l,c),u)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new U(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=za({ones:()=>In(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=za({ones:()=>In(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0<this.dropout&&this.dropout<1&&(e=B(e,s[0]));let h=Br(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(r=B(r,i[0])),h=ie(h,Br(r,this.recurrentKernel.read())),this.useBias&&(h=Vr(h,this.bias.read()));let[d,p,f,m]=rn(h,4,h.rank-1);o=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(p),c=ie(B(l,a),B(o,this.activation.apply(f))),u=this.recurrentActivation.apply(m);let A=B(u,this.activation.apply(c));return[A,A,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Da(this.activation),recurrentActivation:Da(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Lt(this.kernelConstraint),recurrentConstraint:Lt(this.recurrentConstraint),biasConstraint:Lt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Tc.className="LSTMCell";re.registerClass(Tc);var Dy=class extends Fr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Tc(e),super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(Me(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Me(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Dy.className="LSTM";re.registerClass(Dy);var Lp=class extends xc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return H(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=r[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),a.push(s.slice(1))}n=[];for(let i of a.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){ny(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,r)=>{di(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(_r(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return ry(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],a[s]])}ay(t)}};Lp.className="StackedRNNCells";re.registerClass(Lp);function za(e){let{ones:t,rate:n,training:r=!1,count:a=1}=e,s=()=>Ob(t(),n),i=()=>gc(s,t,r);return!a||a<=1?Vt(i().clone()):Array(a).fill(void 0).map(i).map(o=>Vt(o.clone()))}var pee=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a<r.length;a++)t.indexOf(r[a])<0&&Object.prototype.propertyIsEnumerable.call(e,r[a])&&(n[r[a]]=e[r[a]]);return n},z3=class extends Fr{constructor(e){if(e.unroll)throw new Oe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Oe("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Ut({ndim:5})]}call(e,t){return H(()=>{if(this.cell.dropoutMask!=null&&(Me(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Me(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new U("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return H(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Ct(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new aa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new U("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ct(a)):this.states_=[Ct(a)];else if(e==null)Me(this.states_),this.keptStates!=null&&(Me(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ct(a)):this.states_[0]=Ct(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new U(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Me(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=a;if(!k.arraysEqual(i.shape,o))throw new U(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Vt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=br(l,r[0],a,s[0],i[0]),h=br(c,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,h]:[u,h,n]]}};z3.className="ConvRNN2D";var Vp=class extends Tc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Gt(this.filters,"filters"),this.kernelSize=Il(n,2,"kernelSize"),this.kernelSize.forEach(o=>Gt(o,"kernelSize")),this.strides=Il(r||1,2,"strides"),this.strides.forEach(o=>Gt(o,"strides")),this.padding=a||"valid",jn(this.padding),this.dataFormat=s||"channelsLast",Et(this.dataFormat),this.dilationRate=Il(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Gt(o,"dilationRate"))}build(e){var t;e=ft(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new U(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends ir{apply(u,h){let d=l.apply([c]),p=Er([c]),f=l.apply([c*2]);return HA([d,p,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return H(()=>{if(e.length!==3)throw new U(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=za({ones:()=>In(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Z,ae,J)=>!ae||!ae[J]?Z:B(ae[J],Z),c=l(r,o,0),u=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=za({ones:()=>In(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,f=l(a,p,0),m=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[w,x,_,b]=rn(this.kernel.read(),i,g),[S,T,N,C]=this.useBias?rn(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,w,S,this.padding),u=this.inputConv(u,x,T,this.padding),h=this.inputConv(h,_,N,this.padding),d=this.inputConv(d,b,C,this.padding);let[$,D,O,V]=rn(this.recurrentKernel.read(),i,g);f=this.recurrentConv(f,$),m=this.recurrentConv(m,D),A=this.recurrentConv(A,O),y=this.recurrentConv(y,V);let W=this.recurrentActivation.apply(ie(c,f)),K=this.recurrentActivation.apply(ie(u,m)),X=ie(B(K,s),B(W,this.activation.apply(ie(h,A)))),ee=B(this.recurrentActivation.apply(ie(d,y)),this.activation.apply(X));return[ee,ee,X]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=pee(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=Kr(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Vr(a,n,this.dataFormat):a}recurrentConv(e,t){return Kr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Vp.className="ConvLSTM2DCell";re.registerClass(Vp);var Oy=class extends z3{constructor(e){let t=new Vp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Oy.className="ConvLSTM2D";re.registerClass(Oy);var Up=class extends Ke{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r<this.noiseShape.length;++r)n.push(this.noiseShape[r]==null?t[r]:this.noiseShape[r]);return n}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e);if(0<this.rate&&this.rate<1){let r=t.training==null?!1:t.training,a=this.getNoiseShape(n);return gc(()=>Ob(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Up.className="Dropout";re.registerClass(Up);var zy=class extends Up{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};zy.className="SpatialDropout1D";re.registerClass(zy);var Py=class extends Ke{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Gt(this.units,"units"),this.activation=Oa(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=wt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=wt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Wt(e.kernelConstraint),this.biasConstraint=Wt(e.biasConstraint),this.kernelRegularizer=_t(e.kernelRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ft(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ft(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e),r=Ib(this.activation.getClassName()),a;return r!=null?a=Br(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Br(n,this.kernel.read()),this.bias!=null&&(a=Vr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Da(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Lt(this.kernelConstraint),biasConstraint:Lt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Py.className="Dense";re.registerClass(Py);var Ly=class extends Ke{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ft(e);for(let t of e.slice(1))if(t==null)throw new U(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Fa(e,1)]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a<n.rank;++a)r.push(a);r.push(1),n=n.transpose(r)}return VY(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};Ly.className="Flatten";re.registerClass(Ly);var Wy=class extends Ke{constructor(e){super(e);this.supportsMasking=!0,this.activation=Oa(e.activation)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e);return this.activation.apply(n)})}getConfig(){let e={activation:Da(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Wy.className="Activation";re.registerClass(Wy);var By=class extends Ke{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return H(()=>(e=Pe(e),WY(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};By.className="RepeatVector";re.registerClass(By);var Vy=class extends Ke{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",r=t.slice(),a=1,s=null;for(let o=0;o<r.length;++o){let l=r[o];if(this.isUnknown(l))if(s===null)s=o;else throw new U("Can only specifiy one unknown dimension.");else a*=l}let i=Fa(e);if(s!==null){if(a===0||i%a!=0)throw new U(n);r[s]=i/a}else if(i!==a)throw new U(n);return r}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Vy.className="Reshape";re.registerClass(Vy);var Uy=class extends Ke{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=wr(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ut({ndim:this.dims.length+1})]}computeOutputShape(e){e=ft(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return it(Pe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Uy.className="Permute";re.registerClass(Uy);var Hy=class extends Ke{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Pe(e),r=-1;return wu(Hs(n,this.maskValue),r)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e),r=-1,a=!0,s=wu(Hs(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};Hy.className="Masking";re.registerClass(Hy);var jy=class extends Ke{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(yt(e.inputLength))}this.inputDim=e.inputDim,Gt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Gt(this.outputDim,"outputDim"),this.embeddingsInitializer=wt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=_t(e.embeddingsRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.embeddingsConstraint=Wt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return H(()=>this.maskZero?(e=Pe(e),Hs(e,Ge(e))):null)}computeOutputShape(e){if(e=ft(e),this.inputLength==null)return[...e,this.outputDim];let t=yt(this.inputLength);if(t.length!==e.length-1)throw new U(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r<t.length;++r){let a=t[r],s=e[r+1];if(a!=null&&s!=null&&a!==s)throw new U(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);a==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e);return n.dtype!=="int32"&&(n=mc(n,"int32")),Db(this.embeddings.read(),n.as1D()).reshape(ft(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Nt(this.embeddingsInitializer),embeddingsRegularizer:mt(this.embeddingsRegularizer),activityRegularizer:mt(this.activityRegularizer),embeddingsConstraint:Lt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};jy.className="Embedding";re.registerClass(jy);var yi=class extends Ke{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let r=0;r<t.length;++r){let a=e[e.length-t.length+r],s=t[r];if(a==null||s==null||a<0||s<0)n.push(null);else if(a===1)n.push(s);else if(s===1)n.push(a);else{if(a!==s)throw new U("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(a)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ft(e)]),e=e,e.length<2)throw new U(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let a of e)a!=null&&a[0]!==null&&t.push(a[0]);if(t=Ra(t),t.length>1)throw new U(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;a<e.length;++a){let s=e[a]==null?null:e[a].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let r=e.map(a=>a.length);e.indexOf(null)===-1&&Ra(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return H(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Ma(r);for(let s of e){let i=s.rank;for(let o=0;o<a-i;++o)s=Ac(s,1);n.push(s)}return this.mergeFunction(n)}else{let a=!1;for(let o of e){let l=o.rank;if(l==null){let c=o.shape,u=c[0],h=c.slice(1).concat([u]),d=o.reshape([u].concat(Fa(c.slice(1))));d=it(d,[1,0]),d=d.reshape(h),n.push(d),a=!0}else if(l>1){let c=wr(1,l).concat([0]);n.push(it(o,c)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=it(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(wr(0,i-1));s=it(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);t=this.computeElementwiseOpOutputShape(t,a)}let n=[];for(let r of e)r!=null&&r[0]!==null&&n.push(r[0]);return n=Ra(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return H(()=>{if(t==null)return null;if(!Array.isArray(t))throw new U("`mask` should be an Array");if(!Array.isArray(e))throw new U("`inputs` should be an Array");if(t.length!==e.length)throw new U(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:vn(r,0));let n=t[0];for(let r=1;r<t.length-1;++r)n=tr(n,t[r]);return n})}},Gy=class extends yi{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return t})}};Gy.className="Add";re.registerClass(Gy);var qy=class extends yi{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=B(t,e[n]);return t})}};qy.className="Multiply";re.registerClass(qy);var Xy=class extends yi{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return B(1/e.length,t)})}};Xy.className="Average";re.registerClass(Xy);var Ky=class extends yi{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Sr(t,e[n]);return t})}};Ky.className="Maximum";re.registerClass(Ky);var Zy=class extends yi{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Uo(t,e[n]);return t})}};Zy.className="Minimum";re.registerClass(Zy);var Yy=class extends yi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new U("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let r of e)if(r!=null){t=!1;break}if(t)return;let n=[];for(let r=0;r<e.length;++r){let a=e[r].slice();a.splice(this.axis,1);let s=!1;for(let i of n)if(k.arraysEqual(i,a)){s=!0;break}s||n.push(a)}if(n.length>1)throw new U("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return H(()=>HA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new U("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new U("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new U("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new U(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return H(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s<e.length;++s)t[s]==null?r.push(In(e[s]).asType("bool")):t[s].rank<e[s].rank?r.push(vn(t[s],-1)):r.push(t[s]);let a=dt(r,this.axis);return Xh(a,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Yy.className="Concatenate";re.registerClass(Yy);function Sc(e,t){for(;e<0;)e+=t;return e}function fee(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return H(()=>{let i;if(r>a){i=r-a;let l=[];for(let c=0;c<i;++c)l.push(1);t=t.reshape(t.shape.concat(l))}else if(a>r){i=a-r;let l=[];for(let c=0;c<i;++c)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,c=s[1]===t.shape.length-1;o=e.matMul(t,l,c)}if(i>0){let l;r>a?l=r+a-3:l=r-1;let c=[];for(let u=l;u<l+i;++u)c.push(u);o=o.squeeze(c)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var Jy=class extends yi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new U(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new U(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>Sc(a,e[s].shape.length)):r=[Sc(this.axes,t.shape.length),Sc(this.axes,n.shape.length)],this.normalize&&(t=Sp(t,r[0]),n=Sp(n,r[1])),fee(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Sc(this.axes,e.length),Sc(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Jy.className="Dot";re.registerClass(Jy);var Qy=class extends Ke{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e);return gc(()=>mp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Qy.className="GaussianNoise";re.registerClass(Qy);var e2=class extends Ke{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=Pe(e);return this.rate>0&&this.rate<1?gc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(mp(n.shape,1,r))},()=>n,t.training||!1):n})}};e2.className="GaussianDropout";re.registerClass(e2);var t2=class extends Ke{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Pe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return gc(()=>{let r=Pe(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=xa(Ho(n),this.rate);o=mc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>Pe(e),t.training||!1)}return e})}};t2.className="AlphaDropout";re.registerClass(t2);function Ec(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=yg(e,t,n,r,a,s);else if(e.rank===3)i=gg(e,t,n,r,a,s);else if(e.rank===4)i=xg(e,t,n,r,a,s);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function mee(e,t,n,r,a=.001){return H(()=>{let s=ad(e,r),i=s.mean,o=s.variance;return[Ec(e,i,o,n,t,a),i,o]})}function Aee(e,t,n,r,a=.001){return H(()=>{let s=ad(e,r),i=s.mean,o=s.variance,l=[];for(let p of wr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let c=i.reshape(l),u=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[Ec(e,c,u,d,h,a),i,o]})}function yee(e,t,n,r,a=.001){return k.arraysEqual(r.slice().sort(),wr(0,e.rank-1))?mee(e,t,n,r,a):Aee(e,t,n,r,a)}var n2=class extends Ke{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=wt(e.betaInitializer||"zeros"),this.gammaInitializer=wt(e.gammaInitializer||"ones"),this.movingMeanInitializer=wt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=wt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Wt(e.betaConstraint),this.gammaConstraint=Wt(e.gammaConstraint),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer)}build(e){e=ft(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new U(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ut({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training,r=Pe(e),a=r.shape,s=a.length,i=wr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=ui(1,s);l[o]=a[o];let c=i.slice();c.sort();let u=!k.arraysEqual(c,wr(0,s).slice(0,s-1)),h=()=>{if(u){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,w=this.scale?this.gamma.read().reshape(l):null;return Ec(r,A,y,g,w,this.epsilon)}else return Ec(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,f]=yee(r,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(A,y,g)=>{H(()=>{let w=1-g,x=A.read(),_=x.sub(y).mul(w);A.write(x.sub(_))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Nt(this.betaInitializer),gammaInitializer:Nt(this.gammaInitializer),movingMeanInitializer:Nt(this.movingMeanInitializer),movingVarianceInitializer:Nt(this.movingVarianceInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer),betaConstraint:Lt(this.betaConstraint),gammaConstraint:Lt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};n2.className="BatchNormalization";re.registerClass(n2);var r2=class extends Ke{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=wt(e.betaInitializer||"zeros"),this.gammaInitializer=wt(e.gammaInitializer||"ones"),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ft(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a<this.axis.length;++a)this.axis[a]<0&&(this.axis[a]+=t);for(let a of this.axis)if(a<0||a>=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Ra(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=Pe(e),r=n.shape,a=r.length;return H(()=>{let s=!0,{mean:i,variance:o}=ad(n,this.axis,s),l=ui(1,a);for(let f of this.axis)l[f]=r[f];let c=f=>f!=null&&f.shape.length!==a&&this.axis!==[a-1]?f.reshape(l):f,u=c(this.gamma.read()),h=c(this.beta.read()),d=[],p=[];for(let f=0;f<a;++f)this.axis.indexOf(f)!==-1?(d.push(r[f]),p.push(1)):(d.push(1),p.push(r[f]));return i=i.tile(d),o=o.tile(d),u=u.tile(p),h=h.tile(p),Ec(n,i,o,h,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Nt(this.betaInitializer),gammaInitializer:Nt(this.gammaInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};r2.className="LayerNormalization";re.registerClass(r2);function gee(e,t,n){return H(()=>{if(e.rank!==4)throw new U(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new U("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=gr()),n!=="channelsLast"&&n!=="channelsFirst")throw new U(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],Zr(e,r)})}var a2=class extends Ke{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?gr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new U(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new U(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new U(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ut({ndim:4})]}computeOutputShape(e){e=ft(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return H(()=>gee(Pe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};a2.className="ZeroPadding2D";re.registerClass(a2);function Hp(e,t,n,r,a,s){return H(()=>{Et(a),Sb(s),jn(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=gr()),s==null&&(s="max"),e=Ny(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Eu(e,t,n,o):i=bu(e,t,n,o),a==="channelsFirst"&&(i=it(i,[0,3,1,2])),i})}function P3(e,t,n,r,a,s){return H(()=>{Et(a),Sb(s),jn(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=gr()),s==null&&(s="max"),e=F3(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Bf(e,t,n,o):i=Cf(e,t,n,o),a==="channelsFirst"&&(i=it(i,[0,4,1,2,3])),i})}var L3=class extends Ke{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new U(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Gt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new U(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Gt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,jn(this.padding),this.inputSpec=[new Ut({ndim:3})]}computeOutputShape(e){e=ft(e);let t=br(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return H(()=>{this.invokeCallHook(e,t),e=Ac(Pe(e),2);let n=this.poolingFunction(Pe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return wa(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},s2=class extends L3{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Et(a),jn(r),Hp(e,t,n,r,a,"max")}};s2.className="MaxPooling1D";re.registerClass(s2);var i2=class extends L3{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Et(a),jn(r),Hp(e,t,n,r,a,"avg")}};i2.className="AveragePooling1D";re.registerClass(i2);var W3=class extends Ke{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new U(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Gt(this.poolSize,"poolSize"),Gt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),jn(this.padding),this.inputSpec=[new Ut({ndim:4})]}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=br(t,this.poolSize[0],this.padding,this.strides[0]),n=br(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(Pe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},o2=class extends W3{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Et(a),jn(r),Hp(e,t,n,r,a,"max")}};o2.className="MaxPooling2D";re.registerClass(o2);var l2=class extends W3{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Et(a),jn(r),Hp(e,t,n,r,a,"avg")}};l2.className="AveragePooling2D";re.registerClass(l2);var B3=class extends Ke{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new U(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Gt(this.poolSize,"poolSize"),Gt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),jn(this.padding),this.inputSpec=[new Ut({ndim:5})]}computeOutputShape(e){e=ft(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=br(t,this.poolSize[0],this.padding,this.strides[0]),n=br(n,this.poolSize[1],this.padding,this.strides[1]),r=br(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(Pe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},u2=class extends B3{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Et(a),jn(r),P3(e,t,n,r,a,"max")}};u2.className="MaxPooling3D";re.registerClass(u2);var c2=class extends B3{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Et(a),jn(r),P3(e,t,n,r,a,"avg")}};c2.className="AveragePooling3D";re.registerClass(c2);var V3=class extends Ke{constructor(e){super(e);this.inputSpec=[new Ut({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},h2=class extends V3{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=Pe(e);return kt(n,1)})}};h2.className="GlobalAveragePooling1D";re.registerClass(h2);var d2=class extends V3{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=Pe(e);return Bn(n,1)})}};d2.className="GlobalMaxPooling1D";re.registerClass(d2);var U3=class extends Ke{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),this.inputSpec=[new Ut({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},p2=class extends U3{call(e,t){return H(()=>{let n=Pe(e);return this.dataFormat==="channelsLast"?kt(n,[1,2]):kt(n,[2,3])})}};p2.className="GlobalAveragePooling2D";re.registerClass(p2);var f2=class extends U3{call(e,t){return H(()=>{let n=Pe(e);return this.dataFormat==="channelsLast"?Bn(n,[1,2]):Bn(n,[2,3])})}};f2.className="GlobalMaxPooling2D";re.registerClass(f2);var H3=class extends Ke{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=_r(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},m2=class extends H3{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ft(e),e.length<3)throw new U(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ft(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return H(()=>(e=Pe(e),O3((n,r)=>[Pe(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};m2.className="TimeDistributed";re.registerClass(m2);function xee(e){hi(DY,"BidirectionalMergeMode",e)}var wee="concat",A2=class extends H3{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=_r(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=_r(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?wee:e.mergeMode,xee(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):An(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=D3(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new U("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Ut({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(r!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof mr;for(let l of s)if(l instanceof mr!==o)throw new U("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let h=super.apply(l,t);return this.inputSpec=u,h}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Nn(a,1));let i;return this.mergeMode==="concat"?i=HA([r,a]):this.mergeMode==="sum"?i=ie(r,a):this.mergeMode==="ave"?i=B(.5,ie(r,a)):this.mergeMode==="mul"?i=B(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){di(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),di(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=_r(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};A2.className="Bidirectional";re.registerClass(A2);function YY(e){return new bl(e)}function JY(e){return new vy(e)}function QY(e){return new wy(e)}function eJ(e){return new _y(e)}function tJ(e){return new by(e)}function nJ(e){return new Iy(e)}function rJ(e){return new ky(e)}function aJ(e){return new Pp(e)}function sJ(e){return new Nc(e)}function iJ(e){return new Sy(e)}function oJ(e){return new zp(e)}function lJ(e){return new Ey(e)}function uJ(e){return new Cy(e)}function cJ(e){return new Ry(e)}function hJ(e){return new Fy(e)}function dJ(e){return new Wy(e)}function pJ(e){return new Py(e)}function fJ(e){return new Up(e)}function mJ(e){return new zy(e)}function AJ(e){return new Ly(e)}function yJ(e){return new By(e)}function gJ(e){return new Vy(e)}function xJ(e){return new Uy(e)}function wJ(e){return new jy(e)}function _J(e){return new Gy(e)}function bJ(e){return new Xy(e)}function vJ(e){return new Yy(e)}function kJ(e){return new Ky(e)}function IJ(e){return new Zy(e)}function NJ(e){return new qy(e)}function TJ(e){return new Jy(e)}function SJ(e){return new n2(e)}function EJ(e){return new r2(e)}function CJ(e){return new a2(e)}function QA(e){return new i2(e)}function RJ(e){return QA(e)}function FJ(e){return QA(e)}function ey(e){return new l2(e)}function MJ(e){return ey(e)}function $J(e){return ey(e)}function ty(e){return new c2(e)}function DJ(e){return ty(e)}function OJ(e){return ty(e)}function zJ(e){return new h2(e)}function PJ(e){return new p2(e)}function Lb(e){return new d2(e)}function Wb(e){return new f2(e)}function Bb(e){return new s2(e)}function Vb(e){return new o2(e)}function LJ(e){return new u2(e)}function WJ(e){return new $y(e)}function BJ(e){return new Bp(e)}function VJ(e){return new Dy(e)}function UJ(e){return new Tc(e)}function HJ(e){return new My(e)}function jJ(e){return new Wp(e)}function GJ(e){return new Oy(e)}function qJ(e){return new Vp(e)}function XJ(e){return new Fr(e)}function KJ(e){return new Lp(e)}function ZJ(e){return new A2(e)}function YJ(e){return new m2(e)}var JJ=Lb,QJ=Wb,eQ=Bb,tQ=Vb;function nQ(e){return new Qy(e)}function rQ(e){return new e2(e)}function aQ(e){return new t2(e)}function sQ(e){return new Hy(e)}var o0={};ze(o0,{MAPE:()=>Ree,MSE:()=>$ee,binaryAccuracy:()=>_ee,binaryCrossentropy:()=>bee,categoricalAccuracy:()=>kee,categoricalCrossentropy:()=>Iee,cosineProximity:()=>See,mape:()=>Fee,meanAbsoluteError:()=>Eee,meanAbsolutePercentageError:()=>Cee,meanSquaredError:()=>Mee,mse:()=>Dee,precision:()=>Nee,recall:()=>Tee,sparseCategoricalAccuracy:()=>vee});function _ee(e,t){return oy(e,t)}function bee(e,t){return Qb(e,t)}function vee(e,t){return e3(e,t)}function kee(e,t){return ly(e,t)}function Iee(e,t){return uy(e,t)}function Nee(e,t){return Jb(e,t)}function Tee(e,t){return kQ(e,t)}function See(e,t){return sy(e,t)}function Eee(e,t){return Ep(e,t)}function Cee(e,t){return kl(e,t)}function Ree(e,t){return kl(e,t)}function Fee(e,t){return kl(e,t)}function Mee(e,t){return fi(e,t)}function $ee(e,t){return fi(e,t)}function Dee(e,t){return fi(e,t)}var l0={};ze(l0,{modelFromJSON:()=>aee});var u0={};ze(u0,{l1:()=>zee,l1l2:()=>Oee,l2:()=>Pee});function Oee(e){return new kc(e)}function zee(e){return lee(e)}function Pee(e){return uee(e)}var c0=class extends vl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof Qr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function jp(e,t){return e<t}function j3(e,t){return e>t}var h0=class extends c0{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=jp:this.mode==="max"?this.monitorFunc=j3:this.monitor.indexOf("acc")!==-1?this.monitorFunc=j3:this.monitorFunc=jp,this.monitorFunc===jp&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===jp?Infinity:-Infinity}async onEpochEnd(e,t){await $a(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Lee(e){return new h0(e)}var P4={earlyStopping:Lee},vr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(vr||(vr={}));var G3;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(G3||(G3={}));var y2={};function L4(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};y2[e]=n}function q3(e){return y2[e]}function W4(e){delete y2[e]}function I(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return gn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>gn(h,n,r,a));let c=gn(t.inputNames.slice(o)[0],n,r,a),u=c.dataSync();return s.type==="number"?u[0]:k.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function gn(e,t,n,r){let[a,s]=Mn(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[Gp(a,o)]);return i!==void 0?t[Gp(a,i)][s]:void 0}function Wee(e,t,n){return t[Gp(e,n.currentContextId)]}function ia(e,t){let[n,r]=Mn(e);return[Gp(n,t&&t.currentContextId),r]}function Gp(e,t){return t?`${e}-${t}`:e}function Mn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function qp(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function oa(e){return e.kept?e:Nr(e)}var X3={};ze(X3,{json:()=>Bee});var Bee=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],K3={};ze(K3,{json:()=>Vee});var Vee=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Z3={};ze(Z3,{json:()=>Uee});var Uee=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Y3={};ze(Y3,{json:()=>Hee});var Hee=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],J3={};ze(J3,{json:()=>jee});var jee=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Q3={};ze(Q3,{json:()=>Gee});var Gee=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],e7={};ze(e7,{json:()=>qee});var qee=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],t7={};ze(t7,{json:()=>Xee});var Xee=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],n7={};ze(n7,{json:()=>Kee});var Kee=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}],r7={};ze(r7,{json:()=>Zee});var Zee=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],a7={};ze(a7,{json:()=>Yee});var Yee=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],s7={};ze(s7,{json:()=>Jee});var Jee=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],i7={};ze(i7,{json:()=>Qee});var Qee=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],o7={};ze(o7,{json:()=>ete});var ete=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],l7={};ze(l7,{json:()=>tte});var tte=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],u7={};ze(u7,{json:()=>nte});var nte=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],c7={};ze(c7,{json:()=>rte});var rte=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],d7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[X3,K3,Z3,Y3,J3,Q3,e7,a7,r7,t7,s7,i7,o7,l7,u7,c7,n7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?a.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(f=>{let m=i[f];m.inputNames.forEach(A=>{let[y]=ia(A);m.inputs.push(i[y]),i[y].children.push(m)})}),Object.keys(u).length===0?h.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=ia(f),A=i[m];A!=null&&(A.signatureKey=u[f],l.push(A))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=ia(f),A=i[m];A&&(A.signatureKey=c[f],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=q3(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=g2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=g2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=N2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=N2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=w2(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=w2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=I2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=I2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=x2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=x2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=S2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=S2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=k2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=k2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=T2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=T2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=b2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=b2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=v2(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=v2(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=h7(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=h7(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&r.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=ia(c.name),h={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:_2(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,s.push(h),a[u]=h}),Object.keys(a).forEach(c=>{let u=a[c];u.inputNames.forEach(h=>{let[d]=ia(h);u.inputs.push(a[d]),a[d].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,h]=ia(o[c.name]),d=a[u];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function ate(e){let t=Q().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function p7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):ate(e);return t?n:n.toLowerCase()}function g2(e,t,n,r=!1){let a=e[t];return a!=null?p7(a.s,r):n}function x2(e,t,n){let r=e[t];return r?r.b:n}function w2(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function _2(e){switch(typeof e=="string"&&(e=vr[e]),e){case vr.DT_FLOAT:return"float32";case vr.DT_INT32:case vr.DT_INT64:case vr.DT_INT8:case vr.DT_UINT8:return"int32";case vr.DT_BOOL:return"bool";case vr.DT_DOUBLE:return"float32";case vr.DT_STRING:return"string";default:return null}}function h7(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function b2(e,t,n){let r=e[t];return r&&r.type?_2(r.type):n}function v2(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>_2(a)):n}function f7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function k2(e,t,n){let r=e[t];return r&&r.shape?f7(r.shape):n}function I2(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function N2(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>p7(s,r)):n}function T2(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>f7(a)):n}function S2(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var ste=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return gn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return gn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return w2(this.node.rawAttrs,e,t);if(n.s!=null)return g2(this.node.rawAttrs,e,t);if(n.b!=null)return x2(this.node.rawAttrs,e,t);if(n.shape!=null)return k2(this.node.rawAttrs,e,t);if(n.type!=null)return b2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return I2(this.node.rawAttrs,e,t);if(n.list.s!=null)return N2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return T2(this.node.rawAttrs,e,t);if(n.list.b!=null)return S2(this.node.rawAttrs,e,t);if(n.list.type!=null)return v2(this.node.rawAttrs,e,t)}return t}},ite=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ie(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[lh(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Uf(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[B(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[Ne(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[Df(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[qh(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[_e(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Uo(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Sr(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[Yr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[md(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ote=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Dt(I("x",e,t,n))];case"Acos":return[bf(I("x",e,t,n))];case"Acosh":return[vf(I("x",e,t,n))];case"Asin":return[If(I("x",e,t,n))];case"Asinh":return[Nf(I("x",e,t,n))];case"Atan":return[Tf(I("x",e,t,n))];case"Atan2":return[Sf(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[Ef(I("x",e,t,n))];case"Ceil":return[Rf(I("x",e,t,n))];case"Complex":return[Aa(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Iu(I("x",e,t,n))];case"Cosh":return[Yh(I("x",e,t,n))];case"Elu":return[Lo(I("x",e,t,n))];case"Erf":return[Of(I("x",e,t,n))];case"Exp":return[Wn(I("x",e,t,n))];case"Expm1":return[zf(I("x",e,t,n))];case"Floor":return[Wo(I("x",e,t,n))];case"Log":return[kn(I("x",e,t,n))];case"Log1p":return[td(I("x",e,t,n))];case"Imag":return[Qh(I("x",e,t,n))];case"Neg":return[vt(I("x",e,t,n))];case"Reciprocal":return[Hf(I("x",e,t,n))];case"Real":return[Fu(I("x",e,t,n))];case"Relu":return[Cr(I("x",e,t,n))];case"Round":return[jf(I("x",e,t,n))];case"Selu":return[ud(I("x",e,t,n))];case"Sigmoid":return[Jn(I("x",e,t,n))];case"Sin":return[cd(I("x",e,t,n))];case"Sign":return[qf(I("x",e,t,n))];case"Sinh":return[hd(I("x",e,t,n))];case"Softplus":return[Bo(I("x",e,t,n))];case"Sqrt":return[Kt(I("x",e,t,n))];case"Square":return[ht(I("x",e,t,n))];case"Tanh":return[zo(I("x",e,t,n))];case"Tan":return[Zf(I("x",e,t,n))];case"ClipByValue":return[pn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[od(I("x",e,t,n))];case"Rsqrt":return[ld(gn(e.inputNames[0],t,n))];case"Prod":return[sd(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Tu(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Ru(I("x",e,t,n),I("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function lr(e,t,n=""){k.assert(lte(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function lte(e,t){if(e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==-1&&t[n]!==-1&&e[n]!==t[n])return!1;return!0}var ute=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=Te(0),Vt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),lr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Vt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r<this.size();r++)e.push(r)}if(e.length===0)return fr([],[0].concat(this.elementShape));let n=this.readMany(e);return lr(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Tn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return fr([],[0].concat(this.elementShape));let t=[];for(let r=0;r<this.size();r++)t.push(r);let n=this.readMany(t);return lr(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),dt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,nr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];H(()=>{t=q(t,[1,n,a]);for(let o=0;o<e.length;++o){let l=o===0?0:r[o-1],c=[0,l,0],u=[1,e[o],a];s[o]=q(Fe(t,c,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Cc=class{constructor(e,t,n,r=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(a=>{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);lr(t,a.shape,"TensorList shape mismatch: "),Vt(a)}),this.idTensor=Te(0),this.maxNumElements=r,Vt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Cc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);return lr(e,this.elementShape,"TensorList shape mismatch: "),H(()=>{let r=this.tensors.map(a=>q(a,e));return Tn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=this.tensors.pop();return lr(n.shape,e,"TensorList shape mismatch: "),q(n,e)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(lr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Vt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);return lr(this.tensors[e].shape,t,"TensorList shape mismatch: "),this.tensors[e]}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);lr(this.elementShape,t.shape,"TensorList shape mismatch: "),Vt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);return lr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size()),e.length===0?fr([],[0].concat(this.elementShape)):H(()=>{let r=e.map(a=>q(this.tensors[a],n));return Tn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);return lr(this.elementShape,t,"TensorList shape mismatch: "),this.size()===0?fr([],[0].concat(this.elementShape)):H(()=>{let n=this.tensors.map(r=>q(r,t));return dt(n,0)})}};function cte(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);lr(a,t,"TensorList shape mismatch: ");let s=nr(e);return new Cc(s,t,r)}function hte(e,t,n){return new Cc([],e,t,n)}function dte(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Cc([],n,e.dtype,r),i=nr(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function pte(e,t,n){let r=0,a=t.map(l=>(r+=l,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${r}, and tensor's shape is: ${e.shape}`);let s=r===0?0:e.size/r,i=H(()=>{let l=[];e=q(e,[1,r,s]);for(let c=0;c<t.length;++c){let u=c===0?0:a[c-1],h=[0,u,0],d=[1,t[c],s];l[c]=q(Fe(e,h,d),n)}return e.dispose(),l}),o=new Cc([],n,e.dtype,t.length);for(let l=0;l<i.length;l++)o.setItem(l,i[l]);return o}var fte=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),a=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),a=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let h=c.map(p=>p.id);u.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return c}case"LoopCond":{let r=I("pred",e,t,n);return[oa(r)]}case"Switch":{let r=I("pred",e,t,n),a=I("data",e,t,n);return a.kept||(a=oa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>gn(a,t,n)!==void 0);if(r){let a=gn(r,t,n);return[oa(a)]}return}case"Enter":{let r=I("frameName",e,t,n),a=I("tensor",e,t,n);return n.enterFrame(r),[oa(a)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[oa(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[oa(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),a=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new ute(c,a,r,s,l,i,o);return n.addTensorArray(u),[u.idTensor,Te(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=I("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),a=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[Te(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),a=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=dte(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=hte(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),a=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=cte(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),a=n.getTensorList(r.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),a=I("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=pte(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function m7(e,t,n){let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let c=I("strides",e,t,n),u=qp(e,t,n),h=I("dataFormat",e,t,n).toUpperCase(),d=I("dilations",e,t,n),[p,f]=I("args",e,t,n),m=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:h,dilations:d,biasArg:p,preluArg:f,activationFunc:a,leakyreluAlpha:m}}var mte=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Kh(I("x",e,t,n),I("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=qp(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[Kr(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=m7(e,t,n);return[_a.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=m7(e,t,n);return[_a.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),s=qp(e,t,n);return[Zh(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=qp(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[Po(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[Ff(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[bu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Eu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=Mg(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Cf(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Bf(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dilations",e,t,n),i=r[1],o=r[2],l=s[1],c=s[2];return[$f(I("x",e,t,n),I("filter",e,t,n),[i,o],a,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ate=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),s=I("value",e,t,n);return[Nu(r,s,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("num",e,t,n);return[Eg(r,a,s)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),s=I("seed",e,t,n);return[$g(r,a,s)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[Oo(r,a,s,i)]}case"Ones":return[Er(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[In(I("x",e,t,n))];case"RandomUniform":return[Ho(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("step",e,t,n);return[id(r,a,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Ad(r,a,s,I("dtype",e,t,n),i)]}case"Zeros":return[Ct(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ge(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function E2(e,t,n){let r=I("boxes",e,t,n),a=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var yte=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=E2(e,t,n),c=await Mt.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=E2(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Mt.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=E2(e,t,n);return[await Mt.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=ye(I("condition",e,t,n),"bool"),a=[await Qf(r)];return r.dispose(),a}case"ListDiff":return zg(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},gte=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),s=I("sorted",e,t,n),i=Yf(r,a,s);return[i.values,i.indices]}case"Unique":{let r=I("x",e,t,n),a=yd(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),s=yd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},xte=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[gn(e.name,t,n)||r];case"Placeholder":return[gn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[oa(c)]}case"IdentityN":return I("x",e,t,n).map(c=>oa(c));case"Snapshot":let a=I("x",e,t,n);return[oa(a)];case"Shape":return[Qt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>Qt(c.shape));case"Size":return[Te(I("x",e,t,n).size,"int32")];case"Rank":return[Te(I("x",e,t,n).rank,"int32")];case"NoOp":return[Te(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;c<i.length;c++)console.log(Array.prototype.slice.call(i[c].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},wte=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Te(0),this.tensorMap=new Map,Vt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),H(()=>{let r=nr(t),a=n.length,s=r.length;k.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i<a;i++){let o=n[i],l=r[i];Vt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return H(()=>{let r=[];for(let a=0;a<n.length;a++){let s=n[a],i=this.findWithDefault(s,t);r.push(i)}return Tn(r)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},_te=async(e,t,n,r)=>{switch(e.op){case"HashTable":case"HashTableV2":{let a=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new wte(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},bte=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Mt.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Mt.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Mt.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},vte=(e,t,n)=>{switch(e.op){case"Equal":return[ya(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Hs(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[er(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[xa(I("a",e,t,n),I("b",e,t,n))];case"Less":return[ed(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Us(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[tr(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Su(I("a",e,t,n))];case"LogicalOr":return[rd(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[fn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kte=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Xe(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Transpose":return[it(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[_a.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ite=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Bs(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Bs(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Lf(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[$u(I("x",e,t,n))];case"LogSoftmax":return[nd(I("x",e,t,n))];case"SparseToDense":return[em(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nte=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Bn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[kt(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Vo(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ee(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Xh(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[wu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[_u(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[kf(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[sd(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Jh(I("x",e,t,n),i,o,l)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),s=I("size",e,t,n);return[wg(r,a,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[kg(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tte=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,r),[dt(s,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[Vs(r,ye(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[Vs(s,ye(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i<r.length;i++)r[i]&&a.push(i);let s=I("x",e,t,n);return[Nn(s,a)]}case"ReverseV2":{let r=I("axis",e,t,n),a=I("x",e,t,n);return[Nn(a,r)]}case"Slice":{let r=I("begin",e,t,n),a=I("size",e,t,n);return[Fe(I("x",e,t,n),r,a)]}case"StridedSlice":{let r=I("begin",e,t,n),a=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),c=I("newAxisMask",e,t,n),u=I("shrinkAxisMask",e,t,n),h=I("x",e,t,n);return[Kf(h,r,a,s,i,o,l,c,u)]}case"Pack":return H(()=>{let r=I("axis",e,t,n),a=I("tensors",e,t,n),s=a[0].shape,i=wa(a[0]).shape,o=a.map(l=>{let c=k.arraysEqual(l.shape,s);if(!c&&!k.arraysEqual(wa(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:q(l,s)});return[Tn(o,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return nr(a,r)}case"Tile":{let r=I("reps",e,t,n);return[ga(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return rn(s,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),s=I("shape",e,t,n);return[Lg(r,a,s)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[Wg(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[em(r,s,a,s.dtype===i.dtype?i:ye(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ste=(e,t,n)=>{switch(e.op){case"FFT":return[Du(I("x",e,t,n))];case"IFFT":return[jo(I("x",e,t,n))];case"RFFT":return[Ou(I("x",e,t,n))];case"IRFFT":return[fd(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ete=(e,t,n)=>{switch(e.op){case"Cast":return[ye(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[vn(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[wa(I("x",e,t,n),r)]}case"Reshape":return[q(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Vf(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[Zr(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[Cu(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[vu(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[Mf(I("x",e,t,n),r,a)]}case"BroadcastTo":return[ku(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function A7(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return H(()=>ite(s,i,o));case"basic_math":return H(()=>ote(s,i,o));case"control":return fte(s,i,o);case"convolution":return H(()=>mte(s,i,o));case"creation":return H(()=>Ate(s,i,o));case"dynamic":return yte(s,i,o);case"evaluation":return H(()=>gte(s,i,o));case"image":return H(()=>bte(s,i,o));case"graph":return H(()=>xte(s,i,o));case"logical":return H(()=>vte(s,i,o));case"matrices":return H(()=>kte(s,i,o));case"normalization":return H(()=>Ite(s,i,o));case"reduction":return H(()=>Nte(s,i,o));case"slice_join":return H(()=>Tte(s,i,o));case"spectral":return H(()=>Ste(s,i,o));case"transformation":return H(()=>Ete(s,i,o));case"hash_table":return _te(s,i,o,r);case"custom":let l=q3(s.op);if(l&&l.customExecutor)return l.customExecutor(new ste(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var y7=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function x7(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(d=>Mn(d)[0]),u=[];r!=null&&(u=r.map(d=>Mn(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((g7(d)||Cte(d)||Rte(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&c.indexOf(d.name)===-1&&u.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Fte(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(u=>Mn(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{r.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{r.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{r.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return c}var Mte=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],$te=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Dte=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function g7(e){return Mte.indexOf(e.op)>=0}function Cte(e){return $te.indexOf(e.op)>=0}function Rte(e){return Dte.indexOf(e.op)>=0}var C2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new C2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=x7(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Fte(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(u=>this.graph.nodes[Mn(u)[0]]),a=t.map(u=>Mn(u)[0]),s=a.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return H(()=>{let u=new y7(this.weightMap,l,c,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,A]=Mn(f),y=[];y[A]=e[f],h[m]=y});let d=this.getFrozenTensorIds(h),p={};for(let f=0;f<o.length;f++){let m=o[f];if(!h[m.name]){let A=A7(m,h,u,this._resourceManager);if(k.isPromise(A))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);h[m.name]=A,this.checkTensorForDisposal(m.name,m,h,u,d,a,p)}}return this.parent==null&&u.dispose(d),t.map(f=>gn(f,h,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Wee(o.name,n,r);l!=null&&l.forEach(c=>{if(c&&!a.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new y7(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>gn(h,i,s)),l=o.map(h=>h.id),c=Object.keys(e).map(h=>e[h].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.isDisposed&&!u.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[Mn(g)[0]]),i=n.map(g=>Mn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:h}=x7(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[w,x]=Mn(g),_=[];_[x]=e[g],p[w]=_});let f={},m=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,m,i,f,l);await Promise.all(g)}u==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!g7(g)&&!gn(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw u!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${c}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let h="";if(u.node.op==="Enter"&&I("isConstant",u.node,r,n)&&([h]=ia(u.node.name,n)),r[u.node.name]==null){let d=A7(u.node,r,n,this._resourceManager);h||([h]=ia(u.node.name,n));let p=n.currentContext;k.isPromise(d)?c.push(d.then(f=>(r[h]=f,n.currentContext=p,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l),f))):(r[h]=d,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l))}else this.processChildNodes(u.node,t,n,r,a,l)}return c}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=ia(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!gn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!gn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=Mn(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&k.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=Mn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Mn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Ote=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},zte="?tfjs-format=file",Pte="model.json",d0=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Ote}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=dn.browserHTTPRequest(e,this.loadOptions);else{let t=dn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(dn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=dn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new C2(d7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=d7.Instance.transformGraph(e.modelInitializer);this.initializer=new C2(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=dn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof tt)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function dr(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Pte}${zte}`);let n=new d0(e,t);return await n.load(),n}var B4="3.0.0",p0={};ze(p0,{CSVDataset:()=>_7,Dataset:()=>Nl,FileDataSource:()=>b7,TextLineDataset:()=>w7,URLDataSource:()=>v7,array:()=>Lte,csv:()=>Bte,func:()=>Vte,generator:()=>Ute,microphone:()=>jte,version_data:()=>Gte,webcam:()=>Hte,zip:()=>Wte});var qte=Xo(m0()),Xte=Xo(m0());function Kte(e,t){return Xp(e,t)}function Xp(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Tl(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=Xp(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function Zte(e,t=I7){return k7(e,t)}function k7(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Tl(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(c=>c[i]),l=k7(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function I7(e){return e===null?null:Tl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function N7(e,t){let n=new Map;Xp(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(k.isPromise(a)){let s=await a;n.set(r,s)}}return Xp(e,t,n)}function Tl(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof tt))}function Jte(e){return e==null||Yte(e)||Array.isArray(e)||typeof e=="object"&&e instanceof tt||k.isTypedArray(e)}function Yte(e){return e===null||typeof e!="object"&&typeof e!="function"}function ene(e){return Kte(e,Qte)}function Qte(e){return e instanceof tt?{value:e.clone(),recurse:!1}:Tl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var T7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},R2=class extends T7{constructor(){super(R2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;r<n;r++)t[r]=this.get(this.wrap(this.begin+r));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};R2.INITIAL_CAPACITY=32;function S7(e){return new tne(e)}function F2(e){return new nne(e)}function rne(e,t){return new E7(e,t)}function sne(e,t=Pa.FAIL){return new ane(e,t)}var qt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new dne(this,e)}filter(e){return new cne(this,e)}map(e){return new hne(this,e)}mapAsync(e){return new C7(this,e)}serialMapAsync(e){return new C7(this,e).serial()}flatmap(e){return new pne(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new une(this,e,t)}columnMajorBatch(e,t=!0,n=I7){return this.rowMajorBatch(e,t).map(r=>Zte(r,n))}concatenate(e,t){return new E7(S7([this,e]),t)}take(e){return e<0||e==null?this:new lne(this,e)}skip(e){return e<0||e==null?this:new one(this,e)}prefetch(e){return new R7(this,e)}shuffle(e,t){return new fne(this,e,t)}serial(){return new ine(this)}},tne=class extends qt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:ene(e),done:!1}}},nne=class extends qt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},ine=class extends qt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},one=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Me(e.value)}return this.upstream.next()}},lne=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},une=class extends qt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},cne=class extends qt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Me(e.value)}}},hne=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=pr.getTensorsInContainer(e.value),n=this.transform(e.value),r=pr.getTensorsInContainer(n);for(let a of t)pr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},dne=class extends qt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},C7=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=pr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=pr.getTensorsInContainer(n);for(let a of t)pr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},M2=class extends qt{constructor(){super();this.outputQueue=new R2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},pne=class extends M2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=pr.getTensorsInContainer(e.value),n=this.transform(e.value),r=pr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)pr.isTensorInList(a,r)||a.dispose();return!0}},E7=class extends qt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Pa;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Pa||(Pa={}));var ane=class extends qt{constructor(e,t=Pa.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof qt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await N7(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Pa.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Pa.SHORTEST:return{value:null,done:!0};case Pa.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},R7=class extends qt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new T7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},fne=class extends R7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Xte.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Nl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),$n(async()=>(await n.iterator()).columnMajorBatch(e,t,mne),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,$n(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,$n(async()=>(await t.iterator()).filter(r=>H(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return $n(async()=>(await t.iterator()).map(n=>H(()=>e(n))),this.size)}mapAsync(e){let t=this;return $n(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return $n(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,$n(async()=>{let r=F2(async()=>({value:await t.iterator(),done:!1}));return rne(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,$n(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=qte.alea(t||k.now().toString());return $n(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,$n(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Nl.MAX_BUFFER_SIZE=1e4;function $n(e,t=null){return new class extends Nl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function Lte(e){return $n(async()=>S7(e),e.length)}function Wte(e){if(!Tl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return $n(async()=>{let n=await N7(e,r=>{if(r instanceof Nl)return{value:r.iterator(),recurse:!1};if(Tl(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return sne(n,Pa.SHORTEST)},t)}function mne(e){if(e===null)return null;let t=e[0];return Jte(t)?{value:Ane(e),recurse:!1}:{value:null,recurse:!0}}function Ane(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof tt?Tn(e):fr(e)}var w7=class extends Nl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},Kp='"',Rc=Symbol("out"),F7=Symbol("field"),Zp=Symbol("quote"),$2=Symbol("quoteafterquote"),M7=Symbol("quoteinquote"),_7=class extends Nl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new w7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a<this.fullColumnNames.length;a++){let s=this.fullColumnNames[a],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[a],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let c=Number(o);if(isNaN(c))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=c;else switch(i.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(o);break;default:l=c}}i&&i.isLabel?r[s]=l:n[s]=l}}return Object.keys(r).length===0?n:{xs:n,ys:r}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],r=0,a=e.length,s=Rc;for(let i=0;i<a;i++)switch(s){case Rc:switch(e.charAt(i)){case Kp:r=i+1,s=Zp;break;case this.delimiter:if(r=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Rc;break;default:s=F7,r=i;break}break;case F7:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i)),s=Rc,r=i+1;break;default:}break;case Zp:switch(e.charAt(i)){case Kp:s=$2;break;default:}break;case $2:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i-1)),s=Rc,r=i+1;break;case Kp:s=Zp;break;default:s=M7;break}break;case M7:switch(e.charAt(i)){case Kp:s=Zp;break;default:}break;default:}if(s===$2?n.push(e.substring(r,a-1)):n.push(e.substring(r)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},$7=class extends qt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Q().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new $7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),fr(n,t)}},D7=class extends qt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Qt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=hr([s,a,o,i],[1,4])}else this.cropBox=hr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Q().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new D7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Jl.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return H(()=>{let t=vn(ye(e,"float32"),0),n;n=Mt.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return q(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},O7=class{},z7=class extends qt{split(e){return new yne(this,e)}},yne=class extends z7{constructor(e,t){super();this.upstream=e,this.impl=new gne(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},gne=class extends M2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},wne=class extends qt{decodeUTF8(){return new xne(this)}},xne=class extends z7{constructor(e){super();this.upstream=e,this.impl=new _ne(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},_ne=class extends M2{constructor(e){super();if(this.upstream=e,Q().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=v8();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Q().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},P7=class extends wne{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(Q().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function vne(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=bne(e));let a=await k.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new P7(s,t)}else throw new Error(a.statusText)}var bne=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function L7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var b7=class extends O7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(L7(this.input)&&Q().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new P7(this.input,this.options)}},v7=class extends O7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return L7(this.url)?new b7(this.url,this.fileOptions).iterator():vne(this.url,this.fileOptions)}};function Bte(e,t={}){return new _7(new v7(e),t)}function Vte(e){let t=F2(e);return $n(async()=>t)}function Ute(e){return $n(async()=>{let t=await e();return F2(()=>t.next())})}async function Hte(e,t){return D7.create(e,t)}async function jte(e){return $7.create(e)}var Gte="3.0.0",V4={tfjs:k8,"tfjs-core":I8,"tfjs-data":N8,"tfjs-layers":T8,"tfjs-converter":S8,"tfjs-backend-cpu":jg,"tfjs-backend-webgl":Xg,"tfjs-backend-wasm":Jg},cn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function kne(){if(!Ag(cn.name)){Ye("backend registration:",cn.name);try{cn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(cn.width,cn.height):document.createElement("canvas")}catch(e){Ye("error: cannot create canvas:",e);return}try{cn.gl=cn.canvas.getContext("webgl2",cn.webGLattr)}catch(e){Ye("error: cannot get WebGL2 context:",e);return}try{rm(2,cn.gl)}catch(e){Ye("error: cannot set WebGL2 context:",e);return}try{let e=new am(cn.gl);xu(cn.name,()=>new sm(e),cn.priority)}catch(e){Ye("error: cannot register WebGL backend:",e);return}try{yu("webgl").forEach(e=>{let t={...e,backendName:cn.name};Do(t)})}catch(e){Ye("error: cannot update WebGL backend registration:",e);return}try{bn.set("WEBGL_VERSION",2),bn.set("WEBGL_MAX_TEXTURE_SIZE",cn.gl.getParameter(cn.gl.MAX_TEXTURE_SIZE)),bn.set("WEBGL_FORCE_F16_TEXTURES",!0),bn.set("WEBGL_PACK_DEPTHWISECONV",!0)}catch(e){Ye("error: cannot set WebGL backend flags:",e);return}Ye("backend registered:",cn.name)}}var D2=We(kv()),Fc=We(Iv()),Mc=We(Nv()),$c=We(Tv()),Dc=We(Sv()),O2=We(Dv());function df(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function uh(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Pv(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Mt.cropAndResize(t,s,[0],n)}function Ov(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function pf(e,t=1.5){let n=uh(e),r=df(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function ff(e){let t=uh(e),n=df(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],s=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:s,palmLandmarks:e.palmLandmarks}}function Ine(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Lv(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Ine(n)}var W7=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function qa(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function Nne(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function B7(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(qa(e[a],Nne(t,s)))}return n}function tg(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=W7(t[0],t[1]),i=B7(s,a),o=W7(-t[0],-t[1]);return B7(i,o)}function Wv(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-qa(t[0],n),-qa(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function ng(e,t){return[qa(e,t[0]),qa(e,t[1])]}var z2=We(Uv()),Yp=We(Hv()),V7=We(Gv()),Tne=We(Kl()),P2={};Z2(P2,{default:()=>U7});var U7={backend:"webgl",wasmPath:"../assets/",async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"../models/blazeface-back.json",inputSize:256,rotation:!1,maxFaces:10,skipFrames:11,minConfidence:.5,iouThreshold:.2,scoreThreshold:.5},mesh:{enabled:!0,modelPath:"../models/facemesh.json",inputSize:192,returnRawData:!1},iris:{enabled:!0,modelPath:"../models/iris.json",inputSize:64},age:{enabled:!0,modelPath:"../models/age-ssrnet-imdb.json",inputSize:64,skipFrames:31},gender:{enabled:!0,minConfidence:.1,modelPath:"../models/gender-ssrnet-imdb.json",inputSize:64,skipFrames:41},emotion:{enabled:!0,inputSize:64,minConfidence:.2,skipFrames:21,modelPath:"../models/emotion-large.json"},embedding:{enabled:!1,inputSize:112,modelPath:"../models/mobilefacenet.json"}},body:{enabled:!0,modelPath:"../models/posenet.json",inputSize:257,maxDetections:10,scoreThreshold:.5,nmsRadius:20,outputStride:16,modelType:"MobileNet"},hand:{enabled:!0,rotation:!1,inputSize:256,skipFrames:12,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"../models/handdetect.json"},skeleton:{modelPath:"../models/handskeleton.json"}}},H7=`
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,j7=`
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
2Q==`,Sne="0.11.1",At=()=>typeof performance!="undefined"?performance.now():parseInt(Number(process.hrtime.bigint())/1e3/1e3);function Sl(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Sl(s,i):n[a]=i}),n),{})}var G7=class{constructor(e={}){this.tf=rg,this.version=Sne,this.config=Sl(U7,e),this.fx=null,this.state="idle",this.numTensors=0,this.analyzeMemoryLeaks=!1,this.checkSanity=!1,this.firstRun=!0,this.perf={},this.models={facemesh:null,posenet:null,handpose:null,iris:null,age:null,gender:null,emotion:null},this.facemesh=D2,this.age=Fc,this.gender=Mc,this.emotion=$c,this.body=O2,this.hand=z2}profile(){return this.config.profile?Tne.data:{}}analyze(...e){if(!this.analyzeMemoryLeaks)return;let t=Ln().state.numTensors,n=this.numTensors;this.numTensors=t;let r=t-n;r!==0&&Ye(...e,r)}sanity(e){if(!this.checkSanity)return null;if(!e)return"input is not defined";if(bn.flags.IS_NODE&&!(e instanceof tt))return"input must be a tensor";try{Gh()}catch(t){return"backend not loaded"}return null}simmilarity(e,t){return this.config.face.embedding.enabled?Dc.simmilarity(e,t):0}async load(e){this.state="load";let t=At();e&&(this.config=Sl(this.config,e)),this.firstRun&&(Ye(`version: ${this.version} TensorFlow/JS version: ${dg}`),await this.checkBackend(!0),bn.flags.IS_BROWSER&&(Ye("configuration:",this.config),Ye("tf flags:",bn.flags))),this.config.async?[this.models.facemesh,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.posenet,this.models.handpose]=await Promise.all([this.models.facemesh||(this.config.face.enabled?D2.load(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?Fc.load(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?Mc.load(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?$c.load(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?Dc.load(this.config):null),this.models.posenet||(this.config.body.enabled?O2.load(this.config):null),this.models.handpose||(this.config.hand.enabled?z2.load(this.config):null)]):(this.config.face.enabled&&!this.models.facemesh&&(this.models.facemesh=await D2.load(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await Fc.load(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await Mc.load(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await $c.load(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await Dc.load(this.config)),this.config.body.enabled&&!this.models.posenet&&(this.models.posenet=await O2.load(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await z2.load(this.config))),this.firstRun&&(Ye("tf engine state:",Ln().state.numBytes,"bytes",Ln().state.numTensors,"tensors"),this.firstRun=!1);let n=Math.trunc(At()-t);n>(this.perf.load||0)&&(this.perf.load=n)}async checkBackend(e){if(this.config.backend&&this.config.backend!==""&&e||Gh()!==this.config.backend){let t=At();this.state="backend",Ye("setting backend:",this.config.backend),this.config.backend==="wasm"&&(Ye("settings wasm path:",this.config.wasmPath),Yg(this.config.wasmPath),await Q().getAsync("WASM_HAS_SIMD_SUPPORT")||Ye("warning: wasm simd support is not enabled")),this.config.backend==="humangl"&&kne();try{await fg(this.config.backend)}catch(n){Ye("error: cannot set backend:",this.config.backend,n)}if(pg(),Gh()==="webgl"){this.config.deallocate&&(Ye("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),bn.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1)),bn.set("WEBGL_FORCE_F16_TEXTURES",!0),bn.set("WEBGL_PACK_DEPTHWISECONV",!0);let n=await _f().getGPGPUContext().gl;Ye(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}await mg(),this.perf.backend=Math.trunc(At()-t)}}async detectFace(e){var t;let n,r,a,s,i,o=[];this.state="run:face",n=At();let l=await((t=this.models.facemesh)==null?void 0:t.estimateFaces(e,this.config));this.perf.face=Math.trunc(At()-n);for(let c of l){if(this.analyze("Get Face"),!c.image||c.image.isDisposedInternal){Ye("Face object is disposed:",c.image);continue}this.analyze("Start Age:"),this.config.async?r=this.config.face.age.enabled?Fc.predict(c.image,this.config):{}:(this.state="run:age",n=At(),r=this.config.face.age.enabled?await Fc.predict(c.image,this.config):{},this.perf.age=Math.trunc(At()-n)),this.analyze("Start Gender:"),this.config.async?a=this.config.face.gender.enabled?Mc.predict(c.image,this.config):{}:(this.state="run:gender",n=At(),a=this.config.face.gender.enabled?await Mc.predict(c.image,this.config):{},this.perf.gender=Math.trunc(At()-n)),this.analyze("Start Emotion:"),this.config.async?s=this.config.face.emotion.enabled?$c.predict(c.image,this.config):{}:(this.state="run:emotion",n=At(),s=this.config.face.emotion.enabled?await $c.predict(c.image,this.config):{},this.perf.emotion=Math.trunc(At()-n)),this.analyze("End Emotion:"),this.analyze("Start Embedding:"),this.config.async?i=this.config.face.embedding.enabled?Dc.predict(c.image,this.config):{}:(this.state="run:embedding",n=At(),i=this.config.face.embedding.enabled?await Dc.predict(c.image,this.config):{},this.perf.embedding=Math.trunc(At()-n)),this.analyze("End Emotion:"),this.config.async&&([r,a,s,i]=await Promise.all([r,a,s,i])),this.analyze("Finish Face:"),c.image.dispose(),this.config.face.iris.enabled||(delete c.annotations.leftEyeIris,delete c.annotations.rightEyeIris);let u=c.annotations.leftEyeIris&&c.annotations.rightEyeIris?11.7*Math.max(Math.abs(c.annotations.leftEyeIris[3][0]-c.annotations.leftEyeIris[1][0]),Math.abs(c.annotations.rightEyeIris[4][1]-c.annotations.rightEyeIris[2][1])):0;o.push({confidence:c.confidence,box:c.box,mesh:c.mesh,boxRaw:c.boxRaw,meshRaw:c.meshRaw,annotations:c.annotations,age:r.age,gender:a.gender,genderConfidence:a.confidence,emotion:s,embedding:i,iris:u!==0?Math.trunc(u)/100:0}),this.analyze("End Face")}return this.analyze("End FaceMesh:"),this.config.async&&(this.perf.face&&delete this.perf.face,this.perf.age&&delete this.perf.age,this.perf.gender&&delete this.perf.gender,this.perf.emotion&&delete this.perf.emotion),o}async image(e,t={}){this.state="image",this.config=Sl(this.config,t);let n=V7.process(e,this.config);return n.tensor.dispose(),n.canvas}async detect(e,t={}){return new Promise(async n=>{var r,a,s,i;this.state="config";let o;this.config=Sl(this.config,t),this.state="check";let l=this.sanity(e);l&&(Ye(l,e),n({error:l}));let c,u,h,d=At();await this.checkBackend(),await this.load(),this.config.scoped&&Ln().startScope(),this.analyze("Start Scope:"),o=At();let p=V7.process(e,this.config);if(!p||!p.tensor){Ye("could not convert input to tensor"),n({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(At()-o),this.analyze("Get Image:"),this.config.async?(h=this.config.face.enabled?this.detectFace(p.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",o=At(),h=this.config.face.enabled?await this.detectFace(p.tensor):[],this.perf.face=Math.trunc(At()-o)),this.analyze("Start Body:"),this.config.async?(c=this.config.body.enabled?(r=this.models.posenet)==null?void 0:r.estimatePoses(p.tensor,this.config):[],this.perf.body&&delete this.perf.body):(this.state="run:body",o=At(),c=this.config.body.enabled?await((a=this.models.posenet)==null?void 0:a.estimatePoses(p.tensor,this.config)):[],this.perf.body=Math.trunc(At()-o)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?(s=this.models.handpose)==null?void 0:s.estimateHands(p.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",o=At(),u=this.config.hand.enabled?await((i=this.models.handpose)==null?void 0:i.estimateHands(p.tensor,this.config)):[],this.perf.hand=Math.trunc(At()-o)),this.analyze("End Hand:"),this.config.async&&([h,c,u]=await Promise.all([h,c,u])),p.tensor.dispose(),this.config.scoped&&Ln().endScope(),this.analyze("End Scope:");let f=[];this.config.gesture.enabled&&(o=At(),f=[...Yp.face(h),...Yp.body(c),...Yp.hand(u),...Yp.iris(h)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(At()-o)),this.perf.total=Math.trunc(At()-d),this.state="idle",n({face:h,body:c,hand:u,gesture:f,performance:this.perf,canvas:p.canvas})})}async warmupBitmap(){let e=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(s=>s.blob()),t,n;switch(this.config.warmup){case"face":t=await e(H7);break;case"full":t=await e(j7);break;default:t=null}if(t){let r=await createImageBitmap(t);n=await this.detect(r,P2),r.close()}return n}async warmupCanvas(){return new Promise(e=>{let t,n=0;switch(this.config.warmup){case"face":n=256,t="data:image/jpeg;base64,"+H7;break;case"full":n=1200,t="data:image/jpeg;base64,"+j7;break;default:t=null}let r=new Image(n,n);r.onload=()=>{let a=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(n,n):document.createElement("canvas");a.width=n,a.height=n;let s=a.getContext("2d");s.drawImage(r,0,0);let i=s.getImageData(0,0,n,n);this.detect(i,P2).then(o=>e(o))},t?r.src=t:e(null)})}async warmup(e){let t=At();e&&(this.config=Sl(this.config,e));let n=this.config.videoOptimized;this.config.videoOptimized=!1;let r;typeof createImageBitmap=="function"?r=await this.warmupBitmap():r=await this.warmupCanvas(),this.config.videoOptimized=n;let a=At();return Ye("Warmup",this.config.warmup,Math.round(a-t),"ms",r),r}};async function Ene(e,t,n){if(!e)return;let r=t.getContext("2d");r.font=n.baseFont,r.fillStyle=n.baseLabel;let a=1;for(let s=0;s<e.length;s++){let[i,o]=Object.entries(e[s]);if(o.length>1&&o[1].length>0){let l=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${l}: ${o[1]}`;r.fillStyle="black",r.fillText(c,8,2+a*n.baseLineHeight),r.fillStyle=n.baseLabel,r.fillText(c,6,0+a*n.baseLineHeight),a+=1}}}async function Cne(e,t,n,r){if(!e)return;let a=t.getContext("2d");for(let s of e){a.font=n.baseFont,a.strokeStyle=n.baseColor,a.fillStyle=n.baseColor,a.lineWidth=n.baseLineWidth,a.beginPath(),n.drawBoxes&&a.rect(s.box[0],s.box[1],s.box[2],s.box[3]);let i=[];if(s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}i.length===0&&i.push("face"),a.fillStyle=n.baseLabel;for(let o=0;o<i.length;o++)a.fillStyle="black",a.fillText(i[o],s.box[0]+1,s.box[1]-(i.length-o)*n.baseLineHeight+6),a.fillStyle=n.baseLabel,a.fillText(i[o],s.box[0]+0,s.box[1]-(i.length-o)*n.baseLineHeight+5);if(a.fillStyle=n.baseColor,a.stroke(),a.lineWidth=1,s.mesh){if(n.drawPoints)for(let o of s.mesh)a.fillStyle=n.useDepth?`rgba(${127.5+2*o[2]}, ${127.5-2*o[2]}, 255, 0.5)`:n.baseColor,a.beginPath(),a.arc(o[0],o[1],2,0,2*Math.PI),a.fill();if(n.drawPolygons){for(let o=0;o<r.length/3;o++){let l=[r[o*3+0],r[o*3+1],r[o*3+2]].map(u=>s.mesh[u]),c=new Path2D;c.moveTo(l[0][0],l[0][1]);for(let u of l)c.lineTo(u[0],u[1]);c.closePath(),a.strokeStyle=n.useDepth?`rgba(${127.5+2*l[0][2]}, ${127.5-2*l[0][2]}, 255, 0.3)`:n.baseColor,a.stroke(c),n.fillPolygons&&(a.fillStyle=n.useDepth?`rgba(${127.5+2*l[0][2]}, ${127.5-2*l[0][2]}, 255, 0.3)`:n.baseColor,a.fill(c))}if(s.annotations&&s.annotations.leftEyeIris){a.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.baseColor,a.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;a.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),n.fillPolygons&&(a.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.baseColor,a.fill())}if(s.annotations&&s.annotations.rightEyeIris){a.strokeStyle=n.useDepth?"rgba(255, 200, 255, 0.3)":n.baseColor,a.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;a.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),a.stroke(),n.fillPolygons&&(a.fillStyle=n.useDepth?"rgba(255, 255, 200, 0.3)":n.baseColor,a.fill())}}}}}var La=[];async function Rne(e,t,n){if(!e)return;let r=t.getContext("2d");r.lineJoin="round";for(let a=0;a<e.length;a++){if(!La[a]&&n.buffered&&(La[a]={...e[a]}),r.fillStyle=n.baseColor,r.strokeStyle=n.baseColor,r.font=n.baseFont,r.lineWidth=n.baseLineWidth,n.drawPoints)for(let s=0;s<e[a].keypoints.length;s++)r.beginPath(),n.buffered?(La[a].keypoints[s].position.x=(La[a].keypoints[s].position.x+e[a].keypoints[s].position.x)/2,La[a].keypoints[s].position.y=(La[a].keypoints[s].position.y+e[a].keypoints[s].position.y)/2,r.arc(La[a].keypoints[s].position.x,La[a].keypoints[s].position.y,2,0,2*Math.PI)):r.arc(e[a].keypoints[s].position.x,e[a].keypoints[s].position.y,2,0,2*Math.PI),r.fill();if(n.drawPolygons){let s=new Path2D,i,o;i=e[a].keypoints.find(l=>l.part==="leftShoulder"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="rightShoulder"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="rightHip"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="leftHip"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="leftShoulder"),o&&s.lineTo(o.position.x,o.position.y)),i=e[a].keypoints.find(l=>l.part==="leftHip"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="leftKnee"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="leftAnkle"),o&&s.lineTo(o.position.x,o.position.y)),i=e[a].keypoints.find(l=>l.part==="rightHip"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="rightKnee"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="rightAnkle"),o&&s.lineTo(o.position.x,o.position.y)),i=e[a].keypoints.find(l=>l.part==="leftShoulder"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="leftElbow"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="leftWrist"),o&&s.lineTo(o.position.x,o.position.y)),i=e[a].keypoints.find(l=>l.part==="rightShoulder"),i&&(s.moveTo(i.position.x,i.position.y),o=e[a].keypoints.find(l=>l.part==="rightElbow"),o&&s.lineTo(o.position.x,o.position.y),o=e[a].keypoints.find(l=>l.part==="rightWrist"),o&&s.lineTo(o.position.x,o.position.y)),r.stroke(s)}}}async function Fne(e,t,n){if(!e)return;let r=t.getContext("2d");r.lineJoin="round";for(let a of e){if(r.font=n.baseFont,r.lineWidth=n.baseLineWidth,n.drawBoxes&&(r.lineWidth=n.baseLineWidth,r.beginPath(),r.strokeStyle=n.baseColor,r.fillStyle=n.baseColor,r.rect(a.box[0],a.box[1],a.box[2],a.box[3]),r.fillStyle="black",r.fillText("hand",a.box[0]+3,1+a.box[1]+n.baseLineHeight,a.box[2]),r.fillStyle=n.baseLabel,r.fillText("hand",a.box[0]+2,0+a.box[1]+n.baseLineHeight,a.box[2]),r.stroke()),n.drawPoints&&a.landmarks&&a.landmarks.length>0)for(let s of a.landmarks)r.fillStyle=n.useDepth?`rgba(${127.5+2*s[2]}, ${127.5-2*s[2]}, 255, 0.5)`:n.baseColor,r.beginPath(),r.arc(s[0],s[1],2,0,2*Math.PI),r.fill();if(n.drawPolygons){let s=i=>{if(!!i)for(let o=0;o<i.length;o++)r.lineWidth=n.baseLineWidth,r.beginPath(),r.strokeStyle=n.useDepth?`rgba(${127.5+2*i[o][2]}, ${127.5-2*i[o][2]}, 255, 0.5)`:n.baseColor,r.moveTo(i[o>0?o-1:0][0],i[o>0?o-1:0][1]),r.lineTo(i[o][0],i[o][1]),r.stroke()};s(a.annotations.indexFinger),s(a.annotations.middleFinger),s(a.annotations.ringFinger),s(a.annotations.pinky),s(a.annotations.thumb)}}}var Oc={face:Cne,body:Rne,hand:Fne,gesture:Ene};var zc=0,q7=!1,bt={background:"darkslategray",hover:"lightgray",itemBackground:"black",itemColor:"white",buttonBackground:"lightblue",buttonHover:"lightgreen",checkboxOn:"lightgreen",checkboxOff:"lightcoral",rangeBackground:"lightblue",rangeLabel:"white",chartColor:"lightblue"};function Mne(){if(q7)return;let e=`
:root { --rounded: 0.2rem; }
.menu { position: absolute; top: 0rem; right: 0; width: max-content; padding: 0 0.2rem 0 0.2rem; line-height: 1.8rem; z-index: 10;
box-shadow: 0 0 8px dimgrey; background: ${bt.background}; border-radius: var(--rounded); border-color: black; border-style: solid; border-width: thin; }
.menu:hover { box-shadow: 0 0 8px ${bt.hover}; }
.menu-container { display: block; max-height: 100vh; }
.menu-container-fadeout { max-height: 0; overflow: hidden; transition: max-height, 0.5s ease; }
.menu-container-fadein { max-height: 100vh; overflow: hidden; transition: max-height, 0.5s ease; }
.menu-item { display: flex; white-space: nowrap; padding: 0.2rem; cursor: default; width: 100%; }
.menu-title { cursor: pointer; }
.menu-hr { margin: 0.2rem; border: 1px solid rgba(0, 0, 0, 0.5) }
.menu-label { padding: 0; font-weight: 800; }
.menu-list { margin-right: 0.8rem; }
select:focus { outline: none; }
.menu-list-item { background: ${bt.itemBackground}; color: ${bt.itemColor}; border: none; padding: 0.2rem; font-family: inherit;
font-variant: inherit; border-radius: var(--rounded); font-weight: 800; }
.menu-chart-title { padding: 0; font-size: 0.8rem; font-weight: 800; align-items: center}
.menu-chart-canvas { background: transparent; margin: 0.2rem 0 0.2rem 0.6rem; }
.menu-button { border: 0; background: ${bt.buttonBackground}; width: -webkit-fill-available; padding: 8px; margin: 8px; cursor: pointer; box-shadow: 4px 4px 4px 0 dimgrey;
border-radius: var(--rounded); justify-content: center; font-family: inherit; font-variant: inherit; font-size: 1rem; font-weight: 800; }
.menu-button:hover { background: ${bt.buttonHover}; box-shadow: 4px 4px 4px 0 black; }
.menu-button:focus { outline: none; }
.menu-checkbox { width: 2.8rem; height: 1rem; background: ${bt.itemBackground}; margin: 0.5rem 0.5rem 0 0; position: relative; border-radius: var(--rounded); }
.menu-checkbox:after { content: 'OFF'; color: ${bt.checkboxOff}; position: absolute; right: 0.2rem; top: -0.4rem; font-weight: 800; font-size: 0.5rem; }
.menu-checkbox:before { content: 'ON'; color: ${bt.checkboxOn}; position: absolute; left: 0.3rem; top: -0.4rem; font-weight: 800; font-size: 0.5rem; }
.menu-checkbox-label { width: 1.3rem; height: 0.8rem; cursor: pointer; position: absolute; top: 0.1rem; left: 0.1rem; z-index: 1; background: ${bt.checkboxOff};
border-radius: var(--rounded); transition: left 0.6s ease; }
input[type=checkbox] { visibility: hidden; }
input[type=checkbox]:checked + label { left: 1.4rem; background: ${bt.checkboxOn}; }
.menu-range { margin: 0.2rem 0.5rem 0 0; width: 3.5rem; background: transparent; color: ${bt.rangeBackground}; }
.menu-range:before { color: ${bt.rangeLabel}; margin: 0 0.4rem 0 0; font-weight: 800; font-size: 0.6rem; position: relative; top: 0.3rem; content: attr(value); }
input[type=range] { -webkit-appearance: none; }
input[type=range]::-webkit-slider-runnable-track { width: 100%; height: 1rem; cursor: pointer; background: ${bt.itemBackground}; border-radius: var(--rounded); border: 1px; }
input[type=range]::-moz-range-track { width: 100%; height: 1rem; cursor: pointer; background: ${bt.itemBackground}; border-radius: var(--rounded); border: 1px; }
input[type=range]::-webkit-slider-thumb { border: 1px solid #000000; margin-top: 0.05rem; height: 0.9rem; width: 1rem; border-radius: var(--rounded); background: ${bt.rangeBackground}; cursor: pointer; -webkit-appearance: none; }
input[type=range]::-moz-range-thumb { border: 1px solid #000000; margin-top: 0.05rem; height: 0.9rem; width: 1rem; border-radius: var(--rounded); background: ${bt.rangeBackground}; cursor: pointer; -webkit-appearance: none; }
.svg-background { fill:darkslategrey; cursor:pointer; opacity: 0.6; }
.svg-foreground { fill:white; cursor:pointer; opacity: 0.8; }
`,t=document.createElement("style");t.innerHTML=e,document.getElementsByTagName("head")[0].appendChild(t),q7=!0}var X7=class{constructor(t,n,r,a){a&&(bt={...bt,...a}),Mne(),this.createMenu(t,n,r),this.id=0,this.instance=zc,zc++,this._maxFPS=0,this.hidden=0}createMenu(t,n="",r={top:null,left:null,bottom:null,right:null}){this.menu=document.createElement("div"),this.menu.id=`menu-${zc}`,this.menu.className="menu",r&&(r.top&&(this.menu.style.top=r.top),r.bottom&&(this.menu.style.bottom=r.bottom),r.left&&(this.menu.style.left=r.left),r.right&&(this.menu.style.right=r.right)),this.container=document.createElement("div"),this.container.id=`menu-container-${zc}`,this.container.className="menu-container menu-container-fadein";let a=document.createElement("div");a.className="menu-title",a.id=`menu-title-${zc}`;let s=`<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" style="width: 2rem; height: 2rem; vertical-align: top;">
<path d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h352a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48zm-51.37 182.31L232.06 348.16a10.38 10.38 0 0 1-16.12 0L99.37 214.31C92.17 206 97.28 192 107.43 192h233.14c10.15 0 15.26 14 8.06 22.31z" class="svg-background"/>
<path d="M348.63 214.31L232.06 348.16a10.38 10.38 0 0 1-16.12 0L99.37 214.31C92.17 206 97.28 192 107.43 192h233.14c10.15 0 15.26 14 8.06 22.31z" class="svg-foreground"/>
</svg>`;n&&(a.innerHTML=`${n}${s}`),this.menu.appendChild(a),a.addEventListener("click",()=>{this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"),this.menu.style.borderStyle=this.container.classList.contains("menu-container-fadeout")?"none":"solid"}),this.menu.appendChild(this.container),typeof t=="object"?t.appendChild(this.menu):document.getElementById(t).appendChild(this.menu)}get newID(){return this.id++,`menu-${this.instance}-${this.id}`}get ID(){return`menu-${this.instance}-${this.id}`}get width(){return this.menu.offsetWidth}get height(){return this.menu.offsetHeight}hide(){this.container.classList.contains("menu-container-fadein")&&(this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"))}visible(){return this.container.classList.contains("menu-container-fadein")}toggle(t){if(this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"),this.container.classList.contains("menu-container-fadein")&&t){let n=t.x||(t.touches&&t.touches[0]?t.touches[0].pageX:null);n&&(this.menu.style.left=`${n-this.menu.offsetWidth/2}px`),this.menu.offsetLeft<0&&(this.menu.style.left=0),this.menu.offsetLeft+this.menu.offsetWidth>window.innerWidth&&(this.menu.style.left=null,this.menu.style.right=0),this.menu.style.borderStyle="solid"}else this.menu.style.borderStyle="none"}addTitle(t){let n=document.createElement("div");return n.className="menu-title",n.id=this.newID,n.innerHTML=t,this.menu.appendChild(n),n.addEventListener("click",()=>{this.hidden=!this.hidden;let r=document.getElementsByClassName("menu");for(let a of r)a.style.display=this.hidden?"none":"block"}),n}addLabel(t){let n=document.createElement("div");return n.className="menu-item menu-label",n.id=this.newID,n.innerHTML=t,this.container.appendChild(n),n}addBool(t,n,r,a){let s=document.createElement("div");return s.className="menu-item",s.innerHTML=`<div class="menu-checkbox"><input class="menu-checkbox" type="checkbox" id="${this.newID}" ${n[r]?"checked":""}/><label class="menu-checkbox-label" for="${this.ID}"></label></div>${t}`,this.container.appendChild(s),s.addEventListener("change",i=>{n[r]=i.target.checked,a&&a(i.target.checked)}),s}async addList(t,n,r,a){let s=document.createElement("div");s.className="menu-item";let i="";for(let o of n)i+=`<option value="${o}" ${o===r?"selected":""}>${o}</option>`;return s.innerHTML=`<div class="menu-list"><select name="${this.ID}" class="menu-list-item">${i}</select><label for="${this.ID}"></label></div>${t}`,s.style.fontFamily=document.body.style.fontFamily,s.style.fontSize=document.body.style.fontSize,s.style.fontVariant=document.body.style.fontVariant,this.container.appendChild(s),s.addEventListener("change",o=>{a&&a(n[o.target.selectedIndex])}),s}addRange(t,n,r,a,s,i,o){let l=document.createElement("div");return l.className="menu-item",l.innerHTML=`<input class="menu-range" type="range" id="${this.newID}" min="${a}" max="${s}" step="${i}" value="${n[r]}">${t}`,this.container.appendChild(l),l.addEventListener("change",c=>{n[r]=parseInt(c.target.value)===parseFloat(c.target.value)?parseInt(c.target.value):parseFloat(c.target.value),c.target.setAttribute("value",c.target.value),o&&o(c.target.value)}),l.input=l.children[0],l}addHTML(t){let n=document.createElement("div");return n.className="menu-item",n.id=this.newID,t&&(n.innerHTML=t),this.container.appendChild(n),n}addButton(t,n,r){let a=document.createElement("button");return a.className="menu-item menu-button",a.style.fontFamily=document.body.style.fontFamily,a.style.fontSize=document.body.style.fontSize,a.style.fontVariant=document.body.style.fontVariant,a.type="button",a.id=this.newID,a.innerText=t,this.container.appendChild(a),a.addEventListener("click",()=>{a.innerText===t?a.innerText=n:a.innerText=t,r&&r(a.innerText!==t)}),a}addValue(t,n,r=""){let a=document.createElement("div");return a.className="menu-item",a.id=`menu-val-${t}`,a.innerText=`${t}: ${n}${r}`,this.container.appendChild(a),a}updateValue(t,n,r=""){let a=document.getElementById(`menu-val-${t}`);a?a.innerText=`${t}: ${n}${r}`:this.addValue(t,n)}addChart(t,n,r=150,a=40,s){s&&(bt.chartColor=s);let i=document.createElement("div");return i.className="menu-item menu-chart-title",i.id=this.newID,i.innerHTML=`<font color=${bt.chartColor}>${t}</font><canvas id="menu-canvas-${n}" class="menu-chart-canvas" width="${r}px" height="${a}px"></canvas>`,this.container.appendChild(i),i}async updateChart(t,n){if(!n||n.length===0)return;let r=document.getElementById(`menu-canvas-${t}`);if(!r)return;let a=r.getContext("2d");a.fillStyle=bt.background,a.fillRect(0,0,r.width,r.height);let s=r.width/n.length,i=1+Math.max(...n),o=r.height/i;for(let l=0;l<n.length;l++){let c=a.createLinearGradient(0,(i-n[l])*o,0,0);c.addColorStop(.1,bt.chartColor),c.addColorStop(.4,bt.background),a.fillStyle=c,a.fillRect(l*s,0,s-4,r.height),a.fillStyle=bt.background,a.font=`${s/1.5}px "Segoe UI"`,a.fillText(Math.round(n[l]),l*s+1,r.height-1,s-1)}}},Pc=X7;var $ne=`
#gl-bench { position: absolute; right: 1rem; bottom: 1rem; z-index:1000; -webkit-user-select: none; -moz-user-select: none; user-select: none; }
#gl-bench div { position: relative; display: block; margin: 4px; padding: 0 7px 0 10px; background: darkslategray; border-radius: 0.2rem; cursor: pointer; opacity: 0.9; }
#gl-bench svg { height: 60px; margin: 0 0px 0px 4px; }
#gl-bench text { font-size: 16px; font-family: 'Lato', 'Segoe UI'; dominant-baseline: middle; text-anchor: middle; }
#gl-bench .gl-mem { font-size: 12px; fill: white; }
#gl-bench .gl-fps { font-size: 13px; fill: white; }
#gl-bench line { stroke-width: 5; stroke: white; stroke-linecap: round; }
#gl-bench polyline { fill: none; stroke: white; stroke-linecap: round; stroke-linejoin: round; stroke-width: 3.5; }
#gl-bench rect { fill: black; }
#gl-bench .opacity { stroke: black; }
`,Dne=`
<div class="gl-box">
<svg viewBox="0 0 55 60">
<text x="27" y="56" class="gl-fps">00 FPS</text>
<text x="30" y="8" class="gl-mem"></text>
<rect x="0" y="14" rx="4" ry="4" width="55" height="32"></rect>
<polyline class="gl-chart"></polyline>
</svg>
<svg viewBox="0 0 14 60" class="gl-cpu-svg">
<line x1="7" y1="38" x2="7" y2="11" class="opacity"/>
<line x1="7" y1="38" x2="7" y2="11" class="gl-cpu" stroke-dasharray="0 27"/>
<path d="M5.35 43c-.464 0-.812.377-.812.812v1.16c-.783.1972-1.421.812-1.595 1.624h-1.16c-.435 0-.812.348-.812.812s.348.812.812.812h1.102v1.653H1.812c-.464 0-.812.377-.812.812 0 .464.377.812.812.812h1.131c.1943.783.812 1.392 1.595 1.595v1.131c0 .464.377.812.812.812.464 0 .812-.377.812-.812V53.15h1.653v1.073c0 .464.377.812.812.812.464 0 .812-.377.812-.812v-1.131c.783-.1943 1.392-.812 1.595-1.595h1.131c.464 0 .812-.377.812-.812 0-.464-.377-.812-.812-.812h-1.073V48.22h1.102c.435 0 .812-.348.812-.812s-.348-.812-.812-.812h-1.16c-.1885-.783-.812-1.421-1.595-1.624v-1.131c0-.464-.377-.812-.812-.812-.464 0-.812.377-.812.812v1.073H6.162v-1.073c0-.464-.377-.812-.812-.812zm.58 3.48h2.088c.754 0 1.363.609 1.363 1.363v2.088c0 .754-.609 1.363-1.363 1.363H5.93c-.754 0-1.363-.609-1.363-1.363v-2.088c0-.754.609-1.363 1.363-1.363z" style="fill: grey"></path>
</svg>
<svg viewBox="0 0 14 60" class="gl-gpu-svg">
<line x1="7" y1="38" x2="7" y2="11" class="opacity"/>
<line x1="7" y1="38" x2="7" y2="11" class="gl-gpu" stroke-dasharray="0 27"/>
<path d="M1.94775 43.3772a.736.736 0 10-.00416 1.472c.58535.00231.56465.1288.6348.3197.07015.18975.04933.43585.04933.43585l-.00653.05405v8.671a.736.736 0 101.472 0v-1.4145c.253.09522.52785.1495.81765.1495h5.267c1.2535 0 2.254-.9752 2.254-2.185v-3.105c0-1.2075-1.00625-2.185-2.254-2.185h-5.267c-.28865 0-.5635.05405-.8165.1495.01806-.16445.04209-.598-.1357-1.0787-.22425-.6072-.9499-1.2765-2.0125-1.2765zm2.9095 3.6455c.42435 0 .7659.36225.7659.8119v2.9785c0 .44965-.34155.8119-.7659.8119s-.7659-.36225-.7659-.8119v-2.9785c0-.44965.34155-.8119.7659-.8119zm4.117 0a2.3 2.3 0 012.3 2.3 2.3 2.3 0 01-2.3 2.3 2.3 2.3 0 01-2.3-2.3 2.3 2.3 0 012.3-2.3z" style="fill: grey"></path>
</svg>
</div>
`,K7=class{constructor(t,n={}){this.css=$ne,this.svg=Dne,this.paramLogger=()=>{},this.chartLogger=()=>{},this.chartLen=20,this.chartHz=20,this.names=[],this.cpuAccums=[],this.gpuAccums=[],this.activeAccums=[],this.chart=new Array(this.chartLen),this.now=()=>performance&&performance.now?performance.now():Date.now(),this.updateUI=()=>{[].forEach.call(this.nodes["gl-gpu-svg"],o=>o.style.display=this.trackGPU?"inline":"none")},Object.assign(this,n),this.detected=0,this.finished=[],this.isFramebuffer=0,this.frameId=0;let r,a=0,s,i=o=>{++a<20?r=requestAnimationFrame(i):(this.detected=Math.ceil(1e3*a/(o-s)/70),cancelAnimationFrame(r)),s||(s=o)};if(requestAnimationFrame(i),t){let o=async(u,h)=>Promise.resolve(setTimeout(()=>{t.getError();let d=this.now()-u;h.forEach((p,f)=>{p&&(this.gpuAccums[f]+=d)})},0)),l=(u,h,d)=>{let p=h.now();u.apply(d,arguments),h.trackGPU&&h.finished.push(o(p,h.activeAccums.slice(0)))},c="drawElements";t[c]?t[c]=l(t[c],this,t):console.log("bench: cannot attach to webgl function")}if(!this.withoutUI){this.dom||(this.dom=document.body);let o=document.createElement("div");o.id="gl-bench",this.dom.appendChild(o),this.dom.insertAdjacentHTML("afterbegin",'<style id="gl-bench-style">'+this.css+"</style>"),this.dom=o,this.dom.addEventListener("click",()=>{this.trackGPU=!this.trackGPU,this.updateUI()}),this.paramLogger=((l,c,u)=>{let h=["gl-cpu","gl-gpu","gl-mem","gl-fps","gl-gpu-svg","gl-chart"],d={...h};return h.forEach(p=>d[p]=c.getElementsByClassName(p)),this.nodes=d,(p,f,m,A,y,g,w)=>{d["gl-cpu"][p].style.strokeDasharray=(f*.27).toFixed(0)+" 100",d["gl-gpu"][p].style.strokeDasharray=(m*.27).toFixed(0)+" 100",d["gl-mem"][p].innerHTML=u[p]?u[p]:A?"mem: "+A.toFixed(0)+"mb":"",d["gl-fps"][p].innerHTML="FPS: "+y.toFixed(1),l(u[p],f,m,A,y,g,w)}})(this.paramLogger,this.dom,this.names),this.chartLogger=((l,c)=>{let u={"gl-chart":c.getElementsByClassName("gl-chart")};return(h,d,p)=>{let f="",m=d.length;for(let A=0;A<m;A++){let y=(p+A+1)%m;d[y]!==void 0&&(f=f+" "+(55*A/(m-1)).toFixed(1)+","+(45-d[y]*22/60/this.detected).toFixed(1))}u["gl-chart"][h].setAttribute("points",f),l(this.names[h],d,p)}})(this.chartLogger,this.dom)}}addUI(t){this.names.indexOf(t)===-1&&(this.names.push(t),this.dom&&(this.dom.insertAdjacentHTML("beforeend",this.svg),this.updateUI()),this.cpuAccums.push(0),this.gpuAccums.push(0),this.activeAccums.push(!1))}nextFrame(t){this.frameId++;let n=t||this.now();if(this.frameId<=1)this.paramFrame=this.frameId,this.paramTime=n;else{let r=n-this.paramTime;if(r>=1e3){let a=this.frameId-this.paramFrame,s=a/r*1e3;for(let i=0;i<this.names.length;i++){let o=this.cpuAccums[i]/r*100,l=this.gpuAccums[i]/r*100,c=performance&&performance.memory?performance.memory.usedJSHeapSize/(1<<20):0;this.paramLogger(i,o,l,c,s,r,a),this.cpuAccums[i]=0,Promise.all(this.finished).then(()=>{this.gpuAccums[i]=0,this.finished=[]})}this.paramFrame=this.frameId,this.paramTime=n}}if(!this.detected||!this.chartFrame)this.chartFrame=this.frameId,this.chartTime=n,this.circularId=0;else{let r=n-this.chartTime,a=this.chartHz*r/1e3;for(;--a>0&&this.detected;){let i=(this.frameId-this.chartFrame)/r*1e3;this.chart[this.circularId%this.chartLen]=i;for(let o=0;o<this.names.length;o++)this.chartLogger(o,this.chart,this.circularId);this.circularId++,this.chartFrame=this.frameId,this.chartTime=n}}}begin(t){this.updateAccums(t)}end(t){this.updateAccums(t)}updateAccums(t){let n=this.names.indexOf(t);n===-1&&(n=this.names.length,this.addUI(t));let r=this.now(),a=r-this.t0;for(let s=0;s<n+1;s++)this.activeAccums[s]&&(this.cpuAccums[s]+=a);this.activeAccums[n]=!this.activeAccums[n],this.t0=r}},Z7=K7;var Hr={},de=new G7(Hr),se={baseColor:"rgba(173, 216, 230, 0.3)",baseBackground:"rgba(50, 50, 50, 1)",baseLabel:"rgba(173, 216, 230, 1)",baseFontProto:'small-caps {size} "Segoe UI"',baseLineWidth:12,crop:!0,columns:2,busy:!1,facing:!0,useWorker:!1,worker:"worker.js",samples:["../assets/sample6.jpg","../assets/sample1.jpg","../assets/sample4.jpg","../assets/sample5.jpg","../assets/sample3.jpg","../assets/sample2.jpg"],compare:"../assets/sample-me.jpg",drawBoxes:!0,drawPoints:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,console:!0,maxFPSframes:10,modelsPreload:!0,menuWidth:0,menuHeight:0,camera:{},detectFPS:[],drawFPS:[],buffered:!1,drawThread:null,detectThread:null,framesDraw:0,framesDetect:0,bench:!1},xe={},Jp,gi,Qp={};function One(...e){if(!Array.isArray(e))return e;let t="";for(let n of e)typeof n=="object"?t+=JSON.stringify(n).replace(/{|}|"|\[|\]/g,"").replace(/,/g,", "):t+=n;return t}function Dn(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;se.console&&console.log(n,...e)}function Gn(e){document.getElementById("status").innerText=e}var xi;async function zne(e){var n,r,a,s;if(document.getElementById("compare-container").style.display=de.config.face.embedding.enabled?"block":"none",!de.config.face.embedding.enabled||((n=e==null?void 0:e.face)==null?void 0:n.length)>0&&((r=e==null?void 0:e.face[0].embedding)==null?void 0:r.length)!==192)return;xi||(xi=e,document.getElementById("compare-canvas").getContext("2d").drawImage(xi.canvas,0,0,200,200));let t=de.simmilarity((a=xi==null?void 0:xi.face[0])==null?void 0:a.embedding,(s=e==null?void 0:e.face[0])==null?void 0:s.embedding);document.getElementById("simmilarity").innerText=`simmilarity: ${Math.trunc(1e3*t)/10}%`}var Y7=performance.now();async function e1(e){let t=Qp,n=document.getElementById("canvas");se.drawFPS.push(1e3/(performance.now()-Y7)),se.drawFPS.length>se.maxFPSframes&&se.drawFPS.shift(),Y7=performance.now(),await xe.process.updateChart("FPS",se.detectFPS),(se.buffered||!t.canvas)&&(t.canvas=await de.image(e,Hr));let r=n.getContext("2d");r.fillStyle=se.baseBackground,r.fillRect(0,0,n.width,n.height),t.canvas?(t.canvas.width!==n.width&&(n.width=t.canvas.width),t.canvas.height!==n.height&&(n.height=t.canvas.height),r.drawImage(t.canvas,0,0,t.canvas.width,t.canvas.height,0,0,t.canvas.width,t.canvas.height)):r.drawImage(e,0,0,e.width,e.height,0,0,n.width,n.height),await Oc.face(t.face,n,se,de.facemesh.triangulation),await Oc.body(t.body,n,se),await Oc.hand(t.hand,n,se),await Oc.gesture(t.gesture,n,se),await zne(t);let a=de.tf.engine(),s=a.backendInstance?`gpu: ${(a.backendInstance.numBytesInGPU?a.backendInstance.numBytesInGPU:0).toLocaleString()} bytes`:"",i=`system: ${a.state.numBytes.toLocaleString()} bytes ${s} | tensors: ${a.state.numTensors.toLocaleString()}`,o=t.canvas?`processing: ${t.canvas.width} x ${t.canvas.height}`:"",l=Math.trunc(10*se.detectFPS.reduce((h,d)=>h+d,0)/se.detectFPS.length)/10,c=Math.trunc(10*se.drawFPS.reduce((h,d)=>h+d,0)/se.drawFPS.length)/10,u=se.detectFPS.length>5&&l<5?'<font color="lightcoral">warning: your performance is low: try switching to higher performance backend, lowering resolution or disabling some models</font>':"";document.getElementById("log").innerHTML=`
video: ${se.camera.name} | facing: ${se.camera.facing} | screen: ${window.innerWidth} x ${window.innerHeight} camera: ${se.camera.width} x ${se.camera.height} ${o}<br>
backend: ${de.tf.getBackend()} | ${i}<br>
performance: ${One(t.performance)}ms FPS process:${l} refresh:${c}<br>
${u}<br>
`,se.framesDraw++,se.lastFrame=performance.now(),se.buffered?se.drawThread=requestAnimationFrame(()=>e1(e,n)):!se.buffered&&se.drawThread&&(Dn("stopping buffered refresh"),cancelAnimationFrame(se.drawThread),se.drawThread=null)}async function t1(){var c;if(se.busy)return null;se.busy=!0;let e=document.getElementById("video"),t=document.getElementById("canvas"),n=document.getElementById("log"),r=e.srcObject?e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState>2&&!e.paused:!1,a="";if(Gn("setting up camera"),!navigator.mediaDevices)return a="camera access not supported",n.innerText+=`
${a}`,Dn(a),Gn(a),se.busy=!1,a;let s,i={audio:!1,video:{facingMode:se.facing?"user":"environment",resizeMode:se.crop?"crop-and-scale":"none"}};window.innerWidth>window.innerHeight?i.video.width={ideal:window.innerWidth}:i.video.height={ideal:window.innerHeight-document.getElementById("menubar").offsetHeight};try{s=await navigator.mediaDevices.getUserMedia(i)}catch(u){return u.name==="PermissionDeniedError"||u.name==="NotAllowedError"?a="camera permission denied":u.name==="SourceUnavailableError"?a="camera not available":a=`camera error: ${u.message||u}`,n.innerText+=`
${a}`,Gn(a),Dn("camera error:",u),se.busy=!1,a}if(s)e.srcObject=s;else return se.busy=!1,"camera stream empty";let o=s.getVideoTracks()[0],l=o.getSettings();return se.camera={name:(c=o.label)==null?void 0:c.toLowerCase(),width:l.width,height:l.height,facing:l.facingMode==="user"?"front":"back"},new Promise(u=>{e.onloadeddata=async()=>{e.width=e.videoWidth,e.height=e.videoHeight,t.width=e.width,t.height=e.height,t.style.width=t.width>t.height?"100vw":"",t.style.height=t.width>t.height?"":"100vh",se.menuWidth.input.setAttribute("value",e.width),se.menuHeight.input.setAttribute("value",e.height);let h=Math.trunc(window.devicePixelRatio*(8+4*t.width/window.innerWidth));se.baseFont=se.baseFontProto.replace(/{size}/,`${h}px`),se.baseLineHeight=h+2,r&&e.play(),r&&!se.detectThread&&Lc(e,t),se.busy=!1,Gn(""),u()}})}function J7(){if(!gi){let e=null;gi=new Z7(e,{trackGPU:!1,chartHz:20,chartLen:20}),gi.begin()}}function Pne(e,t,n,r){Jp||(Dn("creating worker thread"),Jp=new Worker(se.worker,{type:"module"}),Jp.addEventListener("message",a=>{a.data.result.performance&&a.data.result.performance.total&&se.detectFPS.push(1e3/a.data.result.performance.total),se.detectFPS.length>se.maxFPSframes&&se.detectFPS.shift(),se.bench&&(gi||J7(),gi.nextFrame(r)),document.getElementById("gl-bench")&&(document.getElementById("gl-bench").style.display=se.bench?"block":"none"),Qp=a.data.result,se.framesDetect++,se.drawThread||e1(e),se.detectThread=requestAnimationFrame(s=>Lc(e,n,s))})),Jp.postMessage({image:t.data.buffer,width:n.width,height:n.height,userConfig:Hr},[t.data.buffer])}function Lc(e,t,n){var a;if(!(e.srcObject&&e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState>2&&!e.paused)&&e.srcObject){se.drawThread&&cancelAnimationFrame(se.drawThread),se.detectThread&&cancelAnimationFrame(se.detectThread),se.drawThread=null,se.detectThread=null,e.paused?Dn("camera paused"):e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState<=2?setTimeout(()=>Lc(e,t),500):Dn(`camera not ready: track state: ${(a=e.srcObject)==null?void 0:a.getVideoTracks()[0].readyState} stream state: ${e.readyState}`),clearTimeout(se.drawThread),se.drawThread=null,Dn("frame statistics: process:",se.framesDetect,"refresh:",se.framesDraw),Dn("memory",de.tf.engine().memory());return}if(Gn(""),se.useWorker){let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t.width,t.height):document.createElement("canvas");s.width=t.width,s.height=t.height;let i=s.getContext("2d");i.drawImage(e,0,0,e.width,e.height,0,0,t.width,t.height);let o=i.getImageData(0,0,t.width,t.height);Pne(e,o,t,Hr,n)}else de.detect(e,Hr).then(s=>{s.performance&&s.performance.total&&se.detectFPS.push(1e3/s.performance.total),se.detectFPS.length>se.maxFPSframes&&se.detectFPS.shift(),se.bench&&(gi||J7(),gi.nextFrame(n)),document.getElementById("gl-bench")&&(document.getElementById("gl-bench").style.display=se.bench?"block":"none"),s.error?(Dn(s.error),document.getElementById("log").innerText+=`
Human error: ${s.error}`):(Qp=s,se.drawThread||e1(e),se.framesDetect++,se.detectThread=requestAnimationFrame(i=>Lc(e,t,i)))})}async function Lne(e){return new Promise(t=>{let n=new Image;n.onload=async()=>{Dn("Processing image:",n.src);let r=document.getElementById("canvas");n.width=n.naturalWidth,n.height=n.naturalHeight,r.width=de.config.filter.width&&de.config.filter.width>0?de.config.filter.width:n.naturalWidth,r.height=de.config.filter.height&&de.config.filter.height>0?de.config.filter.height:n.naturalHeight,Qp=await de.detect(n,Hr),await e1(n);let s=document.createElement("canvas");s.className="thumbnail",s.width=window.innerWidth/(se.columns+.1),s.height=r.height/(window.innerWidth/s.width),s.getContext("2d").drawImage(r,0,0,r.width,r.height,0,0,s.width,s.height),document.getElementById("samples-container").appendChild(s),n.src="",t(!0)},n.src=e})}async function Q7(){Hr.videoOptimized=!0,document.getElementById("samples-container").style.display="none",document.getElementById("canvas").style.display="block";let e=document.getElementById("video"),t=document.getElementById("canvas");if(e.srcObject!==null&&!e.paused)document.getElementById("play").style.display="block",document.getElementById("btnStart").className="button button-start",document.getElementById("btnStart").innerHTML="start<br>video",Gn("paused"),e.pause();else{let n=await t1();if(n)Gn(n);else{document.getElementById("play").style.display="none";for(let r of Object.values(xe))r.hide();Gn(""),document.getElementById("btnStart").className="button button-stop",document.getElementById("btnStart").innerHTML="pause<br>video",await e.play(),se.detectThread||Lc(e,t)}}}async function Wne(){document.getElementById("play").style.display="none",Hr.videoOptimized=!1;let e=Math.trunc(window.devicePixelRatio*(8+4*se.columns));se.baseFont=se.baseFontProto.replace(/{size}/,`${e}px`),se.baseLineHeight=e+2,document.getElementById("canvas").style.display="none",document.getElementById("samples-container").style.display="block",Dn("Running detection of sample images"),Gn("processing images"),document.getElementById("samples-container").innerHTML="";for(let t of se.samples)await Lne(t);Gn("")}function Bne(){let e=[];window.innerWidth>800?e=[`${document.getElementById("btnDisplay").offsetLeft-50}px`,`${document.getElementById("btnImage").offsetLeft-50}px`,`${document.getElementById("btnProcess").offsetLeft-50}px`,`${document.getElementById("btnModel").offsetLeft-50}px`]:e=["0rem","11rem","21.1rem","33rem"],xe.display=new Pc(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[0]}),xe.display.addBool("perf monitor",se,"bench",t=>se.bench=t),xe.display.addBool("buffered output",se,"buffered",t=>se.buffered=t),xe.display.addBool("crop & scale",se,"crop",()=>t1()),xe.display.addBool("camera facing",se,"facing",()=>t1()),xe.display.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.display.addBool("use 3D depth",se,"useDepth"),xe.display.addBool("draw boxes",se,"drawBoxes"),xe.display.addBool("draw polygons",se,"drawPolygons"),xe.display.addBool("Fill Polygons",se,"fillPolygons"),xe.display.addBool("draw points",se,"drawPoints"),xe.image=new Pc(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[1]}),xe.image.addBool("enabled",de.config.filter,"enabled"),se.menuWidth=xe.image.addRange("image width",de.config.filter,"width",0,3840,10,t=>de.config.filter.width=parseInt(t)),se.menuHeight=xe.image.addRange("image height",de.config.filter,"height",0,2160,10,t=>de.config.filter.height=parseInt(t)),xe.image.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.image.addRange("brightness",de.config.filter,"brightness",-1,1,.05,t=>de.config.filter.brightness=parseFloat(t)),xe.image.addRange("contrast",de.config.filter,"contrast",-1,1,.05,t=>de.config.filter.contrast=parseFloat(t)),xe.image.addRange("sharpness",de.config.filter,"sharpness",0,1,.05,t=>de.config.filter.sharpness=parseFloat(t)),xe.image.addRange("blur",de.config.filter,"blur",0,20,1,t=>de.config.filter.blur=parseInt(t)),xe.image.addRange("saturation",de.config.filter,"saturation",-1,1,.05,t=>de.config.filter.saturation=parseFloat(t)),xe.image.addRange("hue",de.config.filter,"hue",0,360,5,t=>de.config.filter.hue=parseInt(t)),xe.image.addRange("pixelate",de.config.filter,"pixelate",0,32,1,t=>de.config.filter.pixelate=parseInt(t)),xe.image.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.image.addBool("negative",de.config.filter,"negative"),xe.image.addBool("sepia",de.config.filter,"sepia"),xe.image.addBool("vintage",de.config.filter,"vintage"),xe.image.addBool("kodachrome",de.config.filter,"kodachrome"),xe.image.addBool("technicolor",de.config.filter,"technicolor"),xe.image.addBool("polaroid",de.config.filter,"polaroid"),xe.process=new Pc(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[2]}),xe.process.addList("backend",["cpu","webgl","wasm","humangl"],de.config.backend,t=>de.config.backend=t),xe.process.addBool("async operations",de.config,"async",t=>de.config.async=t),xe.process.addBool("enable profiler",de.config,"profile",t=>de.config.profile=t),xe.process.addBool("memory shield",de.config,"deallocate",t=>de.config.deallocate=t),xe.process.addBool("use web worker",se,"useWorker"),xe.process.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.process.addLabel("model parameters"),xe.process.addRange("max objects",de.config.face.detector,"maxFaces",1,50,1,t=>{de.config.face.detector.maxFaces=parseInt(t),de.config.body.maxDetections=parseInt(t),de.config.hand.maxHands=parseInt(t)}),xe.process.addRange("skip frames",de.config.face.detector,"skipFrames",0,50,1,t=>{de.config.face.detector.skipFrames=parseInt(t),de.config.face.emotion.skipFrames=parseInt(t),de.config.face.age.skipFrames=parseInt(t),de.config.hand.skipFrames=parseInt(t)}),xe.process.addRange("min confidence",de.config.face.detector,"minConfidence",0,1,.05,t=>{de.config.face.detector.minConfidence=parseFloat(t),de.config.face.gender.minConfidence=parseFloat(t),de.config.face.emotion.minConfidence=parseFloat(t),de.config.hand.minConfidence=parseFloat(t)}),xe.process.addRange("score threshold",de.config.face.detector,"scoreThreshold",.1,1,.05,t=>{de.config.face.detector.scoreThreshold=parseFloat(t),de.config.hand.scoreThreshold=parseFloat(t),de.config.body.scoreThreshold=parseFloat(t)}),xe.process.addRange("overlap",de.config.face.detector,"iouThreshold",.1,1,.05,t=>{de.config.face.detector.iouThreshold=parseFloat(t),de.config.hand.iouThreshold=parseFloat(t)}),xe.process.addBool("detection rotation",de.config.face.detector,"rotation",t=>{de.config.face.detector.rotation=t,de.config.hand.rotation=t}),xe.process.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.process.addButton("process sample images","process images",()=>Wne()),xe.process.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.process.addChart("FPS","FPS"),xe.models=new Pc(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[3]}),xe.models.addBool("face detect",de.config.face,"enabled"),xe.models.addBool("face mesh",de.config.face.mesh,"enabled"),xe.models.addBool("face iris",de.config.face.iris,"enabled"),xe.models.addBool("face age",de.config.face.age,"enabled"),xe.models.addBool("face gender",de.config.face.gender,"enabled"),xe.models.addBool("face emotion",de.config.face.emotion,"enabled"),xe.models.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.models.addBool("body pose",de.config.body,"enabled"),xe.models.addBool("hand pose",de.config.hand,"enabled"),xe.models.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.models.addBool("gestures",de.config.gesture,"enabled"),xe.models.addHTML('<hr style="border-style: inset; border-color: dimgray">'),xe.models.addBool("face compare",de.config.face.embedding,"enabled",t=>{xi=null,de.config.face.embedding.enabled=t}),document.getElementById("btnDisplay").addEventListener("click",t=>xe.display.toggle(t)),document.getElementById("btnImage").addEventListener("click",t=>xe.image.toggle(t)),document.getElementById("btnProcess").addEventListener("click",t=>xe.process.toggle(t)),document.getElementById("btnModel").addEventListener("click",t=>xe.models.toggle(t)),document.getElementById("btnStart").addEventListener("click",()=>Q7()),document.getElementById("play").addEventListener("click",()=>Q7())}async function Vne(){Dn("Demo starting ..."),Dn("Browser:",navigator==null?void 0:navigator.userAgent),Bne(),document.getElementById("log").innerText=`Human: version ${de.version}`,se.modelsPreload&&!se.useWorker&&(Gn("loading"),await de.load(Hr)),se.useWorker||(Gn("initializing"),await de.warmup(Hr)),Gn("human: ready"),document.getElementById("loader").style.display="none",document.getElementById("play").style.display="block",Dn("Demo ready...")}window.onload=Vne;window.onresize=t1;
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */
//# sourceMappingURL=demo-browser-index.js.map