mirror of https://github.com/vladmandic/human
4950 lines
1.3 MiB
4950 lines
1.3 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Human=(()=>{var L4=Object.create,nh=Object.defineProperty,W4=Object.getPrototypeOf,B4=Object.prototype.hasOwnProperty,V4=Object.getOwnPropertyNames,U4=Object.getOwnPropertyDescriptor;var w1=e=>nh(e,"__esModule",{value:!0});var _1=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),br=(e,t)=>{for(var n in t)nh(e,n,{get:t[n],enumerable:!0})},j4=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of V4(t))!B4.call(e,r)&&r!=="default"&&nh(e,r,{get:()=>t[r],enumerable:!(n=U4(t,r))||n.enumerable});return e},eu=e=>e&&e.__esModule?e:j4(w1(nh(e!=null?L4(W4(e)):{},"default",{value:e,enumerable:!0})),e);var Vv=_1(Bv=>{w1(Bv);br(Bv,{MediaPipeFaceMesh:()=>Zy,load:()=>Wre});var Zy=class{constructor(t,n,r,a){this.facePipeline=new Ky(t,n,r,a),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():null,o=s.rawCoords,l={};if(i&&i.length>0)for(let h of Object.keys(Wr))l[h]=Wr[h].map(p=>i[p]);let c=n.face.mesh.returnRawData&&s.box?{topLeft:s.box.startPoint,bottomRight:s.box.endPoint}:null,u=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[2],s.box.endPoint[0])-s.box.startPoint[0],Math.min(t.shape[1],s.box.endPoint[1])-s.box.startPoint[1]]:0;a.push({confidence:s.confidence||0,box:u,mesh:i,boxRaw:c,meshRaw:o,annotations:l,image:s.image?Yn(s.image):null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},yi=[null,null,null];async function Wre(e){yi=await Promise.all([!yi[0]&&e.face.enabled?Mv(e):null,!yi[1]&&e.face.mesh.enabled?Tt(e.face.mesh.modelPath,{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!yi[2]&&e.face.iris.enabled?Tt(e.face.iris.modelPath,{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]);let t=new Zy(yi[0],yi[1],yi[2],e);return e.face.mesh.enabled&&Te(`load model: ${e.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),e.face.iris.enabled&&Te(`load model: ${e.face.iris.modelPath.match(/\/(.*)\./)[1]}`),t}Bv.triangulation=Wv});var r0=_1(x2=>{w1(x2);br(x2,{NUM_KEYPOINTS:()=>Xre,connectedPartIndices:()=>Zre,partChannels:()=>Jre,partIds:()=>w2,partNames:()=>qre,poseChain:()=>Yre});var qre=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],Xre=x2.partNames.length,w2=x2.partNames.reduce((e,t,n)=>(e[t]=n,e),{}),Kre=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Zre=Kre.map(([e,t])=>[w2[e],w2[t]]),Yre=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]],Jre=["left_face","right_face","right_upper_leg_front","right_lower_leg_back","right_upper_leg_back","left_lower_leg_front","left_upper_leg_front","left_upper_leg_back","left_lower_leg_back","right_feet","right_lower_leg_front","left_feet","torso_front","torso_back","right_upper_arm_front","right_upper_arm_back","right_lower_arm_back","left_lower_arm_front","left_upper_arm_front","left_upper_arm_back","left_lower_arm_back","right_hand","right_lower_arm_front","left_hand"]});var w6=_1(x6=>{var pae=function(e,t,n){let r=function(o,l,c){let u=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(u,(h,p)=>(c[p]=0,h))},a=function(o,l){let c=e.createShader(l);if(e.shaderSource(c,o),e.compileShader(c),!e.getShaderParameter(c,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(c));return c};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)},fae=function(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,c=null,u=null,h=e.canvas||document.createElement("canvas"),p={},d=h.getContext("webgl");if(!d)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let N=Array.prototype.slice.call(arguments,1),T=w[b];i.push({func:T,args:N})},this.reset=function(){i=[]},this.apply=function(b){if(f(b.width,b.height),t=0,n||(n=d.createTexture()),d.bindTexture(d.TEXTURE_2D,n),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.NEAREST),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.NEAREST),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,d.RGBA,d.UNSIGNED_BYTE,b),i.length===0)return y(),h;for(let N=0;N<i.length;N++){r=N===i.length-1;let T=i[N];T.func.apply(this,T.args||[])}return h};let f=function(b,N){if(!(b===o&&N===l)){if(h.width=b,o=b,h.height=N,l=N,!c){let T=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);c=d.createBuffer(),d.bindBuffer(d.ARRAY_BUFFER,c),d.bufferData(d.ARRAY_BUFFER,T,d.STATIC_DRAW),d.pixelStorei(d.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}d.viewport(0,0,o,l),s=[null,null]}},m=function(b){return s[b]=s[b]||A(o,l),s[b]},A=function(b,N){let T=d.createFramebuffer();d.bindFramebuffer(d.FRAMEBUFFER,T);let E=d.createRenderbuffer();d.bindRenderbuffer(d.RENDERBUFFER,E);let M=d.createTexture();return d.bindTexture(d.TEXTURE_2D,M),d.texImage2D(d.TEXTURE_2D,0,d.RGBA,b,N,0,d.RGBA,d.UNSIGNED_BYTE,null),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MAG_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_MIN_FILTER,d.LINEAR),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_S,d.CLAMP_TO_EDGE),d.texParameteri(d.TEXTURE_2D,d.TEXTURE_WRAP_T,d.CLAMP_TO_EDGE),d.framebufferTexture2D(d.FRAMEBUFFER,d.COLOR_ATTACHMENT0,d.TEXTURE_2D,M,0),d.bindTexture(d.TEXTURE_2D,null),d.bindFramebuffer(d.FRAMEBUFFER,null),{fbo:T,texture:M}},y=function(b=null){var M,$;let N=null,T=null,E=!1;t===0?N=n:N=(M=m(a))==null?void 0:M.texture,t++,r&&!(b&_.INTERMEDIATE)?(T=null,E=t%2==0):(a=(a+1)%2,T=($=m(a))==null?void 0:$.fbo),d.bindTexture(d.TEXTURE_2D,N),d.bindFramebuffer(d.FRAMEBUFFER,T),d.uniform1f(u.uniform.flipY,E?-1:1),d.drawArrays(d.TRIANGLES,0,6)},g=function(b){if(p[b])return u=p[b],d.useProgram(u.id),u;u=new pae(d,x.VERTEX_IDENTITY,b);let N=Float32Array.BYTES_PER_ELEMENT,T=4*N;return d.enableVertexAttribArray(u.attribute.pos),d.vertexAttribPointer(u.attribute.pos,2,d.FLOAT,!1,T,0*N),d.enableVertexAttribArray(u.attribute.uv),d.vertexAttribPointer(u.attribute.uv,2,d.FLOAT,!1,T,2*N),p[b]=u,u},_={INTERMEDIATE:1},x={};x.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),x.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`);let w={};w.colorMatrix=function(b){let N=new Float32Array(b);N[4]/=255,N[9]/=255,N[14]/=255,N[19]/=255;let T=N[18]===1&&N[3]===0&&N[8]===0&&N[13]===0&&N[15]===0&&N[16]===0&&N[17]===0&&N[19]===0?w.colorMatrix.SHADER.WITHOUT_ALPHA:w.colorMatrix.SHADER.WITH_ALPHA,E=g(T);d.uniform1fv(E.uniform.m,N),y()},w.colorMatrix.SHADER={},w.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),w.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),w.brightness=function(b){let N=(b||0)+1;w.colorMatrix([N,0,0,0,0,0,N,0,0,0,0,0,N,0,0,0,0,0,1,0])},w.saturation=function(b){let N=(b||0)*2/3+1,T=(N-1)*-.5;w.colorMatrix([N,T,T,0,0,T,N,T,0,0,T,T,N,0,0,0,0,0,1,0])},w.desaturate=function(){w.saturation(-1)},w.contrast=function(b){let N=(b||0)+1,T=-128*(N-1);w.colorMatrix([N,0,0,0,T,0,N,0,0,T,0,0,N,0,T,0,0,0,1,0])},w.negative=function(){w.contrast(-2)},w.hue=function(b){b=(b||0)/180*Math.PI;let N=Math.cos(b),T=Math.sin(b),E=.213,M=.715,$=.072;w.colorMatrix([E+N*(1-E)+T*-E,M+N*-M+T*-M,$+N*-$+T*(1-$),0,0,E+N*-E+T*.143,M+N*(1-M)+T*.14,$+N*-$+T*-.283,0,0,E+N*-E+T*-(1-E),M+N*-M+T*M,$+N*(1-$)+T*$,0,0,0,0,0,1,0])},w.desaturateLuminance=function(){w.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},w.sepia=function(){w.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},w.brownie=function(){w.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},w.vintagePinhole=function(){w.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},w.kodachrome=function(){w.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},w.technicolor=function(){w.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},w.polaroid=function(){w.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},w.shiftToBGR=function(){w.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},w.convolution=function(b){let N=new Float32Array(b),T=1/o,E=1/l,M=g(w.convolution.SHADER);d.uniform1fv(M.uniform.m,N),d.uniform2f(M.uniform.px,T,E),y()},w.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),w.detectEdges=function(){w.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},w.sobelX=function(){w.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},w.sobelY=function(){w.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},w.sharpen=function(b){let N=b||1;w.convolution.call(this,[0,-1*N,0,-1*N,1+4*N,-1*N,0,-1*N,0])},w.emboss=function(b){let N=b||1;w.convolution.call(this,[-2*N,-1*N,0,-1*N,1,1*N,0,1*N,2*N])},w.blur=function(b){let N=b/7/o,T=b/7/l,E=g(w.blur.SHADER);d.uniform2f(E.uniform.px,0,T),y(_.INTERMEDIATE),d.uniform2f(E.uniform.px,N,0),y()},w.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),w.pixelate=function(b){let N=b/o,T=b/l,E=g(w.pixelate.SHADER);d.uniform2f(E.uniform.size,N,T),y()},w.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)};x6.GLImageFilter=fae});var mae={};br(mae,{default:()=>L2});function Te(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var rh={};br(rh,{Abs:()=>Di,Acos:()=>zi,Acosh:()=>Pi,AdadeltaOptimizer:()=>Cd,AdagradOptimizer:()=>Rd,AdamOptimizer:()=>Fd,AdamaxOptimizer:()=>Md,Add:()=>da,AddN:()=>Xa,All:()=>uh,Any:()=>ch,ArgMax:()=>Ka,ArgMin:()=>su,Asin:()=>Li,Asinh:()=>Wi,Atan:()=>Bi,Atan2:()=>Ui,Atanh:()=>Vi,AvgPool:()=>Za,AvgPool3D:()=>iu,AvgPool3DGrad:()=>dh,AvgPoolGrad:()=>hh,BackendWasm:()=>Lb,BatchMatMul:()=>Ya,BatchToSpaceND:()=>ou,Bincount:()=>ph,BroadcastTo:()=>hg,Callback:()=>R7,CallbackList:()=>E3,Cast:()=>Ja,Ceil:()=>ji,ClipByValue:()=>pa,Complex:()=>fh,ComplexAbs:()=>lu,Concat:()=>Gi,Conv2D:()=>Qa,Conv2DBackpropFilter:()=>mh,Conv2DBackpropInput:()=>es,Conv3D:()=>uu,Conv3DBackpropFilterV2:()=>Ah,Conv3DBackpropInputV2:()=>yh,Cos:()=>ts,Cosh:()=>Hi,CropAndResize:()=>qi,Cumsum:()=>ns,CustomCallback:()=>R3,DataStorage:()=>sh,DenseBincount:()=>gh,DepthToSpace:()=>Xi,DepthwiseConv2dNative:()=>rs,DepthwiseConv2dNativeBackpropFilter:()=>xh,DepthwiseConv2dNativeBackpropInput:()=>wh,Diag:()=>_h,Dilation2D:()=>cu,Dilation2DBackpropFilter:()=>vh,Dilation2DBackpropInput:()=>bh,ENV:()=>tn,EarlyStopping:()=>M7,Elu:()=>Ki,EluGrad:()=>kh,Environment:()=>ug,Equal:()=>Yi,Erf:()=>Zi,Exp:()=>ss,ExpandDims:()=>Ji,Expm1:()=>Qi,FFT:()=>Ih,Fill:()=>hu,FlipLeftRight:()=>eo,Floor:()=>is,FloorDiv:()=>os,FromPixels:()=>Lh,FusedBatchNorm:()=>ls,FusedConv2D:()=>Ls,FusedDepthwiseConv2D:()=>Ws,GPGPUContext:()=>Kd,GatherNd:()=>no,GatherV2:()=>to,GraphModel:()=>lv,Greater:()=>ro,GreaterEqual:()=>us,History:()=>C3,IFFT:()=>Nh,Identity:()=>ao,Imag:()=>Sh,InputSpec:()=>Ut,IsFinite:()=>so,IsInf:()=>io,IsNan:()=>oo,KernelBackend:()=>nu,LRN:()=>fu,LRNGrad:()=>Eh,LayerVariable:()=>k3,LayersModel:()=>na,LeakyRelu:()=>cs,Less:()=>lo,LessEqual:()=>uo,LinSpace:()=>Th,Log:()=>hs,Log1p:()=>co,LogSoftmax:()=>dg,LogicalAnd:()=>ho,LogicalNot:()=>du,LogicalOr:()=>pu,MathBackendCPU:()=>rx,MathBackendWebGL:()=>Yd,Max:()=>ds,MaxPool:()=>fs,MaxPool3D:()=>mu,MaxPool3DGrad:()=>Rh,MaxPoolGrad:()=>Ch,MaxPoolWithArgmax:()=>Fh,Maximum:()=>ps,Mean:()=>ms,Min:()=>As,Minimum:()=>ys,MirrorPad:()=>Au,Mod:()=>po,MomentumOptimizer:()=>Od,Multinomial:()=>Mh,Multiply:()=>gs,Neg:()=>fo,NonMaxSuppressionV3:()=>Ao,NonMaxSuppressionV4:()=>yo,NonMaxSuppressionV5:()=>go,NotEqual:()=>mo,OP_SCOPE_SUFFIX:()=>vg,OneHot:()=>xs,OnesLike:()=>xo,Optimizer:()=>Jr,Pack:()=>wo,PadV2:()=>ws,Pool:()=>ek,Pow:()=>_s,Prelu:()=>bs,Prod:()=>_o,RMSPropOptimizer:()=>$d,RNN:()=>Pr,Range:()=>yu,Rank:()=>M1,Real:()=>Oh,RealDiv:()=>as,Reciprocal:()=>bo,Reduction:()=>rn,Relu:()=>vs,Relu6:()=>Is,Reshape:()=>vo,ResizeBilinear:()=>ks,ResizeBilinearGrad:()=>Dh,ResizeNearestNeighbor:()=>gu,ResizeNearestNeighborGrad:()=>$h,Reverse:()=>Ns,RotateWithOffset:()=>zo,Round:()=>Ss,Rsqrt:()=>Ts,SGDOptimizer:()=>Ku,ScatterNd:()=>ko,Select:()=>Io,Selu:()=>No,Sequential:()=>Tl,Sigmoid:()=>Cs,Sign:()=>Eo,Sin:()=>Es,Sinh:()=>To,Slice:()=>So,Softmax:()=>Ms,Softplus:()=>Co,SpaceToBatchND:()=>xu,SparseToDense:()=>zh,SplitV:()=>Ro,Sqrt:()=>Rs,Square:()=>wu,SquaredDifference:()=>Os,Step:()=>ma,StridedSlice:()=>Fo,Sub:()=>$s,Sum:()=>Fs,SymbolicTensor:()=>Ar,Tan:()=>Mo,Tanh:()=>Ds,Tensor:()=>Xe,TensorBuffer:()=>Rt,Tile:()=>fa,TopK:()=>Oo,Transpose:()=>zs,Unique:()=>Ph,Unpack:()=>$o,UnsortedSegmentSum:()=>_u,Variable:()=>Su,ZerosLike:()=>Do,_FusedMatMul:()=>Ps,abs:()=>Ft,acos:()=>of,acosh:()=>lf,add:()=>se,addN:()=>Xo,all:()=>Qh,any:()=>Ru,argMax:()=>Fu,argMin:()=>uf,asin:()=>cf,asinh:()=>hf,atan:()=>df,atan2:()=>pf,atanh:()=>ff,avgPool:()=>Ou,avgPool3d:()=>yf,backend:()=>sf,backend_util:()=>C,basicLSTMCell:()=>vI,batchNorm:()=>qs,batchNorm2d:()=>c5,batchNorm3d:()=>h5,batchNorm4d:()=>d5,batchToSpaceND:()=>$u,bincount:()=>p5,booleanMaskAsync:()=>TT,broadcastTo:()=>Du,browser:()=>Go,buffer:()=>Pe,callbacks:()=>Ote,cast:()=>me,ceil:()=>gf,clipByValue:()=>hn,clone:()=>Yn,complex:()=>Aa,concat:()=>rt,concat1d:()=>f5,concat2d:()=>Yo,concat3d:()=>m5,concat4d:()=>A5,constraints:()=>Yb,conv1d:()=>td,conv2d:()=>Xr,conv2dTranspose:()=>nd,conv3d:()=>wf,conv3dTranspose:()=>GI,copyRegisteredKernels:()=>rk,cos:()=>zu,cosh:()=>rd,cosineWindow:()=>qf,cumsum:()=>ad,customGrad:()=>Tr,data:()=>uv,denseBincount:()=>g5,deprecationWarn:()=>rf,depthToSpace:()=>_f,depthwiseConv2d:()=>Jo,deregisterOp:()=>Dte,device_util:()=>Gh,diag:()=>QI,dilation2d:()=>bf,disableDeprecationWarnings:()=>W9,dispose:()=>Ne,disposeVariables:()=>B9,div:()=>be,divNoNan:()=>vf,dot:()=>x5,dropout:()=>W5,elu:()=>Qo,enableDebugMode:()=>L9,enableProdMode:()=>a5,enclosingPowerOfTwo:()=>B5,engine:()=>Pn,env:()=>Q,equal:()=>_a,erf:()=>kf,exp:()=>Ln,expandDims:()=>bn,expm1:()=>If,eye:()=>Nf,fft:()=>qu,fill:()=>Pu,findBackend:()=>af,findBackendFactory:()=>j9,floor:()=>el,floorDiv:()=>Jh,forceHalfFloat:()=>Jw,fused:()=>Ia,gather:()=>Xs,gatherND:()=>L5,gather_util:()=>Z1,getBackend:()=>Yh,getGradient:()=>E1,getKernel:()=>Wh,getKernelsForBackend:()=>Lo,gpgpu_util:()=>bw,grad:()=>TN,grads:()=>EN,greater:()=>Jn,greaterEqual:()=>va,ifft:()=>sl,imag:()=>sd,image:()=>Je,inTopKAsync:()=>LT,initializers:()=>a3,input:()=>y3,io:()=>cn,irfft:()=>_d,isFinite:()=>w5,isInf:()=>_5,isNaN:()=>b5,keep:()=>Lt,kernel_impls:()=>Fr,layers:()=>A3,leakyRelu:()=>Lu,less:()=>id,lessEqual:()=>Ks,linalg:()=>Q5,linspace:()=>v5,loadGraphModel:()=>Tt,loadLayersModel:()=>ete,localResponseNormalization:()=>Sf,log:()=>vn,log1p:()=>od,logSigmoid:()=>I5,logSoftmax:()=>ud,logSumExp:()=>Cf,logicalAnd:()=>Qn,logicalNot:()=>Wu,logicalOr:()=>cd,logicalXor:()=>E5,losses:()=>eC,matMul:()=>je,math:()=>Lg,max:()=>Wn,maxPool:()=>Bu,maxPool3d:()=>Rf,maxPoolWithArgmax:()=>C5,maximum:()=>Er,mean:()=>wt,memory:()=>Zh,metrics:()=>T7,min:()=>nl,minimum:()=>rl,mirrorPad:()=>Ff,mod:()=>Mf,model:()=>Jee,models:()=>E7,moments:()=>hd,movingAverage:()=>RT,mul:()=>L,multiRNNCell:()=>aS,multinomial:()=>R5,neg:()=>xt,nextFrame:()=>Dd,norm:()=>Id,notEqual:()=>Ys,oneHot:()=>jo,ones:()=>Cr,onesLike:()=>kn,op:()=>z,outerProduct:()=>uS,pad:()=>Kr,pad1d:()=>dS,pad2d:()=>fS,pad3d:()=>AS,pad4d:()=>gS,pool:()=>F5,pow:()=>Zr,prelu:()=>Uu,print:()=>Mg,prod:()=>dd,profile:()=>cr,rand:()=>SS,randomGamma:()=>RS,randomNormal:()=>M5,randomUniform:()=>al,range:()=>pd,ready:()=>i5,real:()=>ju,reciprocal:()=>Df,registerBackend:()=>qo,registerCallbackConstructor:()=>tte,registerGradient:()=>pg,registerKernel:()=>Bs,registerOp:()=>$te,regularizers:()=>C7,relu:()=>Rr,relu6:()=>fd,removeBackend:()=>U9,reshape:()=>q,reverse:()=>In,reverse1d:()=>WS,reverse2d:()=>VS,reverse3d:()=>jS,reverse4d:()=>HS,rfft:()=>Xu,round:()=>zf,rsqrt:()=>md,scalar:()=>ke,scatterND:()=>P5,scatter_util:()=>Y1,selu:()=>Ad,separableConv2d:()=>Pf,sequential:()=>Qee,serialization:()=>re,setBackend:()=>s5,setPlatform:()=>G9,setWasmPath:()=>KK,setWasmPaths:()=>Bb,setWebGLContext:()=>Gd,setdiff1dAsync:()=>O5,shared:()=>Yf,sigmoid:()=>_n,sign:()=>Lf,signal:()=>QE,sin:()=>yd,sinh:()=>gd,slice:()=>Ee,slice1d:()=>xd,slice2d:()=>Wf,slice3d:()=>wd,slice4d:()=>Gu,slice_util:()=>nn,softmax:()=>Hu,softplus:()=>tl,spaceToBatchND:()=>Vu,sparseToDense:()=>Hf,spectral:()=>JE,split:()=>Ht,sqrt:()=>qt,square:()=>it,squaredDifference:()=>bd,squeeze:()=>ka,stack:()=>Nn,step:()=>il,stridedSlice:()=>Bf,sub:()=>Ae,sum:()=>Ie,sumOutType:()=>jh,tan:()=>Vf,tanh:()=>Zo,tensor:()=>ur,tensor1d:()=>Wt,tensor2d:()=>pn,tensor3d:()=>Xh,tensor4d:()=>gT,tensor5d:()=>xT,tensor6d:()=>wT,tensor_util:()=>lr,test_util:()=>e5,tidy:()=>W,tile:()=>ba,time:()=>V9,topk:()=>Uf,train:()=>Qs,transpose:()=>nt,truncatedNormal:()=>vd,unique:()=>kd,unregisterGradient:()=>nk,unregisterKernel:()=>tk,unsortedSegmentSum:()=>jf,unstack:()=>er,upcastType:()=>Zn,util:()=>k,valueAndGrad:()=>CN,valueAndGrads:()=>RN,variable:()=>$5,variableGrads:()=>k5,version:()=>bre,version_converter:()=>Dne,version_core:()=>r5,version_cpu:()=>Cx,version_layers:()=>AA,version_wasm:()=>Vb,version_webgl:()=>Yw,webgl:()=>yP,webgl_util:()=>Zx,where:()=>dn,whereAsync:()=>Gf,zeros:()=>Nt,zerosLike:()=>Be});var G4=Object.create,ah=Object.defineProperty,H4=Object.getPrototypeOf,q4=Object.prototype.hasOwnProperty,X4=Object.getOwnPropertyNames,K4=Object.getOwnPropertyDescriptor,Z4=e=>ah(e,"__esModule",{value:!0}),et=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),$e=(e,t)=>{for(var n in t)ah(e,n,{get:t[n],enumerable:!0})},Y4=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of X4(t))!q4.call(e,r)&&r!=="default"&&ah(e,r,{get:()=>t[r],enumerable:!(n=K4(t,r))||n.enumerable});return e},Mi=e=>e&&e.__esModule?e:Y4(Z4(ah(e!=null?G4(H4(e)):{},"default",{value:e,enumerable:!0})),e),J4=et(()=>{}),Q4=et((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),p=u&&u.state,d=h.next;return d.int32=function(){return h.next()*4294967296|0},d.double=function(){return d()+(d()*2097152|0)*11102230246251565e-32},d.quick=d,p&&(typeof p=="object"&&i(p,h),d.state=function(){return i(h,{})}),d}function l(){var c=4022871197,u=function(h){h=h.toString();for(var p=0;p<h.length;p++){c+=h.charCodeAt(p);var d=.02519603282416938*c;c=d>>>0,d-=c,d*=c,c=d>>>0,d-=c,c+=d*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),e8=et((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),h=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var d=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(d+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,h&&(typeof h=="object"&&i(h,u),p.state=function(){return i(u,{})}),p}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),t8=et((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,h==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var d=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(d+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,h&&(typeof h=="object"&&i(h,u),p.state=function(){return i(u,{})}),p}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),n8=et((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,p=c.i,d,f,m;return d=h[p],d^=d>>>7,f=d^d<<24,d=h[p+1&7],f^=d^d>>>10,d=h[p+3&7],f^=d^d>>>3,d=h[p+4&7],f^=d^d<<7,d=h[p+7&7],d=d^d<<13,f^=d^d<<9,h[p]=f,c.i=p+1&7,f};function u(h,p){var d,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,d=0;d<p.length;++d)m[d&7]=m[d&7]<<15^p.charCodeAt(d)+m[d+1&7]<<13;for(;m.length<8;)m.push(0);for(d=0;d<8&&m[d]===0;++d);for(d==8?f=m[7]=-1:f=m[d],h.x=m,h.i=0,d=256;d>0;--d)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var d=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(d+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,h&&(h.x&&i(h,u),p.state=function(){return i(u,{})}),p}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),r8=et((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,p=c.X,d=c.i,f,m;return c.w=h=h+1640531527|0,m=p[d+34&127],f=p[d=d+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[d]=m^f,c.i=d,m+(h^h>>>16)|0};function u(h,p){var d,f,m,A,y,g=[],_=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,_=Math.max(_,p.length)),m=0,A=-32;A<_;++A)p&&(f^=p.charCodeAt((A+32)%p.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,d=g[A&127]^=f+y,m=d==0?m+1:0);for(m>=128&&(g[(p&&p.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],d=g[m=m+1&127],f^=f<<13,d^=d<<17,f^=f>>>15,d^=d>>>12,g[m]=f^d;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var d=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(d+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,h&&(h.X&&i(h,u),p.state=function(){return i(u,{})}),p}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),a8=et((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var p=c.b,d=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^d,d=d-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^d,c.c=d=d-f|0,c.d=f<<16^d>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h<u.length+20;h++)c.b^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var d=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(d+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,h&&(typeof h=="object"&&i(h,u),p.state=function(){return i(u,{})}),p}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),b1=et(()=>{}),s8=et((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),h=u*2,p=s-1,d;function f(w,b,N){var T=[];b=b==!0?{entropy:!0}:b||{};var E=g(y(b.entropy?[w,x(n)]:w==null?_():w,3),T),M=new m(T),$=function(){for(var P=M.g(i),V=c,H=0;P<u;)P=(P+H)*s,V*=s,H=M.g(1);for(;P>=h;)P/=2,V/=2,H>>>=1;return(P+H)/V};return $.int32=function(){return M.g(4)|0},$.quick=function(){return M.g(4)/4294967296},$.double=$,g(x(M.S),n),(b.pass||N||function(P,V,H,U){return U&&(U.S&&A(U,M),P.state=function(){return A(M,{})}),H?(r[l]=P,V):P})($,E,"global"in b?b.global:this==r,b.state)}r["seed"+l]=f;function m(w){var b,N=w.length,T=this,E=0,M=T.i=T.j=0,$=T.S=[];for(N||(w=[N++]);E<s;)$[E]=E++;for(E=0;E<s;E++)$[E]=$[M=p&M+w[E%N]+(b=$[E])],$[M]=b;(T.g=function(P){for(var V,H=0,U=T.i,K=T.j,X=T.S;P--;)V=X[U=p&U+1],H=H*s+X[p&(X[U]=X[K=p&K+V])+(X[K]=V)];return T.i=U,T.j=K,H})(s)}function A(w,b){return b.i=w.i,b.j=w.j,b.S=w.S.slice(),b}function y(w,b){var N=[],T=typeof w,E;if(b&&T=="object")for(E in w)try{N.push(y(w[E],b-1))}catch(M){}return N.length?N:T=="string"?w:w+"\0"}function g(w,b){for(var N=w+"",T,E=0;E<N.length;)b[p&E]=p&(T^=b[p&E]*19)+N.charCodeAt(E++);return x(b)}function _(){try{var w;return d&&(w=d.randomBytes)?w=w(s):(w=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(w)),x(w)}catch(T){var b=a.navigator,N=b&&b.plugins;return[+new Date,a,N,a.screen,x(n)]}}function x(w){return String.fromCharCode.apply(0,w)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{d=b1()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}),i8=et((e,t)=>{var n=Q4(),r=e8(),a=t8(),s=n8(),i=r8(),o=a8(),l=s8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),o8=et((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),p=u&&u.state,d=h.next;return d.int32=function(){return h.next()*4294967296|0},d.double=function(){return d()+(d()*2097152|0)*11102230246251565e-32},d.quick=d,p&&(typeof p=="object"&&i(p,h),d.state=function(){return i(h,{})}),d}function l(){var c=4022871197,u=function(h){h=h.toString();for(var p=0;p<h.length;p++){c+=h.charCodeAt(p);var d=.02519603282416938*c;c=d>>>0,d-=c,d*=c,c=d>>>0,d-=c,c+=d*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),l8=et((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),h=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var d=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(d+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,h&&(typeof h=="object"&&i(h,u),p.state=function(){return i(u,{})}),p}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),u8=et((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,h==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var d=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(d+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,h&&(typeof h=="object"&&i(h,u),p.state=function(){return i(u,{})}),p}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),c8=et((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,p=c.i,d,f,m;return d=h[p],d^=d>>>7,f=d^d<<24,d=h[p+1&7],f^=d^d>>>10,d=h[p+3&7],f^=d^d>>>3,d=h[p+4&7],f^=d^d<<7,d=h[p+7&7],d=d^d<<13,f^=d^d<<9,h[p]=f,c.i=p+1&7,f};function u(h,p){var d,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,d=0;d<p.length;++d)m[d&7]=m[d&7]<<15^p.charCodeAt(d)+m[d+1&7]<<13;for(;m.length<8;)m.push(0);for(d=0;d<8&&m[d]===0;++d);for(d==8?f=m[7]=-1:f=m[d],h.x=m,h.i=0,d=256;d>0;--d)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var d=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(d+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,h&&(h.x&&i(h,u),p.state=function(){return i(u,{})}),p}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),h8=et((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,p=c.X,d=c.i,f,m;return c.w=h=h+1640531527|0,m=p[d+34&127],f=p[d=d+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[d]=m^f,c.i=d,m+(h^h>>>16)|0};function u(h,p){var d,f,m,A,y,g=[],_=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,_=Math.max(_,p.length)),m=0,A=-32;A<_;++A)p&&(f^=p.charCodeAt((A+32)%p.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,d=g[A&127]^=f+y,m=d==0?m+1:0);for(m>=128&&(g[(p&&p.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],d=g[m=m+1&127],f^=f<<13,d^=d<<17,f^=f>>>15,d^=d>>>12,g[m]=f^d;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var d=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(d+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,h&&(h.X&&i(h,u),p.state=function(){return i(u,{})}),p}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),d8=et((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var p=c.b,d=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^d,d=d-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^d,c.c=d=d-f|0,c.d=f<<16^d>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h<u.length+20;h++)c.b^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var d=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(d+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,h&&(typeof h=="object"&&i(h,u),p.state=function(){return i(u,{})}),p}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),p8=et((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",c=r.pow(s,i),u=r.pow(2,o),h=u*2,p=s-1,d;function f(w,b,N){var T=[];b=b==!0?{entropy:!0}:b||{};var E=g(y(b.entropy?[w,x(n)]:w==null?_():w,3),T),M=new m(T),$=function(){for(var P=M.g(i),V=c,H=0;P<u;)P=(P+H)*s,V*=s,H=M.g(1);for(;P>=h;)P/=2,V/=2,H>>>=1;return(P+H)/V};return $.int32=function(){return M.g(4)|0},$.quick=function(){return M.g(4)/4294967296},$.double=$,g(x(M.S),n),(b.pass||N||function(P,V,H,U){return U&&(U.S&&A(U,M),P.state=function(){return A(M,{})}),H?(r[l]=P,V):P})($,E,"global"in b?b.global:this==r,b.state)}r["seed"+l]=f;function m(w){var b,N=w.length,T=this,E=0,M=T.i=T.j=0,$=T.S=[];for(N||(w=[N++]);E<s;)$[E]=E++;for(E=0;E<s;E++)$[E]=$[M=p&M+w[E%N]+(b=$[E])],$[M]=b;(T.g=function(P){for(var V,H=0,U=T.i,K=T.j,X=T.S;P--;)V=X[U=p&U+1],H=H*s+X[p&(X[U]=X[K=p&K+V])+(X[K]=V)];return T.i=U,T.j=K,H})(s)}function A(w,b){return b.i=w.i,b.j=w.j,b.S=w.S.slice(),b}function y(w,b){var N=[],T=typeof w,E;if(b&&T=="object")for(E in w)try{N.push(y(w[E],b-1))}catch(M){}return N.length?N:T=="string"?w:w+"\0"}function g(w,b){for(var N=w+"",T,E=0;E<N.length;)b[p&E]=p&(T^=b[p&E]*19)+N.charCodeAt(E++);return x(b)}function _(){try{var w;return d&&(w=d.randomBytes)?w=w(s):(w=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(w)),x(w)}catch(T){var b=a.navigator,N=b&&b.plugins;return[+new Date,a,N,a.screen,x(n)]}}function x(w){return String.fromCharCode.apply(0,w)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{d=b1()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}),f8=et((e,t)=>{var n=o8(),r=l8(),a=u8(),s=c8(),i=h8(),o=d8(),l=p8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),tu=et(()=>{}),m8=et(()=>{}),A8=et(()=>{}),y8=et((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return J.buffer!=Ze&&wn(J.buffer),gn}function i(){return J.buffer!=Ze&&wn(J.buffer),Gt}function o(){return J.buffer!=Ze&&wn(J.buffer),un}function l(){return J.buffer!=Ze&&wn(J.buffer),en}function c(){return J.buffer!=Ze&&wn(J.buffer),wr}var u=typeof a!="undefined"?a:{},h={},p;for(p in u)u.hasOwnProperty(p)&&(h[p]=u[p]);var d=[],f="./this.program",m=function(v,S){throw S},A=!1,y=!1,g=!1,_=!1;A=typeof window=="object",y=typeof importScripts=="function",g=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",_=!A&&!g&&!y;var x=u.ENVIRONMENT_IS_PTHREAD||!1;x&&(Ze=u.buffer,Hn=u.DYNAMIC_BASE,or=u.DYNAMICTOP_PTR);var w="";function b(v){return u.locateFile?u.locateFile(v,w):w+v}var N,T,E,M,$,P;if(g){y?w=tu().dirname(w)+"/":w=__dirname+"/",N=function(v,S){return $||($=require("fs")),P||(P=tu()),v=P.normalize(v),$.readFileSync(v,S?null:"utf8")},E=function(v){var S=N(v,!0);return S.buffer||(S=new Uint8Array(S)),_e(S.buffer),S},process.argv.length>1&&(f=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(v){if(!(v instanceof X2))throw v}),process.on("unhandledRejection",Ur),m=function(v){process.exit(v)},u.inspect=function(){return"[Emscripten Module object]"};var V;try{V=m8()}catch(v){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),v}Worker=V.Worker}else _?(typeof read!="undefined"&&(N=function(v){return read(v)}),E=function(v){var S;return typeof readbuffer=="function"?new Uint8Array(readbuffer(v)):(S=read(v,"binary"),_e(typeof S=="object"),S)},typeof scriptArgs!="undefined"?d=scriptArgs:typeof arguments!="undefined"&&(d=arguments),typeof quit=="function"&&(m=function(v){quit(v)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(A||y)&&(y?w=self.location.href:document.currentScript&&(w=document.currentScript.src),typeof r!="undefined"&&r&&(w=r),w.indexOf("blob:")!==0?w=w.substr(0,w.lastIndexOf("/")+1):w="",g?(N=function(v,S){return $||($=require("fs")),P||(P=tu()),v=P.normalize(v),$.readFileSync(v,S?null:"utf8")},E=function(v){var S=N(v,!0);return S.buffer||(S=new Uint8Array(S)),_e(S.buffer),S}):(N=function(v){var S=new XMLHttpRequest;return S.open("GET",v,!1),S.send(null),S.responseText},y&&(E=function(v){var S=new XMLHttpRequest;return S.open("GET",v,!1),S.responseType="arraybuffer",S.send(null),new Uint8Array(S.response)}),T=function(v,S,O){var G=new XMLHttpRequest;G.open("GET",v,!0),G.responseType="arraybuffer",G.onload=function(){if(G.status==200||G.status==0&&G.response){S(G.response);return}O()},G.onerror=O,G.send(null)}),M=function(v){document.title=v});g&&typeof performance=="undefined"&&(performance=A8().performance);var H=u.print||console.log.bind(console),U=u.printErr||console.warn.bind(console);for(p in h)h.hasOwnProperty(p)&&(u[p]=h[p]);h=null,u.arguments&&(d=u.arguments),u.thisProgram&&(f=u.thisProgram),u.quit&&(m=u.quit);var K=Atomics.load,X=Atomics.store,ee=Atomics.compareExchange,Z;u.wasmBinary&&(Z=u.wasmBinary);var ae;u.noExitRuntime&&(ae=u.noExitRuntime),typeof WebAssembly!="object"&&U("no native wasm support detected");var J,oe=new WebAssembly.Table({initial:169,maximum:169+0,element:"anyfunc"}),ne,ce=0,ue=0,pe=!1,fe=0;function _e(v,S){v||Ur("Assertion failed: "+S)}function Se(v){var S=u["_"+v];return _e(S,"Cannot call unknown function "+v+", make sure it is exported"),S}function Ce(v,S,O,G,he){var le={string:function(Dn){var ua=0;if(Dn!=null&&Dn!==0){var Ql=(Dn.length<<2)+1;ua=Ei(Ql),st(Dn,ua,Ql)}return ua},array:function(Dn){var ua=Ei(Dn.length);return ot(Dn,ua),ua}};function ie(Dn){return S==="string"?We(Dn):S==="boolean"?Boolean(Dn):Dn}var xe=Se(v),Ye=[],Et=0;if(G)for(var Yt=0;Yt<G.length;Yt++){var Ri=le[O[Yt]];Ri?(Et===0&&(Et=Zl()),Ye[Yt]=Ri(G[Yt])):Ye[Yt]=G[Yt]}var Jl=xe.apply(null,Ye);return Jl=ie(Jl),Et!==0&&Ci(Et),Jl}function Oe(v,S,O,G){O=O||[];var he=O.every(function(ie){return ie==="number"}),le=S!=="string";return le&&he&&!G?Se(v):function(){return Ce(v,S,O,arguments,G)}}function He(v,S,O){for(var G=S+O,he="";!(S>=G);){var le=v[S++];if(!le)return he;if(!(le&128)){he+=String.fromCharCode(le);continue}var ie=v[S++]&63;if((le&224)==192){he+=String.fromCharCode((le&31)<<6|ie);continue}var xe=v[S++]&63;if((le&240)==224?le=(le&15)<<12|ie<<6|xe:le=(le&7)<<18|ie<<12|xe<<6|v[S++]&63,le<65536)he+=String.fromCharCode(le);else{var Ye=le-65536;he+=String.fromCharCode(55296|Ye>>10,56320|Ye&1023)}}return he}function We(v,S){return v?He(i(),v,S):""}function tt(v,S,O,G){if(!(G>0))return 0;for(var he=O,le=O+G-1,ie=0;ie<v.length;++ie){var xe=v.charCodeAt(ie);if(xe>=55296&&xe<=57343){var Ye=v.charCodeAt(++ie);xe=65536+((xe&1023)<<10)|Ye&1023}if(xe<=127){if(O>=le)break;S[O++]=xe}else if(xe<=2047){if(O+1>=le)break;S[O++]=192|xe>>6,S[O++]=128|xe&63}else if(xe<=65535){if(O+2>=le)break;S[O++]=224|xe>>12,S[O++]=128|xe>>6&63,S[O++]=128|xe&63}else{if(O+3>=le)break;S[O++]=240|xe>>18,S[O++]=128|xe>>12&63,S[O++]=128|xe>>6&63,S[O++]=128|xe&63}}return S[O]=0,O-he}function st(v,S,O){return tt(v,i(),S,O)}function Ve(v){for(var S=0,O=0;O<v.length;++O){var G=v.charCodeAt(O);G>=55296&&G<=57343&&(G=65536+((G&1023)<<10)|v.charCodeAt(++O)&1023),G<=127?++S:G<=2047?S+=2:G<=65535?S+=3:S+=4}return S}function ot(v,S){s().set(v,S)}var lt=65536;function On(v,S){return v%S>0&&(v+=S-v%S),v}var Ze,gn,Gt,xn,jn,un,en,Gn,wr;function wn(v){Ze=v,u.HEAP8=gn=new Int8Array(v),u.HEAP16=xn=new Int16Array(v),u.HEAP32=un=new Int32Array(v),u.HEAPU8=Gt=new Uint8Array(v),u.HEAPU16=jn=new Uint16Array(v),u.HEAPU32=en=new Uint32Array(v),u.HEAPF32=Gn=new Float32Array(v),u.HEAPF64=wr=new Float64Array(v)}var wi=5256480,$l=wi,ir=13600,Hn=5256480,or=12672,_i=u.INITIAL_MEMORY||16777216;if(x)J=u.wasmMemory,Ze=u.buffer;else if(u.wasmMemory)J=u.wasmMemory;else if(J=new WebAssembly.Memory({initial:_i/lt,maximum:2147483648/lt,shared:!0}),!(J.buffer instanceof SharedArrayBuffer))throw U("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),g&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");J&&(Ze=J.buffer),_i=Ze.byteLength,wn(Ze),x||(o()[or>>2]=Hn);function bi(v){for(;v.length>0;){var S=v.shift();if(typeof S=="function"){S(u);continue}var O=S.func;typeof O=="number"?S.arg===void 0?u.dynCall_v(O):u.dynCall_vi(O,S.arg):O(S.arg===void 0?null:S.arg)}}var La=[],Dl=[],h0=[],zl=[],$c=[],Pl=!1;x&&(Pl=!0);function qn(){if(!x){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)f0(u.preRun.shift());bi(La)}}function Dc(){Pl=!0,bi(Dl)}function d0(){x||bi(h0)}function p0(){if(!x){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)Wa(u.postRun.shift());bi($c)}}function f0(v){La.unshift(v)}function Wa(v){$c.unshift(v)}var vi=Math.ceil,m0=Math.floor,Vr=0,Ll=null,Ba=null;function A0(v){_e(!x,"addRunDependency cannot be used in a pthread worker"),Vr++,u.monitorRunDependencies&&u.monitorRunDependencies(Vr)}function y0(v){if(Vr--,u.monitorRunDependencies&&u.monitorRunDependencies(Vr),Vr==0&&(Ll!==null&&(clearInterval(Ll),Ll=null),Ba)){var S=Ba;Ba=null,S()}}u.preloadedImages={},u.preloadedAudios={};function Ur(v){throw u.onAbort&&u.onAbort(v),x&&console.error("Pthread aborting at "+new Error().stack),v+="",H(v),U(v),pe=!0,fe=1,v="abort("+v+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(v)}function Wl(v,S){return String.prototype.startsWith?v.startsWith(S):v.indexOf(S)===0}var g0="data:application/octet-stream;base64,";function zc(v){return Wl(v,g0)}var x0="file://";function Pc(v){return Wl(v,x0)}var Xn="tfjs-backend-wasm-threaded-simd.wasm";zc(Xn)||(Xn=b(Xn));function Lc(){try{if(Z)return new Uint8Array(Z);if(E)return E(Xn);throw"both async and sync fetching of the wasm failed"}catch(v){Ur(v)}}function w0(){return!Z&&(A||y)&&typeof fetch=="function"&&!Pc(Xn)?fetch(Xn,{credentials:"same-origin"}).then(function(v){if(!v.ok)throw"failed to load wasm binary file at '"+Xn+"'";return v.arrayBuffer()}).catch(function(){return Lc()}):new Promise(function(v,S){v(Lc())})}function _0(){var v={a:d1};function S(ie,xe){var Ye=ie.exports;if(u.asm=Ye,ne=xe,!x){var Et=de.unusedWorkers.length;de.unusedWorkers.forEach(function(Yt){de.loadWasmModuleToWorker(Yt,function(){--Et||y0("wasm-instantiate")})})}}x||A0("wasm-instantiate");function O(ie){S(ie.instance,ie.module)}function G(ie){return w0().then(function(xe){return WebAssembly.instantiate(xe,v)}).then(ie,function(xe){U("failed to asynchronously prepare wasm: "+xe),Ur(xe)})}function he(){if(!Z&&typeof WebAssembly.instantiateStreaming=="function"&&!zc(Xn)&&!Pc(Xn)&&typeof fetch=="function")fetch(Xn,{credentials:"same-origin"}).then(function(ie){var xe=WebAssembly.instantiateStreaming(ie,v);return xe.then(O,function(Ye){U("wasm streaming compile failed: "+Ye),U("falling back to ArrayBuffer instantiation"),G(O)})});else return G(O)}if(u.instantiateWasm)try{var le=u.instantiateWasm(v,S);return le}catch(ie){return U("Module.instantiateWasm callback failed with error: "+ie),!1}return he(),{}}var b0={};function v0(){de.initRuntime()}x||Dl.push({func:function(){Ul()}});var Wc=0,Bc=0,Vc=0;function ki(v,S,O){v=v|0,S=S|0,O=O|0,Wc=v,Vc=S,Bc=O}u.__register_pthread_ptr=ki;var Bl={EPERM:63,ENOENT:44,ESRCH:71,EINTR:27,EIO:29,ENXIO:60,E2BIG:1,ENOEXEC:45,EBADF:8,ECHILD:12,EAGAIN:6,EWOULDBLOCK:6,ENOMEM:48,EACCES:2,EFAULT:21,ENOTBLK:105,EBUSY:10,EEXIST:20,EXDEV:75,ENODEV:43,ENOTDIR:54,EISDIR:31,EINVAL:28,ENFILE:41,EMFILE:33,ENOTTY:59,ETXTBSY:74,EFBIG:22,ENOSPC:51,ESPIPE:70,EROFS:69,EMLINK:34,EPIPE:64,EDOM:18,ERANGE:68,ENOMSG:49,EIDRM:24,ECHRNG:106,EL2NSYNC:156,EL3HLT:107,EL3RST:108,ELNRNG:109,EUNATCH:110,ENOCSI:111,EL2HLT:112,EDEADLK:16,ENOLCK:46,EBADE:113,EBADR:114,EXFULL:115,ENOANO:104,EBADRQC:103,EBADSLT:102,EDEADLOCK:16,EBFONT:101,ENOSTR:100,ENODATA:116,ETIME:117,ENOSR:118,ENONET:119,ENOPKG:120,EREMOTE:121,ENOLINK:47,EADV:122,ESRMNT:123,ECOMM:124,EPROTO:65,EMULTIHOP:36,EDOTDOT:125,EBADMSG:9,ENOTUNIQ:126,EBADFD:127,EREMCHG:128,ELIBACC:129,ELIBBAD:130,ELIBSCN:131,ELIBMAX:132,ELIBEXEC:133,ENOSYS:52,ENOTEMPTY:55,ENAMETOOLONG:37,ELOOP:32,EOPNOTSUPP:138,EPFNOSUPPORT:139,ECONNRESET:15,ENOBUFS:42,EAFNOSUPPORT:5,EPROTOTYPE:67,ENOTSOCK:57,ENOPROTOOPT:50,ESHUTDOWN:140,ECONNREFUSED:14,EADDRINUSE:3,ECONNABORTED:13,ENETUNREACH:40,ENETDOWN:38,ETIMEDOUT:73,EHOSTDOWN:142,EHOSTUNREACH:23,EINPROGRESS:26,EALREADY:7,EDESTADDRREQ:17,EMSGSIZE:35,EPROTONOSUPPORT:66,ESOCKTNOSUPPORT:137,EADDRNOTAVAIL:4,ENETRESET:39,EISCONN:30,ENOTCONN:53,ETOOMANYREFS:141,EUSERS:136,EDQUOT:19,ESTALE:72,ENOTSUP:138,ENOMEDIUM:148,EILSEQ:25,EOVERFLOW:61,ECANCELED:11,ENOTRECOVERABLE:56,EOWNERDEAD:62,ESTRPIPE:135},Ii=13584;function Ni(v,S){if(v<=0||v>s().length||v&!0||S<0)return-28;if(S==0)return 0;S>=2147483647&&(S=Infinity);var O=Atomics.load(o(),Ii>>2),G=0;if(O==v){var he=Atomics.compareExchange(o(),Ii>>2,O,0);if(he==O&&(--S,G=1,S<=0))return 1}var le=Atomics.notify(o(),v>>2,S);if(le>=0)return le+G;throw"Atomics.notify returned an unexpected value "+le}u._emscripten_futex_wake=Ni;function k0(v){if(x)throw"Internal Error! _kill_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _kill_thread!";o()[v+12>>2]=0;var S=de.pthreads[v];S.worker.terminate(),de.freeThreadData(S),de.runningWorkers.splice(de.runningWorkers.indexOf(S.worker),1),S.worker.pthread=void 0}function I0(v){if(x)throw"Internal Error! _cancel_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _cancel_thread!";var S=de.pthreads[v];S.worker.postMessage({cmd:"cancel"})}function N0(v){if(x)throw"Internal Error! _cleanup_thread() can only ever be called from main application thread!";if(!v)throw"Internal Error! Null pthread_ptr in _cleanup_thread!";o()[v+12>>2]=0;var S=de.pthreads[v];if(S){var O=S.worker;de.returnWorkerToPool(O)}}var de={MAIN_THREAD_ID:1,mainThreadInfo:{schedPolicy:0,schedPrio:0},unusedWorkers:[],runningWorkers:[],initRuntime:function(){ki(de.mainThreadBlock,!y,1),j2(de.mainThreadBlock)},initMainThreadBlock:function(){for(var v=8,S=0;S<v;++S)de.allocateUnusedWorker();de.mainThreadBlock=12832;for(var S=0;S<232/4;++S)l()[de.mainThreadBlock/4+S]=0;o()[de.mainThreadBlock+12>>2]=de.mainThreadBlock;var O=de.mainThreadBlock+156;o()[O>>2]=O;for(var G=13072,S=0;S<128;++S)l()[G/4+S]=0;Atomics.store(l(),de.mainThreadBlock+104>>2,G),Atomics.store(l(),de.mainThreadBlock+40>>2,de.mainThreadBlock),Atomics.store(l(),de.mainThreadBlock+44>>2,42)},initWorker:function(){},pthreads:{},exitHandlers:null,setThreadStatus:function(){},runExitHandlers:function(){if(de.exitHandlers!==null){for(;de.exitHandlers.length>0;)de.exitHandlers.pop()();de.exitHandlers=null}x&&ce&&U2()},threadExit:function(v){var S=_r();S&&(Atomics.store(l(),S+4>>2,v),Atomics.store(l(),S+0>>2,1),Atomics.store(l(),S+60>>2,1),Atomics.store(l(),S+64>>2,0),de.runExitHandlers(),Ni(S+0,2147483647),ki(0,0,0),ce=0,x&&postMessage({cmd:"exit"}))},threadCancel:function(){de.runExitHandlers(),Atomics.store(l(),ce+4>>2,-1),Atomics.store(l(),ce+0>>2,1),Ni(ce+0,2147483647),ce=ue=0,ki(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var v in de.pthreads){var S=de.pthreads[v];S&&S.worker&&de.returnWorkerToPool(S.worker)}de.pthreads={};for(var O=0;O<de.unusedWorkers.length;++O){var G=de.unusedWorkers[O];G.terminate()}de.unusedWorkers=[];for(var O=0;O<de.runningWorkers.length;++O){var G=de.runningWorkers[O],S=G.pthread;de.freeThreadData(S),G.terminate()}de.runningWorkers=[]},freeThreadData:function(v){if(v){if(v.threadInfoStruct){var S=o()[v.threadInfoStruct+104>>2];o()[v.threadInfoStruct+104>>2]=0,Kl(S),Kl(v.threadInfoStruct)}v.threadInfoStruct=0,v.allocatedOwnStack&&v.stackBase&&Kl(v.stackBase),v.stackBase=0,v.worker&&(v.worker.pthread=null)}},returnWorkerToPool:function(v){delete de.pthreads[v.pthread.thread],de.unusedWorkers.push(v),de.runningWorkers.splice(de.runningWorkers.indexOf(v),1),de.freeThreadData(v.pthread),v.pthread=void 0},receiveObjectTransfer:function(v){},loadWasmModuleToWorker:function(v,S){v.onmessage=function(O){var G=O.data,he=G.cmd;if(v.pthread&&(de.currentProxiedOperationCallerThread=v.pthread.threadInfoStruct),G.targetThread&&G.targetThread!=_r()){var le=de.pthreads[G.targetThread];le?le.worker.postMessage(O.data,G.transferList):console.error('Internal error! Worker sent a message "'+he+'" to target pthread '+G.targetThread+", but that thread no longer exists!"),de.currentProxiedOperationCallerThread=void 0;return}if(he==="processQueuedMainThreadWork")m1();else if(he==="spawnThread")Xc(O.data);else if(he==="cleanupThread")N0(G.thread);else if(he==="killThread")k0(G.thread);else if(he==="cancelThread")I0(G.thread);else if(he==="loaded")v.loaded=!0,S&&S(v),v.runPthread&&(v.runPthread(),delete v.runPthread);else if(he==="print")H("Thread "+G.threadId+": "+G.text);else if(he==="printErr")U("Thread "+G.threadId+": "+G.text);else if(he==="alert")alert("Thread "+G.threadId+": "+G.text);else if(he==="exit"){var ie=v.pthread&&Atomics.load(l(),v.pthread.thread+68>>2);ie&&de.returnWorkerToPool(v)}else he==="cancelDone"?de.returnWorkerToPool(v):he==="objectTransfer"?de.receiveObjectTransfer(O.data):O.data.target==="setimmediate"?v.postMessage(O.data):U("worker sent an unknown command "+he);de.currentProxiedOperationCallerThread=void 0},v.onerror=function(O){U("pthread sent an error! "+O.filename+":"+O.lineno+": "+O.message)},g&&(v.on("message",function(O){v.onmessage({data:O})}),v.on("error",function(O){v.onerror(O)}),v.on("exit",function(O){console.log("worker exited - TODO: update the worker queue?")})),v.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||r,wasmMemory:J,wasmModule:ne,DYNAMIC_BASE:Hn,DYNAMICTOP_PTR:or})},allocateUnusedWorker:function(){var v=b("tfjs-backend-wasm-threaded-simd.worker.js");de.unusedWorkers.push(new Worker(v))},getNewWorker:function(){return de.unusedWorkers.length==0&&(de.allocateUnusedWorker(),de.loadWasmModuleToWorker(de.unusedWorkers[0])),de.unusedWorkers.length>0?de.unusedWorkers.pop():null},busySpinWait:function(v){for(var S=performance.now()+v;performance.now()<S;);}};function S0(v,S){wi=$l=v,ir=S,Ci(v)}u.establishStackSpace=S0;function T0(){return ae}u.getNoExitRuntime=T0;function E0(v,S,O,G){Ur("Assertion failed: "+We(v)+", at: "+[S?We(S):"unknown filename",O,G?We(G):"unknown function"])}function C0(v,S){var O=_main(v,S)}var Va;g?Va=function(){var v=process.hrtime();return v[0]*1e3+v[1]/1e6}:x?Va=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?Va=dateNow:Va=function(){return performance.now()};function R0(v){return o()[W2()>>2]=v,v}function F0(v,S){if(x)return ia(1,1,v,S);zl.unshift({func:v,arg:S})}function M0(v,S){if(v==S)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:v,cmd:"processThreadQueue"});else{var O=de.pthreads[v],G=O&&O.worker;if(!G)return;G.postMessage({cmd:"processThreadQueue"})}return 1}function O0(){Ur()}function $0(v,S){v=v|0,S=S|0}function D0(v,S,O){if(v<=0||v>s().length||v&!0)return-28;if(y){var G=Atomics.wait(o(),v>>2,S,O);if(G==="timed-out")return-73;if(G==="not-equal")return-6;if(G==="ok")return 0;throw"Atomics.wait returned an unexpected value "+G}else{var he=Atomics.load(o(),v>>2);if(S!=he)return-6;var le=performance.now(),ie=le+O;Atomics.store(o(),Ii>>2,v);for(var xe=v;v==xe;){if(le=performance.now(),le>ie)return-73;m1(),v=Atomics.load(o(),Ii>>2)}return 0}}function z0(){return Vc|0}function P0(){return Bc|0}function L0(v,S,O){i().copyWithin(v,S,S+O)}function W0(){return navigator.hardwareConcurrency}function ia(v,S){for(var O=arguments.length-2,G=Zl(),he=Ei(O*8),le=he>>3,ie=0;ie<O;ie++)c()[le+ie]=arguments[2+ie];var xe=H2(v,O,he,S);return Ci(G),xe}var Ua=[];function Si(v,S){Si.array||(Si.array=[]);var O=Si.array;O.length=0;for(var G;G=i()[v++];)G===100||G===102?(S=S+7&~7,O.push(c()[S>>3]),S+=8):(S=S+3&~3,O.push(o()[S>>2]),S+=4);return O}function B0(v,S,O){Ua.length=S;for(var G=O>>3,he=0;he<S;he++)Ua[he]=c()[G+he];var le=v<0,ie=le?b0[-v-1]:h1[v];if(le){var xe=Ua[1],Ye=Ua[2],Et=Si(xe,Ye);return ie.apply(null,Et)}return ie.apply(null,Ua)}function V0(){return i().length}function U0(v){try{return J.grow(v-Ze.byteLength+65535>>>16),wn(J.buffer),1}catch(S){}}function j0(v){v=v>>>0;var S=V0();if(v<=S)return!1;var O=65536,G=2147483648;if(v>G)return!1;for(var he=16777216,le=1;le<=4;le*=2){var ie=S*(1+.2/le);ie=Math.min(ie,v+100663296);var xe=Math.min(G,On(Math.max(he,v,ie),O)),Ye=U0(xe);if(Ye)return!0}return!1}var ze={keyEvent:0,mouseEvent:0,wheelEvent:0,uiEvent:0,focusEvent:0,deviceOrientationEvent:0,deviceMotionEvent:0,fullscreenChangeEvent:0,pointerlockChangeEvent:0,visibilityChangeEvent:0,touchEvent:0,previousFullscreenElement:null,previousScreenX:null,previousScreenY:null,removeEventListenersRegistered:!1,removeAllEventListeners:function(){for(var v=ze.eventHandlers.length-1;v>=0;--v)ze._removeHandler(v);ze.eventHandlers=[],ze.deferredCalls=[]},registerRemoveEventListeners:function(){ze.removeEventListenersRegistered||(zl.push(ze.removeAllEventListeners),ze.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(v,S,O){function G(ie,xe){if(ie.length!=xe.length)return!1;for(var Ye in ie)if(ie[Ye]!=xe[Ye])return!1;return!0}for(var he in ze.deferredCalls){var le=ze.deferredCalls[he];if(le.targetFunction==v&&G(le.argsList,O))return}ze.deferredCalls.push({targetFunction:v,precedence:S,argsList:O}),ze.deferredCalls.sort(function(ie,xe){return ie.precedence<xe.precedence})},removeDeferredCalls:function(v){for(var S=0;S<ze.deferredCalls.length;++S)ze.deferredCalls[S].targetFunction==v&&(ze.deferredCalls.splice(S,1),--S)},canPerformEventHandlerRequests:function(){return ze.inEventHandler&&ze.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(ze.canPerformEventHandlerRequests())for(var v=0;v<ze.deferredCalls.length;++v){var S=ze.deferredCalls[v];ze.deferredCalls.splice(v,1),--v,S.targetFunction.apply(null,S.argsList)}},inEventHandler:0,currentEventHandler:null,eventHandlers:[],removeAllHandlersOnTarget:function(v,S){for(var O=0;O<ze.eventHandlers.length;++O)ze.eventHandlers[O].target==v&&(!S||S==ze.eventHandlers[O].eventTypeString)&&ze._removeHandler(O--)},_removeHandler:function(v){var S=ze.eventHandlers[v];S.target.removeEventListener(S.eventTypeString,S.eventListenerFunc,S.useCapture),ze.eventHandlers.splice(v,1)},registerOrRemoveHandler:function(v){var S=function(G){++ze.inEventHandler,ze.currentEventHandler=v,ze.runDeferredCalls(),v.handlerFunc(G),ze.runDeferredCalls(),--ze.inEventHandler};if(v.callbackfunc)v.eventListenerFunc=S,v.target.addEventListener(v.eventTypeString,S,v.useCapture),ze.eventHandlers.push(v),ze.registerRemoveEventListeners();else for(var O=0;O<ze.eventHandlers.length;++O)ze.eventHandlers[O].target==v.target&&ze.eventHandlers[O].eventTypeString==v.eventTypeString&&ze._removeHandler(O--)},queueEventHandlerOnThread_iiii:function(v,S,O,G,he){var le=Zl(),ie=Ei(12);o()[ie>>2]=O,o()[ie+4>>2]=G,o()[ie+8>>2]=he,A1(v,637534208,S,G,ie),Ci(le)},getTargetThreadForEventCallback:function(v){switch(v){case 1:return 0;case 2:return de.currentProxiedOperationCallerThread;default:return v}},getNodeNameForTarget:function(v){return v?v==window?"#window":v==screen?"#screen":v&&v.nodeName?v.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function G0(v){var S=Ve(v)+1,O=Xl(S);return st(v,O,S),O}function H0(v,S,O,G){var he=Zl(),le=Ei(12),ie=0;S&&(ie=G0(S)),o()[le>>2]=ie,o()[le+4>>2]=O,o()[le+8>>2]=G,A1(v,657457152,0,ie,le),Ci(he)}function q0(v,S,O,G){S=S?We(S):"",H0(v,S,O,G)}function X0(v){return v>2?We(v):v}var K0=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Z0(v){v=X0(v);var S=K0[v]||(typeof document!="undefined"?document.querySelector(v):void 0);return S}function Vl(v){return Z0(v)}function Uc(v,S,O){var G=Vl(v);if(!G)return-4;if(G.canvasSharedPtr&&(o()[G.canvasSharedPtr>>2]=S,o()[G.canvasSharedPtr+4>>2]=O),G.offscreenCanvas||!G.controlTransferredOffscreen){G.offscreenCanvas&&(G=G.offscreenCanvas);var he=!1;if(G.GLctxObject&&G.GLctxObject.GLctx){var le=G.GLctxObject.GLctx.getParameter(2978);he=le[0]===0&&le[1]===0&&le[2]===G.width&&le[3]===G.height}G.width=S,G.height=O,he&&G.GLctxObject.GLctx.viewport(0,0,S,O)}else if(G.canvasSharedPtr){var ie=o()[G.canvasSharedPtr+8>>2];return q0(ie,v,S,O),1}else return-4;return 0}function jc(v,S,O){return x?ia(2,1,v,S,O):Uc(v,S,O)}function Y0(v,S,O){var G=Vl(v);return G?Uc(v,S,O):jc(v,S,O)}function J0(v){v=v|0}function Q0(v,S){v=v|0,S=S|0}function e1(v){var S=v.getExtension("ANGLE_instanced_arrays");if(S)return v.vertexAttribDivisor=function(O,G){S.vertexAttribDivisorANGLE(O,G)},v.drawArraysInstanced=function(O,G,he,le){S.drawArraysInstancedANGLE(O,G,he,le)},v.drawElementsInstanced=function(O,G,he,le,ie){S.drawElementsInstancedANGLE(O,G,he,le,ie)},1}function t1(v){var S=v.getExtension("OES_vertex_array_object");if(S)return v.createVertexArray=function(){return S.createVertexArrayOES()},v.deleteVertexArray=function(O){S.deleteVertexArrayOES(O)},v.bindVertexArray=function(O){S.bindVertexArrayOES(O)},v.isVertexArray=function(O){return S.isVertexArrayOES(O)},1}function n1(v){var S=v.getExtension("WEBGL_draw_buffers");if(S)return v.drawBuffers=function(O,G){S.drawBuffersWEBGL(O,G)},1}var Le={counter:1,lastError:0,buffers:[],mappedBuffers:{},programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},currentContext:null,offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,init:function(){for(var v=new Float32Array(Le.MINI_TEMP_BUFFER_SIZE),S=0;S<Le.MINI_TEMP_BUFFER_SIZE;S++)Le.miniTempBufferFloatViews[S]=v.subarray(0,S+1);for(var O=new Int32Array(Le.MINI_TEMP_BUFFER_SIZE),S=0;S<Le.MINI_TEMP_BUFFER_SIZE;S++)Le.miniTempBufferIntViews[S]=O.subarray(0,S+1)},recordError:function(v){Le.lastError||(Le.lastError=v)},getNewId:function(v){for(var S=Le.counter++,O=v.length;O<S;O++)v[O]=null;return S},MINI_TEMP_BUFFER_SIZE:256,miniTempBufferFloatViews:[0],miniTempBufferIntViews:[0],getSource:function(v,S,O,G){for(var he="",le=0;le<S;++le){var ie=G?o()[G+le*4>>2]:-1;he+=We(o()[O+le*4>>2],ie<0?void 0:ie)}return he},createContext:function(v,S){var O=v.getContext("webgl",S);if(!O)return 0;var G=Le.registerContext(O,S);return G},registerContext:function(v,S){var O=Xl(8);o()[O+4>>2]=_r();var G={handle:O,attributes:S,version:S.majorVersion,GLctx:v};return v.canvas&&(v.canvas.GLctxObject=G),Le.contexts[O]=G,(typeof S.enableExtensionsByDefault=="undefined"||S.enableExtensionsByDefault)&&Le.initExtensions(G),O},makeContextCurrent:function(v){return Le.currentContext=Le.contexts[v],u.ctx=oa=Le.currentContext&&Le.currentContext.GLctx,!(v&&!oa)},getContext:function(v){return Le.contexts[v]},deleteContext:function(v){Le.currentContext===Le.contexts[v]&&(Le.currentContext=null),typeof ze=="object"&&ze.removeAllHandlersOnTarget(Le.contexts[v].GLctx.canvas),Le.contexts[v]&&Le.contexts[v].GLctx.canvas&&(Le.contexts[v].GLctx.canvas.GLctxObject=void 0),Kl(Le.contexts[v].handle),Le.contexts[v]=null},initExtensions:function(v){if(v||(v=Le.currentContext),!v.initExtensionsDone){v.initExtensionsDone=!0;var S=v.GLctx;e1(S),t1(S),n1(S),S.disjointTimerQueryExt=S.getExtension("EXT_disjoint_timer_query");var O=["OES_texture_float","OES_texture_half_float","OES_standard_derivatives","OES_vertex_array_object","WEBGL_compressed_texture_s3tc","WEBGL_depth_texture","OES_element_index_uint","EXT_texture_filter_anisotropic","EXT_frag_depth","WEBGL_draw_buffers","ANGLE_instanced_arrays","OES_texture_float_linear","OES_texture_half_float_linear","EXT_blend_minmax","EXT_shader_texture_lod","EXT_texture_norm16","WEBGL_compressed_texture_pvrtc","EXT_color_buffer_half_float","WEBGL_color_buffer_float","EXT_sRGB","WEBGL_compressed_texture_etc1","EXT_disjoint_timer_query","WEBGL_compressed_texture_etc","WEBGL_compressed_texture_astc","EXT_color_buffer_float","WEBGL_compressed_texture_s3tc_srgb","EXT_disjoint_timer_query_webgl2","WEBKIT_WEBGL_compressed_texture_pvrtc"],G=S.getSupportedExtensions()||[];G.forEach(function(he){O.indexOf(he)!=-1&&S.getExtension(he)})}},populateUniformTable:function(v){for(var S=Le.programs[v],O=Le.programInfos[v]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},G=O.uniforms,he=oa.getProgramParameter(S,35718),le=0;le<he;++le){var ie=oa.getActiveUniform(S,le),xe=ie.name;O.maxUniformLength=Math.max(O.maxUniformLength,xe.length+1),xe.slice(-1)=="]"&&(xe=xe.slice(0,xe.lastIndexOf("[")));var Ye=oa.getUniformLocation(S,xe);if(Ye){var Et=Le.getNewId(Le.uniforms);G[xe]=[ie.size,Et],Le.uniforms[Et]=Ye;for(var Yt=1;Yt<ie.size;++Yt){var Ri=xe+"["+Yt+"]";Ye=oa.getUniformLocation(S,Ri),Et=Le.getNewId(Le.uniforms),Le.uniforms[Et]=Ye}}}}},r1=["default","low-power","high-performance"];function a1(v,S){var O={},G=S>>2;O.alpha=!!o()[G+(0>>2)],O.depth=!!o()[G+(4>>2)],O.stencil=!!o()[G+(8>>2)],O.antialias=!!o()[G+(12>>2)],O.premultipliedAlpha=!!o()[G+(16>>2)],O.preserveDrawingBuffer=!!o()[G+(20>>2)];var he=o()[G+(24>>2)];O.powerPreference=r1[he],O.failIfMajorPerformanceCaveat=!!o()[G+(28>>2)],O.majorVersion=o()[G+(32>>2)],O.minorVersion=o()[G+(36>>2)],O.enableExtensionsByDefault=o()[G+(40>>2)],O.explicitSwapControl=o()[G+(44>>2)],O.proxyContextToMainThread=o()[G+(48>>2)],O.renderViaOffscreenBackBuffer=o()[G+(52>>2)];var le=Vl(v);if(!le)return-4;if(O.explicitSwapControl)return-1;var ie=Le.createContext(le,O);return ie}function s1(v,S){return a1(v,S)}var ja={splitPath:function(v){var S=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return S.exec(v).slice(1)},normalizeArray:function(v,S){for(var O=0,G=v.length-1;G>=0;G--){var he=v[G];he==="."?v.splice(G,1):he===".."?(v.splice(G,1),O++):O&&(v.splice(G,1),O--)}if(S)for(;O;O--)v.unshift("..");return v},normalize:function(v){var S=v.charAt(0)==="/",O=v.substr(-1)==="/";return v=ja.normalizeArray(v.split("/").filter(function(G){return!!G}),!S).join("/"),!v&&!S&&(v="."),v&&O&&(v+="/"),(S?"/":"")+v},dirname:function(v){var S=ja.splitPath(v),O=S[0],G=S[1];return!O&&!G?".":(G&&(G=G.substr(0,G.length-1)),O+G)},basename:function(v){if(v==="/")return"/";var S=v.lastIndexOf("/");return S===-1?v:v.substr(S+1)},extname:function(v){return ja.splitPath(v)[3]},join:function(){var v=Array.prototype.slice.call(arguments,0);return ja.normalize(v.join("/"))},join2:function(v,S){return ja.normalize(v+"/"+S)}},Ti={mappings:{},buffers:[null,[],[]],printChar:function(v,S){var O=Ti.buffers[v];S===0||S===10?((v===1?H:U)(He(O,0)),O.length=0):O.push(S)},varargs:void 0,get:function(){Ti.varargs+=4;var v=o()[Ti.varargs-4>>2];return v},getStr:function(v){var S=We(v);return S},get64:function(v,S){return v}};function Gc(v){return x?ia(3,1,v):0}function Hc(v,S,O,G,he){if(x)return ia(4,1,v,S,O,G,he)}function qc(v,S,O,G){if(x)return ia(5,1,v,S,O,G);for(var he=0,le=0;le<O;le++){for(var ie=o()[S+le*8>>2],xe=o()[S+(le*8+4)>>2],Ye=0;Ye<xe;Ye++)Ti.printChar(v,i()[ie+Ye]);he+=xe}return o()[G>>2]=he,0}function i1(v){var S=de.exitHandlers.pop();v&&S()}function o1(v,S){de.exitHandlers===null&&(de.exitHandlers=[]),de.exitHandlers.push(function(){q2(v,S)})}function Xc(v){if(x)throw"Internal Error! _spawn_thread() can only ever be called from main application thread!";var S=de.getNewWorker();if(S.pthread!==void 0)throw"Internal error!";if(!v.pthread_ptr)throw"Internal error, no pthread ptr!";de.runningWorkers.push(S);for(var O=Xl(128*4),G=0;G<128;++G)o()[O+G*4>>2]=0;var he=v.stackBase+v.stackSize,le=de.pthreads[v.pthread_ptr]={worker:S,stackBase:v.stackBase,stackSize:v.stackSize,allocatedOwnStack:v.allocatedOwnStack,thread:v.pthread_ptr,threadInfoStruct:v.pthread_ptr},ie=le.threadInfoStruct>>2;Atomics.store(l(),ie+(0>>2),0),Atomics.store(l(),ie+(4>>2),0),Atomics.store(l(),ie+(8>>2),0),Atomics.store(l(),ie+(68>>2),v.detached),Atomics.store(l(),ie+(104>>2),O),Atomics.store(l(),ie+(48>>2),0),Atomics.store(l(),ie+(40>>2),le.threadInfoStruct),Atomics.store(l(),ie+(44>>2),42),Atomics.store(l(),ie+(108>>2),v.stackSize),Atomics.store(l(),ie+(84>>2),v.stackSize),Atomics.store(l(),ie+(80>>2),he),Atomics.store(l(),ie+(108+8>>2),he),Atomics.store(l(),ie+(108+12>>2),v.detached),Atomics.store(l(),ie+(108+20>>2),v.schedPolicy),Atomics.store(l(),ie+(108+24>>2),v.schedPrio);var xe=B2(),Ye=xe+40;Atomics.store(l(),ie+(176>>2),Ye),S.pthread=le;var Et={cmd:"run",start_routine:v.startRoutine,arg:v.arg,threadInfoStruct:v.pthread_ptr,selfThreadId:v.pthread_ptr,parentThreadId:v.parent_pthread_ptr,stackBase:v.stackBase,stackSize:v.stackSize};S.runPthread=function(){Et.time=performance.now(),S.postMessage(Et,v.transferList)},S.loaded&&(S.runPthread(),delete S.runPthread)}function l1(v,S,O){if(!S&&!O)return Bl.EINVAL;if(!v)return U("pthread_getschedparam called with a null thread pointer!"),Bl.ESRCH;var G=o()[v+12>>2];if(G!==v)return U("pthread_getschedparam attempted on thread "+v+", which does not point to a valid thread, or does not exist anymore!"),Bl.ESRCH;var he=Atomics.load(l(),v+108+20>>2),le=Atomics.load(l(),v+108+24>>2);return S&&(o()[S>>2]=he),O&&(o()[O>>2]=le),0}function _r(){return Wc|0}u._pthread_self=_r;function u1(v,S,O,G){if(typeof SharedArrayBuffer=="undefined")return U("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!v)return U("pthread_create called with a null thread pointer!"),28;var he=[],le=0;if(x&&(he.length===0||le))return G2(687865856,v,S,O,G);if(le)return le;var ie=0,xe=0,Ye=0,Et=0,Yt=0;if(S){ie=o()[S>>2],ie+=81920,xe=o()[S+8>>2],Ye=o()[S+12>>2]!==0;var Ri=o()[S+16>>2]===0;if(Ri){var Jl=o()[S+20>>2],Dn=o()[S+24>>2],ua=de.currentProxiedOperationCallerThread?de.currentProxiedOperationCallerThread:_r();l1(ua,S+20,S+24),Et=o()[S+20>>2],Yt=o()[S+24>>2],o()[S+20>>2]=Jl,o()[S+24>>2]=Dn}else Et=o()[S+20>>2],Yt=o()[S+24>>2]}else ie=2097152;var Ql=xe==0;Ql?xe=V2(16,ie):(xe-=ie,_e(xe>0));for(var Fi=Xl(232),g1=0;g1<232>>2;++g1)l()[(Fi>>2)+g1]=0;o()[v>>2]=Fi,o()[Fi+12>>2]=Fi;var K2=Fi+156;o()[K2>>2]=K2;var x1={stackBase:xe,stackSize:ie,allocatedOwnStack:Ql,schedPolicy:Et,schedPrio:Yt,detached:Ye,startRoutine:O,pthread_ptr:Fi,parent_pthread_ptr:_r(),arg:G,transferList:he};return x?(x1.cmd="spawnThread",postMessage(x1,he)):Xc(x1),0}function c1(v){return v=+v,v>=0?+m0(v+.5):+vi(v-.5)}function Kc(v){if(x)return ia(6,1,v);switch(v){case 30:return 16384;case 85:var S=2147483648;return S/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 80:case 81:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:case 79:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return R0(28),-1}x?de.initWorker():de.initMainThreadBlock();var oa;Le.init();var h1=[null,F0,jc,Gc,Hc,qc,Kc],d1={e:E0,r:C0,w:M0,a:O0,l:$0,d:D0,c:Ni,h:Va,g:z0,x:P0,q:L0,B:W0,t:B0,A:j0,u:Y0,k:J0,s:Q0,v:s1,m:Gc,o:Hc,i:qc,p:v0,memory:J||u.wasmMemory,y:i1,z:o1,j:u1,b:_r,f:c1,n:Kc,table:oe},Zc=_0();u.asm=Zc;var Ul=u.___wasm_call_ctors=function(){return(Ul=u.___wasm_call_ctors=u.asm.C).apply(null,arguments)},jl=u._init=function(){return(jl=u._init=u.asm.D).apply(null,arguments)},Yc=u._register_tensor=function(){return(Yc=u._register_tensor=u.asm.E).apply(null,arguments)},Ga=u._dispose_data=function(){return(Ga=u._dispose_data=u.asm.F).apply(null,arguments)},Gl=u._dispose=function(){return(Gl=u._dispose=u.asm.G).apply(null,arguments)},p1=u._Abs=function(){return(p1=u._Abs=u.asm.H).apply(null,arguments)},f1=u._Add=function(){return(f1=u._Add=u.asm.I).apply(null,arguments)},Hl=u._AddN=function(){return(Hl=u._AddN=u.asm.J).apply(null,arguments)},Jc=u._ArgMax=function(){return(Jc=u._ArgMax=u.asm.K).apply(null,arguments)},Qc=u._AvgPool=function(){return(Qc=u._AvgPool=u.asm.L).apply(null,arguments)},j=u._BatchMatMul=function(){return(j=u._BatchMatMul=u.asm.M).apply(null,arguments)},te=u._ClipByValue=function(){return(te=u._ClipByValue=u.asm.N).apply(null,arguments)},ve=u._Conv2D=function(){return(ve=u._Conv2D=u.asm.O).apply(null,arguments)},Re=u._Conv2DBackpropInput=function(){return(Re=u._Conv2DBackpropInput=u.asm.P).apply(null,arguments)},Qe=u._Cos=function(){return(Qe=u._Cos=u.asm.Q).apply(null,arguments)},bt=u._CropAndResize=function(){return(bt=u._CropAndResize=u.asm.R).apply(null,arguments)},qe=u._Cumsum=function(){return(qe=u._Cumsum=u.asm.S).apply(null,arguments)},Ue=u._DepthToSpace=function(){return(Ue=u._DepthToSpace=u.asm.T).apply(null,arguments)},zt=u._DepthwiseConv2dNative=function(){return(zt=u._DepthwiseConv2dNative=u.asm.U).apply(null,arguments)},jr=u._Equal=function(){return(jr=u._Equal=u.asm.V).apply(null,arguments)},Gr=u._Exp=function(){return(Gr=u._Exp=u.asm.W).apply(null,arguments)},eh=u._FlipLeftRight=function(){return(eh=u._FlipLeftRight=u.asm.X).apply(null,arguments)},ql=u._Floor=function(){return(ql=u._Floor=u.asm.Y).apply(null,arguments)},$n=u._FloorDiv=function(){return($n=u._FloorDiv=u.asm.Z).apply(null,arguments)},la=u._FusedBatchNorm=function(){return(la=u._FusedBatchNorm=u.asm._).apply(null,arguments)},th=u._FusedConv2D=function(){return(th=u._FusedConv2D=u.asm.$).apply(null,arguments)},I6=u._FusedDepthwiseConv2D=function(){return(I6=u._FusedDepthwiseConv2D=u.asm.aa).apply(null,arguments)},N6=u._Gather=function(){return(N6=u._Gather=u.asm.ba).apply(null,arguments)},S6=u._GatherNd=function(){return(S6=u._GatherNd=u.asm.ca).apply(null,arguments)},T6=u._Greater=function(){return(T6=u._Greater=u.asm.da).apply(null,arguments)},E6=u._GreaterEqual=function(){return(E6=u._GreaterEqual=u.asm.ea).apply(null,arguments)},C6=u._LeakyRelu=function(){return(C6=u._LeakyRelu=u.asm.fa).apply(null,arguments)},R6=u._Less=function(){return(R6=u._Less=u.asm.ga).apply(null,arguments)},F6=u._LessEqual=function(){return(F6=u._LessEqual=u.asm.ha).apply(null,arguments)},M6=u._Log=function(){return(M6=u._Log=u.asm.ia).apply(null,arguments)},O6=u._LogicalAnd=function(){return(O6=u._LogicalAnd=u.asm.ja).apply(null,arguments)},$6=u._Max=function(){return($6=u._Max=u.asm.ka).apply(null,arguments)},D6=u._MaxPool=function(){return(D6=u._MaxPool=u.asm.la).apply(null,arguments)},z6=u._Maximum=function(){return(z6=u._Maximum=u.asm.ma).apply(null,arguments)},P6=u._Mean=function(){return(P6=u._Mean=u.asm.na).apply(null,arguments)},L6=u._Min=function(){return(L6=u._Min=u.asm.oa).apply(null,arguments)},W6=u._Minimum=function(){return(W6=u._Minimum=u.asm.pa).apply(null,arguments)},B6=u._Multiply=function(){return(B6=u._Multiply=u.asm.qa).apply(null,arguments)},V6=u._Neg=function(){return(V6=u._Neg=u.asm.ra).apply(null,arguments)},U6=u._NonMaxSuppressionV3=function(){return(U6=u._NonMaxSuppressionV3=u.asm.sa).apply(null,arguments)},j6=u._NonMaxSuppressionV4=function(){return(j6=u._NonMaxSuppressionV4=u.asm.ta).apply(null,arguments)},G6=u._NonMaxSuppressionV5=function(){return(G6=u._NonMaxSuppressionV5=u.asm.ua).apply(null,arguments)},H6=u._NotEqual=function(){return(H6=u._NotEqual=u.asm.va).apply(null,arguments)},q6=u._OneHot=function(){return(q6=u._OneHot=u.asm.wa).apply(null,arguments)},X6=u._PadV2=function(){return(X6=u._PadV2=u.asm.xa).apply(null,arguments)},K6=u._Pow=function(){return(K6=u._Pow=u.asm.ya).apply(null,arguments)},Z6=u._Prelu=function(){return(Z6=u._Prelu=u.asm.za).apply(null,arguments)},Y6=u._Prod=function(){return(Y6=u._Prod=u.asm.Aa).apply(null,arguments)},J6=u._RealDiv=function(){return(J6=u._RealDiv=u.asm.Ba).apply(null,arguments)},Q6=u._Relu=function(){return(Q6=u._Relu=u.asm.Ca).apply(null,arguments)},e4=u._Relu6=function(){return(e4=u._Relu6=u.asm.Da).apply(null,arguments)},t4=u._ResizeBilinear=function(){return(t4=u._ResizeBilinear=u.asm.Ea).apply(null,arguments)},n4=u._Reverse=function(){return(n4=u._Reverse=u.asm.Fa).apply(null,arguments)},r4=u._RotateWithOffset=function(){return(r4=u._RotateWithOffset=u.asm.Ga).apply(null,arguments)},a4=u._Round=function(){return(a4=u._Round=u.asm.Ha).apply(null,arguments)},s4=u._Rsqrt=function(){return(s4=u._Rsqrt=u.asm.Ia).apply(null,arguments)},i4=u._ScatterNd=function(){return(i4=u._ScatterNd=u.asm.Ja).apply(null,arguments)},o4=u._SelectV2=function(){return(o4=u._SelectV2=u.asm.Ka).apply(null,arguments)},l4=u._Sigmoid=function(){return(l4=u._Sigmoid=u.asm.La).apply(null,arguments)},u4=u._Sin=function(){return(u4=u._Sin=u.asm.Ma).apply(null,arguments)},c4=u._Softmax=function(){return(c4=u._Softmax=u.asm.Na).apply(null,arguments)},h4=u._Sqrt=function(){return(h4=u._Sqrt=u.asm.Oa).apply(null,arguments)},d4=u._Square=function(){return(d4=u._Square=u.asm.Pa).apply(null,arguments)},p4=u._SquaredDifference=function(){return(p4=u._SquaredDifference=u.asm.Qa).apply(null,arguments)},f4=u._Step=function(){return(f4=u._Step=u.asm.Ra).apply(null,arguments)},m4=u._StridedSlice=function(){return(m4=u._StridedSlice=u.asm.Sa).apply(null,arguments)},A4=u._Sub=function(){return(A4=u._Sub=u.asm.Ta).apply(null,arguments)},y4=u._Sum=function(){return(y4=u._Sum=u.asm.Ua).apply(null,arguments)},g4=u._Tanh=function(){return(g4=u._Tanh=u.asm.Va).apply(null,arguments)},x4=u._Tile=function(){return(x4=u._Tile=u.asm.Wa).apply(null,arguments)},w4=u._TopK=function(){return(w4=u._TopK=u.asm.Xa).apply(null,arguments)},_4=u._Transpose=function(){return(_4=u._Transpose=u.asm.Ya).apply(null,arguments)},b4=u.__FusedMatMul=function(){return(b4=u.__FusedMatMul=u.asm.Za).apply(null,arguments)},Xl=u._malloc=function(){return(Xl=u._malloc=u.asm._a).apply(null,arguments)},Kl=u._free=function(){return(Kl=u._free=u.asm.$a).apply(null,arguments)},v4=u.___em_js__initPthreadsJS=function(){return(v4=u.___em_js__initPthreadsJS=u.asm.ab).apply(null,arguments)},W2=u.___errno_location=function(){return(W2=u.___errno_location=u.asm.bb).apply(null,arguments)},B2=u._emscripten_get_global_libc=function(){return(B2=u._emscripten_get_global_libc=u.asm.cb).apply(null,arguments)},V2=u._memalign=function(){return(V2=u._memalign=u.asm.db).apply(null,arguments)},U2=u.___pthread_tsd_run_dtors=function(){return(U2=u.___pthread_tsd_run_dtors=u.asm.eb).apply(null,arguments)},m1=u._emscripten_main_thread_process_queued_calls=function(){return(m1=u._emscripten_main_thread_process_queued_calls=u.asm.fb).apply(null,arguments)},k4=u._emscripten_current_thread_process_queued_calls=function(){return(k4=u._emscripten_current_thread_process_queued_calls=u.asm.gb).apply(null,arguments)},j2=u._emscripten_register_main_browser_thread_id=function(){return(j2=u._emscripten_register_main_browser_thread_id=u.asm.hb).apply(null,arguments)},I4=u._emscripten_main_browser_thread_id=function(){return(I4=u._emscripten_main_browser_thread_id=u.asm.ib).apply(null,arguments)},N4=u._emscripten_async_run_in_main_thread=function(){return(N4=u._emscripten_async_run_in_main_thread=u.asm.jb).apply(null,arguments)},S4=u._emscripten_sync_run_in_main_thread=function(){return(S4=u._emscripten_sync_run_in_main_thread=u.asm.kb).apply(null,arguments)},T4=u._emscripten_sync_run_in_main_thread_0=function(){return(T4=u._emscripten_sync_run_in_main_thread_0=u.asm.lb).apply(null,arguments)},E4=u._emscripten_sync_run_in_main_thread_1=function(){return(E4=u._emscripten_sync_run_in_main_thread_1=u.asm.mb).apply(null,arguments)},C4=u._emscripten_sync_run_in_main_thread_2=function(){return(C4=u._emscripten_sync_run_in_main_thread_2=u.asm.nb).apply(null,arguments)},R4=u._emscripten_sync_run_in_main_thread_xprintf_varargs=function(){return(R4=u._emscripten_sync_run_in_main_thread_xprintf_varargs=u.asm.ob).apply(null,arguments)},F4=u._emscripten_sync_run_in_main_thread_3=function(){return(F4=u._emscripten_sync_run_in_main_thread_3=u.asm.pb).apply(null,arguments)},G2=u._emscripten_sync_run_in_main_thread_4=function(){return(G2=u._emscripten_sync_run_in_main_thread_4=u.asm.qb).apply(null,arguments)},M4=u._emscripten_sync_run_in_main_thread_5=function(){return(M4=u._emscripten_sync_run_in_main_thread_5=u.asm.rb).apply(null,arguments)},O4=u._emscripten_sync_run_in_main_thread_6=function(){return(O4=u._emscripten_sync_run_in_main_thread_6=u.asm.sb).apply(null,arguments)},$4=u._emscripten_sync_run_in_main_thread_7=function(){return($4=u._emscripten_sync_run_in_main_thread_7=u.asm.tb).apply(null,arguments)},H2=u._emscripten_run_in_main_runtime_thread_js=function(){return(H2=u._emscripten_run_in_main_runtime_thread_js=u.asm.ub).apply(null,arguments)},A1=u._emscripten_async_queue_on_thread_=function(){return(A1=u._emscripten_async_queue_on_thread_=u.asm.vb).apply(null,arguments)},D4=u._emscripten_tls_init=function(){return(D4=u._emscripten_tls_init=u.asm.wb).apply(null,arguments)},Zl=u.stackSave=function(){return(Zl=u.stackSave=u.asm.xb).apply(null,arguments)},Ei=u.stackAlloc=function(){return(Ei=u.stackAlloc=u.asm.yb).apply(null,arguments)},Ci=u.stackRestore=function(){return(Ci=u.stackRestore=u.asm.zb).apply(null,arguments)},q2=u.dynCall_vi=function(){return(q2=u.dynCall_vi=u.asm.Ab).apply(null,arguments)},z4=u.dynCall_v=function(){return(z4=u.dynCall_v=u.asm.Bb).apply(null,arguments)},P4=u.dynCall_ii=function(){return(P4=u.dynCall_ii=u.asm.Cb).apply(null,arguments)};u.asm=Zc,u.cwrap=Oe,u.PThread=de,u.PThread=de,u._pthread_self=_r,u.wasmMemory=J,u.ExitStatus=X2;var Yl;u.then=function(v){if(Yl)v(u);else{var S=u.onRuntimeInitialized;u.onRuntimeInitialized=function(){S&&S(),v(u)}}return u};function X2(v){this.name="ExitStatus",this.message="Program terminated with exit("+v+")",this.status=v}Ba=function v(){Yl||y1(),Yl||(Ba=v)};function y1(v){if(v=v||d,Vr>0||(qn(),Vr>0))return;function S(){Yl||(Yl=!0,u.calledRun=!0,!pe&&(Dc(),d0(),u.onRuntimeInitialized&&u.onRuntimeInitialized(),p0()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),S()},1)):S()}if(u.run=y1,u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return x||(ae=!0),x||y1(),a}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),g8=et((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i={},o;for(o in s)s.hasOwnProperty(o)&&(i[o]=s[o]);var l=[],c="./this.program",u=function(j,te){throw te},h=!1,p=!1,d=!1,f=!1;h=typeof window=="object",p=typeof importScripts=="function",d=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",f=!h&&!d&&!p;var m="";function A(j){return s.locateFile?s.locateFile(j,m):m+j}var y,g,_,x,w,b;d?(p?m=tu().dirname(m)+"/":m=__dirname+"/",y=function(j,te){return w||(w=require("fs")),b||(b=tu()),j=b.normalize(j),w.readFileSync(j,te?null:"utf8")},_=function(j){var te=y(j,!0);return te.buffer||(te=new Uint8Array(te)),U(te.buffer),te},process.argv.length>1&&(c=process.argv[1].replace(/\\/g,"/")),l=process.argv.slice(2),process.on("uncaughtException",function(j){if(!(j instanceof Gl))throw j}),process.on("unhandledRejection",La),u=function(j){process.exit(j)},s.inspect=function(){return"[Emscripten Module object]"}):f?(typeof read!="undefined"&&(y=function(j){return read(j)}),_=function(j){var te;return typeof readbuffer=="function"?new Uint8Array(readbuffer(j)):(te=read(j,"binary"),U(typeof te=="object"),te)},typeof scriptArgs!="undefined"?l=scriptArgs:typeof arguments!="undefined"&&(l=arguments),typeof quit=="function"&&(u=function(j){quit(j)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||p)&&(p?m=self.location.href:document.currentScript&&(m=document.currentScript.src),r&&(m=r),m.indexOf("blob:")!==0?m=m.substr(0,m.lastIndexOf("/")+1):m="",y=function(j){var te=new XMLHttpRequest;return te.open("GET",j,!1),te.send(null),te.responseText},p&&(_=function(j){var te=new XMLHttpRequest;return te.open("GET",j,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),g=function(j,te,ve){var Re=new XMLHttpRequest;Re.open("GET",j,!0),Re.responseType="arraybuffer",Re.onload=function(){if(Re.status==200||Re.status==0&&Re.response){te(Re.response);return}ve()},Re.onerror=ve,Re.send(null)},x=function(j){document.title=j});var N=s.print||console.log.bind(console),T=s.printErr||console.warn.bind(console);for(o in i)i.hasOwnProperty(o)&&(s[o]=i[o]);i=null,s.arguments&&(l=s.arguments),s.thisProgram&&(c=s.thisProgram),s.quit&&(u=s.quit);var E;s.wasmBinary&&(E=s.wasmBinary);var M;s.noExitRuntime&&(M=s.noExitRuntime),typeof WebAssembly!="object"&&T("no native wasm support detected");var $,P=new WebAssembly.Table({initial:151,maximum:151+0,element:"anyfunc"}),V=!1,H=0;function U(j,te){j||La("Assertion failed: "+te)}function K(j){var te=s["_"+j];return U(te,"Cannot call unknown function "+j+", make sure it is exported"),te}function X(j,te,ve,Re,Qe){var bt={string:function($n){var la=0;if($n!=null&&$n!==0){var th=($n.length<<2)+1;la=jl(th),ne($n,la,th)}return la},array:function($n){var la=jl($n.length);return ce($n,la),la}};function qe($n){return te==="string"?J($n):te==="boolean"?Boolean($n):$n}var Ue=K(j),zt=[],jr=0;if(Re)for(var Gr=0;Gr<Re.length;Gr++){var eh=bt[ve[Gr]];eh?(jr===0&&(jr=Ul()),zt[Gr]=eh(Re[Gr])):zt[Gr]=Re[Gr]}var ql=Ue.apply(null,zt);return ql=qe(ql),jr!==0&&Yc(jr),ql}function ee(j,te,ve,Re){ve=ve||[];var Qe=ve.every(function(qe){return qe==="number"}),bt=te!=="string";return bt&&Qe&&!Re?K(j):function(){return X(j,te,ve,arguments,Re)}}var Z=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ae(j,te,ve){for(var Re=te+ve,Qe=te;j[Qe]&&!(Qe>=Re);)++Qe;if(Qe-te>16&&j.subarray&&Z)return Z.decode(j.subarray(te,Qe));for(var bt="";te<Qe;){var qe=j[te++];if(!(qe&128)){bt+=String.fromCharCode(qe);continue}var Ue=j[te++]&63;if((qe&224)==192){bt+=String.fromCharCode((qe&31)<<6|Ue);continue}var zt=j[te++]&63;if((qe&240)==224?qe=(qe&15)<<12|Ue<<6|zt:qe=(qe&7)<<18|Ue<<12|zt<<6|j[te++]&63,qe<65536)bt+=String.fromCharCode(qe);else{var jr=qe-65536;bt+=String.fromCharCode(55296|jr>>10,56320|jr&1023)}}return bt}function J(j,te){return j?ae(fe,j,te):""}function oe(j,te,ve,Re){if(!(Re>0))return 0;for(var Qe=ve,bt=ve+Re-1,qe=0;qe<j.length;++qe){var Ue=j.charCodeAt(qe);if(Ue>=55296&&Ue<=57343){var zt=j.charCodeAt(++qe);Ue=65536+((Ue&1023)<<10)|zt&1023}if(Ue<=127){if(ve>=bt)break;te[ve++]=Ue}else if(Ue<=2047){if(ve+1>=bt)break;te[ve++]=192|Ue>>6,te[ve++]=128|Ue&63}else if(Ue<=65535){if(ve+2>=bt)break;te[ve++]=224|Ue>>12,te[ve++]=128|Ue>>6&63,te[ve++]=128|Ue&63}else{if(ve+3>=bt)break;te[ve++]=240|Ue>>18,te[ve++]=128|Ue>>12&63,te[ve++]=128|Ue>>6&63,te[ve++]=128|Ue&63}}return te[ve]=0,ve-Qe}function ne(j,te,ve){return oe(j,fe,te,ve)}function ce(j,te){pe.set(j,te)}var ue,pe,fe,_e,Se,Ce,Oe,He,We;function tt(j){ue=j,s.HEAP8=pe=new Int8Array(j),s.HEAP16=_e=new Int16Array(j),s.HEAP32=Ce=new Int32Array(j),s.HEAPU8=fe=new Uint8Array(j),s.HEAPU16=Se=new Uint16Array(j),s.HEAPU32=Oe=new Uint32Array(j),s.HEAPF32=He=new Float32Array(j),s.HEAPF64=We=new Float64Array(j)}var st=s.INITIAL_MEMORY||16777216;function Ve(j){for(;j.length>0;){var te=j.shift();if(typeof te=="function"){te(s);continue}var ve=te.func;typeof ve=="number"?te.arg===void 0?s.dynCall_v(ve):s.dynCall_vi(ve,te.arg):ve(te.arg===void 0?null:te.arg)}}var ot=[],lt=[],On=[],Ze=[],gn=!1,Gt=!1;function xn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)wr(s.preRun.shift());Ve(ot)}function jn(){gn=!0,Ve(lt)}function un(){Ve(On)}function en(){Gt=!0}function Gn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)wn(s.postRun.shift());Ve(Ze)}function wr(j){ot.unshift(j)}function wn(j){Ze.unshift(j)}var wi=Math.ceil,$l=Math.floor,ir=0,Hn=null,or=null;function _i(j){ir++,s.monitorRunDependencies&&s.monitorRunDependencies(ir)}function bi(j){if(ir--,s.monitorRunDependencies&&s.monitorRunDependencies(ir),ir==0&&(Hn!==null&&(clearInterval(Hn),Hn=null),or)){var te=or;or=null,te()}}s.preloadedImages={},s.preloadedAudios={};function La(j){throw s.onAbort&&s.onAbort(j),j+="",N(j),T(j),V=!0,H=1,j="abort("+j+"). Build with -s ASSERTIONS=1 for more info.",new WebAssembly.RuntimeError(j)}function Dl(j,te){return String.prototype.startsWith?j.startsWith(te):j.indexOf(te)===0}var h0="data:application/octet-stream;base64,";function zl(j){return Dl(j,h0)}var $c="file://";function Pl(j){return Dl(j,$c)}var qn="tfjs-backend-wasm.wasm";zl(qn)||(qn=A(qn));function Dc(){try{if(E)return new Uint8Array(E);if(_)return _(qn);throw"both async and sync fetching of the wasm failed"}catch(j){La(j)}}function d0(){return!E&&(h||p)&&typeof fetch=="function"&&!Pl(qn)?fetch(qn,{credentials:"same-origin"}).then(function(j){if(!j.ok)throw"failed to load wasm binary file at '"+qn+"'";return j.arrayBuffer()}).catch(function(){return Dc()}):new Promise(function(j,te){j(Dc())})}function p0(){var j={env:Ur,wasi_snapshot_preview1:Ur};function te(qe,Ue){var zt=qe.exports;s.asm=zt,$=zt.memory,tt($.buffer),bi("wasm-instantiate")}_i("wasm-instantiate");function ve(qe){te(qe.instance)}function Re(qe){return d0().then(function(Ue){return WebAssembly.instantiate(Ue,j)}).then(qe,function(Ue){T("failed to asynchronously prepare wasm: "+Ue),La(Ue)})}function Qe(){if(!E&&typeof WebAssembly.instantiateStreaming=="function"&&!zl(qn)&&!Pl(qn)&&typeof fetch=="function")fetch(qn,{credentials:"same-origin"}).then(function(qe){var Ue=WebAssembly.instantiateStreaming(qe,j);return Ue.then(ve,function(zt){T("wasm streaming compile failed: "+zt),T("falling back to ArrayBuffer instantiation"),Re(ve)})});else return Re(ve)}if(s.instantiateWasm)try{var bt=s.instantiateWasm(j,te);return bt}catch(qe){return T("Module.instantiateWasm callback failed with error: "+qe),!1}return Qe(),{}}lt.push();function f0(j){tt($.buffer)}var Wa={splitPath:function(j){var te=/^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;return te.exec(j).slice(1)},normalizeArray:function(j,te){for(var ve=0,Re=j.length-1;Re>=0;Re--){var Qe=j[Re];Qe==="."?j.splice(Re,1):Qe===".."?(j.splice(Re,1),ve++):ve&&(j.splice(Re,1),ve--)}if(te)for(;ve;ve--)j.unshift("..");return j},normalize:function(j){var te=j.charAt(0)==="/",ve=j.substr(-1)==="/";return j=Wa.normalizeArray(j.split("/").filter(function(Re){return!!Re}),!te).join("/"),!j&&!te&&(j="."),j&&ve&&(j+="/"),(te?"/":"")+j},dirname:function(j){var te=Wa.splitPath(j),ve=te[0],Re=te[1];return!ve&&!Re?".":(Re&&(Re=Re.substr(0,Re.length-1)),ve+Re)},basename:function(j){if(j==="/")return"/";var te=j.lastIndexOf("/");return te===-1?j:j.substr(te+1)},extname:function(j){return Wa.splitPath(j)[3]},join:function(){var j=Array.prototype.slice.call(arguments,0);return Wa.normalize(j.join("/"))},join2:function(j,te){return Wa.normalize(j+"/"+te)}},vi={mappings:{},buffers:[null,[],[]],printChar:function(j,te){var ve=vi.buffers[j];te===0||te===10?((j===1?N:T)(ae(ve,0)),ve.length=0):ve.push(te)},varargs:void 0,get:function(){vi.varargs+=4;var j=Ce[vi.varargs-4>>2];return j},getStr:function(j){var te=J(j);return te},get64:function(j,te){return j}};function m0(j){return 0}function Vr(j,te,ve,Re,Qe){}function Ll(j,te,ve,Re){for(var Qe=0,bt=0;bt<ve;bt++){for(var qe=Ce[te+bt*8>>2],Ue=Ce[te+(bt*8+4)>>2],zt=0;zt<Ue;zt++)vi.printChar(j,fe[qe+zt]);Qe+=Ue}return Ce[Re>>2]=Qe,0}function Ba(j){Jc(j)}function A0(j){Ba(j)}function y0(j){return j=+j,j>=0?+$l(j+.5):+wi(j-.5)}var Ur={emscripten_notify_memory_growth:f0,fd_close:m0,fd_seek:Vr,fd_write:Ll,proc_exit:A0,roundf:y0},Wl=p0();s.asm=Wl;var g0=s._init=function(){return(g0=s._init=s.asm.init).apply(null,arguments)},zc=s._register_tensor=function(){return(zc=s._register_tensor=s.asm.register_tensor).apply(null,arguments)},x0=s._dispose_data=function(){return(x0=s._dispose_data=s.asm.dispose_data).apply(null,arguments)},Pc=s._dispose=function(){return(Pc=s._dispose=s.asm.dispose).apply(null,arguments)},Xn=s._Abs=function(){return(Xn=s._Abs=s.asm.Abs).apply(null,arguments)},Lc=s._Add=function(){return(Lc=s._Add=s.asm.Add).apply(null,arguments)},w0=s._AddN=function(){return(w0=s._AddN=s.asm.AddN).apply(null,arguments)},_0=s._ArgMax=function(){return(_0=s._ArgMax=s.asm.ArgMax).apply(null,arguments)},b0=s._AvgPool=function(){return(b0=s._AvgPool=s.asm.AvgPool).apply(null,arguments)},v0=s._BatchMatMul=function(){return(v0=s._BatchMatMul=s.asm.BatchMatMul).apply(null,arguments)},Wc=s._ClipByValue=function(){return(Wc=s._ClipByValue=s.asm.ClipByValue).apply(null,arguments)},Bc=s._Conv2D=function(){return(Bc=s._Conv2D=s.asm.Conv2D).apply(null,arguments)},Vc=s._Conv2DBackpropInput=function(){return(Vc=s._Conv2DBackpropInput=s.asm.Conv2DBackpropInput).apply(null,arguments)},ki=s._Cos=function(){return(ki=s._Cos=s.asm.Cos).apply(null,arguments)},Bl=s._CropAndResize=function(){return(Bl=s._CropAndResize=s.asm.CropAndResize).apply(null,arguments)},Ii=s._Cumsum=function(){return(Ii=s._Cumsum=s.asm.Cumsum).apply(null,arguments)},Ni=s._DepthToSpace=function(){return(Ni=s._DepthToSpace=s.asm.DepthToSpace).apply(null,arguments)},k0=s._DepthwiseConv2dNative=function(){return(k0=s._DepthwiseConv2dNative=s.asm.DepthwiseConv2dNative).apply(null,arguments)},I0=s._Equal=function(){return(I0=s._Equal=s.asm.Equal).apply(null,arguments)},N0=s._Exp=function(){return(N0=s._Exp=s.asm.Exp).apply(null,arguments)},de=s._FlipLeftRight=function(){return(de=s._FlipLeftRight=s.asm.FlipLeftRight).apply(null,arguments)},S0=s._Floor=function(){return(S0=s._Floor=s.asm.Floor).apply(null,arguments)},T0=s._FloorDiv=function(){return(T0=s._FloorDiv=s.asm.FloorDiv).apply(null,arguments)},E0=s._FusedBatchNorm=function(){return(E0=s._FusedBatchNorm=s.asm.FusedBatchNorm).apply(null,arguments)},C0=s._FusedConv2D=function(){return(C0=s._FusedConv2D=s.asm.FusedConv2D).apply(null,arguments)},Va=s._FusedDepthwiseConv2D=function(){return(Va=s._FusedDepthwiseConv2D=s.asm.FusedDepthwiseConv2D).apply(null,arguments)},R0=s._Gather=function(){return(R0=s._Gather=s.asm.Gather).apply(null,arguments)},F0=s._GatherNd=function(){return(F0=s._GatherNd=s.asm.GatherNd).apply(null,arguments)},M0=s._Greater=function(){return(M0=s._Greater=s.asm.Greater).apply(null,arguments)},O0=s._GreaterEqual=function(){return(O0=s._GreaterEqual=s.asm.GreaterEqual).apply(null,arguments)},$0=s._LeakyRelu=function(){return($0=s._LeakyRelu=s.asm.LeakyRelu).apply(null,arguments)},D0=s._Less=function(){return(D0=s._Less=s.asm.Less).apply(null,arguments)},z0=s._LessEqual=function(){return(z0=s._LessEqual=s.asm.LessEqual).apply(null,arguments)},P0=s._Log=function(){return(P0=s._Log=s.asm.Log).apply(null,arguments)},L0=s._LogicalAnd=function(){return(L0=s._LogicalAnd=s.asm.LogicalAnd).apply(null,arguments)},W0=s._Max=function(){return(W0=s._Max=s.asm.Max).apply(null,arguments)},ia=s._MaxPool=function(){return(ia=s._MaxPool=s.asm.MaxPool).apply(null,arguments)},Ua=s._Maximum=function(){return(Ua=s._Maximum=s.asm.Maximum).apply(null,arguments)},Si=s._Mean=function(){return(Si=s._Mean=s.asm.Mean).apply(null,arguments)},B0=s._Min=function(){return(B0=s._Min=s.asm.Min).apply(null,arguments)},V0=s._Minimum=function(){return(V0=s._Minimum=s.asm.Minimum).apply(null,arguments)},U0=s._Multiply=function(){return(U0=s._Multiply=s.asm.Multiply).apply(null,arguments)},j0=s._Neg=function(){return(j0=s._Neg=s.asm.Neg).apply(null,arguments)},ze=s._NonMaxSuppressionV3=function(){return(ze=s._NonMaxSuppressionV3=s.asm.NonMaxSuppressionV3).apply(null,arguments)},G0=s._NonMaxSuppressionV4=function(){return(G0=s._NonMaxSuppressionV4=s.asm.NonMaxSuppressionV4).apply(null,arguments)},H0=s._NonMaxSuppressionV5=function(){return(H0=s._NonMaxSuppressionV5=s.asm.NonMaxSuppressionV5).apply(null,arguments)},q0=s._NotEqual=function(){return(q0=s._NotEqual=s.asm.NotEqual).apply(null,arguments)},X0=s._OneHot=function(){return(X0=s._OneHot=s.asm.OneHot).apply(null,arguments)},K0=s._PadV2=function(){return(K0=s._PadV2=s.asm.PadV2).apply(null,arguments)},Z0=s._Pow=function(){return(Z0=s._Pow=s.asm.Pow).apply(null,arguments)},Vl=s._Prelu=function(){return(Vl=s._Prelu=s.asm.Prelu).apply(null,arguments)},Uc=s._Prod=function(){return(Uc=s._Prod=s.asm.Prod).apply(null,arguments)},jc=s._RealDiv=function(){return(jc=s._RealDiv=s.asm.RealDiv).apply(null,arguments)},Y0=s._Relu=function(){return(Y0=s._Relu=s.asm.Relu).apply(null,arguments)},J0=s._Relu6=function(){return(J0=s._Relu6=s.asm.Relu6).apply(null,arguments)},Q0=s._ResizeBilinear=function(){return(Q0=s._ResizeBilinear=s.asm.ResizeBilinear).apply(null,arguments)},e1=s._Reverse=function(){return(e1=s._Reverse=s.asm.Reverse).apply(null,arguments)},t1=s._RotateWithOffset=function(){return(t1=s._RotateWithOffset=s.asm.RotateWithOffset).apply(null,arguments)},n1=s._Round=function(){return(n1=s._Round=s.asm.Round).apply(null,arguments)},Le=s._Rsqrt=function(){return(Le=s._Rsqrt=s.asm.Rsqrt).apply(null,arguments)},r1=s._ScatterNd=function(){return(r1=s._ScatterNd=s.asm.ScatterNd).apply(null,arguments)},a1=s._SelectV2=function(){return(a1=s._SelectV2=s.asm.SelectV2).apply(null,arguments)},s1=s._Sigmoid=function(){return(s1=s._Sigmoid=s.asm.Sigmoid).apply(null,arguments)},ja=s._Sin=function(){return(ja=s._Sin=s.asm.Sin).apply(null,arguments)},Ti=s._Softmax=function(){return(Ti=s._Softmax=s.asm.Softmax).apply(null,arguments)},Gc=s._Sqrt=function(){return(Gc=s._Sqrt=s.asm.Sqrt).apply(null,arguments)},Hc=s._Square=function(){return(Hc=s._Square=s.asm.Square).apply(null,arguments)},qc=s._SquaredDifference=function(){return(qc=s._SquaredDifference=s.asm.SquaredDifference).apply(null,arguments)},i1=s._Step=function(){return(i1=s._Step=s.asm.Step).apply(null,arguments)},o1=s._StridedSlice=function(){return(o1=s._StridedSlice=s.asm.StridedSlice).apply(null,arguments)},Xc=s._Sub=function(){return(Xc=s._Sub=s.asm.Sub).apply(null,arguments)},l1=s._Sum=function(){return(l1=s._Sum=s.asm.Sum).apply(null,arguments)},_r=s._Tanh=function(){return(_r=s._Tanh=s.asm.Tanh).apply(null,arguments)},u1=s._Tile=function(){return(u1=s._Tile=s.asm.Tile).apply(null,arguments)},c1=s._TopK=function(){return(c1=s._TopK=s.asm.TopK).apply(null,arguments)},Kc=s._Transpose=function(){return(Kc=s._Transpose=s.asm.Transpose).apply(null,arguments)},oa=s.__FusedMatMul=function(){return(oa=s.__FusedMatMul=s.asm._FusedMatMul).apply(null,arguments)},h1=s._malloc=function(){return(h1=s._malloc=s.asm.malloc).apply(null,arguments)},d1=s._free=function(){return(d1=s._free=s.asm.free).apply(null,arguments)},Zc=s.__start=function(){return(Zc=s.__start=s.asm._start).apply(null,arguments)},Ul=s.stackSave=function(){return(Ul=s.stackSave=s.asm.stackSave).apply(null,arguments)},jl=s.stackAlloc=function(){return(jl=s.stackAlloc=s.asm.stackAlloc).apply(null,arguments)},Yc=s.stackRestore=function(){return(Yc=s.stackRestore=s.asm.stackRestore).apply(null,arguments)};s.asm=Wl,s.cwrap=ee;var Ga;s.then=function(j){if(Ga)j(s);else{var te=s.onRuntimeInitialized;s.onRuntimeInitialized=function(){te&&te(),j(s)}}return s};function Gl(j){this.name="ExitStatus",this.message="Program terminated with exit("+j+")",this.status=j}var p1=!1;or=function j(){Ga||Hl(),Ga||(or=j)};function f1(j){var te=s.__start;try{te();var ve=0;Jc(ve,!0)}catch(Qe){if(Qe instanceof Gl)return;if(Qe=="unwind"){M=!0;return}else{var Re=Qe;Qe&&typeof Qe=="object"&&Qe.stack&&(Re=[Qe,Qe.stack]),T("exception thrown: "+Re),u(1,Qe)}}finally{p1=!0}}function Hl(j){if(j=j||l,ir>0||(xn(),ir>0))return;function te(){Ga||(Ga=!0,s.calledRun=!0,!V&&(jn(),un(),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Qc&&f1(j),Gn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),te()},1)):te()}s.run=Hl;function Jc(j,te){te&&M&&j===0||(M||(V=!0,H=j,en(),s.onExit&&s.onExit(j)),u(j,new Gl(j)))}if(s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();var Qc=!0;return s.noInitialRun&&(Qc=!1),M=!0,Hl(),a}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),x8=et((e,t)=>{(function(n,r,a){function s(c){var u=this,h=l();u.next=function(){var p=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=p-(u.c=p|0)},u.c=1,u.s0=h(" "),u.s1=h(" "),u.s2=h(" "),u.s0-=h(c),u.s0<0&&(u.s0+=1),u.s1-=h(c),u.s1<0&&(u.s1+=1),u.s2-=h(c),u.s2<0&&(u.s2+=1),h=null}function i(c,u){return u.c=c.c,u.s0=c.s0,u.s1=c.s1,u.s2=c.s2,u}function o(c,u){var h=new s(c),p=u&&u.state,d=h.next;return d.int32=function(){return h.next()*4294967296|0},d.double=function(){return d()+(d()*2097152|0)*11102230246251565e-32},d.quick=d,p&&(typeof p=="object"&&i(p,h),d.state=function(){return i(h,{})}),d}function l(){var c=4022871197,u=function(h){h=String(h);for(var p=0;p<h.length;p++){c+=h.charCodeAt(p);var d=.02519603282416938*c;c=d>>>0,d-=c,d*=c,c=d>>>0,d-=c,c+=d*4294967296}return(c>>>0)*23283064365386963e-26};return u}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),w8=et((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.x=0,c.y=0,c.z=0,c.w=0,c.next=function(){var p=c.x^c.x<<11;return c.x=c.y,c.y=c.z,c.z=c.w,c.w^=c.w>>>19^p^p>>>8},l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c}function o(l,c){var u=new s(l),h=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var d=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(d+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,h&&(typeof h=="object"&&i(h,u),p.state=function(){return i(u,{})}),p}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),_8=et((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var p=c.x^c.x>>>2;return c.x=c.y,c.y=c.z,c.z=c.w,c.w=c.v,(c.d=c.d+362437|0)+(c.v=c.v^c.v<<4^(p^p<<1))|0},c.x=0,c.y=0,c.z=0,c.w=0,c.v=0,l===(l|0)?c.x=l:u+=l;for(var h=0;h<u.length+64;h++)c.x^=u.charCodeAt(h)|0,h==u.length&&(c.d=c.x<<10^c.x>>>4),c.next()}function i(l,c){return c.x=l.x,c.y=l.y,c.z=l.z,c.w=l.w,c.v=l.v,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var d=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(d+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,h&&(typeof h=="object"&&i(h,u),p.state=function(){return i(u,{})}),p}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),b8=et((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.x,p=c.i,d,f,m;return d=h[p],d^=d>>>7,f=d^d<<24,d=h[p+1&7],f^=d^d>>>10,d=h[p+3&7],f^=d^d>>>3,d=h[p+4&7],f^=d^d<<7,d=h[p+7&7],d=d^d<<13,f^=d^d<<9,h[p]=f,c.i=p+1&7,f};function u(h,p){var d,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,d=0;d<p.length;++d)m[d&7]=m[d&7]<<15^p.charCodeAt(d)+m[d+1&7]<<13;for(;m.length<8;)m.push(0);for(d=0;d<8&&m[d]===0;++d);for(d==8?f=m[7]=-1:f=m[d],h.x=m,h.i=0,d=256;d>0;--d)h.next()}u(c,l)}function i(l,c){return c.x=l.x.slice(),c.i=l.i,c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var d=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(d+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,h&&(h.x&&i(h,u),p.state=function(){return i(u,{})}),p}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),v8=et((e,t)=>{(function(n,r,a){function s(l){var c=this;c.next=function(){var h=c.w,p=c.X,d=c.i,f,m;return c.w=h=h+1640531527|0,m=p[d+34&127],f=p[d=d+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[d]=m^f,c.i=d,m+(h^h>>>16)|0};function u(h,p){var d,f,m,A,y,g=[],_=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,_=Math.max(_,p.length)),m=0,A=-32;A<_;++A)p&&(f^=p.charCodeAt((A+32)%p.length)),A===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(y=y+1640531527|0,d=g[A&127]^=f+y,m=d==0?m+1:0);for(m>=128&&(g[(p&&p.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=g[m+34&127],d=g[m=m+1&127],f^=f<<13,d^=d<<17,f^=f>>>15,d^=d>>>12,g[m]=f^d;h.w=y,h.X=g,h.i=m}u(c,l)}function i(l,c){return c.i=l.i,c.w=l.w,c.X=l.X.slice(),c}function o(l,c){l==null&&(l=+new Date);var u=new s(l),h=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var d=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(d+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,h&&(h.X&&i(h,u),p.state=function(){return i(u,{})}),p}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),k8=et((e,t)=>{(function(n,r,a){function s(l){var c=this,u="";c.next=function(){var p=c.b,d=c.c,f=c.d,m=c.a;return p=p<<25^p>>>7^d,d=d-f|0,f=f<<24^f>>>8^m,m=m-p|0,c.b=p=p<<20^p>>>12^d,c.c=d=d-f|0,c.d=f<<16^d>>>16^m,c.a=m-p|0},c.a=0,c.b=0,c.c=2654435769|0,c.d=1367130551,l===Math.floor(l)?(c.a=l/4294967296|0,c.b=l|0):u+=l;for(var h=0;h<u.length+20;h++)c.b^=u.charCodeAt(h)|0,c.next()}function i(l,c){return c.a=l.a,c.b=l.b,c.c=l.c,c.d=l.d,c}function o(l,c){var u=new s(l),h=c&&c.state,p=function(){return(u.next()>>>0)/4294967296};return p.double=function(){do var d=u.next()>>>11,f=(u.next()>>>0)/4294967296,m=(d+f)/(1<<21);while(m===0);return m},p.int32=u.next,p.quick=p,h&&(typeof h=="object"&&i(h,u),p.state=function(){return i(u,{})}),p}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),I8=et((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",c=a.pow(s,i),u=a.pow(2,o),h=u*2,p=s-1,d;function f(w,b,N){var T=[];b=b==!0?{entropy:!0}:b||{};var E=g(y(b.entropy?[w,x(r)]:w==null?_():w,3),T),M=new m(T),$=function(){for(var P=M.g(i),V=c,H=0;P<u;)P=(P+H)*s,V*=s,H=M.g(1);for(;P>=h;)P/=2,V/=2,H>>>=1;return(P+H)/V};return $.int32=function(){return M.g(4)|0},$.quick=function(){return M.g(4)/4294967296},$.double=$,g(x(M.S),r),(b.pass||N||function(P,V,H,U){return U&&(U.S&&A(U,M),P.state=function(){return A(M,{})}),H?(a[l]=P,V):P})($,E,"global"in b?b.global:this==a,b.state)}function m(w){var b,N=w.length,T=this,E=0,M=T.i=T.j=0,$=T.S=[];for(N||(w=[N++]);E<s;)$[E]=E++;for(E=0;E<s;E++)$[E]=$[M=p&M+w[E%N]+(b=$[E])],$[M]=b;(T.g=function(P){for(var V,H=0,U=T.i,K=T.j,X=T.S;P--;)V=X[U=p&U+1],H=H*s+X[p&(X[U]=X[K=p&K+V])+(X[K]=V)];return T.i=U,T.j=K,H})(s)}function A(w,b){return b.i=w.i,b.j=w.j,b.S=w.S.slice(),b}function y(w,b){var N=[],T=typeof w,E;if(b&&T=="object")for(E in w)try{N.push(y(w[E],b-1))}catch(M){}return N.length?N:T=="string"?w:w+"\0"}function g(w,b){for(var N=w+"",T,E=0;E<N.length;)b[p&E]=p&(T^=b[p&E]*19)+N.charCodeAt(E++);return x(b)}function _(){try{var w;return d&&(w=d.randomBytes)?w=w(s):(w=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(w)),x(w)}catch(T){var b=n.navigator,N=b&&b.plugins;return[+new Date,n,N,n.screen,x(r)]}}function x(w){return String.fromCharCode.apply(0,w)}if(g(a.random(),r),typeof t=="object"&&t.exports){t.exports=f;try{d=b1()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):a["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}),Z2=et((e,t)=>{var n=x8(),r=w8(),a=_8(),s=b8(),i=v8(),o=k8(),l=I8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),N8=et(()=>{}),S8="3.0.0",T8="3.0.0",E8="3.0.0",C8="3.0.0",R8="3.0.0",F8=1e-7,M8=1e-4,sh=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},nu=class{decComplexRef(e){}time(e){return vr("time")}read(e){return vr("read")}readSync(e){return vr("readSync")}numDataIds(){return vr("numDataIds")}disposeData(e){return vr("disposeData")}write(e,t,n){return vr("write")}move(e,t,n,r){return vr("move")}memory(){return vr("memory")}floatPrecision(){return vr("floatPrecision")}epsilon(){return this.floatPrecision()===32?F8:M8}dispose(){return vr("dispose")}};function vr(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function Y2(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function O8(e,t){if(e.length!==t.length)throw Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,a,s=0;for(;n>0;)s=Math.random()*n|0,n--,r=e[n],a=t[n],e[n]=e[s],t[n]=t[s],e[s]=r,t[s]=a}function ru(e,t,n){return Math.max(e,Math.min(t,n))}function $8(e){return e%2==0?e:e+1}function D8(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function z8(e,t){let n=Math.random();return t*n+(1-n)*e}function P8(e,t){let n=0;for(let r=0;r<e.length;r++){let a=Number(e[r])-Number(t[r]);n+=a*a}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function Jt(e,t,n=""){F(Hr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Ha(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function qa(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Qt(e)&&!n)for(let r=0;r<e.length;++r)qa(e[r],t,n);else t.push(e);return t}function Ct(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function L8(e){return e.length===0}function Hr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Pt(e){return e%1==0}function W8(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function B8(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function V8(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return Y2(t),t}function au(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function U8(e,t=r=>0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function j8(e,t){let n=1,r=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function Kn(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),F(e.every(r=>r>=-n&&r<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(r=>Pt(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function J2(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:Kn(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function Q2(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function eg(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function tg(e,t){for(let n=0;n<e.length;n++){let r=e[n];if(isNaN(r)||!isFinite(r))throw Error(`A tensor of type ${t} being uploaded contains ${r}.`)}}function ng(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function G8(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Qt(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function rg(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function ag(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function ca(e){return typeof e=="string"||e instanceof String}function sg(e){return typeof e=="boolean"}function ig(e){return typeof e=="number"}function ih(e){return Array.isArray(e)?ih(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":ig(e)?"float32":ca(e)?"string":sg(e)?"bool":"float32"}function ha(e){return!!(e&&e.constructor&&e.call&&e.apply)}function oh(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Oi(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let r=t-3;r>=0;--r)n[r]=n[r+1]*e[r+1];return n}function og(e,t,n){let r=new Array;if(t.length===1){let a=t[0];for(let s=0;s<a;s++)r[s]=n[e+s]}else{let a=t[0],s=t.slice(1),i=s.reduce((o,l)=>o*l);for(let o=0;o<a;o++)r[o]=og(e+o*i,s,n)}return r}function $i(e,t){if(e.length===0)return t[0];let n=e.reduce((r,a)=>r*a);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return og(0,e,t)}function v1(e,t){let n=lh(e,t);for(let r=0;r<n.length;r++)n[r]=1;return n}function lh(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function H8(e,t){let n=e.reduce((r,a)=>r*a,1);if(t==null||t==="float32")return $i(e,new Float32Array(n));if(t==="int32")return $i(e,new Int32Array(n));if(t==="bool")return $i(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function k1(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function q8(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a<e.length-1;++a)r+=n[a]*e[a];return r}function X8(e,t,n){if(t===0)return[];if(t===1)return[e];let r=new Array(t);for(let a=0;a<r.length-1;++a)r[a]=Math.floor(e/n[a]),e-=r[a]*n[a];return r[r.length-1]=e,r}function I1(e){return e&&e.then&&typeof e.then=="function"}var lg="tfjsflags",ug=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let r=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${r}.`),this.set(e,r)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(I1(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=K8(this.global.location.search);lg in e&&e[lg].split(",").forEach(t=>{let[n,r]=t.split(":");this.urlFlags[n]=Z8(n,r)})}};function K8(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(Y8(t,r[0],r[1]),r.join("="))),t}function Y8(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function Z8(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Q(){return tn}var tn=null;function J8(e){tn=e}var N1;function cg(){if(N1==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");N1=e}return N1}function Q8(){let e=cg();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function S1(e,t){let n=Q8();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var Di="Abs",zi="Acos",Pi="Acosh",da="Add",Xa="AddN",uh="All",ch="Any",Ka="ArgMax",su="ArgMin",Li="Asin",Wi="Asinh",Bi="Atan",Vi="Atanh",Ui="Atan2",Za="AvgPool",hh="AvgPoolGrad",iu="AvgPool3D",dh="AvgPool3DGrad",Ya="BatchMatMul",ou="BatchToSpaceND",ph="Bincount",hg="BroadcastTo",Ja="Cast",ji="Ceil",pa="ClipByValue",fh="Complex",lu="ComplexAbs",Gi="Concat",Qa="Conv2D",mh="Conv2DBackpropFilter",es="Conv2DBackpropInput",uu="Conv3D",Ah="Conv3DBackpropFilterV2",yh="Conv3DBackpropInputV2",ts="Cos",Hi="Cosh",ns="Cumsum",qi="CropAndResize",gh="DenseBincount",Xi="DepthToSpace",rs="DepthwiseConv2dNative",xh="DepthwiseConv2dNativeBackpropFilter",wh="DepthwiseConv2dNativeBackpropInput",_h="Diag",cu="Dilation2D",bh="Dilation2DBackpropInput",vh="Dilation2DBackpropFilter",as="RealDiv",Ki="Elu",kh="EluGrad",Zi="Erf",Yi="Equal",ss="Exp",Ji="ExpandDims",Qi="Expm1",Ih="FFT",hu="Fill",eo="FlipLeftRight",is="Floor",os="FloorDiv",ls="FusedBatchNorm",to="GatherV2",no="GatherNd",ro="Greater",us="GreaterEqual",ao="Identity",Nh="IFFT",Sh="Imag",so="IsFinite",io="IsInf",oo="IsNan",cs="LeakyRelu",lo="Less",uo="LessEqual",Th="LinSpace",hs="Log",co="Log1p",ho="LogicalAnd",du="LogicalNot",pu="LogicalOr",dg="LogSoftmax",fu="LRN",Eh="LRNGrad",ds="Max",ps="Maximum",fs="MaxPool",Ch="MaxPoolGrad",mu="MaxPool3D",Rh="MaxPool3DGrad",Fh="MaxPoolWithArgmax",ms="Mean",As="Min",ys="Minimum",Au="MirrorPad",po="Mod",Mh="Multinomial",gs="Multiply",fo="Neg",mo="NotEqual",Ao="NonMaxSuppressionV3",yo="NonMaxSuppressionV4",go="NonMaxSuppressionV5",xo="OnesLike",xs="OneHot",wo="Pack",ws="PadV2",ek="Pool",_s="Pow",bs="Prelu",_o="Prod",yu="Range",Oh="Real",bo="Reciprocal",vs="Relu",vo="Reshape",gu="ResizeNearestNeighbor",$h="ResizeNearestNeighborGrad",ks="ResizeBilinear",Dh="ResizeBilinearGrad",Is="Relu6",Ns="Reverse",Ss="Round",Ts="Rsqrt",ko="ScatterNd",Io="Select",No="Selu",So="Slice",Es="Sin",To="Sinh",Eo="Sign",Cs="Sigmoid",Co="Softplus",Rs="Sqrt",Fs="Sum",xu="SpaceToBatchND",Ro="SplitV",Ms="Softmax",Os="SquaredDifference",wu="Square",$s="Sub",zh="SparseToDense",Fo="StridedSlice",Mo="Tan",Ds="Tanh",fa="Tile",Oo="TopK",zs="Transpose",Ph="Unique",$o="Unpack",_u="UnsortedSegmentSum",Do="ZerosLike",ma="Step",Lh="FromPixels",zo="RotateWithOffset",Ps="_FusedMatMul",Ls="FusedConv2D",Ws="FusedDepthwiseConv2D",Po=S1("kernelRegistry",()=>new Map),bu=S1("gradRegistry",()=>new Map);function Wh(e,t){let n=T1(e,t);return Po.get(n)}function E1(e){return bu.get(e)}function Lo(e){let t=Po.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function Bs(e){let{kernelName:t,backendName:n}=e,r=T1(t,n);Po.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Po.set(r,e)}function pg(e){let{kernelName:t}=e;bu.has(t)&&Q().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),bu.set(t,e)}function tk(e,t){let n=T1(e,t);if(!Po.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Po.delete(n)}function nk(e){if(!bu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);bu.delete(e)}function rk(e,t){Lo(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});Bs(r)})}function T1(e,t){return`${t}_${e}`}var k={};$e(k,{arraysEqual:()=>Hr,assert:()=>F,assertNonNegativeIntegerDimensions:()=>k1,assertNonNull:()=>Ha,assertShapesMatch:()=>Jt,bytesFromStringArray:()=>ag,bytesPerElement:()=>rg,checkConversionForErrors:()=>tg,clamp:()=>ru,computeStrides:()=>Oi,createScalarValue:()=>ak,createShuffledIndices:()=>V8,decodeString:()=>Vh,distSquared:()=>P8,encodeString:()=>vu,fetch:()=>sk,flatten:()=>qa,getArrayFromDType:()=>eg,getTypedArrayFromDType:()=>Q2,hasEncodingLoss:()=>G8,indexToLoc:()=>X8,inferDtype:()=>ih,inferFromImplicitShape:()=>j8,isBoolean:()=>sg,isFunction:()=>ha,isInt:()=>Pt,isNumber:()=>ig,isPromise:()=>I1,isScalarShape:()=>L8,isString:()=>ca,isTypedArray:()=>Qt,isValidDtype:()=>ng,locToIndex:()=>q8,makeOnesTypedArray:()=>v1,makeZerosNestedTypedArray:()=>H8,makeZerosTypedArray:()=>lh,nearestDivisor:()=>oh,nearestLargerEven:()=>$8,now:()=>C1,parseAxisParam:()=>Kn,randUniform:()=>z8,repeatedTry:()=>U8,rightPad:()=>au,shuffle:()=>Y2,shuffleCombo:()=>O8,sizeFromShape:()=>Ct,sizeToSquarishShape:()=>B8,squeezeShape:()=>J2,sum:()=>D8,tanh:()=>W8,toNestedArray:()=>$i,toTypedArray:()=>Bh});function ak(e,t){return t==="string"?vu(e):Bh([e],t)}function ik(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Bh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=qa(e)),Q().getBool("DEBUG")&&tg(e,t),ik(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r<n.length;++r)Math.round(e[r])!==0&&(n[r]=1);return n}else throw new Error(`Unknown data type ${t}`)}function C1(){return Q().platform.now()}function sk(e,t){return Q().platform.fetch(e,t)}function vu(e,t="utf-8"){return t=t||"utf-8",Q().platform.encode(e,t)}function Vh(e,t="utf-8"){return t=t||"utf-8",Q().platform.decode(e,t)}var uk=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new lk)}profileKernel(e,t,n){let r,a=()=>{r=n()},s=this.backendTimer.time(a);if(Q().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let i=0;i<r.length;i++){let o=r[i];o.data().then(l=>{ok(l,o.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(i=>i.kernelMs),extraInfo:s.then(i=>i.getExtraProfileInfo!=null?i.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function ok(e,t,n){if(t!=="float32")return!1;for(let r=0;r<e.length;r++){let a=e[r];if(isNaN(a)||!isFinite(a))return console.warn(`Found ${a} in the result of '${n}'`),!0}return!1}var lk=class{logKernelProfile(e,t,n,r,a,s){let i=typeof r=="number"?au(`${r}ms`,9):r.error,o=au(e,25),l=t.rank,c=t.size,u=au(t.shape.toString(),14),h="";for(let p in a){let d=a[p];if(d!=null){let f=d.shape||t.shape,m=f.length;h+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${c} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function ck(e,t,n){let r={},a={};for(let l=0;l<t.length;l++)r[t[l].id]=!0;for(let l=0;l<e.length;l++){let c=e[l],u=c.inputs;for(let h in u){let p=u[h],d=!1;for(let f=0;f<t.length;f++)if(r[p.id]){c.outputs.forEach(m=>r[m.id]=!0),d=!0,a[c.id]=!0;break}if(d)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let c=e[l],u=c.inputs;for(let h=0;h<c.outputs.length;h++)if(s[c.outputs[h].id]){for(let p in u)s[u[p].id]=!0,i[c.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let c=e[l];if(a[c.id]&&i[c.id]){let u={};for(let p in c.inputs){let d=c.inputs[p];r[d.id]&&(u[p]=d)}let h=Object.assign({},c);h.inputs=u,h.outputs=c.outputs,o.push(h)}}return o}function hk(e,t,n,r){for(let a=t.length-1;a>=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let c=e[l.id];c!=null?i.push(c):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let c=n(()=>o[l]());if(c.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${c.dtype}'`);let u=s.inputs[l];if(!Hr(c.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${c.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=c;else{let h=e[u.id];e[u.id]=r(h,c),h.dispose()}}}}var fg=20,ku=3,R1=7;function pk(e,t,n,r){let a=Oi(t),s=dk(e,t,n,a),i=t.length,o=Uh(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(c=>" "+c).join(`
|
|
`)),l.join(`
|
|
`)}function dk(e,t,n,r){let a=Ct(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Nu(e):e;if(o>1)for(let c=0;c<a/s;c++){let u=c*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],Iu(l[u+h],0,n).length)}return i}function Iu(e,t,n){let r;return Array.isArray(e)?r=`${parseFloat(e[0].toFixed(R1))} + ${parseFloat(e[1].toFixed(R1))}j`:ca(e)?r=`'${e}'`:n==="bool"?r=mg(e):r=parseFloat(e.toFixed(R1)).toString(),au(r,t)}function mg(e){return e===0?"false":"true"}function Uh(e,t,n,r,a,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=Nu(e);return[Iu(m[0],0,n)]}return n==="bool"?[mg(e[0])]:[e[0].toString()]}if(l===1){if(o>fg){let A=ku*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-ku)*i,o*i));return n==="complex64"&&(y=Nu(y),g=Nu(g)),["["+y.map((_,x)=>Iu(_,a[x],n)).join(", ")+", ..., "+g.map((_,x)=>Iu(_,a[o-ku+x],n)).join(", ")+"]"]}let m=n==="complex64"?Nu(e):Array.from(e);return["["+m.map((A,y)=>Iu(A,a[y],n)).join(", ")+"]"]}let c=t.slice(1),u=r.slice(1),h=r[0]*i,p=[];if(o>fg){for(let m=0;m<ku;m++){let A=m*h,y=A+h;p.push(...Uh(e.slice(A,y),c,n,u,a,!1))}p.push("...");for(let m=o-ku;m<o;m++){let A=m*h,y=A+h;p.push(...Uh(e.slice(A,y),c,n,u,a,m===o-1))}}else for(let m=0;m<o;m++){let A=m*h,y=A+h;p.push(...Uh(e.slice(A,y),c,n,u,a,m===o-1))}let d=l===2?",":"";p[0]="["+p[0]+d;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+d;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(s?"":f),p}function Nu(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Rt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Ct(e),n!=null){let r=n.length;F(r===this.size,()=>`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||eg(t,this.size),this.strides=Oi(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;r<e.length-1;++r)n+=this.strides[r]*e[r];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return kr().makeTensor(this.values,this.shape,this.dtype)}},kr=null,Wo=null,fk=null;function mk(e){kr=e}function Ak(e){Wo=e}function yk(e){fk=e}var Xe=class{constructor(e,t,n,r){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Ct(e),this.strides=Oi(e),this.dataId=n,this.id=r,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Wo.buffer(this.shape,this.dtype,e)}bufferSync(){return Wo.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return $i(this.shape,e)}arraySync(){return $i(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=kr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Vh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=kr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Vh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await kr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(kr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Wo.print(this,e)}clone(){return this.throwIfDisposed(),Wo.clone(this)}toString(e=!1){let t=this.dataSync();return pk(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Wo.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),kr().makeVariable(this,e,t,n)}};Object.defineProperty(Xe,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Y(){return S1("Tensor",()=>Xe)}Y();var Su=class extends Xe{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Hr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);kr().disposeTensor(this),this.dataId=e.dataId,kr().incRef(this,null)}dispose(){kr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Su,Symbol.hasInstance,{value:e=>e instanceof Xe&&e.assign!=null&&e.assign instanceof Function});var lr={};$e(lr,{assertTypesMatch:()=>Ag,getTensorsInContainer:()=>F1,isTensorInList:()=>gk,makeTypesMatch:()=>gt});var M1;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(M1||(M1={}));var O1;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(O1||(O1={}));var $1;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})($1||($1={}));var D1;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(D1||(D1={}));var z1;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(z1||(z1={}));var xk={float32:D1,int32:O1,bool:$1,complex64:z1};function Zn(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return xk[e][t]}function jh(e){return Zn(e,"int32")}function gt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Zn(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function Ag(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function gk(e,t){return t.some(n=>n.id===e.id)}function F1(e){let t=[],n=new Set;return yg(e,t,n),t}function yg(e,t,n){if(e==null)return;if(e instanceof Xe){t.push(e);return}if(!wk(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),yg(s,t,n))}}function wk(e){return Array.isArray(e)||typeof e=="object"}function P1(e){return e.kernelName!=null}var gg=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Tu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new gg}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new uk(this.backendInstance),!0}setupRegisteredKernels(){Lo(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Lo(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof nu)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(r<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=a,{success:a,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:r,asyncInit:a}=this.initializeBackend(n);if(a||r)return{name:n,asyncInit:a}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),r=n.backend,a=this.readSync(t);r.disposeData(t),n.backend=e,e.move(t,a,n.shape,n.dtype),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let r;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Tu.nextTensorId++}nextVariableId(){return Tu.nextVariableId++}clone(e){let t=this.makeTensorFromDataId(e.dataId,e.shape,e.dtype),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return D.runKernel(Ja,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(Wh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=P1(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(P1(e)){let{kernelName:d,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let A=Wh(d,this.backendName);F(A!=null,()=>`Cannot find registered kernel '${d}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:f,attrs:m,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(d,y,g);let _=g.map(x=>{if(x.rank!=null)return x;let{dataId:w,shape:b,dtype:N}=x;return this.makeTensorFromDataId(w,b,N)});if(r){let x=this.getTensorsForGradient(d,f,_);n=this.saveTensorsForBackwardMode(x)}return _}}else{let{forwardFunc:d}=e,f=m=>{!r||(n=m.map(A=>this.keep(this.clone(A))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>d(this.backend,f));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,A),A}}let{inputs:c,attrs:u}=e,h=P1(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(p=this.profiler.profileKernel(l,c,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),r&&this.addTapeNode(l,c,t,h,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(c).map(d=>c[d]!=null?c[d].shape:null),outputShapes:t.map(d=>d.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=E1(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,c)=>s[c]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&ca(e[0])&&(a=e.map(o=>vu(o)));let s=r.write(a,t,n),i=new Xe(t,n,s,this.nextTensorId());if(this.incRef(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=ag(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Xe(t,n,e,this.nextTensorId());return this.incRef(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new Su(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}incRef(e,t){let n=this.state.tensorInfo.has(e.dataId)?this.state.tensorInfo.get(e.dataId).refCount:0;if(this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++,n===0){this.state.numDataBuffers++;let r=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(r=e.size*rg(e.dtype)),this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:r,refCount:0}),this.state.numBytes+=r}this.state.tensorInfo.get(e.dataId).refCount++,e instanceof Su||this.track(e)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;this.state.numTensors--,e.dtype==="string"&&this.state.numStringTensors--;let t=this.state.tensorInfo.get(e.dataId);t.refCount<=1?(e.dtype!=="complex64"&&(this.state.numBytes-=t.bytes),this.state.numDataBuffers--,t.backend.disposeData(e.dataId),this.state.tensorInfo.delete(e.dataId)):(t.backend.decComplexRef(e.dataId),this.state.tensorInfo.get(e.dataId).refCount--)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=E1(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((c,u)=>{if(c==null){let h=n[u],p=lh(h.size,h.dtype);return this.makeTensor(p,h.shape,h.dtype)}return c}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=F1(e),n=new Set(t.map(a=>a.id));for(let a=0;a<this.state.activeScope.track.length;a++){let s=this.state.activeScope.track[a];!s.kept&&!n.has(s.id)&&s.dispose()}let r=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(a=>{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(a instanceof Xe,()=>"The result y returned by f() must be a tensor.");let s=ck(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?_k(a.shape):n,hk(i,s,l=>this.tidy(l),bk);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let c of l.saved)c.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return F(ha(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof Xe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),F(n.value instanceof Xe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(ha(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),c=Array.isArray(l)?l:[l];F(c.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(c.every(h=>h instanceof Xe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return c.forEach((h,p)=>{u[p]=()=>h}),u};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=C1(),n=await this.backend.time(e);return n.wallMs=C1()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new gg;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Tu.nextTensorId=0;Tu.nextVariableId=0;function _k(e){let t=v1(Ct(e),"float32");return D.makeTensor(t,e,"float32")}function xg(){let e=cg();if(e._tfengine==null){let t=new ug(e);e._tfengine=new Tu(t)}return J8(e._tfengine.ENV),mk(()=>e._tfengine),e._tfengine}var D=xg();function bk(e,t){let n={a:e,b:t};return D.runKernel(da,n)}var Gh={};$e(Gh,{isBrowser:()=>wg,isMobile:()=>vk});function kk(){return typeof navigator!="undefined"&&navigator!=null}function vk(){if(kk()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function wg(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Ir=Q();Ir.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Ir.registerFlag("IS_BROWSER",()=>wg());Ir.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Ir.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Ir.registerFlag("PROD",()=>!1);Ir.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Ir.getBool("DEBUG"));Ir.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Ir.registerFlag("IS_TEST",()=>!1);Ir.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function Nr(e,t){let n=e;if(Qt(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||Qt(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&Q().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&_g(e,r,[]),r}function _g(e,t,n){if(n=n||[],!Array.isArray(e)&&!Qt(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a<e.length;++a)_g(e[a],r,n.concat(a))}function bg(e,t,n,r){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${r}' must be ${e} tensor, but got ${t} tensor`)}}function R(e,t,n,r="numeric"){if(e instanceof Xe)return bg(r,e.dtype,t,n),e;let a=ih(e);if(a!=="string"&&["bool","int32","float32"].indexOf(r)>=0&&(a=r),bg(r,a,t,n),e==null||!Qt(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Nr(e,a);!Qt(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?Bh(e,a):qa(e,[],!0);return D.makeTensor(i,s,a)}function Eu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var vg="__op";function z(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+vg;let a=(...s)=>{D.startScope(n);try{let i=r(...s);return I1(i)&&console.error("Cannot return a Promise inside of tidy."),D.endScope(i),i}catch(i){throw D.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function Ik(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");Jt(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return D.runKernel(fh,a)}var Aa=z({complex_:Ik});function ya(e,t,n,r){if(r==null&&(r=ih(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Qt(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){k1(t);let a=Ct(t),s=Ct(n);F(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Ct(t.slice(i)):!0;F(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Qt(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?Bh(e,r):qa(e,[],!0),D.makeTensor(e,t,r)}function ur(e,t,n){let r=Nr(e,n);return ya(e,t,r,n)}var L1={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Hh=4;async function Sk(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<a.length;++i){let o=a[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let c={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async h=>{let p=await l.bytes(),d=p.reduce((A,y)=>A+y.length,0)+Hh*p.length,f=new Uint8Array(d),m=0;for(let A=0;A<p.length;A++){let y=p[A],g=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(g,m),m+=Hh,f.set(y,m),m+=y.length}h(f)});r.push(u)}else r.push(l.data());t!=null&&(c.group=t),n.push(c)}let s=await Promise.all(r);return{data:Nk(s),specs:n}}function kg(e,t){let n={},r,a=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,c=Ct(l),u;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=L1[h.dtype],d=e.slice(a,a+c*p),f=h.dtype==="uint8"?new Uint8Array(d):new Uint16Array(d);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){u=new Float32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];u[m]=A*h.scale+h.min}}else if(h.dtype==="float16")r===void 0&&(r=Tk()),u=r(f);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);u=new Int32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];u[m]=Math.round(A*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=c*p}else if(o==="string"){let h=Ct(s.shape);u=[];for(let p=0;p<h;p++){let d=new Uint32Array(e.slice(a,a+Hh))[0];a+=Hh;let f=new Uint8Array(e.slice(a,a+d));u.push(f),a+=d}}else{let h=L1[o],p=e.slice(a,a+c*h);if(o==="float32")u=new Float32Array(p);else if(o==="int32")u=new Int32Array(p);else if(o==="bool")u=new Uint8Array(p);else if(o==="complex64"){u=new Float32Array(p);let d=new Float32Array(u.length/2),f=new Float32Array(u.length/2);for(let y=0;y<d.length;y++)d[y]=u[y*2],f[y]=u[y*2+1];let m=ur(d,l,"float32"),A=ur(f,l,"float32");n[i]=Aa(m,A),m.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=c*h}o!=="complex64"&&(n[i]=ur(u,l,o))}return n}function Nk(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var W1=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Ig(e){return W1?Buffer.byteLength(e):new Blob([e]).size}function Ek(e){if(W1)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r<a;r++)n+=String.fromCharCode(t[r]);return btoa(n)}function Ck(e){if(W1){let r=Buffer.from(e,"base64");return r.buffer.slice(r.byteOffset,r.byteOffset+r.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let r=0;r<t.length;++r)n.set([t.charCodeAt(r)],r);return n.buffer}function B1(e){if(e.length===1)return e[0];let t=0;e.forEach(a=>{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function Ng(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Cu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Ig(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Ig(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function Rk(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function Fk(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function Mk(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function Tk(){let e=Rk(),t=Fk(),n=Mk();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i<r.length;i++){let o=r[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var vt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return vt.instance==null&&(vt.instance=new vt),vt.instance}static registerSaveRouter(e){vt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){vt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return vt.getHandlers(e,"save")}static getLoadHandlers(e,t){return vt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?vt.getInstance().loadRouters:vt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},Ok=e=>vt.registerSaveRouter(e),$k=e=>vt.registerLoadRouter(e),Dk=e=>vt.getSaveHandlers(e),zk=(e,t)=>vt.getLoadHandlers(e,t),V1="tensorflowjs",U1=1,Vs="models_store",ga="model_info_store";function Sg(){if(!Q().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function j1(e){let t=e.result;t.createObjectStore(Vs,{keyPath:"modelPath"}),t.createObjectStore(ga,{keyPath:"modelPath"})}var Us=class{constructor(e){if(this.indexedDB=Sg(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(V1,U1);a.onupgradeneeded=()=>j1(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(Vs,"readonly"),o=i.objectStore(Vs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=Cu(t),o=s.transaction(ga,"readwrite"),l=o.objectStore(ga),c=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;c.onsuccess=()=>{u=s.transaction(Vs,"readwrite");let h=u.objectStore(Vs).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=p=>{l=o.objectStore(ga);let d=l.delete(this.modelPath);d.onsuccess=()=>(s.close(),r(h.error)),d.onerror=f=>(s.close(),r(h.error))}},c.onerror=h=>(s.close(),r(c.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};Us.URL_SCHEME="indexeddb://";var Tg=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Us.URL_SCHEME)?Pk(e.slice(Us.URL_SCHEME.length)):null;vt.registerSaveRouter(Tg);vt.registerLoadRouter(Tg);function Pk(e){return new Us(e)}function Lk(e){return e.startsWith(Us.URL_SCHEME)?e.slice(Us.URL_SCHEME.length):e}var Wk=class{constructor(){this.indexedDB=Sg()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(V1,U1);n.onupgradeneeded=()=>j1(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(ga,"readonly"),s=a.objectStore(ga).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=Lk(e),new Promise((t,n)=>{let r=this.indexedDB.open(V1,U1);r.onupgradeneeded=()=>j1(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(ga,"readwrite"),i=s.objectStore(ga),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let c=i.delete(e),u=()=>{l=a.transaction(Vs,"readwrite");let h=l.objectStore(Vs).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=p=>n(o.error)};c.onsuccess=u,c.onerror=h=>(u(),a.close(),n(o.error))}},o.onerror=c=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},qr="/",Bo="tensorflowjs_models",Eg="info",Bk="model_topology",Vk="weight_specs",Uk="weight_data",jk="model_metadata";function Cg(e){return{info:[Bo,e,Eg].join(qr),topology:[Bo,e,Bk].join(qr),weightSpecs:[Bo,e,Vk].join(qr),weightData:[Bo,e,Uk].join(qr),modelMetadata:[Bo,e,jk].join(qr)}}function Gk(e){let t=e.split(qr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(qr)}function Hk(e){return e.startsWith(js.URL_SCHEME)?e.slice(js.URL_SCHEME.length):e}var js=class{constructor(e){if(!Q().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Cg(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=Cu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,Ek(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=Ck(s),t}};js.URL_SCHEME="localstorage://";var Rg=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(js.URL_SCHEME)?qk(e.slice(js.URL_SCHEME.length)):null;vt.registerSaveRouter(Rg);vt.registerLoadRouter(Rg);function qk(e){return new js(e)}var Xk=class{constructor(){F(Q().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Bo+qr,n=qr+Eg;for(let r=0;r<this.LS.length;++r){let a=this.LS.key(r);if(a.startsWith(t)&&a.endsWith(n)){let s=Gk(a);e[s]=JSON.parse(this.LS.getItem(a))}}return e}async removeModel(e){e=Hk(e);let t=Cg(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},Vo="://",zn=class{constructor(){this.managers={}}static getInstance(){return zn.instance==null&&(zn.instance=new zn),zn.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Vo)&&(e=e.slice(0,e.indexOf(Vo))),F(e.length>0,()=>"scheme must not be an empty string.");let n=zn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function qh(e){if(e.indexOf(Vo)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${zn.getSchemes().join(",")}`);return{scheme:e.split(Vo)[0],path:e.split(Vo)[1]}}async function Fg(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=vt.getLoadHandlers(e);F(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=vt.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=qh(e).scheme,l=qh(e).path,c=o===qh(e).scheme,u=await a.load();n&&c&&await zn.getManager(o).removeModel(l);let h=await i.save(u);return n&&!c&&await zn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function Kk(){let e=zn.getSchemes(),t={};for(let n of e){let r=await zn.getManager(n).listModels();for(let a in r){let s=n+Vo+a;t[s]=r[a]}}return t}async function Zk(e){let t=qh(e);return zn.getManager(t.scheme).removeModel(t.path)}async function Yk(e,t){return Fg(e,t,!1)}async function Jk(e,t){return Fg(e,t,!0)}var Qk=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Q().get("IS_BROWSER")){Q().setPlatform("browser",new Qk);try{zn.registerManager(js.URL_SCHEME,new Xk)}catch(e){}try{zn.registerManager(Us.URL_SCHEME,new Wk)}catch(e){}}var e9={importFetch:()=>J4()},G1,t9=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Q().global.fetch!=null?Q().global.fetch(e,t):(G1==null&&(G1=e9.importFetch()),G1(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Q().get("IS_NODE")&&Q().setPlatform("node",new t9);function Pe(e,t="float32",n){return t=t||"float32",k1(e),new Rt(e,t,n)}function n9(e,t){let n=R(e,"x","cast");if(!ng(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return D.runKernel(Ja,r,a)}var me=z({cast_:n9});function r9(e){let t={x:R(e,"x","clone","string_or_numeric")};return D.runKernel(ao,t)}var Yn=z({clone_:r9});function Mg(e,t=!1){console.log(e.toString(t))}xg();var a9={buffer:Pe,cast:me,clone:Yn,print:Mg};Ak(a9);var cn={};$e(cn,{browserFiles:()=>s9,browserHTTPRequest:()=>o9,concatenateArrayBuffers:()=>B1,copyModel:()=>Yk,decodeWeights:()=>kg,encodeWeights:()=>Sk,fromMemory:()=>l9,getLoadHandlers:()=>zk,getModelArtifactsInfoForJSON:()=>Cu,getSaveHandlers:()=>Dk,http:()=>q1,isHTTPScheme:()=>H1,listModels:()=>Kk,loadWeights:()=>i9,moveModel:()=>Jk,registerLoadRouter:()=>$k,registerSaveRouter:()=>Ok,removeModel:()=>Zk,weightsLoaderFactory:()=>Og,withSaveHandler:()=>u9});var c9="model",h9=".json",d9=".weights.bin";function $g(e){return new Promise(t=>setTimeout(t)).then(e)}var Uo=class{constructor(e){if(!Q().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Uo.URL_SCHEME)&&(e=e.slice(Uo.URL_SCHEME.length)),(e==null||e.length===0)&&(e=c9),this.modelTopologyFileName=e+h9,this.weightDataFileName=e+d9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await $g(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await $g(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Cu(e)}}}};Uo.URL_SCHEME="downloads://";var p9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let c;try{c=this.checkManifestAndWeightFiles(l,t)}catch(d){r(d);return}let u=[],h=[],p=[];l.forEach(d=>{d.paths.forEach(f=>{h.push(f),p.push(null)}),u.push(...d.weights)}),l.forEach(d=>{d.paths.forEach(f=>{let m=new FileReader;m.onload=A=>{let y=A.target.result,g=h.indexOf(f);if(p[g]=y,p.indexOf(null)===-1){let _={modelTopology:o,weightSpecs:u,weightData:B1(p),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(_.signature=i.signature),i.userDefinedMetadata!=null&&(_.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(_.modelInitializer=i.modelInitializer),n(_)}},m.onerror=A=>r(`Failed to weights data from file of path '${f}'.`),m.readAsArrayBuffer(c[f])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>Ng(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=Ng(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},m9=e=>Q().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Uo.URL_SCHEME)?f9(e.slice(Uo.URL_SCHEME.length)):null;vt.registerSaveRouter(m9);function f9(e="model"){return new Uo(e)}function s9(e){return new p9(e)}function Dg(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(c=>{let u=n+ ++a/e.length*(r-n);return t(u),c}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,c){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(c>=0&&c<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${c}`),F(c>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${c}`)}return Promise.all(e.map(s))}async function zg(e,t){t==null&&(t={});let n=t.fetchFunc==null?Q().platform.fetch:t.fetchFunc,r=e.map(c=>n(c,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await Dg(r,t.onProgress,a,s)).map(c=>c.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await Dg(i,t.onProgress,o,l)}async function i9(e,t="",n,r){return Og(a=>zg(a,{requestInit:r}))(e,t,n)}function Og(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((d,f)=>{let m=0;d.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=L1[y]*Ct(A.shape),_=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:A,groupOffset:m,sizeBytes:g})};r!=null?r.forEach((x,w)=>{x===A.name&&(_(),i[w]=!0)}):_(),o.push(A.name),m+=g})}),!i.every(d=>d)){let d=r.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${d.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((d,f,m)=>(f&&d.push(m),d),[]),c=[];l.forEach(d=>{t[d].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;c.push(m)})});let u=await e(c),h={},p=0;return l.forEach(d=>{let f=t[d].paths.length,m=0;for(let _=0;_<f;_++)m+=u[p+_].byteLength;let A=new ArrayBuffer(m),y=new Uint8Array(A),g=0;for(let _=0;_<f;_++){let x=new Uint8Array(u[p+_]);y.set(x,g),g+=x.byteLength}s[d].forEach(_=>{let x=A.slice(_.groupOffset,_.groupOffset+_.sizeBytes),w=kg(x,[_.manifestEntry]);for(let b in w)h[b]=w[b]}),p+=f}),h}}var A9="application/octet-stream",y9="application/json",X1=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Q().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:y9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:A9}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:Cu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(d){let f=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?f+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":f+=" Please make sure the server is serving valid JSON for this request.",new Error(f)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let c,u;r!=null&&([c,u]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:c,weightData:u,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let p=t.modelInitializer;return p&&(h.modelInitializer=p),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=g9(t),a=this.weightPathPrefix||n,s=[];for(let c of e)s.push(...c.weights);let i=[],o=[];for(let c of e)for(let u of c.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(a+u+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await zg(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,B1(l)]}};X1.URL_SCHEME_REGEX=/^https?:\/\//;function g9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function H1(e){return e.match(X1.URL_SCHEME_REGEX)!=null}var Pg=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>H1(r)):n=H1(e),n)return q1(e,t)}return null};vt.registerSaveRouter(Pg);vt.registerLoadRouter(Pg);function q1(e,t){return new X1(e,t)}function o9(e,t){return q1(e,t)}var K1=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},x9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function l9(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new K1(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new K1({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new K1({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function u9(e){return new x9(e)}var Lg={};$e(Lg,{confusionMatrix:()=>w9});function _9(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=gt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return D.runKernel(Ya,i,o)}var je=z({matMul_:_9});function b9(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return D.runKernel(xs,a,s)}var jo=z({oneHot_:b9});function v9(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return D.runKernel(zs,r,a)}var nt=z({transpose_:v9});function k9(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),F(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),F(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=jo(me(r,"int32"),n),i=jo(me(a,"int32"),n),o=nt(s),l=je(o,i);return me(l,"int32")}var w9=z({confusionMatrix_:k9}),Go={};$e(Go,{fromPixels:()=>N9,toPixels:()=>I9});function Xh(e,t,n){if(Ha(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Nr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ya(e,t,r,n)}var Ho;function S9(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let p=2;if(a&&e.readyState<p)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Wh(Lh,D.backendName)!=null){let p={pixels:e},d={numChannels:t};return D.runKernel(Lh,p,d)}let[l,c]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,c).data:r||n?u=e.data:(s||a||o)&&(Ho==null&&(Ho=document.createElement("canvas").getContext("2d")),Ho.canvas.width=l,Ho.canvas.height=c,Ho.drawImage(e,0,0,l,c),u=Ho.getImageData(0,0,l,c).data);let h;if(t===4)h=new Int32Array(u);else{let p=l*c;h=new Int32Array(p*t);for(let d=0;d<p;d++)for(let f=0;f<t;++f)h[d*t+f]=u[d*4+f]}return Xh(h,[c,l,t],"int32")}async function I9(e,t){let n=R(e,"img","toPixels");if(!(e instanceof Xe)){let c=n;n=me(c,"int32"),c.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[r,a]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let c=0;c<r*a;++c){let u=[0,0,0,255];for(let p=0;p<s;p++){let d=i[c*s+p];if(n.dtype==="float32"){if(d<0||d>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${d}.`)}else if(n.dtype==="int32"&&(d<0||d>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${d}.`);s===1?(u[0]=d*o,u[1]=d*o,u[2]=d*o):u[p]=d*o}let h=c*4;l[h+0]=Math.round(u[0]),l[h+1]=Math.round(u[1]),l[h+2]=Math.round(u[2]),l[h+3]=Math.round(u[3])}if(t!=null){t.width=a,t.height=r;let c=t.getContext("2d"),u=new ImageData(l,a,r);c.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var N9=z({fromPixels_:S9}),Z1={};$e(Z1,{prepareAndValidate:()=>Wg});function Wg(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Ct(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;h<a.length-1;++h)i*=a[h];let o=e.shape,l=a.slice();l.pop();let c=1;for(let h=s;h<n;++h)c*=o[h],l.push(o[h]);let u=[...Oi(e.shape).map(h=>h/c),1].slice(0,s);return[l,i,c,u]}var Y1={};$e(Y1,{calculateShapes:()=>Bg,validateInput:()=>Q1,validateUpdateShape:()=>J1});function J1(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank<a)throw new Error(s+` update.rank < ${a}. `);if(e.length<r+(n.rank-a))throw new Error(s+` Output shape length < ${r+(n.rank-a)}`);if(n.rank!==a+e.length-r)throw new Error(s+` update.rank != ${a+e.length-r}`);for(let i=0;i<a;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-a;++i)if(n.shape[i+a]!==e[i+r])throw new Error(s+` updates.shape[${i+a}] (${n.shape[i+a]}) != shape[${i+a}] (${e[i+a]})`)}function Q1(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}J1(n,t,e)}function Bg(e,t,n){let r=t.shape.length,a=r>1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;h<s;++h)i*=n[h];let o=a<1?1:a,l=Ct(t.shape)/o,c=[...Oi(n.slice(0,a)),1],u=Ct(n);return{sliceRank:a,numUpdates:l,sliceSize:i,strides:c,outputSize:u}}var nn={};$e(nn,{assertParamsValid:()=>T9,computeFlatOffset:()=>C9,computeOutShape:()=>Vg,getNormalizedAxes:()=>jg,isSliceContinous:()=>E9,maskToAxes:()=>Kh,parseSliceParams:()=>Zg,sliceInfo:()=>R9,startForAxis:()=>Xg,startIndicesWithElidedDims:()=>Gg,stopForAxis:()=>Kg,stopIndicesWithElidedDims:()=>Hg,stridesForAxis:()=>qg,stridesWithElidedDims:()=>Ug});function T9(e,t,n){let r=e.shape.length;F(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),F(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a<r;++a)F(t[a]+n[a]<=e.shape[a],()=>`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function Kh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function Vg(e,t,n){let r=[];for(let a=0;a<e.length;a++)r[a]=Math.ceil((t[a]-e[a])/n[a]);return r}function Ug(e,t,n,r){let a=[...e];for(let s=a.length;s<r.length;s++)a.push(1);for(let s=0;s<n;s++)s===0?a[t]=1:(a.splice(t,0,1),a.pop());return a}function Yg(e,t,n){return n<=e?n:n-(t-1)}function Jg(e,t){let n=[];for(let r=0;r<e;r++)n.push(t+r);return n}function jg(e,t,n,r,a,s,i,o,l){let c=e.length,u=new Array(c),h=new Array(c),p=new Array(c);if(t.length&&n>0){let d=t[0],f=n+1;u=Gg(i,d,f,r,e),h=Hg(o,d,f,a,e),p=Ug(s,d,f,e)}else for(let d=0;d<c;d++)u[d]=Xg(i,r,s,e,d,l),h[d]=Kg(o,a,s,e,d,l),p[d]=qg(s,d,l);return{begin:u,end:h,strides:p}}function Gg(e,t,n,r,a){let s=[...a],i=Jg(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=Yg(t,n,o),c=r[l];e&1<<l&&(c=0),s[o]=c}return s}function Hg(e,t,n,r,a){let s=[...a],i=Jg(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=Yg(t,n,o),c=r[l];e&1<<l&&(c=Number.MAX_SAFE_INTEGER),s[o]=c}for(let o=0;o<s.length;o++){let l=a[o];s[o]<0&&(s[o]+=l),s[o]=ru(0,s[o],a[o])}return s}function qg(e,t,n){let r=e[t];return(n&1<<t||r==null)&&(r=1),r}function Xg(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=ru(0,i,l-1),i}function Kg(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=ru(0,i,l):i=ru(-1,i,l-1),i}function E9(e,t,n){let r=n.length;for(let a=0;a<n.length;a++)if(n[a]>1){r=a;break}for(let a=r+1;a<n.length;a++)if(t[a]>0||n[a]!==e[a])return!1;return!0}function C9(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r<e.length-1;r++)n+=e[r]*t[r];return n}function Zg(e,t,n){let r,a=e.shape.length;typeof t=="number"?r=[t,...new Array(a-1).fill(0)]:t.length<a?r=t.concat(new Array(a-t.length).fill(0)):r=t.slice(),r.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.length<a?s=n.concat(new Array(a-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function R9(e,t,n,r,a,s,i,o,l){let c=t.slice(),u=n.slice(),h=r;r==null&&(h=new Array(c.length));let p=Kh(i);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let d=e.length-c.length,f=Kh(o),m=e.slice();f.forEach(b=>{c[b]=0,u[b]=1,m.splice(b,0,1)});let{begin:A,end:y,strides:g}=jg(m,p,d,c,u,h,a,s,i);c=A,u=y,h=g;let _=Kh(l);_.forEach(b=>{u[b]=c[b]+1,h[b]=1});let x=Vg(c,u,h),w=x.filter((b,N)=>_.indexOf(N)===-1);return{nonStrided:h.every(b=>b===1),$begin:c,$end:u,$strides:h,size:x,newShape:m,outShape:w}}var re={};$e(re,{Serializable:()=>Qg,SerializationMap:()=>Gs,registerClass:()=>xa});var Qg=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Gs=class{constructor(){this.classNameMap={}}static getMap(){return Gs.instance==null&&(Gs.instance=new Gs),Gs.instance}static register(e){Gs.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function xa(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Gs.register(e)}var e5={};$e(e5,{TEST_EPSILON_FLOAT16:()=>t5,encodeStrings:()=>n5,expectArrayBuffersEqual:()=>z9,expectArraysClose:()=>F9,expectArraysEqual:()=>O9,expectNumbersClose:()=>$9,expectPromiseToFail:()=>M9,expectValuesInRange:()=>D9,testEpsilon:()=>ef});var P9=.001,t5=.1;function F9(e,t,n){return n==null&&(n=ef()),tf(e,t,(r,a)=>nf(r,a,n))}function ef(){return D.backend.floatPrecision()===32?P9:t5}function tf(e,t,n){let r=!0;if((Qt(e)||Qt(t))&&(r=!1),Qt(e)&&Qt(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Nr(e),o=Nr(t);if(!Hr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=Qt(e)?e:qa(e),s=Qt(t)?t:qa(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=a[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`)}}function M9(e,t){e().then(()=>t.fail(),()=>t())}function O9(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return ca(e)||ca(e[0])||ca(t)||ca(t[0])?tf(e,n,(r,a)=>r==a):tf(e,t,(r,a)=>nf(r,a,0))}function $9(e,t,n){if(n==null&&(n=ef()),!nf(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function nf(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function D9(e,t,n){for(let r=0;r<e.length;r++)if(e[r]<t||e[r]>n)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function z9(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function n5(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?n5(n):e[t]=vu(n)}return e}var r5="3.0.0";function a5(){Q().set("PROD",!0)}function L9(){Q().set("DEBUG",!0)}function W9(){Q().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function rf(e){Q().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}yk(rf);function B9(){D.disposeVariables()}function Pn(){return D}function Zh(){return D.memory()}function cr(e){return D.profile(e)}function W(e,t){return D.tidy(e,t)}function Ne(e){F1(e).forEach(t=>t.dispose())}function Lt(e){return D.keep(e)}function V9(e){return D.time(e)}function s5(e){return D.setBackend(e)}function i5(){return D.ready()}function Yh(){return D.backendName}function U9(e){D.removeBackend(e)}function af(e){return D.findBackend(e)}function j9(e){return D.findBackendFactory(e)}function qo(e,t,n=1){return D.registerBackend(e,t,n)}function sf(){return D.backend}function G9(e,t){Q().setPlatform(e,t)}function H9(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=gt(n,r);let a={a:n,b:r};return D.runKernel(da,a)}var se=z({add_:H9});function q9(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=gt(n,r);let a={a:n,b:r};return D.runKernel(os,a)}var Jh=z({floorDiv_:q9});function X9(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=gt(n,r),n.dtype==="int32"&&r.dtype==="int32")return Jh(n,r);let a={a:n,b:r},s={};return D.runKernel(as,a,s)}var be=z({div_:X9});function K9(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=gt(n,r);let a={a:n,b:r};return D.runKernel(gs,a)}var L=z({mul_:K9});function Z9(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return D.runKernel(lu,n)}else{let n={x:t};return D.runKernel(Di,n)}}var Ft=z({abs_:Z9});function Y9(e){let t={x:R(e,"x","acos")};return D.runKernel(zi,t)}var of=z({acos_:Y9});function J9(e){let t={x:R(e,"x","acosh")};return D.runKernel(Pi,t)}var lf=z({acosh_:J9});function Q9(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!Hr(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return D.runKernel(Xa,r)}var Xo=z({addN_:Q9});function eI(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return D.runKernel(uh,r,a)}var Qh=z({all_:eI});function tI(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return D.runKernel(ch,r,a)}var Ru=z({any_:tI});function nI(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return D.runKernel(Ka,n,r)}var Fu=z({argMax_:nI});function rI(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return D.runKernel(su,n,r)}var uf=z({argMin_:rI});function aI(e){let t={x:R(e,"x","asin")};return D.runKernel(Li,t)}var cf=z({asin_:aI});function sI(e){let t={x:R(e,"x","asinh")};return D.runKernel(Wi,t)}var hf=z({asinh_:sI});function iI(e){let t={x:R(e,"x","atan")};return D.runKernel(Bi,t)}var df=z({atan_:iI});function oI(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=gt(n,r);let a={a:n,b:r};return D.runKernel(Ui,a)}var pf=z({atan2_:oI});function lI(e){let t={x:R(e,"x","atanh")};return D.runKernel(Vi,t)}var ff=z({atanh_:lI});function uI(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=o5(a);return Mu(e,o,n,s,r,null,null,l)}function l5(e,t,n,r,a,s,i="channelsLast"){let[o,l]=ed(t),c;if(i==="channelsLast")c=[o,l,e[3],e[3]];else if(i==="channelsFirst")c=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Mu(e,c,n,r,a,s,!1,i)}function cI(e,t,n,r,a,s,i="NDHWC"){let[o,l,c]=mf(t),u,h;if(i==="NDHWC")h="channelsLast",u=[o,l,c,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",u=[o,l,c,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return u5(e,u,n,r,a,!1,h,s)}function Mu(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,c,u,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,c,u,h]=e;else if(o==="channelsFirst")[l,h,c,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[p,d,,f]=t,[m,A]=ed(n),[y,g]=ed(r),_=Ko(p,y),x=Ko(d,g),{padInfo:w,outHeight:b,outWidth:N}=hI(a,c,u,m,A,_,x,s,o),T=i?f*h:f,E;return o==="channelsFirst"?E=[l,T,b,N]:o==="channelsLast"&&(E=[l,b,N,T]),{batchSize:l,dataFormat:o,inHeight:c,inWidth:u,inChannels:h,outHeight:b,outWidth:N,outChannels:T,padInfo:w,strideHeight:m,strideWidth:A,filterHeight:p,filterWidth:d,effectiveFilterHeight:_,effectiveFilterWidth:x,dilationHeight:y,dilationWidth:g,inShape:e,outShape:E,filterShape:t}}function u5(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,c,u,h,p]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,c,u,h,p]=e;else if(i==="channelsFirst")[l,p,c,u,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[d,f,m,,A]=t,[y,g,_]=mf(n),[x,w,b]=mf(r),N=Ko(d,x),T=Ko(f,w),E=Ko(m,b),{padInfo:M,outDepth:$,outHeight:P,outWidth:V}=dI(a,c,u,h,y,g,_,N,T,E,o),H=s?A*p:A,U;return i==="channelsFirst"?U=[l,H,$,P,V]:i==="channelsLast"&&(U=[l,$,P,V,H]),{batchSize:l,dataFormat:i,inDepth:c,inHeight:u,inWidth:h,inChannels:p,outDepth:$,outHeight:P,outWidth:V,outChannels:H,padInfo:M,strideDepth:y,strideHeight:g,strideWidth:_,filterDepth:d,filterHeight:f,filterWidth:m,effectiveFilterDepth:N,effectiveFilterHeight:T,effectiveFilterWidth:E,dilationDepth:x,dilationHeight:w,dilationWidth:b,inShape:e,outShape:U,filterShape:t}}function pI(e,t,n,r,a){r==null&&(r=Af(e,t,n));let s=e[0],i=e[1],o=Hs((s-t+2*r)/n+1,a),l=Hs((i-t+2*r)/n+1,a);return[o,l]}function fI(e,t,n,r,a,s){a==null&&(a=Af(e,t,r));let i=e[0],o=e[1],l=e[2],c=Hs((i-t+2*a)/r+1,s),u=Hs((o-t+2*a)/r+1,s),h=Hs((l-t+2*a)/r+1,s);return[c,u,h,n]}function Af(e,t,n,r=1){let a=Ko(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function ed(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function mf(e){return typeof e=="number"?[e,e,e]:e}function Ko(e,t){return t<=1?e:e+(e-1)*(t-1)}function hI(e,t,n,r,a,s,i,o,l){let c,u,h;if(typeof e=="number"){c={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let p=pI([t,n],s,r,e,o);u=p[0],h=p[1]}else if(e==="same"){u=Math.ceil(t/r),h=Math.ceil(n/a);let p=Math.max(0,(u-1)*r+s-t),d=Math.max(0,(h-1)*a+i-n),f=Math.floor(p/2),m=p-f,A=Math.floor(d/2),y=d-A;c={top:f,bottom:m,left:A,right:y,type:"SAME"}}else if(e==="valid")c={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],d=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];c={top:p,bottom:d,left:f,right:m,type:p===0&&d===0&&f===0&&m===0?"VALID":"EXPLICIT"},u=Hs((t-s+p+d)/r+1,o),h=Hs((n-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:c,outHeight:u,outWidth:h}}function dI(e,t,n,r,a,s,i,o,l,c,u){let h,p,d,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=fI([t,n,r,1],o,1,a,e,u);p=m[0],d=m[1],f=m[2]}else if(e==="same"){p=Math.ceil(t/a),d=Math.ceil(n/s),f=Math.ceil(r/i);let m=(p-1)*a+o-t,A=(d-1)*s+l-n,y=(f-1)*i+c-r,g=Math.floor(m/2),_=m-g,x=Math.floor(A/2),w=A-x,b=Math.floor(y/2),N=y-b;h={top:x,bottom:w,left:b,right:N,front:g,back:_,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-o+1)/a),d=Math.ceil((n-l+1)/s),f=Math.ceil((r-c+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:p,outHeight:d,outWidth:f}}function Hs(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function wa(e){let[t,n,r]=ed(e);return t===1&&n===1&&r===1}function Sr(e,t){return wa(e)||wa(t)}function o5(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function mI(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return D.runKernel(vo,n,r)}var q=z({reshape_:mI});function AI(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;F(Sr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&F(Pt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=D.runKernel(Za,c,u);return h=me(h,s.dtype),l?q(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Ou=z({avgPool_:AI});function yI(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Pt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=D.runKernel(iu,c,u);return h=me(h,o.dtype),l?q(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var yf=z({avgPool3d_:yI});function gI(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=Eu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return Yn(n[0]);let r=n,a={axis:t};return D.runKernel(Gi,r,a)}var rt=z({concat_:gI});function xI(e){let t={x:R(e,"x","sigmoid")};return D.runKernel(Cs,t)}var _n=z({sigmoid_:xI});function wI(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return D.runKernel(So,a,s)}var Ee=z({slice_:wI});function _I(e){let t={x:R(e,"x","tanh")};return D.runKernel(Ds,t)}var Zo=z({tanh_:_I});function bI(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),c=R(r,"data","basicLSTMCell"),u=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),p=rt([c,h],1),d=je(p,o),f=se(d,l),m=f.shape[0],A=f.shape[1]/4,y=[m,A],g=Ee(f,[0,0],y),_=Ee(f,[0,A],y),x=Ee(f,[0,A*2],y),w=Ee(f,[0,A*3],y),b=se(L(_n(g),Zo(_)),L(u,_n(se(i,x)))),N=L(Zo(b),_n(w));return[b,N]}var vI=z({basicLSTMCell_:bI});function kI(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);F(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return D.runKernel(ou,s,i)}var $u=z({batchToSpaceND_:kI});function II(e){let t;return e.rank===0||e.rank===1?t=q(e,[1,1,1,e.size]):e.rank===2?t=q(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=q(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function NI(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;r!=null&&(u=R(r,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:II(i),scale:c,offset:u,mean:o,variance:l},p={varianceEpsilon:s},d=D.runKernel(ls,h,p);return q(d,i.shape)}var qs=z({batchNorm_:NI});function SI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&F(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${c.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),qs(i,o,l,u,c,s)}var c5=z({batchNorm2d_:SI});function TI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&F(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${c.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),qs(i,o,l,u,c,s)}var h5=z({batchNorm3d_:TI});function EI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),c;a!=null&&(c=R(a,"scale","batchNorm"));let u;return r!=null&&(u=R(r,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&F(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${c.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),qs(i,o,l,u,c,s)}var d5=z({batchNorm4d_:EI});function CI(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");F(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return D.runKernel(ph,s,i)}var p5=z({bincount_:CI});function RI(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=q(n,l)}let a=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return Yn(n);let i={x:n},o={reps:s};return D.runKernel(fa,i,o)}var Du=z({broadcastTo_:RI});function FI(e){let t={x:R(e,"x","ceil")};return D.runKernel(ji,t)}var gf=z({ceil_:FI});function MI(e,t,n){let r=R(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return D.runKernel(pa,a,s)}var hn=z({clipByValue_:MI});function OI(e){return rt(e,0)}var f5=z({concat1d_:OI});function $I(e,t){return rt(e,t)}var Yo=z({concat2d_:$I});function DI(e,t){return rt(e,t)}var m5=z({concat3d_:DI});function zI(e,t){return rt(e,t)}var A5=z({concat4d_:zI});function PI(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=q(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(c.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Pt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?c.shape[3]:c.shape[1];F(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),F(Sr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let p={x:c,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},f=D.runKernel(Qa,p,d);return u?q(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Xr=z({conv2d_:PI});function LI(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),c=o,u=!1;o.rank===2&&(u=!0,c=q(o,[1,o.shape[0],o.shape[1]])),F(c.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${c.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Pt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(c.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${c.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(Sr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=q(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=q(c,[c.shape[0],1,c.shape[1],c.shape[2]]),d=Xr(p,h,[1,n],r,"NHWC",[1,s],i);return u?q(d,[d.shape[2],d.shape[3]]):q(d,[d.shape[0],d.shape[2],d.shape[3]])}var td=z({conv1d_:LI});function WI(e,t,n,r,a,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,c=!1;t.rank===3&&(c=!0,l=q(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),F(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Pt(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p={dy:l,filter:n},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=D.runKernel(es,p,d);return c?q(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var xf=z({conv2DBackpropInput_:WI});function BI(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return xf(n,i,o,r,a,"NHWC",s)}var nd=z({conv2dTranspose_:BI});function VI(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,c=!1;i.rank===4&&(c=!0,l=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Sr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let u={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},p=D.runKernel(uu,u,h);return c?q(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var wf=z({conv3d_:VI});function UI(e,t,n,r,a){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=q(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],c=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(c===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${c}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},p=D.runKernel(yh,u,h);return o?q(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var y5=z({conv3DBackpropInput_:UI});function jI(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return y5(n,s,i,r,a)}var GI=z({conv3dTranspose_:jI});function HI(e){let t={x:R(e,"x","cos")};return D.runKernel(ts,t)}var zu=z({cos_:HI});function qI(e){let t={x:R(e,"x","cosh")};return D.runKernel(Hi,t)}var rd=z({cosh_:qI});function XI(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return D.runKernel(ns,a,s)}var ad=z({cumsum_:XI});function KI(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");F(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),F(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return D.runKernel(gh,i,o)}var g5=z({denseBincount_:KI});function ZI(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];F(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${r.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${r.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return D.runKernel(Xi,o,l)}var _f=z({depthToSpace_:ZI});function YI(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),c=o,u=!1;o.rank===3&&(u=!0,c=q(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(c.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(c.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${c.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Pt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:c,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},d=D.runKernel(rs,h,p);return u?q(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Jo=z({depthwiseConv2d_:YI});function JI(e){let t={x:R(e,"x","diag")};return D.runKernel(_h,t)}var QI=z({diag_:JI});function eN(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,c=!1;i.rank===3&&(l=q(i,[1,i.shape[0],i.shape[1],i.shape[2]]),c=!0);let u={x:l,filter:o},h={strides:n,pad:r,dilations:a},p=D.runKernel(cu,u,h);return c?q(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var bf=z({dilation2d_:eN});function tN(e,t){let n=e.length,r=[];for(let a=0;a<n;a++){let s=n-1-a,i=e[s]||1;(t[t.length-1-a]||1)>1&&i===1&&r.unshift(s)}return r}function Mt(e,t){let n=[];for(let r=0;r<t.length;r++){let a=e[e.length-r-1],s=t.length-r-1,i=t[s];(a==null||a===1&&i>1)&&n.unshift(s)}return n}function ft(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a<r;a++){let s=e[e.length-a-1];s==null&&(s=1);let i=t[t.length-a-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function nN(e,t){let n=R(e,"a","equal"),r=R(t,"b","equal");[n,r]=gt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(Yi,a)}var _a=z({equal_:nN});function rN(e,t,n){let r=R(t,"a","where"),a=R(n,"b","where"),s=R(e,"condition","where","bool"),i=ft(r.shape,a.shape),o=Du(r,i),l=Du(a,i);s.rank===1&&F(s.shape[0]===r.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&Jt(s.shape,l.shape,"Error in where: ");let c={condition:s,t:o,e:l};return D.runKernel(Io,c)}var dn=z({where_:rN});function aN(e){let t={x:R(e,"x","zerosLike")};return D.runKernel(Do,t)}var Be=z({zerosLike_:aN});function sN(e,t){let n=R(e,"a","div"),r=R(t,"b","div");[n,r]=gt(n,r);let a=be(n,r),s=Be(a),i=_a(r,s);return dn(i,s,a)}var vf=z({divNoNan_:sN});function iN(e,t){let n=R(e,"t1","dot"),r=R(t,"t2","dot");F((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(F(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=q(n,[1,-1]),o=q(r,[-1,1]),l=je(i,o);return q(l,[])}else if(n.rank===1&&r.rank===2){let i=q(n,[1,-1]),o=q(r,[r.shape[0],r.shape[1]]),l=je(i,o);return q(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=q(r,[-1,1]),o=je(n,i);return q(o,[o.size])}else{let i=q(r,[r.shape[0],r.shape[1]]);return je(n,i)}}var x5=z({dot_:iN});function oN(e){let t={x:R(e,"x","elu")};return D.runKernel(Ki,t)}var Qo=z({elu_:oN});function lN(e){let t=R(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=me(t,"float32"));let n={x:t};return D.runKernel(Zi,n)}var kf=z({erf_:lN});function uN(e){let t={x:R(e,"x","exp")};return D.runKernel(ss,t)}var Ln=z({exp_:uN});function cN(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return D.runKernel(Ji,r,a)}var bn=z({expandDims_:cN});function hN(e){let t={x:R(e,"x","expm1")};return D.runKernel(Qi,t)}var If=z({expm1_:hN});function dN(e,t){let n=R(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return D.runKernel(fa,r,a)}var ba=z({tile_:dN});function pN(e,t,n,r="float32"){t==null&&(t=e);let a=Pe([e,t],r),s=e<=t?e:t;for(let o=0;o<s;++o)a.set(1,o,o);let i=q(a.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return ba(bn(i,0),[n[0],1,1]);if(n.length===2)return ba(bn(bn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return ba(bn(bn(bn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Nf=z({eye_:pN});function Pu(e,t,n){let r={shape:e,value:t,dtype:n};return D.runKernel(hu,{},r)}function fN(e){let t={x:R(e,"x","floor")};return D.runKernel(is,t)}var el=z({floor_:fN});function mN(e,t,n=0,r=0){let a=R(e,"x","gather"),s=R(t,"indices","gather","int32"),i={x:a,indices:s},o={axis:n,batchDims:r};return D.runKernel(to,i,o)}var Xs=z({gather_:mN});function AN(e,t){let n=R(e,"a","greater"),r=R(t,"b","greater");[n,r]=gt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(ro,a)}var Jn=z({greater_:AN});function yN(e,t){let n=R(e,"a","greaterEqual"),r=R(t,"b","greaterEqual");[n,r]=gt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(us,a)}var va=z({greaterEqual_:yN});function gN(e){let t={input:R(e,"input","imag")};return D.runKernel(Sh,t)}var sd=z({imag_:gN});function xN(e){let t={x:R(e,"x","isFinite")};return D.runKernel(so,t)}var w5=z({isFinite_:xN});function wN(e){let t={x:R(e,"x","isInf")};return D.runKernel(io,t)}var _5=z({isInf_:wN});function _N(e){let t={x:R(e,"x","isNaN")};return D.runKernel(oo,t)}var b5=z({isNaN_:_N});function bN(e,t=.2){let n={x:R(e,"x","leakyRelu")},r={alpha:t};return D.runKernel(cs,n,r)}var Lu=z({leakyRelu_:bN});function vN(e,t){let n=R(e,"a","less"),r=R(t,"b","less");[n,r]=gt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(lo,a)}var id=z({less_:vN});function kN(e,t){let n=R(e,"a","lessEqual"),r=R(t,"b","lessEqual");[n,r]=gt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(uo,a)}var Ks=z({lessEqual_:kN});function v5(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let r={start:e,stop:t,num:n};return D.runKernel(Th,{},r)}function IN(e,t=5,n=1,r=1,a=.5){let s=R(e,"x","localResponseNormalization");F(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),F(Pt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=q(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},c={depthRadius:t,bias:n,alpha:r,beta:a},u=D.runKernel(fu,l,c);return o?q(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Sf=z({localResponseNormalization_:IN});function NN(e){let t={x:R(e,"x","log")};return D.runKernel(hs,t)}var vn=z({log_:NN});function SN(e){let t={x:R(e,"x","log1p")};return D.runKernel(co,t)}var od=z({log1p_:SN});function TN(e){return F(ha(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return D.tidy(()=>{let{value:s,grads:i}=D.gradients(()=>e(r),[r],a);return a!=null&&Jt(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),ld(i),i[0]})}}function EN(e){return F(ha(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=Eu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return D.tidy(()=>{let{value:s,grads:i}=D.gradients(()=>e(...r),r,a);return a!=null&&Jt(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),ld(i),i})}}function CN(e){return F(ha(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof Xe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof Xe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=D.gradients(()=>e(t),[t],n);return ld(r),{grad:r[0],value:a}}}function RN(e){return F(ha(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(a=>a instanceof Xe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof Xe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=D.gradients(()=>e(...t),t,n);return n!=null&&Jt(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),ld(r.grads),r}}function k5(e,t){F(ha(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(c=>c instanceof Su),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let c in D.registeredVariables)t.push(D.registeredVariables[c])}let r=n?t.filter(c=>!c.trainable):null,a=t.length;t=t.filter(c=>c.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=D.gradients(e,t,null,s);F(o.some(c=>c!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((c,u)=>{o[u]!=null&&(l[c.name]=o[u])}),r!=null&&r.forEach(c=>l[c.name]=null),{value:i,grads:l}}function Tr(e){return D.customGrad(e)}function ld(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function FN(e){let t={x:R(e,"x","neg")};return D.runKernel(fo,t)}var xt=z({neg_:FN});function MN(e){let t={x:R(e,"x","softplus")};return D.runKernel(Co,t)}var tl=z({softplus_:MN});function ON(e){let t=R(e,"x","logSigmoid");return Tr(n=>({value:xt(tl(xt(n))),gradFunc:r=>L(r,_n(xt(n)))}))(t)}var I5=z({logSigmoid_:ON});function $N(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return D.runKernel(ds,r,a)}var Wn=z({max_:$N});function DN(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=gt(n,r);let a={a:n,b:r};return D.runKernel($s,a)}var Ae=z({sub_:DN});function zN(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=me(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return D.runKernel(Fs,a,s)}var Ie=z({sum_:zN});function PN(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Tr((r,a)=>{let s=!0,i=Wn(r,t,!0),o=Ae(r,i),l=Ae(me(o,"float32"),vn(Ie(Ln(o),t,s)));return a([l]),{value:l,gradFunc:(c,u)=>{let[h]=u,p=!0,d=Ln(h);return Ae(c,L(Ie(c,t,p),d))}}})(n)}var ud=z({logSoftmax_:PN});function Tf(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function N5(e,t,n){let r=e.length+t.length,a=[],s=0,i=0;for(let o=0;o<r;o++)n.indexOf(o)===-1?a.push(e[s++]):a.push(t[i++]);return a}function S5(e,t){let n=[],r=e.length;for(let s=0;s<r;s++)t.indexOf(s)===-1&&n.push(e[s]);let a=t.map(s=>e[s]);return[n,a]}function Zs(e,t){let n=t.map(r=>1);return N5(e,n,t)}function LN(e,t,n){F(Tf(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function T5(e,t){if(Tf(e,t))return null;let n=[];for(let r=0;r<t;++r)e.indexOf(r)===-1&&n.push(r);return e.forEach(r=>n.push(r)),n}function Ef(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function WN(e,t){let n=[];for(let r=t-e;r<t;++r)n.push(r);return n}function BN(e,t=null,n=!1){let r=R(e,"x","logSumExp"),a=Kn(t,r.shape),s=Wn(r,a,!0),i=Ae(r,s),o=Ln(i),l=Ie(o,a),c=vn(l),u=se(q(s,c.shape),c);if(n){let h=Zs(u.shape,a);return q(u,h)}return u}var Cf=z({logSumExp_:BN});function VN(e,t){let n=R(e,"a","logicalAnd","bool"),r=R(t,"b","logicalAnd","bool");ft(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(ho,a)}var Qn=z({logicalAnd_:VN});function UN(e){let t={x:R(e,"x","logicalNot","bool")};return D.runKernel(du,t)}var Wu=z({logicalNot_:UN});function jN(e,t){let n=R(e,"a","logicalOr","bool"),r=R(t,"b","logicalOr","bool");ft(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(pu,a)}var cd=z({logicalOr_:jN});function GN(e,t){let n=R(e,"a","logicalXor","bool"),r=R(t,"b","logicalXor","bool");return ft(n.shape,r.shape),Qn(cd(e,t),Wu(Qn(e,t)))}var E5=z({logicalXor_:GN});function HN(e,t,n,r,a){let s=R(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Sr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(Pt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=D.runKernel(fs,c,u);return l?q(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Bu=z({maxPool_:HN});function qN(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Pt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let c={x:o},u={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=D.runKernel(mu,c,u);return l?q(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Rf=z({maxPool3d_:qN});function XN(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=D.runKernel(Fh,s,i);return{result:o[0],indexes:o[1]}}var C5=z({maxPoolWithArgmax_:XN});function KN(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=gt(n,r),n.dtype==="bool"&&(n=me(n,"int32"),r=me(r,"int32")),ft(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(ps,a)}var Er=z({maximum_:KN});function ZN(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return D.runKernel(ms,r,a)}var wt=z({mean_:ZN});function YN(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return D.runKernel(As,r,a)}var nl=z({min_:YN});function JN(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=gt(n,r),n.dtype==="bool"&&(n=me(n,"int32"),r=me(r,"int32")),ft(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(ys,a)}var rl=z({minimum_:JN});function QN(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o<r.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return D.runKernel(Au,i,s)}var Ff=z({mirrorPad_:QN});function eS(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=gt(n,r);let a={a:n,b:r};return D.runKernel(po,a)}var Mf=z({mod_:eS});function tS(e){let t=R(e,"x","square"),n={};return D.runKernel("Square",{x:t},n)}var it=z({square_:tS});function nS(e,t=null,n=!1){e=R(e,"x","moments");let r=Kn(t,e.shape),a=wt(e,r,n),s=a.shape;n||(s=Zs(a.shape,r));let i=it(Ae(me(e,"float32"),q(a,s))),o=wt(i,r,n);return{mean:a,variance:o}}var hd=z({moments_:nS});function rS(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=Eu(n,"c","multiRNNCell"),i=Eu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h<e.length;h++){let p=e[h](o,s[h],i[h]);l.push(p[0]),l.push(p[1]),o=p[1]}let c=[],u=[];for(let h=0;h<l.length;h+=2)c.push(l[h]),u.push(l[h+1]);return[c,u]}var aS=z({multiRNNCell_:rS});function sS(e,t,n,r=!1){let a=R(e,"logits","multinomial"),s=a.size,i=a.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?q(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},c=D.runKernel(Mh,o,l);return i===1?q(c,[c.size]):c}var R5=z({multinomial_:sS});function iS(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=gt(n,r),ft(n.shape,r.shape);let a={a:n,b:r};return D.runKernel(mo,a)}var Ys=z({notEqual_:iS});function Nt(e,t="float32"){if(t==="complex64"){let r=Nt(e,"float32"),a=Nt(e,"float32");return Aa(r,a)}let n=lh(Ct(e),t);return D.makeTensor(n,e,t)}function Cr(e,t="float32"){if(t==="complex64"){let r=Cr(e,"float32"),a=Nt(e,"float32");return Aa(r,a)}let n=v1(Ct(e),t);return D.makeTensor(n,e,t)}function oS(e){let t={x:R(e,"x","onesLike")};return D.runKernel(xo,t)}var kn=z({onesLike_:oS});function lS(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");F(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=q(n,[-1,1]),s=q(r,[1,-1]);return je(a,s)}var uS=z({outerProduct_:lS});function cS(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return D.runKernel(ws,s,a)}var Kr=z({pad_:cS});function hS(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Kr(e,[t],n)}var dS=z({pad1d_:hS});function pS(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Kr(e,t,n)}var fS=z({pad2d_:pS});function mS(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Kr(e,t,n)}var AS=z({pad3d_:mS});function yS(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Kr(e,t,n)}var gS=z({pad4d_:yS});function xS(e,t,n){let r=R(e,"x","spaceToBatchND");F(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return D.runKernel(xu,a,s)}var Vu=z({spaceToBatchND_:xS});function bS(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(Sr(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let c=l5(o.shape,t,s,a,r),u=[c.dilationHeight,c.dilationWidth],h;r==="same"?h=_S([c.filterHeight,c.filterWidth],u):h=[[0,0],[0,0]];let p=u[0]===1&&u[1]===1,[d,f]=wS([c.inHeight,c.inWidth],u,h),m=p?r:"valid",A=p?o:Vu(o,u,d),y=(n==="avg"?()=>Ou(A,t,s,m):()=>Bu(A,t,s,m))(),g=p?y:$u(y,u,f);return l?q(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function wS(e,t,n){let r=n.map(u=>u[0]),a=n.map(u=>u[1]),s=e.concat(r,a),i=t.map((u,h)=>(u-s[h]%u)%u),o=a.map((u,h)=>u+i[h]),l=t.map((u,h)=>[r[h],o[h]]),c=t.map((u,h)=>[0,i[h]]);return[l,c]}function _S(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var F5=z({pool_:bS});function vS(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=gt(n,r);let a={a:n,b:r};return D.runKernel(_s,a)}var Zr=z({pow_:vS});function kS(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return D.runKernel(bs,a)}var Uu=z({prelu_:kS});function IS(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=me(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return D.runKernel(_o,a,s)}var dd=z({prod_:IS});function NS(e,t,n){let r=Ct(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<r;s++)a[s]=t();return D.makeTensor(a,e,n)}var SS=z({rand_:NS}),Of=Mi(i8()),$f=class{constructor(e,t,n,r,a){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=r,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=a||Math.random();this.random=Of.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let r=this.nextVal;return this.nextVal=NaN,r}let e,t,n=!1;for(;!n;){let r,a,s;do r=2*this.random()-1,a=2*this.random()-1,s=r*r+a*a;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},TS=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Of.alea(a.toString()),this.randn=new $f(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),a<t||Math.log(a)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},ES=class{constructor(e=0,t=1,n,r){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Of.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function CS(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new TS(t,n,r,a),i=Pe(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var RS=z({randomGamma_:CS});function FS(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error(`Unsupported data type ${r}`);let s=new $f(t,n,r,!1,a),i=Pe(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var M5=z({randomNormal_:FS});function MS(e,t=0,n=1,r="float32",a){let s=Pe(e,r),i=new ES(t,n,null,a);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var al=z({randomUniform_:MS});function pd(e,t,n=1,r="float32"){if(n===0)throw new Error("Cannot have a step of zero");let a={start:e,stop:t,step:n,dtype:r};return D.runKernel(yu,{},a)}function OS(e){let t={input:R(e,"input","real")};return D.runKernel(Oh,t)}var ju=z({real_:OS});function $S(e){let t={x:R(e,"x","reciprocal")};return D.runKernel(bo,t)}var Df=z({reciprocal_:$S});function DS(e){let t={x:R(e,"x","relu")};return D.runKernel(vs,t)}var Rr=z({relu_:DS});function zS(e){let t={x:R(e,"x","relu6")};return D.runKernel(Is,t)}var fd=z({relu6_:zS});function PS(e,t){let n={x:R(e,"x","reverse")},r={dims:t};return D.runKernel(Ns,n,r)}var In=z({reverse_:PS});function LS(e){let t=R(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),In(t,0)}var WS=z({reverse1d_:LS});function BS(e,t){let n=R(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),In(n,t)}var VS=z({reverse2d_:BS});function US(e,t){let n=R(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),In(n,t)}var jS=z({reverse3d_:US});function GS(e,t){let n=R(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),In(n,t)}var HS=z({reverse4d_:GS});function qS(e){let t={x:R(e,"x","round")};return D.runKernel(Ss,t)}var zf=z({round_:qS});function XS(e){let t={x:R(e,"x","rsqrt")};return D.runKernel(Ts,t)}var md=z({rsqrt_:XS});function ke(e,t){if((Qt(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Qt(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ya(e,[],[],t)}function KS(e){let t={x:R(e,"x","selu")};return D.runKernel(No,t)}var Ad=z({selu_:KS});function ZS(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),c=R(n,"pointwiseFilter","separableConv2d"),u=o,h=!1;if(o.rank===3&&(h=!0,u=q(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(c.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(c.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${c.shape[0]}.`),F(c.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${c.shape[1]}.`);let p=l.shape[2],d=l.shape[3];F(c.shape[2]===p*d,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*d}, but got ${c.shape[2]}.`);let f=Jo(u,l,r,a,i,s),m=Xr(f,c,1,"valid",i);return h?q(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Pf=z({separableConv2d_:ZS});async function YS(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");F(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let u=0;u<a.length;u++)i.has(a[u])||o++;let l=new Rt([o],n.dtype),c=new Rt([o],"int32");for(let u=0,h=0;u<a.length;u++)i.has(a[u])||(l.values[h]=a[u],c.values[h]=u,h++);return[l.toTensor(),c.toTensor()]}var O5=YS;function JS(e){let t={x:R(e,"x","sign")};return D.runKernel(Eo,t)}var Lf=z({sign_:JS});function QS(e){let t={x:R(e,"x","sin")};return D.runKernel(Es,t)}var yd=z({sin_:QS});function eT(e){let t={x:R(e,"x","sinh")};return D.runKernel(To,t)}var gd=z({sinh_:eT});function tT(e,t,n){let r=R(e,"x","slice1d");return F(r.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Ee(r,[t],[n])}var xd=z({slice1d_:tT});function nT(e,t,n){let r=R(e,"x","slice2d");return F(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Ee(r,t,n)}var Wf=z({slice2d_:nT});function rT(e,t,n){let r=R(e,"x","slice3d");return F(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Ee(r,t,n)}var wd=z({slice3d_:rT});function aT(e,t,n){let r=R(e,"x","slice4d");return F(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Ee(r,t,n)}var Gu=z({slice4d_:aT});function sT(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return D.runKernel(Ms,r,a)}var Hu=z({softmax_:sT});function iT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return D.runKernel(Ih,t)}var qu=z({fft_:iT});function oT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return D.runKernel(Nh,t)}var sl=z({ifft_:oT});function lT(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=q(e,[n,t]);r=sl(a)}else{let a=[n,2*(t-1)],s=q(ju(e),[n,t]),i=q(sd(e),[n,t]),o=In(Ee(s,[0,1],[n,t-2]),1),l=L(In(Ee(i,[0,1],[n,t-2]),1),ke(-1)),c=rt([s,o],1),u=rt([i,l],1),h=q(Aa(c,u),[a[0],a[1]]);r=sl(h)}if(r=ju(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=q(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var _d=z({irfft_:lT});function uT(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return D.runKernel(Ro,r,a)}var Ht=z({split_:uT});function cT(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t<n){let f=e.shape.map(A=>0),m=e.shape.map(A=>A);m[e.shape.length-1]=t,a=Ee(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,a=rt([e,Nt(f)],e.shape.length-1),n=t}else a=e;let s=Be(a),i=q(Aa(a,s),[r,n]),o=qu(i),l=Math.floor(n/2)+1,c=ju(o),u=sd(o),h=Ht(c,[l,n-l],c.shape.length-1),p=Ht(u,[l,n-l],u.shape.length-1),d=a.shape.slice();return d[a.shape.length-1]=l,q(Aa(h[0],p[0]),d)}var Xu=z({rfft_:cT});function hT(e){let t={x:R(e,"x","sqrt")};return D.runKernel(Rs,t)}var qt=z({sqrt_:hT});function dT(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=gt(n,r),ft(n.shape,r.shape);let a={a:n,b:r},s={};return D.runKernel(Os,a,s)}var bd=z({squaredDifference_:dT});function pT(e,t){let n=R(e,"x","squeeze");return q(n,J2(n.shape,t).newShape)}var ka=z({squeeze_:pT});function fT(e,t=0){let n=Eu(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return D.runKernel(wo,r,a)}var Nn=z({stack_:fT});function mT(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return D.runKernel(ma,n,r)}var il=z({step_:mT});function AT(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let c={x:R(e,"x","stridedSlice")},u={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return D.runKernel(Fo,c,u)}var Bf=z({stridedSlice_:AT});function yT(e){let t={x:R(e,"x","tan")};return D.runKernel(Mo,t)}var Vf=z({tan_:yT});function Wt(e,t){Ha(e);let n=Nr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ya(e,null,n,t)}function pn(e,t,n){if(Ha(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Nr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ya(e,t,r,n)}function gT(e,t,n){if(Ha(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Nr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ya(e,t,r,n)}function xT(e,t,n){if(Ha(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Nr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ya(e,t,r,n)}function wT(e,t,n){if(Ha(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Nr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,ya(e,t,r,n)}function _T(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=D.runKernel(Oo,s,i);return{values:o,indices:l}}var Uf=z({topk_:_T});function bT(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new $f(t,n,r,!0,a),i=Pe(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var vd=z({truncatedNormal_:bT});function vT(e,t=0){let n=R(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=D.runKernel(Ph,r,a);return{values:s,indices:i}}var kd=z({unique_:vT});function kT(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");F(Pt(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return D.runKernel(_u,s,i)}var jf=z({unsortedSegmentSum_:kT});function IT(e,t=0){let n=R(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return D.runKernel($o,r,a)}var er=z({unstack_:IT});function $5(e,t=!0,n,r){return D.makeVariable(e,t,n,r)}function D5(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let r=Pe(e,"int32"),a=Pe([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=r.indexToLoc(n[s]),o=s*e.length;a.values.set(i,o)}return a.toTensor()}async function NT(e){let t=R(e,"condition","whereAsync","bool"),n=await t.data(),r=D5(t.shape,n);return e!==t&&t.dispose(),r}var Gf=NT;async function ST(e,t,n){let r=R(e,"tensor","boolMask"),a=R(t,"mask","boolMask","bool"),s=n==null?0:n,i=a.rank,o=r.shape;F(i>0,()=>"mask cannot be scalar"),Jt(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m<s+i;m++)l*=o[m];let c=o.slice(0,s).concat([l],o.slice(s+i)),u=q(r,c),h=q(a,[-1]),p=await Gf(h),d=ka(p,[1]),f=Xs(u,d,s);return e!==r&&r.dispose(),t!==a&&a.dispose(),d.dispose(),u.dispose(),h.dispose(),p.dispose(),f}var TT=ST;function ET(e,t="euclidean",n=null,r=!1){e=R(e,"x","norm");let a=z5(e,t,n),s=a.shape;if(r){let i=Kn(n,e.shape);s=Zs(a.shape,i)}return q(a,s)}function z5(e,t,n=null){if(e.rank===0)return Ft(e);if(e.rank!==1&&n===null)return z5(q(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Ie(Ft(e),n);if(t===Infinity)return Wn(Ft(e),n);if(t===-Infinity)return nl(Ft(e),n);if(t==="euclidean"||t===2)return qt(Ie(Zr(Ft(e),ke(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Wn(Ie(Ft(e),n[0]),n[1]-1);if(t===Infinity)return Wn(Ie(Ft(e),n[1]),n[0]);if(t===-Infinity)return nl(Ie(Ft(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return qt(Ie(it(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Id=z({norm_:ET});function CT(e,t,n,r,a=!0){let s=R(e,"v","movingAverage"),i=R(t,"x","movingAverage"),o=R(n,"decay","movingAverage");Ag(s,i),F(Hr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ke(1),c=Ae(l,o),u=L(Ae(i,s),c);if(a){F(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");u=be(u,Ae(l,Zr(o,h)))}return se(s,u)}var RT=z({movingAverage_:CT});function FT(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");Q1(a,r,n);let s={indices:r,updates:a},i={shape:n};return D.runKernel(ko,s,i)}var P5=z({scatterND_:FT});function MT(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function OT(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);MT(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return D.runKernel(zh,o,l)}var Hf=z({sparseToDense_:OT});function $T(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return D.runKernel(no,r)}var L5=z({gatherND_:$T});function DT(e,t){if(t==null)return e.shape.slice();if(Hr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r<e.shape.length;r++)t[r]==null&&e.shape[r]!=null?n.push(e.shape[r]):n.push(t[r]);return n}return t}function zT(e,t,n,r){let a=R(e,"x","dropout");if(F(a.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Xe?a.clone():a;let s=DT(a,n),i=1-t,o=be(el(se(al(s,0,1,"float32",r),i)),i);return L(a,o)}var W5=z({dropout_:zT});function B5(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function qf(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+r-1);a[s]=t-n*Math.cos(i)}return Wt(a,"float32")}async function PT(e,t,n=1){let r=R(e,"predictions","inTopK"),a=R(t,"targets","inTopK");F(r.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),F(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),Jt(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,c]=[i.length/s,s],u=Q2("bool",l);for(let h=0;h<l;h++){let p=h*c,d=i.subarray(p,p+c),f=[];for(let m=0;m<d.length;m++)f.push({value:d[m],index:m});f.sort((m,A)=>A.value-m.value),u[h]=0;for(let m=0;m<n;m++)if(f[m].index===o[h]){u[h]=1;break}}return e!==r&&r.dispose(),t!==a&&a.dispose(),ur(u,a.shape,"bool")}var LT=PT,Ia={};$e(Ia,{conv2d:()=>WT,depthwiseConv2d:()=>BT,matMul:()=>VT});function UT(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=q(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=q(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let c=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];F(c===n[2],()=>`Error in conv2dDerFilter: depth of input ${c}) must match input depth in filter (${n[2]}.`),F(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&F(Pt(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return D.runKernel(mh,h,p)}var Xf=z({conv2DBackpropFilter_:UT});function Nd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,il(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Sd(e,t){let n=t,r=Mt(e.shape,t.shape);return r.length>0&&(n=Ie(n,r)),q(n,e.shape)}function Td(e,t,n,r){if(t==="linear")return e;if(t==="relu")return Rr(e);if(t==="elu")return Qo(e);if(t==="relu6")return fd(e);if(t==="prelu")return Uu(e,n);if(t==="leakyrelu")return Lu(e,r);throw new Error(`Unknown fused activation ${t}.`)}var Ed=(e,t)=>!(e>0)||t==="linear";function jT({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(l=l||"linear",Ed(D.state.gradientDepth,l)===!1){let w=Xr(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),Td(w,l,c,u)}let h=R(e,"x","conv2d"),p=R(t,"filter","conv2d"),d=h,f=!1;h.rank===3&&(f=!0,d=q(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(d.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${d.rank}.`),F(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),i!=null&&F(Pt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(d.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${d.shape[3]}) must match input depth for filter ${p.shape[2]}.`),F(Sr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=Mu(d.shape,p.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=gt(A,h),ft(m.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused conv2d"));let g=(w,b)=>{let[N,T,E,M]=b,$=Nd(w,E,l);F(wa(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let P=xf(T.shape,$,N,n,r),V=Xf(T,$,N.shape,n,r),H=[P,V];if(M!=null){let U=Sd(M,$);H.push(U)}return H},_={x:d,filter:p,bias:A,preluActivationWeights:y},x={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Tr((w,b,N)=>{let T=D.runKernel(Ls,_,x);return N([b,w,T]),f&&(T=q(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(d,p):Tr((w,b,N,T)=>{let E=D.runKernel(Ls,_,x);return T([b,w,E,N]),f&&(E=q(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(d,p,A)}var WT=z({fusedConv2d_:jT});function GT(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=q(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=q(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={x:o,dy:l},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return D.runKernel(xh,c,u)}var V5=z({depthwiseConv2dNativeBackpropFilter_:GT});function HT(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=q(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let c={dy:o,filter:n},u={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=D.runKernel(wh,c,u);return l?q(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var U5=z({depthwiseConv2dNativeBackpropInput_:HT});function qT({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:c,leakyreluAlpha:u}){if(Ed(D.state.gradientDepth,l)===!1){let w=Jo(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),Td(w,l,c,u)}let h=R(e,"x","depthwiseConv2d"),p=R(t,"filter","depthwiseConv2d"),d=h,f=!1;h.rank===3&&(f=!0,d=q(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(d.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${d.rank}.`),F(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),F(d.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${d.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),s==null&&(s=[1,1]),F(Sr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Pt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let m=Mu(d.shape,p.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=gt(A,h),ft(m.outShape,A.shape));let y;c!=null&&(y=R(c,"prelu weights","fused depthwiseConv2d"));let g=(w,b)=>{F(wa(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,T,E,M]=b,$=Nd(w,E,l),P=U5(T.shape,$,N,n,r,s,i),V=V5(T,$,N.shape,n,r,s,i);if(M!=null){let H=Sd(A,$);return[P,V,H]}return[P,V]},_={x:d,filter:p,bias:A,preluActivationWeights:y},x={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?Tr((w,b,N)=>{let T=D.runKernel(Ws,_,x);return N([b,w,T]),f&&(T=q(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(d,p):Tr((w,b,N,T)=>{let E=D.runKernel(Ws,_,x);return T([b,w,E,N]),f&&(E=q(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(d,p,A)}var BT=z({fusedDepthwiseConv2d_:qT});function XT({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Ed(D.state.gradientDepth,s)===!1){let M=je(e,t,n,r);return a!=null&&(M=se(M,a)),Td(M,s,i,o)}let l=R(e,"a","fused matMul"),c=R(t,"b","fused matMul");[l,c]=gt(l,c);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?c.shape[c.rank-1]:c.shape[c.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],d=r?c.shape[c.rank-2]:c.shape[c.rank-1],f=l.shape.slice(0,-2),m=c.shape.slice(0,-2),A=Ct(f),y=Ct(m);F(l.rank>=2&&c.rank>=2&&l.rank===c.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${c.rank}.`),F(Hr(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${c.shape} must match.`),F(u===h,()=>`Error in fused matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${l.shape} and ${c.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([p,d]),_=n?q(l,[A,u,p]):q(l,[A,p,u]),x=r?q(c,[y,d,h]):q(c,[y,h,d]),w;a!=null&&(w=R(a,"bias","fused matMul"),[w]=gt(w,l),ft(g,w.shape));let b;i!=null&&(b=R(i,"prelu weights","fused matMul"));let N=(M,$)=>{let[P,V,H,U]=$,K=Nd(q(M,H.shape),H,s),X,ee;if(!n&&!r?(X=je(K,V,!1,!0),ee=je(P,K,!0,!1)):!n&&r?(X=je(K,V,!1,!1),ee=je(K,P,!0,!1)):n&&!r?(X=je(V,K,!1,!0),ee=je(P,K,!1,!1)):(X=je(V,K,!0,!0),ee=je(K,P,!0,!0)),a!=null){let Z=Sd(U,K);return[X,ee,Z]}else return[X,ee]},T={a:_,b:x,bias:w,preluActivationWeights:b},E={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Tr((M,$,P)=>{let V=D.runKernel(Ps,T,E);return P([M,$,V]),{value:q(V,g),gradFunc:N}})(_,x):Tr((M,$,P,V)=>{let H=D.runKernel(Ps,T,E);return V([M,$,H,P]),{value:q(H,g),gradFunc:N}})(_,x,w)}var VT=z({fusedMatMul_:XT});function KT(e){return qf(e,.54,.46)}var ZT=z({hammingWindow_:KT});function YT(e){return qf(e,.5,.5)}var j5=z({hannWindow_:YT});function JT(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Ee(e,s,t)),s+=n;if(r)for(;s<e.size;){let o=s+t-e.size,l=rt([Ee(e,s,t-o),Pu([o],a)]);i.push(l),s+=n}return i.length===0?pn([],[0,t]):q(rt(i),[i.length,t])}var G5=z({frame_:JT});function QT(e,t,n,r,a=j5){r==null&&(r=B5(t));let s=G5(e,t,n),i=L(s,a(t)),o=[];for(let l=0;l<s.shape[0];l++)o.push(Xu(Ee(i,[l,0],[1,t]),r));return rt(o)}var eE=z({stft_:QT});function tE(e,t,n,r,a="bilinear",s=0){let i=R(e,"image","cropAndResize"),o=R(t,"boxes","cropAndResize","float32"),l=R(n,"boxInd","cropAndResize","int32"),c=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${c},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===c,()=>`Error in cropAndResize: boxInd must be have size [${c}] but had shape ${o.shape}.`),F(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),F(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),F(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let u={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return D.runKernel(qi,u,h)}var nE=z({cropAndResize_:tE});function rE(e){let t=R(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return D.runKernel(eo,n,{})}var aE=z({flipLeftRight_:rE});function sE(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");F(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return D.runKernel(zo,s,i)}var iE=z({rotateWithOffset_:sE});function ol(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function oE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=ol(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return D.runKernel(Ao,{boxes:s,scores:i},l)}var lE=z({nonMaxSuppression_:oE});function cE(e,t,n){let r=uE(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function uE(e,t,n){return dE(e,t,n||hE)}function hE(e,t){return e>t?1:e<t?-1:0}function dE(e,t,n){let r=0,a=e.length,s=0,i=!1;for(;r<a;){s=r+(a-r>>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function H5(e,t,n,r,a){return Kf(e,t,n,r,a,0)}function q5(e,t,n,r,a,s){return Kf(e,t,n,r,a,0,!1,s,!0)}function X5(e,t,n,r,a,s){return Kf(e,t,n,r,a,s,!0)}function Kf(e,t,n,r,a,s,i=!1,o=!1,l=!1){let c=[];for(let A=0;A<t.length;A++)t[A]>a&&c.push({score:t[A],boxIndex:A,suppressBeginIndex:0});c.sort(K5);let u=s>0?-.5/s:0,h=[],p=[];for(;h.length<n&&c.length>0;){let A=c.pop(),{score:y,boxIndex:g,suppressBeginIndex:_}=A;if(y<a)break;let x=!1;for(let w=h.length-1;w>=_;--w){let b=pE(e,g,h[w]);if(b>=r){x=!0;break}if(A.score=A.score*fE(r,u,b),A.score<=a)break}A.suppressBeginIndex=h.length,x||(A.score===y?(h.push(g),p.push(A.score)):A.score>a&&cE(c,A,K5))}let d=h.length,f=n-d;o&&f>0&&(h.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=p),l&&(m.validOutputs=d),m}function pE(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),c=Math.min(a[0],a[2]),u=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),p=Math.max(a[1],a[3]),d=(o-s)*(l-i),f=(h-c)*(p-u);if(d<=0||f<=0)return 0;let m=Math.max(s,c),A=Math.max(i,u),y=Math.min(o,h),g=Math.min(l,p),_=Math.max(y-m,0)*Math.max(g-A,0);return _/(d+f-_)}function fE(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function K5(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function mE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=ol(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),c=l[0],u=l[1],{selectedIndices:h}=H5(c,u,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),Wt(h,"int32")}var AE=mE;function yE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=ol(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=D.runKernel(go,c,u);return{selectedIndices:h[0],selectedScores:h[1]}}var gE=z({nonMaxSuppressionWithScore_:yE});async function xE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=ol(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let c=await Promise.all([i.data(),o.data()]),u=c[0],h=c[1],{selectedIndices:p,selectedScores:d}=X5(u,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Wt(p,"int32"),selectedScores:Wt(d)}}var wE=xE;function _E(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=ol(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,p={boxes:i,scores:o},d={maxOutputSize:c,iouThreshold:u,scoreThreshold:h,padToMaxOutputSize:s},f=D.runKernel(yo,p,d);return{selectedIndices:f[0],validOutputs:f[1]}}var bE=z({nonMaxSuppressionPadded_:_E});async function vE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=ol(i,o,n,r,a,null),c=l.maxOutputSize,u=l.iouThreshold,h=l.scoreThreshold,[p,d]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=q5(p,d,c,u,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Wt(f,"int32"),validOutputs:ke(m,"int32")}}var kE=vE;function IE(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");F(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=q(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=D.runKernel(ks,o,l);return i?q(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Z5=z({resizeBilinear_:IE});function NE(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");F(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=q(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},c=D.runKernel(gu,o,l);return i?q(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Y5=z({resizeNearestNeighbor_:NE});function SE(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");F(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=q(pd(0,s,1,"int32"),[-1,1]),l=pd(0,i,1,"int32"),c=Ae(o,l),u=Qn(Ks(c,ke(+t,"int32")),va(c,ke(-n,"int32"))),h=Nt([s,i],r.dtype);return q(Nn(er(q(r,[-1,s,i])).map(p=>dn(u,p,h))),a)}var TE=z({bandPart_:SE});function EE(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s<e.length;++s)F(e[s].shape[0]===a,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Ht(e,e.shape[0],0).map(a=>ka(a,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a<e.length;++a)n.push(D.tidy(()=>{let s=r[a];if(a>0)for(let i=0;i<a;++i){let o=L(Ie(L(n[i],s)),n[i]);s=Ae(s,o)}return be(s,Id(s,"euclidean"))}));return t?Nn(n,0):n}var CE=z({gramSchmidt_:EE});function RE(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return J5(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,c)=>l*c),r=er(q(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[c,u]=J5(l,t);a.push(c),s.push(u)});let i=q(Nn(a,0),e.shape),o=q(Nn(s,0),e.shape);return[i,o]}}function J5(e,t=!1){return D.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Nf(n),s=Yn(e),i=pn([[1]],[1,1]),o=Yn(i),l=n>=r?r:n;for(let c=0;c<l;++c){let u=s,h=o,p=a;[o,s,a]=D.tidy(()=>{let d=Ee(s,[c,c],[n-c,1]),f=Id(d),m=Ee(s,[c,c],[1,1]),A=dn(Jn(m,0),pn([[-1]]),pn([[1]])),y=Ae(m,L(A,f)),g=be(d,y);g.shape[0]===1?o=Yn(i):o=rt([i,Ee(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let _=xt(be(je(A,y),f)),x=Ee(s,[c,0],[n-c,r]),w=L(_,o),b=nt(o);if(c===0)s=Ae(x,je(w,je(b,x)));else{let E=Ae(x,je(w,je(b,x)));s=rt([Ee(s,[0,0],[c,r]),E],0)}let N=nt(w),T=Ee(a,[0,c],[n,a.shape[1]-c]);if(c===0)a=Ae(T,je(je(T,o),N));else{let E=Ae(T,je(je(T,o),N));a=rt([Ee(a,[0,0],[n,c]),E],1)}return[o,s,a]}),Ne([u,h,p])}return!t&&n>r&&(a=Ee(a,[0,0],[n,r]),s=Ee(s,[0,0],[r,r])),[a,s]})}var FE=z({qr_:RE}),rn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(rn||(rn={}));function ME(e,t,n=rn.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:L(r,a);if(n===rn.NONE)return s;if(n===rn.SUM)return Ie(s);if(n===rn.MEAN){if(a==null)return wt(s);{let i=r.size/a.size,o=be(Ie(s),Ie(a));return i>1?be(o,ke(i)):o}}if(n===rn.SUM_BY_NONZERO_WEIGHTS){if(a==null)return be(Ie(s),ke(r.size));{let i=L(a,Cr(r.shape)),o=me(Ie(Ys(i,ke(0))),"float32");return be(Ie(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Yr=z({computeWeightedLoss_:ME});function OE(e,t,n,r=rn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),Jt(a.shape,s.shape,"Error in absoluteDifference: ");let o=Ft(Ae(a,s));return Yr(o,i,r)}var $E=z({absoluteDifference_:OE});function DE(e,t,n,r,a=rn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),Jt(s.shape,i.shape,"Error in cosineDistance: ");let l=ke(1),c=Ae(l,Ie(L(s,i),n,!0));return Yr(c,o,a)}var zE=z({cosineDistance_:DE});function PE(e,t,n,r=rn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),Jt(a.shape,s.shape,"Error in hingeLoss: ");let o=ke(1);a=Ae(L(ke(2),a),o);let l=Rr(Ae(o,L(a,s)));return Yr(l,i,r)}var LE=z({hingeLoss_:PE});function WE(e,t,n,r=1,a=rn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),Jt(s.shape,i.shape,"Error in huberLoss: ");let l=ke(r),c=Ft(Ae(i,s)),u=rl(c,l),h=Ae(c,u),p=se(L(ke(.5),it(u)),L(l,h));return Yr(p,o,a)}var BE=z({huberLoss_:WE});function VE(e,t,n,r=1e-7,a=rn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),Jt(s.shape,i.shape,"Error in logLoss: ");let l=ke(1),c=ke(r),u=xt(L(s,vn(se(i,c)))),h=L(Ae(l,s),vn(se(Ae(l,i),c))),p=Ae(u,h);return Yr(p,o,a)}var UE=z({logLoss_:VE});function jE(e,t,n,r=rn.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),Jt(a.shape,s.shape,"Error in meanSquaredError: ");let o=bd(a,s);return Yr(o,i,r)}var GE=z({meanSquaredError_:jE});function HE(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");Jt(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=Rr(r),s=L(r,n),i=od(Ln(xt(Ft(r))));return se(Ae(a,s),i)}function qE(e,t,n,r=0,a=rn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),Jt(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let c=ke(r),u=ke(1),h=ke(.5);s=se(L(s,Ae(u,c)),L(h,c))}let l=HE(s,i);return Yr(l,o,a)}var XE=z({sigmoidCrossEntropy_:qE});function KE(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Tr((r,a,s)=>{let i=Cf(a,[n],!0),o=Ae(me(a,"float32"),i);s([r,o]);let l=xt(L(o,r));return{value:Ie(l,[n]),gradFunc:(c,u)=>{let[h,p]=u,d=Zs(c.shape,[n]);return[L(q(c,d),Ae(me(h,"float32"),Ln(p))),L(q(c,d),Ae(Ln(p),me(h,"float32")))]}}})(e,t)}function ZE(e,t,n,r=0,a=rn.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),Jt(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let c=ke(r),u=ke(1),h=ke(s.shape[1]);s=se(L(s,Ae(u,c)),be(c,h))}let l=KE(s,i);return Yr(l,o,a)}var YE=z({softmaxCrossEntropy_:ZE}),JE={fft:qu,ifft:sl,rfft:Xu,irfft:_d},QE={hammingWindow:ZT,hannWindow:j5,frame:G5,stft:eE},Je={flipLeftRight:aE,resizeNearestNeighbor:Y5,resizeBilinear:Z5,rotateWithOffset:iE,cropAndResize:nE,nonMaxSuppression:lE,nonMaxSuppressionAsync:AE,nonMaxSuppressionWithScore:gE,nonMaxSuppressionWithScoreAsync:wE,nonMaxSuppressionPadded:bE,nonMaxSuppressionPaddedAsync:kE},Q5={bandPart:TE,gramSchmidt:CE,qr:FE},eC={absoluteDifference:$E,computeWeightedLoss:Yr,cosineDistance:zE,hingeLoss:LE,huberLoss:BE,logLoss:UE,meanSquaredError:GE,sigmoidCrossEntropy:XE,softmaxCrossEntropy:YE},Jr=class extends Qg{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Ne(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return k5(e,t)}dispose(){this.iterations_!=null&&Ne(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ke(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Jr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Cd=class extends Jr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=D.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:W(()=>Be(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:W(()=>Be(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;W(()=>{let l=se(L(i,this.rho),L(it(s),1-this.rho)),c=L(be(qt(se(o,this.epsilon)),qt(se(i,this.epsilon))),s),u=se(L(o,this.rho),L(it(c),1-this.rho));i.assign(l),o.assign(u);let h=se(L(c,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ne(this.accumulatedGrads.map(e=>e.variable)),Ne(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Cd.className="Adadelta";xa(Cd);var Rd=class extends Jr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=D.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:W(()=>Pu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;W(()=>{let i=se(s,it(a));s.assign(i);let o=se(L(be(a,qt(se(i,D.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ne(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Rd.className="Adagrad";xa(Rd);var Fd=class extends Jr{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],W(()=>{this.accBeta1=ke(t).variable(),this.accBeta2=ke(n).variable()}),r==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);W(()=>{let n=Ae(1,this.accBeta1),r=Ae(1,this.accBeta2);t.forEach((a,s)=>{let i=D.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:W(()=>Be(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:W(()=>Be(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,h=se(L(c,this.beta1),L(l,1-this.beta1)),p=se(L(u,this.beta2),L(it(l),1-this.beta2)),d=be(h,n),f=be(p,r);c.assign(h),u.assign(p);let m=se(L(be(d,se(qt(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ne(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ne(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),W(()=>{this.accBeta1.assign(Zr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Zr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Fd.className="Adam";xa(Fd);var Md=class extends Jr{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],W(()=>{this.iteration=ke(0).variable(),this.accBeta1=ke(t).variable()}),r==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);W(()=>{let n=Ae(1,this.accBeta1),r=be(-this.learningRate,se(L(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=D.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:Be(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:Be(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let c=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,h=se(L(c,this.beta1),L(l,1-this.beta1)),p=L(u,this.beta2),d=Ft(l),f=Er(p,d);c.assign(h),u.assign(f);let m=se(L(be(r,n),be(h,se(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ne(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ne(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Md.className="Adamax";xa(Md);var Ku=class extends Jr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=D.registeredVariables[t];W(()=>{let s=se(L(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Lt(ke(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Ku.className="SGD";xa(Ku);var Od=class extends Ku{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ke(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=D.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:W(()=>Be(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&W(()=>{let i,o=se(L(this.m,a),s);this.useNesterov?i=se(L(this.c,se(s,L(o,this.m))),r):i=se(L(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ne(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Od.className="Momentum";xa(Od);var $d=class extends Jr{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=D.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=D.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:W(()=>Be(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:W(()=>Be(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:W(()=>Be(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;W(()=>{let l=se(L(i,this.decay),L(it(s),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[n].variable,u=se(L(c,this.decay),L(s,1-this.decay)),h=be(L(s,this.learningRate),qt(Ae(l,se(it(u),this.epsilon)))),p=se(L(o,this.momentum),h);i.assign(l),c.assign(u),o.assign(p);let d=Ae(r,p);r.assign(d)}else{let c=se(L(i,this.decay),L(it(s),1-this.decay)),u=se(L(o,this.momentum),be(L(s,this.learningRate),qt(se(c,this.epsilon))));i.assign(c),o.assign(u);let h=Ae(r,u);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ne(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ne(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ne(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};$d.className="RMSProp";xa($d);var Js=class{static sgd(e){return new Ku(e)}static momentum(e,t,n=!1){return new Od(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new $d(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new Fd(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new Cd(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new Md(e,t,n,r,a)}static adagrad(e,t=.1){return new Rd(e,t)}},Qs={sgd:Js.sgd,momentum:Js.momentum,adadelta:Js.adadelta,adagrad:Js.adagrad,rmsprop:Js.rmsprop,adamax:Js.adamax,adam:Js.adam},tC=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Dd(){return new Promise(e=>tC(()=>e()))}var C={};$e(C,{ERF_A1:()=>dC,ERF_A2:()=>pC,ERF_A3:()=>fC,ERF_A4:()=>mC,ERF_A5:()=>AC,ERF_P:()=>hC,PARALLELIZE_THRESHOLD:()=>Zf,SELU_SCALE:()=>tx,SELU_SCALEALPHA:()=>ex,applyActivation:()=>Td,assertAndGetBroadcastShape:()=>ft,assertAxesAreInnerMostDims:()=>LN,assertParamsConsistent:()=>nC,assignToTypedArray:()=>kC,axesAreInnerMostDims:()=>Tf,calculateShapes:()=>Bg,combineLocations:()=>N5,complexWithEvenIndex:()=>_C,complexWithOddIndex:()=>bC,computeConv2DInfo:()=>Mu,computeConv3DInfo:()=>u5,computeDefaultPad:()=>Af,computeDilation2DInfo:()=>uI,computeOptimalWindowSize:()=>aC,computeOutAndReduceShapes:()=>S5,computeOutShape:()=>rC,computePool2DInfo:()=>l5,computePool3DInfo:()=>cI,convertConv2DDataFormat:()=>o5,eitherStridesOrDilationsAreOne:()=>Sr,expandShapeToKeepDim:()=>Zs,exponent:()=>NC,exponents:()=>IC,fromStringArrayToUint8:()=>EC,fromUint8ToStringArray:()=>TC,getAxesPermutation:()=>T5,getBroadcastDims:()=>tN,getComplexWithIndex:()=>vC,getFusedBiasGradient:()=>Sd,getFusedDyActivation:()=>Nd,getImageCenter:()=>sC,getInnerMostAxes:()=>WN,getPermuted:()=>oC,getReductionAxes:()=>Mt,getReshaped:()=>iC,getReshapedPermuted:()=>lC,getSliceBeginCoords:()=>uC,getSliceSize:()=>cC,getUndoAxesPermutation:()=>Ef,log:()=>gC,mergeRealAndImagArrays:()=>xC,prepareAndValidate:()=>Wg,prepareSplitSize:()=>SC,segment_util:()=>nx,shouldFuse:()=>Ed,slice_util:()=>nn,splitRealAndImagArrays:()=>wC,tupleValuesAreOne:()=>wa,upcastType:()=>Zn,validateInput:()=>Q1,validateUpdateShape:()=>J1,warn:()=>yC});function nC(e,t){let n=e[0].length;e.forEach((a,s)=>{F(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i<n;i++)F(i===t||a[i]===r[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function rC(e,t){let n=e[0].slice();for(let r=1;r<e.length;r++)n[t]+=e[r][t];return n}var Zf=30;function aC(e){return e<=Zf?e:oh(e,Math.floor(Math.sqrt(e)))}function sC(e,t,n){let r=n*(typeof e=="number"?e:e[0]),a=t*(typeof e=="number"?e:e[1]);return[r,a]}function iC(e,t,n,r=!0){let a=[];if(r)a=a.concat(t.slice(0)),a.push(e[0]/n),a=a.concat(e.slice(1));else{a=a.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)a=a.concat([e[i+1]/t[i],t[i]]);a=a.concat(e.slice(s+1))}return a}function oC(e,t,n=!0){let r=[];if(n){r.push(t);for(let a=t+1;a<e;++a)a<=2*t?(r.push(a),r.push(a-(t+1))):r.push(a)}else{let a=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function lC(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?r?a.push(t[s-1]*e[s]):a.push(e[s]/t[s-1]):a.push(e[s]);return a}function uC(e,t){let n=[0];for(let r=0;r<t;++r)n.push(e[r][0]);return n}function cC(e,t,n){let r=e.slice(0,1);for(let a=0;a<n;++a)r.push(e[a+1]-t[a][0]-t[a][1]);return r}var ex=1.7580993408473768,tx=1.0507009873554805,hC=.3275911,dC=.254829592,pC=-.284496736,fC=1.421413741,mC=-1.453152027,AC=1.061405429;function yC(...e){Q().getBool("IS_TEST")||console.warn(...e)}function gC(...e){Q().getBool("IS_TEST")||console.log(...e)}function xC(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let r=0;r<n.length;r+=2)n[r]=e[r/2],n[r+1]=t[r/2];return n}function wC(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let r=0;r<e.length;r+=2)t[r/2]=e[r],n[r/2]=e[r+1];return{real:t,imag:n}}function _C(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=0;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function bC(e){let t=Math.floor(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=2;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function vC(e,t){let n=e[t*2],r=e[t*2+1];return{real:n,imag:r}}function kC(e,t,n,r){e[r*2]=t,e[r*2+1]=n}function IC(e,t){let n=new Float32Array(e/2),r=new Float32Array(e/2);for(let a=0;a<Math.ceil(e/2);a++){let s=(t?2:-2)*Math.PI*(a/e);n[a]=Math.cos(s),r[a]=Math.sin(s)}return{real:n,imag:r}}function NC(e,t,n){let r=(n?2:-2)*Math.PI*(e/t),a=Math.cos(r),s=Math.sin(r);return{real:a,imag:s}}function SC(e,t,n=0){let r=[];if(typeof t=="number")F(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var nx={};$e(nx,{collectGatherOpShapeInfo:()=>FC,computeOutShape:()=>RC,segOpComputeOptimalWindowSize:()=>CC});function CC(e,t){let n=!1,r;for(e<=Zf?(r=e,n=!0):r=oh(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=oh(e,r+1);return r}function RC(e,t,n){let r=[],a=e.length;for(let s=0;s<a;s++)s!==t?r.push(e[s]):r.push(n);return r}function FC(e,t,n,r){let a=t.shape.length,s=e.shape.length;if(r!==0&&(r<-a||r>a))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) (
|
|
${s}).`);if(n<r)throw new Error(`batchDims (${r}) must be less than or equal to axis (${n}).`);for(let h=0;h<r;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[n],o=[],l=1,c=1,u=1;for(let h=0;h<r;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=r;h<n;h++)o.push(e.shape[h]),c*=e.shape[h];for(let h=r;h<a;h++)o.push(t.shape[h]);for(let h=n+1;h<s;h++)o.push(e.shape[h]),u*=e.shape[h];return{batchSize:l,sliceSize:u,outerSize:c,dimSize:i,outputShape:o}}function TC(e){try{return e.map(t=>Vh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function EC(e){return e.map(t=>vu(t))}var Fr={};$e(Fr,{nonMaxSuppressionV3Impl:()=>H5,nonMaxSuppressionV4Impl:()=>q5,nonMaxSuppressionV5Impl:()=>X5,whereImpl:()=>D5});function we(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var MC=Fr.whereImpl,rx=class extends nu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new sh(this,Pn())}write(e,t,n){this.firstUse&&(this.firstUse=!1,Q().get("IS_NODE")&&C.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let r={};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let a=n.map(s=>k.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r){this.data.set(e,{values:t,dtype:r,refCount:1})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Pe(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Pn().makeTensorFromDataId(r,t,n,this)}disposeData(e){if(this.data.has(e)){let{complexTensorInfos:t}=this.data.get(e);t!=null&&(this.disposeData(t.real.dataId),this.disposeData(t.imag.dataId)),this.data.delete(e)}}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.data.has(t)){let n=this.data.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){we([e],"where");let t=this.readSync(e.dataId);return MC(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},Yf={};$e(Yf,{addImpl:()=>sx,bincountImpl:()=>Jf,bincountReduceImpl:()=>ix,ceilImpl:()=>ox,concatImpl:()=>Qf,expImpl:()=>lx,expm1Impl:()=>ux,floorImpl:()=>cx,gatherV2Impl:()=>hx,greaterImpl:()=>dx,lessImpl:()=>px,linSpaceImpl:()=>fx,logImpl:()=>mx,maxImpl:()=>Ax,maximumImpl:()=>yx,minimumImpl:()=>gx,multiplyImpl:()=>em,negImpl:()=>xx,notEqualImpl:()=>wx,prodImpl:()=>_x,rangeImpl:()=>nm,rsqrtImpl:()=>bx,simpleAbsImpl:()=>ax,sliceImpl:()=>zd,squaredDifferenceImpl:()=>vx,stridedSliceImpl:()=>kx,subImpl:()=>Ix,tileImpl:()=>Nx,topKImpl:()=>Sx,transposeImpl:()=>tm,uniqueImpl:()=>Tx});function ax(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var OC=e=>{let{x:t}=e.inputs,n=e.backend;we(t,"abs");let r=new Float32Array(k.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=ax(a),n.makeOutput(r,t.shape,"float32")},$C={kernelName:Di,backendName:"cpu",kernelFunc:OC};function St(e){return(t,n,r,a,s)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),c=k.sizeFromShape(i),u=k.getTypedArrayFromDType(s,c),h=t.length,p=n.length,d=k.computeStrides(t),f=k.computeStrides(n),m=C.getBroadcastDims(t,i),A=C.getBroadcastDims(n,i);if(m.length+A.length===0)for(let y=0;y<u.length;++y)u[y]=e(r[y%r.length],a[y%a.length]);else for(let y=0;y<u.length;++y){let g=k.indexToLoc(y,o,l),_=g.slice(-h);m.forEach(N=>_[N]=0);let x=k.locToIndex(_,h,d),w=g.slice(-p);A.forEach(N=>w[N]=0);let b=k.locToIndex(w,p,f);u[y]=e(r[x],a[b])}return[u,i]}}function Sn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var DC={kernelName:fh,backendName:"cpu",kernelFunc:Sn};function Pd(e,t,n="float32"){if(n==="complex64"){let a=Pd(e,t,"float32"),s=Pd(e,t,"float32");return Sn({inputs:{real:a,imag:s},backend:e})}let r=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Mr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var zC={kernelName:ao,backendName:"cpu",kernelFunc:Mr};function ei(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var PC={kernelName:Oh,backendName:"cpu",kernelFunc:ei};function Na(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Mr({inputs:{x:a},backend:n});let i=Pd(n,a.shape,a.dtype),o=Na({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Sn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=ei({inputs:{input:a},backend:n}),o=Na({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(a.dtype,s)){let i=Mr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=k.toTypedArray([0],a.dtype),[l,c]=St((u,h)=>u!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(c,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var LC={kernelName:Ja,backendName:"cpu",kernelFunc:Na};function Bt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;we([i,o],e);let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[p,d]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(d,h,p)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let c=Na({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(c.dataId),h=u.complexTensorInfos.real,p=u.complexTensorInfos.imag,d=l.data.get(h.dataId).values,f=l.data.get(p.dataId).values,m=Na({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(m.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,_=l.data.get(y.dataId).values,x=l.data.get(g.dataId).values,[w,b,N]=n(i.shape,o.shape,d,f,_,x),T=l.makeTensorInfo(N,"float32",w),E=l.makeTensorInfo(N,"float32",b),M=Sn({inputs:{real:T,imag:E},backend:l});return l.disposeIntermediateTensorInfo(c),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(E),M}else{let c=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,h=r||i.dtype,[p,d]=t(i.shape,o.shape,c,u,h);return l.makeTensorInfo(d,h,p)}}}function rm(e){return(t,n,r,a,s,i)=>{let o=C.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),c=o.length,u=k.computeStrides(o),h=k.getTypedArrayFromDType("float32",l),p=k.getTypedArrayFromDType("float32",l),d=C.getBroadcastDims(t,o),f=C.getBroadcastDims(n,o),m=C.mergeRealAndImagArrays(r,a),A=C.mergeRealAndImagArrays(s,i),y=t.length,g=k.computeStrides(t),_=n.length,x=k.computeStrides(n);if(d.length+f.length===0)for(let w=0;w<h.length;w++){let b=w%m.length,N=w%A.length,T=e(m[b*2],m[b*2+1],A[N*2],A[N*2+1]);h[w]=T.real,p[w]=T.imag}else for(let w=0;w<h.length;w++){let b=k.indexToLoc(w,c,u),N=b.slice(-y);d.forEach(P=>N[P]=0);let T=k.locToIndex(N,y,g),E=b.slice(-_);f.forEach(P=>E[P]=0);let M=k.locToIndex(E,_,x),$=e(m[T*2],m[T*2+1],A[M*2],A[M*2+1]);h[w]=$.real,p[w]=$.imag}return[h,p,o]}}var sx=St((e,t)=>e+t),WC=rm((e,t,n,r)=>({real:e+n,imag:t+r})),Zu=Bt(da,sx,WC),BC={kernelName:da,backendName:"cpu",kernelFunc:Zu};function Jf(e,t,n,r,a){let s=k.sizeFromShape(r),i=k.makeZerosTypedArray(a,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function ix(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Pe([a,n],t.dtype);for(let o=0;o<a;o++)for(let l=0;l<s;l++){let c=e.get(o,l);if(c<0)throw new Error("Input x must be non-negative!");c>=n||(r?i.set(1,o,c):t.size>0?i.set(i.get(o,c)+t.get(o,l),o,c):i.set(i.get(o,c)+1,o,c))}return i}function ll(e){return(t,n,r)=>{let a=k.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)a[s]=e(t[s],r);return a}}function at(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(we(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=k.sizeFromShape(i.shape),u=n||i.dtype,h=k.getArrayFromDType(u,c);for(let p=0;p<c;++p)h[p]=t(l[p],a);return o.makeTensorInfo(i.shape,u,h)}}function ul(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(we(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,c=n||i.dtype,u=t(l,c,a);return o.makeTensorInfo(i.shape,c,u)}}var ox=ll(e=>Math.ceil(e)),VC=ul(ji,ox),UC={kernelName:ji,backendName:"cpu",kernelFunc:VC};function Qf(e,t,n,r){let a=k.getArrayFromDType(n,k.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let c=0;c<i.shape[0];++c){let u=c*t[1]+s;for(let h=0;h<i.shape[1];++h)a[u+h]=o[l++]}s+=i.shape[1]})}return a}var lx=ll(e=>Math.exp(e)),Ex=ul(ss,lx),jC={kernelName:ss,backendName:"cpu",kernelFunc:Ex},ux=ll(e=>Math.expm1(e)),GC=ul(Qi,ux),HC={kernelName:Qi,backendName:"cpu",kernelFunc:GC},cx=ll(e=>Math.floor(e)),qC=ul(is,cx),XC={kernelName:is,backendName:"cpu",kernelFunc:qC};function hx(e,t,n){let r=Pe(n,e.dtype);for(let a=0;a<r.size;++a){let s=r.indexToLoc(a).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let c=e.locToIndex(s);r.values[a]=e.values[c]}return r}var dx=St((e,t)=>e>t?1:0),KC=Bt(ro,dx,null,"bool"),ZC={kernelName:ro,backendName:"cpu",kernelFunc:KC},px=St((e,t)=>e<t?1:0),YC=Bt(lo,px,null,"bool"),JC={kernelName:lo,backendName:"cpu",kernelFunc:YC};function fx(e,t,n){let r=(t-e)/(n-1),a=k.makeZerosTypedArray(n,"float32");a[0]=e;for(let s=1;s<a.length;s++)a[s]=a[s-1]+r;return a}var mx=ll(e=>Math.log(e)),QC=ul(hs,mx),eR={kernelName:hs,backendName:"cpu",kernelFunc:QC};function Ax(e,t,n,r){let a=k.getTypedArrayFromDType(r,k.sizeFromShape(n));for(let s=0;s<a.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let c=e[i+l];c>o&&(o=c)}a[s]=o}return a}var yx=St((e,t)=>Math.max(e,t)),tR=Bt(ps,yx),nR={kernelName:ps,backendName:"cpu",kernelFunc:tR},gx=St((e,t)=>Math.min(e,t)),rR=Bt(ys,gx),aR={kernelName:ys,backendName:"cpu",kernelFunc:rR},em=St((e,t)=>e*t),sR=rm((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),am=Bt(gs,em,sR),iR={kernelName:gs,backendName:"cpu",kernelFunc:am};function xx(e,t,n){let r=k.createScalarValue(-1,n);return em([],t,r,e,n)}function oR(e){let{inputs:t,backend:n}=e,{x:r}=t;we(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=xx(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var lR={kernelName:fo,backendName:"cpu",kernelFunc:oR},wx=St((e,t)=>e!==t?1:0),uR=Bt(mo,wx,null,"bool"),cR={kernelName:mo,backendName:"cpu",kernelFunc:uR};function tm(e,t,n,r,a){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(a),c=k.getTypedArrayFromDType(n,k.sizeFromShape(a));for(let u=0;u<i;++u){let h=k.indexToLoc(u,s,o),p=new Array(h.length);for(let f=0;f<p.length;f++)p[f]=h[r[f]];let d=k.locToIndex(p,s,l);c[d]=e[u]}return c}function tr(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{perm:s}=n;we(a,"transpose");let i=a.shape.length,o=new Array(i);for(let u=0;u<o.length;u++)o[u]=a.shape[s[u]];let l=r.data.get(a.dataId).values,c=tm(l,a.shape,a.dtype,s,o);return{dataId:r.write(c,o,a.dtype),shape:o,dtype:a.dtype}}var hR={kernelName:zs,backendName:"cpu",kernelFunc:tr};function _x(e,t,n,r){let[a,s]=C.computeOutAndReduceShapes(e,r),i=Zn(t,"int32"),o=k.makeZerosTypedArray(k.sizeFromShape(a),i),l=k.sizeFromShape(s);for(let c=0;c<o.length;++c){let u=c*l,h=1;for(let p=0;p<l;++p)h*=n[u+p];o[c]=h}return{outVals:o,outShape:a,outDtype:i}}function dR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;we(a,"prod");let o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=C.getAxesPermutation(l,o),u=l,h=a,p=[];c!=null&&(h=tr({inputs:{x:a},backend:n,attrs:{perm:c}}),p.push(h),u=C.getInnerMostAxes(u.length,o));let d=n.data.get(h.dataId).values,{outVals:f,outShape:m,outDtype:A}=_x(h.shape,h.dtype,d,u),y=m;return i&&(y=C.expandShapeToKeepDim(m,l)),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,f)}var pR={kernelName:_o,backendName:"cpu",kernelFunc:dR};function nm(e,t,n,r){let a=e===t,s=e<t&&n<0,i=t<e&&n>1;if(a||s||i)return k.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,r);t<e&&n===1&&(n=-1),l[0]=e;for(let c=1;c<l.length;c++)l[c]=l[c-1]+n;return l}var bx=ll(e=>1/Math.sqrt(e)),fR=ul(Ts,bx),mR={kernelName:Ts,backendName:"cpu",kernelFunc:fR};function zd(e,t,n,r,a){let s=nn.isSliceContinous(r,t,n),i=k.sizeFromShape(n),o=k.computeStrides(r);if(s){let h=nn.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?C.fromUint8ToStringArray(e):e,c=Pe(r,a,l),u=Pe(n,a);for(let h=0;h<u.size;++h){let p=u.indexToLoc(h),d=p.map((f,m)=>f+t[m]);u.set(c.get(...d),...p)}return a==="string"?C.fromStringArrayToUint8(u.values):u.values}function ti(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;we(a,"slice");let[o,l]=nn.parseSliceParams(a,s,i);nn.assertParamsValid(a,o,l);let c=n.data.get(a.dataId).values,u=zd(c,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,u)}var AR={kernelName:So,backendName:"cpu",kernelFunc:ti},vx=St((e,t)=>{let n=e-t;return n*n}),yR=Bt(Os,vx),gR={kernelName:Os,backendName:"cpu",kernelFunc:yR};function kx(e,t,n,r){let a=Pe(e,t.dtype);for(let s=0;s<a.size;s++){let i=a.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+r[l];a.set(t.get(...o),...i)}return a}var Ix=St((e,t)=>e-t),xR=rm((e,t,n,r)=>({real:e-n,imag:t-r})),sm=Bt($s,Ix,xR),wR={kernelName:$s,backendName:"cpu",kernelFunc:sm};function Nx(e,t){let n=new Array(e.rank);for(let a=0;a<n.length;a++)n[a]=e.shape[a]*t[a];let r=Pe(n,e.dtype);for(let a=0;a<r.values.length;++a){let s=r.indexToLoc(a),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);r.values[a]=e.values[o]}return r}function Sx(e,t,n,r,a){let s=t[t.length-1],[i,o]=[e.length/s,s],l=k.getTypedArrayFromDType(n,i*r),c=k.getTypedArrayFromDType("int32",i*r);for(let h=0;h<i;h++){let p=h*o,d=e.subarray(p,p+o),f=[];for(let g=0;g<d.length;g++)f.push({value:d[g],index:g});f.sort((g,_)=>_.value-g.value);let m=h*r,A=l.subarray(m,m+r),y=c.subarray(m,m+r);for(let g=0;g<r;g++)A[g]=f[g].value,y[g]=f[g].index}let u=t.slice();return u[u.length-1]=r,[Pe(u,n,l),Pe(u,"int32",c)]}function Tx(e,t,n,r){let a=k.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let f=0;f<a;f++)s[0]*=n[f];s[1]=n[a];for(let f=a+1;f<n.length;f++)s[2]*=n[f];let i={},o=new Int32Array(n[a]),l=new Rt(s,r,e),c=[],u=s[0]===1&&s[2]===1;for(let f=0;f<n[a];f++){let m;if(u)m=e[f].toString();else{let A=[];for(let y=0;y<s[0];y++)for(let g=0;g<s[2];g++)A.push(l.get(y,f,g));m=A.join(",")}if(i[m]!==void 0)o[f]=i[m];else{let A=Object.keys(i).length;i[m]=A,o[f]=A,c.push(f)}}let h=s.slice();h[1]=Object.keys(i).length;let p=new Rt(h,r);c.forEach((f,m)=>{for(let A=0;A<s[0];A++)for(let y=0;y<s[2];y++)p.set(l.get(A,f,y),A,m,y)});let d=n.slice();return d[a]=h[1],{outputValues:p.values,outputShape:d,indices:o}}var Cx="3.0.0";qo("cpu",()=>new rx,1);var Rx=at(Ki,e=>e>=0?e:Math.exp(e)-1),_R={kernelName:Ki,backendName:"cpu",kernelFunc:Rx};function Fx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;we([a],"leakyRelu");let i=k.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let c=0;c<o.length;c++)l[c]=o[c]<0?s*o[c]:o[c];return n.makeTensorInfo(a.shape,"float32",l)}var bR={kernelName:cs,backendName:"cpu",kernelFunc:Fx},vR=St((e,t)=>e<0?t*e:e);function Mx(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;we([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=vR(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var kR={kernelName:bs,backendName:"cpu",kernelFunc:Mx},Ox=at(vs,e=>Math.max(0,e)),IR={kernelName:vs,backendName:"cpu",kernelFunc:Ox},$x=at(Is,e=>Math.min(Math.max(0,e),6)),NR={kernelName:Is,backendName:"cpu",kernelFunc:$x};function im(e,t,n,r,a){if(n==="linear")return Mr({inputs:{x:t},backend:e});if(n==="relu")return Ox({inputs:{x:t},backend:e});if(n==="elu")return Rx({inputs:{x:t},backend:e});if(n==="relu6")return $x({inputs:{x:t},backend:e});if(n==="prelu")return Mx({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return Fx({inputs:{x:t},backend:e,attrs:{alpha:a}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function mt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=k.sizeFromShape(a.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let c=n.data.get(a.dataId);if(c.complexTensorInfos!=null){let u=c.complexTensorInfos.real,h=c.complexTensorInfos.imag;u.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var SR={kernelName:vo,backendName:"cpu",kernelFunc:mt};function Dx(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;we([a,s],"matMul");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],p=i?a.shape[l-1]:a.shape[l-2],d=o?s.shape[c-2]:s.shape[c-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=k.sizeFromShape(f),y=k.sizeFromShape(m),g=A===y||A===1||y===1;k.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let _=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([p,d]);k.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[A,u,p]:[A,p,u],w=o?[y,d,h]:[y,h,d],b=mt({inputs:{x:a},backend:n,attrs:{shape:x}}),N=mt({inputs:{x:s},backend:n,attrs:{shape:w}}),T=i?b.shape[1]:b.shape[2],E=i?b.shape[2]:b.shape[1],M=o?N.shape[1]:N.shape[2],$=Math.max(A,y),P=n.data.get(b.dataId).values,V=n.data.get(N.dataId).values,H=k.computeStrides(b.shape),U=k.computeStrides(N.shape),[K,X,ee]=i?[H[0],1,H[1]]:[H[0],H[1],1],[Z,ae,J]=o?[1,U[1],U[0]]:[U[1],1,U[0]],oe=E*M,ne=Pe([$,E,M],b.dtype),ce=ne.values,ue=n.blockSize;for(let pe=0;pe<$;pe++)for(let fe=0;fe<E;fe+=ue)for(let _e=0;_e<M;_e+=ue)for(let Se=0;Se<T;Se+=ue){let Ce=Math.min(fe+ue,E),Oe=Math.min(_e+ue,M),He=Math.min(Se+ue,T);for(let We=fe;We<Ce;We++)for(let tt=_e;tt<Oe;tt++){let st=0;for(let Ve=Se;Ve<He;Ve++){let ot=Math.min(pe,A-1)*K,lt=Math.min(pe,y-1)*J,On=P[ot+We*X+Ve*ee],Ze=V[Ve*Z+tt*ae+lt];st+=On*Ze}ce[pe*oe+(We*M+tt)]+=st}}return n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(_,ne.dtype,ne.values)}var TR={kernelName:Ya,backendName:"cpu",kernelFunc:Dx};function ER(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,p,d,f,m=[];p=Dx({inputs:{a,b:s},attrs:{transposeA:l,transposeB:c},backend:n}),i&&(d=Zu({inputs:{a:p,b:i},backend:n}),m.push(p),p=d),u&&(f=im(n,p,u,o,h),m.push(p),p=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return p}var CR={kernelName:Ps,backendName:"cpu",kernelFunc:ER},RR=at(zi,e=>Math.acos(e)),FR={kernelName:zi,backendName:"cpu",kernelFunc:RR},MR=at(Pi,e=>Math.acosh(e)),OR={kernelName:Pi,backendName:"cpu",kernelFunc:MR};function $R(e){let{inputs:t,backend:n}=e,r=t;we(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Pe(r[0].shape,r[0].dtype),i=s.values;for(let o=0;o<r.length;o++){let l=a[o];for(let c=0;c<i.length;c++)i[c]+=l[c]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var DR={kernelName:Xa,backendName:"cpu",kernelFunc:$R};function zR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;we(a,"all");let o=k.parseAxisParam(s,a.shape),l=o,c=C.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=tr({inputs:{x:a},backend:n,attrs:{perm:c}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("all",l,u.shape.length);let[h,p]=C.computeOutAndReduceShapes(u.shape,l),d=k.sizeFromShape(p),f=k.makeZerosTypedArray(k.sizeFromShape(h),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;y<f.length;++y){let g=y*d,_=m[g];for(let x=0;x<d;++x){let w=m[g+x];_=_&&w}f[y]=_}c!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(h,u.dtype,f);if(i){let y=C.expandShapeToKeepDim(h,o),g=mt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var PR={kernelName:uh,backendName:"cpu",kernelFunc:zR};function LR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;we(a,"any");let o=k.parseAxisParam(s,a.shape),l=o,c=C.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=tr({inputs:{x:a},backend:n,attrs:{perm:c}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("any",l,u.shape.length);let[h,p]=C.computeOutAndReduceShapes(u.shape,l),d=k.sizeFromShape(p),f=k.makeZerosTypedArray(k.sizeFromShape(h),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;y<f.length;++y){let g=y*d,_=m[g];for(let x=0;x<d;++x){let w=m[g+x];_=_||w}f[y]=_}c!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(h,u.dtype,f);if(i){let y=C.expandShapeToKeepDim(h,o),g=mt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var WR={kernelName:ch,backendName:"cpu",kernelFunc:LR};function BR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;we(a,"argMax");let i=k.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=tr({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[u,h]=C.computeOutAndReduceShapes(l.shape,i),p=k.sizeFromShape(u),d=k.makeZerosTypedArray(p,"int32"),f=k.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;A<d.length;++A){let y=A*f,g=m[y],_=0;for(let x=0;x<f;++x){let w=m[y+x];w>g&&(g=w,_=x)}d[A]=_}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",d)}var VR={kernelName:Ka,backendName:"cpu",kernelFunc:BR};function UR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;we(a,"argMin");let i=k.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=tr({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,h]=C.computeOutAndReduceShapes(l.shape,i),p=k.sizeFromShape(u),d=k.makeZerosTypedArray(p,"int32"),f=k.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;A<d.length;++A){let y=A*f,g=m[y],_=0;for(let x=0;x<f;++x){let w=m[y+x];w<g&&(g=w,_=x)}d[A]=_}return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",d)}var jR={kernelName:su,backendName:"cpu",kernelFunc:UR},GR=at(Li,e=>Math.asin(e)),HR={kernelName:Li,backendName:"cpu",kernelFunc:GR},qR=at(Wi,e=>Math.asinh(e)),XR={kernelName:Wi,backendName:"cpu",kernelFunc:qR},KR=at(Bi,e=>Math.atan(e)),ZR={kernelName:Bi,backendName:"cpu",kernelFunc:KR},YR=St((e,t)=>Math.atan2(e,t)),JR=Bt(Ui,YR),QR={kernelName:Ui,backendName:"cpu",kernelFunc:JR},eF=at(Vi,e=>Math.atanh(e)),tF={kernelName:Vi,backendName:"cpu",kernelFunc:eF};function om(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,c=a.dilationWidth,u=a.effectiveFilterHeight,h=a.effectiveFilterWidth,p=a.padInfo.top,d=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Pe(a.outShape,n),A=m.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],_=a.outShape[3];for(let x=0;x<a.batchSize;++x){let w=x*y,b=x*r[0];for(let N=0;N<a.inChannels;++N)for(let T=0;T<a.outHeight;++T){let E=T*i-p,M=Math.max(0,E),$=Math.min(a.inHeight,u+E),P=w+T*g;for(let V=0;V<a.outWidth;++V){let H=V*o-d,U=Math.max(0,H),K=Math.min(a.inWidth,h+H),X=f,ee=0,Z=0;for(let J=M;J<$;J+=l){let oe=b+J*r[1];for(let ne=U;ne<K;ne+=c){let ce=oe+ne*r[2],ue=e[ce+N];s==="max"&&ue>X?X=ue:s==="avg"&&(ee+=ue,Z++)}if(isNaN(X))break}let ae=P+V*_+N;A[ae]=s==="avg"?ee/Z:X}}}return m}function zx(e,t,n,r,a=!1,s=!1){let i=Pe(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,c=r.dilationHeight,u=r.dilationWidth,h=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,f=r.padInfo.left,m=Pe(t,n,e);for(let A=0;A<r.batchSize;++A)for(let y=0;y<r.inChannels;++y)for(let g=0;g<r.outHeight;++g){let _=g*o-d,x=_;for(;x<0;)x+=c;let w=Math.min(r.inHeight,h+_);for(let b=0;b<r.outWidth;++b){let N=b*l-f,T=N;for(;T<0;)T+=u;let E=Math.min(r.inWidth,p+N),M=Number.NEGATIVE_INFINITY,$=-1;for(let P=x;P<w;P+=c){let V=P-_;for(let H=T;H<E;H+=u){let U=H-N,K=m.get(A,P,H,y);K>M&&(M=K,a?$=s?((A*r.inHeight+P)*r.inWidth+H)*r.inChannels+y:(P*r.inWidth+H)*r.inChannels+y:$=V*p+U)}}i.set($,A,g,b,y)}}return i}function Px(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,c=a.dilationDepth,u=a.dilationHeight,h=a.dilationWidth,p=a.effectiveFilterDepth,d=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,_=Pe(a.outShape,n),x=_.values,w=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],b=a.outShape[2]*a.outShape[3]*a.outShape[4],N=a.outShape[3]*a.outShape[4],T=a.outShape[4];for(let E=0;E<a.batchSize;++E){let M=E*w,$=E*r[0];for(let P=0;P<a.inChannels;++P)for(let V=0;V<a.outDepth;++V){let H=V*i-m,U=H;for(;U<0;)U+=c;let K=Math.min(a.inDepth,p+H),X=M+V*b;for(let ee=0;ee<a.outHeight;++ee){let Z=ee*o-A,ae=Z;for(;ae<0;)ae+=u;let J=Math.min(a.inHeight,d+Z),oe=X+ee*N;for(let ne=0;ne<a.outWidth;++ne){let ce=ne*l-y,ue=ce;for(;ue<0;)ue+=h;let pe=Math.min(a.inWidth,f+ce),fe=oe+ne*T,_e=g,Se=0,Ce=0;for(let He=U;He<K;He+=c){let We=$+He*r[1];for(let tt=ae;tt<J;tt+=u){let st=We+tt*r[2];for(let Ve=ue;Ve<pe;Ve+=h){let ot=st+Ve*r[3],lt=e[ot+P];if(s==="max"&<>_e?_e=lt:s==="avg"&&(Se+=lt,Ce++),isNaN(_e))break}if(isNaN(_e))break}if(isNaN(_e))break}let Oe=fe+P;x[Oe]=s==="avg"?Se/Ce:_e}}}}return _}function nF(e,t){let n=Pe(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,c=t.effectiveFilterDepth,u=t.effectiveFilterHeight,h=t.effectiveFilterWidth,p=t.padInfo.front,d=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let A=0;A<t.inChannels;++A)for(let y=0;y<t.outDepth;++y){let g=y*r-p,_=g;for(;_<0;)_+=i;let x=Math.min(t.inDepth,c+g);for(let w=0;w<t.outHeight;++w){let b=w*a-d,N=b;for(;N<0;)N+=o;let T=Math.min(t.inHeight,u+b);for(let E=0;E<t.outWidth;++E){let M=E*s-f,$=M;for(;$<0;)$+=l;let P=Math.min(t.inWidth,h+M),V=Number.NEGATIVE_INFINITY,H=-1;for(let U=_;U<x;U+=i){let K=U-g;for(let X=N;X<T;X+=o){let ee=X-b;for(let Z=$;Z<P;Z+=l){let ae=Z-M,J=e.get(m,U,X,Z,A);J>=V&&(V=J,H=K*u*h+ee*u+ae)}}}n.set(H,m,y,w,E,A)}}}return n}function rF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;we(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;k.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=C.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))h=Mr({inputs:{x:a},backend:n});else{let p=n.data.get(a.dataId).values,d=k.computeStrides(a.shape),f=om(p,a.shape,a.dtype,d,u,"avg");h=n.makeTensorInfo(u.outShape,a.dtype,f.values)}return h}var aF={kernelName:Za,backendName:"cpu",kernelFunc:rF};function sF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;we(a,"avgPool3d");let u=C.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,p=Px(h,a.shape,a.dtype,k.computeStrides(a.shape),u,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var iF={kernelName:iu,backendName:"cpu",kernelFunc:sF};function oF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;we([a,s],"avgPool3DGrad");let u=C.computePool3DInfo(s.shape,i,o,1,l,c),h=u.strideDepth,p=u.strideHeight,d=u.strideWidth,f=u.filterDepth,m=u.filterHeight,A=u.filterWidth,y=u.dilationDepth,g=u.dilationHeight,_=u.dilationWidth,x=u.effectiveFilterDepth,w=u.effectiveFilterHeight,b=u.effectiveFilterWidth,N=x-1-u.padInfo.front,T=b-1-u.padInfo.left,E=w-1-u.padInfo.top,M=Pe(s.shape,"float32"),$=1/(f*m*A),P=n.bufferSync(a);for(let V=0;V<u.batchSize;++V)for(let H=0;H<u.inChannels;++H)for(let U=0;U<u.inDepth;++U)for(let K=0;K<u.inHeight;++K)for(let X=0;X<u.inWidth;++X){let ee=U-N,Z=K-E,ae=X-T,J=0;for(let oe=0;oe<x;oe+=y){let ne=(ee+oe)/h;if(!(ne<0||ne>=u.outDepth||Math.floor(ne)!==ne))for(let ce=0;ce<w;ce+=g){let ue=(Z+ce)/p;if(!(ue<0||ue>=u.outHeight||Math.floor(ue)!==ue))for(let pe=0;pe<b;pe+=_){let fe=(ae+pe)/d;fe<0||fe>=u.outWidth||Math.floor(fe)!==fe||(J+=P.get(V,ne,ue,fe,H))}}}M.set(J*$,V,U,K,X,H)}return n.makeTensorInfo(M.shape,M.dtype,M.values)}var lF={kernelName:dh,backendName:"cpu",kernelFunc:oF};function uF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;we([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=C.computePool2DInfo(i.shape,o,l,1,c),h=u.strideHeight,p=u.strideWidth,d=u.filterHeight,f=u.filterWidth,m=u.dilationHeight,A=u.dilationWidth,y=u.effectiveFilterHeight,g=u.effectiveFilterWidth,_=g-1-u.padInfo.left,x=y-1-u.padInfo.top,w=Pe(i.shape,"float32"),b=1/(d*f),N=n.data.get(a.dataId).values,T=Pe(a.shape,"float32",N);for(let E=0;E<u.batchSize;++E)for(let M=0;M<u.inChannels;++M)for(let $=0;$<u.inHeight;++$)for(let P=0;P<u.inWidth;++P){let V=$-x,H=P-_,U=0;for(let K=0;K<y;K+=m){let X=(V+K)/h;if(!(X<0||X>=u.outHeight||Math.floor(X)!==X))for(let ee=0;ee<g;ee+=A){let Z=(H+ee)/p;Z<0||Z>=u.outWidth||Math.floor(Z)!==Z||(U+=T.get(E,X,Z,M))}}w.set(U*b,E,$,P,M)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var cF={kernelName:hh,backendName:"cpu",kernelFunc:uF};function hF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),we([a,o,l,s,i],"batchNorm");let{varianceEpsilon:c}=r;c==null&&(c=.001);let u=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,p=n.data.get(l.dataId).values,d=s?n.data.get(s.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(u.length),A=f.length,y=d.length,g=p.length,_=h.length,x=0,w=0,b=0,N=0;for(let T=0;T<u.length;++T)m[T]=f[x++]+(u[T]-h[w++])*d[b++]/Math.sqrt(p[N++]+c),x>=A&&(x=0),w>=_&&(w=0),b>=y&&(b=0),N>=g&&(N=0);return n.makeTensorInfo(a.shape,a.dtype,m)}var dF={kernelName:ls,backendName:"cpu",kernelFunc:hF};function pF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;we([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=C.getReshaped(a.shape,s,o),c=C.getPermuted(l.length,s.length),u=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),p=C.getSliceSize(u,i,s.length),d=mt({inputs:{x:a},backend:n,attrs:{shape:l}}),f=tr({inputs:{x:d},backend:n,attrs:{perm:c}}),m=mt({inputs:{x:f},backend:n,attrs:{shape:u}}),A=ti({inputs:{x:m},backend:n,attrs:{begin:h,size:p}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var fF={kernelName:ou,backendName:"cpu",kernelFunc:pF};function mF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,c=Jf(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var AF={kernelName:ph,backendName:"cpu",kernelFunc:mF},yF=at(pa,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),gF={kernelName:pa,backendName:"cpu",kernelFunc:yF},xF=e=>{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(k.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let c=0;c<o.length;c++){let u=o[c],h=l[c];r[c]=Math.hypot(u,h)}return n.makeOutput(r,t.shape,"float32")},wF={kernelName:lu,backendName:"cpu",kernelFunc:xF};function cl(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.imag,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var _F={kernelName:Sh,backendName:"cpu",kernelFunc:cl};function hl(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=k.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(m=>m.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>k.sizeFromShape(m.shape)>0);if(o.length===1)return Mr({inputs:{x:o[0]},backend:n});let l=o.map(m=>m.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(x=>ei({inputs:{input:x},backend:n})),A=o.map(x=>cl({inputs:{input:x},backend:n})),y=hl({inputs:m,backend:n,attrs:{axis:s}}),g=hl({inputs:A,backend:n,attrs:{axis:s}}),_=Sn({inputs:{real:y,imag:g},backend:n});return m.forEach(x=>n.disposeIntermediateTensorInfo(x)),A.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),_}let c=o.map(m=>{let A=k.sizeFromShape(m.shape.slice(s));return mt({inputs:{x:m},backend:n,attrs:{shape:[-1,A]}})}),u=c.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=C.computeOutShape(c.map(m=>m.shape),1);let h=c[0].shape[0]===1,p=Qf(u,i,t[0].dtype,h),d=C.computeOutShape(o.map(m=>m.shape),s),f=n.makeTensorInfo(d,t[0].dtype,p);return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var bF={kernelName:Gi,backendName:"cpu",kernelFunc:hl};function Lx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r;we([a,s],"conv2d");let h=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),d=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,A=p.dilationWidth,y=p.padInfo.left,g=p.padInfo.top,_=p.dataFormat==="channelsLast",x=new Rt(p.outShape,a.dtype),w=k.computeStrides(a.shape),b=k.computeStrides(s.shape),N=w[0],T=_?w[1]:w[2],E=_?w[2]:1,M=_?1:w[1],$=x.strides[0],P=_?x.strides[1]:x.strides[2],V=_?x.strides[2]:1,H=_?1:x.strides[1],U=n.data.get(a.dataId).values,K=n.data.get(s.dataId).values,X=x.values;for(let ee=0;ee<p.batchSize;++ee){let Z=ee*N,ae=ee*$;for(let J=0;J<p.outHeight;++J){let oe=ae+J*P,ne=J*p.strideHeight-g;for(let ce=0;ce<d;++ce){let ue=ne+ce*m;if(ue<0||ue>=p.inHeight)continue;let pe=ce*b[0],fe=Z+ue*T;for(let _e=0;_e<p.outWidth;++_e){let Se=oe+_e*V,Ce=_e*p.strideWidth-y;for(let Oe=0;Oe<f;++Oe){let He=Ce+Oe*A;if(He<0||He>=p.inWidth)continue;let We=pe+Oe*b[1],tt=fe+He*E,st=We;for(let Ve=0;Ve<p.inChannels;++Ve){let ot=U[tt+Ve*M];for(let lt=0;lt<p.outChannels;++lt)X[Se+lt*H]+=ot*K[st+lt];st+=p.outChannels}}}}}}return n.makeTensorInfo(x.shape,x.dtype,X)}var vF={kernelName:Qa,backendName:"cpu",kernelFunc:Lx};function kF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r;we([a,s],"conv2dBackpropFilter");let h=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),{strideHeight:d,strideWidth:f,filterHeight:m,filterWidth:A}=p,y=p.dataFormat==="channelsLast",g=new Rt(p.filterShape,"float32"),_=p.padInfo.left,x=p.padInfo.top,w=n.data.get(a.dataId).values,b=n.data.get(s.dataId).values,N=new Rt(a.shape,a.dtype,w),T=new Rt(s.shape,s.dtype,b);for(let E=0;E<m;++E){let M=Math.max(0,Math.ceil((x-E)/d)),$=Math.min(p.outHeight,(p.inHeight+x-E)/d);for(let P=0;P<A;++P){let V=Math.max(0,Math.ceil((_-P)/f)),H=Math.min(p.outWidth,(p.inWidth+_-P)/f);for(let U=0;U<p.inChannels;++U)for(let K=0;K<p.outChannels;++K){let X=0;for(let ee=0;ee<p.batchSize;++ee)for(let Z=M;Z<$;++Z){let ae=E+Z*d-x;for(let J=V;J<H;++J){let oe=P+J*f-_;y?X+=N.get(ee,ae,oe,U)*T.get(ee,Z,J,K):X+=N.get(ee,U,ae,oe)*T.get(ee,K,Z,J)}}g.set(X,E,P,U,K)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var IF={kernelName:mh,backendName:"cpu",kernelFunc:kF};function NF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r;we([a,s],"conv2dBackpropInput");let h=k.computeStrides(s.shape),p=k.computeStrides(a.shape),d=C.convertConv2DDataFormat(c),f=C.computeConv2DInfo(i,s.shape,o,1,l,u,!1,d),m=new Rt(f.inShape,"float32"),A=m.values,y=n.data.get(a.dataId).values,g=n.data.get(s.dataId).values,[_,x,w]=h,{batchSize:b,filterHeight:N,filterWidth:T,inChannels:E,inHeight:M,inWidth:$,outChannels:P,outHeight:V,outWidth:H,strideHeight:U,strideWidth:K}=f;d=f.dataFormat;let X=N-1-f.padInfo.top,ee=T-1-f.padInfo.left,Z=d==="channelsLast",ae=m.strides[0],J=Z?m.strides[1]:m.strides[2],oe=Z?m.strides[2]:1,ne=Z?1:m.strides[1],ce=p[0],ue=Z?p[1]:p[2],pe=Z?p[2]:1,fe=Z?1:p[1];for(let _e=0;_e<b;++_e)for(let Se=0;Se<E;++Se)for(let Ce=0;Ce<M;++Ce){let Oe=Ce-X,He=Math.max(0,Math.ceil(Oe/U)),We=Math.min(V,(N+Oe)/U);for(let tt=0;tt<$;++tt){let st=tt-ee,Ve=Math.max(0,Math.ceil(st/K)),ot=Math.min(H,(T+st)/K),lt=0;for(let Ze=He;Ze<We;++Ze){let gn=Ze*U-Oe;for(let Gt=Ve;Gt<ot;++Gt){let xn=Gt*K-st,jn=ce*_e+ue*Ze+pe*Gt,un=_*(N-1-gn)+x*(T-1-xn)+w*Se;for(let en=0;en<P;++en){let Gn=y[jn+fe*en],wr=g[un+en];lt+=Gn*wr}}}let On=ae*_e+J*Ce+oe*tt+ne*Se;A[On]=lt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var SF={kernelName:es,backendName:"cpu",kernelFunc:NF};function TF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r;we([a,s],"conv3d");let c=C.computeConv3DInfo(a.shape,s.shape,i,l,o),{filterDepth:u,filterHeight:h,filterWidth:p,dilationDepth:d,dilationHeight:f,dilationWidth:m,padInfo:A}=c,y=A.front,g=A.left,_=A.top,x=new Rt(c.outShape,a.dtype),w=n.data.get(a.dataId).values,b=n.data.get(s.dataId).values,N=x.values,T=k.computeStrides(a.shape),E=k.computeStrides(s.shape);for(let M=0;M<c.batchSize;++M){let $=M*T[0],P=M*x.strides[0];for(let V=0;V<c.outDepth;++V){let H=P+V*x.strides[1],U=V*c.strideDepth-y;for(let K=0;K<u;++K){let X=U+K*d;if(X<0||X>=c.inDepth)continue;let ee=K*E[0],Z=$+X*T[1];for(let ae=0;ae<c.outHeight;++ae){let J=H+ae*x.strides[2],oe=ae*c.strideHeight-_;for(let ne=0;ne<h;++ne){let ce=oe+ne*f;if(ce<0||ce>=c.inHeight)continue;let ue=ee+ne*E[1],pe=Z+ce*T[2];for(let fe=0;fe<c.outWidth;++fe){let _e=J+fe*c.outChannels,Se=fe*c.strideWidth-g;for(let Ce=0;Ce<p;++Ce){let Oe=Se+Ce*m;if(Oe<0||Oe>=c.inWidth)continue;let He=ue+Ce*E[2],We=pe+Oe*c.inChannels,tt=He;for(let st=0;st<c.inChannels;++st){let Ve=w[We+st];for(let ot=0;ot<c.outChannels;++ot)N[_e+ot]+=Ve*b[tt+ot];tt+=c.outChannels}}}}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var EF={kernelName:uu,backendName:"cpu",kernelFunc:TF};function CF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r;we([a,s],"conv3dBackpropFilterV2");let c=k.computeStrides(a.shape),u=k.computeStrides(s.shape),h=C.computeConv3DInfo(a.shape,l,i,1,o),p=h.strideDepth,d=h.strideHeight,f=h.strideWidth,m=h.filterDepth,A=h.filterHeight,y=h.filterWidth,g=new Rt(h.filterShape,"float32"),_=g.values,[x,w,b,N]=g.strides,T=n.data.get(s.dataId).values,[E,M,$,P]=u,V=n.data.get(a.dataId).values,[H,U,K,X]=c,ee=h.padInfo.front,Z=h.padInfo.left,ae=h.padInfo.top;for(let J=0;J<m;++J){let oe=Math.max(0,Math.ceil((ee-J)/p)),ne=Math.min(h.outDepth,(h.inDepth+ee-J)/p),ce=J*x;for(let ue=0;ue<A;++ue){let pe=Math.max(0,Math.ceil((ae-ue)/d)),fe=Math.min(h.outHeight,(h.inHeight+ae-ue)/d),_e=ue*w+ce;for(let Se=0;Se<y;++Se){let Ce=Math.max(0,Math.ceil((Z-Se)/f)),Oe=Math.min(h.outWidth,(h.inWidth+Z-Se)/f),He=Se*b+_e;for(let We=0;We<h.inChannels;++We){let tt=We*N+He;for(let st=0;st<h.outChannels;++st){let Ve=0;for(let ot=0;ot<h.batchSize;++ot){let lt=ot*H,On=ot*E;for(let Ze=oe;Ze<ne;++Ze){let gn=(J+Ze*p-ee)*U+lt,Gt=Ze*M+On;for(let xn=pe;xn<fe;++xn){let jn=(ue+xn*d-ae)*K+gn,un=xn*$+Gt;for(let en=Ce;en<Oe;++en){let Gn=(Se+en*f-Z)*X+jn,wr=en*P+un;Ve+=V[Gn+We]*T[wr+st]}}}}_[tt+st]=Ve}}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var RF={kernelName:Ah,backendName:"cpu",kernelFunc:CF};function FF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r;we([a],"conv3dBackpropInputV2");let c=k.computeStrides(a.shape),u=k.computeStrides(s.shape),h=C.computeConv3DInfo(l,s.shape,o,1,i),p=new Rt(h.inShape,"float32"),d=p.values,[f,m,A,y]=p.strides,g=n.data.get(a.dataId).values,[_,x,w,b]=c,N=n.data.get(s.dataId).values,[T,E,M,$]=u,{batchSize:P,filterDepth:V,filterHeight:H,filterWidth:U,inChannels:K,inDepth:X,inHeight:ee,inWidth:Z,outChannels:ae,outDepth:J,outHeight:oe,outWidth:ne,strideDepth:ce,strideHeight:ue,strideWidth:pe}=h,fe=V-1-h.padInfo.front,_e=H-1-h.padInfo.top,Se=U-1-h.padInfo.left;for(let Ce=0;Ce<P;++Ce)for(let Oe=0;Oe<K;++Oe)for(let He=0;He<X;++He){let We=He-fe,tt=Math.max(0,Math.ceil(We/ce)),st=Math.min(J,(V+We)/ce);for(let Ve=0;Ve<ee;++Ve){let ot=Ve-_e,lt=Math.max(0,Math.ceil(ot/ue)),On=Math.min(oe,(H+ot)/ue);for(let Ze=0;Ze<Z;++Ze){let gn=Ze-Se,Gt=Math.max(0,Math.ceil(gn/pe)),xn=Math.min(ne,(U+gn)/pe),jn=0;for(let un=tt;un<st;++un){let en=un*ce-We;for(let Gn=lt;Gn<On;++Gn){let wr=Gn*ue-ot;for(let wn=Gt;wn<xn;++wn){let wi=wn*pe-gn,$l=_*Ce+x*un+w*Gn+b*wn,ir=T*(V-1-en)+E*(H-1-wr)+M*(U-1-wi)+$*Oe;for(let Hn=0;Hn<ae;++Hn){let or=g[$l+Hn],_i=N[ir+Hn];jn+=or*_i}}}}d[f*Ce+m*He+A*Ve+y*Ze+Oe]=jn}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var MF={kernelName:yh,backendName:"cpu",kernelFunc:FF},OF=at(ts,e=>Math.cos(e)),$F={kernelName:ts,backendName:"cpu",kernelFunc:OF},DF=at(Hi,e=>Math.cosh(e)),zF={kernelName:Hi,backendName:"cpu",kernelFunc:DF};function PF(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,[u,h,p,d]=a.shape,f=s.shape[0],[m,A]=o,y=Pe([f,m,A,d],"float32"),g=n.data.get(s.dataId).values,_=n.data.get(i.dataId).values,x=n.data.get(a.dataId).values,w=k.computeStrides(a.shape),b=k.computeStrides(y.shape);for(let N=0;N<f;N++){let T=N*4,E=g[T],M=g[T+1],$=g[T+2],P=g[T+3],V=_[N];if(V>=u)continue;let H=m>1?($-E)*(h-1)/(m-1):0,U=A>1?(P-M)*(p-1)/(A-1):0;for(let K=0;K<m;K++){let X=m>1?E*(h-1)+K*H:.5*(E+$)*(h-1);if(X<0||X>h-1){for(let ee=0;ee<A;ee++)for(let Z=0;Z<d;Z++){let ae=Z+ee*b[2]+K*b[1]+N*b[0];y.values[ae]=c}continue}if(l==="bilinear"){let ee=Math.floor(X),Z=Math.ceil(X),ae=X-ee;for(let J=0;J<A;J++){let oe=A>1?M*(p-1)+J*U:.5*(M+P)*(p-1);if(oe<0||oe>p-1){for(let pe=0;pe<d;pe++){let fe=pe+J*b[2]+K*b[1]+N*b[0];y.values[fe]=c}continue}let ne=Math.floor(oe),ce=Math.ceil(oe),ue=oe-ne;for(let pe=0;pe<d;pe++){let fe=pe+ne*w[2]+ee*w[1]+V*w[0],_e=x[fe];fe=pe+ce*w[2]+ee*w[1]+V*w[0];let Se=x[fe];fe=pe+ne*w[2]+Z*w[1]+V*w[0];let Ce=x[fe];fe=pe+ce*w[2]+Z*w[1]+V*w[0];let Oe=x[fe],He=_e+(Se-_e)*ue,We=Ce+(Oe-Ce)*ue;fe=pe+J*b[2]+K*b[1]+N*b[0],y.values[fe]=He+(We-He)*ae}}}else for(let ee=0;ee<A;++ee){let Z=A>1?M*(p-1)+ee*U:.5*(M+P)*(p-1);if(Z<0||Z>p-1){for(let oe=0;oe<d;oe++){let ne=oe+ee*b[2]+K*b[1]+N*b[0];y.values[ne]=c}continue}let ae=Math.round(Z),J=Math.round(X);for(let oe=0;oe<d;oe++){let ne=oe+ae*w[2]+J*w[1]+V*w[0],ce=oe+ee*b[2]+K*b[1]+N*b[0];y.values[ce]=x[ne]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var LF={kernelName:qi,backendName:"cpu",kernelFunc:PF};function WF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r;we(a,"cumsum");let l=C.getAxesPermutation([s],a.shape.length),c=a;l!=null&&(c=tr({inputs:{x:a},backend:n,attrs:{perm:l}}));let u=C.getInnerMostAxes(1,a.shape.length)[0];if(u!==c.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${c.shape.length-1} but got axis=${u}`);let h=Zn(c.dtype,"int32"),p=k.makeZerosTypedArray(k.sizeFromShape(c.shape),h),d=n.data.get(c.dataId).values,f=c.shape[c.shape.length-1],m=o?(y,g)=>y+f-g-1:(y,g)=>y+g;for(let y=0;y<d.length;y+=f)for(let g=0;g<f;g++){let _=m(y,g);if(g===0)p[_]=i?0:d[_];else{let x=m(y,g-1);p[_]=i?d[x]+p[x]:d[_]+p[x]}}let A=n.makeTensorInfo(c.shape,h,p);if(l!=null){let y=C.getUndoAxesPermutation(l),g=tr({inputs:{x:A},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(c),g}return A}var BF={kernelName:ns,backendName:"cpu",kernelFunc:WF};function VF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.data.get(a.dataId).values,c=n.data.get(s.dataId).values,u=Jf(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=ix(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var UF={kernelName:gh,backendName:"cpu",kernelFunc:VF};function jF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;k.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],c=a.shape[2],u=a.shape[3],h=l*s,p=c*s,d=u/(s*s),f=n.data.get(a.dataId).values,m=new Float32Array(o*h*p*d),A=0;for(let y=0;y<o;++y)for(let g=0;g<h;++g){let _=Math.floor(g/s),x=g%s;for(let w=0;w<p;++w){let b=Math.floor(w/s),N=w%s,T=(x*s+N)*d;for(let E=0;E<d;++E){let M=E+T+u*(b+c*(_+l*y));m[A++]=f[M]}}}return n.makeTensorInfo([o,h,p,d],a.dtype,m)}var GF={kernelName:Xi,backendName:"cpu",kernelFunc:jF};function Wx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=r;we([a,s],"depthwiseConv2DNative");let u=k.computeStrides(a.shape),h=k.computeStrides(s.shape),p=l;p==null&&(p=[1,1]),k.assert(C.eitherStridesOrDilationsAreOne(i,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${p}'`);let d=C.computeConv2DInfo(a.shape,s.shape,i,p,o,c,!0),{filterHeight:f,filterWidth:m,dilationHeight:A,dilationWidth:y,padInfo:g}=d,_=g.left,x=g.top,w=d.outChannels/d.inChannels,b=new Rt(d.outShape,a.dtype),N=n.data.get(a.dataId).values,T=n.data.get(s.dataId).values,E=b.values;for(let M=0;M<d.batchSize;++M){let $=M*u[0],P=M*b.strides[0];for(let V=0;V<d.outHeight;++V){let H=P+V*b.strides[1],U=V*d.strideHeight-_;for(let K=0;K<f;++K){let X=U+K*A;if(X<0||X>=d.inHeight)continue;let ee=K*h[0],Z=$+X*u[1];for(let ae=0;ae<d.outWidth;++ae){let J=H+ae*b.strides[2],oe=ae*d.strideWidth-x;for(let ne=0;ne<m;++ne){let ce=oe+ne*y;if(ce<0||ce>=d.inWidth)continue;let ue=ee+ne*h[1],pe=Z+ce*d.inChannels,fe=J,_e=ue;for(let Se=0;Se<d.inChannels;++Se){let Ce=N[pe+Se];for(let Oe=0;Oe<w;++Oe)E[fe+Oe]+=Ce*T[_e+Oe];fe+=w,_e+=w}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var HF={kernelName:rs,backendName:"cpu",kernelFunc:Wx};function qF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r;we([a,s],"depthwiseConv2dNativeBackpropFilter");let h=C.computeConv2DInfo(a.shape,u,i,o,l,c,!0),{strideHeight:p,strideWidth:d,filterHeight:f,filterWidth:m}=h,A=new Rt(h.filterShape,"float32"),y=h.padInfo.left,g=h.padInfo.top,_=h.outChannels/h.inChannels,x=n.data.get(a.dataId).values,w=new Rt(a.shape,a.dtype,x),b=n.data.get(s.dataId).values,N=new Rt(s.shape,s.dtype,b);for(let T=0;T<f;++T){let E=Math.max(0,Math.ceil((g-T)/p)),M=Math.min(h.outHeight,(h.inHeight+g-T)/p);for(let $=0;$<m;++$){let P=Math.max(0,Math.ceil((y-$)/d)),V=Math.min(h.outWidth,(h.inWidth+y-$)/d);for(let H=0;H<h.outChannels;++H){let U=Math.trunc(H/_),K=H%_,X=0;for(let ee=0;ee<h.batchSize;++ee)for(let Z=E;Z<M;++Z){let ae=T+Z*p-g;for(let J=P;J<V;++J){let oe=$+J*d-y;X+=w.get(ee,ae,oe,U)*N.get(ee,Z,J,H)}}A.set(X,T,$,U,K)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var XF={kernelName:xh,backendName:"cpu",kernelFunc:qF};function KF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r;we([a,s],"depthwiseConv2DNativeBackpropInput");let h=k.computeStrides(a.shape),p=k.computeStrides(s.shape),d=C.computeConv2DInfo(u,s.shape,i,o,l,c,!0),f=new Rt(d.inShape,"float32"),m=f.values,[A,y,g]=f.strides,_=n.data.get(a.dataId).values,[x,w,b]=h,N=n.data.get(s.dataId).values,[T,E,M]=p,{batchSize:$,filterHeight:P,filterWidth:V,inChannels:H,inHeight:U,inWidth:K,outChannels:X,outHeight:ee,outWidth:Z,strideHeight:ae,strideWidth:J}=d,oe=P-1-d.padInfo.top,ne=V-1-d.padInfo.left,ce=X/H;for(let ue=0;ue<$;++ue)for(let pe=0;pe<H;++pe)for(let fe=0;fe<U;++fe){let _e=fe-oe,Se=Math.max(0,Math.ceil(_e/ae)),Ce=Math.min(ee,(P+_e)/ae);for(let Oe=0;Oe<K;++Oe){let He=Oe-ne,We=Math.max(0,Math.ceil(He/J)),tt=Math.min(Z,(V+He)/J),st=0;for(let Ve=Se;Ve<Ce;++Ve){let ot=Ve*ae-_e;for(let lt=We;lt<tt;++lt){let On=lt*J-He,Ze=x*ue+w*Ve+b*lt,gn=T*(P-1-ot)+E*(V-1-On)+M*pe;for(let Gt=0;Gt<ce;++Gt){let xn=pe*ce+Gt,jn=_[Ze+xn],un=N[gn+Gt];st+=jn*un}}}m[A*ue+y*fe+g*Oe+pe]=st}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var ZF={kernelName:wh,backendName:"cpu",kernelFunc:KF};function YF(e){let{inputs:t,backend:n}=e,{x:r}=t,a=k.sizeFromShape(r.shape),s=n.data.get(r.dataId).values,i=Pe([a,a],r.dtype),o=i.values;for(let c=0;c<s.length;c++)o[c*a+c]=s[c];let l=[...r.shape,...r.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var JF={kernelName:_h,backendName:"cpu",kernelFunc:YF},QF={kernelName:cu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,c=l.data.get(r.dataId).values,u=r.shape.length,h=l.data.get(a.dataId).values,p=a.shape.length,{batchSize:d,inHeight:f,inWidth:m,inChannels:A,outHeight:y,outWidth:g,padInfo:_,strideHeight:x,strideWidth:w,filterHeight:b,filterWidth:N,dilationHeight:T,dilationWidth:E,outShape:M}=C.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),$=k.sizeFromShape(M),P=M.length,V=k.getArrayFromDType(r.dtype,$);for(let H=0;H<d;++H)for(let U=0;U<y;++U){let K=U*x-_.top;for(let X=0;X<g;++X){let ee=X*w-_.left;for(let Z=0;Z<A;++Z){let ae=Number.MIN_SAFE_INTEGER;for(let oe=0;oe<b;++oe){let ne=K+oe*T;if(ne>=0&&ne<f)for(let ce=0;ce<N;++ce){let ue=ee+ce*E;if(ue>=0&&ue<m){let pe=k.locToIndex([H,ne,ue,Z],u,k.computeStrides(r.shape)),fe=k.locToIndex([oe,ce,Z],p,k.computeStrides(a.shape)),_e=c[pe]+h[fe];_e>ae&&(ae=_e)}}}let J=k.locToIndex([H,U,X,Z],P,k.computeStrides(M));V[J]=ae}}}return{dataId:l.write(k.toTypedArray(V,r.dtype),M,r.dtype),shape:M,dtype:r.dtype}}},eM={kernelName:vh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=k.toNestedArray(r.shape,c.data.get(r.dataId).values),h=k.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:p,inHeight:d,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:_,strideWidth:x,filterHeight:w,filterWidth:b,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);k.assert(s.rank===E.length,()=>`Error in ${vh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=k.toNestedArray(E,c.data.get(s.dataId).values),$=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let P=0;P<p;++P)for(let V=0;V<A;++V){let H=V*_-g.top;for(let U=0;U<y;++U){let K=U*x-g.left;for(let X=0;X<m;++X){let ee=Number.MIN_SAFE_INTEGER,Z=0,ae=0;for(let J=0;J<w;++J){let oe=H+J*N;if(oe>=0&&oe<d)for(let ne=0;ne<b;++ne){let ce=K+ne*T;if(ce>=0&&ce<f){let ue=u[P][oe][ce][X]+h[J][ne][X];ue>ee&&(ee=ue,Z=J,ae=ne)}}}$[Z][ae][X]+=M[P][V][U][X]}}}return{dataId:c.write(k.toTypedArray($,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},tM={kernelName:bh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,c=t,u=k.toNestedArray(r.shape,c.data.get(r.dataId).values),h=k.toNestedArray(a.shape,c.data.get(a.dataId).values),{batchSize:p,inHeight:d,inWidth:f,inChannels:m,outHeight:A,outWidth:y,padInfo:g,strideHeight:_,strideWidth:x,filterHeight:w,filterWidth:b,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);k.assert(s.rank===E.length,()=>`Error in ${bh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=k.toNestedArray(E,c.data.get(s.dataId).values),$=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let P=0;P<p;++P)for(let V=0;V<A;++V){let H=V*_-g.top;for(let U=0;U<y;++U){let K=U*x-g.left;for(let X=0;X<m;++X){let ee=Number.MIN_SAFE_INTEGER,Z=H<0?0:H,ae=K<0?0:K;for(let J=0;J<w;++J){let oe=H+J*N;if(oe>=0&&oe<d)for(let ne=0;ne<b;++ne){let ce=K+ne*T;if(ce>=0&&ce<f){let ue=u[P][oe][ce][X]+h[J][ne][X];ue>ee&&(ee=ue,Z=oe,ae=ce)}}}$[P][Z][ae][X]+=M[P][V][U][X]}}}return{dataId:c.write(k.toTypedArray($,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function nM(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;we([r,a],"eluGrad");let s=new Float32Array(k.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l<i.length;++l){let c=i[l];c>=1?s[l]=o[l]:s[l]=o[l]*(c+1)}return n.makeTensorInfo(a.shape,"float32",s)}var rM={kernelName:kh,backendName:"cpu",kernelFunc:nM},aM=St((e,t)=>e===t?1:0),Bx=Bt(Yi,aM,null,"bool"),sM={kernelName:Yi,backendName:"cpu",kernelFunc:Bx},iM=C.ERF_P,oM=C.ERF_A1,lM=C.ERF_A2,uM=C.ERF_A3,cM=C.ERF_A4,hM=C.ERF_A5,dM=at(Zi,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+iM*n);return t*(1-((((hM*r+cM)*r+uM)*r+lM)*r+oM)*r*Math.exp(-n*n))}),pM={kernelName:Zi,backendName:"cpu",kernelFunc:dM};function Ld(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),mt({inputs:{x:a},backend:n,attrs:{shape:o}})}var fM={kernelName:Ji,backendName:"cpu",kernelFunc:Ld},mM=St((e,t)=>e/t),lm=Bt(as,mM),um={kernelName:as,backendName:"cpu",kernelFunc:lm};function Vx(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,c=[a,s],u=k.sizeFromShape(c),h=k.getTypedArrayFromDType("float32",u),p=k.getTypedArrayFromDType("float32",u);for(let A=0;A<a;A++){let y=ti({inputs:{x:o},backend:n,attrs:{begin:[A,0],size:[1,s]}}),g=ti({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,s]}}),_=Sn({inputs:{real:y,imag:g},backend:n}),{real:x,imag:w}=AM(_,t,n),b=C.mergeRealAndImagArrays(x,w);for(let N=0;N<s;N++){let T=C.getComplexWithIndex(b,N);h[A*s+N]=T.real,p[A*s+N]=T.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(_)}let d=n.makeTensorInfo(c,"float32",h),f=n.makeTensorInfo(c,"float32",p),m=Sn({inputs:{real:d,imag:f},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),m}function AM(e,t,n){let r=k.sizeFromShape(e.shape),a=n.data.get(e.dataId),s=n.data.get(a.complexTensorInfos.real.dataId).values,i=n.data.get(a.complexTensorInfos.imag.dataId).values;if(yM(r)){let o=cm(s,i,r,t,n),l=[e.shape[0],e.shape[1]];if(t){let c=n.makeTensorInfo(l,"float32",o.real),u=n.makeTensorInfo(l,"float32",o.imag),h=n.makeTensorInfo([],"float32",k.createScalarValue(r,"float32")),p=Mr({inputs:{x:h},backend:n}),d=um.kernelFunc({inputs:{a:c,b:h},backend:n}),f=um.kernelFunc({inputs:{a:u,b:p},backend:n}),m=n.data.get(d.dataId).values,A=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),{real:m,imag:A}}return o}else{let o=C.mergeRealAndImagArrays(s,i),l=gM(o,r,t);return C.splitRealAndImagArrays(l)}}function yM(e){return(e&e-1)==0}function cm(e,t,n,r,a){if(n===1)return{real:e,imag:t};let s=C.mergeRealAndImagArrays(e,t),i=n/2,o=C.complexWithEvenIndex(s),l=o.real,c=o.imag,u=[l.length],h=a.makeTensorInfo(u,"float32",l),p=a.makeTensorInfo(u,"float32",c),d=Sn({inputs:{real:h,imag:p},backend:a}),f=C.complexWithOddIndex(s),m=f.real,A=f.imag,y=[m.length],g=a.makeTensorInfo(y,"float32",m),_=a.makeTensorInfo(y,"float32",A),x=Sn({inputs:{real:g,imag:_},backend:a}),w=cm(l,c,i,r,a),b=w.real,N=w.imag,T=[b.length],E=a.makeTensorInfo(T,"float32",b),M=a.makeTensorInfo(T,"float32",N),$=Sn({inputs:{real:E,imag:M},backend:a}),P=cm(m,A,i,r,a),V=P.real,H=P.imag,U=[V.length],K=a.makeTensorInfo(U,"float32",V),X=a.makeTensorInfo(U,"float32",H),ee=Sn({inputs:{real:K,imag:X},backend:a}),Z=C.exponents(n,r),ae=[Z.real.length],J=a.makeTensorInfo(ae,"float32",Z.real),oe=a.makeTensorInfo(ae,"float32",Z.imag),ne=Sn({inputs:{real:J,imag:oe},backend:a}),ce=am({inputs:{a:ne,b:ee},backend:a}),ue=Zu({inputs:{a:$,b:ce},backend:a}),pe=sm({inputs:{a:$,b:ce},backend:a}),fe=ei({inputs:{input:ue},backend:a}),_e=ei({inputs:{input:pe},backend:a}),Se=cl({inputs:{input:ue},backend:a}),Ce=cl({inputs:{input:pe},backend:a}),Oe=hl({inputs:[fe,_e],backend:a,attrs:{axis:0}}),He=hl({inputs:[Se,Ce],backend:a,attrs:{axis:0}}),We=a.data.get(Oe.dataId).values,tt=a.data.get(He.dataId).values;return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(_),a.disposeIntermediateTensorInfo(x),a.disposeIntermediateTensorInfo(E),a.disposeIntermediateTensorInfo(M),a.disposeIntermediateTensorInfo($),a.disposeIntermediateTensorInfo(K),a.disposeIntermediateTensorInfo(X),a.disposeIntermediateTensorInfo(ee),a.disposeIntermediateTensorInfo(J),a.disposeIntermediateTensorInfo(oe),a.disposeIntermediateTensorInfo(ne),a.disposeIntermediateTensorInfo(ce),a.disposeIntermediateTensorInfo(ue),a.disposeIntermediateTensorInfo(pe),a.disposeIntermediateTensorInfo(fe),a.disposeIntermediateTensorInfo(Se),a.disposeIntermediateTensorInfo(_e),a.disposeIntermediateTensorInfo(Ce),a.disposeIntermediateTensorInfo(Oe),a.disposeIntermediateTensorInfo(He),{real:We,imag:tt}}function gM(e,t,n){let r=new Float32Array(t*2);for(let a=0;a<t;a++){let s=0,i=0;for(let o=0;o<t;o++){let l=C.exponent(a*o,t,n),c=C.getComplexWithIndex(e,o);s+=c.real*l.real-c.imag*l.imag,i+=c.real*l.imag+c.imag*l.real}n&&(s/=t,i/=t),C.assignToTypedArray(r,s,i,a)}return r}function xM(e){let{inputs:t,backend:n}=e,{input:r}=t,a=k.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=mt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Vx(o,!1,n),c=mt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var wM={kernelName:Ih,backendName:"cpu",kernelFunc:xM};function hm(e){let{backend:t,attrs:n}=e,{shape:r,value:a,dtype:s}=n,i=s||k.inferDtype(a),o=k.getArrayFromDType(i,k.sizeFromShape(r));return _M(o,a,i),t.makeTensorInfo(r,i,o)}var bM={kernelName:hu,backendName:"cpu",kernelFunc:hm};function _M(e,t,n){e.fill(t)}var vM={kernelName:eo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,a=n,s=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[i,o,l,c]=r.shape,u=a.data.get(r.dataId).values;for(let h=0;h<i;h++){let p=h*l*o*c;for(let d=0;d<o;d++){let f=d*(l*c);for(let m=0;m<l;m++){let A=m*c;for(let y=0;y<c;y++){let g=[i,d,m,y][2],_=Math.round(l-g),x=p+f+A+y,w=u[x];if(_>=0&&_<l){let b=_*c,N=p+f+b+y;w=u[N]}s[x]=w}}}}return{dataId:a.write(s,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},kM=St((e,t)=>Math.floor(e/t)),IM=Bt(os,kM,null,"int32"),NM={kernelName:os,backendName:"cpu",kernelFunc:IM};function SM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:p,activation:d,leakyreluAlpha:f}=r,m=Lx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:p}});if(i){let A=m;m=Zu({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(d){let A=m;m=im(n,m,d,o,f),n.disposeIntermediateTensorInfo(A)}return m}var TM={kernelName:Ls,backendName:"cpu",kernelFunc:SM};function EM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:p,activation:d,leakyreluAlpha:f}=r,m=Wx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:p}});if(i){let A=m;m=Zu({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(d){let A=m;m=im(n,m,d,o,f),n.disposeIntermediateTensorInfo(A)}return m}var CM={kernelName:Ws,backendName:"cpu",kernelFunc:EM};function RM(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=k.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,c,u,h]=C.prepareAndValidate(r,a);if(c===0)return n.makeTensorInfo(l,r.dtype,[]);let p=Pe([c,u],r.dtype),d=n.data.get(a.dataId).values,f=n.data.get(r.dataId).values;for(let m=0;m<c;m++){let A=[],y=0;for(let g=0;g<o;g++){let _=d[m*o+g];y+=_*h[g],A.push(_)}if(y<0||y>=s/u)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;g<u;g++)p.values[m*u+g]=f[y*u+g]}return n.makeTensorInfo(l,p.dtype,p.values)}var FM={kernelName:no,backendName:"cpu",kernelFunc:RM};function MM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r;we([a,s],"gatherV2");let l=o;o==null&&(l=0);let c=k.sizeFromShape(s.shape),u=k.parseAxisParam(i,a.shape)[0],h=C.segment_util.collectGatherOpShapeInfo(a,s,u,l),p=mt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),d=mt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,c/h.batchSize]}}),f=[h.batchSize,h.outerSize,c/h.batchSize,h.sliceSize],m=n.bufferSync(d),A=n.bufferSync(p),y=hx(A,m,f);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var OM={kernelName:to,backendName:"cpu",kernelFunc:MM},$M=St((e,t)=>e>=t?1:0),DM=Bt(us,$M,null,"bool"),zM={kernelName:us,backendName:"cpu",kernelFunc:DM};function PM(e){let{inputs:t,backend:n}=e,{input:r}=t,a=k.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=mt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Vx(o,!0,n),c=mt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),c}var LM={kernelName:Nh,backendName:"cpu",kernelFunc:PM},WM=at(so,e=>Number.isFinite(e)?1:0,"bool"),BM={kernelName:so,backendName:"cpu",kernelFunc:WM},VM=at(io,e=>Math.abs(e)===Infinity?1:0,"bool"),UM={kernelName:io,backendName:"cpu",kernelFunc:VM},jM=at(oo,e=>Number.isNaN(e)?1:0,"bool"),GM={kernelName:oo,backendName:"cpu",kernelFunc:jM},HM=St((e,t)=>e<=t?1:0),qM=Bt(uo,HM,null,"bool"),XM={kernelName:uo,backendName:"cpu",kernelFunc:qM};function KM(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=fx(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var ZM={kernelName:Th,backendName:"cpu",kernelFunc:KM},YM=at(co,e=>Math.log1p(e)),JM={kernelName:co,backendName:"cpu",kernelFunc:YM},QM=St((e,t)=>e&&t),eO=Bt(ho,QM,null,"bool"),tO={kernelName:ho,backendName:"cpu",kernelFunc:eO},nO=at(du,e=>e?0:1,"bool"),rO={kernelName:du,backendName:"cpu",kernelFunc:nO},aO=St((e,t)=>e||t),sO=Bt(pu,aO,null,"bool"),iO={kernelName:pu,backendName:"cpu",kernelFunc:sO};function oO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;we(a,"LRN");let c=a.shape[3],u=c-1,h=n.data.get(a.dataId).values,p=k.sizeFromShape(a.shape),d=new Float32Array(p);function f(m){let A=m%c,y=m-A+Math.max(0,A-s),g=m-A+Math.min(A+s,u),_=0;for(;y<=g;y++){let x=h[y];_+=x*x}return _}for(let m=0;m<p;m++){let A=f(m),y=h[m]*Math.pow(i+o*A,-l);d[m]=y}return n.makeTensorInfo(a.shape,a.dtype,d)}var lO={kernelName:fu,backendName:"cpu",kernelFunc:oO};function uO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r;we(i,"LRNGrad");let h=k.sizeFromShape(i.shape),p=i.shape[3],d=n.data.get(i.dataId).values,f=n.data.get(a.dataId).values,m=n.data.get(s.dataId).values,A=new Float32Array(h),y=h;for(let g=0;g<y;g++){let _=g%p,x=g-_+Math.max(0,_-o),w=g-_+Math.min(p,_+o+1),b=0;for(let N=x;N<w;N++)b+=Math.pow(f[N],2);b=c*b+l;for(let N=x;N<w;N++){let T=-2*c*u*f[N]*m[g]/b;g===N&&(T+=Math.pow(b,-u)),T*=d[g],A[N]+=T}}return n.makeTensorInfo(i.shape,a.dtype,A)}var cO={kernelName:Eh,backendName:"cpu",kernelFunc:uO};function Ux(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=n,l=a.shape,c=l.length,u=k.parseAxisParam(s,l),h=u,p=C.getAxesPermutation(h,c),d=o.data.get(a.dataId).values;if(p!=null){let x=new Array(c);for(let w=0;w<x.length;w++)x[w]=l[p[w]];d=tm(d,l,a.dtype,p,x),h=C.getInnerMostAxes(h.length,c),l=x}we(a,"max"),C.assertAxesAreInnerMostDims("max",h,c);let[f,m]=C.computeOutAndReduceShapes(l,h),A=k.sizeFromShape(m),y=Ax(d,A,f,a.dtype),g=o.write(y,f,a.dtype),_=f;return i&&(_=C.expandShapeToKeepDim(f,u)),{dataId:g,shape:_,dtype:a.dtype}}var hO={kernelName:ds,backendName:"cpu",kernelFunc:Ux};function dO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;we(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;k.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=C.computePool2DInfo(a.shape,s,i,c,o,l),h;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))h=Mr({inputs:{x:a},backend:n});else{let p=n.data.get(a.dataId).values,d=k.computeStrides(a.shape),f=om(p,a.shape,a.dtype,d,u,"max");h=n.makeTensorInfo(u.outShape,a.dtype,f.values)}return h}var pO={kernelName:fs,backendName:"cpu",kernelFunc:dO};function fO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r;we(a,"maxPool3d");let u=C.computePool3DInfo(a.shape,s,i,1,o,l,c),h=n.data.get(a.dataId).values,p=Px(h,a.shape,a.dtype,k.computeStrides(a.shape),u,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var mO={kernelName:mu,backendName:"cpu",kernelFunc:fO};function AO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=r;we([a,s],"maxPool3DGrad");let u=C.computePool3DInfo(s.shape,i,o,1,l,c),h=n.bufferSync(s),p=nF(h,u),d=u.strideDepth,f=u.strideHeight,m=u.strideWidth,A=u.dilationDepth,y=u.dilationHeight,g=u.dilationWidth,_=u.effectiveFilterDepth,x=u.effectiveFilterHeight,w=u.effectiveFilterWidth,b=_-1-u.padInfo.front,N=w-1-u.padInfo.left,T=x-1-u.padInfo.top,E=Pe(s.shape,"float32"),M=n.bufferSync(a);for(let $=0;$<u.batchSize;++$)for(let P=0;P<u.inChannels;++P)for(let V=0;V<u.inDepth;++V)for(let H=0;H<u.inHeight;++H)for(let U=0;U<u.inWidth;++U){let K=V-b,X=H-T,ee=U-N,Z=0;for(let ae=0;ae<_;ae+=A){let J=(K+ae)/d;if(!(J<0||J>=u.outDepth||Math.floor(J)!==J))for(let oe=0;oe<x;oe+=y){let ne=(X+oe)/f;if(!(ne<0||ne>=u.outHeight||Math.floor(ne)!==ne))for(let ce=0;ce<w;ce+=g){let ue=(ee+ce)/m;if(ue<0||ue>=u.outWidth||Math.floor(ue)!==ue)continue;let pe=_*x*w-1-p.get($,J,ne,ue,P),fe=ae*x*w+oe*w+ce,_e=pe===fe?1:0;_e!==0&&(Z+=M.get($,J,ne,ue,P)*_e)}}}E.set(Z,$,V,H,U,P)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var yO={kernelName:Rh,backendName:"cpu",kernelFunc:AO};function gO(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;we([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,p=C.computePool2DInfo(o.shape,l,c,1,u,h),d=n.data.get(o.dataId).values,f=Pe(p.outShape,o.dtype,zx(d,o.shape,o.dtype,p).values),m=p.strideHeight,A=p.strideWidth,y=p.dilationHeight,g=p.dilationWidth,_=p.effectiveFilterHeight,x=p.effectiveFilterWidth,w=x-1-p.padInfo.left,b=_-1-p.padInfo.top,N=Pe(o.shape,"float32"),T=n.data.get(a.dataId).values,E=Pe(a.shape,"float32",T);for(let M=0;M<p.batchSize;++M)for(let $=0;$<p.inChannels;++$)for(let P=0;P<p.inHeight;++P)for(let V=0;V<p.inWidth;++V){let H=P-b,U=V-w,K=0;for(let X=0;X<_;X+=y){let ee=(H+X)/m;if(!(ee<0||ee>=p.outHeight||Math.floor(ee)!==ee))for(let Z=0;Z<x;Z+=g){let ae=(U+Z)/A;if(ae<0||ae>=p.outWidth||Math.floor(ae)!==ae)continue;let J=_*x-1-f.get(M,ee,ae,$),oe=X*x+Z,ne=J===oe?1:0;ne!==0&&(K+=E.get(M,ee,ae,$)*ne)}}N.set(K,M,P,V,$)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var xO={kernelName:Ch,backendName:"cpu",kernelFunc:gO};function wO(e,t,n,r,a){let s=k.computeStrides(t),i=om(e,t,n,s,a,"max"),o=zx(e,t,n,a,!0,r);return[i.values,o.values]}var _O={kernelName:Fh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;we(r,"MaxPoolWithArgmax");let c=l.data.get(r.dataId).values,u=C.computePool2DInfo(r.shape,a,s,[1,1],i),[h,p]=wO(c,r.shape,r.dtype,o,u),d=l.write(h,u.outShape,r.dtype),f=l.write(p,u.outShape,r.dtype);return[{dataId:d,shape:u.outShape,dtype:r.dtype},{dataId:f,shape:u.outShape,dtype:"int32"}]}};function Wd(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;we(a,"sum");let o;a.dtype==="bool"?o=Na({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Mr({inputs:{x:a},backend:n});let l=o.shape.length,c=k.parseAxisParam(s,o.shape),u=C.getAxesPermutation(c,l),h=c,p=o;u!=null&&(p=tr({inputs:{x:o},backend:n,attrs:{perm:u}}),h=C.getInnerMostAxes(h.length,l)),C.assertAxesAreInnerMostDims("sum",h,p.shape.length);let[d,f]=C.computeOutAndReduceShapes(p.shape,h),m=C.upcastType(p.dtype,"int32"),A=Pd(n,d,m),y=k.sizeFromShape(f),g=n.data.get(A.dataId).values,_=n.data.get(p.dataId).values;for(let x=0;x<g.length;++x){let w=x*y,b=0;for(let N=0;N<y;++N)b+=_[w+N];g[x]=b}if(i){let x=C.expandShapeToKeepDim(A.shape,c),w=A;A=mt({inputs:{x:A},backend:n,attrs:{shape:x}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(o),u!=null&&n.disposeIntermediateTensorInfo(p),A}var bO={kernelName:Fs,backendName:"cpu",kernelFunc:Wd};function vO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=k.parseAxisParam(s,a.shape),l=C.computeOutAndReduceShapes(a.shape,o)[1],c=k.sizeFromShape(l),u=[],h=n.makeTensorInfo([],"float32",new Float32Array([c]));u.push(h);let p=Na({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});u.push(p);let d=lm({inputs:{a:p,b:h},backend:n});u.push(d);let f=Wd({inputs:{x:d},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var kO={kernelName:ms,backendName:"cpu",kernelFunc:vO};function IO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;we(a,"min");let o=k.parseAxisParam(s,a.shape),l=o,c=C.getAxesPermutation(l,a.shape.length),u=a;c!=null&&(u=tr({inputs:{x:a},backend:n,attrs:{perm:c}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",l,u.shape.length);let[h,p]=C.computeOutAndReduceShapes(u.shape,l),d=k.sizeFromShape(p),f=k.makeZerosTypedArray(k.sizeFromShape(h),u.dtype),m=n.data.get(u.dataId).values;for(let y=0;y<f.length;++y){let g=y*d,_=m[g];for(let x=0;x<d;++x){let w=m[g+x];w<_&&(_=w)}f[y]=_}c!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(h,u.dtype,f);if(i){let y=C.expandShapeToKeepDim(h,o),g=mt({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var NO={kernelName:As,backendName:"cpu",kernelFunc:IO};function SO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,mode:i}=r;we(a,"mirrorPad");let o=s.map((g,_)=>g[0]+a.shape[_]+g[1]),l=s.map(g=>g[0]),c=s.map((g,_)=>g[0]+a.shape[_]),u=i==="reflect"?0:1,h=n.data.get(a.dataId).values,p=a.shape.length,d=k.computeStrides(a.shape),f=k.sizeFromShape(o),m=o.length,A=k.computeStrides(o),y=k.getTypedArrayFromDType(a.dtype,f);for(let g=0;g<f;g++){let _=k.indexToLoc(g,m,A);for(let w=0;w<m;w++)_[w]<l[w]?_[w]=l[w]*2-_[w]-u:_[w]>=c[w]&&(_[w]=(c[w]-1)*2-_[w]+u);_=_.map((w,b)=>w-l[b]);let x=k.locToIndex(_,p,d);y[g]=h[x]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var TO={kernelName:Au,backendName:"cpu",kernelFunc:SO},EO=St((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),CO=Bt(po,EO),RO={kernelName:po,backendName:"cpu",kernelFunc:CO},FO=Mi(f8());function jx(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],a.shape),c=Ux({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=C.expandShapeToKeepDim(c.shape,l),h=mt({inputs:{x:c},backend:n,attrs:{shape:u}}),p=sm({inputs:{a,b:h},backend:n}),d=Ex({inputs:{x:p},backend:n}),f=Wd({inputs:{x:d},backend:n,attrs:{axis:l,keepDims:!1}}),m=mt({inputs:{x:f},backend:n,attrs:{shape:u}}),A=lm({inputs:{a:d,b:m},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var MO={kernelName:Ms,backendName:"cpu",kernelFunc:jx};function OO(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;we(a,"multinomial");let l=o?a:jx({inputs:{logits:a},backend:n,attrs:{dim:-1}}),c=l.shape[0],u=l.shape[1],h=n.data.get(l.dataId).values,p=[c,s],d=k.makeZerosTypedArray(k.sizeFromShape(p),"int32");for(let f=0;f<c;++f){let m=f*u,A=new Float32Array(u-1);A[0]=h[m];for(let _=1;_<A.length;++_)A[_]=A[_-1]+h[m+_];let y=FO.alea(i.toString()),g=f*s;for(let _=0;_<s;++_){let x=y();d[g+_]=A.length;for(let w=0;w<A.length;w++)if(x<A[w]){d[g+_]=w;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(p,"int32",d)}var $O={kernelName:Mh,backendName:"cpu",kernelFunc:OO},DO=Fr.nonMaxSuppressionV3Impl;function zO(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r;we(a,"NonMaxSuppression");let c=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,{selectedIndices:h}=DO(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var PO={kernelName:Ao,backendName:"cpu",kernelFunc:zO},LO=Fr.nonMaxSuppressionV4Impl;function WO(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r;we(a,"NonMaxSuppressionPadded");let u=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,{selectedIndices:p,validOutputs:d}=LO(u,h,i,o,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([d]))]}var BO={kernelName:yo,backendName:"cpu",kernelFunc:WO},VO=Fr.nonMaxSuppressionV5Impl;function UO(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r;we(a,"NonMaxSuppressionWithScore");let u=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,p=i,d=o,f=l,m=c,{selectedIndices:A,selectedScores:y}=VO(u,h,p,d,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var jO={kernelName:go,backendName:"cpu",kernelFunc:UO};function GO(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r;we(a,"oneHot");let l=k.sizeFromShape(a.shape),c=new Float32Array(l*s);c.fill(o);let u=n.data.get(a.dataId).values;for(let h=0;h<l;++h)u[h]>=0&&u[h]<s&&(c[h*s+u[h]]=i);return n.makeTensorInfo([...a.shape,s],"int32",c)}var HO={kernelName:xs,backendName:"cpu",kernelFunc:GO};function Bd(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(r.dtype==="complex64"){let a=ei({inputs:{input:r},backend:n}),s=Bd({inputs:{x:a},backend:n}),i=cl({inputs:{input:r},backend:n}),o=Bd({inputs:{x:i},backend:n}),l=Sn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return hm({backend:n,attrs:{shape:r.shape,value:0,dtype:r.dtype}})}var qO={kernelName:Do,backendName:"cpu",kernelFunc:Bd};function Gx(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(r.dtype==="complex64"){let a=ei({inputs:{input:r},backend:n}),s=Gx({inputs:{x:a},backend:n}),i=cl({inputs:{input:r},backend:n}),o=Bd({inputs:{x:i},backend:n}),l=Sn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return hm({backend:n,attrs:{shape:r.shape,value:1,dtype:r.dtype}})}var XO={kernelName:xo,backendName:"cpu",kernelFunc:Gx};function Hx(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return Ld({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=Ld({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=hl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var KO={kernelName:wo,backendName:"cpu",kernelFunc:Hx};function ZO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;we(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),c=n.data.get(a.dataId).values,u=k.sizeFromShape(a.shape),h=a.shape.length,p=k.computeStrides(a.shape),d=k.sizeFromShape(o),f=o.length,m=k.computeStrides(o),A=k.getTypedArrayFromDType(a.dtype,d);i!==0&&A.fill(i);for(let y=0;y<u;y++){let g=k.indexToLoc(y,h,p).map((x,w)=>x+l[w]),_=k.locToIndex(g,f,m);A[_]=c[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var qx={kernelName:ws,backendName:"cpu",kernelFunc:ZO},YO=St((e,t)=>Math.pow(e,t)),JO=Bt(_s,YO),QO={kernelName:_s,backendName:"cpu",kernelFunc:JO};function e$(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=nm(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var t$={kernelName:yu,backendName:"cpu",kernelFunc:e$},n$=at(bo,e=>1/e),r$={kernelName:bo,backendName:"cpu",kernelFunc:n$};function a$(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;we(a,"resizeBilinear");let l=k.computeStrides(a.shape),[c,u]=o,[h,p,d,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(k.sizeFromShape([h,c,u,f])),y=[s&&c>1?p-1:p,s&&u>1?d-1:d],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],_=0,x=y[0]/g[0],w=y[1]/g[1];for(let b=0;b<h;b++)for(let N=0;N<c;N++){let T;i?T=x*(N+.5)-.5:T=x*N;let E=Math.max(0,Math.floor(T)),M=T-E,$=Math.min(p-1,Math.ceil(T)),P=b*l[0]+E*l[1],V=b*l[0]+$*l[1];for(let H=0;H<u;H++){let U;i?U=w*(H+.5)-.5:U=w*H;let K=Math.max(0,Math.floor(U)),X=U-K,ee=Math.min(d-1,Math.ceil(U)),Z=P+K*l[2],ae=V+K*l[2],J=P+ee*l[2],oe=V+ee*l[2];for(let ne=0;ne<f;ne++){let ce=m[Z+ne],ue=m[ae+ne],pe=m[J+ne],fe=m[oe+ne],_e=ce+(pe-ce)*X,Se=ue+(fe-ue)*X,Ce=_e+(Se-_e)*M;A[_++]=Ce}}}return n.makeTensorInfo([h,c,u,f],"float32",A)}var s$={kernelName:ks,backendName:"cpu",kernelFunc:a$};function i$(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;we([s,a],"resizeBilinearGrad");let o=k.computeStrides(a.shape),[l,c,u,h]=a.shape,[,p,d]=s.shape,f=new Float32Array(l*c*u*h),m=[i&&p>1?c-1:c,i&&d>1?u-1:u],A=[i&&p>1?p-1:p,i&&d>1?d-1:d],y=m[0]/A[0],g=m[1]/A[1],_=n.data.get(s.dataId).values,x=0;for(let w=0;w<l;w++){let b=w*o[0];for(let N=0;N<p;N++){let T=N*y,E=Math.floor(T),M=Math.min(Math.ceil(T),c-1),$=b+E*o[1],P=b+M*o[1],V=T-E,H=1-V;for(let U=0;U<d;U++){let K=U*g,X=Math.floor(K),ee=Math.min(Math.ceil(K),u-1),Z=K-X,ae=1-Z,J=$+X*o[2],oe=$+ee*o[2],ne=P+X*o[2],ce=P+ee*o[2],ue=H*ae,pe=H*Z,fe=V*ae,_e=V*Z;for(let Se=0;Se<h;Se++){let Ce=_[x++];f[J+Se]+=Ce*ue,f[oe+Se]+=Ce*pe,f[ne+Se]+=Ce*fe,f[ce+Se]+=Ce*_e}}}}return n.makeTensorInfo([l,u,c,h],"float32",f)}var o$={kernelName:Dh,backendName:"cpu",kernelFunc:i$};function l$(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;we(a,"resizeNearestNeighbor");let l=k.computeStrides(a.shape),[c,u]=o,[h,p,d,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(h*c*u*f),y=[s&&c>1?p-1:p,s&&u>1?d-1:d],g=[s&&c>1?c-1:c,s&&u>1?u-1:u],_=y[0]/g[0],x=y[1]/g[1],w=0;for(let b=0;b<h;b++){let N=b*l[0];for(let T=0;T<c;T++){let E=i?_*(T+.5):_*T,M=Math.min(p-1,s?Math.round(E):Math.floor(E));i&&(M=Math.max(0,M));let $=N+M*l[1];for(let P=0;P<u;P++){let V=i?x*(P+.5):x*P,H=Math.min(d-1,s?Math.round(V):Math.floor(V));i&&(H=Math.max(0,H));let U=$+H*l[2];for(let K=0;K<f;K++){let X=m[U+K];A[w++]=X}}}}return n.makeTensorInfo([h,c,u,f],a.dtype,A)}var u$={kernelName:gu,backendName:"cpu",kernelFunc:l$};function c$(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;we([s,a],"resizeNearestNeighborGrad");let o=k.computeStrides(a.shape),l=k.computeStrides(s.shape),[c,u,h,p]=a.shape,[,d,f]=s.shape,m=new Float32Array(c*u*h*p),A=n.data.get(s.dataId).values,y=[i&&d>1?u-1:u,i&&f>1?h-1:h],g=[i&&d>1?d-1:d,i&&f>1?f-1:f],_=y[0]/g[0],x=y[1]/g[1],w=1/_,b=1/x,N=Math.ceil(w)*2+2,T=Math.ceil(b)*2+2;for(let E=0;E<c;E++){let M=E*o[0];for(let $=0;$<u;$++){let P=M+$*o[1],V=Math.floor($*w),H=Math.floor(V-N/2);for(let U=0;U<h;U++){let K=P+U*o[2],X=Math.floor(U*b),ee=Math.floor(X-T/2);for(let Z=0;Z<p;Z++){let ae=0;for(let J=0;J<N;J++){let oe=J+H;if(oe<0||oe>=d)continue;let ne=M+oe*l[1],ce=oe*_,ue=Math.min(u-1,i?Math.round(ce):Math.floor(ce));if($===ue)for(let pe=0;pe<T;pe++){let fe=pe+ee;if(fe<0||fe>=f)continue;let _e=ne+fe*l[2],Se=fe*x,Ce=Math.min(h-1,i?Math.round(Se):Math.floor(Se));U===Ce&&(ae+=A[_e+Z])}}m[K+Z]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,m)}var h$={kernelName:$h,backendName:"cpu",kernelFunc:c$};function d$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;we(a,"reverse");let i=a.shape.length,o=k.parseAxisParam(s,a.shape);if(i===0)return Mr({inputs:{x:a},backend:n});let l=new Rt(a.shape,a.dtype),c=n.bufferSync(a);for(let u=0;u<l.size;u++){let h=l.indexToLoc(u),p=h.slice();o.forEach(d=>p[d]=a.shape[d]-1-p[d]),l.set(c.get(...p),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var p$={kernelName:Ns,backendName:"cpu",kernelFunc:d$},f$={kernelName:zo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(r.shape)),[c,u,h,p]=r.shape,[d,f]=C.getImageCenter(i,u,h),m=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let _=0;_<c;_++){let x=_*h*u*p;for(let w=0;w<u;w++){let b=w*(h*p);for(let N=0;N<h;N++){let T=N*p;for(let E=0;E<p;E++){let M=[c,w,N,E],$=M[2],P=M[1],V=($-d)*y-(P-f)*A,H=($-d)*A+(P-f)*y;V=Math.round(V+d),H=Math.round(H+f);let U=s;if(typeof s!="number"&&(E===3?U=m:U=s[E]),V>=0&&V<h&&H>=0&&H<u){let X=H*(h*p),ee=V*p,Z=x+X+ee+E;U=g[Z]}let K=x+b+T+E;l[K]=U}}}}return{dataId:o.write(l,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},m$=at(Ss,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),A$={kernelName:Ss,backendName:"cpu",kernelFunc:m$};function Xx(e,t,n,r,a,s,i,o,l,c){let u=[r/a,a],h=e.values,p=t.values;if(r===0)return Pe(n,t.dtype);let d=Pe(u,t.dtype);d.values.fill(l);for(let f=0;f<s;f++){let m=[],A=0;for(let y=0;y<i;y++){let g=h[f*i+y];m.push(g),A+=g*o[y]}if(A<0||A>=r/a)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y<a;y++)c?d.values[A*a+y]+=p[f*a+y]:d.values[A*a+y]=t.rank===0?p[0]:p[f*a+y]}return d}function y$(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:h}=C.calculateShapes(s,a,i),p=!0,d=n.bufferSync(a),f=n.bufferSync(s),m=Xx(d,f,i,h,c,l,o,u,0,p);return n.makeTensorInfo(i,m.dtype,m.values)}var g$={kernelName:ko,backendName:"cpu",kernelFunc:y$};function x$(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t;we([r,a,s],"select");let i=r.shape.length,o=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=n.data.get(s.dataId).values,u=Zn(a.dtype,s.dtype),h=k.makeZerosTypedArray(k.sizeFromShape(a.shape),u),p=0,d=i===0||i>1||a.shape.length===1?1:k.sizeFromShape(a.shape.slice(1));for(let f=0;f<o.length;f++)for(let m=0;m<d;m++)o[f]===1?h[p++]=l[f]:h[p++]=c[f];return n.makeTensorInfo(a.shape,u,h)}var w$={kernelName:Io,backendName:"cpu",kernelFunc:x$},_$=C.SELU_SCALEALPHA,b$=C.SELU_SCALE,v$=at(No,e=>e>=0?b$*e:_$*(Math.exp(e)-1)),k$={kernelName:No,backendName:"cpu",kernelFunc:v$},I$=at(Cs,e=>1/(1+Math.exp(-e))),N$={kernelName:Cs,backendName:"cpu",kernelFunc:I$},S$=at(Eo,e=>e<0?-1:e>0?1:0),T$={kernelName:Eo,backendName:"cpu",kernelFunc:S$},E$=at(Es,e=>Math.sin(e)),C$={kernelName:Es,backendName:"cpu",kernelFunc:E$},R$=at(To,e=>Math.sinh(e)),F$={kernelName:To,backendName:"cpu",kernelFunc:R$},M$=11920928955078125e-23,Kx=Math.log(M$)+2,O$=at(Co,e=>{let t=e>-Kx,n=e<Kx,r=Math.exp(e),a;return n?a=r:t?a=e:a=Math.log(1+r),a}),$$={kernelName:Co,backendName:"cpu",kernelFunc:O$};function D$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;we([a],"spaceToBatchND");let o=k.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<a.shape.length;++A)l.push([0,0]);let c=qx.kernelFunc({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),u=C.getReshaped(c.shape,s,o,!1),h=C.getPermuted(u.length,s.length,!1),p=C.getReshapedPermuted(c.shape,s,o,!1),d=mt({inputs:{x:c},backend:n,attrs:{shape:u}}),f=tr({inputs:{x:d},backend:n,attrs:{perm:h}}),m=mt({inputs:{x:f},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),m}var z$={kernelName:xu,backendName:"cpu",kernelFunc:D$};function P$(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:p}=C.calculateShapes(s,a,o),d=!1,f=n.bufferSync(a),m=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=Xx(f,m,o,p,u,c,l,h,A,d);return n.makeTensorInfo(o,y.dtype,y.values)}var L$={kernelName:zh,backendName:"cpu",kernelFunc:P$};function W$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=k.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),c=new Array(a.shape.length).fill(0),u=a.shape.slice();return l.map(h=>{let p=[...u];p[o]=h;let d=ti({inputs:{x:a},backend:n,attrs:{begin:c,size:p}});return c[o]+=h,d})}var B$={kernelName:Ro,backendName:"cpu",kernelFunc:W$},V$=at(Rs,e=>Math.sqrt(e)),U$={kernelName:Rs,backendName:"cpu",kernelFunc:V$},j$={kernelName:wu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;we(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i<a.length;++i){let o=a[i];s[i]=o*o}return{dataId:r.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},G$=at(ma,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),H$={kernelName:ma,backendName:"cpu",kernelFunc:G$};function q$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:p}=r;we(a,"stridedSlice");let{nonStrided:d,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=nn.sliceInfo(a.shape,s,i,o,l,c,u,h,p),_=mt({inputs:{x:a},backend:n,attrs:{shape:y}}),x;if(d){let b=ti({inputs:{x:_},backend:n,attrs:{begin:f,size:A}});x=mt({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))x=n.makeTensorInfo(g,a.dtype,[]);else{let b=n.bufferSync(_),N=kx(g,b,m,f);x=n.makeTensorInfo(N.shape,N.dtype,N.values)}let w=mt({inputs:{x},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(x),w}var X$={kernelName:Fo,backendName:"cpu",kernelFunc:q$},K$=at(Mo,e=>Math.tan(e)),Z$={kernelName:Mo,backendName:"cpu",kernelFunc:K$},Y$=at(Ds,e=>Math.tanh(e)),J$={kernelName:Ds,backendName:"cpu",kernelFunc:Y$};function Q$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;we(a,"tile");let i=Nx(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var eD={kernelName:fa,backendName:"cpu",kernelFunc:Q$};function tD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;we(a,"topk");let o=n.data.get(a.dataId).values,[l,c]=Sx(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var nD={kernelName:Oo,backendName:"cpu",kernelFunc:tD};function rD(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;we(s,"unique");let i=r.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:c}=Tx(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var aD={kernelName:Ph,backendName:"cpu",kernelFunc:rD};function sD(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),c=0;for(let d=0;d<i;d++)d!==s&&(l[c++]=a.shape[d]);let u=new Array(i).fill(0),h=a.shape.slice();h[s]=1;let p=new Array(o);for(let d=0;d<p.length;d++){u[s]=d;let f=ti({inputs:{x:a},backend:n,attrs:{begin:u,size:h}});p[d]=mt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return p}var iD={kernelName:$o,backendName:"cpu",kernelFunc:sD};function oD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r;we(a,"unsortedSegmentSum");let o=a.shape.length,l=s.shape.length,c=[],u=[],h=o-l,p=s;for(let f=0;f<h;++f){let m=Ld({inputs:{input:p},backend:n,attrs:{dim:f+1}});p=m,u.push(m)}for(let f=0;f<i;++f){let m=k.createScalarValue(f,"int32"),A=n.makeTensorInfo([],"int32",m),y=Bx({inputs:{a:A,b:p},backend:n}),g=Na({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),_=am({inputs:{a:g,b:a},backend:n}),x=Wd({inputs:{x:_},backend:n,attrs:{axis:0,keepDims:!1}});c.push(x),u.push(A),u.push(y),u.push(g),u.push(_),u.push(x)}let d=Hx({inputs:c,backend:n,attrs:{axis:0}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),d}var lD={kernelName:_u,backendName:"cpu",kernelFunc:oD},uD=[CR,$C,FR,OR,BC,DR,PR,WR,VR,jR,HR,XR,ZR,QR,tF,aF,iF,lF,cF,TR,dF,fF,AF,LC,UC,gF,DC,wF,bF,IF,SF,vF,RF,MF,EF,$F,zF,LF,BF,UF,GF,HF,XF,ZF,JF,QF,tM,eM,um,_R,rM,sM,pM,jC,fM,HC,wM,bM,vM,XC,NM,TM,CM,FM,OM,ZC,zM,zC,LM,_F,BM,UM,GM,bR,JC,XM,ZM,eR,JM,tO,rO,iO,lO,cO,nR,pO,mO,yO,xO,_O,hO,kO,NO,aR,TO,RO,$O,iR,lR,PO,BO,jO,cR,HO,XO,KO,qx,QO,kR,pR,t$,PC,r$,IR,NR,SR,s$,o$,u$,h$,p$,f$,A$,mR,g$,w$,k$,N$,T$,C$,F$,AR,MO,$$,z$,L$,B$,U$,j$,gR,H$,X$,wR,bO,Z$,J$,eD,nD,hR,aD,iD,lD,qO];for(let e of uD)Bs(e);var Zx={};$e(Zx,{assertNotComplex:()=>dl,bindCanvasToFramebuffer:()=>dD,bindColorTextureToFramebuffer:()=>Ud,bindTextureToProgramUniformSampler:()=>hw,bindTextureUnit:()=>lw,bindVertexBufferToProgramAttribute:()=>dm,callAndCheck:()=>ge,canBeRepresented:()=>Yx,createFragmentShader:()=>ew,createFramebuffer:()=>ow,createProgram:()=>tw,createStaticIndexBuffer:()=>aw,createStaticVertexBuffer:()=>rw,createTexture:()=>sw,createVertexShader:()=>Qx,getBatchDim:()=>ni,getExtensionOrThrow:()=>Yu,getFramebufferErrorMessage:()=>dw,getMaxTexturesInShader:()=>mw,getNumChannels:()=>cD,getProgramUniformLocation:()=>cw,getProgramUniformLocationOrThrow:()=>uw,getRowsCols:()=>ri,getShapeAs3D:()=>jd,getTextureShapeFromLogicalShape:()=>pw,getWebGLDisjointQueryTimerVersion:()=>Aw,getWebGLErrorMessage:()=>Jx,getWebGLMaxTextureSize:()=>fw,hasExtension:()=>Bn,isCapableOfRenderingToFloatTexture:()=>yw,isDownloadFloatTextureEnabled:()=>gw,isReshapeFree:()=>Qu,isWebGLFenceEnabled:()=>xw,isWebGLVersionEnabled:()=>fm,linkProgram:()=>nw,resetMaxTextureSize:()=>pD,resetMaxTexturesInShader:()=>fD,unbindColorTextureFromFramebuffer:()=>pm,unbindTextureUnit:()=>hD,validateFramebuffer:()=>Ju,validateProgram:()=>Vd,validateTextureSize:()=>iw});var ai={},mm={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Gd(e,t){ai[e]=t}function Or(e){if(!(e in ai)){let n=mD(e);if(n!==null)ai[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=ai[e];return t.isContextLost()?(delete ai[e],Or(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),ai[e])}function AD(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function mD(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=AD(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete ai[e]},!1),e===1?t.getContext("webgl",mm)||t.getContext("experimental-webgl",mm):t.getContext("webgl2",mm)}var ec;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(ec||(ec={}));var Vn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Vn||(Vn={}));var Xt;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Xt||(Xt={}));function tc(e,t){return[t,e]}function yD(e,t){return e*t}function nc(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function pl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function gD(e,t){let[n,r]=pl(e,t);return n*r*4}function Am(e,t){let n=e,r,a,s,i,o,l,c,u,h,p;return Q().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,c=4,u=1,h=n.HALF_FLOAT,p=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,c=4,u=4,h=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:c,defaultNumChannels:u,textureTypeHalfFloat:h,textureTypeFloat:p}}function ge(e,t){let n=t();return Q().getBool("DEBUG")&&xD(e),n}function xD(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+Jx(e,t))}var wD=596e-10,_D=65504;function Yx(e){return!!(Q().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||wD<Math.abs(e)&&Math.abs(e)<_D)}function Jx(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Yu(e,t){return Qr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Qx(e,t){let n=Qr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ge(e,()=>e.shaderSource(n,t)),ge(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function ew(e,t){let n=Qr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ge(e,()=>e.shaderSource(n,t)),ge(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw bD(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var vD=/ERROR: [0-9]+:([0-9]+):/g;function bD(e,t){let n=vD.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(`
|
|
`),s=a.length.toString().length+2,i=a.map((h,p)=>k.rightPad((p+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,r-1),c=i.slice(r-1,r),u=i.slice(r);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${k.rightPad(c[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
|
|
`))}function tw(e){return Qr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function nw(e,t){if(ge(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Vd(e,t){if(ge(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function rw(e,t){let n=Qr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ge(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function aw(e,t){let n=Qr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ge(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ge(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function cD(){return Q().getNumber("WEBGL_VERSION")===2?1:4}function sw(e){return Qr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function iw(e,t){let n=Q().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function ow(e){return Qr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function dm(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),ge(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),ge(e,()=>e.enableVertexAttribArray(o)),!0)}function lw(e,t,n){ww(e,n),ge(e,()=>e.activeTexture(e.TEXTURE0+n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function hD(e,t){ww(e,t),ge(e,()=>e.activeTexture(e.TEXTURE0+t)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function uw(e,t,n){return Qr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function cw(e,t,n){return e.getUniformLocation(t,n)}function hw(e,t,n,r){ge(e,()=>lw(e,t,r)),ge(e,()=>e.uniform1i(n,r))}function dD(e){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ge(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ge(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Ud(e,t,n){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ge(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function pm(e,t){ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ge(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Ju(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+dw(e,t))}function dw(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Qr(e,t,n){let r=ge(e,()=>t());if(r==null)throw new Error(n);return r}function ww(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(r<e.TEXTURE0||r>n){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function ni(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function ri(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function jd(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ni(e),...ri(e)]),t}function pw(e,t=!1){let n=Q().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let r=k.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=ni(e),s=2,i=2;return e.length&&([s,i]=ri(e)),r=a*(s/2)*(i/2),k.sizeToSquarishShape(r).map(o=>o*2)}return k.sizeToSquarishShape(r)}function Hd(e){return e%2==0}function Qu(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||Hd(n)&&Hd(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Hd(e[0])&&Hd(t[0])}var qd,Xd;function fw(e){if(qd==null){let t=Or(e);qd=t.getParameter(t.MAX_TEXTURE_SIZE)}return qd}function pD(){qd=null}function fD(){Xd=null}function mw(e){if(Xd==null){let t=Or(e);Xd=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Xd)}function Aw(e){if(e===0)return 0;let t,n=Or(e);return Bn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Bn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Bn(e,t){return e.getExtension(t)!=null}function fm(e){try{if(Or(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function yw(e){if(e===0)return!1;let t=Or(e);if(e===1){if(!Bn(t,"OES_texture_float"))return!1}else if(!Bn(t,"EXT_color_buffer_float"))return!1;return ym(t)}function gw(e){if(e===0)return!1;let t=Or(e);if(e===1){if(!Bn(t,"OES_texture_float")||!Bn(t,"WEBGL_color_buffer_float"))return!1}else{if(Bn(t,"EXT_color_buffer_float"))return ym(t);let n="EXT_color_buffer_half_float";if(Bn(t,n)){let r=t.getExtension(n);return kD(t,r)}return!1}return ym(t)}function ym(e){let t=Am(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function kD(e,t){let n=Am(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function xw(e){return e!==2?!1:Or(e).fenceSync!=null}function dl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Fe=Q();Fe.registerFlag("HAS_WEBGL",()=>Fe.getNumber("WEBGL_VERSION")>0);Fe.registerFlag("WEBGL_VERSION",()=>fm(2)?2:fm(1)?1:0);Fe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Fe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Fe.get("WEBGL_VERSION")===2);Fe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Fe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Fe.registerFlag("WEBGL_PACK",()=>Fe.getBool("HAS_WEBGL"));Fe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_CLIP",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Fe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_PACK_REDUCE",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_CONV_IM2COL",()=>Fe.getBool("WEBGL_PACK"));Fe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>fw(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>mw(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Fe.getNumber("WEBGL_VERSION");return e===0?0:Aw(e)});Fe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Fe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Gh.isMobile());Fe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>yw(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Fe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Fe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Fe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>gw(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>xw(Fe.getNumber("WEBGL_VERSION")));Fe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Fe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Fe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});function an(){let e,t,n,r,a,s,i,o,l,c;return Q().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",c=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",r="varying",a="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,c=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:c}}function si(e,t,n="index"){let r=k.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function gm(e){let t=k.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var _w=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,ID=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=ec.DENSE;let t=nc(e),n=an();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${si(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},ND=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=ec.DENSE;let t=nc(e),n=an();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${si(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},SD=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Vn.DOWNLOAD;let t=an();this.outputShape=e,this.userCode=`
|
|
${_w}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},TD=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Vn.DOWNLOAD;let t=an();this.outputShape=e,this.userCode=`
|
|
${_w}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},ED=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=an(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${gm(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${s};
|
|
int c = imod(flatIndex, ${s});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
|
|
vec4 values = ${r.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${r.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}},CD=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=an(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let c=0;c<=1;c++){let u=l*2+c;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${c} < ${e[2]}) {
|
|
localCoords[2] += ${c};
|
|
if(localCoords[1] + ${l} < ${e[1]}) {
|
|
localCoords[1] += ${l};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${s};
|
|
c = imod(flatIndex, ${s});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
|
|
values = ${r.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${u}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${u}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${u}] = values[2];
|
|
} else {
|
|
result[${u}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${gm(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${r.output} = ${o};
|
|
}
|
|
`}},bw={};$e(bw,{bindVertexProgramAttributeStreams:()=>Rw,createBufferFromOutputTexture:()=>Ow,createFloat16MatrixTexture:()=>Sw,createFloat16PackedMatrixTexture:()=>Cw,createFloat32MatrixTexture:()=>Nw,createIndexBuffer:()=>Iw,createPackedMatrixTexture:()=>Ew,createUnsignedBytesMatrixTexture:()=>Tw,createVertexBuffer:()=>kw,createVertexShader:()=>vw,downloadByteEncodedFloatMatrixFromOutputTexture:()=>Dw,downloadFloat32MatrixFromBuffer:()=>$w,downloadMatrixFromPackedOutputTexture:()=>Pw,downloadPackedMatrixFromBuffer:()=>zw,getInternalFormatForFloat16MatrixTexture:()=>wm,getInternalFormatForFloat16PackedMatrixTexture:()=>vm,getInternalFormatForFloat32MatrixTexture:()=>xm,getInternalFormatForPackedMatrixTexture:()=>bm,getInternalFormatForUnsignedBytesMatrixTexture:()=>_m,uploadDenseMatrixToTexture:()=>Fw,uploadPixelDataToTexture:()=>Mw});function vw(e){let t=an(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return Qx(e,n)}function kw(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return rw(e,t)}function Iw(e){let t=new Uint16Array([0,1,2,2,1,3]);return aw(e,t)}function rc(e,t,n,r,a,s){iw(t,n);let i=sw(e),o=e.TEXTURE_2D;return ge(e,()=>e.bindTexture(o,i)),ge(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ge(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ge(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),ge(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),ge(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function xm(e){return e.internalFormatFloat}function Nw(e,t,n,r){let[a,s]=tc(t,n);return rc(e,a,s,xm(r),r.textureFormatFloat,e.FLOAT)}function wm(e){return e.internalFormatHalfFloat}function Sw(e,t,n,r){let[a,s]=tc(t,n);return rc(e,a,s,wm(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function _m(e){return e.downloadTextureFormat}function Tw(e,t,n,r){let[a,s]=tc(t,n);return rc(e,a,s,_m(r),e.RGBA,e.UNSIGNED_BYTE)}function bm(e){return e.internalFormatPackedFloat}function Ew(e,t,n,r){let[a,s]=pl(t,n);return rc(e,a,s,bm(r),e.RGBA,e.FLOAT)}function vm(e){return e.internalFormatPackedHalfFloat}function Cw(e,t,n,r){let[a,s]=pl(t,n);return rc(e,a,s,vm(r),e.RGBA,r.textureTypeHalfFloat)}function Rw(e,t,n){let r=0,a=3*4,s=3*4+2*4;return ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),dm(e,t,"clipSpacePos",n,3,s,r)&&dm(e,t,"uv",n,2,s,a)}function Fw(e,t,n,r,a,s){ge(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Mw(e,t,n){ge(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):ge(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ge(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Ow(e,t,n,r){let a=e.createBuffer();ge(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return ge(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),ge(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ge(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function $w(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function Dw(e,t,n,r){let[a,s]=tc(t,n),i=4,o=new Uint8Array(yD(t*n,i));return ge(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function zw(e,t,n,r,a,s,i,o){let l=e,c=new Float32Array(gD(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,c),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),c}function Pw(e,t,n){let r=new Float32Array(t*n*4);return ge(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var Kd=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Q().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Gd(t,e)):this.gl=Or(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(Q().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Yu(this.gl,a),Bn(this.gl,s))this.textureHalfFloatExtension=Yu(this.gl,s);else if(Q().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Bn(this.gl,r))this.colorBufferHalfFloatExtension=Yu(this.gl,r);else if(Q().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Bn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Bn(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=kw(this.gl),this.indexBuffer=Iw(this.gl),this.framebuffer=ow(this.gl),this.textureConfig=Am(this.gl,this.textureHalfFloatExtension)}get debug(){return Q().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ge(e,()=>e.finish()),ge(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ge(e,()=>e.deleteFramebuffer(this.framebuffer)),ge(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ge(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ge(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),Nw(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),Sw(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),Tw(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Mw(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),Fw(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Cw(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),Ew(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(pm(this.gl,this.framebuffer),this.outputTexture=null),ge(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Dw(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return zw(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return $w(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=Ow(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Q().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Pw(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=ew(t,e),r=vw(t),a=tw(t);return ge(t,()=>t.attachShader(a,r)),ge(t,()=>t.attachShader(a,n)),nw(t,a),this.debug&&Vd(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=Rw(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ge(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Vd(this.gl,this.program),ge(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?uw(this.gl,e,t):cw(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ge(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),hw(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=pl(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Vd(this.gl,this.program),Ju(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ge(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ge(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Yu(this.gl,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=RD(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Ud(this.gl,e,this.framebuffer),this.debug&&Ju(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Ud(this.gl,this.outputTexture,this.framebuffer),this.debug&&Ju(this.gl)):pm(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;Ud(r,e,this.framebuffer),this.debug&&Ju(r),this.outputTexture=e,ge(r,()=>r.viewport(0,0,t,n)),ge(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),ge(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function RD(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:Lw}=C;function WD(e,t,n,r){let a=[];e.forEach(d=>{let f=k.sizeFromShape(d.shapeInfo.logicalShape);d.shapeInfo.isUniform?a.push(`uniform float ${d.name}${f>1?`[${f}]`:""};`):(a.push(`uniform sampler2D ${d.name};`),a.push(`uniform int offset${d.name};`))});let s=a.join(`
|
|
`),i=e.map(d=>FD(d,t,r)).join(`
|
|
`),o=t.texShape,l=an(),c=$D(l),u,h,p=PD(l);return t.isPacked?(u=MD(t.logicalShape,o),h=zD(l)):(u=OD(t.logicalShape,o),h=DD(l)),r&&(p+=LD),[p,c,h,s,u,i,n].join(`
|
|
`)}function fl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return BD(e);case 1:return VD(e);case 2:return UD(e);case 3:return jD(e);case 4:return GD(e);case 5:return HD(e);case 6:return qD(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function Ww(e){switch(e.shapeInfo.logicalShape.length){case 0:return XD(e);case 1:return KD(e);case 2:return ZD(e);case 3:return YD(e);default:return JD(e)}}function FD(e,t,n=!1){let r="";n?r+=Ww(e):r+=fl(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=QD(e,t):r+=ez(e,t)),r}function MD(e,t){switch(e.length){case 0:return Bw();case 1:return tz(e,t);case 2:return az(e,t);case 3:return nz(e,t);default:return rz(e,t)}}function OD(e,t){switch(e.length){case 0:return Bw();case 1:return sz(e,t);case 2:return cz(e,t);case 3:return iz(e,t);case 4:return oz(e,t);case 5:return lz(e,t);case 6:return uz(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function $D(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function DD(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function zD(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function PD(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${hz}
|
|
${dz}
|
|
${pz}
|
|
`}var hz=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,dz=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,pz=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,LD=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function Bw(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function tz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function sz(e,t){return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function nz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function iz(e,t){let n=si(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function rz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+i,o=`b${l}, `+o;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${o});
|
|
}
|
|
`}function oz(e,t){let n=si(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function lz(e,t){let n=si(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function uz(e,t){let n=si(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function az(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(k.arraysEqual(e,t))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function cz(e,t){return k.arraysEqual(e,t)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function ii(e){return`offset${e}`}function XD(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=an();return`
|
|
vec4 ${n}() {
|
|
return ${r.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function BD(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let[s,i]=e.shapeInfo.texShape,o=ii(t);return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function KD(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=e.shapeInfo.texShape,a=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],s=an();return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${a[0]}, ${a[1]}, index);
|
|
return ${s.texture2D}(${t}, uv);
|
|
}
|
|
`}function VD(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${ml(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],s=r[1];if(s===1&&a===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let i=ii(t);return s===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:a===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${s}, index + ${i});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function ZD(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=a[0],i=a[1],o=an();if(a!=null&&k.arraysEqual(t,a))return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
|
|
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(t[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function UD(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape;if(a!=null&&k.arraysEqual(t,a)){let h=a[0],p=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:i}=k.squeezeShape(t),o=s;if(o.length<t.length){let h=Al(e,o),p=["row","col"];return`
|
|
${fl(h)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${yl(p,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
|
|
${ml(e)}
|
|
}
|
|
`;let l=a[0],c=a[1],u=ii(n);return c===1?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${t[1]} + col + ${u};
|
|
vec2 uv = uvFromFlat(${l}, ${c}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function YD(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(t[0]===1){let h=t.slice(1),p=[1,2],d=Al(e,h),f=["b","row","col"];return`
|
|
${Ww(d)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${yl(f,p)});
|
|
}
|
|
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),c=l*Math.ceil(t[1]/2),u=an();return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${i}, ${o}, ${c}, ${l}, b, row, col);
|
|
return ${u.texture2D}(${n}, uv);
|
|
}
|
|
`}function jD(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=k.squeezeShape(t),l=i;if(l.length<t.length){let f=Al(e,l),m=["row","col","depth"];return`
|
|
${fl(f)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${yl(m,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${s}, 1)));
|
|
${ml(e)}
|
|
}
|
|
`;let c=e.shapeInfo.texShape,u=c[0],h=c[1],p=e.shapeInfo.flatOffset;if(h===a&&p==null)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${u}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===s&&p==null)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}.0, ${u}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let d=ii(n);return`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${s} + depth + ${d};
|
|
vec2 uv = uvFromFlat(${u}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function JD(e){let t=e.shapeInfo.logicalShape,n=t.length,r=e.name,a="get"+r.charAt(0).toUpperCase()+r.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],c=Math.ceil(t[n-1]/2),u=c*Math.ceil(t[n-2]/2),h="int b, int row, int col",p=`b * ${u} + (row / 2) * ${c} + (col / 2)`;for(let f=2;f<n-1;f++)h=`int b${f}, `+h,u*=t[n-f-1],p=`b${f} * ${u} + `+p;let d=an();return`
|
|
vec4 ${a}(${h}) {
|
|
int index = ${p};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
|
|
return ${d.texture2D}(${r}, uv);
|
|
}
|
|
`}function GD(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[3],s=t[2]*a,i=t[1]*s,{newShape:o,keptDims:l}=k.squeezeShape(t);if(o.length<t.length){let f=Al(e,o),m=["row","col","depth","depth2"];return`
|
|
${fl(f)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${yl(m,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${s}, ${a}, 1)));
|
|
${ml(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,u=e.shapeInfo.texShape,h=u[0],p=u[1];if(p===i&&c==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===a&&c==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${t[1]*t[2]}, ${t[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let d=ii(n);return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${s} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${h}, ${p}, index + ${d});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function HD(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[4],s=t[3]*a,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:c}=k.squeezeShape(t);if(l.length<t.length){let m=Al(e,l),A=["row","col","depth","depth2","depth3"];return`
|
|
${fl(m)}
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${r}(${yl(A,c)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${a})) +
|
|
depth3;
|
|
${ml(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,p=h[0],d=h[1];if(d===o&&u==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(d===a&&u==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=ii(n);return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${a} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${d}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function qD(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:a,keptDims:s}=k.squeezeShape(t);if(a.length<t.length){let A=Al(e,a),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${fl(A)}
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${r}(${yl(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,c=t[2]*l,u=t[1]*c;if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${u}, ${c}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${ml(e)}
|
|
}
|
|
`;let h=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],f=p[1];if(f===u&&h==null)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${c}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===i&&h==null)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=ii(n);return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${u} + col * ${c} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${d}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function ml(e){let t=e.name,n=k.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function QD(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=Lw(e.shapeInfo.logicalShape,t.logicalShape),l=ut(i),c=i-s,u,h=["x","y","z","w","u","v"];s===0?u="":i<2&&o.length>=1?u="coords = 0;":u=o.map(A=>`coords.${h[A+c]} = 0;`).join(`
|
|
`);let p="";i<2&&s>0?p="coords":p=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+c]}`).join(", ");let d="return outputValue;",f=k.sizeFromShape(e.shapeInfo.logicalShape)===1,m=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)d=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(f&&!m)i===1?d=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:d=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let A=s-2,y=s-1;o.indexOf(A)>-1&&o.indexOf(y)>-1?d="return vec4(outputValue.x);":o.indexOf(A)>-1?d="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(d="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${a}() {
|
|
${l} coords = getOutputCoords();
|
|
${u}
|
|
vec4 outputValue = get${r}(${p});
|
|
${d}
|
|
}
|
|
`}function ez(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return`
|
|
float ${a}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let c=ut(l),u=Lw(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,p,d=["x","y","z","w","u","v"];o===0?p="":l<2&&u.length>=1?p="coords = 0;":p=u.map(m=>`coords.${d[m+h]} = 0;`).join(`
|
|
`);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,A)=>`coords.${d[A+h]}`).join(", "),`
|
|
float ${a}() {
|
|
${c} coords = getOutputCoords();
|
|
${p}
|
|
return get${r}(${f});
|
|
}
|
|
`}function ut(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Al(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function yl(e,t){return t.map(n=>e[n]).join(", ")}function fz(e,t,n,r){let a=t.userCode,s=n.map((d,f)=>{let m={logicalShape:d.shape,texShape:d.isUniform?null:d.texData.texShape,isUniform:d.isUniform,isPacked:d.isUniform?!1:d.texData.isPacked,flatOffset:null};return d.texData!=null&&d.texData.slice!=null&&d.texData.slice.flatOffset>0&&(m.flatOffset=d.texData.slice.flatOffset),{name:t.variableNames[f],shapeInfo:m}}),i=s.map(d=>d.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=WD(s,o,a,t.packedInputs),c=e.createProgram(l),u=null,h=e.getUniformLocation(c,"NAN",!1);Q().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(c,"INFINITY",!1));let p={};for(let d=0;d<t.variableNames.length;d++){let f=t.variableNames[d],m=!1;p[f]=e.getUniformLocation(c,f,m),p[`offset${f}`]=e.getUniformLocation(c,`offset${f}`,m)}return{program:t,source:l,webGLProgram:c,uniformLocations:p,inShapeInfos:i,outShapeInfo:o,infLoc:u,nanLoc:h}}function Vw(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,r)=>{let a=n.logicalShape,s=t[r],i=s.shape;if(!k.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function mz(e,t,n,r,a){Vw(t.inShapeInfos,n),Vw([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),Q().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let c=t.program.variableNames[l],u=t.uniformLocations[c],h=t.uniformLocations[`offset${c}`];if(u!=null){if(o.isUniform){if(k.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let p=o.uniformValues;p instanceof Float32Array||(p=new Float32Array(p)),e.gl.uniform1fv(u,p)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function Az(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:yz,bincountImpl:Uw,bincountReduceImpl:gz,ceilImpl:xz,concatImpl:wz,expImpl:_z,expm1Impl:bz,floorImpl:vz,gatherV2Impl:kz,greaterImpl:Iz,lessImpl:Nz,linSpaceImpl:Sz,logImpl:Tz,maxImpl:Ez,maximumImpl:Cz,minimumImpl:Rz,multiplyImpl:Fz,negImpl:Mz,prodImpl:Oz,rangeImpl:$z,rsqrtImpl:Dz,simpleAbsImpl:jw,sliceImpl:zz,stridedSliceImpl:Pz,subImpl:Lz,tileImpl:Wz,topKImpl:Bz,transposeImpl:km,uniqueImpl:Vz}=Yf;function Gw(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function sn(e,t){return t===1?[e]:Gw(e,t)}function Uz(e,t){if(e===1)return"rc";let n="";for(let r=0;r<e;r++)n+=t[r],r<e-1&&(n+=",");return n}var qz=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=sn("rc",t),r=ut(t),a=jz(t,e,n),s=Gz(t,e[e.length-1],e[e.length-2],n),i=Hz(e,n);this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
|
|
if(${a}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function Xz(e,t){let n=[];for(let r=0;r<=1;r++)for(let a=0;a<=1;a++){let s=`${r===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function jz(e,t,n){if(e===1)return`rc > ${t[0]}`;let r="";for(let a=e-2;a<e;a++)r+=`${n[a]} >= ${t[a]}`,a<e-1&&(r+="||");return r}function Gz(e,t,n,r){if(e===1)return"";let a=r.slice(-2);return`
|
|
int r = ${a[0]};
|
|
int c = ${a[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function Hz(e,t){let n=e.length,r=Xz(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${r[0]}),
|
|
cEdge ? 0. : getA(${r[1]}),
|
|
rEdge ? 0. : getA(${r[2]}),
|
|
rEdge || cEdge ? 0. : getA(${r[3]})`}var Hw=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=`
|
|
${a}
|
|
${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${r}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${r>0?"}":""}
|
|
`}this.userCode=`
|
|
${Kz(t)}
|
|
${gm(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Kz(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${si(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var Zz=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=Xw(t,n),a=Kw(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=qw(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===Xt.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===Xt.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===Xt.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===Xt.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===Xt.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=Xw(n,r),s=Kw(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=qw(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=Q().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],c=l.indexOf(e);if(c<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(c,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function Yz(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function qw(e,t,n,r,a){let s=Jz(t,r),i;if(a){let[l,c]=pl(e[0],e[1]);i=l*c}else{let[l,c]=tc(e[0],e[1]);i=l*c}let o=Yz(n,s);return i*o}function Jz(e,t){switch(e){case Xt.PACKED_2X2_FLOAT32:return bm(t);case Xt.PACKED_2X2_FLOAT16:return vm(t);case Xt.UNPACKED_FLOAT32:return xm(t);case Xt.UNPACKED_FLOAT16:return wm(t);case Xt.PACKED_4X1_UNSIGNED_BYTE:return _m(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function Qz(e){return Q().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Xt.PACKED_2X2_FLOAT32:Xt.UNPACKED_FLOAT32:e?Xt.PACKED_2X2_FLOAT16:Xt.UNPACKED_FLOAT16}function Xw(e,t){if(e===Vn.UPLOAD)return Xt.PACKED_2X2_FLOAT32;if(e===Vn.RENDER||e==null)return Qz(t);if(e===Vn.DOWNLOAD||e===Vn.PIXELS)return Xt.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Kw(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Sa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},hr="if (isnan(x)) return x;",eP="return x;",Zw="return abs(x);",tP="return (x >= 0.0) ? x : (exp(x) - 1.0);",nP=hr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,rP=hr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Zd="return x;",aP="return x;",sP=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,iP=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,oP=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,gl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},lP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=sn("rc",t),r=ut(t),a=Uz(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${a});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},uP=Fr.whereImpl,cP=1e-7,hP=1e-4,Im={};function dP(e){return e in Im||(Im[e]={}),Im[e]}var pP=128,fP=600;function mP(){return Q().global.screen==null?1024:Q().global.screen.height*Q().global.screen.width*window.devicePixelRatio*fP/1024/1024}var Yd=class extends nu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!Q().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Or(Q().getNumber("WEBGL_VERSION"));this.binaryCache=dP(Q().getNumber("WEBGL_VERSION")),this.gpgpu=new Kd(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new Zz(this.gpgpu),this.numMBBeforeWarning=mP(),this.texData=new sh(this,Pn())}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((Q().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Q().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:Vn.UPLOAD,refCount:1,complexParentRefCount:0}),r}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}decComplexRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.complexParentRefCount>0&&t.refCount--}}move(e,t,n,r){if(Q().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:Vn.UPLOAD,refCount:1,complexParentRefCount:0})}disposeIntermediateTensorInfo(e){let t=e.dataId;if(this.texData.has(t)){let n=this.texData.get(t);n.refCount--,n.refCount<1&&this.disposeData(t)}}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new gl(i,Zd):h=new Sa(i,Zd);let p=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),d=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),d}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,c;l&&(c=k.now());let u;if(r==="complex64"){let h=this.readSync(a.real.dataId),p=this.readSync(a.imag.dataId);u=C.mergeRealAndImagArrays(h,p)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-c),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let d=this.pendingRead.get(e);return new Promise(f=>d.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let d;o?d=new gl(r,Zd):d=new Sa(r,Zd);let f=this.runWebGLProgram(d,[{dataId:e,shape:r,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Q().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Q().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,c;if(s!=="complex64"&&Q().get("WEBGL_BUFFER_SUPPORTED")){c=this.decode(e);let d=this.texData.get(c.dataId);l=this.gpgpu.createBufferFromTexture(d.texture,...nc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let d=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=d[0],m=d[1];u=C.mergeRealAndImagArrays(f,m)}else if(l==null)u=this.getValuesFromTexture(e);else{let d=k.sizeFromShape(r);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,d)}c!=null&&this.disposeIntermediateTensorInfo(c);let h=this.convertAndCacheOnCPU(e,u),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(d=>d(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>k.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Pe(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!Yx(n))throw Q().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:r}=this.texData.get(e),a=k.sizeFromShape(t);if(Q().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),p=this.texData.get(h.dataId),d=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...nc(t)).subarray(0,a);return this.disposeIntermediateTensorInfo(h),d}let s=Q().getBool("WEBGL_PACK")&&r===!0,i=s?jd(t):t,o=s?new TD(i):new SD(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),c=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(c.texture,c.texShape[0],c.texShape[1]).subarray(0,a);return this.disposeIntermediateTensorInfo(l),u}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=k.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,c)=>({name:s[c],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(Q().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e){if(this.pendingDisposal.has(e))return;if(this.pendingRead.has(e)){this.pendingDisposal.add(e),this.pendingDeletes++;return}if(!this.texData.has(e))return;if(this.texData.get(e).complexParentRefCount>0){this.texData.get(e).refCount--;return}this.releaseGPUData(e);let{complexTensorInfos:t}=this.texData.get(e);t!=null&&(this.texData.get(t.real.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.real),this.texData.get(t.imag.dataId).complexParentRefCount--,this.disposeIntermediateTensorInfo(t.imag)),this.texData.delete(e)}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let c=this.texData.get(e);c.texture=null,c.texShape=null,c.isPacked=!1,c.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return Q().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Pn().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=pP){let n=this.getCPUBackend();return!Q().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(r=>this.texData.get(r.dataId).texture==null&&k.sizeFromShape(r.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return uP(e.shape,t)}packedUnaryOp(e,t,n){let r=new gl(e.shape,t);return this.compileAndRun(r,[e],n)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let n=jw(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,n)}if(Q().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,Zw,e.dtype);let t=new Sa(e.shape,Zw);return this.compileAndRun(t,[e])}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let a=n.map(s=>k.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return Pn().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new lP(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new qz(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[ni(e.shape),...ri(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[ni(t),...ri(t)],s=new Hw(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=jd(r),i;n?i=new ND(s):i=new ID(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===ec.DENSE){let f=nc(e.outputShape);i.texShape=f.map(m=>m*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(s.shape)===0)return i.values=k.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let m=this.texData.get(f.dataId);if(m.texture==null){if(!e.packedInputs&&k.sizeFromShape(f.shape)<=Q().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:m.values};e.packedInputs&&(m.isPacked=!0,m.shape=f.shape)}else if(!!m.isPacked!=!!e.packedInputs)f=m.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),m=this.texData.get(f.dataId);else if(m.isPacked&&!Qu(m.shape,f.shape)){let A=f,y=f.shape;f.shape=m.shape,f=this.packedReshape(f,y),o.push(f),m=this.texData.get(f.dataId),A.shape=y}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:m,isUniform:!1}});this.uploadToGPU(s.dataId);let c={shape:s.shape,texData:i,isUniform:!1},u=Az(e,l,c),h=this.getAndSaveBinary(u,()=>fz(this.gpgpu,e,l,c)),p=this.activeTimers!=null,d;if(p&&(d=this.startTimer()),mz(this.gpgpu,h,l,c,r),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),p&&(d=this.endTimer(d),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(d)})),!Q().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,r,a=!1){n=n||t[0].dtype;let s=this.runWebGLProgram(e,t,n,r,a);return Pn().makeTensorFromDataId(s.dataId,s.shape,s.dtype)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Q().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=W(()=>{if(!Q().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Q().getBool("DEBUG");Q().set("DEBUG",!1);let t=this.abs(ke(1e-8)).dataSync()[0];if(Q().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?cP:hP}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,c;l&&(c=k.now());let u=t.texShape;if(u==null&&(u=pw(n,o),t.texShape=u),a!=null){let h=jd(n),p,d=u[1],f=u[0],m=a instanceof Uint8Array;o?([d,f]=pl(u[0],u[1]),p=new CD(h,[f,d],m)):p=new ED(h,[f,d],m);let A=this.makeTensorInfo([f,d],r);m?this.texData.get(A.dataId).usage=Vn.PIXELS:this.texData.get(A.dataId).usage=Vn.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),d,f,a);let y=!0,g=this.runWebGLProgram(p,[A],r,null,y),_=this.texData.get(g.dataId);t.texture=_.texture,t.texShape=_.texShape,t.isPacked=_.isPacked,t.usage=_.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-c)}else{let h=this.acquireTexture(u,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=AP(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};function AP(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;r<n.length;++r)n[r]=Math.round(e[r]);return n}else throw new Error(`Unknown dtype ${t}`)}var Yw="3.0.0";function Jw(){Q().set("WEBGL_FORCE_F16_TEXTURES",!0)}Gh.isBrowser()&&qo("webgl",()=>new Yd,2);var yP={forceHalfFloat:Jw},Qw=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,xl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Jd=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,ac=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||k.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${ut(a)} coords = getOutputCoords();
|
|
`,a===1)s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=sn("coords",a);s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[a-2]} + 1) >= ${this.outputShape[a-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[a-1]} + 1) >= ${this.outputShape[a-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Tn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var gP={kernelName:ao,backendName:"webgl",kernelFunc:Tn};function Ta(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=Tn({inputs:{x:r},backend:n}),l=n.texData.get(o.dataId);l.complexParentRefCount++;let c=Tn({inputs:{x:a},backend:n}),u=n.texData.get(c.dataId);return u.complexParentRefCount++,i.complexTensorInfos={real:o,imag:c},s}var xP={kernelName:fh,backendName:"webgl",kernelFunc:Ta},e_="return (a < 0.) ? b * a : a;",t_=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function wP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ac(t_,a.shape,i.shape):new xl(e_,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var _P={kernelName:cs,backendName:"webgl",kernelFunc:wP},n_="return (a < 0.) ? b * a : a;",r_=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function bP(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ac(r_,r.shape,a.shape):new xl(n_,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var vP={kernelName:bs,backendName:"webgl",kernelFunc:bP},a_="if (isnan(x)) return x;",kP=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,IP=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Ke({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),p=n(h.values,l);return o.makeTensorInfo(i.shape,l,p)}let c=Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return c?u=new gl(i.shape,t):u=new Sa(i.shape,e),o.runWebGLProgram(u,[i],l)}}function Kt({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:c}=i,u=o;if(r&&l.dtype==="complex64"){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[A,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(_=>{let[x,w]=_,b={dataId:x.dataId,dtype:x.dtype,shape:l.shape},N={dataId:w.dataId,dtype:w.dtype,shape:c.shape},T=new xl(e,l.shape,c.shape);return u.runWebGLProgram(T,[b,N],Zn(x.dtype,w.dtype))}),g=Ta({inputs:{real:A,imag:y},backend:u});return u.disposeIntermediateTensorInfo(A),u.disposeIntermediateTensorInfo(y),g}let h=s||Zn(l.dtype,c.dtype);if(u.shouldExecuteOnCPU([l,c])&&a!=null){let f=u.texData.get(l.dataId),m=u.texData.get(c.dataId),[A,y]=a(l.shape,c.shape,f.values,m.values,h),g=u.makeTensorInfo(y,h),_=u.texData.get(g.dataId);return _.values=A,g}let p=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,d;return p?d=new ac(t,l.shape,c.shape,n):d=new xl(e,l.shape,c.shape),u.runWebGLProgram(d,[l,c],h)}}function Qd(e,t=!1){if(e==="linear")return t?aP:eP;if(e==="relu")return t?iP:nP;if(e==="elu")return t?sP:tP;if(e==="relu6")return t?oP:rP;if(e==="prelu")return t?r_:n_;if(e==="leakyrelu")return t?t_:e_;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var s_=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let c=r?e[1]:e[2],u=Math.ceil(c/2),h=r?"i * 2, rc.y":"rc.y, i * 2",p=a?"rc.z, i * 2":"i * 2, rc.z",d=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",A="";i&&(o?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",_="rc.x";e[0]<t[0]?g=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(_=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
|
|
const float sharedDimension = ${u}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${u}; i++) {
|
|
int batchA = ${g};
|
|
int batchB = ${_};
|
|
vec4 a = getMatrixA(batchA, ${h});
|
|
vec4 b = getMatrixB(batchB, ${p});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${d[0]} * ${f[0]});
|
|
result += (${d[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${A}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},i_={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},o_=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},l_="return a * b;";function u_(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=C.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),c=new o_(i_.REAL,r.shape,a.shape),u=new o_(i_.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],p=n.runWebGLProgram(c,h,"float32"),d=n.runWebGLProgram(u,h,"float32"),f=Ta({inputs:{real:p,imag:d},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),f}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[c,u]=Fz(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(u,s),p=n.texData.get(h.dataId);return p.values=c,h}let i;return Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new ac(l_,r.shape,a.shape):i=new xl(l_,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var NP={kernelName:gs,backendName:"webgl",kernelFunc:u_};function SP(e,t,n){let r=[ni(e.shape),...ri(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[ni(t),...ri(t)],i=new Hw(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ye(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=k.sizeFromShape(a.shape),l=k.inferFromImplicitShape(s,o),c=k.sizeFromShape(l);k.assert(o===c,()=>`The new shape (${l}) has ${c} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(a.dataId);return u.isPacked&&!Qu(a.shape,l)&&!(u.texture!==null&&Qu(u.shape,l))?SP(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var TP={kernelName:vo,backendName:"webgl",kernelFunc:ye},c_=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${k.isInt(u)?u.toPrecision(2):u}, ones);`}let c="";a%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},EP=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let c=Math.floor(n/4)*4,u=n%4,h=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
}
|
|
`,p="vec4";t==="all"?(i="1.0",h=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,p="bvec4"):t==="any"&&(i="0.0",h=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,p="bvec4");let d="";a%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${u===2}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${u===3}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function CP(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function oi(e,t,n,r){let a=CP(e.shape),s=e;for(let i=0;i<a.length;i++){let{inSize:o,windowSize:l,outSize:c}=a[i],u,h;n==="mean"?u=i===0?new c_({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},o):new c_({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c}):u=new EP({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:c},n),h=s,s=r.runWebGLProgram(u,[s],t),h.dataId!==e.dataId&&r.disposeIntermediateTensorInfo(h)}return s}var FP=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let r=ut(this.rank),a=RP(t);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function RP(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a<e.length;a++)r[e[a]]=n[a];return r.join()}var MP=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let c=0;c<n.length;c++)n[c]=e[t[c]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=ut(this.rank),a=Gw("rc",this.rank),s=new Array(this.rank);for(let c=0;c<t.length;c++)s[t[c]]=a[c];let i=`vec2(${s.slice(-2).join()})`,o=`++${a[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${a[this.rank-1]};
|
|
if(++${a[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function ep(e,t,n){let r=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new MP(e.shape,t):new FP(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function OP(e,t,n,r){let a=t,s=e.shape.length,i=k.parseAxisParam(a,e.shape),o=i,l=C.getAxesPermutation(o,s),c=l!=null,u=e;c&&(u=ep(e,l,r),o=C.getInnerMostAxes(o.length,s)),C.assertAxesAreInnerMostDims("sum",o,s);let[h,p]=C.computeOutAndReduceShapes(u.shape,o),d=h;n&&(d=C.expandShapeToKeepDim(h,i));let f=k.sizeFromShape(p),m=k.sizeFromShape(e.shape)/f,A=ye({inputs:{x:u},attrs:{shape:[m,f]},backend:r}),y=jh(e.dtype),g=oi(A,y,"sum",r),_=ye({inputs:{x:g},attrs:{shape:d},backend:r});return r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(g),c&&r.disposeIntermediateTensorInfo(u),_}function Nm(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;return OP(a,s,i,n)}var $P={kernelName:Fs,backendName:"webgl",kernelFunc:Nm};function fn(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{perm:s}=r,i=n,o=a.shape.length,l=new Array(o);for(let u=0;u<l.length;u++)l[u]=a.shape[s[u]];let c;if(i.shouldExecuteOnCPU([a])){let u=i.texData.get(a.dataId).values,h=km(u,a.shape,a.dtype,s,l);c=i.makeTensorInfo(l,a.dtype);let p=i.texData.get(c.dataId);p.values=h}else c=ep(a,s,i);return c}var DP={kernelName:zs,backendName:"webgl",kernelFunc:fn},h_=1e3;function tp({a:e,b:t,transposeA:n,transposeB:r,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let c=e.shape.length,u=t.shape.length,h=n?e.shape[c-2]:e.shape[c-1],p=r?t.shape[u-1]:t.shape[u-2],d=n?e.shape[c-1]:e.shape[c-2],f=r?t.shape[u-2]:t.shape[u-1],m=e.shape.slice(0,-2),A=t.shape.slice(0,-2),y=k.sizeFromShape(m),g=k.sizeFromShape(A),_=y===g||y===1||g===1;k.assert(c>=2&&u>=2&&_,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${A}).`);let x=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([d,f]);k.assert(h===p,()=>`Error in matMul: inner shapes (${h}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let w=n?[y,h,d]:[y,d,h],b=r?[g,f,p]:[g,p,f],N=ye({inputs:{x:e},backend:a,attrs:{shape:w}}),T=ye({inputs:{x:t},backend:a,attrs:{shape:b}}),E=[N,T],M=Math.max(y,g),$=n?N.shape[1]:N.shape[2],P=s!=null,V=i!=null,H=l==="leakyrelu",U=l!=null?Qd(l,!0):null,K=P||V||H||U!=null,X;if((d===1||f===1)&&$>h_&&K===!1){let Z=N,ae=T;n&&(Z=fn({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),E.push(Z)),r&&(ae=fn({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),E.push(ae));let J=f!==1,oe=f===1,ne=Z;J&&(ne=ye({inputs:{x:Z},backend:a,attrs:{shape:[M,$,1]}}),E.push(ne));let ce=f===1?2:1,ue=ae;oe&&(ue=ye({inputs:{x:ae},backend:a,attrs:{shape:[M,1,$]}}),E.push(ue));let pe=u_({inputs:{a:ne,b:ue},backend:a});X=Nm({inputs:{x:pe},backend:a,attrs:{axis:ce,keepDims:!0}}),E.push(pe)}else{let Z=Zn(e.dtype,t.dtype),ae=new s_(w,b,[M,d,f],n,r,P,U,V,H),J=[N,T];if(s!=null&&J.push(s),V&&J.push(i),H){let oe=a.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));J.push(oe),E.push(oe)}X=a.runWebGLProgram(ae,J,Z)}let ee=ye({inputs:{x:X},backend:a,attrs:{shape:x}});E.push(X);for(let Z of E)a.disposeIntermediateTensorInfo(Z);return ee}function zP(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r;return tp({a,b:s,transposeA:l,transposeB:c,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:u})}var PP={kernelName:Ps,backendName:"webgl",kernelFunc:zP},d_="return abs(x);";function LP(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=jw(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new gl(r.shape,d_):a=new Sa(r.shape,d_),n.runWebGLProgram(a,[r],r.dtype)}var WP={kernelName:Di,backendName:"webgl",kernelFunc:LP},BP=hr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,VP=Ke({opSnippet:BP}),UP={kernelName:zi,backendName:"webgl",kernelFunc:VP},jP=hr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,GP=Ke({opSnippet:jP}),HP={kernelName:Pi,backendName:"webgl",kernelFunc:GP},p_="return a + b;",qP=Kt({opSnippet:p_,packedOpSnippet:p_,supportsComplex:!0,cpuKernelImpl:yz}),XP={kernelName:da,backendName:"webgl",kernelFunc:qP},KP=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${r};
|
|
setOutput(result);
|
|
}
|
|
`}},ZP=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${r};
|
|
setOutput(result);
|
|
}
|
|
`}};function np(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Tn({inputs:{x:r[0]},backend:n});if(r.length>Q().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=np({inputs:r.slice(0,o),backend:n}),c=np({inputs:r.slice(o),backend:n});return np({inputs:[l,c],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>Zn(o,l)),s=r.map(o=>o.shape),i=Q().getBool("WEBGL_PACK")?new ZP(r[0].shape,s):new KP(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var YP={kernelName:Xa,backendName:"webgl",kernelFunc:np};function JP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=C.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=C.getInnerMostAxes(c.length,o)),C.assertAxesAreInnerMostDims("all",c,o);let[p,d]=C.computeOutAndReduceShapes(h.shape,c),f=k.sizeFromShape(d),m=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=oi(m,m.dtype,"all",n),y;if(i){let g=C.expandShapeToKeepDim(p,l);y=ye({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ye({inputs:{x:A},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var QP={kernelName:uh,backendName:"webgl",kernelFunc:JP};function eL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=C.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=C.getInnerMostAxes(c.length,o)),C.assertAxesAreInnerMostDims("any",c,o);let[p,d]=C.computeOutAndReduceShapes(h.shape,c),f=k.sizeFromShape(d),m=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=oi(m,m.dtype,"any",n),y;if(i){let g=C.expandShapeToKeepDim(p,l);y=ye({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ye({inputs:{x:A},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var tL={kernelName:ch,backendName:"webgl",kernelFunc:eL},nL=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${r};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${r}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},rL=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=ut(o),c=sn("coords",o),u,h;if(s===1){h=o+1;let N=ut(h);u=`
|
|
${N} sourceLocR = ${N}(${c.join()}, 0);
|
|
++${c[o-1]};
|
|
${N} sourceLocG = ${N}(${c.join()}, 0);
|
|
++${c[o-2]};
|
|
${N} sourceLocA = ${N}(${c.join()}, 0);
|
|
--${c[o-1]};
|
|
${N} sourceLocB = ${N}(${c.join()}, 0);
|
|
--${c[o-2]};`}else h=o,u=`
|
|
${l} sourceLocR = coords;
|
|
++${c[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${c[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${c[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${c[o-2]};`;let p=["x","y","z","w","u","v"].slice(0,h),d="."+p[h-1],f=p.map(N=>"int "+N),m=sn("sourceLocR",h-1).concat("inIdx.r"),A=sn("sourceLocG",h-1).concat("inIdx.g"),y=sn("sourceLocB",h-1).concat("inIdx.b"),g=sn("sourceLocA",h-1).concat("inIdx.a"),_=n==="max"?"greaterThan":"lessThan",x=r?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${g.join()})));`,w=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,b=r?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}
|
|
${b}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${c[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${c[o-2]} < ${i[o-2]-1};
|
|
${u}
|
|
ivec4 srcIdx = ivec4(sourceLocR${d}, sourceLocG${d},
|
|
sourceLocB${d}, sourceLocA${d}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${w};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${x}
|
|
vec4 candidate = ${w};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${_}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function f_(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=C.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new nL(o,n,r==null),c=[t];r!=null&&c.push(r);let u=e.runWebGLProgram(l,c,"int32");if(u.shape[1]===1)return u;let h=f_(e,t,n,u);return e.disposeIntermediateTensorInfo(u),h}function m_(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=C.computeOptimalWindowSize(s),o=new rL(a,i,n,r==null),l=r==null?[t]:[t,r],c=e.runWebGLProgram(o,l,"int32");if(c.shape.length===t.shape.length){let u=m_(e,t,n,c);return e.disposeIntermediateTensorInfo(c),u}return c}function A_(e,t,n,r){let a=[n];if(C.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!Q().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=C.computeOutAndReduceShapes(t.shape,a),l=k.sizeFromShape(o),c=ye({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(c);let u=f_(e,c,r);s.push(u);let h=ye({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(p=>e.disposeIntermediateTensorInfo(p)),h}return m_(e,t,r)}function aL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=k.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=fn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=A_(n,l,i[0],"max");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var sL={kernelName:Ka,backendName:"webgl",kernelFunc:aL};function iL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=k.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,c=[];o!=null&&(l=fn({inputs:{x:a},backend:n,attrs:{perm:o}}),c.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=A_(n,l,i[0],"min");return c.forEach(h=>n.disposeIntermediateTensorInfo(h)),u}var oL={kernelName:su,backendName:"webgl",kernelFunc:iL},lL=hr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,uL=Ke({opSnippet:lL}),cL={kernelName:Li,backendName:"webgl",kernelFunc:uL},hL=hr+"return log(x + sqrt(x * x + 1.0));",dL=Ke({opSnippet:hL}),pL={kernelName:Wi,backendName:"webgl",kernelFunc:dL},fL=hr+`
|
|
return atan(x);
|
|
`,mL=Ke({opSnippet:fL}),AL={kernelName:Bi,backendName:"webgl",kernelFunc:mL},yL=kP+`
|
|
return atan(a, b);
|
|
`,gL=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+IP+`
|
|
return result;
|
|
`,xL=Kt({opSnippet:yL,packedOpSnippet:gL}),wL={kernelName:Ui,backendName:"webgl",kernelFunc:xL},_L=hr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,bL=Ke({opSnippet:_L}),vL={kernelName:Vi,backendName:"webgl",kernelFunc:bL},sc=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterHeight,h=e.effectiveFilterWidth,p=e.padInfo.top,d=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${p}, ${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${c}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${N} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${r?a?m:A:`wR * ${h} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let g="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let x=Math.floor(s/4)*4,w=s%4,b=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${g}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${p}, ${d});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${x}; wC += 4) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
getValue(batch, xR, xC + 3 * ${c}, d)
|
|
);
|
|
|
|
${b}
|
|
}
|
|
|
|
int xC = xCCorner + ${x};
|
|
if (${w===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${b}
|
|
} else if (${w===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${b}
|
|
} else if (${w===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${c}, d),
|
|
getValue(batch, xR, xC + 2 * ${c}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${b}
|
|
}
|
|
}
|
|
setOutput(${_});
|
|
}
|
|
`}},Sm=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,c=e.dilationDepth,u=e.dilationHeight,h=e.dilationWidth,p=e.effectiveFilterDepth,d=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",_="0.0";if(g||(_="-1.0 / 1e-20"),n){let E=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${A}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${h}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${E} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${d} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let x="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let b=Math.floor(s/4)*4,N=s%4,T=`
|
|
if (${g}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${x}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${A}, ${y});
|
|
const float initializationValue = ${_};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${_});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${c}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${h};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${N===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${N===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${N===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${w});
|
|
}
|
|
}
|
|
`}};function kL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;dl(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;k.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=C.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return Tn({inputs:{x:a},backend:n});let h=new sc(u,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var IL={kernelName:Za,backendName:"webgl",kernelFunc:kL};function NL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:c}=r,u=[1,1,1],h=C.computePool3DInfo(a.shape,s,i,u,o,l,c),p=new Sm(h,"avg",!1);return n.runWebGLProgram(p,[a],"float32")}var SL={kernelName:iu,backendName:"webgl",kernelFunc:NL},TL=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.top,u=l-1-e.padInfo.left,h=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${c}, ${u});
|
|
const float avgMultiplier = float(${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},EL=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.effectiveFilterDepth,h=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=u-1-e.padInfo.front,f=h-1-e.padInfo.top,m=p-1-e.padInfo.left,A=1/(t*n*r);this.userCode=`
|
|
const ivec3 pads = ivec3(${d}, ${f}, ${m});
|
|
const float avgMultiplier = float(${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${u};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${a}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${c}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function CL(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],p=C.computePool3DInfo(i.shape,o,l,h,c,u),d=new EL(p);return n.runWebGLProgram(d,[a],i.dtype)}var RL={kernelName:dh,backendName:"webgl",kernelFunc:CL};function FL(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;dl([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:c}=r,u=C.computePool2DInfo(i.shape,o,l,1,c),h=new TL(u);return n.runWebGLProgram(h,[a],i.dtype)}var ML={kernelName:hh,backendName:"webgl",kernelFunc:FL};function OL(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return tp({a,b:s,transposeA:i,transposeB:o,backend:n})}var $L={kernelName:Ya,backendName:"webgl",kernelFunc:OL},DL=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},zL=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},PL=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;k.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let c=[r,a,s],u=null;i!=null&&(u=i.shape,c.push(i));let h=null;o!=null&&(h=o.shape,c.push(o));let p=Q().getBool("WEBGL_PACK_NORMALIZATION")?new zL(r.shape,a.shape,s.shape,u,h,l):new DL(r.shape,a.shape,s.shape,u,h,l);return t.runWebGLProgram(p,c,c[0].dtype)},LL={kernelName:ls,backendName:"webgl",kernelFunc:PL},BL=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ut(this.rank),n=`uniform int start[${this.rank}];`,r=WL(this.rank),a,s=e.map((i,o)=>`sourceLoc.${Tm[o]} = start[${o}] + coords.${Tm[o]};`);a=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${a}
|
|
setOutput(getSource(${r}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},Tm=["x","y","z","w","u","v"];function WL(e){if(e===1)return"sourceLoc";if(e<=6)return Tm.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var VL=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=ut(this.rank),n=sn("coords",this.rank),r=sn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${r[this.rank-1]};
|
|
result.y = ${s};
|
|
--${r[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${r[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${r[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((c,u)=>`start[${u}]`).join()});`:e.map((c,u)=>`${r[u]} = ${n[u]} + start[${u}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function UL(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.complexParentRefCount=0,i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=nn.computeFlatOffset(t,k.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function ic(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=nn.parseSliceParams(a,s,i);if(nn.assertParamsValid(a,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),p=zz(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,p)}let{isPacked:c}=n.texData.get(a.dataId),u=nn.isSliceContinous(a.shape,o,l);if(c||!u){let h=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new VL(l):new BL(l),p=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,p)}return n.uploadToGPU(a.dataId),UL(a,o,l,n)}var jL={kernelName:So,backendName:"webgl",kernelFunc:ic},GL=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;k.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,_)=>g*_),l=C.getReshaped(a.shape,s,o),c=C.getPermuted(l.length,s.length),u=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),p=C.getSliceSize(u,i,s.length),d=[],f=ye({inputs:{x:a},backend:n,attrs:{shape:l}}),m=fn({inputs:{x:f},backend:n,attrs:{perm:c}}),A=ye({inputs:{x:m},backend:n,attrs:{shape:u}}),y=ic({inputs:{x:A},backend:n,attrs:{begin:h,size:p}});return d.push(f),d.push(m),d.push(A),d.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},HL={kernelName:ou,backendName:"webgl",kernelFunc:GL};function qL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),c=Uw(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}var XL={kernelName:ph,backendName:"webgl",kernelFunc:qL},KL="return float(a != b);",y_=Kt({opSnippet:KL,dtype:"bool"}),ZL={kernelName:mo,backendName:"webgl",kernelFunc:y_};function oc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Tn({inputs:{x:a.complexTensorInfos.real},backend:n})}var YL={kernelName:Oh,backendName:"webgl",kernelFunc:oc},JL="return float(int(x));";function QL(e,t){let n=new Sa(e.shape,JL),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function Em(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Tn({inputs:{x:a},backend:n});let i=Nt(a.shape),o=Em({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Ta({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=oc({inputs:{input:a},backend:n}),o=Em({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(a.dtype,s)){let i=Tn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return QL(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=y_({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var eW={kernelName:Ja,backendName:"webgl",kernelFunc:Em},g_="return ceil(x);",tW=Ke({opSnippet:g_,packedOpSnippet:g_,cpuKernelImpl:xz}),nW={kernelName:ji,backendName:"webgl",kernelFunc:tW},rW=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},aW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function sW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;Q().getBool("WEBGL_PACK_CLIP")?o=new aW(a.shape):o=new rW(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var iW={kernelName:pa,backendName:"webgl",kernelFunc:sW},oW=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function x_(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function lW(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new oW(r.shape),i=[x_(r,a.complexTensorInfos.real),x_(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var uW={kernelName:lu,backendName:"webgl",kernelFunc:lW},cW=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let r=t.length,a=t[t.length-1];n.push(`else setOutput(getT${r}(yR, yC-${a}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},hW=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,r=n.length,a=ut(r),s=sn("coords",r),i=["x","y","z","w","u","v"].slice(0,r);this.variableNames=e.map((f,m)=>`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f<o.length;f++)o[f]=o[f-1]+e[f][t];let l=i[t],c=i.slice(-2),u=i.join(),h=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${u}), vec2(${c.join()}));
|
|
}`;for(let f=1;f<o.length;f++){let m=o[f-1];h+=`
|
|
if (${l} < ${o[f]} && ${l} >= ${o[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${rp(i,l,m)}),
|
|
vec2(${rp(c,l,m)}));
|
|
}`}let p=o.length,d=o[o.length-1];h+=`
|
|
return getChannel(
|
|
getT${p}(${rp(i,l,d)}),
|
|
vec2(${rp(c,l,d)}));`,this.userCode=`
|
|
float getValue(${i.map(f=>"int "+f)}) {
|
|
${h}
|
|
}
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[r-1]} = ${s[r-1]} + 1;
|
|
if (${s[r-1]} < ${n[r-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[r-2]} = ${s[r-2]} + 1;
|
|
if (${s[r-2]} < ${n[r-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[r-1]} = ${s[r-1]} - 1;
|
|
if (${s[r-2]} < ${n[r-2]} &&
|
|
${s[r-1]} < ${n[r-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function rp(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function ap(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Tn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var dW={kernelName:Sh,backendName:"webgl",kernelFunc:ap};function wl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let c=e.map(f=>oc({inputs:{input:f},backend:n})),u=e.map(f=>ap({inputs:{input:f},backend:n})),h=wl(c,t,n),p=wl(u,t,n),d=Ta({inputs:{real:h,imag:p},backend:n});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),u.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),d}if(r==="string"){let{tensors2D:c,outShape:u}=w_(e,t,n),h=c.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=c[0].shape[0]===1,d=wz(h,u,r,p),f=C.computeOutShape(e.map(A=>A.shape),t),m=n.makeTensorInfo(f,r,d);return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),m}if(e.length>Q().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),u=wl(e.slice(0,c),t,n),h=wl(e.slice(c),t,n),p=wl([u,h],t,n);return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),p}if(Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new hW(e.map(u=>u.shape),t);return n.runWebGLProgram(c,e,r)}let{tensors2D:a,outShape:s}=w_(e,t,n),i=new cW(a.map(c=>c.shape)),o=n.runWebGLProgram(i,a,r);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let l=ye({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function w_(e,t,n){let r=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ye({inputs:{x:a},attrs:{shape:[-1,k.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function __(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=k.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(c=>c.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(c=>k.sizeFromShape(c.shape)>0);if(o.length===1)return Tn({inputs:{x:o[0]},backend:n});let l=o.map(c=>c.shape);return C.assertParamsConsistent(l,s),wl(o,s,n)}var pW={kernelName:Gi,backendName:"webgl",kernelFunc:__},b_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,c=e.dilationHeight,u=e.dilationWidth,h=e.filterHeight,p=e.filterWidth,d=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",A=m?1:2,y=m?2:3,g=m?3:1,_="",x="";n&&(r?_=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?_=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:_=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,x="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${_}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${g}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${A}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${c};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${d}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${d}) *
|
|
getW(wR, wC, ${d}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${d}, xR, xC) *
|
|
getW(wR, wC, ${d}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${d}, d2),
|
|
getW(wR, wC, ${d} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${d}),
|
|
getX(batch, xR, xC, ${d} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${d}, xR, xC),
|
|
getX(batch, ${d} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${d}, d2),
|
|
getW(wR, wC, ${d} + 1, d2),
|
|
getW(wR, wC, ${d} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${d}),
|
|
getX(batch, xR, xC, ${d} + 1),
|
|
getX(batch, xR, xC, ${d} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${d}, xR, xC),
|
|
getX(batch, ${d} + 1, xR, xC),
|
|
getX(batch, ${d} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${w}
|
|
${x}
|
|
setOutput(result);
|
|
}
|
|
`}},fW=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,c=e.dilationWidth,u=e.filterDepth,h=e.filterHeight,p=e.filterWidth,d=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${a}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${r});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${u}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${d}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${d}) *
|
|
getW(wF, wR, wC, ${d}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${d}),
|
|
getX(batch, xF, xR, xC, ${d} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${d}, d2),
|
|
getW(wF, wR, wC, ${d} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${d}),
|
|
getX(batch, xF, xR, xC, ${d} + 1),
|
|
getX(batch, xF, xR, xC, ${d} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${d}, d2),
|
|
getW(wF, wR, wC, ${d} + 1, d2),
|
|
getW(wF, wR, wC, ${d} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},mW=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:c,dilationHeight:u,dataFormat:h}=n,{left:p,top:d}=o,f=a*r,m=an(),A=h==="channelsLast",y=A?0:1,g=A?1:2,_="";for(let x=0;x<=1;x++)for(let w=0;w<=1;w++)_+=`
|
|
blockIndex = rc.y + ${w};
|
|
pos = rc.x + ${x};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${l})) * ${i} - ${d};
|
|
d0 = offsetY + ${u} * (pos / ${f});
|
|
|
|
if(d0 < ${t[y]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${p}.);
|
|
d1 = offsetX + ${c} * (int(mod(float(pos), ${f}.) / ${a}.));
|
|
|
|
if(d1 < ${t[g]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${a}.));
|
|
|
|
if (${A}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${x*2+w}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${x*2+w}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${_}
|
|
|
|
${m.output} = result;
|
|
}
|
|
`}};function v_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,c=r.texData.get(e.dataId),u=n.inChannels,h=l[0]*l[1]*l[2],p=n.outChannels,d=n.dataFormat==="channelsLast",f=!1,m=!1,A,y=[],g=(h===1||p===1)&&u>h_,_=l[2]%2!=0&&!!c.isPacked;if(g||!Q().getBool("WEBGL_LAZILY_UNPACK")||!Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!_){let x=d?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=ye({inputs:{x:e},backend:r,attrs:{shape:[1,x,n.inChannels]}}),b=ye({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=tp({a:w,b,transposeA:f,transposeB:m,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=ye({inputs:{x:N},backend:r,attrs:{shape:n.outShape}}),y.push(w),y.push(b),y.push(N)}else{let x=d?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),w={dataId:e.dataId,shape:[1,x,n.inChannels],dtype:e.dtype},b=c.shape;c.shape=c.shape.slice(),c.shape[c.shape.length-2]++,k.assert(Qu(c.shape,w.shape),()=>`packed reshape ${c.shape} to ${w.shape} isn't free`);let N=ye({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(N);let T=tp({a:w,b:N,backend:r,transposeA:f,transposeB:m,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),E=r.texData.get(T.dataId);k.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),c.shape=b,E.shape=n.outShape,A=Tn({inputs:{x:T},backend:r}),A.shape=n.outShape,y.push(T)}for(let x of y)r.disposeIntermediateTensorInfo(x);return A}function k_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:c,inChannels:u,outWidth:h,outHeight:p,dataFormat:d}=n,f=d==="channelsLast",m=l*c*u,A=p*h,y=[m,A],g=!0,_=!1,x=[],w=ye({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),b=ye({inputs:{x:t},backend:r,attrs:{shape:[1,m,k.sizeFromShape(t.shape)/m]}});x.push(w),x.push(b);let N=new mW(y,w.shape,n),T=r.runWebGLProgram(N,[w],"float32"),E=ye({inputs:{x:T},backend:r,attrs:{shape:[1,y[0],y[1]]}});x.push(T),x.push(E);let M=a!=null,$=s!=null,P=o==="leakyrelu",V=o?Qd(o,!0):null,H=new s_(E.shape,b.shape,[1,A,n.outChannels],g,_,M,V,$,P),U=[E,b];if(a&&U.push(a),$&&U.push(s),P){let Z=r.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));U.push(Z),x.push(Z)}let K=r.runWebGLProgram(H,U,"float32"),X=f?[1,p,h,n.outChannels]:[1,n.outChannels,p,h],ee=ye({inputs:{x:K},backend:r,attrs:{shape:X}});x.push(K);for(let Z of x)r.disposeIntermediateTensorInfo(Z);return ee}function AW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:c,dimRoundingMode:u}=r,h=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!1,h),d;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))d=v_({x:a,filter:s,convInfo:p,backend:n});else if(Q().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)d=k_({x:a,filter:s,convInfo:p,backend:n});else{let m=new b_(p);d=n.runWebGLProgram(m,[a,s],"float32")}let f=ye({inputs:{x:d},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(d),f}var yW={kernelName:Qa,backendName:"webgl",kernelFunc:AW},gW=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${r};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},xW=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,c=s?2:3,u=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${u}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${c}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},wW=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${a};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${r} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},_W=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,c=r-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${a}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${r}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${r} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function bW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,filterShape:u}=r,h=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(a.shape,u,i,1,o,c,!1,h),d=new gW(p);return n.runWebGLProgram(d,[a,s],"float32")}var vW={kernelName:mh,backendName:"webgl",kernelFunc:bW};function kW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:c,dimRoundingMode:u}=r,h=C.convertConv2DDataFormat(c),p=C.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),d=new xW(p);return n.runWebGLProgram(d,[a,s],"float32")}var IW={kernelName:es,backendName:"webgl",kernelFunc:kW};function NW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=C.computeConv3DInfo(a.shape,s.shape,i,l,o),u=new fW(c);return n.runWebGLProgram(u,[a,s],"float32")}var SW={kernelName:uu,backendName:"webgl",kernelFunc:NW};function TW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,c=C.computeConv3DInfo(a.shape,l,i,1,o),u=new wW(c);return n.runWebGLProgram(u,[a,s],"float32")}var EW={kernelName:Ah,backendName:"webgl",kernelFunc:TW};function CW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,c=C.computeConv3DInfo(l,s.shape,o,1,i),u=new _W(c);return n.runWebGLProgram(u,[a,s],"float32")}var RW={kernelName:yh,backendName:"webgl",kernelFunc:CW},FW=a_+`
|
|
return cos(x);
|
|
`,MW=Ke({opSnippet:FW}),OW={kernelName:ts,backendName:"webgl",kernelFunc:MW},$W=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,DW=Ke({opSnippet:$W}),zW={kernelName:Hi,backendName:"webgl",kernelFunc:DW},PW=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[c]=t,[u,h]=n;this.outputShape=[c,u,h,l];let p=r==="bilinear"?1:0,[d,f]=[`${i-1}.0`,`${o-1}.0`],[m,A,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${d} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${d}`],[g,_,x]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${g});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${A};
|
|
float width_scale = ${_};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${d} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
float in_x = ${x};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${p} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},LW=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:c}=r,u=new PW(a.shape,s.shape,o,l,c);return n.runWebGLProgram(u,[a,s,i],"float32")},WW={kernelName:qi,backendName:"webgl",kernelFunc:LW},S_=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${I_(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${ut(r)} coords = getOutputCoords();
|
|
int end = ${N_(r,"coords")};
|
|
float val = ${a};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${N_(r,"coords")} = idx;
|
|
val += getX(${I_(r,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function I_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function N_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function BW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,c=C.getAxesPermutation([s],l),u=a;c!=null&&(u=fn({inputs:{x:a},backend:n,attrs:{perm:c}}));let h=C.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let p=a.shape[h],d=Tn({inputs:{x:u},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new S_(u.shape,!1,o),A=m.getCustomSetupFunc(f),y=d;d=n.runWebGLProgram(m,[d],d.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let f=new S_(u.shape,i,o),m=d;d=n.runWebGLProgram(f,[d],d.dtype),n.disposeIntermediateTensorInfo(m)}if(c!=null){let f=C.getUndoAxesPermutation(c),m=fn({inputs:{x:d},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(u),m}return d}var VW={kernelName:ns,backendName:"webgl",kernelFunc:BW};function UW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),c=n.readSync(s.dataId),u=Uw(l,c,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(a.shape.length===2){let l=n.bufferSync(a),c=n.bufferSync(s),u=gz(l,c,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var jW={kernelName:gh,backendName:"webgl",kernelFunc:UW},GW=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function HW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=c*s,d=u/(s*s),f=i==="NHWC"?[o,h,p,d]:[o,d,h,p],m=new GW(f,s,i);return n.runWebGLProgram(m,[a],a.dtype)}var qW={kernelName:Xi,backendName:"webgl",kernelFunc:HW},T_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,p=e.dilationWidth,d=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?A=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:A=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,y="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${c}, ${u});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${m};
|
|
int q = d2 - d1 * ${m};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${h};
|
|
|
|
if (xR < 0 || xR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f}; wC++) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${g}
|
|
${y}
|
|
setOutput(result);
|
|
}
|
|
`}},E_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,c=e.strideHeight,u=e.strideWidth,h=e.dilationHeight,p=e.dilationWidth,d=e.filterHeight,f=e.filterWidth,m=f,A="int xR; int xC; int xCOffset;";for(let x=0;x<d;x++)for(let w=0;w<f;w++)A+=`
|
|
vec4 xTexelR${x}C${w*2} = vec4(0.);
|
|
vec4 wR${x}C${w} = vec4(0.);
|
|
vec4 xR${x}C${w} = vec4(0.);`;for(let x=0;x<d;x++)for(let w=0;w<m;w++){let b=w*2;if(A+=`
|
|
xR = xRCorner + ${x*h};
|
|
xC = xCCorner + ${b*p};
|
|
`,u===1){if(b<f&&(l%2==1?A+=`
|
|
xCOffset = xC + 1;
|
|
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${x}C${b} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
xTexelR${x}C${b}.zw = vec2(0.);
|
|
}
|
|
} else {
|
|
xTexelR${x}C${b} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + 1 - 2;
|
|
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
vec4 previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
previous.zw = vec2(0.);
|
|
}
|
|
|
|
xR${x}C${b} = vec4(previous.zw, xTexelR${x}C${b}.xy);
|
|
} else {
|
|
xR${x}C${b} = vec4(0, 0, xTexelR${x}C${b}.xy);
|
|
}
|
|
`:A+=`
|
|
if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) {
|
|
xTexelR${x}C${b} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${x}C${b} = vec4(0.);
|
|
}
|
|
|
|
xR${x}C${b} = xTexelR${x}C${b};
|
|
`,b+1<f)){let N=l%2==0?k.nearestLargerEven(p):p;p%2==0&&l%2==1||p%2!=0&&l%2!=1?(A+=`
|
|
xCOffset = xC + ${l%2} + ${N};
|
|
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${x}C${b+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
`,p>1&&(A+=`
|
|
xCOffset -= 2;
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${x}C${b} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${x}C${b} = vec4(0.);
|
|
}
|
|
`),A+=`
|
|
xR${x}C${b+1} = vec4(
|
|
xTexelR${x}C${b}.zw, xTexelR${x}C${b+2}.xy);
|
|
`):A+=`
|
|
xCOffset = xC + ${N};
|
|
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${x}C${b+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
|
|
xR${x}C${b+1} = xTexelR${x}C${b+2};
|
|
`}}else b<f&&(A+=`
|
|
if(xR >= 0 && xR < ${s}) {
|
|
`,l%2==1?(A+=`
|
|
xCOffset = xC + 1 - ${u};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${x}C${b} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${x}C${b} = vec4(0.);
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${i}) {
|
|
xTexelR${x}C${b+2} = getX(batch, xR, xC + 1, d1);
|
|
} else {
|
|
xTexelR${x}C${b+2} = vec4(0.);
|
|
}
|
|
|
|
xR${x}C${b} = vec4(
|
|
xTexelR${x}C${b}.zw, xTexelR${x}C${b+2}.zw);
|
|
`,b+1<f&&(A+=`
|
|
vec4 final = vec4(0.);
|
|
xCOffset = xC + 1 + ${u};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xR${x}C${b+1} = vec4(xTexelR${x}C${b+2}.xy, final.xy);
|
|
`)):(A+=`
|
|
if(xC >= 0 && xC < ${i}) {
|
|
xTexelR${x}C${b} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${x}C${b} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + ${u};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${x}C${b+2} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${x}C${b+2} = vec4(0.);
|
|
}
|
|
|
|
xR${x}C${b} = vec4(
|
|
xTexelR${x}C${b}.xy, xTexelR${x}C${b+2}.xy);
|
|
`,b+1<f&&(A+=`
|
|
xR${x}C${b+1} = vec4(
|
|
xTexelR${x}C${b}.zw, xTexelR${x}C${b+2}.zw);
|
|
`)),A+="}");b<f&&(A+=`
|
|
vec4 wTexelR${x}C${b} = getW(${x}, ${b}, d1, q);
|
|
wR${x}C${b} = vec4(wTexelR${x}C${b}.xz, wTexelR${x}C${b}.xz);
|
|
`,b+1<f&&(A+=`
|
|
vec4 wTexelR${x}C${b+1} = getW(${x}, ${b+1}, d1, q);
|
|
wR${x}C${b+1} =
|
|
vec4(wTexelR${x}C${b+1}.xz, wTexelR${x}C${b+1}.xz);`))}for(let x=0;x<d;x++)for(let w=0;w<f;w++)A+=`dotProd += xR${x}C${w} * wR${x}C${w};`;let y="",g="";n&&(r?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:y=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,g="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${y}
|
|
|
|
const ivec2 strides = ivec2(${c}, ${u});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2;
|
|
int q = 0;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
vec4 dotProd = vec4(0.);
|
|
|
|
${A}
|
|
|
|
vec4 result = dotProd;
|
|
${_}
|
|
${g}
|
|
setOutput(result);
|
|
}
|
|
`}};function XW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:c}=r,u=l;u==null&&(u=[1,1]),k.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let h=C.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!0),p;return Q().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?p=new E_(h):p=new T_(h),n.runWebGLProgram(p,[a,s],"float32")}var KW={kernelName:rs,backendName:"webgl",kernelFunc:XW},ZW=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${r};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},YW=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function JW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,filterShape:u}=r,h=C.computeConv2DInfo(a.shape,u,i,o,l,c,!0),p=new ZW(h);return n.runWebGLProgram(p,[a,s],"float32")}var QW={kernelName:xh,backendName:"webgl",kernelFunc:JW};function eB(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:c,inputShape:u}=r,h=C.computeConv2DInfo(u,s.shape,i,o,l,c,!0),p=new YW(h);return n.runWebGLProgram(p,[a,s],"float32")}var tB={kernelName:wh,backendName:"webgl",kernelFunc:eB},nB=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function rB(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=k.sizeFromShape(r.shape),i=ye({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new nB(s),l=n.runWebGLProgram(o,[i],i.dtype),c=ye({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),c}var aB={kernelName:_h,backendName:"webgl",kernelFunc:rB},sB=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:c}=e,{top:u,left:h}=r;this.userCode=`
|
|
const ivec2 strides = ivec2(${a}, ${s});
|
|
const ivec2 pads = ivec2(${u}, ${h});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${c};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function iB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,c=C.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),u,h=new sB(c);u=n.runWebGLProgram(h,[a,s],"float32");let p=ye({inputs:{x:u},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(u),p}var oB={kernelName:cu,backendName:"webgl",kernelFunc:iB},lB="return (x >= 0.0) ? x : (exp(x) - 1.0);",uB=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,cB=Ke({opSnippet:lB,packedOpSnippet:uB}),hB={kernelName:Ki,backendName:"webgl",kernelFunc:cB},dB="return (b >= 1.0) ? a : a * (b + 1.0);",pB=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,fB=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=Q().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new ac(pB,r.shape,a.shape):new xl(dB,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},mB={kernelName:kh,backendName:"webgl",kernelFunc:fB},AB=`
|
|
return vec4(equal(a, b));
|
|
`,yB="return float(a == b);",gB=Kt({opSnippet:yB,packedOpSnippet:AB,dtype:"bool"}),xB={kernelName:Yi,backendName:"webgl",kernelFunc:gB},wB=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${C.ERF_P};
|
|
float a1 = ${C.ERF_A1};
|
|
float a2 = ${C.ERF_A2};
|
|
float a3 = ${C.ERF_A3};
|
|
float a4 = ${C.ERF_A4};
|
|
float a5 = ${C.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,_B=Ke({opSnippet:wB}),bB={kernelName:Zi,backendName:"webgl",kernelFunc:_B},C_="return exp(x);",R_=Ke({opSnippet:C_,packedOpSnippet:C_,cpuKernelImpl:_z}),vB={kernelName:ss,backendName:"webgl",kernelFunc:R_};function Cm(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(k.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),ye({inputs:{x:s},backend:r,attrs:{shape:o}})}var kB={kernelName:Ji,backendName:"webgl",kernelFunc:Cm},F_="return exp(x) - 1.0;",IB=Ke({opSnippet:F_,packedOpSnippet:F_,cpuKernelImpl:bz}),NB={kernelName:Qi,backendName:"webgl",kernelFunc:IB},M_=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${a};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${r});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${r}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function O_(e,t,n){let r=n.texData.get(e.dataId),a=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=ye({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,c=new M_("real",l,t),u=new M_("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],p=n.runWebGLProgram(c,h,"float32"),d=n.runWebGLProgram(u,h,"float32"),f=Ta({inputs:{real:p,imag:d},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d);let m=ye({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(f),m}function SB(e){let{inputs:t,backend:n}=e,{input:r}=t;return O_(r,!1,n)}var TB={kernelName:Ih,backendName:"webgl",kernelFunc:SB},EB=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Rm(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||k.inferDtype(a),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new EB(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var CB={kernelName:hu,backendName:"webgl",kernelFunc:Rm},RB=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},FB={kernelName:eo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new RB(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},$_="return floor(x);",MB=Ke({opSnippet:$_,packedOpSnippet:$_,cpuKernelImpl:vz}),OB={kernelName:is,backendName:"webgl",kernelFunc:MB},$B=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,DB=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,zB=Kt({opSnippet:$B,packedOpSnippet:DB,dtype:"int32"}),PB={kernelName:os,backendName:"webgl",kernelFunc:zB},LB=class{constructor(e){this.variableNames=["A"];let t=an(),[n,r]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},WB=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=an(),[n,r]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${r}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},VB={kernelName:Lh,backendName:"webgl",kernelFunc:BB},_l;function BB(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&a instanceof ImageBitmap,[c,u]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],h=[u,c],p=[u,c,s];(o||i||l)&&(_l==null&&(_l=document.createElement("canvas").getContext("2d")),_l.canvas.width=c,_l.canvas.height=u,_l.drawImage(a,0,0,c,u),a=_l.canvas);let d=n.makeTensorInfo(h,"int32");n.texData.get(d.dataId).usage=Vn.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),a);let f=Q().getBool("WEBGL_PACK")?new WB(p):new LB(p),m=n.runWebGLProgram(f,[d],"int32");return n.disposeData(d.dataId),m}function UB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dataFormat:u,dilations:h,dimRoundingMode:p,activation:d,leakyreluAlpha:f}=r,m=C.convertConv2DDataFormat(u),A=C.computeConv2DInfo(a.shape,s.shape,l,h,c,p,!1,m),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=v_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:d,preluActivationWeights:o,leakyreluAlpha:f});else if(Q().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=k_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:d,preluActivationWeights:o,leakyreluAlpha:f});else{let x=i!=null,w=o!=null,b=d==="leakyrelu",N=d?Qd(d,!1):null,T=new b_(A,x,N,w,b),E=[a,s];if(i&&E.push(i),o&&E.push(o),b){let M=n.makeTensorInfo([],"float32",k.createScalarValue(f,"float32"));E.push(M),g.push(M)}y=n.runWebGLProgram(T,E,"float32")}let _=ye({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(x=>n.disposeIntermediateTensorInfo(x)),_}var jB={kernelName:Ls,backendName:"webgl",kernelFunc:UB};function GB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dimRoundingMode:h,activation:p,leakyreluAlpha:d}=r,f=[],m=u;m==null&&(m=[1,1]),k.assert(C.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let A=C.computeConv2DInfo(a.shape,s.shape,l,m,c,h,!0),y=Q().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=p?Qd(p,y):null,_=[a,s],x=i!=null,w=o!=null,b=p==="leakyrelu";if(x&&_.push(i),w&&_.push(o),b){let E=n.makeTensorInfo([],"float32",k.createScalarValue(d,"float32"));_.push(E),f.push(E)}let N;y?N=new E_(A,x,g,w,b):N=new T_(A,x,g,w,b);let T=n.runWebGLProgram(N,_,"float32");return f.forEach(E=>n.disposeIntermediateTensorInfo(E)),T}var HB={kernelName:Ws,backendName:"webgl",kernelFunc:GB},qB=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=ut(t.length),a=ut(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${r} strides = ${r}(${this.strides});
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function XB(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,c,u]=C.prepareAndValidate(r,a),h=ye({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),p=ye({inputs:{x:r},backend:n,attrs:{shape:[k.sizeFromShape(r.shape)/c,c]}}),d=new qB(i,u,[l,c]),f=n.runWebGLProgram(d,[p,h],p.dtype),m=ye({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}var KB={kernelName:no,backendName:"webgl",kernelFunc:XB},YB=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ut(this.rank),r=ZB(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function ZB(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;a<e.length;a++)a===2?r.push("int(getIndices(resRC.x, resRC.z))"):r.push(`${n[a]}`);return r.join()}function JB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r,l=k.parseAxisParam(i,a.shape)[0],c=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=k.sizeFromShape(s.shape),h=[],p=ye({inputs:{x:a},backend:n,attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]}}),d=ye({inputs:{x:s},backend:n,attrs:{shape:[c.batchSize,u/c.batchSize]}});h.push(p),h.push(d);let f=[c.batchSize,c.outerSize,u/c.batchSize,c.sliceSize];if(n.shouldExecuteOnCPU([a,s])||a.dtype==="string"){let g=n.bufferSync(d),_=n.bufferSync(p),x=kz(_,g,f);return h.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(c.outputShape,x.dtype,x.values)}let m=new YB(p.shape,f),A=n.runWebGLProgram(m,[p,d],p.dtype);h.push(A);let y=ye({inputs:{x:A},backend:n,attrs:{shape:c.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var QB={kernelName:to,backendName:"webgl",kernelFunc:JB},eV="return float(a > b);",tV=`
|
|
return vec4(greaterThan(a, b));
|
|
`,nV=Kt({opSnippet:eV,packedOpSnippet:tV,cpuKernelImpl:Iz,dtype:"bool"}),rV={kernelName:ro,backendName:"webgl",kernelFunc:nV},aV="return float(a >= b);",sV=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,iV=Kt({opSnippet:aV,packedOpSnippet:sV,dtype:"bool"}),oV={kernelName:us,backendName:"webgl",kernelFunc:iV};function lV(e){let{inputs:t,backend:n}=e,{input:r}=t;return O_(r,!0,n)}var uV={kernelName:Nh,backendName:"webgl",kernelFunc:lV},cV="return float(!isnan(x) && !isinf(x));",hV=Ke({opSnippet:cV,dtype:"bool"}),dV={kernelName:so,backendName:"webgl",kernelFunc:hV},pV="return float(isinf(x));",fV=Ke({opSnippet:pV,dtype:"bool"}),mV={kernelName:io,backendName:"webgl",kernelFunc:fV},AV="return float(isnan(x));",yV=Ke({opSnippet:AV,dtype:"bool"}),gV={kernelName:oo,backendName:"webgl",kernelFunc:yV},xV="return float(a < b);",wV=`
|
|
return vec4(lessThan(a, b));
|
|
`,_V=Kt({opSnippet:xV,packedOpSnippet:wV,cpuKernelImpl:Nz,dtype:"bool"}),bV={kernelName:lo,backendName:"webgl",kernelFunc:_V},vV="return float(a <= b);",kV=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,IV=Kt({opSnippet:vV,packedOpSnippet:kV,dtype:"bool"}),NV={kernelName:uo,backendName:"webgl",kernelFunc:IV};function SV(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=Sz(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var TV={kernelName:Th,backendName:"webgl",kernelFunc:SV},EV=`if (x < 0.0) return NAN;
|
|
return log(x);`,CV=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,RV=Ke({opSnippet:EV,packedOpSnippet:CV,cpuKernelImpl:Tz}),FV={kernelName:hs,backendName:"webgl",kernelFunc:RV},MV="return log(1.0 + x);",OV=Ke({opSnippet:MV}),$V={kernelName:co,backendName:"webgl",kernelFunc:OV},DV="return float(a >= 1.0 && b >= 1.0);",zV=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,PV=Kt({opSnippet:DV,packedOpSnippet:zV,dtype:"bool"}),LV={kernelName:ho,backendName:"webgl",kernelFunc:PV},WV="return float(!(x >= 1.0));",BV=Ke({opSnippet:WV}),VV={kernelName:du,backendName:"webgl",kernelFunc:BV},UV="return float(a >= 1.0 || b >= 1.0);",jV=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,GV=Kt({opSnippet:UV,packedOpSnippet:jV,dtype:"bool"}),HV={kernelName:pu,backendName:"webgl",kernelFunc:GV},qV=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},XV=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},KV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,c=Q().getBool("WEBGL_PACK_NORMALIZATION")?new XV(a.shape,s,i,o,l):new qV(a.shape,s,i,o,l);return n.runWebGLProgram(c,[a],a.dtype)},ZV={kernelName:fu,backendName:"webgl",kernelFunc:KV},YV=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${r}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${r})
|
|
* float(${a})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${a});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},JV=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:c,beta:u}=r,h=new YV(a.shape,o,l,c,u);return n.runWebGLProgram(h,[a,s,i],a.dtype)},QV={kernelName:Eh,backendName:"webgl",kernelFunc:JV};function eU(e,t,n,r){let a=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/a,i=ye({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=oi(i,e.dtype,"max",r),l=ye({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function D_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=C.getAxesPermutation(c,o),h=u!=null,p=n.shouldExecuteOnCPU([a]),d=a;if(h){if(p){let g=n.texData.get(d.dataId).values,_=new Array(o);for(let b=0;b<_.length;b++)_[b]=a.shape[u[b]];let x=km(g,a.shape,a.dtype,u,_);d=n.makeTensorInfo(_,a.dtype);let w=n.texData.get(d.dataId);w.values=x}else d=ep(a,u,n);c=C.getInnerMostAxes(c.length,o)}C.assertAxesAreInnerMostDims("max",c,o);let[f,m]=C.computeOutAndReduceShapes(d.shape,c),A=f;i&&(A=C.expandShapeToKeepDim(f,l));let y;if(p){let g=n.texData.get(d.dataId).values,_=Ez(g,k.sizeFromShape(m),A,a.dtype);y=n.makeTensorInfo(A,a.dtype);let x=n.texData.get(y.dataId);x.values=_}else y=eU(d,m,A,n);return h&&n.disposeIntermediateTensorInfo(d),y}var tU={kernelName:ds,backendName:"webgl",kernelFunc:D_},nU=Qw+`
|
|
return max(a, b);
|
|
`,rU=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Jd+`
|
|
return result;
|
|
`,aU=Kt({opSnippet:nU,packedOpSnippet:rU,cpuKernelImpl:Cz}),sU={kernelName:ps,backendName:"webgl",kernelFunc:aU};function iU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;dl(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,c=1;k.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let u=C.computePool2DInfo(a.shape,s,i,c,o,l);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return Tn({inputs:{x:a},backend:n});let h=new sc(u,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var oU={kernelName:fs,backendName:"webgl",kernelFunc:iU};function lU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:c}=r,u=[1,1,1],h=C.computePool3DInfo(a.shape,s,i,u,o,c,l),p=new Sm(h,"max",!1);return n.runWebGLProgram(p,[a],a.dtype)}var uU={kernelName:mu,backendName:"webgl",kernelFunc:lU},cU=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${a};
|
|
wR += ${r}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},hU=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,c=e.effectiveFilterWidth,u=o-1-e.padInfo.front,h=l-1-e.padInfo.top,p=c-1-e.padInfo.left,d=o*l*c-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${u}, ${h}, ${p});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${a}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${d} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${c} +
|
|
wR * ${c} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function dU(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:c,dimRoundingMode:u}=r,h=[1,1,1],p=C.computePool3DInfo(i.shape,o,l,h,c,u),d=new Sm(p,"max",!0),f=n.runWebGLProgram(d,[i],i.dtype),m=new hU(p),A=n.runWebGLProgram(m,[a,f],i.dtype);return n.disposeIntermediateTensorInfo(f),A}var pU={kernelName:Rh,backendName:"webgl",kernelFunc:dU};function fU(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;dl([s,i],"maxPoolGrad");let{filterSize:l,strides:c,pad:u,dimRoundingMode:h}=r,p=C.computePool2DInfo(o.shape,l,c,1,u,h),d=!0,f=new sc(p,"max",d),m=n.runWebGLProgram(f,[o],o.dtype),A=new cU(p),y=n.runWebGLProgram(A,[a,m],o.dtype);return n.disposeIntermediateTensorInfo(m),y}var mU={kernelName:Ch,backendName:"webgl",kernelFunc:fU};function AU(e,t,n,r){let a=new sc(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new sc(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var yU={kernelName:Fh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let c=[1,1];k.assert(C.eitherStridesOrDilationsAreOne(s,c),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${c}'`);let u=C.computePool2DInfo(r.shape,a,s,c,i),[h,p]=AU(r,o,u,l);return[h,p]}};function gU(e,t,n,r){let a=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/a,i=ye({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=oi(i,"float32","mean",r),l=ye({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var xU={kernelName:ms,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=k.parseAxisParam(s,r.shape),c=l,u=C.getAxesPermutation(c,o),h=u!=null,p=i.shouldExecuteOnCPU([r]),d=[],f=r;if(h){if(p){let _=i.texData.get(f.dataId).values,x=new Array(o);for(let N=0;N<x.length;N++)x[N]=r.shape[u[N]];let w=km(_,r.shape,r.dtype,u,x);f=i.makeTensorInfo(x,r.dtype);let b=i.texData.get(f.dataId);b.values=w}else f=ep(r,u,i);d.push(f),c=C.getInnerMostAxes(c.length,o)}C.assertAxesAreInnerMostDims("sum",c,o);let[m,A]=C.computeOutAndReduceShapes(f.shape,c),y=m;a&&(y=C.expandShapeToKeepDim(m,l));let g=gU(f,A,y,i);for(let _ of d)i.disposeIntermediateTensorInfo(_);return g}};function wU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=k.parseAxisParam(s,a.shape),c=l,u=C.getAxesPermutation(c,o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),c=C.getInnerMostAxes(c.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",c,o);let[p,d]=C.computeOutAndReduceShapes(h.shape,c),f=k.sizeFromShape(d),m=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=oi(m,m.dtype,"min",n),y;if(i){let g=C.expandShapeToKeepDim(p,l);y=ye({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ye({inputs:{x:A},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(h),y}var _U={kernelName:As,backendName:"webgl",kernelFunc:wU},bU=Qw+`
|
|
return min(a, b);
|
|
`,vU=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Jd+`
|
|
return result;
|
|
`,kU=Kt({opSnippet:bU,packedOpSnippet:vU,cpuKernelImpl:Rz}),IU={kernelName:ys,backendName:"webgl",kernelFunc:kU},NU=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((c,u)=>c[0]+e[u]+c[1]);let r=e.length,a=ut(r),s=t.map(c=>c[0]).join(","),i=t.map((c,u)=>c[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
for (int i = 0; i < ${r}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},SU=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((d,f)=>d[0]+e[f]+d[1]);let r=e.length,a=ut(r),s=t.map(d=>d[0]).join(","),i=t.map((d,f)=>d[0]+e[f]).join(","),o=sn("rc",r),l=sn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,p="";if(r===1){let d=`
|
|
${a} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${h};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${h};
|
|
}
|
|
source -= start;
|
|
`;p=`
|
|
${a} rc = outputLoc;
|
|
${d}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${o[r-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`}else{let d=`
|
|
${a} source = rc;
|
|
${a} lt = ${a}(lessThan(source, start));
|
|
${a} gte = ${a}(greaterThanEqual(source, end));
|
|
${a} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${h}) +
|
|
gte * ((end - 1) * 2 - source + ${h});
|
|
source -= start;
|
|
`;p=`
|
|
${a} rc = outputLoc;
|
|
${d}
|
|
result[0] = getChannel(getX(${l.join()}), ${u});
|
|
${o[r-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[1] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
rc = outputLoc;
|
|
${o[r-2]} += 1;
|
|
if(${o[r-2]} < ${this.outputShape[r-2]}) {
|
|
${d}
|
|
result[2] = getChannel(getX(${l.join()}), ${u});
|
|
${o[r-1]} += 1;
|
|
if(${c}) {
|
|
${d}
|
|
result[3] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},TU=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new SU(r.shape,a,s):new NU(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},EU={kernelName:Au,backendName:"webgl",kernelFunc:TU},CU=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,RU=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Jd+`
|
|
return result;
|
|
`,FU=Kt({opSnippet:CU,packedOpSnippet:RU}),MU={kernelName:po,backendName:"webgl",kernelFunc:FU},OU=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},$U=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,DU=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,z_=Kt({opSnippet:$U,packedOpSnippet:DU,checkOutOfBounds:!0}),zU={kernelName:as,backendName:"webgl",kernelFunc:z_},P_="return a - b;",L_=Kt({opSnippet:P_,packedOpSnippet:P_,supportsComplex:!0,cpuKernelImpl:Lz}),PU={kernelName:$s,backendName:"webgl",kernelFunc:L_};function W_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=k.parseAxisParam([s],a.shape),o=D_({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),c=ye({inputs:{x:o},backend:n,attrs:{shape:l}}),u=L_({inputs:{a,b:c},backend:n}),h=R_({inputs:{x:u},backend:n}),p=Nm({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),d=ye({inputs:{x:p},backend:n,attrs:{shape:l}}),f=z_({inputs:{a:h,b:d},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),f}var LU={kernelName:Ms,backendName:"webgl",kernelFunc:W_};function WU(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:W_({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),c=l.shape[0],u=l.shape[1],h=new OU(c,u,s),p=h.getCustomSetupFunc(i),d=n.runWebGLProgram(h,[l],"int32",p);return o||n.disposeIntermediateTensorInfo(l),d}var BU={kernelName:Mh,backendName:"webgl",kernelFunc:WU},B_="return -x;";function VU(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=Mz(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return Q().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new gl(r.shape,B_):a=new Sa(r.shape,B_),n.runWebGLProgram(a,[r],r.dtype)}var UU={kernelName:fo,backendName:"webgl",kernelFunc:VU},jU=Fr.nonMaxSuppressionV3Impl;function GU(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,c=n.readSync(a.dataId),u=n.readSync(s.dataId),{selectedIndices:h}=jU(c,u,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var HU={kernelName:Ao,backendName:"webgl",kernelFunc:GU},qU=Fr.nonMaxSuppressionV4Impl;function XU(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:p,validOutputs:d}=qU(u,h,i,o,l,c);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([d]))]}var KU={kernelName:yo,backendName:"webgl",kernelFunc:XU},ZU=Fr.nonMaxSuppressionV5Impl;function YU(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:c}=r,u=n.readSync(a.dataId),h=n.readSync(s.dataId),p=i,d=o,f=l,m=c,{selectedIndices:A,selectedScores:y}=ZU(u,h,p,d,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var JU={kernelName:go,backendName:"webgl",kernelFunc:YU},QU=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${r}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},ej=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=k.sizeFromShape(a.shape),c=new QU(l,s,i,o),u=ye({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(c,[u],a.dtype);n.disposeIntermediateTensorInfo(u);let p=[...a.shape,s],d=ye({inputs:{x:h},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(h),d},tj={kernelName:xs,backendName:"webgl",kernelFunc:ej};function sp(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=oc({inputs:{input:r},backend:n}),s=sp({inputs:{x:a},backend:n}),i=ap({inputs:{input:r},backend:n}),o=sp({inputs:{x:i},backend:n}),l=Ta({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Rm({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var nj={kernelName:Do,backendName:"webgl",kernelFunc:sp};function V_(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=oc({inputs:{input:r},backend:n}),s=V_({inputs:{x:a},backend:n}),i=ap({inputs:{input:r},backend:n}),o=sp({inputs:{x:i},backend:n}),l=Ta({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Rm({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var rj={kernelName:xo,backendName:"webgl",kernelFunc:V_};function aj(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return Cm({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let h=Cm({inputs:{input:u},backend:n,attrs:{dim:a}});return o.push(h),h}),c=__({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),c}var sj={kernelName:wo,backendName:"webgl",kernelFunc:aj},ij=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let r=e.length,a=ut(r),s=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(float(${n}));
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(float(${n}));
|
|
} else {
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},oj=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,a=ut(r),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=sn("rc",r),l=sn("source",r),c=`${o[r-1]} < ${this.outputShape[r-1]}`,u=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1;
|
|
if(${c}) {
|
|
`,r===1?"":`}
|
|
rc = outputLoc;
|
|
${o[r-2]} += 1;
|
|
if(${o[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${o[r-1]} += 1;
|
|
if(${c}) {`],p=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",d="";for(let f=0,m=r===1?2:4;f<m;f++)d+=`
|
|
${h[f]}
|
|
if (${p}) {
|
|
result[${f}] = float(${n});
|
|
} else {
|
|
${a} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${u});
|
|
}
|
|
`;d+=r===1?"} ":"}}",this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}},U_=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new oj(a.shape,s,i):new ij(a.shape,s,i);return n.runWebGLProgram(o,[a],a.dtype)},lj={kernelName:ws,backendName:"webgl",kernelFunc:U_},uj=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,cj=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Jd+`
|
|
return result;
|
|
`,hj=Kt({opSnippet:uj,packedOpSnippet:cj}),dj={kernelName:_s,backendName:"webgl",kernelFunc:hj};function pj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],c=k.parseAxisParam(s,a.shape),u=c,h=C.getAxesPermutation(u,o),p=a;h!=null&&(p=fn({inputs:{x:a},backend:n,attrs:{perm:h}}),u=C.getInnerMostAxes(u.length,o),l.push(p)),C.assertAxesAreInnerMostDims("prod",u,o);let d;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:A,outDtype:y}=Oz(p.shape,p.dtype,f,u);d=n.makeTensorInfo(A,y,m)}else{let[f,m]=C.computeOutAndReduceShapes(p.shape,u),A=k.sizeFromShape(m),y=ye({inputs:{x:p},backend:n,attrs:{shape:[-1,A]}}),g=jh(a.dtype),_=oi(y,g,"prod",n);d=ye({inputs:{x:_},backend:n,attrs:{shape:f}}),l.push(y),l.push(_)}if(i){l.push(d);let f=C.expandShapeToKeepDim(d.shape,c);d=ye({inputs:{x:d},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),d}var fj={kernelName:_o,backendName:"webgl",kernelFunc:pj},j_=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=$z(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},mj={kernelName:yu,backendName:"webgl",kernelFunc:j_},Aj="return 1.0 / x;",yj=Ke({opSnippet:Aj}),gj={kernelName:bo,backendName:"webgl",kernelFunc:yj},xj=hr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,wj=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,_j=Ke({opSnippet:xj,packedOpSnippet:wj}),bj={kernelName:vs,backendName:"webgl",kernelFunc:_j},vj=hr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,kj=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Ij=Ke({opSnippet:vj,packedOpSnippet:kj}),Nj={kernelName:Is,backendName:"webgl",kernelFunc:Ij},Sj=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Tj=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]},
|
|
${c[1]/u[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Ej(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=Q().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Tj(a.shape,l,c,s,i):new Sj(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],"float32")}var Cj={kernelName:ks,backendName:"webgl",kernelFunc:Ej},Rj=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,p=1/u,d=Math.ceil(h)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${d});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Fj(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new Rj(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Mj={kernelName:Dh,backendName:"webgl",kernelFunc:Fj},Oj=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let c=[r&&t>1?i-1:i,r&&n>1?o-1:o],u=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",p;a?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${c[0]/u[0]},
|
|
${c[1]/u[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function $j(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,u=new Oj(a.shape,l,c,s,i);return n.runWebGLProgram(u,[a],a.dtype)}var Dj={kernelName:gu,backendName:"webgl",kernelFunc:$j},zj=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],c=o[0]/l[0],u=o[1]/l[1],h=1/c,p=1/u,d=Math.ceil(h)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${c});
|
|
const float widthScale = float(${u});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${d});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Pj(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new zj(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Lj={kernelName:$h,backendName:"webgl",kernelFunc:Pj},Wj=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let r=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>r(o)).join(","),s=ut(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${a}));
|
|
}
|
|
`}},Bj=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=sn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ut(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${a}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(r.slice())};
|
|
if(${a}){
|
|
result.g = ${l(r.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${c(r.slice())};
|
|
if(${a}) {
|
|
result.a = ${u(r.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(d){return h(d)}function l(d){return d[n-1]="("+d[n-1]+" + 1)",h(d)}function c(d){return d[n-2]="("+d[n-2]+" + 1)",h(d)}function u(d){return d[n-1]="("+d[n-1]+" + 1)",d[n-2]="("+d[n-2]+" + 1)",h(d)}function h(d){let f=e.map((y,g)=>p(g,d)),m=f.join(","),A=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${A}))`}function p(d,f){return t.indexOf(d)!==-1&&e[d]!==1?`${e[d]} - ${f[d]} - 1`:`${f[d]}`}}};function Vj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=k.parseAxisParam(s,a.shape);if(i===0)return Tn({inputs:{x:a},backend:n});let l=Q().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Bj(a.shape,o):new Wj(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var Uj={kernelName:Ns,backendName:"webgl",kernelFunc:Vj},jj=class{constructor(e,t,n,r){this.variableNames=["Image"],this.outputShape=[];let a=e[1],s=e[2],i=Math.sin(t).toFixed(3),o=Math.cos(t).toFixed(3);this.outputShape=e;let[l,c]=C.getImageCenter(r,a,s),u=l.toFixed(3),h=c.toFixed(3),p="";typeof n=="number"?p=`float outputValue = ${n.toFixed(2)};`:p=`
|
|
vec3 fill = vec3(${n.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - ${u}) * ${o} - (float(y) - ${h}) * ${i};
|
|
float coordYFloat = (float(x) - ${u}) * ${i} + (float(y) - ${h}) * ${o};
|
|
int coordX = int(round(coordXFloat + ${u}));
|
|
int coordY = int(round(coordYFloat + ${h}));
|
|
${p}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${a}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Gj={kernelName:zo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new jj(r.shape,a,s,i);return o.runWebGLProgram(l,[r],r.dtype)}},Hj=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,qj=Ke({opSnippet:Hj}),Xj={kernelName:Ss,backendName:"webgl",kernelFunc:qj},Kj="return inversesqrt(x);",Zj=Ke({opSnippet:Kj,cpuKernelImpl:Dz}),Yj={kernelName:Ts,backendName:"webgl",kernelFunc:Zj},G_=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=ut(a.length),l=ut(s.length),c="";n===1?c="i":n===2&&(c="i, j");let u=`getIndices(${c})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let p=`getUpdates(${h})`,d=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${a});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${u});
|
|
flattenedIndex += index * ${d};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${p};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function Jj(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:c,strides:u,outputSize:h}=C.calculateShapes(s,a,i),p=[h/c,c];if(h===0)return n.makeTensorInfo(i,a.dtype);let d=ye({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),f=ye({inputs:{x:s},backend:n,attrs:{shape:[l,c]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new G_(l,o,d.shape.length,f.shape.length,u,p),y=n.runWebGLProgram(A,[f,d,m],f.dtype),g=ye({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),g}var Qj={kernelName:ko,backendName:"webgl",kernelFunc:Jj},eG=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let c=0;c<t.length;c++)l.push(`${i[c]}`),c<e&&o.push(`${i[c]}`);r=o.join(),a=l.join()}let s=ut(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${r});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${a}));
|
|
} else {
|
|
setOutput(getB(${a}));
|
|
}
|
|
}
|
|
`}};function tG(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=new eG(r.shape.length,a.shape,a.shape.length);return n.runWebGLProgram(i,[r,a,s],Zn(a.dtype,s.dtype))}var nG={kernelName:Io,backendName:"webgl",kernelFunc:tG},rG=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${C.SELU_SCALEALPHA};
|
|
float scale = ${C.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,aG=Ke({opSnippet:rG}),sG={kernelName:No,backendName:"webgl",kernelFunc:aG},iG="return 1.0 / (1.0 + exp(-1.0 * x));",oG=Ke({opSnippet:iG}),lG={kernelName:Cs,backendName:"webgl",kernelFunc:oG},uG=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,cG=Ke({opSnippet:uG}),hG={kernelName:Eo,backendName:"webgl",kernelFunc:cG},dG=a_+`
|
|
return sin(x);
|
|
`,pG=Ke({opSnippet:dG}),fG={kernelName:Es,backendName:"webgl",kernelFunc:pG},mG=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,AG=Ke({opSnippet:mG}),yG={kernelName:To,backendName:"webgl",kernelFunc:AG},gG=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,xG=Ke({opSnippet:gG}),wG={kernelName:Co,backendName:"webgl",kernelFunc:xG},_G=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;k.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let c=[],u=U_({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),h=C.getReshaped(u.shape,s,o,!1),p=C.getPermuted(h.length,s.length,!1),d=C.getReshapedPermuted(u.shape,s,o,!1),f=ye({inputs:{x:u},backend:n,attrs:{shape:h}}),m=fn({inputs:{x:f},backend:n,attrs:{perm:p}}),A=ye({inputs:{x:m},backend:n,attrs:{shape:d}});return c.push(u),c.push(f),c.push(m),c.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},bG={kernelName:xu,backendName:"webgl",kernelFunc:_G};function vG(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:c,strides:u,outputSize:h}=C.calculateShapes(s,a,o),p=!1,d=new G_(c,l,a.shape.length,s.shape.length,u,[h,1],p),f=n.runWebGLProgram(d,[s,a,i],s.dtype),m=ye({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),m}var kG={kernelName:zh,backendName:"webgl",kernelFunc:vG};function IG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=k.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),c=a.shape.length,u=new Array(c).fill(0),h=a.shape.slice();return l.map(p=>{let d=[...h];d[o]=p;let f=ic({inputs:{x:a},backend:n,attrs:{begin:u,size:d}});return u[o]+=p,f})}var NG={kernelName:Ro,backendName:"webgl",kernelFunc:IG},SG="return sqrt(x);",TG=Ke({opSnippet:SG}),EG={kernelName:Rs,backendName:"webgl",kernelFunc:TG},CG="return x * x;",RG=Ke({opSnippet:CG}),FG={kernelName:wu,backendName:"webgl",kernelFunc:RG},H_="return (a - b) * (a - b);",MG=Kt({opSnippet:H_,packedOpSnippet:H_}),OG={kernelName:Os,backendName:"webgl",kernelFunc:MG};function $G({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=hr+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Sa(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var DG={kernelName:ma,backendName:"webgl",kernelFunc:$G},zG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=ut(n.length),s=ut(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,c)=>(o++,n.length===1?`coords * strides[${c}] + begin[${c}]`:`coords[${o-1}] * strides[${c}] + begin[${c}]`)).join(",")}this.userCode=`
|
|
${a} begin = ${a}(${e});
|
|
${a} strides = ${a}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function PG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:p}=r,{nonStrided:d,$begin:f,$strides:m,size:A,newShape:y,outShape:g}=nn.sliceInfo(a.shape,s,i,o,l,c,u,h,p),_=ye({inputs:{x:a},backend:n,attrs:{shape:y}}),x;if(d){let b=ic({inputs:{x:_},backend:n,attrs:{begin:f,size:A}});x=ye({inputs:{x:b},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(b)}else if(g.some(b=>b===0))x=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([_])){let b=n.texData.get(_.dataId).values,N=Pe(_.shape,_.dtype,b),T=Pz(g,N,m,f);x=n.makeTensorInfo(g,_.dtype,T.values)}else{let b=new zG(f,m,g);x=n.runWebGLProgram(b,[_],_.dtype)}let w=ye({inputs:{x},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(_),n.disposeIntermediateTensorInfo(x),w}var LG={kernelName:Fo,backendName:"webgl",kernelFunc:PG},WG="return tan(x);",BG=Ke({opSnippet:WG}),VG={kernelName:Mo,backendName:"webgl",kernelFunc:BG},UG=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,jG=Ke({opSnippet:UG}),GG={kernelName:Ds,backendName:"webgl",kernelFunc:jG},qG=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let r=ut(this.rank),a=HG(e);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function HG(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a<e.length;a++)r.push(`imod(${n[a]}, ${e[a]})`);return r.join()}function q_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;if(a.dtype==="string"){let o=n.readSync(a.dataId).map(u=>k.decodeString(u)),l=Pe(a.shape,a.dtype,o),c=Wz(l,s);return n.makeTensorInfo(c.shape,c.dtype,c.values)}let i=new qG(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var XG={kernelName:fa,backendName:"webgl",kernelFunc:q_};function KG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,c]=Bz(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(c.shape,c.dtype,c.values)]}var ZG={kernelName:Oo,backendName:"webgl",kernelFunc:KG};function YG(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;dl(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:c}=Vz(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([c.length],"int32",c)]}var JG={kernelName:Ph,backendName:"webgl",kernelFunc:YG};function QG(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],c=new Array(o-1),u=0;for(let m=0;m<o;m++)m!==s&&(c[u++]=i.shape[m]);let h=[],p=new Array(o).fill(0),d=i.shape.slice();d[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[s]=m;let A=ic({inputs:{x:i},backend:n,attrs:{begin:p,size:d}}),y=ye({inputs:{x:A},backend:n,attrs:{shape:c}});f[m]=y,h.push(A)}return h.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var eH={kernelName:$o,backendName:"webgl",kernelFunc:QG},tH=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",c=Math.floor(n/4)*4,u=n%4,h=`
|
|
sumValue += dot(values, segFilter);
|
|
`,p="";a%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`);let d="";a%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${d}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${c}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${c};
|
|
if (${u===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${u===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${u===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function nH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],c=0,u=C.getAxesPermutation([c],o),h=a;u!=null&&(h=fn({inputs:{x:a},backend:n,attrs:{perm:u}}),l.push(h),c=C.getInnerMostAxes(1,o)[0]);let p=C.segment_util.computeOutShape(h.shape,c,i),d=k.sizeFromShape([h.shape[c]]),f=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,d]}});l.push(f);let m=jh(a.dtype),A=(x,w,b,N,T)=>{let E=x.shape[0],M=x.shape[1],$=C.segment_util.segOpComputeOptimalWindowSize(M,T),P={windowSize:$,inSize:M,batchSize:E,numSegments:T},V=new tH(P,w),H=n.compileAndRun(V,[x,b],N);if(l.push(H),H.shape[1]===T)return H;let U=j_({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),K=q_({inputs:{x:U},backend:n,attrs:{reps:[M/$]}});return l.push(U),l.push(K),A(H,w,K,N,T)},y=A(f,"unsortedSegmentSum",s,m,i),g=ye({inputs:{x:y},backend:n,attrs:{shape:p}}),_=g;if(u!=null){l.push(g);let x=C.getUndoAxesPermutation(u);_=fn({inputs:{x:_},backend:n,attrs:{perm:x}})}return l.forEach(x=>n.disposeIntermediateTensorInfo(x)),_}var rH={kernelName:_u,backendName:"webgl",kernelFunc:nH},aH=[ZV,QV,PP,WP,UP,HP,XP,YP,QP,tL,sL,oL,cL,pL,wL,AL,vL,SL,IL,RL,ML,$L,LL,HL,XL,eW,nW,iW,uW,xP,pW,vW,IW,yW,EW,RW,SW,OW,zW,WW,VW,jW,qW,QW,tB,KW,aB,oB,hB,mB,xB,bB,vB,kB,NB,TB,CB,FB,OB,PB,VB,jB,HB,KB,QB,rV,oV,gP,uV,dW,dV,mV,gV,_P,bV,NV,TV,$V,FV,LV,VV,HV,tU,uU,oU,pU,mU,yU,sU,xU,_U,IU,EU,MU,BU,NP,UU,HU,KU,JU,ZL,tj,rj,sj,lj,dj,vP,fj,mj,YL,zU,gj,Nj,bj,TP,Cj,Mj,Dj,Lj,Uj,Gj,Xj,Yj,Qj,nG,sG,lG,hG,fG,yG,jL,LU,wG,bG,kG,NG,EG,FG,OG,DG,LG,PU,$P,VG,GG,XG,ZG,DP,JG,eH,rH,nj];for(let e of aH)Bs(e);var En;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(En||(En={}));var lc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(lc||(lc={}));var X_;function sH(e){X_=e.wasm.cwrap(Ps,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function iH(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:c,activation:u,leakyreluAlpha:h}=r,p=n.dataIdMap.get(a.dataId).id,d=n.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);f=T.id}let m=o==null?0:n.dataIdMap.get(o.dataId).id,A=lc[u];if(A==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=c?s.shape[1]:s.shape[2],_=a.shape[0],x=n.makeOutput([_,y,g],a.dtype),w=n.dataIdMap.get(x.dataId).id,b=new Uint8Array(new Int32Array(a.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return X_(p,b,a.shape.length,d,N,s.shape.length,l,c,A,f,m,h||0,w),x}var oH={kernelName:Ps,backendName:"wasm",setupFunc:sH,kernelFunc:iH};function Cn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),c=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,c),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var lH=Cn(Di);function on(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:c,b:u}=l,h=o.dataIdMap.get(c.dataId).id,p=o.dataIdMap.get(u.dataId).id,d=n!=null?n:c.dtype,f=C.assertAndGetBroadcastShape(c.shape,u.shape),m=o.makeOutput(f,d);if(k.sizeFromShape(f)===0)return m;let A=new Uint8Array(new Int32Array(c.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),g=o.dataIdMap.get(m.dataId).id,_=()=>r(h,A,c.shape.length,p,y,u.shape.length,En[c.dtype],g);if(t&&c.dtype==="float32")return _(),m;let x=C.getBroadcastDims(c.shape,f),w=C.getBroadcastDims(u.shape,f),b=x.every((T,E)=>T===E),N=w.every((T,E)=>T===E);if(b&&N)return _(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${c.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var uH=!0,cH=on(da,uH),K_;function hH(e){K_=e.wasm.cwrap(Xa,null,["array","number","number","number"])}function dH(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return K_(s,a.length,En[r.dtype],i),r}var pH={kernelName:Xa,backendName:"wasm",setupFunc:hH,kernelFunc:dH};function ip(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var fH={kernelName:ao,backendName:"wasm",kernelFunc:ip},Z_;function mH(e){Z_=e.wasm.cwrap(zs,null,["number","array","number","number","number","array","number"])}function op(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=yH(t.x.shape,r.perm),i=!0;for(let f=0;f<s.length;f++)s[f]!==f&&(i=!1);let o=AH(t.x.shape,r.perm),l={dataId:t.x.dataId,shape:a,dtype:t.x.dtype};if(i){let f=ip({inputs:t,backend:n});return f.shape=o,f}let c=n.makeOutput(o,l.dtype),u=n.dataIdMap.get(l.dataId).id,h=n.dataIdMap.get(c.dataId).id,p=new Uint8Array(new Int32Array(s).buffer),d=new Uint8Array(new Int32Array(l.shape).buffer);return Z_(u,d,l.shape.length,En[l.dtype],h,p,s.length),c}function AH(e,t){let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[t[r]];return n}function yH(e,t){let n=[],r=[];for(let a=0;a<e.length;++a)e[a]!==1&&n.push(e[a]),e[t[a]]!==1&&r.push(t[a]);for(let a=0;a<r.length;++a){let s=-1;for(let i=0;i<r.length;++i)r[i]>=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var gH={kernelName:zs,backendName:"wasm",kernelFunc:op,setupFunc:mH};function bl(e,t,n){let r=e.shape,a=e.shape.length,s=k.parseAxisParam(t,r),i=s,o=C.getAxesPermutation(i,a),l=null,c=!1;if(o!=null){let u=new Array(a);for(let p=0;p<u.length;p++)u[p]=r[o[p]];i=C.getInnerMostAxes(i.length,a),l=op({inputs:{x:e},attrs:{perm:o},backend:n});let h=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==h&&(c=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:c}}var Y_;function xH(e){Y_=e.wasm.cwrap(Ka,null,["number","number","number","number","number"])}function wH(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:c,axes:u,inputWasTransposed:h}=bl(s,a,t);if(h){let y=t.dataIdMap.get(c.dataId).id;y!==i&&(l=c,o=y)}let p=l.shape.slice(0,-1),d=t.makeOutput(p,"int32"),f=t.dataIdMap.get(d.dataId).id,m=k.sizeFromShape(d.shape),A=l.shape[u[0]];return Y_(o,En[l.dtype],m,A,f),h&&t.disposeData(c.dataId),d}var _H={kernelName:Ka,backendName:"wasm",kernelFunc:wH,setupFunc:xH},J_;function bH(e){J_=e.wasm.cwrap(Za,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function vH(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=C.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,p=u.filterWidth,d=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,A=u.padInfo.left,y=u.strideHeight,g=u.strideWidth,_=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let x=r.makeOutput(u.outShape,"float32"),w=r.dataIdMap.get(x.dataId).id;return J_(s,a.shape[0],a.shape[1],a.shape[2],h,p,d,f,m,A,y,g,_,w),x}var kH={kernelName:Za,backendName:"wasm",setupFunc:bH,kernelFunc:vH};function dr(e){let{inputs:t,attrs:n}=e,{x:r}=t,{shape:a}=n,s=k.sizeFromShape(r.shape),i=k.inferFromImplicitShape(a,s);return k.assert(s===k.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),{dataId:r.dataId,shape:i,dtype:r.dtype}}var IH={kernelName:vo,backendName:"wasm",kernelFunc:dr},Q_;function NH(e){Q_=e.wasm.cwrap(Ya,null,["number","array","number","number","array","number","number","number","number"])}function SH(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,c=s.shape.length,u=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[c-1]:s.shape[c-2],p=i?a.shape[l-1]:a.shape[l-2],d=o?s.shape[c-2]:s.shape[c-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=k.sizeFromShape(f),y=k.sizeFromShape(m),g=A===y||A===1||y===1;k.assert(l>=2&&c>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let _=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([p,d]);k.assert(u===h,()=>`Error in matMul: inner shapes (${u}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[A,u,p]:[A,p,u],w=o?[y,d,h]:[y,h,d],b=dr({inputs:{x:a},backend:n,attrs:{shape:x}}),N=dr({inputs:{x:s},backend:n,attrs:{shape:w}}),T=n.dataIdMap.get(b.dataId).id,E=n.dataIdMap.get(N.dataId).id,M=i?b.shape[2]:b.shape[1],$=o?N.shape[1]:N.shape[2],P=Math.max(A,y),V=n.makeOutput([P,M,$],b.dtype),H=n.dataIdMap.get(V.dataId).id,U=new Uint8Array(new Int32Array(b.shape).buffer),K=new Uint8Array(new Int32Array(N.shape).buffer);return Q_(T,U,b.shape.length,E,K,N.shape.length,i,o,H),V.shape=_,V}var TH={kernelName:Ya,backendName:"wasm",setupFunc:NH,kernelFunc:SH};function lp(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var EH={kernelName:Ja,backendName:"wasm",kernelFunc:lp},eb;function CH(e){eb=e.wasm.cwrap(pa,null,["number","number","number","number"])}function RH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(l.dataId).id;return eb(o,s,i,c),l}var FH={kernelName:pa,backendName:"wasm",setupFunc:CH,kernelFunc:RH};function tb(e){let{inputs:t,backend:n}=e,r=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=C.computeOutShape(t.map(d=>d.shape),r),s=t.filter(d=>k.sizeFromShape(d.shape)>0);if(s.length===1)return ip({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(k.sizeFromShape(a)===0)return i;let o=s.map(d=>d.shape);if(C.assertParamsConsistent(o,r),s[0].dtype==="string"){let d=s.map(_=>{let x=k.sizeFromShape(_.shape.slice(r));return dr({inputs:{x:_},backend:n,attrs:{shape:[-1,x]}})}),f=d.map(_=>({vals:n.readSync(_.dataId),shape:_.shape}));a=C.computeOutShape(d.map(_=>_.shape),1);let m=d[0].shape[0]===1,A=Qf(f,a,t[0].dtype,m),y=C.computeOutShape(s.map(_=>_.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=C.fromStringArrayToUint8(A),i}let l=k.sizeFromShape(s[0].shape.slice(0,r)),c=0,u=s.map(d=>{let f=k.sizeFromShape(d.shape.slice(r));return c+=f,f}),h=s.map(d=>n.typedArrayFromHeap(d)),p=n.typedArrayFromHeap(i);for(let d=0;d<l;d++){let f=d*c;for(let m=0;m<h.length;m++){let A=u[m],y=d*A,g=h[m].subarray(y,y+A);p.set(g,f),f+=A}}return i}var MH={kernelName:Gi,backendName:"wasm",kernelFunc:tb},nb;function OH(e){nb=e.wasm.cwrap(Qa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $H(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h,dataFormat:p}=n,d=C.convertConv2DDataFormat(p),f=C.computeConv2DInfo(a.shape,s.shape,l,c,u,h,!1,d),m=f.filterHeight,A=f.filterWidth,y=f.padInfo.top,g=f.padInfo.right,_=f.padInfo.bottom,x=f.padInfo.left,w=f.dilationHeight,b=f.dilationWidth,N=f.strideHeight,T=f.strideWidth,E=f.inChannels,M=f.outChannels,$=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let P=r.makeOutput(f.outShape,"float32"),V=r.dataIdMap.get(P.dataId).id;return nb(i,a.shape[0],a.shape[1],a.shape[2],o,m,A,y,g,_,x,$,w,b,N,T,E,M,V),P}var DH={kernelName:Qa,backendName:"wasm",setupFunc:OH,kernelFunc:$H},rb;function zH(e){rb=e.wasm.cwrap(es,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function PH(e){let{backend:t,inputs:n,attrs:r}=e,{dy:a,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:c,inputShape:u}=r,h=1,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(u,s.shape,i,h,o,c,!1,p),{batchSize:f,filterHeight:m,filterWidth:A,inChannels:y,inHeight:g,inWidth:_,outChannels:x,outHeight:w,outWidth:b,strideHeight:N,strideWidth:T}=d,E=m-1-d.padInfo.top,M=A-1-d.padInfo.left,$=d.dataFormat==="channelsLast",P=k.computeStrides(d.inShape),V=k.computeStrides(a.shape),[H,U,K]=k.computeStrides(s.shape),X=P[0],ee=$?P[1]:P[2],Z=$?P[2]:1,ae=$?1:P[1],J=V[0],oe=$?V[1]:V[2],ne=$?V[2]:1,ce=$?1:V[1],ue=t.makeOutput(d.inShape,"float32"),pe=t.dataIdMap.get(ue.dataId).id,fe=t.dataIdMap.get(a.dataId).id,_e=t.dataIdMap.get(s.dataId).id;return rb(fe,_e,f,m,A,g,_,y,w,b,x,N,T,E,M,H,U,K,X,ee,Z,ae,J,oe,ne,ce,pe),ue}var LH={kernelName:es,backendName:"wasm",setupFunc:zH,kernelFunc:PH},WH=Cn(ts),Fm;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Fm||(Fm={}));var ab;function BH(e){ab=e.wasm.cwrap(qi,null,["number","number","number","number","array","number","number","number","number","number"])}function VH(e){let{backend:t,inputs:n,attrs:r}=e,{method:a,extrapolationValue:s,cropSize:i}=r,{image:o,boxes:l,boxInd:c}=n,u=l.shape[0],[h,p]=i,d=[u,h,p,o.shape[3]],f=t.dataIdMap.get(o.dataId),m;o.dtype!=="float32"&&(m=lp({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let A=f.id,y=t.dataIdMap.get(l.dataId).id,g=t.dataIdMap.get(c.dataId).id,_=t.makeOutput(d,"float32"),x=t.dataIdMap.get(_.dataId).id,w=new Uint8Array(new Int32Array(o.shape).buffer);return ab(A,y,g,u,w,h,p,Fm[a],s,x),m!=null&&t.disposeData(m.dataId),_}var UH={kernelName:qi,backendName:"wasm",setupFunc:BH,kernelFunc:VH},sb;function jH(e){sb=e.wasm.cwrap(ns,null,["number","number","number","number","number","number"])}function GH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length;k.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumsum does not support ${a.dtype} tensors in the WASM backend`);let c=C.getAxesPermutation([s],l),u=a;c!==null&&(u=op({inputs:{x:a},attrs:{perm:c},backend:n}));let h=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[h],l);let p=n.makeOutput(u.shape,u.dtype),d=u.shape[h],f=n.dataIdMap.get(u.dataId).id,m=n.dataIdMap.get(p.dataId).id;sb(f,i?1:0,o?1:0,d,m,En[a.dtype]);let A=p;if(c!==null){let y=C.getUndoAxesPermutation(c);A=op({inputs:{x:p},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(p.dataId)}return A}var HH={kernelName:ns,backendName:"wasm",setupFunc:jH,kernelFunc:GH},ib;function qH(e){ib=e.wasm.cwrap(Xi,null,["number","number","number","array","number","array","array","number","number"])}function XH(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],c=i==="NHWC"?a.shape[2]:a.shape[3],u=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,p=c*s,d=u/(s*s),f=i==="NHWC"?[o,h,p,d]:[o,d,h,p],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(f).buffer),_=new Uint8Array(new Int32Array(k.computeStrides(f)).buffer),x=t.dataIdMap.get(m.dataId).id;return ib(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,_,f.length,x),m}var KH={kernelName:Xi,backendName:"wasm",setupFunc:qH,kernelFunc:XH},ob;function ZH(e){ob=e.wasm.cwrap(rs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function YH(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:c,pad:u,dimRoundingMode:h}=n,p=c==null?[1,1]:c,d=C.computeConv2DInfo(a.shape,s.shape,l,p,u,h,!0),f=d.filterHeight,m=d.filterWidth,A=d.padInfo.top,y=d.padInfo.right,g=d.padInfo.bottom,_=d.padInfo.left,x=d.dilationHeight,w=d.dilationWidth,b=d.strideHeight,N=d.strideWidth,T=d.inChannels,E=d.outChannels,M=d.padInfo.type==="SAME"?1:0;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let $=r.makeOutput(d.outShape,"float32"),P=r.dataIdMap.get($.dataId).id;return ob(i,a.shape[0],a.shape[1],a.shape[2],o,f,m,A,y,g,_,M,x,w,b,N,T,E,P),$}var JH={kernelName:rs,backendName:"wasm",setupFunc:ZH,kernelFunc:YH},QH=!1,eq=on(Yi,QH,"bool"),tq=Cn(ss);function Mm(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),dr({inputs:{x:a},backend:r,attrs:{shape:o}})}var nq={kernelName:Ji,backendName:"wasm",kernelFunc:Mm};function rq(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var aq={kernelName:hu,backendName:"wasm",kernelFunc:rq},lb;function sq(e){lb=e.wasm.cwrap(eo,null,["number","number","number","number","number","number"])}function iq(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,c,u]=r.shape;return lb(s,o,l,c,u,i),a}var oq={kernelName:eo,backendName:"wasm",kernelFunc:iq,setupFunc:sq},lq=Cn(is),uq=!1,cq=on(os,uq),ub;function hq(e){ub=e.wasm.cwrap(ls,null,["number","number","number","number","number","number","number"])}function dq(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:c}=n,u=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,p=t.dataIdMap.get(o.dataId).id,d=l!=null?t.dataIdMap.get(l.dataId).id:0,f=c!=null?t.dataIdMap.get(c.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return m;let A=t.dataIdMap.get(m.dataId).id;return ub(u,h,p,d,f,a,A),m}var pq={kernelName:ls,backendName:"wasm",setupFunc:hq,kernelFunc:dq},cb;function fq(e){cb=e.wasm.cwrap(Ls,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function mq(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:p,activation:d,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(a.shape,s.shape,l,u,c,p),A=lc[d];if(A==null)throw new Error(`${d} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,_=m.outChannels,x=0;if(i!=null){let ne=r.dataIdMap.get(i.dataId);if(ne.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==_)throw new Error(`FusedConv2D bias shape (${ne.shape}) does not match the number of output channels (${_})`);x=ne.id}let w=m.filterHeight,b=m.filterWidth,N=m.padInfo.top,T=m.padInfo.right,E=m.padInfo.bottom,M=m.padInfo.left,$=m.dilationHeight,P=m.dilationWidth,V=m.strideHeight,H=m.strideWidth,U=m.inChannels,K=m.padInfo.type==="SAME"?1:0,X=m.batchSize,ee=m.inHeight,Z=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),J=r.dataIdMap.get(ae.dataId).id,oe=o==null?0:r.dataIdMap.get(o.dataId).id;return cb(y,X,ee,Z,g,w,b,x,N,T,E,M,K,$,P,V,H,U,_,A,oe,f||0,J),ae}var Aq={kernelName:Ls,backendName:"wasm",setupFunc:fq,kernelFunc:mq},hb;function yq(e){hb=e.wasm.cwrap(Ws,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function gq(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:c,dilations:u,dataFormat:h,dimRoundingMode:p,activation:d,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(a.shape,s.shape,l,u,c,p,!0),A=lc[d];if(A==null)throw new Error(`${d} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,_=m.outChannels,x=0;if(i!=null){let ne=r.dataIdMap.get(i.dataId);if(ne.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${ne.shape.length}.`);if(ne.shape[0]!==_)throw new Error(`FusedDepthwiseConv2D bias shape (${ne.shape}) does not match the number of output channels (${_})`);x=ne.id}let w=m.filterHeight,b=m.filterWidth,N=m.padInfo.top,T=m.padInfo.right,E=m.padInfo.bottom,M=m.padInfo.left,$=m.dilationHeight,P=m.dilationWidth,V=m.strideHeight,H=m.strideWidth,U=m.inChannels,K=m.padInfo.type==="SAME"?1:0,X=m.batchSize,ee=m.inHeight,Z=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(m.outShape,"float32"),J=r.dataIdMap.get(ae.dataId).id,oe=o==null?0:r.dataIdMap.get(o.dataId).id;return hb(y,X,ee,Z,g,w,b,x,N,T,E,M,K,$,P,V,H,U,_,A,oe,f||0,J),ae}var xq={kernelName:Ws,backendName:"wasm",setupFunc:yq,kernelFunc:gq},db;function wq(e){db=e.wasm.cwrap(no,null,["number","number","number","number","number","number","array","number"])}function _q(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=Z1.prepareAndValidate(r,a),c=t.makeOutput(s,r.dtype);if(i===0)return c;let u=a.shape,h=u[u.length-1],p=t.dataIdMap.get(r.dataId).id,d=t.dataIdMap.get(a.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(c.dataId).id;return db(p,En[r.dtype],d,i,h,o,f,m),c}var bq={kernelName:no,backendName:"wasm",setupFunc:wq,kernelFunc:_q},pb;function vq(e){pb=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function kq(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=k.parseAxisParam(i,a.shape)[0],c=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),u=dr({inputs:{x:a},attrs:{shape:[c.batchSize,c.outerSize,c.dimSize,c.sliceSize]},backend:t}),h=k.sizeFromShape(s.shape),p=dr({inputs:{x:s},attrs:{shape:[c.batchSize,h/c.batchSize]},backend:t}),d=[c.batchSize,c.outerSize,h/c.batchSize,c.sliceSize],f=t.makeOutput(d,a.dtype);if(k.sizeFromShape(a.shape)===0)return f;let m=u.shape.length-1,A=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(p.dataId).id,g=t.dataIdMap.get(f.dataId).id,_=new Uint8Array(new Int32Array(k.computeStrides(u.shape)).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(d)).buffer);return pb(A,En[a.dtype],_,m,y,c.batchSize,x,g),f.shape=c.outputShape,f}var Iq={kernelName:to,backendName:"wasm",setupFunc:vq,kernelFunc:kq},Nq=!1,Sq=on(ro,Nq,"bool"),Tq=!1,Eq=on(us,Tq,"bool"),fb;function Cq(e){fb=e.wasm.cwrap(cs,null,["number","number","number"])}function Rq(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;fb(a,n,i)}return s}var Fq={kernelName:cs,backendName:"wasm",setupFunc:Cq,kernelFunc:Rq},Mq=!1,Oq=on(lo,Mq,"bool"),$q=!1,Dq=on(uo,$q,"bool"),zq=Cn(hs),Pq=!1,Lq=on(ho,Pq,"bool"),mb;function Wq(e){mb=e.wasm.cwrap(ds,null,["number, number, number"])}function Bq(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:u,originalAxes:h,inputWasTransposed:p}=bl(i,a,t);if(p){let g=t.dataIdMap.get(c.dataId).id;l=c,o=g}let d=l.shape.length;C.assertAxesAreInnerMostDims("max",u,d);let[f,m]=C.computeOutAndReduceShapes(l.shape,u),A=k.sizeFromShape(m),y=t.makeOutput(f,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;mb(o,A,g)}if(p&&t.disposeData(c.dataId),s){let g=C.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var Vq={kernelName:ds,backendName:"wasm",setupFunc:Wq,kernelFunc:Bq},Uq=!1,jq=on(ps,Uq),Ab;function Gq(e){Ab=e.wasm.cwrap(fs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Hq(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:c}=n,u=C.computePool2DInfo(a.shape,i,o,1,l,c),h=u.filterHeight,p=u.filterWidth,d=u.padInfo.top,f=u.padInfo.right,m=u.padInfo.bottom,A=u.padInfo.left,y=u.dilationHeight,g=u.dilationWidth,_=u.strideHeight,x=u.strideWidth,w=u.inChannels,b=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let N=r.makeOutput(u.outShape,"float32"),T=r.dataIdMap.get(N.dataId).id;return Ab(s,a.shape[0],a.shape[1],a.shape[2],h,p,d,f,m,A,y,g,_,x,w,b,T),N}var qq={kernelName:fs,backendName:"wasm",setupFunc:Gq,kernelFunc:Hq},yb;function Xq(e){yb=e.wasm.cwrap(ms,null,["number, number, number"])}function Kq(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:p,inputWasTransposed:d}=bl(i,a,t),f=h;if(d){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(c=u,l=x,f=C.getInnerMostAxes(f.length,c.shape.length))}C.assertAxesAreInnerMostDims("mean",f,c.shape.length);let[m,A]=C.computeOutAndReduceShapes(c.shape,f),y=k.sizeFromShape(A),g=c;c.dtype!=="float32"&&(g=lp({backend:t,inputs:{x:c},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let _=t.makeOutput(m,"float32");if(k.sizeFromShape(c.shape)!==0){let x=t.dataIdMap.get(_.dataId).id;yb(l,y,x)}if(d&&t.disposeData(u.dataId),s){let x=C.expandShapeToKeepDim(_.shape,p);_.shape=x}return c.dtype!=="float32"&&t.disposeData(g.dataId),_}var Zq={kernelName:ms,backendName:"wasm",setupFunc:Xq,kernelFunc:Kq},gb;function Yq(e){gb=e.wasm.cwrap(As,null,["number, number, number"])}function Jq(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:p,inputWasTransposed:d}=bl(i,a,t);if(d){let _=t.dataIdMap.get(u.dataId).id;_!==o&&(c=u,l=_)}let f=c.shape.length;C.assertAxesAreInnerMostDims("min",h,f);let[m,A]=C.computeOutAndReduceShapes(c.shape,h),y=k.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(k.sizeFromShape(c.shape)!==0){let _=t.dataIdMap.get(g.dataId).id;gb(l,y,_)}if(d&&t.disposeData(u.dataId),s){let _=C.expandShapeToKeepDim(g.shape,p);g.shape=_}return g}var Qq={kernelName:As,backendName:"wasm",setupFunc:Yq,kernelFunc:Jq},eX=!1,tX=on(ys,eX),nX=!0,rX=on(gs,nX),aX=Cn(fo);function Om(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var xb;function sX(e){xb=e.wasm.cwrap(Ao,"number",["number","number","number","number","number"])}function iX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,c=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,h=xb(c,u,s,a,i),{pSelectedIndices:p,selectedSize:d,pSelectedScores:f,pValidOutputs:m}=Om(t,h);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([d],"int32",p)}var oX={kernelName:Ao,backendName:"wasm",setupFunc:sX,kernelFunc:iX},wb;function lX(e){wb=e.wasm.cwrap(yo,"number",["number","number","number","number","number","bool"])}function uX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,p=wb(u,h,s,a,i,o),{pSelectedIndices:d,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=Om(t,p);t.wasm._free(m);let y=t.makeOutput([f],"int32",d),g=t.makeOutput([],"int32",A);return[y,g]}var cX={kernelName:yo,backendName:"wasm",setupFunc:lX,kernelFunc:uX},_b;function hX(e){_b=e.wasm.cwrap(go,"number",["number","number","number","number","number","number"])}function dX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:c}=n,u=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(c.dataId).id,p=_b(u,h,s,a,i,o),{pSelectedIndices:d,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=Om(t,p);t.wasm._free(A);let y=t.makeOutput([f],"int32",d),g=t.makeOutput([f],"float32",m);return[y,g]}var pX={kernelName:go,backendName:"wasm",setupFunc:hX,kernelFunc:dX},fX=!1,mX=on(mo,fX,"bool"),bb;function AX(e){bb=e.wasm.cwrap(xs,null,["number","number","number","number","number"])}function yX(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),c=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(a.dataId).id;return bb(u,s,i,o,c),l}var gX={kernelName:xs,backendName:"wasm",setupFunc:AX,kernelFunc:yX};function xX(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var wX={kernelName:xo,backendName:"wasm",kernelFunc:xX};function _X(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return Mm({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(l=>{k.assertShapesMatch(s,l.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===l.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=t.map(l=>Mm({inputs:{input:l},backend:n,attrs:{dim:a}}));return tb({inputs:o,backend:n,attrs:{axis:a}})}var bX={kernelName:wo,backendName:"wasm",kernelFunc:_X},vb;function vX(e){vb=e.wasm.cwrap(ws,null,["number","array","number","number","array","array","number","number"])}function kX(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),u=r.map(f=>f[0]),h=r.map(f=>f[1]),p=new Uint8Array(new Int32Array(u).buffer),d=new Uint8Array(new Int32Array(h).buffer);return vb(i,c,t.shape.length,En[t.dtype],p,d,a,l),o}var IX={kernelName:ws,backendName:"wasm",kernelFunc:kX,setupFunc:vX},NX=!1,SX=on(_s,NX),kb;function TX(e){kb=e.wasm.cwrap(bs,null,["number","number","number"])}function EX(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return kb(s,i,l),o}var CX={kernelName:bs,backendName:"wasm",setupFunc:TX,kernelFunc:EX},Ib;function RX(e){Ib=e.wasm.cwrap(_o,null,["number","number","number","number"])}function FX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:p,inputWasTransposed:d}=bl(i,a,t),f=h;if(d){let _=t.dataIdMap.get(u.dataId).id;_!==o&&(c=u,l=_,f=C.getInnerMostAxes(f.length,c.shape.length))}C.assertAxesAreInnerMostDims("prod",f,c.shape.length);let[m,A]=C.computeOutAndReduceShapes(c.shape,f),y=k.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(k.sizeFromShape(c.shape)!==0){let _=t.dataIdMap.get(g.dataId).id;Ib(l,y,En[g.dtype],_)}if(d&&t.disposeData(u.dataId),s){let _=C.expandShapeToKeepDim(g.shape,p);g.shape=_}return g}var MX={kernelName:_o,backendName:"wasm",setupFunc:RX,kernelFunc:FX},OX=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=nm(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},$X={kernelName:yu,backendName:"wasm",kernelFunc:OX},DX=!0,zX=on(as,DX),PX=Cn(vs),LX=Cn(Is),Nb;function WX(e){Nb=e.wasm.cwrap(ks,null,["number","number","number","number","number","number","number","number","number","number"])}function BX(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,c]=o,[u,h,p,d]=a.shape,f=[u,l,c,d],m=t.dataIdMap.get(a.dataId),A;m.dtype!=="float32"&&(A=lp({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(A.dataId));let y=m.id,g=t.makeOutput(f,"float32");if(k.sizeFromShape(a.shape)===0)return g;let _=t.dataIdMap.get(g.dataId).id;return Nb(y,u,h,p,d,l,c,s?1:0,i?1:0,_),A!=null&&t.disposeData(A.dataId),g}var VX={kernelName:ks,backendName:"wasm",setupFunc:WX,kernelFunc:BX},Sb;function UX(e){Sb=e.wasm.cwrap(Ns,null,["number","array","number","array","number","number"])}function jX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=k.parseAxisParam(s,a.shape);if(a.shape.length===0)return ip({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);return Sb(l,u,i.length,h,a.shape.length,c),dr({inputs:{x:o},attrs:{shape:a.shape},backend:n})}var GX={kernelName:Ns,backendName:"wasm",kernelFunc:jX,setupFunc:UX},Tb;function HX(e){Tb=e.wasm.cwrap(zo,null,["number","number","number","number","number","number","number","number","array","number","number"])}function qX(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(l.dataId).id,[h,p,d,f]=a.shape,[m,A]=C.getImageCenter(o,p,d),y=i===0,g=255,_=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],x=new Uint8Array(new Int32Array(_).buffer);return Tb(c,h,p,d,f,s,m,A,x,_.length,u),l}var XX={kernelName:zo,backendName:"wasm",kernelFunc:qX,setupFunc:HX},KX=Cn(Ss),ZX=Cn(Ts),Eb;function YX(e){Eb=e.wasm.cwrap(ko,null,["number","number","number","number","number","number","array","number","number"])}function JX(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:c,sliceSize:u,strides:h,outputSize:p}=Y1.calculateShapes(s,a,i),d=t.dataIdMap.get(a.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return Eb(d,f,En[s.dtype],l,c,u,m,p,A),o}var QX={kernelName:ko,backendName:"wasm",setupFunc:YX,kernelFunc:JX},Cb;function eK(e){Cb=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function tK(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,c=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(c.dataId).id,h=r.shape.length,p=a.shape.length,d=h===0||h>1||p===1?1:k.sizeFromShape(a.shape.slice(1));return Cb(i,o,l,d,u),c}var nK={kernelName:Io,backendName:"wasm",kernelFunc:tK,setupFunc:eK},Rb;function rK(e){Rb=e.wasm.cwrap(Cs,null,["number","number"])}function aK(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return k.sizeFromShape(a.shape)===0||Rb(r,s),a}var sK={kernelName:"Sigmoid",backendName:"wasm",setupFunc:rK,kernelFunc:aK},iK=Cn(Es);function up(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=nn.parseSliceParams(t,n,r),o=nn.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),c=a.makeOutput(i,t.dtype),u=k.computeStrides(t.shape),h=a.dataIdMap.get(c.dataId);if(o){let f=nn.computeFlatOffset(s,u);return t.dtype==="string"?h.stringBytes=l.slice(f,f+k.sizeFromShape(i)):a.typedArrayFromHeap(c).set(l.subarray(f,f+k.sizeFromShape(i))),c}if(t.dtype==="string"){let f=zd(l,s,i,t.shape,t.dtype);return h.stringBytes=f,c}let p=a.typedArrayFromHeap(c),d=t.shape.length;if(d===2)oK(l,u[0],p,s,i);else if(d===3)lK(l,u[0],u[1],p,s,i);else if(d===4)uK(l,u[0],u[1],u[2],p,s,i);else{let f=zd(l,s,i,t.shape,t.dtype);p.set(f)}return c}function oK(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let c=i;c<l;c++){let u=c*t+o;n.set(e.subarray(u,u+a[1]),s),s+=a[1]}}function lK(e,t,n,r,a,s){let i=0,o=a[0],l=a[1],c=a[2],u=o+s[0],h=l+s[1];for(let p=o;p<u;p++)for(let d=l;d<h;d++){let f=p*t+d*n+c;r.set(e.subarray(f,f+s[2]),i),i+=s[2]}}function uK(e,t,n,r,a,s,i){let o=0,l=s[0],c=s[1],u=s[2],h=l+i[0],p=c+i[1],d=u+i[2],f=s[3];for(let m=l;m<h;m++)for(let A=c;A<p;A++)for(let y=u;y<d;y++){let g=m*t+A*n+y*r+f;a.set(e.subarray(g,g+i[3]),o),o+=i[3]}}var cK={kernelName:So,backendName:"wasm",kernelFunc:up},Fb;function hK(e){Fb=e.wasm.cwrap(Ms,null,["number","number","number","number"])}function dK(e){let{backend:t,inputs:{logits:n},attrs:{dim:r}}=e,a=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[r],l=k.sizeFromShape(n.shape)/o;return k.sizeFromShape(s.shape)===0||Fb(a,i,o,l),s}var pK={kernelName:Ms,backendName:"wasm",setupFunc:hK,kernelFunc:dK};function fK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=k.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),c=new Array(a.shape.length).fill(0),u=a.shape.slice();return l.map(h=>{let p=[...u];p[o]=h;let d=up({inputs:{x:a},attrs:{begin:c,size:p},backend:r});return c[o]+=h,d})}var mK={kernelName:Ro,backendName:"wasm",kernelFunc:fK},AK=Cn(Rs),yK=Cn(wu),gK=!0,xK=on(Os,gK),Mb;function wK(e){Mb=e.wasm.cwrap(ma,null,["number","number","number"])}function _K(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return Mb(i,a,l),o}var bK={kernelName:ma,backendName:"wasm",setupFunc:wK,kernelFunc:_K},Ob;function vK(e){Ob=e.wasm.cwrap(Fo,null,["number","array","number","array","array","array","array","array","number","number"])}function kK(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:c,ellipsisMask:u,newAxisMask:h,shrinkAxisMask:p}=r,d=C.slice_util.maskToAxes(u);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=a.shape.length-s.length,m=C.slice_util.maskToAxes(h),A=a.shape.slice();m.forEach(E=>{s[E]=0,i[E]=1,A.splice(E,0,1)});let y=dr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:_,strides:x}=C.slice_util.getNormalizedAxes(y.shape,d,f,s,i,o,l,c,u);s=g,i=_,o=x;let w=C.slice_util.maskToAxes(p);w.forEach(E=>{i[E]=s[E]+1,o[E]=1});let b=C.slice_util.computeOutShape(s,i,o),N=b.filter((E,M)=>w.indexOf(M)===-1);if(o.every(E=>E===1)){let E=up({inputs:{x:a},attrs:{begin:s,size:b},backend:t});return dr({inputs:{x:E},attrs:{shape:N},backend:t})}let T=t.makeOutput(N,"float32");if(!N.some(E=>E===0)){let E=t.dataIdMap.get(y.dataId).id,M=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),$=new Uint8Array(new Int32Array(s).buffer),P=new Uint8Array(new Int32Array(i).buffer),V=new Uint8Array(new Int32Array(o).buffer),H=new Uint8Array(new Int32Array(N).buffer),U=new Uint8Array(new Int32Array(k.computeStrides(N)).buffer),K=t.dataIdMap.get(T.dataId).id;Ob(E,M,y.shape.length,$,P,V,H,U,N.length,K)}return dr({inputs:{x:T},attrs:{shape:N},backend:t})}var IK={kernelName:Fo,backendName:"wasm",setupFunc:vK,kernelFunc:kK},NK=!0,SK=on($s,NK),$b;function TK(e){$b=e.wasm.cwrap(Fs,null,["number, number, number"])}function EK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,c=i,{transposed:u,axes:h,originalAxes:p,inputWasTransposed:d}=bl(i,a,t),f=h;if(d){let _=t.dataIdMap.get(u.dataId).id;_!==o&&(c=u,l=_,f=C.getInnerMostAxes(f.length,c.shape.length))}C.assertAxesAreInnerMostDims("sum",f,c.shape.length);let[m,A]=C.computeOutAndReduceShapes(c.shape,f),y=k.sizeFromShape(A),g=t.makeOutput(m,c.dtype);if(k.sizeFromShape(c.shape)!==0){let _=t.dataIdMap.get(g.dataId).id;$b(l,y,_)}if(d&&t.disposeData(u.dataId),s){let _=C.expandShapeToKeepDim(g.shape,p);g.shape=_}return g}var CK={kernelName:Fs,backendName:"wasm",setupFunc:TK,kernelFunc:EK},RK=Cn(Ds),Db;function FK(e){Db=e.wasm.cwrap(fa,null,["number","array","number","array","number","number"])}function MK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let p=0;p<o.length;p++)o[p]=a.shape[p]*i[p];let l=new Uint8Array(new Int32Array(a.shape).buffer),c=new Uint8Array(new Int32Array(o).buffer),u=n.makeOutput(o,a.dtype),h=n.dataIdMap.get(u.dataId).id;return Db(s,l,a.shape.length,c,o.length,En[u.dtype],h),u}var OK={kernelName:fa,backendName:"wasm",setupFunc:FK,kernelFunc:MK},zb;function $K(e){zb=e.wasm.cwrap(Oo,null,["number","array","number","number","number","bool","number","number"])}var DK=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let c=t.makeOutput(l,r.dtype),u=t.dataIdMap.get(c.dataId).id,h=t.makeOutput(l,"int32"),p=t.dataIdMap.get(h.dataId).id;return zb(i,o,r.shape.length,En[r.dtype],a,s,u,p),[c,h]},zK={kernelName:Oo,backendName:"wasm",setupFunc:$K,kernelFunc:DK};function PK(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),c=0;for(let d=0;d<o;d++)d!==s&&(l[c++]=a.shape[d]);let u=new Array(i),h=new Array(o).fill(0),p=a.shape.slice();p[s]=1;for(let d=0;d<u.length;d++)h[s]=d,u[d]=up({inputs:{x:a},attrs:{begin:h,size:p},backend:n});return u.map(({dataId:d,dtype:f})=>({dataId:d,dtype:f,shape:l}))}var LK={kernelName:$o,backendName:"wasm",kernelFunc:PK};function WK(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var BK={kernelName:Do,backendName:"wasm",kernelFunc:WK},VK=[lH,cH,pH,_H,kH,TH,EH,FH,MH,DH,LH,WH,UH,HH,KH,JH,eq,tq,nq,aq,oq,lq,cq,oH,pq,Aq,xq,bq,Iq,Sq,Eq,fH,Fq,Oq,Dq,zq,Lq,Vq,jq,qq,Zq,Qq,tX,rX,aX,oX,cX,pX,mX,gX,wX,bX,IX,SX,CX,MX,$X,zX,PX,LX,IH,VX,GX,XX,ZX,KX,QX,nK,sK,iK,cK,pK,mK,AK,yK,xK,bK,IK,SK,CK,RK,OK,zK,gH,LK,BK];for(let e of VK)Bs(e);var $m=Q();$m.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));$m.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if($m.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Pb=Mi(y8()),UK='var threadInfoStruct=0;var selfThreadId=0;var parentThreadId=0;var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:selfThreadId})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["DYNAMIC_BASE"]=e.data.DYNAMIC_BASE;Module["DYNAMICTOP_PTR"]=e.data.DYNAMICTOP_PTR;Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}Module=WasmBackendModuleThreadedSimd(Module);postMessage({"cmd":"loaded"})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;threadInfoStruct=e.data.threadInfoStruct;Module["__register_pthread_ptr"](threadInfoStruct,0,0);selfThreadId=e.data.selfThreadId;parentThreadId=e.data.parentThreadId;var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["dynCall_ii"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){Atomics.store(Module["HEAPU32"],threadInfoStruct+4>>2,ex instanceof Module["ExitStatus"]?ex.status:-2);Atomics.store(Module["HEAPU32"],threadInfoStruct+0>>2,1);Module["_emscripten_futex_wake"](threadInfoStruct+0,2147483647);if(!(ex instanceof Module["ExitStatus"]))throw ex}}}else if(e.data.cmd==="cancel"){if(threadInfoStruct){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(threadInfoStruct){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',jK=Mi(g8()),Lb=class extends nu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new sh(this,Pn())}write(e,t,n){let r={};return this.move(r,e,t,n),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,r){let a=this.dataIdNextNumber++;if(r==="string"){let l=t;this.dataIdMap.set(e,{id:a,stringBytes:l,shape:n,dtype:r,memoryOffset:null});return}let s=k.sizeFromShape(n),i=s*k.bytesPerElement(r),o=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:o,shape:n,dtype:r}),this.wasm.tfjs.registerTensor(a,s,o),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),o)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(r)*k.bytesPerElement(n));return GK(s.buffer,n)}disposeData(e){let t=this.dataIdMap.get(e);this.wasm._free(t.memoryOffset),this.wasm.tfjs.disposeData(t.id),this.dataIdMap.delete(e)}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{r={};let a=this.dataIdNextNumber++;this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function HK(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance)})})}),{})}function Wb(e,t,n){if(cp!=null)return cp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),uc!=null&&uc[r]!=null?uc[r]:n+r}async function qK(){let[e,t]=await Promise.all([Q().getAsync("WASM_HAS_SIMD_SUPPORT"),Q().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(l,c)=>{if(l.endsWith(".worker.js")){let u=UK,h=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(h)}return l.endsWith(".wasm")?Wb(e,t,cc!=null?cc:c):c+l},Dm&&(a.instantiateWasm=HK(Wb(e,t,cc!=null?cc:"")));let s;t&&e&&cp==null?(s=Pb.default(a),s.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Pb.default.toString()],{type:"text/javascript"})):s=jK.default(a);let i=null;s.tfjs={init:s.cwrap("init",null,[]),registerTensor:s.cwrap("register_tensor",null,["number","number","number"]),disposeData:s.cwrap("dispose_data",i,["number"]),dispose:s.cwrap("dispose",i,[])};let o=!1;s.onRuntimeInitialized=()=>{o=!0,hc=!1,n({wasm:s})},s.onAbort=()=>{o||hc||(hc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))}})}function GK(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var XK=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],cp=null,cc=null,uc={},hc=!1,Dm=!1;function KK(e,t=!1){if(rf("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),hc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");cp=e,Dm=t}function Bb(e,t=!1){if(hc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")cc=e;else{uc=e;let n=XK.filter(r=>uc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Dm=t}var Vb="3.0.0",ZK=2;qo("wasm",async()=>{let{wasm:e}=await qK();return new Lb(e)},ZK);Y().prototype.abs=function(){return this.throwIfDisposed(),Ft(this)};Y().prototype.acos=function(){return this.throwIfDisposed(),of(this)};Y().prototype.acosh=function(){return this.throwIfDisposed(),lf(this)};Y().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Y().prototype.all=function(e,t){return this.throwIfDisposed(),Qh(this,e,t)};Y().prototype.any=function(e,t){return this.throwIfDisposed(),Ru(this,e,t)};Y().prototype.argMax=function(e){return this.throwIfDisposed(),Fu(this,e)};Y().prototype.argMin=function(e){return this.throwIfDisposed(),uf(this,e)};Y().prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),q(this,[])};Y().prototype.asType=function(e){return this.throwIfDisposed(),me(this,e)};Y().prototype.as1D=function(){return this.throwIfDisposed(),q(this,[this.size])};Y().prototype.as2D=function(e,t){return this.throwIfDisposed(),q(this,[e,t])};Y().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),q(this,[e,t,n])};Y().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),q(this,[e,t,n,r])};Y().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),q(this,[e,t,n,r,a])};Y().prototype.asin=function(){return this.throwIfDisposed(),cf(this)};Y().prototype.asinh=function(){return this.throwIfDisposed(),hf(this)};Y().prototype.atan=function(){return this.throwIfDisposed(),df(this)};Y().prototype.atan2=function(e){return this.throwIfDisposed(),pf(this,e)};Y().prototype.atanh=function(){return this.throwIfDisposed(),ff(this)};Y().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Ou(this,e,t,n,r)};Y().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),$u(this,e,t)};Y().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),qs(this,e,t,n,r,a)};Y().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Du(this,e)};Y().prototype.cast=function(e){return this.throwIfDisposed(),me(this,e)};Y().prototype.ceil=function(){return this.throwIfDisposed(),gf(this)};Y().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),hn(this,e,t)};Y().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Xe&&(e=[e]),rt([this,...e],t)};Y().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),td(this,e,t,n,r,a,s)};Y().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),nd(this,e,t,n,r,a)};Y().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Xr(this,e,t,n,r,a,s)};Y().prototype.cos=function(){return this.throwIfDisposed(),zu(this)};Y().prototype.cosh=function(){return this.throwIfDisposed(),rd(this)};Y().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),ad(this,e,t,n)};Y().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),_f(this,e,t)};Y().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Jo(this,e,t,n,r,a,s)};Y().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),bf(this,e,t,n,r,a)};Y().prototype.divNoNan=function(e){return this.throwIfDisposed(),vf(this,e)};Y().prototype.div=function(e){return this.throwIfDisposed(),be(this,e)};Y().prototype.dot=function(e){return this.throwIfDisposed(),x5(this,e)};Y().prototype.elu=function(){return this.throwIfDisposed(),Qo(this)};Y().prototype.equal=function(e){return this.throwIfDisposed(),_a(this,e)};Y().prototype.erf=function(){return this.throwIfDisposed(),kf(this)};Y().prototype.exp=function(){return this.throwIfDisposed(),Ln(this)};Y().prototype.expandDims=function(e){return this.throwIfDisposed(),bn(this,e)};Y().prototype.expm1=function(){return this.throwIfDisposed(),If(this)};Y().prototype.fft=function(){return this.throwIfDisposed(),qu(this)};Y().prototype.flatten=function(){return this.throwIfDisposed(),q(this,[this.size])};Y().prototype.floor=function(){return this.throwIfDisposed(),el(this)};Y().prototype.floorDiv=function(e){return this.throwIfDisposed(),Jh(this,e)};Y().prototype.gather=function(e,t){return this.throwIfDisposed(),Xs(this,e,t)};Y().prototype.greaterEqual=function(e){return this.throwIfDisposed(),va(this,e)};Y().prototype.greater=function(e){return this.throwIfDisposed(),Jn(this,e)};Y().prototype.ifft=function(){return this.throwIfDisposed(),sl(this)};Y().prototype.irfft=function(){return this.throwIfDisposed(),_d(this)};Y().prototype.isFinite=function(){return this.throwIfDisposed(),w5(this)};Y().prototype.isInf=function(){return this.throwIfDisposed(),_5(this)};Y().prototype.isNaN=function(){return this.throwIfDisposed(),b5(this)};Y().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Lu(this,e)};Y().prototype.lessEqual=function(e){return this.throwIfDisposed(),Ks(this,e)};Y().prototype.less=function(e){return this.throwIfDisposed(),id(this,e)};Y().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Sf(this,e,t,n,r)};Y().prototype.logSigmoid=function(){return this.throwIfDisposed(),I5(this)};Y().prototype.logSoftmax=function(e){return this.throwIfDisposed(),ud(this,e)};Y().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Cf(this,e,t)};Y().prototype.log=function(){return this.throwIfDisposed(),vn(this)};Y().prototype.log1p=function(){return this.throwIfDisposed(),od(this)};Y().prototype.logicalAnd=function(e){return this.throwIfDisposed(),Qn(this,e)};Y().prototype.logicalNot=function(){return this.throwIfDisposed(),Wu(this)};Y().prototype.logicalOr=function(e){return this.throwIfDisposed(),cd(this,e)};Y().prototype.logicalXor=function(e){return this.throwIfDisposed(),E5(this,e)};Y().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),je(this,e,t,n)};Y().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),Bu(this,e,t,n,r)};Y().prototype.max=function(e,t){return this.throwIfDisposed(),Wn(this,e,t)};Y().prototype.maximum=function(e){return this.throwIfDisposed(),Er(this,e)};Y().prototype.mean=function(e,t){return this.throwIfDisposed(),wt(this,e,t)};Y().prototype.min=function(e,t){return this.throwIfDisposed(),nl(this,e,t)};Y().prototype.minimum=function(e){return this.throwIfDisposed(),rl(this,e)};Y().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Ff(this,e,t)};Y().prototype.mod=function(e){return this.throwIfDisposed(),Mf(this,e)};Y().prototype.mul=function(e){return this.throwIfDisposed(),L(this,e)};Y().prototype.neg=function(){return this.throwIfDisposed(),xt(this)};Y().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Id(this,e,t,n)};Y().prototype.notEqual=function(e){return this.throwIfDisposed(),Ys(this,e)};Y().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),jo(this,e,t,n)};Y().prototype.onesLike=function(){return this.throwIfDisposed(),kn(this)};Y().prototype.pad=function(e,t){return this.throwIfDisposed(),Kr(this,e,t)};Y().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),F5(this,e,t,n,r,a)};Y().prototype.pow=function(e){return this.throwIfDisposed(),Zr(this,e)};Y().prototype.prelu=function(e){return this.throwIfDisposed(),Uu(this,e)};Y().prototype.prod=function(e,t){return this.throwIfDisposed(),dd(this,e,t)};Y().prototype.reciprocal=function(){return this.throwIfDisposed(),Df(this)};Y().prototype.relu=function(){return this.throwIfDisposed(),Rr(this)};Y().prototype.relu6=function(){return this.throwIfDisposed(),fd(this)};Y().prototype.reshapeAs=function(e){return this.throwIfDisposed(),q(this,e.shape)};Y().prototype.reshape=function(e){return this.throwIfDisposed(),q(this,e)};Y().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Z5(this,e,t,n)};Y().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),Y5(this,e,t,n)};Y().prototype.reverse=function(e){return this.throwIfDisposed(),In(this,e)};Y().prototype.rfft=function(){return this.throwIfDisposed(),Xu(this)};Y().prototype.round=function(){return this.throwIfDisposed(),zf(this)};Y().prototype.rsqrt=function(){return this.throwIfDisposed(),md(this)};Y().prototype.selu=function(){return this.throwIfDisposed(),Ad(this)};Y().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Pf(this,e,t,n,r,a,s)};Y().prototype.sigmoid=function(){return this.throwIfDisposed(),_n(this)};Y().prototype.sign=function(){return this.throwIfDisposed(),Lf(this)};Y().prototype.sin=function(){return this.throwIfDisposed(),yd(this)};Y().prototype.sinh=function(){return this.throwIfDisposed(),gd(this)};Y().prototype.slice=function(e,t){return this.throwIfDisposed(),Ee(this,e,t)};Y().prototype.softmax=function(e){return this.throwIfDisposed(),Hu(this,e)};Y().prototype.softplus=function(){return this.throwIfDisposed(),tl(this)};Y().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Vu(this,e,t)};Y().prototype.split=function(e,t){return this.throwIfDisposed(),Ht(this,e,t)};Y().prototype.sqrt=function(){return this.throwIfDisposed(),qt(this)};Y().prototype.square=function(){return this.throwIfDisposed(),it(this)};Y().prototype.squaredDifference=function(e){return this.throwIfDisposed(),bd(this,e)};Y().prototype.squeeze=function(e){return this.throwIfDisposed(),ka(this,e)};Y().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Xe?[this,e]:[this,...e];return Nn(n,t)};Y().prototype.step=function(e){return this.throwIfDisposed(),il(this,e)};Y().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),Bf(this,e,t,n,r,a,s,i,o)};Y().prototype.sub=function(e){return this.throwIfDisposed(),Ae(this,e)};Y().prototype.sum=function(e,t){return this.throwIfDisposed(),Ie(this,e,t)};Y().prototype.tan=function(){return this.throwIfDisposed(),Vf(this)};Y().prototype.tanh=function(){return this.throwIfDisposed(),Zo(this)};Y().prototype.tile=function(e){return this.throwIfDisposed(),ba(this,e)};Y().prototype.toBool=function(){return this.throwIfDisposed(),me(this,"bool")};Y().prototype.toFloat=function(){return this.throwIfDisposed(),me(this,"float32")};Y().prototype.toInt=function(){return this.throwIfDisposed(),me(this,"int32")};Y().prototype.topk=function(e,t){return this.throwIfDisposed(),Uf(this,e,t)};Y().prototype.transpose=function(e){return this.throwIfDisposed(),nt(this,e)};Y().prototype.unique=function(e){return this.throwIfDisposed(),kd(this,e)};Y().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),jf(this,e,t)};Y().prototype.unstack=function(e){return this.throwIfDisposed(),er(this,e)};Y().prototype.where=function(e,t){return this.throwIfDisposed(),dn(e,this,t)};Y().prototype.zerosLike=function(){return this.throwIfDisposed(),Be(this)};var Ub={kernelName:Di,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,il(me(n,"float32"),-1))}}},YK={kernelName:zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=it(me(n,"float32")),a=qt(Ae(ke(1),r));return xt(be(e,a))}}}},JK={kernelName:Pi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=qt(Ae(it(me(n,"float32")),1));return be(e,r)}}}},QK={kernelName:da,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=e,i=Mt(n.shape,a);return i.length>0&&(s=Ie(s,i)),q(s,n.shape)},b:()=>{let s=e,i=Mt(r.shape,a);return i.length>0&&(s=Ie(s,i)),q(s,r.shape)}}}},eZ={kernelName:Xa,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},tZ={kernelName:Ka,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Be(n)}}},nZ={kernelName:su,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Be(n)}}},rZ={kernelName:Li,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>be(e,qt(Ae(ke(1),it(me(n,"float32")))))}}},aZ={kernelName:Wi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=qt(se(ke(1),it(me(n,"float32"))));return be(e,r)}}}},sZ={kernelName:Ui,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=se(it(n),it(r)),i=L(e,be(r,s)),o=Mt(n.shape,a);return o.length>0&&(i=Ie(i,o)),q(i,n.shape)},b:()=>{let s=se(it(n),it(r)),i=xt(L(e,be(n,s))),o=Mt(r.shape,a);return o.length>0&&(i=Ie(i,o)),q(i,r.shape)}}}},iZ={kernelName:Bi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>be(e,se(it(me(n,"float32")),1))}}},oZ={kernelName:Vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>be(e,Ae(ke(1),it(me(n,"float32"))))}}};function lZ(e,t,n,r,a,s){let i=R(e,"dy","avgPool3dGrad"),o=R(t,"input","avgPool3dGrad"),l=i,c=o,u=!1;o.rank===4&&(u=!0,l=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),c=q(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),F(c.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${c.rank}.`),s!=null&&F(Pt(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:c},p={filterSize:n,strides:r,pad:a,dimRoundingMode:s},d=D.runKernel(dh,h,p);return u?q(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var uZ=z({avgPool3dGrad_:lZ}),cZ={kernelName:iu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>uZ(e,r,a,s,i,o)}}};function hZ(e,t,n,r,a){let s=R(e,"dy","avgPoolGrad"),i=R(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,c=!1;i.rank===3&&(c=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},h={filterSize:n,strides:r,pad:a},p=D.runKernel(hh,u,h);return c?q(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var dZ=z({avgPoolGrad_:hZ}),pZ={kernelName:Za,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>dZ(e,r,a,s,i)}}},fZ={kernelName:Ya,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>je(e,a,!1,!0),b:()=>je(r,e,!0,!1)}:!s&&i?{a:()=>je(e,a,!1,!1),b:()=>je(e,r,!0,!1)}:s&&!i?{a:()=>je(a,e,!1,!0),b:()=>je(r,e,!1,!1)}:{a:()=>je(a,e,!0,!0),b:()=>je(e,r,!0,!0)}}},mZ={kernelName:ou,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>Vu(e,r,a)}}},AZ={kernelName:hg,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Ie(e,o,!0)}}},yZ={kernelName:Ja,gradFunc:e=>({x:()=>e.clone()})},gZ={kernelName:ji,gradFunc:e=>({x:()=>Be(e)})},xZ={kernelName:pa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>dn(Qn(va(r,a),Ks(r,s)),e,Be(e))}}},wZ={kernelName:lu,inputsToSave:["x"],gradFunc:Ub.gradFunc},_Z={kernelName:Gi,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=Kn(a,t[0].shape)[0],i=r.map(o=>o[s]);return Ht(e,i,s).map(o=>()=>o)}},bZ={kernelName:Qa,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return F(wa(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>xf(r.shape,e,a,i,o,l),filter:()=>Xf(r,e,a.shape,i,o,l)}}},vZ={kernelName:es,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Xr(e,a,s,i,o,1,l),filter:()=>Xf(e,r,a.shape,s,i,o,l)}}};function kZ(e,t,n,r,a){let s=e;e.rank===4&&(s=q(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=q(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return D.runKernel(Ah,o,l)}var IZ=z({conv3DBackpropFilter_:kZ}),NZ={kernelName:uu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;F(wa(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>y5(i.shape,e,o,a,s),filter:()=>IZ(i,e,o.shape,a,s)}}},SZ={kernelName:ts,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(xt(yd(me(n,"float32"))),e)}}},TZ={kernelName:Hi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(gd(me(n,"float32")),e)}}},EZ={kernelName:ns,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=T5([a],r.rank),l=ad(e,a,s,!i);return o!=null&&(l=nt(l,o)),l}}}},CZ={kernelName:rs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;F(wa(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,c]=t;return F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),F(c.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${c.rank}.`),F(l.shape[3]===c.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),F(Sr(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&F(Pt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>U5(l.shape,e,c,a,s,r,i),filter:()=>V5(l,e,c.shape,a,s,r,i)}}},RZ={kernelName:cu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>D.runKernel(bh,s,n),filter:()=>D.runKernel(vh,i,n)}}},FZ={kernelName:Ki,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>D.runKernel(kh,r)}}},MZ={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=L(Ln(xt(it(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,r)}}},OZ={kernelName:ss,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},$Z={kernelName:Ji,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>q(e,n.shape)}}},DZ={kernelName:Qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Ln(n))}}},zZ={kernelName:is,gradFunc:e=>({x:()=>Be(e)})},PZ={kernelName:os,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=be(e,me(r,"float32")),i=Mt(n.shape,a);return i.length>0?q(Ie(s,i),n.shape):s},b:()=>{let s=L(e,me(n,"float32")),i=Mt(r.shape,a);i.length>0&&(s=q(Ie(s,i),r.shape));let o=it(r);return xt(be(s,me(o,"float32")))}}}},LZ={kernelName:ls,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?ke(1):o,c=Mt(s.shape,a.shape),u=[];if(s.rank===1){for(let m=0;m<a.shape.length-1;++m)u.push(a.shape[m]);u.push(1)}let h=Ae(a,s),p=L(e,l),d=md(se(i,ke(r))),f=L(L(L(d,d),d),ke(-.5));return{x:()=>s.rank===1?q(L(L(e,ba(q(d,[1,1,1,s.shape[0]]),u)),l),a.shape):q(L(L(e,d),l),a.shape),mean:()=>{let m=L(L(d,ke(-1)),p);return s.rank===1&&(m=Ie(m,c)),q(m,s.shape)},variance:()=>{let m=L(L(f,h),p);return s.rank===1&&(m=Ie(m,c)),q(m,s.shape)},scale:()=>{let m=L(h,d),A=L(e,m);return s.rank===1&&(A=Ie(A,c)),q(A,s.shape)},offset:()=>{let m=e;return s.rank===1&&(m=Ie(m,c)),q(m,s.shape)}}}},WZ={kernelName:to,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=Kn(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,c=o.slice(0,i),u=c.length,h=o.slice(s,o.length).slice(1),p=h.length,d=jb(0,u),f=jb(u+1,u+1+p),m=Gb([c,[l],h]),A=q(e,m),y=q(a,[l]),g=Gb([[u],d,f]),_=nt(A,g),x=jf(_,y,r.shape[i]),w=Ef(g);return x=nt(x,w),x},indices:()=>a}}};function jb(e,t){let n=[];for(let r=e;r<t;++r)n.push(r);return n}function Gb(e){let t=[];for(let n=0;n<e.length;++n)for(let r=0;r<e[n].length;++r)t.push(e[n][r]);return t}var BZ={kernelName:us,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>Be(n),b:()=>Be(r)}}},VZ={kernelName:ao,gradFunc:e=>({x:()=>me(e,"float32")})},UZ={kernelName:so,gradFunc:e=>({x:()=>Be(e)})},jZ={kernelName:io,gradFunc:e=>({x:()=>Be(e)})},GZ={kernelName:oo,gradFunc:e=>({x:()=>Be(e)})},HZ={kernelName:cs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=Jn(r,0);return{x:()=>dn(s,e,L(e,a))}}},qZ={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>be(e,se(n,1))}}},XZ={kernelName:hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>be(e,me(n,"float32"))}}},KZ={kernelName:dg,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=Ln(r);return Ae(e,L(Ie(e,a,s),i))}}}};function ZZ(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return D.runKernel(Eh,o,l)}var YZ=z({localResponseNormalizationBackprop_:ZZ}),JZ={kernelName:fu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>YZ(r,a,e,s,i,o,l)}}};function Hb(e,t,n,r){return t.rank<n.rank&&(t=q(t,Zs(t.shape,r))),e.rank<n.rank&&(e=q(e,Zs(e.shape,r))),{x:()=>L(e,me(_a(n,t),e.dtype))}}var qb={kernelName:ds,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=Kn(a,s.shape),l=Hb(e,i,s,o);return{x:()=>l.x()}}},QZ={kernelName:ps,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>L(e,me(va(n,r),"float32")),b:()=>L(e,me(id(n,r),"float32"))}}};function eY(e,t,n,r,a,s,i){let o=R(e,"dy","maxPool3dGrad"),l=R(t,"input","maxPool3dGrad"),c=R(n,"output","maxPool3dGrad"),u=o,h=l,p=c,d=!1;l.rank===4&&(d=!0,u=q(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=q(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=q(c,[1,c.shape[0],c.shape[1],c.shape[2],c.shape[3]])),F(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),F(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),F(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),i!=null&&F(Pt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let f={dy:u,input:h,output:p},m={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=D.runKernel(Rh,f,m);return d?q(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var tY=z({maxPool3dGrad_:eY}),nY={kernelName:mu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>tY(e,r,a,s,i,o,l)}}};function rY(e,t,n,r,a,s,i){let o=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),c=R(n,"output","maxPoolGrad");F(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&F(Pt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:c},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return D.runKernel(Ch,u,h)}var aY=z({maxPoolGrad_:rY}),sY={kernelName:fs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>aY(e,r,a,s,i,o)}}},iY={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=Kn(a,r.shape),i=S5(r.shape,s)[1],o=Ct(i);return{x:()=>{let l=r.shape.slice();s.forEach(u=>{l[u]=1});let c=q(e,l);return be(L(c,Cr(r.shape,"float32")),o)}}}},oY={kernelName:As,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=Kn(a,s.shape),l=Hb(e,i,s,o);return{x:()=>l.x()}}},lY={kernelName:ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>L(e,me(Ks(n,r),"float32")),b:()=>L(e,me(Jn(n,r),"float32"))}}},uY={kernelName:Au,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Ee(e,s,r.shape)}}},cY={kernelName:po,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=Mt(n.shape,a);return s.length>0?q(Ie(e,s),n.shape):e},b:()=>{let s=L(e,xt(el(be(n,r)))),i=Mt(r.shape,a);return i.length>0?q(Ie(s,i),r.shape):s}}}},hY={kernelName:gs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=L(e,me(r,"float32")),i=Mt(n.shape,a);return i.length>0?q(Ie(s,i),n.shape):s},b:()=>{let s=L(e,me(n,"float32")),i=Mt(r.shape,a);return i.length>0?q(Ie(s,i),r.shape):s}}}},dY={kernelName:fo,gradFunc:e=>({x:()=>xt(e)})},pY={kernelName:xs,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Nt(n.shape,"float32")}}},fY={kernelName:xo,gradFunc:e=>({x:()=>Be(e)})},mY={kernelName:wo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return er(e,r).map(a=>()=>a)}},Xb={kernelName:ws,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Ee(e,s,r.shape)}}},AY={kernelName:_s,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=ft(s.shape,i.shape);return{a:()=>{let l=me(i,"float32"),c=L(e,L(l,Zr(s,Ae(l,ke(1))))),u=Mt(s.shape,o);return u.length>0&&(c=Ie(c,u)),q(c,s.shape)},b:()=>{let l=Jn(s,0),c=dn(l,vn(s),Be(s)),u=L(e,L(a,c)),h=Mt(i.shape,o);return h.length>0&&(u=Ie(u,h)),q(u,i.shape)}}}},yY={kernelName:bs,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=Jn(n,0);return{x:()=>dn(a,e,L(e,r)),alpha:()=>{let s=dn(a,Be(e),L(e,n)),i=Mt(r.shape,e.shape);return i.length>0&&(s=Ie(s,i)),q(s,r.shape)}}}},gY={kernelName:as,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=be(e,me(r,"float32")),i=Mt(n.shape,a);return i.length>0?q(Ie(s,i),n.shape):s},b:()=>{let s=L(e,me(n,"float32")),i=Mt(r.shape,a);i.length>0&&(s=q(Ie(s,i),r.shape));let o=it(r);return xt(be(s,me(o,"float32")))}}}},xY={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>be(e,xt(it(n)))}}},wY={kernelName:Is,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=L(Ks(n,6),il(n));return{x:()=>L(e,me(r,"float32"))}}},_Y={kernelName:vs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,me(il(n),"float32"))}}},bY={kernelName:vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>q(e,n.shape)}}},vY={kernelName:ks,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>D.runKernel(Dh,a,n)}}},kY={kernelName:gu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>D.runKernel($h,a,n)}}},IY={kernelName:Ns,gradFunc:(e,t,n)=>{let{dims:r}=n,a=Kn(r,e.shape);return{x:()=>In(e,a)}}},NY={kernelName:Ss,gradFunc:e=>({x:()=>Be(e)})},SY={kernelName:Ts,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xt(be(e,L(Zr(n,1.5),2)))}}},TY={kernelName:Io,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>me(Be(n),"float32"),t:()=>L(e,me(n,e.dtype)),e:()=>L(e,me(Wu(n),e.dtype))}}},EY={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Jn(n,ke(0)),a=ke(ex),s=ke(tx),i=L(e,s),o=L(L(e,a),Ln(me(n,"float32")));return dn(r,i,o)}}}},CY={kernelName:Cs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,Ae(ke(1),n)))}}},RY={kernelName:Eo,gradFunc:e=>({x:()=>Be(e)})},FY={kernelName:Es,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(zu(me(n,"float32")),e)}}},MY={kernelName:To,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(rd(me(n,"float32")),e)}}},OY={kernelName:So,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=Zg(r,a,s),c=[];for(let u=0;u<e.rank;u++)c.push([o[u],i[u]-o[u]-l[u]]);return{x:()=>Kr(e,c)}}},$Y={kernelName:Ms,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=L(e,r);return{logits:()=>Ae(i,L(Ie(i,[a],s),r))}}},DY={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,_n(n))}}},Kb={kernelName:xu,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>$u(e,r,a)}}},Zb={kernelName:Ro,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>rt(e,r)}}},zY={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>be(e,L(qt(me(n,"float32")),2))}}},PY={kernelName:wu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(me(n,"float32"),2))}}},LY={kernelName:Os,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ke(2);return{a:()=>L(e,L(a,Ae(n,r))),b:()=>L(e,L(a,Ae(r,n)))}}},WY={kernelName:ma,gradFunc:e=>({x:()=>Be(e)})},BY={kernelName:$s,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=ft(n.shape,r.shape);return{a:()=>{let s=e,i=Mt(n.shape,a);return i.length>0&&(s=Ie(s,i)),q(s,n.shape)},b:()=>{let s=e,i=Mt(r.shape,a);return i.length>0&&(s=Ie(s,i)),q(xt(s),r.shape)}}}},VY={kernelName:Fs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;Kn(s,r.shape).forEach(l=>{a[l]=1});let i=q(e,a),o=L(i,Cr(r.shape,"float32"));return{x:()=>o}}},UY={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>be(e,it(zu(n)))}}},jY={kernelName:Ds,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Ae(ke(1),it(n)),e)}}},GY={kernelName:fa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=Be(r);if(r.rank===1)for(let i=0;i<a[0];++i)s=se(s,Ee(e,[i*r.shape[0]],[r.shape[0]]));else if(r.rank===2)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)s=se(s,Ee(e,[i*r.shape[0],o*r.shape[1]],[r.shape[0],r.shape[1]]));else if(r.rank===3)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)s=se(s,Ee(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2]],[r.shape[0],r.shape[1],r.shape[2]]));else if(r.rank===4)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)for(let c=0;c<a[3];++c)s=se(s,Ee(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2],c*r.shape[3]],[r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${r.rank} tensors yet.`);return s}}}},HY={kernelName:zs,gradFunc:(e,t,n)=>{let r=n,{perm:a}=r,s=Ef(a);return{x:()=>nt(e,s)}}},qY={kernelName:$o,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>Nn(e,a)}}},KY={kernelName:_u,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>XY(e,n)}}};function XY(e,t){let n=Er(t,Be(t)),r=Xs(e,n),a=va(t,ke(0,"int32")),s=r.rank-a.rank;for(let o=0;o<s;++o)a=bn(a,o+1);a=Qn(a,Cr(r.shape,"bool"));let i=Be(r);return dn(a,r,i)}var ZY={kernelName:Do,gradFunc:e=>({x:()=>Be(e)})},YY=[Ub,YK,JK,QK,eZ,tZ,nZ,rZ,aZ,sZ,iZ,oZ,cZ,pZ,fZ,mZ,AZ,yZ,gZ,xZ,wZ,_Z,vZ,bZ,NZ,SZ,TZ,EZ,CZ,RZ,gY,FZ,MZ,OZ,$Z,DZ,PZ,zZ,LZ,WZ,BZ,VZ,UZ,jZ,GZ,HZ,qZ,XZ,KZ,JZ,qb,qb,QZ,nY,sY,iY,oY,lY,uY,cY,hY,dY,pY,fY,mY,Xb,Xb,AY,yY,xY,wY,_Y,bY,vY,kY,IY,NY,SY,TY,EY,CY,RY,FY,MY,OY,$Y,DY,Kb,Kb,Zb,Zb,zY,LY,PY,WY,BY,VY,UY,jY,GY,HY,qY,KY,ZY];for(let e of YY)pg(e);var Yb={};$e(Yb,{maxNorm:()=>JY,minMaxNorm:()=>tJ,nonNeg:()=>eJ,unitNorm:()=>QY});var zm;function Ot(){return zm==null&&(zm=sf().epsilon()),zm}function pr(){return"channelsLast"}var ea=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ea.prototype)}},fr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,fr.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},Me=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Me.prototype)}},Jb=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Jb.prototype)}},nJ=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,nJ.prototype)}};function li(e,t){if(Array.isArray(e)){let n=[];for(let r=0;r<t;r++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function $r(e,t){if(!e)throw new Jb(t)}function Qb(e,t){let n=0;for(let r of e)r===t&&n++;return n}function mn(e){return e.length===1?e[0]:e}function pt(e){return Array.isArray(e)?e:[e]}function ta(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function ui(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var nr={};function Pm(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Lm(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Lm(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:Lm(r))}}}function dc(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in nr)i=nr[s];else if(i=t[s],i==null)throw new B(`Unknown ${r}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new B(`${r}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in nr?[o,l]=nr.className:i in t&&([o,l]=t[i]),o==null)throw new B(`Unknown ${r}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let c={};for(let d of Object.keys(nr))c[d]=nr[d];for(let d of Object.keys(n))c[d]=n[d];let u=s.config;u.customObjects=c;let h=Object.assign({},nr);for(let d of Object.keys(n))nr[d]=n[d];Lm(s.config);let p=l(o,s.config,n,a);return nr=Object.assign({},h),p}else{let c=Object.assign({},nr);for(let h of Object.keys(n))nr[h]=n[h];let u=new o(s.config);return nr=Object.assign({},c),u}}}function rJ(e,t){return e<t?-1:e>t?1:0}function hp(e,t){return-1*rJ(e,t)}function Ea(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function aJ(e){if(e==null)throw new B(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function ci(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new B(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Wm(e,t,n=0,r=Infinity){return $r(n>=0),$r(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function Vt(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>Vt(n,`element ${r+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${e3(e)}.`)}function e3(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>e3(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function sJ(e,t){let n=k.now(),r;return(...a)=>{let s=k.now();return s-n<t||(n=s,r=e(...a)),r}}function t3(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function Bm(e,t){return W(()=>qt(Ie(L(e,e),t,!0)))}var pc=class extends re.Serializable{getConfig(){return{}}},Vm=class extends pc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>{let t=Bm(e,this.axis),n=hn(t,0,this.maxValue);return L(e,be(n,se(Ot(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Vm.className="MaxNorm";re.registerClass(Vm);var Um=class extends pc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>be(e,se(Ot(),Bm(e,this.axis))))}getConfig(){return{axis:this.axis}}};Um.className="UnitNorm";re.registerClass(Um);var jm=class extends pc{apply(e){return Rr(e)}};jm.className="NonNeg";re.registerClass(jm);var Gm=class extends pc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>{let t=Bm(e,this.axis),n=se(L(this.rate,hn(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,be(n,se(Ot(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Gm.className="MinMaxNorm";re.registerClass(Gm);var n3={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function $t(e){return Pm(e)}function r3(e,t={}){return dc(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Dt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in n3?n3[e]:e,config:{}};return r3(t)}else return e instanceof pc?e:r3(e)}function JY(e){return new Vm(e)}function QY(e){return new Um(e)}function eJ(){return new jm}function tJ(e){return new Gm(e)}var a3={};$e(a3,{constant:()=>lJ,glorotNormal:()=>mJ,glorotUniform:()=>fJ,heNormal:()=>AJ,heUniform:()=>yJ,identity:()=>dJ,leCunNormal:()=>gJ,leCunUniform:()=>xJ,ones:()=>oJ,orthogonal:()=>wJ,randomNormal:()=>cJ,randomUniform:()=>uJ,truncatedNormal:()=>hJ,varianceScaling:()=>pJ,zeros:()=>iJ});var _J=["channelsFirst","channelsLast"],bJ=["nearest","bilinear"],vJ=["valid","same","causal"],kJ=["max","avg"],IJ=["sum","mul","concat","ave"],vl=new Map;function kt(e){ci(_J,"DataFormat",e)}function NJ(e){ci(bJ,"InterpolationFormat",e)}function Un(e){ci(vJ,"PaddingMode",e)}function s3(e){ci(kJ,"PoolMode",e)}var fc=[],i3="/";function hi(e,t){fc.push(e);try{let n=t();return fc.pop(),n}catch(n){throw fc.pop(),n}}function SJ(){return fc.length===0?"":fc.join(i3)+i3}function l3(e){if(!o3(e))throw new Error("Not a valid tensor name: '"+e+"'");return SJ()+e}function u3(e){if(!o3(e))throw new Error("Not a valid tensor name: '"+e+"'");vl.has(e)||vl.set(e,0);let t=vl.get(e);if(vl.set(e,vl.get(e)+1),t>0){let n=`${e}_${t}`;return vl.set(n,1),n}else return e}var TJ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function o3(e){return!!e.match(TJ)}function EJ(e){return e===parseInt(e.toString(),10)}function Ca(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a<n;++a)r*=e[a];return r}function c3(e){return e=Array.isArray(e)?new Float32Array(e):e,Wt(e)}function kl(e){return nl(c3(e)).dataSync()[0]}function Ra(e){return Wn(c3(e)).dataSync()[0]}function mr(e,t){if(t<e)throw new B(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let r=e;r<t;++r)n.push(r);return n}function mc(e,t){return e.asType(t)}function Ac(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function CJ(e,t){return W(()=>{if(e.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Ac(e,1);return Hm(n,[1,t,1])})}function RJ(e){let t=[Ca(e.shape)];return e.reshape(t)}function FJ(e){if(e.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ca(e.shape,1)];return e.reshape(t)}function di(e,t,n){return W(()=>{switch(e.rank){case 1:return xd(e,t,n);case 2:return Wf(e,[t,0],[n,e.shape[1]]);case 3:return wd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Gu(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Ee(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Ee(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function qm(e,t,n){return W(()=>{switch(e.rank){case 1:return xd(e,t,n);case 2:return Wf(e,[0,t],[e.shape[0],n]);case 3:return wd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Gu(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function dp(e,t,n,r){return W(()=>{switch(e.rank){case 1:return xd(e,t,n);case 2:switch(r){case 1:return di(e,t,n);case 2:return qm(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return di(e,t,n);case 2:return wd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return qm(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return di(e,t,n);case 2:return Gu(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Gu(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return qm(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${r}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Xm(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),rt(e,t)}function h3(e,t){switch(e.rank){case 1:return f5([e,t]);case 2:return Yo([e,t],0);case 3:return m5([e,t],0);case 4:return A5([e,t],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Hm(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new B(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return ba(e,t)}function pp(e,t=0,n=1,r,a){return M5(e,t,n,r,a)}function Dr(e,t,n,r){if(e.rank<2||t.rank<2)throw new Me(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new Me(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return Ia.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?Km(e.rank,r,pr()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),c=[...i,o],u=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=t.transpose(u).reshape([l,-1]);let h=[...a,...c],p=!1,d=!1;return Ia.matMul({a:e,b:t,transposeA:p,transposeB:d,bias:r?Km(e.rank,r,pr()):null,activation:n}).reshape(h)}}function d3(e,t,n){return W(()=>(Array.isArray(t)?t=Wt(t,"int32"):t=t.toInt(),Xs(e,t,n)))}function yc(e){return L(e,e)}function Km(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new B(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new B(`Unsupported input rank by biasAdd: ${t.rank}`)}function zr(e,t,n){return W(()=>(n==null&&(n=pr()),kt(n),e.add(Km(e.rank,t,n))))}function MJ(e,t=1){if(t!==1)throw new Me(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Qo(e)}function OJ(e){return W(()=>be(e,Ft(e).add(1)))}function p3(e,t,n,r){return W(()=>W5(e,t,n,r))}function $J(e){return W(()=>{let t=se(.5,L(.2,e));return hn(t,0,1)})}function gc(e,t,n=!1){return n?e():t()}var DJ=["fanIn","fanOut","fanAvg"],zJ=["normal","uniform","truncatedNormal"];function PJ(e){ci(DJ,"FanMode",e)}function LJ(e){ci(zJ,"Distribution",e)}var rr=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Zm=class extends rr{apply(e,t){return Nt(e,t)}};Zm.className="Zeros";re.registerClass(Zm);var fp=class extends rr{apply(e,t){return Cr(e,t)}};fp.className="Ones";re.registerClass(fp);var Ym=class extends rr{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return W(()=>L(ke(this.value),Cr(e,t)))}getConfig(){return{value:this.value}}};Ym.className="Constant";re.registerClass(Ym);var Jm=class extends rr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return al(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Jm.className="RandomUniform";re.registerClass(Jm);var Qm=class extends rr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`randomNormal does not support dType ${t}.`);return pp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Qm.className="RandomNormal";re.registerClass(Qm);var eA=class extends rr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`truncatedNormal does not support dType ${t}.`);return vd(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};eA.className="TruncatedNormal";re.registerClass(eA);var tA=class extends rr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return W(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,Nf(e[0]))})}getConfig(){return{gain:this.gain}}};tA.className="Identity";re.registerClass(tA);function WJ(e,t="channelsLast"){let n,r;if(kt(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Ca(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Ca(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Ca(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var An=class extends rr{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,PJ(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,LJ(this.distribution),this.seed=e.seed}apply(e,t){let n=WJ(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Me(`${this.getClassName()} does not support dType ${t}.`);return vd(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return al(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};An.className="VarianceScaling";re.registerClass(An);var mp=class extends An{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return An.className}};mp.className="GlorotUniform";re.registerClass(mp);var Ap=class extends An{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return An.className}};Ap.className="GlorotNormal";re.registerClass(Ap);var yp=class extends An{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return An.className}};yp.className="HeNormal";re.registerClass(yp);var gp=class extends An{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return An.className}};gp.className="HeUniform";re.registerClass(gp);var xp=class extends An{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return An.className}};xp.className="LeCunNormal";re.registerClass(xp);var wp=class extends An{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return An.className}};wp.className="LeCunNormal";re.registerClass(wp);var nA=class extends rr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Me("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return W(()=>{if(e.length<2)throw new Me("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=pp(n,0,1,"float32"),a=Q5.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),L(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};nA.className="Orthogonal";re.registerClass(nA);var f3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function m3(e,t={}){return dc(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function _t(e){return Pm(e)}function At(e){if(typeof e=="string"){let t=e in f3?f3[e]:e;if(t==="GlorotNormal")return new Ap;if(t==="GlorotUniform")return new mp;if(t==="HeNormal")return new yp;if(t==="HeUniform")return new gp;if(t==="LeCunNormal")return new xp;if(t==="LeCunUniform")return new wp;{let n={};return n.className=t,n.config={},m3(n)}}else return e instanceof rr?e:m3(e)}function iJ(){return new Zm}function oJ(){return new fp}function lJ(e){return new Ym(e)}function uJ(e){return new Jm(e)}function cJ(e){return new Qm(e)}function hJ(e){return new eA(e)}function dJ(e){return new tA(e)}function pJ(e){return new An(e)}function fJ(e){return new mp(e)}function mJ(e){return new Ap(e)}function AJ(e){return new yp(e)}function yJ(e){return new gp(e)}function gJ(e){return new xp(e)}function xJ(e){return new wp(e)}function wJ(e){return new nA(e)}var A3={};$e(A3,{Layer:()=>Ge,RNN:()=>Pr,RNNCell:()=>xc,activation:()=>nQ,add:()=>hQ,alphaDropout:()=>XQ,average:()=>dQ,averagePooling1d:()=>rA,averagePooling2d:()=>aA,averagePooling3d:()=>sA,avgPool1d:()=>_Q,avgPool2d:()=>vQ,avgPool3d:()=>IQ,avgPooling1d:()=>bQ,avgPooling2d:()=>kQ,avgPooling3d:()=>NQ,batchNormalization:()=>gQ,bidirectional:()=>WQ,concatenate:()=>pQ,conv1d:()=>XJ,conv2d:()=>KJ,conv2dTranspose:()=>ZJ,conv3d:()=>YJ,convLstm2d:()=>DQ,convLstm2dCell:()=>zQ,cropping2D:()=>QJ,dense:()=>rQ,depthwiseConv2d:()=>tQ,dot:()=>yQ,dropout:()=>aQ,elu:()=>VJ,embedding:()=>cQ,flatten:()=>iQ,gaussianDropout:()=>qQ,gaussianNoise:()=>HQ,globalAveragePooling1d:()=>SQ,globalAveragePooling2d:()=>TQ,globalMaxPool1d:()=>VQ,globalMaxPool2d:()=>UQ,globalMaxPooling1d:()=>g3,globalMaxPooling2d:()=>x3,gru:()=>CQ,gruCell:()=>RQ,input:()=>y3,inputLayer:()=>BJ,layerNormalization:()=>xQ,leakyReLU:()=>jJ,lstm:()=>FQ,lstmCell:()=>MQ,masking:()=>KQ,maxPool1d:()=>jQ,maxPool2d:()=>GQ,maxPooling1d:()=>w3,maxPooling2d:()=>_3,maxPooling3d:()=>EQ,maximum:()=>fQ,minimum:()=>mQ,multiply:()=>AQ,permute:()=>uQ,prelu:()=>GJ,reLU:()=>UJ,repeatVector:()=>oQ,reshape:()=>lQ,rnn:()=>PQ,separableConv2d:()=>JJ,simpleRNN:()=>OQ,simpleRNNCell:()=>$Q,softmax:()=>HJ,spatialDropout1d:()=>sQ,stackedRNNCells:()=>LQ,thresholdedReLU:()=>qJ,timeDistributed:()=>BQ,upSampling2d:()=>eQ,zeroPadding2d:()=>wQ});var ZQ=0;function b3(){return ZQ++}var _p={};function bp(e=""){return e in _p||(_p[e]=0),_p[e]+=1,e+_p[e].toString()}function iA(e){return Array.isArray(e)&&Array.isArray(e[0])}function vp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function De(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new B(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ct(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new B(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function kp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var v3="Variable",k3=class{constructor(e,t="float32",n=v3,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=b3(),n=n==null?v3:n,this.originalName=l3(n),this.name=u3(this.originalName),this.trainable_=r,this.constraint=a,this.val=$5(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),YQ(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function YQ(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function oA(e){return e.map(t=>t.read())}function lA(e){e.forEach(t=>{t[0].write(t[1])})}var Ut=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ar=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=b3(),s!=null&&(this.originalName=l3(s),this.name=u3(this.originalName)),this.rank=t.length}},JQ=0,Ip=class{constructor(e,t){this.callArgs=t,this.id=JQ++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},QQ=0,Ge=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=QQ++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ta(n)+"_"+bp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new fr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return mn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return mn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ea(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ea(`Layer ${this.name} is not connected, no input to return.`);return mn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ea(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ea(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return mn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=pt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=pt(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let r=e[n],a=t[n];if(a==null)continue;let s=r.rank;if(a.ndim!=null&&s!==a.ndim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${a.ndim}, found ndim=${s}`);if(a.maxNDim!=null&&s>a.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s<a.minNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${a.minNDim}, found ndim=${s}.`);if(a.dtype!=null&&r.dtype!==a.dtype)throw new B(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${a.dtype}, found dtype=${r.dtype}.`);if(a.axes){let i=r.shape;for(let o in a.axes){let l=Number(o),c=a.axes[o],u=l>=0?i[l]:i[i.length+l];if(c!=null&&[c,null].indexOf(u)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${c} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i<a.shape.length;++i){let o=a.shape[i],l=r.shape[i];if(o!=null&&l!=null&&o!==l)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected shape=${a.shape}, found shape=${r.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=pt(e),r=!0;for(let s of n)if(!(s instanceof Ar)){r=!1;break}let a=!0;for(let s of n)if(s instanceof Ar){a=!1;break}if(r===a)throw new B("Arguments to apply() must be all SymbolicTensors or all Tensors");return hi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of pt(e))s.push(i.shape);this.build(mn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=pt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=mn(o),this.activityRegularizer!=null)throw new Me("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=eee(e),i=this.computeOutputShape(s),o,l=tee(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((c,u)=>new Ar(l,c,this,pt(e),t,this.name,u)):o=new Ar(l,i,this,pt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Me("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ea(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ea(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new fr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return kp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return oA(e?this.trainableWeights:this.weights)}setWeights(e){W(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=oA(t);for(let a=0;a<r.length;++a){let s=r[a],i=t[a],o=e[a];if(!k.arraysEqual(s.shape,o.shape))throw new B(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}lA(n)})}addWeight(e,t,n,r,a,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new B(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(r=At("zeros"));let o=r.apply(t,n),l=new k3(o,n,e,s,i);return o.dispose(),a!=null&&this.addLoss(()=>a.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=pt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=pt(e);t=pt(t),n=pt(n),r=pt(r),a=vp(a),s=vp(s);let l=[],c=[],u=[];for(let h of o)l.push(h.sourceLayer),c.push(h.nodeIndex),u.push(h.tensorIndex);new Ip({outboundLayer:this,inboundLayers:l,nodeIndices:c,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function eee(e){e=pt(e);let t=[];for(let n of e)t.push(n.shape);return mn(t)}function tee(e){return"float32"}function I3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s<r.inboundLayers.length;s++){let i=r.inputTensors[s],o=r.inboundLayers[s],l=r.nodeIndices[s],c=I3(i,o,l);for(let u of c)a.indexOf(u)===-1&&a.push(u)}return a}}}var Il=class extends Ge{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:bp("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new B("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new B("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new B("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let r=new Ar(this.dtype,this.batchInputShape,this,[],{},this.name);r.nodeIndex=0,r.tensorIndex=0,new Ip({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[r],outputTensors:[r],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new B(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Il.className="InputLayer";re.registerClass(Il);function N3(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new B("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Il({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Fa(e){if(e==null)return;let t=[],n=[],r=[];for(let a in e){let s=e[a];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(a),r.push(i)}}if(t.length>0){let a=await Promise.all(t);for(let s=0;s<a.length;++s)e[n[s]]=a[s][0];Ne(r)}}function S3(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var T3;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(T3||(T3={}));var nee=125,Nl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},E3=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},ree=class extends Nl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let r in t){let a=t[r];if(typeof a=="number")this.totals.hasOwnProperty(r)||(this.totals[r]=0),this.totals[r]=this.totals[r]+a*n;else{let s;r in this.totals?s=this.totals[r]:this.totals[r]=0;let i=W(()=>se(this.totals[r],L(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:W(()=>{let r=L(be(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Lt(t[n])}))}},C3=class extends Nl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(a),n.push(i)}}let r=await Promise.all(e);for(let a=0;a<r.length;++a)this.history[t[a]][n[a]].dispose(),this.history[t[a]][n[a]]=r[a][0]}},R3=class extends Nl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=nee),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");k.isNumber(this.yieldEvery)&&(this.maybeWait=sJ(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let r=[];this.yield!=null&&(await Fa(n),r.push(this.yield(e,t,n))),r.push(Dd()),await Promise.all(r)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Fa(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Fa(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(Dd()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Fa(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Fa(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(Dd()):k.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Fa(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Fa(e),await this.trainEnd(e))}};function F3(e,t){return e==null&&(e={}),e instanceof Nl?[e]:Array.isArray(e)&&e[0]instanceof Nl?e:pt(e).map(n=>new R3(n,t))}var ar=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ar.checkForDuplicate(t),ar.constructors[e]==null&&(ar.constructors[e]=[]),ar.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ar.constructors)ar.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){ar.constructors={}}static createCallbacks(e){let t=[];for(let n in ar.constructors){let r=+n;e>=r&&t.push(...ar.constructors[r])}return t.map(n=>new n)}};ar.constructors={};function M3(e,t,n,r,a,s,i,o,l){let c=new C3,u=[new ree,...ar.createCallbacks(t)];e!=null&&u.push(...e),u.push(c);let h=new E3(u);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:c}}function yr(e,t={},n=!1){return dc(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Np(e,t){return W(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Ie(yc(e),t,!0),r=Pu(n.shape,Ot()),a=qt(Er(n,r));return be(e,a)})}function pi(e,t){return W(()=>wt(yc(Ae(t,e)),-1))}function Sp(e,t){return W(()=>wt(Ft(Ae(t,e)),-1))}function Sl(e,t){return W(()=>{let n=Ae(e,t),r=hn(Ft(e),Ot(),Number.MAX_VALUE),a=Ft(be(n,r));return L(100,wt(a,-1))})}function aee(e,t){return W(()=>{let n=hn(t,Ot(),Number.MAX_VALUE),r=vn(se(1,n)),a=hn(e,Ot(),Number.MAX_VALUE),s=vn(se(1,a));return wt(yc(Ae(r,s)),-1)})}function see(e,t){return W(()=>{let n=Er(0,Ae(1,L(e,t)));return wt(yc(n),-1)})}function iee(e,t){return W(()=>{let n=Er(0,Ae(1,L(e,t)));return wt(n,-1)})}function oee(e,t){return W(()=>{let n=Ie(L(e,t),-1),r=Wn(L(Ae(1,e),t),-1);return Er(0,se(1,Ae(r,n)))})}function lee(e,t){return W(()=>{let n=Math.log(2),r=Ae(t,e),a=Ae(se(r,tl(L(-2,r))),n);return wt(a,-1)})}function wc(e,t,n=!1){return W(()=>{if(n)t=Hu(t);else{let r=Ie(t,t.shape.length-1,!0);t=be(t,r)}return t=hn(t,Ot(),1-Ot()),xt(Ie(L(e.toFloat(),vn(t)),t.shape.length-1))})}function Tp(e,t,n=!1){return W(()=>{let r=el(RJ(e)).toInt();t=hn(t,Ot(),1-Ot());let a=t.shape,s=jo(r,a[a.length-1]).reshape(a);return wc(s,t,n)})}function uee(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return W(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function Ep(e,t){return W(()=>{let n;return n=hn(t,Ot(),1-Ot()),n=vn(be(n,Ae(1,n))),wt(uee(e,n),-1)})}function cee(e,t){return W(()=>{let n=hn(e,Ot(),1),r=hn(t,Ot(),1);return Ie(L(e,vn(be(n,r))),-1)})}function hee(e,t){return W(()=>{let n=vn(se(Ot(),t));return wt(Ae(t,L(e,n)),-1)})}function uA(e,t){return W(()=>{let n=Np(e,-1),r=Np(t,-1),a=L(n,r);return xt(Ie(a,-1))})}var Cp={meanSquaredError:pi,meanAbsoluteError:Sp,meanAbsolutePercentageError:Sl,meanSquaredLogarithmicError:aee,squaredHinge:see,hinge:iee,categoricalHinge:oee,logcosh:lee,categoricalCrossentropy:wc,sparseCategoricalCrossentropy:Tp,binaryCrossentropy:Ep,kullbackLeiblerDivergence:cee,poisson:hee,cosineProximity:uA};function cA(e){if(typeof e=="string"){if(e in Cp)return Cp[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(t)}else return e}function hA(e,t){return W(()=>{let n=L(.5,kn(t)),r=mc(Jn(t,n),e.dtype);return wt(_a(e,r),-1)})}function dA(e,t){return W(()=>mc(_a(Fu(e,-1),Fu(t,-1)),"float32"))}function O3(e,t){return W(()=>Qn(e.equal(1),t.equal(1)).sum().cast("float32"))}function dee(e,t){return W(()=>Qn(e.equal(1),t.equal(0)).sum().cast("float32"))}function pee(e,t){return W(()=>Qn(e.equal(0),t.equal(1)).sum().cast("float32"))}function $3(e,t){return W(()=>{let n=O3(e,t),r=pee(e,t),a=n.add(r);return dn(Jn(a,0),n.div(a),0).cast("float32")})}function fee(e,t){return W(()=>{let n=O3(e,t),r=dee(e,t),a=n.add(r);return dn(Jn(a,0),n.div(a),0).cast("float32")})}function D3(e,t){return Ep(e,t)}function z3(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),_a(e,t).asType("float32")}var mee=pi,Aee=pi,yee=Sp,gee=Sp,xee=Sl,wee=Sl,pA=wc,_ee=uA,P3=Tp,Rp={binaryAccuracy:hA,categoricalAccuracy:dA,precision:$3,categoricalCrossentropy:pA,sparseCategoricalCrossentropy:P3,mse:mee,MSE:Aee,mae:yee,MAE:gee,mape:xee,MAPE:wee,cosine:_ee};function bee(e){if(typeof e=="string"&&e in Rp)return Rp[e];if(typeof e!="string"&&e!=null)return e;throw new B(`Unknown metric ${e}`)}function Fp(e){if($r(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Cp))if(Cp[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Rp))if(Rp[n]===e){t=n;break}return t!==void 0?t:e.name}}function vee(e){let t={Adagrad:()=>Qs.adagrad(.01),Adadelta:()=>Qs.adadelta(1,.95,Ot()),Adam:()=>Qs.adam(.001,.9,.999,Ot()),Adamax:()=>Qs.adamax(.002,.9,.999,Ot(),0),RMSProp:()=>Qs.rmsprop(.001,.9,0,Ot()),SGD:()=>Qs.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new B(`Unknown Optimizer ${e}`)}var L3=1*1024*1024;function W3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!fA(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>L3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${L3}.`)}}function fA(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!fA(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!fA(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Tee(e,t,n,r=console.log){let a=Iee(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!a){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}r("_".repeat(t)),Mp(s,n,r),r("=".repeat(t));let o=e.layers;for(let u=0;u<o.length;++u)a?Nee(o[u],n,r):See(o[u],n,i,r),r((u===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=kee(e),c=kp(e.nonTrainableWeights);r(`Total params: ${l+c}`),r(`Trainable params: ${l}`),r(`Non-trainable params: ${c}`),r("_".repeat(t))}function kee(e){let t;return e.collectedTrainableWeights!=null?t=kp(e.collectedTrainableWeights):t=kp(e.trainableWeights),t}function Iee(e){let t=!0,n=[],r=[];for(let a in e.nodesByDepth)n.push(e.nodesByDepth[a]);for(let a of n){if(a.length>1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Mp(e,t,n=console.log){let r="";for(let a=0;a<e.length;++a)a>0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function Nee(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];Mp(i,t,n)}function See(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(u){a="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let h=0;h<u.inboundLayers.length;++h){let p=u.inboundLayers[h].name,d=u.nodeIndices[h],f=u.tensorIndices[h];s.push(`${p}[${d}][${f}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],c=[`${i} (${o})`,a,e.countParams().toString(),l];Mp(c,t,r);for(let u=1;u<s.length;++u)Mp(["","","",s[u]],t,r)}function B3(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function _c(e,t){if(e===null)return null;if(typeof e=="string")return ui(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];B3(t,a,s)?n.push(s):n.push(_c(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r];if(r==="name"&&typeof a=="string")n[r]=a;else{let s=ui(r);n[s]=_c(a,s)}}return n}}function mA(e,t){if(e==null)return null;if(typeof e=="string")return ta(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];B3(t,a,s)?n.push(s):n.push(mA(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r],s=ta(r);(r==="name"||r==="className")&&typeof a=="string"?n[s]=a:n[s]=mA(a,r)}return n}}var AA="3.0.0";function Eee(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return me(t,e.dtype)}catch(n){throw new B(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var fi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof fi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Eee(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new B(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Ar){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Ar){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ne(this.id2Mask)}},yA={},V3={};function bc(e,t,n,r){let a=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(f=>f.name),l=[],c=t.names();for(let f of o)c.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),h,p;if(yA[u]==null){let f=Cee(i,t);h=f.sorted,p=f.recipientCounts,yA[u]=h,V3[u]=p}h=yA[u],p={},a||Object.assign(p,V3[u]);let d=new fi(t);for(let f=0;f<h.length;++f){if(r!=null){let E=Zh().numTensors;E>r.maxNumTensors&&(r.maxNumTensors=E),E<r.minNumTensors&&(r.minNumTensors=E)}let m=h[f],A=m.sourceLayer;if(A instanceof Il)continue;let y=[],g=[],_=[],x=!1;for(let E of m.inputs){let M=d.getValue(E),$=d.getMask(E);y.push(M),g.push($),$!=null&&(x=!0),a||(p[E.name]--,p[E.name]===0&&!t.hasKey(E)&&o.indexOf(E.name)===-1&&!M.isDisposed&&E.sourceLayer.stateful!==!0&&_.push(M))}x&&(n=n||{},n.mask=g[0]);let w=pt(A.apply(y,n)),b=null;A.supportsMasking&&(b=A.computeMask(y,g));let N=Ree(m),T=Array.isArray(N)?N:[N];for(let E=0;E<T.length;++E){d.hasKey(T[E])||d.add(T[E],w[E],Array.isArray(b)?b[0]:b);let M=o.indexOf(T[E].name);M!==-1&&(l[M]=w[E])}a||Ne(_)}return d.disposeMasks(),s?l:l[0]}function Cee(e,t){k.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=U3(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=U3(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(c=>r[l].add(c))}}return{sorted:n,recipientCounts:Fee(r)}}function Fee(e){let t={};for(let n in e)t[n]=e[n].size;return t}function U3(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let c of o.inputs)a[c.name]==null&&(a[c.name]=new Set),a[c.name].add(o.name),!n.has(c.name)&&s.push(c)}}return{sorted:r,recipientMap:a}}function Ree(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;r<e.sourceLayer.inboundNodes.length;++r)for(let a of e.sourceLayer.inboundNodes[r].outputTensors)if(a.id===e.id){n=r;break}t=e.sourceLayer.getOutputAt(n)}return t}var Lr=class extends Ge{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=bp(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Ea(this.inputs).length!==this.inputs.length)throw new B(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Ea(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,_=y.nodeIndex,x=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(_),this.outputLayersTensorIndices.push(x)}for(let y of this.inputs){let g=y.sourceLayer,_=y.nodeIndex,x=y.tensorIndex;$r(_===0,"input layer has >1 nodes"),$r(x===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(_),this.inputLayersTensorIndices.push(x)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let g=this.inputLayers[y];if(!(g instanceof Il))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${g.getClassName()}.`);this.inputNames.push(g.name),this.feedInputShapes.push(g.batchInputShape),this.feedInputNames.push(g.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,_,x,w,b)=>{(x==null||w==null||b==null)&&(x=y.sourceLayer,w=y.nodeIndex,b=y.tensorIndex);let N=x.inboundNodes[w];if(_.indexOf(N)!==-1)throw new fr(`The tensor ${y.name} at layer "${x.name}" is part of a cycle.`);if(g.indexOf(N)!==-1)return;this.containerNodes.add(Lr.nodeKey(x,w)),x.id in s||(s[x.id]=Object.keys(s).length),_.indexOf(N)===-1&&_.push(N);let T=N.inboundLayers.length;for(let E=0;E<T;E++){let M=N.inputTensors[E],$=N.inboundLayers[E],P=N.nodeIndices[E],V=N.tensorIndices[E];o(M,g,_,$,P,V)}for(g.push(N);_.indexOf(N)>=0;)_.splice(_.indexOf(N),1);i.push(N)},l=[],c=[];for(let y of this.outputs)o(y,l,c);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],_=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,_),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let x=0;x<y.inboundLayers.length;x++){let w=y.inboundLayers[x],b=y.nodeIndices[x],N=w.inboundNodes[b],T=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(g+1,T),n[N.id]=N}}let h={};for(let y in t){let g=t[y];g in h||(h[g]=[]),h[g].push(n[y])}let p={};for(let y in r){let g=r[y];g in p||(p[g]=[]),p[g].push(a[y])}let d=Object.keys(p).map(y=>parseInt(y,10)).sort(hp);this.layers=[];for(let y of d){let g=p[y];g.sort((_,x)=>{let w=s[_.id],b=s[x.id];return w<b?-1:w>b?1:0});for(let _ of g)_ instanceof Lr&&this.internalContainerRefs.push(_),this.layers.push(_)}this.layersByDepth=p,d=Object.keys(h).map(y=>parseInt(y,10)).sort(hp);let f=this.inputs.slice(),m=[];for(let y of d)for(let g of h[y]){let _=g.outboundLayer;if(_!=null){for(let x of g.inputTensors)if(f.indexOf(x)===-1)throw new fr(`Graph disconnected: cannot obtain value for tensor ${x} at layer "${_.name}". The following previous layers were accessed without issue: ${m}`);for(let x of g.outputTensors)f.push(x);m.push(_.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(_=>_===y).length;if(g!==1)throw new fr(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Ip({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new B(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new B(`${s.length} of ${r} weights are not set: ${s}`)}lA(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${AA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=mA(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return W(()=>{e=pt(e);let n=new fi;for(let r=0;r<this.inputs.length;++r)n.add(this.inputs[r],e[r]);return bc(this.outputs,n,t)})}computeMask(e,t){return W(()=>{e=pt(e);let n;return t==null?n=li(null,e.length):n=pt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=vp(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],c=o.name+"_0_0";n[c]=l}let r=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(hp);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let c=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(c.id)!==-1)continue;let u=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],A=l.nodeIndices[f],y=l.tensorIndices[f],g=`${m.name}_${A}_${y}`,_=n[g];u.push(_)}let h=c.computeOutputShape(mn(u)),p=vp(h),d=c.inboundNodes.indexOf(l);for(let f=0;f<p.length;f++){let m=`${c.name}_${d}_${f}`;n[m]=p[f]}}}let a=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],c=this.outputLayersTensorIndices[i],u=`${o.name}_${l}_${c}`;s.push(u)}for(let i=0;i<s.length;i++){let o=s[i];$r(o in n),a.push(n[o])}return mn(a)}runInternalGraph(e,t){t==null&&(t=li(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],c=e[o],u=t[o];n[l.id]=[c,u]}let r=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(hp);for(let o of r){let l=this.nodesByDepth[o];for(let c of l){let u=c.outboundLayer,h=c.inputTensors,p=c.outputTensors,d=new Array;for(let f of h)f.id in n&&d.push(n[f.id]);if(d.length===h.length){let f={},m,A,y,g;if(c.callArgs!=null&&(f=c.callArgs),d.length===1){let[_,x]=d[0];f.mask==null&&(f.mask=x),y=pt(u.call(_,f)),g=pt(u.computeMask(_,x)),m=[_],A=[x]}else m=d.map(_=>_[0]),A=d.map(_=>_[1]),f.mask==null&&(f.mask=A),y=pt(u.call(m,f)),g=pt(u.computeMask(m,A));if(u.activityRegularizer)throw new Me("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let _=0;_<p.length;++_){let x=p[_],w=y[_],b=g[_];n[x.id]=[w,b]}}}}let a=[],s=[],i=[];for(let o of this.outputs){$r(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,c]=n[o.id];i.push(l.shape),a.push(l),s.push(c)}return[a,s,i]}buildNodeConversionMap(e){let t={},n;for(let r of this.layers){n=r instanceof Lr?1:0;for(let a=0;a<r.inboundNodes.length;a++){let s=Lr.nodeKey(r,a);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new B(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new B("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new B(`No such layer: ${e}`)}calculateLosses(){return W(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let r=Lr.nodeKey(t,n);this.containerNodes.has(r)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let u=0;u<s.inboundNodes.length;u++){let h=s.inboundNodes[u],p=Lr.nodeKey(s,u),d={};if(this.containerNodes.has(p)){if(h.callArgs)try{JSON.stringify(h.callArgs),d=h.callArgs}catch(f){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),d={}}if(h.inboundLayers.length>0){let f=[];for(let m=0;m<h.inboundLayers.length;m++){let A=h.inboundLayers[m],y=h.nodeIndices[m],g=h.tensorIndices[m],_=Lr.nodeKey(A,y),x=t[_];x==null&&(x=0),f.push([A.name,x,g,d])}l.push(f)}}}let c={};c.name=s.name,c.className=i,c.config=o,c.inboundNodes=l,n.push(c)}e.layers=n;let r=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Lr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.inputLayersTensorIndices[s];r.push([i.name,c,u])}e.inputLayers=r;let a=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Lr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let c=t[l];c==null&&(c=0);let u=this.outputLayersTensorIndices[s];a.push([i.name,c,u])}return e.outputLayers=a,e}static fromConfig(e,t,n={},r=!1){let a={},s={};function i(m,A){m.name in s?s[m.name].push(A):s[m.name]=[A]}function o(m,A){let y=[],g;for(let _ of A){let x=_[0],w=_[1],b=_[2];if(g=_[3]==null?{}:_[3],!(x in a)){i(m,A);return}let N=a[x];if(N.inboundNodes.length<=w){i(m,A);return}let T=N.inboundNodes[w];y.push(T.outputTensors[b])}y.length>0&&m.apply(mn(y),g)}function l(m){let A=m.name,y=yr(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,m.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let c=t.name,u=t.layers;for(let m of u)l(m);for(;!aJ(s);)for(let m of u){let A=a[m.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],p=[],d=t.inputLayers;for(let m of d){let A=m[0],y=m[1],g=m[2];$r(A in a);let _=a[A].inboundNodes[y].outputTensors;h.push(_[g])}let f=t.outputLayers;for(let m of f){let A=m[0],y=m[1],g=m[2];$r(A in a);let _=a[A].inboundNodes[y].outputTensors;p.push(_[g])}return new e({inputs:h,outputs:p,name:c})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){W(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Mee(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function j3(e,t){return Mee(e,t,"classWeight")}async function G3(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=W(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());Ne(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Wt(i,"float32")}else return null}function Oee(e,t){return L(e,t)}var $ee=32;function q3(e,t){let n,r,a=t;n=a.xs,r=a.ys,k.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=H3("input",e.inputNames,n),i=H3("output",e.outputNames,r),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)k.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)k.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function H3(e,t,n){if(n instanceof Xe)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new B(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function Dee(e){if(e.length===3)throw new Me("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Pee(e,t,n){let r=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(X3(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Dee(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),c;a?c=l.slice().concat(l.map(A=>"val_"+A)):c=l.slice();let u=F3(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:p,history:d}=M3(u,h,n.epochs,null,null,zee(t,n),null,a,c);p.setModel(e),e.history=d,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let A={};await p.onEpochBegin(f);let y=0,g=0;for(r||(m=await t.iterator());r?y<n.batchesPerEpoch:!0;){let _=await m.next();if(r&&_.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(_.value!=null){let{xs:x,ys:w}=q3(e,_.value),b={};b.batch=g,b.size=x[0].shape[0],await p.onBatchBegin(g,b);let N=[];if(n.classWeight!=null){let M=j3(n.classWeight,e.outputNames);for(let $=0;$<M.length;++$)N.push(await G3(w[$],null,M[$]))}let T=x.concat(w).concat(N),E=o(T);Ne(T);for(let M=0;M<l.length;++M){let $=l[M],P=E[M];b[$]=P,Lt(P)}await p.onBatchEnd(g,b),S3(b),g++,y++}if(r?y>=n.batchesPerEpoch:_.done){if(a){let x;X3(n.validationData)?x=pt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):x=pt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?$ee:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)A[`val_${e.metricsNames[w]}`]=x[w]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,A),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function zee(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function X3(e){return typeof e.iterator=="function"}function Lee(e){return typeof e.next=="function"}async function Wee(e,t,n){n=n||{};let r=n.batches!=null,a=e.testFunction,s=[];if(n.verbose>0)throw new Me("Verbose mode is not implemented yet.");k.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=Lee(t)?t:await t.iterator(),o=0,l=0;for(;r?l<n.batches:!0;){let c=await i.next();if(s=W(()=>{if(c.value){let{xs:u,ys:h}=q3(e,c.value),p=u.concat(h),d=W(()=>a(p));if(Ne(p),l===0)for(let m=0;m<d.length;++m)s.push(ke(0));let f=p[0].shape[0];for(let m=0;m<d.length;++m){let A=d[m],y=s[m];s[m]=W(()=>se(s[m],L(f,A))),l>0&&Ne(y)}Ne(d),o+=f,++l}return s}),c.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let c=0;c<s.length;++c){let u=s[c];s[c]=be(s[c],o),Ne(u)}return mn(s)}function gA(e){k.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function vc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>di(r,t,n-t)):di(e,t,n-t)}function xA(e,t){return W(()=>e==null?null:Array.isArray(e)?e.map(n=>xA(n,t)):d3(e,t.dtype==="int32"?t:t.toInt()))}function wA(e,t){let n=[],r=0,a=null;for(;r<e;)a=r+t,a>=e&&(a=e),n.push([r,a]),r=a;return n}async function Bee(e,t,n,r,a,s,i,o,l,c,u,h,p,d,f){a==null&&(a=32),s==null&&(s=1),u==null&&(u=!0),p==null&&(p=0);let m=!1;if(l!=null&&c!=null&&(m=!0),f!=null&&(m=!0,d==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,d,"steps_per_epoch"),y;A!=null&&(y=mr(0,A)),i==null&&(i=1);let{callbackList:g,history:_}=M3(o,i,s,p,A,d,a,m,h);g.setModel(e),e.history=_,await g.onTrainBegin(),e.stopTraining_=!1;for(let x=p;x<s;++x){await g.onEpochBegin(x);let w={};if(d!=null)throw new Me("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Me("batch shuffling is not implemneted yet");u&&k.shuffle(y);let b=Wt(y),N=wA(A,a);for(let T=0;T<N.length;++T){let E={};if(await g.onBatchBegin(T,E),W(()=>{let M=N[T][0],$=N[T][1],P=di(b,M,$-M);E.batch=T,E.size=$-M;let V=xA(n,P),H=t(V);for(let U=0;U<r.length;++U){let K=r[U],X=H[U];E[K]=X,Lt(X)}if(T===N.length-1&&m){let U=e.testLoop(l,c,a);for(let K=0;K<r.length;++K){let X=r[K],ee=U[K];Lt(ee),w["val_"+X]=ee}}}),await g.onBatchEnd(T,E),S3(E),e.stopTraining_)break}b.dispose()}if(await g.onEpochEnd(x,w),e.stopTraining_)break}return await g.onTrainEnd(),await e.history.syncData(),e.history}async function Vee(e,t,n,r={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let a,s,i,o,l,c,u;try{let h=r.batchSize==null?32:r.batchSize;gA(h);let p=!1,d=await e.standardizeUserData(t,n,r.sampleWeight,r.classWeight,p,h);a=d[0],s=d[1],u=d[2];let f=!1,m;if(r.validationData!=null&&r.validationData.length>0){if(f=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new Me("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let b=!0,N=await e.standardizeUserData(i,o,null,null,b,h);l=N[0],c=N[1],m=l.concat(c)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let b=Math.floor(a[0].shape[0]*(1-r.validationSplit)),N=a[0].shape[0];l=vc(a,b,N),a=vc(a,0,b),c=vc(s,b,N),s=vc(s,0,b),m=l.concat(c)}else r.validationSteps!=null&&(f=!0);let A=a.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),_,x;f?(e.makeTestFunction(),_=e.testFunction,x=g.slice().concat(g.map(b=>"val_"+b))):(_=null,m=[],x=g.slice());let w=F3(r.callbacks,r.yieldEvery);return await Bee(e,y,A,g,h,r.epochs,r.verbose,w,_,m,r.shuffle,x,r.initialEpoch,null,null)}finally{e.isTraining=!1,mi(a,t),mi(s,n),mi(l,i),mi(c,o),u!=null&&Ne(u)}}function K3(e){let t=[];e instanceof Xe&&(e=[e]);for(let n=0;n<e.length;++n){let r=e[n];if(r.rank===1)t.push(Ac(r,1));else{if(r.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(r)}}return t}function mi(e,t){if(e==null)return;let n=[];if(t instanceof Xe)n.push(t.id);else if(Array.isArray(t))t.forEach(a=>n.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof Xe)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function Uee(e){return e instanceof Xe}function _A(e){return Array.isArray(e)}function Z3(e){return!Uee(e)&&!_A(e)}function Y3(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(_A(e)&&e.length>0)i=!0;else if(Z3(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new B(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(Z3(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new B(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(_A(e)){if(e=e,e.length!==t.length)throw new B(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new B(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=K3(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u>=0&&c!==u)throw new B(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function jee(e,t,n){let r=Ea(e.map(s=>s.shape[0]));r.sort();let a=Ea(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!k.arraysEqual(r,a))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function Gee(e,t,n){let r=[pi,Ep,wc];for(let a=0;a<e.length;++a){let s=e[a],i=t[a],o=n[a];if(i!=null){if(i===wc&&s.shape[s.shape.length-1]===1)throw new B(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(r.indexOf(i)!==-1){let l=s.shape.slice(1),c=o.slice(1);for(let u=0;u<l.length;++u){let h=l[u],p=c[u];if(p!=null&&h!==p)throw new B(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function J3(e,t,n,r=!0,a=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new B(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new B(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let c=o.shape[l],u=n[i][l];if(u!=null&&u!==c)throw new B(`Error when checking ${a}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function Hee(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var qee="layers-model",na=class extends Lr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Tee(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=vee(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Jr))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new B(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(cA(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>cA(s))}else{let s=cA(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],hi("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=Hee(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};hi("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=r[s];(o=>{let l="",c,u,h;for(let p of o){if(typeof p=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(p)!==-1){let f=this.internalOutputShapes[s];f[f.length-1]===1||this.lossFunctions[s]===Ep?["accuracy","acc"].indexOf(p)!==-1?u=hA:["crossentropy","ce"].indexOf(p)!==-1&&(u=D3):this.lossFunctions[s]===Tp?["accuracy","acc"].indexOf(p)!==-1?u=z3:["crossentropy","ce"].indexOf(p)!==-1&&(u=P3):["accuracy","acc"].indexOf(p)!==-1?u=dA:["crossentropy","ce"].indexOf(p)!==-1&&(u=pA);let m;["accuracy","acc"].indexOf(p)!==-1?m="acc":["crossentropy","ce"].indexOf(p)!==-1&&(m="ce"),h=u,c=l+m}else h=bee(p),c=l+Fp(p);let d;hi(c,()=>{d=h}),a(s,c,d)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;gA(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return mn(l)}finally{mi(s[0],e),mi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Wee(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new B(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new fi;if(e instanceof Xe&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new B(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=bc(a,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=li(null,e.length),n=e.length;for(let r of this.layers){let a=Array.isArray(r.output)?r.output:[r.output],s=a.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=a[o],n--),n===0)break}if(n===0)break}if(n>0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return W(()=>{let r=this.checkNumSamples(e);if(n)throw new Me("Verbose predictLoop() is not implemented yet.");let a=wA(r,t),s=this.outputs.map(i=>[]);for(let i=0;i<a.length;++i)W(()=>{let o=a[i][0],l=a[i][1],c=vc(e,o,l),u=[];if(Array.isArray(c))for(let p=0;p<c.length;++p)u.push({key:this.inputs[p],value:c[p]});else u.push({key:this.inputs[0],value:c});let h=new fi(u);return bc(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return mn(s.map(i=>rt(i,0)))})}predict(e,t={}){let n=K3(e);J3(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return gA(r),this.predictLoop(n,r)}finally{mi(n,e)}}predictOnBatch(e){J3(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new fr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Tp?a.push(i.slice(0,i.length-1).concat([1])):a.push(i)}if(e=Y3(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=Y3(t,this.feedOutputNames,a,!1,"target"),jee(e,t,null),Gee(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&r!=null&&r>0&&e[0].shape[0]%r!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let c=j3(r,this.outputNames);l=[];for(let u=0;u<c.length;++u)l.push(await G3(o[u],null,c[u]))}return[i,o,l]}testLoop(e,t,n,r=0,a){return W(()=>{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new Me("Verbose mode is not implemented yet.");if(a!=null)throw new Me("steps mode in testLoop() is not implemented yet");{let o=wA(s,n),l=Wt(mr(0,s));for(let c=0;c<o.length;++c){let u=o[c][0],h=o[c][1],p=di(l,u,h-u),d=xA(t,p),f=e(d);if(c===0)for(let m=0;m<f.length;++m)i.push(ke(0));for(let m=0;m<f.length;++m){let A=f[m];i[m]=se(i[m],L(h-u,A))}}for(let c=0;c<i.length;++c)i[c]=be(i[c],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let r=e[n],a=r;Qb(e,r)>1&&(a+=`_${Qb(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let c=[];for(let d=0;d<this.inputs.length;++d)c.push({key:this.inputs[d],value:n[d]});let u=new fi(c),h=bc(this.outputs,u,{training:!0}),p;for(let d=0;d<this.lossFunctions.length;++d){let f=this.lossFunctions[d](r[d],h[d]);a[d]!=null&&(f=Oee(f,a[d]));let m=wt(f);t.push(m),d===0?p=f:p=se(p,f)}for(let d=0;d<this.metricsTensors.length;++d){let f;if(this.outputs.length>1&&d<this.outputs.length)f=t[d];else{let m=this.metricsTensors[d][0],A=this.metricsTensors[d][1];f=wt(m(r[A],h[A]))}Lt(f),s.push(f)}return p=wt(p),this.calculateLosses().forEach(d=>{p=se(p,d)}),p},o=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>W(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:r[l]});let i=new fi(s),o=bc(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let c=this.lossFunctions[l],u=wt(c(a[l],o[l]));l===0?n=u:n=se(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let c=this.metricsTensors[l][0],u=this.metricsTensors[l][1],h=wt(c(a[u],o[u]));t.push(h)}return t})}async fit(e,t,n={}){return Vee(this,e,t,n)}async fitDataset(e,t){return Pee(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),r=n[0],a=n[1],s=this.makeTrainFunction()(r.concat(a)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Ne(s),mn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,r=n?this.trainableWeights:this.weights,a=this.getWeights(n);for(let s=0;s<r.length;++s)n&&!r[s].trainable||t.push({name:r[s].originalName,tensor:a[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Zh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Zh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ta(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ta(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=ta(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ta(Fp(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ta(Fp(e)));{let e={};for(let t in this.metrics)e[t]=ta(Fp(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=_c(e.optimizer_config),n=yr(t),r;if(typeof e.loss=="string")r=ui(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>ui(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=ui(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>ui(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=ui(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=cn.getSaveHandlers(e);if(i.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new B(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await cn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:qee,generatedBy:`TensorFlow.js tfjs-layers v${AA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await cn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=cn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;W3(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){W3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};na.className="Model";re.registerClass(na);var Q3=class extends na{};Q3.className="Functional";re.registerClass(Q3);async function Xee(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=_c(n),a=yr(r,t);if(e.weightsManifest!=null){let s=await cn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),Ne(s)}return a}async function Zee(e,t){if(t==null&&(t={}),typeof e=="string"){let n=cn.getLoadHandlers(e,t);if(n.length===0)n.push(cn.browserHTTPRequest(e,t));else if(n.length>1)throw new B(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Kee(e,void 0,t)}async function Kee(e,t,n){if(n==null&&(n={}),e.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=yr(_c(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:c,optimizerWeights:u}=Yee(r.weightData,r.weightSpecs);o.loadWeights(c,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),Ne(c),Ne(u.map(h=>h.tensor))}return o}function Yee(e,t){let n=cn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Tl=class extends na{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:bp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Tl||e instanceof na,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=N3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=I3(this.outputs[0])}this.inboundNodes=[],new Ip({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:li(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ct(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new na({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new fr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new fr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new fr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new fr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");a=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Tl))throw new Me(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=yr(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Tl.className="Sequential";re.registerClass(Tl);function Jee(e){return new na(e)}function Qee(e){return new Tl(e)}function ete(e,t){return t==null&&(t={}),Zee(e,t)}function y3(e){return N3(e)}function tte(e,t){ar.registerCallbackConstructor(e,t)}var Rn=class extends re.Serializable{getConfig(){return{}}},e7=class extends Rn{apply(e,t=1){return MJ(e,t)}};e7.className="elu";re.registerClass(e7);var t7=class extends Rn{apply(e){return Ad(e)}};t7.className="selu";re.registerClass(t7);var n7=class extends Rn{apply(e){return Rr(e)}};n7.className="relu";re.registerClass(n7);var r7=class extends Rn{apply(e){return W(()=>rl(6,Rr(e)))}};r7.className="relu6";re.registerClass(r7);var a7=class extends Rn{apply(e){return e}};a7.className="linear";re.registerClass(a7);var s7=class extends Rn{apply(e){return _n(e)}};s7.className="sigmoid";re.registerClass(s7);var i7=class extends Rn{apply(e){return $J(e)}};i7.className="hardSigmoid";re.registerClass(i7);var o7=class extends Rn{apply(e){return tl(e)}};o7.className="softplus";re.registerClass(o7);var l7=class extends Rn{apply(e){return OJ(e)}};l7.className="softsign";re.registerClass(l7);var u7=class extends Rn{apply(e){return Zo(e)}};u7.className="tanh";re.registerClass(u7);var bA=class extends Rn{apply(e,t=-1){return Hu(e,t)}};bA.className="softmax";re.registerClass(bA);var c7=class extends Rn{apply(e,t=-1){return ud(e,t)}};c7.className="logSoftmax";re.registerClass(c7);var h7=class extends Rn{apply(e,t=1){return W(()=>_n(e.mul(t)).mul(e))}};h7.className="swish";re.registerClass(h7);function Ma(e){return e.getClassName()}function vA(e,t={}){return dc(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function Oa(e){if(e==null){let t={};return t.className="linear",t.config={},vA(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},vA(t)}else return e instanceof Rn?e:vA(e)}function kA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var d7=class extends re.Serializable{},kc=class extends d7{constructor(e){super();kA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return W(()=>{let t=Nt([1]);return this.hasL1&&(t=se(t,Ie(L(this.l1,Ft(e))))),this.hasL2&&(t=se(t,Ie(L(this.l2,yc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};kc.className="L1L2";re.registerClass(kc);function nte(e){return kA(e),new kc({l1:e!=null?e.l1:null,l2:0})}function rte(e){return kA(e),new kc({l2:e!=null?e.l2:null,l1:0})}var p7={l1l2:"L1L2"};function ht(e){return Pm(e)}function f7(e,t={}){return dc(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function yt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in p7?p7[e]:e,config:{}};return f7(t)}else return e instanceof d7?e:f7(e)}var IA=class extends Ge{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=De(e);let n=Rr(e);return this.maxValue!=null&&(n=hn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};IA.className="ReLU";re.registerClass(IA);var NA=class extends Ge{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=De(e);return Lu(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};NA.className="LeakyReLU";re.registerClass(NA);var SA=class extends Ge{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=At(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=yt(e.alphaRegularizer),this.alphaConstraint=Dt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ct(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r<e.length;++r)n[r]=e[r];this.inputSpec=[new Ut({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=De(e),Uu(e,this.alpha.read())}getConfig(){let e={alphaInitializer:_t(this.alphaInitializer),alphaRegularizer:ht(this.alphaRegularizer),alphaConstraint:$t(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};SA.className="PReLU";re.registerClass(SA);var TA=class extends Ge{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Me(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=De(e);return Qo(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};TA.className="ELU";re.registerClass(TA);var EA=class extends Ge{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=De(e);return n.mul(mc(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};EA.className="ThresholdedReLU";re.registerClass(EA);var CA=class extends Ge{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new bA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=De(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};CA.className="Softmax";re.registerClass(CA);function El(e,t,n){if(typeof e=="number")return li(e,t);if(e.length!==t)throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let r=0;r<t;++r){let a=e[r];if(!EJ(a))throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${a}`)}return e}function gr(e,t,n,r,a=1){if(e==null)return e;let s=t+(t-1)*(a-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+r-1)/r)}function Op(e,t,n,r){if(e==null)return null;if(r==="valid")e=e*t+Ra([n-t,0]);else if(r==="same")e=e*t;else throw new B(`Unsupport padding mode: ${r}.`);return e}function RA(e,t){return W(()=>(kt(t),t==="channelsFirst"?nt(e,[0,2,3,1]):e))}function m7(e,t){return W(()=>(kt(t),t==="channelsFirst"?nt(e,[0,2,3,4,1]):e))}function ate(e,t,n,r=1,a="valid",s,i=1){return W(()=>{if(s==null&&(s=pr()),kt(s),e.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=nt(e,[0,2,1])),a==="causal")throw new Me("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=td(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=zr(o,n)),o})}function A7(e,t,n,r=[1,1],a="valid",s,i,o=null){return W(()=>{if(s==null&&(s=pr()),kt(s),e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=RA(e,s);if(a==="causal")throw new Me("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ia.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=nt(l,[0,3,1,2])),l})}function ste(e,t,n,r=[1,1,1],a="valid",s,i){return W(()=>{if(s==null&&(s=pr()),kt(s),e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=m7(e,s);if(a==="causal")throw new Me("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=wf(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=zr(o,n)),s==="channelsFirst"&&(o=nt(o,[0,4,1,2,3])),o})}var FA=class extends Ge{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",FA.verifyArgs(t),this.rank=e,Vt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Me(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=El(t.kernelSize,e,"kernelSize"),this.strides=El(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Un(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,kt(this.dataFormat),this.activation=Oa(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=At(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Dt(t.biasConstraint),this.biasRegularizer=yt(t.biasRegularizer),this.activityRegularizer=yt(t.activityRegularizer),this.dilationRate=El(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if($r("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Wm(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Ma(this.activation),useBias:this.useBias,biasInitializer:_t(this.biasInitializer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),biasConstraint:$t(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Ic=class extends FA{constructor(e,t){super(e,t);this.kernel=null,Ic.verifyArgs(t),this.filters=t.filters,Vt(this.filters,"filters"),this.kernelInitializer=At(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Dt(t.kernelConstraint),this.kernelRegularizer=yt(t.kernelRegularizer)}build(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return W(()=>{e=De(e);let n,r=this.bias==null?null:this.bias.read(),a=t3(this.activation.getClassName());if(a!=null&&this.rank===2)n=A7(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=ate(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=A7(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=ste(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Me("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ct(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a<n.length;++a){let s=gr(n[a],this.kernelSize[a],this.padding,this.strides[a],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[a]);t.push(s)}let r=[e[0]];return this.dataFormat==="channelsLast"?(r=r.concat(t),r.push(this.filters)):(r.push(this.filters),r=r.concat(t)),r}getConfig(){let e={filters:this.filters,kernelInitializer:_t(this.kernelInitializer),kernelRegularizer:ht(this.kernelRegularizer),kernelConstraint:$t(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new B(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Nc=class extends Ic{constructor(e){super(2,e);Nc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Wm(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Nc.className="Conv2D";re.registerClass(Nc);var $p=class extends Ic{constructor(e){super(3,e);$p.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};$p.className="Conv3D";re.registerClass($p);var MA=class extends Nc{constructor(e){super(e);if(this.inputSpec=[new Ut({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ct(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ut({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return W(()=>{let n=De(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],c=this.kernelSize[0],u=this.kernelSize[1],h=this.strides[0],p=this.strides[1],d=Op(o,h,c,this.padding),f=Op(l,p,u,this.padding),m=[a,d,f,this.filters];this.dataFormat!=="channelsLast"&&(n=nt(n,[0,2,3,1]));let A=nd(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=nt(A,[0,3,1,2])),this.bias!=null&&(A=zr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=ct(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Op(t[r],o,s,this.padding),t[a]=Op(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};MA.className="Conv2DTranspose";re.registerClass(MA);var y7=class extends Ic{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=At(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=yt(t.depthwiseRegularizer),this.depthwiseConstraint=Dt(t.depthwiseConstraint),this.pointwiseInitializer=At(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=yt(t.pointwiseRegularizer),this.pointwiseConstraint=Dt(t.pointwiseConstraint)}build(e){if(e=ct(e),e.length<this.rank+2)throw new B(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],r=this.kernelSize.concat([n,this.depthMultiplier]),a=[];for(let i=0;i<this.rank;++i)a.push(1);a.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",r,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",a,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Ut({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return W(()=>{e=De(e);let n;if(this.rank===1)throw new Me("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=nt(e,[0,2,3,1])),n=Pf(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=zr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=nt(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=_t(this.depthwiseInitializer),e.pointwiseInitializer=_t(this.pointwiseInitializer),e.depthwiseRegularizer=ht(this.depthwiseRegularizer),e.pointwiseRegularizer=ht(this.pointwiseRegularizer),e.depthwiseConstraint=$t(this.depthwiseConstraint),e.pointwiseConstraint=$t(this.pointwiseConstraint),e}};y7.className="SeparableConv";var OA=class extends y7{constructor(e){super(2,e)}};OA.className="SeparableConv2D";re.registerClass(OA);var Dp=class extends Ic{constructor(e){super(1,e);Dp.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Wm(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};Dp.className="Conv1D";re.registerClass(Dp);var $A=class extends Ge{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return W(()=>{if(e=De(e),this.dataFormat==="channelsLast"){let n=dp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return dp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=dp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return dp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};$A.className="Cropping2D";re.registerClass($A);var DA=class extends Ge{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,kt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,NJ(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return W(()=>{let n=De(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=nt(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return nt(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};DA.className="UpSampling2D";re.registerClass(DA);function ite(e,t,n=[1,1],r="valid",a,s){return W(()=>{a==null&&(a=pr()),kt(a);let i=RA(e,a);if(e.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Jo(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=nt(i,[0,3,1,2])),i})}var zA=class extends FA{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=At(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Dt(e.depthwiseConstraint),this.depthwiseRegularizer=yt(e.depthwiseRegularizer)}build(e){if(e=ct(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{e=De(e);let n=ite(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=zr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=gr(t,this.kernelSize[0],this.padding,this.strides[0]),s=gr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=_t(this.depthwiseInitializer),e.depthwiseRegularizer=ht(this.depthwiseRegularizer),e.depthwiseConstraint=$t(this.depthwiseRegularizer),e}};zA.className="DepthwiseConv2D";re.registerClass(zA);function g7(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function x7(e,t,n,r=!1,a,s,i=!1,o=!1){return W(()=>{let l=t.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let c=[1,0].concat(mr(2,l));if(t=nt(t,c),s!=null)throw new Me("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=bn(a,-1)),a=nt(a,c)),r&&(t=In(t,0),a!=null&&(a=In(a,0)));let u=[],h,p=n,d=t.shape[0],f=er(t),m;a!=null&&(m=er(a));for(let y=0;y<d;++y){let g=f[y],_=W(()=>e(g,p));if(a==null)h=_[0],p=_[1];else{let x=W(()=>{let w=m[y],b=kn(w).sub(w),N=_[0].mul(w).add(p[0].mul(b)),T=p.map((E,M)=>_[1][M].mul(w).add(E.mul(b)));return{output:N,newStates:T}});h=x.output,p=x.newStates}o&&u.push(h)}let A;return o&&(A=Nn(u,1)),[h,A,p]})}var Pr=class extends Ge{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new zp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ut({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return mr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){iA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return W(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Me("Constants support is not implemented in RNN yet.");iA(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new Ut({shape:[n,null,...r]});let a=[e[0]].concat(e.slice(2));if(t!=null)throw new Me("Constants support is not implemented in RNN yet.");this.cell.build(a);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!k.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Ut({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){W(()=>{if(!this.stateful)throw new ea("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Nt([n,r])):this.states_=[Nt([n,this.cell.stateSize])];else if(e==null)Ne(this.states_),this.keptStates!=null&&(Ne(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Nt([n,r])):this.states_[0]=Nt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ne(this.states_);for(let r=0;r<this.states_.length;++r){let a=e[r],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[r]:this.cell.stateSize,i=[n,s];if(!k.arraysEqual(a.shape,i))throw new B(`State ${r} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${a.shape}`);this.states_[r]=a}}this.states_=this.states_.map(r=>Lt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=g7(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Ut({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof Ar){let o=[e].concat(s),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=c,u}else return super.apply(e,t)}call(e,t){return W(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=De(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new B(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=x7((p,d)=>{let f=this.cell.call([p].concat(d),i);return[f[0],f.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],c=o[1],u=o[2];this.stateful&&this.resetStates(u,r);let h=this.returnSequences?c:l;return this.returnState?[h].concat(u):h})}getInitialState(e){return W(()=>{let t=Nt(e.shape);return t=Ie(t,[1,2]),t=Ac(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Hm(t,[1,n]):t):this.cell.stateSize>1?[Hm(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Pr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=yr(r,n);return new e(Object.assign(t,{cell:a}))}};Pr.className="RNN";re.registerClass(Pr);var xc=class extends Ge{},Pp=class extends xc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Vt(this.units,"units"),this.activation=Oa(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=At(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=At(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=At(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=yt(e.kernelRegularizer),this.recurrentRegularizer=yt(e.recurrentRegularizer),this.biasRegularizer=yt(e.biasRegularizer),this.kernelConstraint=Dt(e.kernelConstraint),this.recurrentConstraint=Dt(e.recurrentConstraint),this.biasConstraint=Dt(e.biasConstraint),this.dropout=kl([1,Ra([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=kl([1,Ra([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ct(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=$a({ones:()=>kn(e),rate:this.dropout,training:r})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=$a({ones:()=>kn(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Dr(L(e,s),this.kernel.read()):a=Dr(e,this.kernel.read()),this.bias!=null&&(a=zr(a,this.bias.read())),i!=null&&(n=L(n,i));let o=se(a,Dr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ma(this.activation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:ht(this.kernelRegularizer),recurrentRegularizer:ht(this.recurrentRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:$t(this.kernelConstraint),recurrentConstraint:$t(this.recurrentConstraint),biasConstraint:$t(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Pp.className="SimpleRNNCell";re.registerClass(Pp);var PA=class extends Pr{constructor(e){e.cell=new Pp(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};PA.className="SimpleRNN";re.registerClass(PA);var Lp=class extends xc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Vt(this.units,"units"),this.activation=Oa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Oa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=At(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=At(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=At(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=yt(e.kernelRegularizer),this.recurrentRegularizer=yt(e.recurrentRegularizer),this.biasRegularizer=yt(e.biasRegularizer),this.kernelConstraint=Dt(e.kernelConstraint),this.recurrentConstraint=Dt(e.recurrentConstraint),this.biasConstraint=Dt(e.biasConstraint),this.dropout=kl([1,Ra([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=kl([1,Ra([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ct(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=$a({ones:()=>kn(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=$a({ones:()=>kn(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let c=Dr(e,this.kernel.read());this.useBias&&(c=zr(c,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(r=L(r,s[0]));let u=this.recurrentKernel.read(),[h,p]=Ht(u,[2*this.units,this.units],u.rank-1),d=Dr(r,h),[f,m,A]=Ht(c,3,c.rank-1),[y,g]=Ht(d,2,d.rank-1);i=this.recurrentActivation.apply(se(f,y)),o=this.recurrentActivation.apply(se(m,g));let _=Dr(L(o,r),p);l=this.activation.apply(se(A,_));let x=se(L(i,r),L(se(1,xt(i)),l));return[x,x]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ma(this.activation),recurrentActivation:Ma(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:ht(this.kernelRegularizer),recurrentRegularizer:ht(this.recurrentRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:$t(this.kernelConstraint),recurrentConstraint:$t(this.recurrentConstraint),biasConstraint:$t(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};Lp.className="GRUCell";re.registerClass(Lp);var LA=class extends Pr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Lp(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};LA.className="GRU";re.registerClass(LA);var Sc=class extends xc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Vt(this.units,"units"),this.activation=Oa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Oa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=At(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=At(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=At(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=yt(e.kernelRegularizer),this.recurrentRegularizer=yt(e.recurrentRegularizer),this.biasRegularizer=yt(e.biasRegularizer),this.kernelConstraint=Dt(e.kernelConstraint),this.recurrentConstraint=Dt(e.recurrentConstraint),this.biasConstraint=Dt(e.biasConstraint),this.dropout=kl([1,Ra([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=kl([1,Ra([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ct(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends rr{apply(i,o){let l=a.apply([s]),c=new fp().apply([s]),u=a.apply([s*2]);return h3(h3(l,c),u)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return W(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=$a({ones:()=>kn(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=$a({ones:()=>kn(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,c,u;0<this.dropout&&this.dropout<1&&(e=L(e,s[0]));let h=Dr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(r=L(r,i[0])),h=se(h,Dr(r,this.recurrentKernel.read())),this.useBias&&(h=zr(h,this.bias.read()));let[p,d,f,m]=Ht(h,4,h.rank-1);o=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(d),c=se(L(l,a),L(o,this.activation.apply(f))),u=this.recurrentActivation.apply(m);let A=L(u,this.activation.apply(c));return[A,A,c]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Ma(this.activation),recurrentActivation:Ma(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ht(this.kernelRegularizer),recurrentRegularizer:ht(this.recurrentRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:$t(this.kernelConstraint),recurrentConstraint:$t(this.recurrentConstraint),biasConstraint:$t(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Sc.className="LSTMCell";re.registerClass(Sc);var WA=class extends Pr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Sc(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};WA.className="LSTM";re.registerClass(WA);var zp=class extends xc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return W(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=r[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),a.push(s.slice(1))}n=[];for(let i of a.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){iA(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,r)=>{hi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(yr(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return oA(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],a[s]])}lA(t)}};zp.className="StackedRNNCells";re.registerClass(zp);function $a(e){let{ones:t,rate:n,training:r=!1,count:a=1}=e,s=()=>p3(t(),n),i=()=>gc(s,t,r);return!a||a<=1?Lt(i().clone()):Array(a).fill(void 0).map(i).map(o=>Lt(o.clone()))}var ote=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a<r.length;a++)t.indexOf(r[a])<0&&Object.prototype.propertyIsEnumerable.call(e,r[a])&&(n[r[a]]=e[r[a]]);return n},w7=class extends Pr{constructor(e){if(e.unroll)throw new Me("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Me("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Ut({ndim:5})]}call(e,t){return W(()=>{if(this.cell.dropoutMask!=null&&(Ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return W(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Nt(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){W(()=>{if(!this.stateful)throw new ea("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Nt(a)):this.states_=[Nt(a)];else if(e==null)Ne(this.states_),this.keptStates!=null&&(Ne(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Nt(a)):this.states_[0]=Nt(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ne(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=a;if(!k.arraysEqual(i.shape,o))throw new B(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Lt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],c=e[o?4:3],u=gr(l,r[0],a,s[0],i[0]),h=gr(c,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,h]:[u,h,n]]}};w7.className="ConvRNN2D";var Wp=class extends Sc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Vt(this.filters,"filters"),this.kernelSize=El(n,2,"kernelSize"),this.kernelSize.forEach(o=>Vt(o,"kernelSize")),this.strides=El(r||1,2,"strides"),this.strides.forEach(o=>Vt(o,"strides")),this.padding=a||"valid",Un(this.padding),this.dataFormat=s||"channelsLast",kt(this.dataFormat),this.dilationRate=El(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Vt(o,"dilationRate"))}build(e){var t;e=ct(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,c=this.filters;o=new(t=class extends rr{apply(u,h){let p=l.apply([c]),d=Cr([c]),f=l.apply([c*2]);return Xm([p,d,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return W(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=$a({ones:()=>kn(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Z,ae,J)=>!ae||!ae[J]?Z:L(ae[J],Z),c=l(r,o,0),u=l(r,o,1),h=l(r,o,2),p=l(r,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=$a({ones:()=>kn(a),rate:this.recurrentDropout,training:n,count:i}));let d=this.recurrentDropoutMask,f=l(a,d,0),m=l(a,d,1),A=l(a,d,2),y=l(a,d,3),g=3,[_,x,w,b]=Ht(this.kernel.read(),i,g),[N,T,E,M]=this.useBias?Ht(this.bias.read(),i):[null,null,null,null];c=this.inputConv(c,_,N,this.padding),u=this.inputConv(u,x,T,this.padding),h=this.inputConv(h,w,E,this.padding),p=this.inputConv(p,b,M,this.padding);let[$,P,V,H]=Ht(this.recurrentKernel.read(),i,g);f=this.recurrentConv(f,$),m=this.recurrentConv(m,P),A=this.recurrentConv(A,V),y=this.recurrentConv(y,H);let U=this.recurrentActivation.apply(se(c,f)),K=this.recurrentActivation.apply(se(u,m)),X=se(L(K,s),L(U,this.activation.apply(se(h,A)))),ee=L(this.recurrentActivation.apply(se(p,y)),this.activation.apply(X));return[ee,ee,X]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=ote(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=Xr(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?zr(a,n,this.dataFormat):a}recurrentConv(e,t){return Xr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Wp.className="ConvLSTM2DCell";re.registerClass(Wp);var BA=class extends w7{constructor(e){let t=new Wp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};BA.className="ConvLSTM2D";re.registerClass(BA);var Bp=class extends Ge{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r<this.noiseShape.length;++r)n.push(this.noiseShape[r]==null?t[r]:this.noiseShape[r]);return n}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=De(e);if(0<this.rate&&this.rate<1){let r=t.training==null?!1:t.training,a=this.getNoiseShape(n);return gc(()=>p3(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Bp.className="Dropout";re.registerClass(Bp);var VA=class extends Bp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};VA.className="SpatialDropout1D";re.registerClass(VA);var UA=class extends Ge{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Vt(this.units,"units"),this.activation=Oa(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=At(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=At(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Dt(e.kernelConstraint),this.biasConstraint=Dt(e.biasConstraint),this.kernelRegularizer=yt(e.kernelRegularizer),this.biasRegularizer=yt(e.biasRegularizer),this.activityRegularizer=yt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ct(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ct(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=De(e),r=t3(this.activation.getClassName()),a;return r!=null?a=Dr(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Dr(n,this.kernel.read()),this.bias!=null&&(a=zr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:Ma(this.activation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:ht(this.kernelRegularizer),biasRegularizer:ht(this.biasRegularizer),activityRegularizer:ht(this.activityRegularizer),kernelConstraint:$t(this.kernelConstraint),biasConstraint:$t(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};UA.className="Dense";re.registerClass(UA);var jA=class extends Ge{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ct(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ca(e,1)]}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=De(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a<n.rank;++a)r.push(a);r.push(1),n=n.transpose(r)}return FJ(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};jA.className="Flatten";re.registerClass(jA);var GA=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.activation=Oa(e.activation)}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=De(e);return this.activation.apply(n)})}getConfig(){let e={activation:Ma(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};GA.className="Activation";re.registerClass(GA);var HA=class extends Ge{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return W(()=>(e=De(e),CJ(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};HA.className="RepeatVector";re.registerClass(HA);var qA=class extends Ge{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",r=t.slice(),a=1,s=null;for(let o=0;o<r.length;++o){let l=r[o];if(this.isUnknown(l))if(s===null)s=o;else throw new B("Can only specifiy one unknown dimension.");else a*=l}let i=Ca(e);if(s!==null){if(a===0||i%a!=0)throw new B(n);r[s]=i/a}else if(i!==a)throw new B(n);return r}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=De(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};qA.className="Reshape";re.registerClass(qA);var XA=class extends Ge{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=mr(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ut({ndim:this.dims.length+1})]}computeOutputShape(e){e=ct(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return nt(De(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};XA.className="Permute";re.registerClass(XA);var KA=class extends Ge{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=De(e),r=-1;return Ru(Ys(n,this.maskValue),r)}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=De(e),r=-1,a=!0,s=Ru(Ys(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};KA.className="Masking";re.registerClass(KA);var ZA=class extends Ge{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(pt(e.inputLength))}this.inputDim=e.inputDim,Vt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Vt(this.outputDim,"outputDim"),this.embeddingsInitializer=At(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=yt(e.embeddingsRegularizer),this.activityRegularizer=yt(e.activityRegularizer),this.embeddingsConstraint=Dt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return W(()=>this.maskZero?(e=De(e),Ys(e,Be(e))):null)}computeOutputShape(e){if(e=ct(e),this.inputLength==null)return[...e,this.outputDim];let t=pt(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r<t.length;++r){let a=t[r],s=e[r+1];if(a!=null&&s!=null&&a!==s)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);a==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=De(e);return n.dtype!=="int32"&&(n=mc(n,"int32")),d3(this.embeddings.read(),n.as1D()).reshape(ct(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:_t(this.embeddingsInitializer),embeddingsRegularizer:ht(this.embeddingsRegularizer),activityRegularizer:ht(this.activityRegularizer),embeddingsConstraint:$t(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};ZA.className="Embedding";re.registerClass(ZA);var Ai=class extends Ge{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Me}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let r=0;r<t.length;++r){let a=e[e.length-t.length+r],s=t[r];if(a==null||s==null||a<0||s<0)n.push(null);else if(a===1)n.push(s);else if(s===1)n.push(a);else{if(a!==s)throw new B("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(a)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ct(e)]),e=e,e.length<2)throw new B(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let a of e)a!=null&&a[0]!==null&&t.push(a[0]);if(t=Ea(t),t.length>1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;a<e.length;++a){let s=e[a]==null?null:e[a].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let r=e.map(a=>a.length);e.indexOf(null)===-1&&Ea(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return W(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Ra(r);for(let s of e){let i=s.rank;for(let o=0;o<a-i;++o)s=Ac(s,1);n.push(s)}return this.mergeFunction(n)}else{let a=!1;for(let o of e){let l=o.rank;if(l==null){let c=o.shape,u=c[0],h=c.slice(1).concat([u]),p=o.reshape([u].concat(Ca(c.slice(1))));p=nt(p,[1,0]),p=p.reshape(h),n.push(p),a=!0}else if(l>1){let c=mr(1,l).concat([0]);n.push(nt(o,c)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,c=o[l-1],u=[c].concat(o.slice(0,o.length-1));s=nt(s.reshape([-1,c]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(mr(0,i-1));s=nt(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);t=this.computeElementwiseOpOutputShape(t,a)}let n=[];for(let r of e)r!=null&&r[0]!==null&&n.push(r[0]);return n=Ea(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return W(()=>{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:bn(r,0));let n=t[0];for(let r=1;r<t.length-1;++r)n=Qn(n,t[r]);return n})}},YA=class extends Ai{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return t})}};YA.className="Add";re.registerClass(YA);var JA=class extends Ai{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};JA.className="Multiply";re.registerClass(JA);var QA=class extends Ai{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return L(1/e.length,t)})}};QA.className="Average";re.registerClass(QA);var ey=class extends Ai{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Er(t,e[n]);return t})}};ey.className="Maximum";re.registerClass(ey);var ty=class extends Ai{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=rl(t,e[n]);return t})}};ty.className="Minimum";re.registerClass(ty);var ny=class extends Ai{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new B("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let r of e)if(r!=null){t=!1;break}if(t)return;let n=[];for(let r=0;r<e.length;++r){let a=e[r].slice();a.splice(this.axis,1);let s=!1;for(let i of n)if(k.arraysEqual(i,a)){s=!0;break}s||n.push(a)}if(n.length>1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return W(()=>Xm(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return W(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s<e.length;++s)t[s]==null?r.push(kn(e[s]).asType("bool")):t[s].rank<e[s].rank?r.push(bn(t[s],-1)):r.push(t[s]);let a=rt(r,this.axis);return Qh(a,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};ny.className="Concatenate";re.registerClass(ny);function Tc(e,t){for(;e<0;)e+=t;return e}function lte(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Me("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Me("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return W(()=>{let i;if(r>a){i=r-a;let l=[];for(let c=0;c<i;++c)l.push(1);t=t.reshape(t.shape.concat(l))}else if(a>r){i=a-r;let l=[];for(let c=0;c<i;++c)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,c=s[1]===t.shape.length-1;o=e.matMul(t,l,c)}if(i>0){let l;r>a?l=r+a-3:l=r-1;let c=[];for(let u=l;u<l+i;++u)c.push(u);o=o.squeeze(c)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var ry=class extends Ai{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Me("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new B(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>Tc(a,e[s].shape.length)):r=[Tc(this.axes,t.shape.length),Tc(this.axes,n.shape.length)],this.normalize&&(t=Np(t,r[0]),n=Np(n,r[1])),lte(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Tc(this.axes,e.length),Tc(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Me("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};ry.className="Dot";re.registerClass(ry);var ay=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=De(e);return gc(()=>pp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};ay.className="GaussianNoise";re.registerClass(ay);var sy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=De(e);return this.rate>0&&this.rate<1?gc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(pp(n.shape,1,r))},()=>n,t.training||!1):n})}};sy.className="GaussianDropout";re.registerClass(sy);var iy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||De(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return W(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return gc(()=>{let r=De(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=va(al(n),this.rate);o=mc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(c)},()=>De(e),t.training||!1)}return e})}};iy.className="AlphaDropout";re.registerClass(iy);function Ec(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=c5(e,t,n,r,a,s);else if(e.rank===3)i=h5(e,t,n,r,a,s);else if(e.rank===4)i=d5(e,t,n,r,a,s);else throw new Me(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function ute(e,t,n,r,a=.001){return W(()=>{let s=hd(e,r),i=s.mean,o=s.variance;return[Ec(e,i,o,n,t,a),i,o]})}function cte(e,t,n,r,a=.001){return W(()=>{let s=hd(e,r),i=s.mean,o=s.variance,l=[];for(let d of mr(0,e.rank))r.indexOf(d)!==-1?l.push(1):l.push(e.shape[d]);let c=i.reshape(l),u=o.reshape(l),h=t==null?null:t.reshape(l),p=n==null?null:n.reshape(l);return[Ec(e,c,u,p,h,a),i,o]})}function hte(e,t,n,r,a=.001){return k.arraysEqual(r.slice().sort(),mr(0,e.rank-1))?ute(e,t,n,r,a):cte(e,t,n,r,a)}var oy=class extends Ge{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=At(e.betaInitializer||"zeros"),this.gammaInitializer=At(e.gammaInitializer||"ones"),this.movingMeanInitializer=At(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=At(e.movingVarianceInitializer||"ones"),this.betaConstraint=Dt(e.betaConstraint),this.gammaConstraint=Dt(e.gammaConstraint),this.betaRegularizer=yt(e.betaRegularizer),this.gammaRegularizer=yt(e.gammaRegularizer)}build(e){e=ct(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ut({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return W(()=>{let n=t.training==null?!1:t.training,r=De(e),a=r.shape,s=a.length,i=mr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=li(1,s);l[o]=a[o];let c=i.slice();c.sort();let u=!k.arraysEqual(c,mr(0,s).slice(0,s-1)),h=()=>{if(u){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,_=this.scale?this.gamma.read().reshape(l):null;return Ec(r,A,y,g,_,this.epsilon)}else return Ec(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[p,d,f]=hte(r,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(A,y,g)=>{W(()=>{let _=1-g,x=A.read(),w=x.sub(y).mul(_);A.write(x.sub(w))})};return(()=>{m(this.movingMean,d,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_t(this.betaInitializer),gammaInitializer:_t(this.gammaInitializer),movingMeanInitializer:_t(this.movingMeanInitializer),movingVarianceInitializer:_t(this.movingVarianceInitializer),betaRegularizer:ht(this.betaRegularizer),gammaRegularizer:ht(this.gammaRegularizer),betaConstraint:$t(this.betaConstraint),gammaConstraint:$t(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};oy.className="BatchNormalization";re.registerClass(oy);var ly=class extends Ge{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=At(e.betaInitializer||"zeros"),this.gammaInitializer=At(e.gammaInitializer||"ones"),this.betaRegularizer=yt(e.betaRegularizer),this.gammaRegularizer=yt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ct(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a<this.axis.length;++a)this.axis[a]<0&&(this.axis[a]+=t);for(let a of this.axis)if(a<0||a>=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Ea(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=De(e),r=n.shape,a=r.length;return W(()=>{let s=!0,{mean:i,variance:o}=hd(n,this.axis,s),l=li(1,a);for(let f of this.axis)l[f]=r[f];let c=f=>f!=null&&f.shape.length!==a&&this.axis!==[a-1]?f.reshape(l):f,u=c(this.gamma.read()),h=c(this.beta.read()),p=[],d=[];for(let f=0;f<a;++f)this.axis.indexOf(f)!==-1?(p.push(r[f]),d.push(1)):(p.push(1),d.push(r[f]));return i=i.tile(p),o=o.tile(p),u=u.tile(d),h=h.tile(d),Ec(n,i,o,h,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_t(this.betaInitializer),gammaInitializer:_t(this.gammaInitializer),betaRegularizer:ht(this.betaRegularizer),gammaRegularizer:ht(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};ly.className="LayerNormalization";re.registerClass(ly);function dte(e,t,n){return W(()=>{if(e.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=pr()),n!=="channelsLast"&&n!=="channelsFirst")throw new B(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],Kr(e,r)})}var uy=class extends Ge{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?pr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ut({ndim:4})]}computeOutputShape(e){e=ct(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return W(()=>dte(De(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};uy.className="ZeroPadding2D";re.registerClass(uy);function Vp(e,t,n,r,a,s){return W(()=>{kt(a),s3(s),Un(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=pr()),s==null&&(s="max"),e=RA(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Bu(e,t,n,o):i=Ou(e,t,n,o),a==="channelsFirst"&&(i=nt(i,[0,3,1,2])),i})}function _7(e,t,n,r,a,s){return W(()=>{kt(a),s3(s),Un(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=pr()),s==null&&(s="max"),e=m7(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Rf(e,t,n,o):i=yf(e,t,n,o),a==="channelsFirst"&&(i=nt(i,[0,4,1,2,3])),i})}var b7=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Vt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Vt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Un(this.padding),this.inputSpec=[new Ut({ndim:3})]}computeOutputShape(e){e=ct(e);let t=gr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return W(()=>{this.invokeCallHook(e,t),e=Ac(De(e),2);let n=this.poolingFunction(De(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ka(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},cy=class extends b7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return kt(a),Un(r),Vp(e,t,n,r,a,"max")}};cy.className="MaxPooling1D";re.registerClass(cy);var hy=class extends b7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return kt(a),Un(r),Vp(e,t,n,r,a,"avg")}};hy.className="AveragePooling1D";re.registerClass(hy);var v7=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Vt(this.poolSize,"poolSize"),Vt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,kt(this.dataFormat),Un(this.padding),this.inputSpec=[new Ut({ndim:4})]}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=gr(t,this.poolSize[0],this.padding,this.strides[0]),n=gr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return W(()=>(this.invokeCallHook(e,t),this.poolingFunction(De(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},dy=class extends v7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return kt(a),Un(r),Vp(e,t,n,r,a,"max")}};dy.className="MaxPooling2D";re.registerClass(dy);var py=class extends v7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return kt(a),Un(r),Vp(e,t,n,r,a,"avg")}};py.className="AveragePooling2D";re.registerClass(py);var k7=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Vt(this.poolSize,"poolSize"),Vt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,kt(this.dataFormat),Un(this.padding),this.inputSpec=[new Ut({ndim:5})]}computeOutputShape(e){e=ct(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=gr(t,this.poolSize[0],this.padding,this.strides[0]),n=gr(n,this.poolSize[1],this.padding,this.strides[1]),r=gr(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return W(()=>(this.invokeCallHook(e,t),this.poolingFunction(De(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},fy=class extends k7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return kt(a),Un(r),_7(e,t,n,r,a,"max")}};fy.className="MaxPooling3D";re.registerClass(fy);var my=class extends k7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return kt(a),Un(r),_7(e,t,n,r,a,"avg")}};my.className="AveragePooling3D";re.registerClass(my);var I7=class extends Ge{constructor(e){super(e);this.inputSpec=[new Ut({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Me}},Ay=class extends I7{constructor(e){super(e||{})}call(e,t){return W(()=>{let n=De(e);return wt(n,1)})}};Ay.className="GlobalAveragePooling1D";re.registerClass(Ay);var yy=class extends I7{constructor(e){super(e||{})}call(e,t){return W(()=>{let n=De(e);return Wn(n,1)})}};yy.className="GlobalMaxPooling1D";re.registerClass(yy);var N7=class extends Ge{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,kt(this.dataFormat),this.inputSpec=[new Ut({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Me}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},gy=class extends N7{call(e,t){return W(()=>{let n=De(e);return this.dataFormat==="channelsLast"?wt(n,[1,2]):wt(n,[2,3])})}};gy.className="GlobalAveragePooling2D";re.registerClass(gy);var xy=class extends N7{call(e,t){return W(()=>{let n=De(e);return this.dataFormat==="channelsLast"?Wn(n,[1,2]):Wn(n,[2,3])})}};xy.className="GlobalMaxPooling2D";re.registerClass(xy);var S7=class extends Ge{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=yr(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},wy=class extends S7{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ct(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ct(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return W(()=>(e=De(e),x7((n,r)=>[De(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};wy.className="TimeDistributed";re.registerClass(wy);function pte(e){ci(IJ,"BidirectionalMergeMode",e)}var fte="concat",_y=class extends S7{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=yr(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=yr(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?fte:e.mergeMode,pte(this.mergeMode),e.weights)throw new Me("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):mn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=g7(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let c=n.map(u=>new Ut({shape:u.shape}));this.forwardLayer.stateSpec=c.slice(0,l/2),this.backwardLayer.stateSpec=c.slice(l/2),i.push(...c)}if(r!=null)throw new Me("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Ar;for(let l of s)if(l instanceof Ar!==o)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),c=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=c;let h=super.apply(l,t);return this.inputSpec=u,h}else return super.apply(e,t)}call(e,t){return W(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=In(a,1));let i;return this.mergeMode==="concat"?i=Xm([r,a]):this.mergeMode==="sum"?i=se(r,a):this.mergeMode==="ave"?i=L(.5,se(r,a)):this.mergeMode==="mul"?i=L(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){hi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),hi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=yr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Me("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};_y.className="Bidirectional";re.registerClass(_y);function BJ(e){return new Il(e)}function VJ(e){return new TA(e)}function UJ(e){return new IA(e)}function jJ(e){return new NA(e)}function GJ(e){return new SA(e)}function HJ(e){return new CA(e)}function qJ(e){return new EA(e)}function XJ(e){return new Dp(e)}function KJ(e){return new Nc(e)}function ZJ(e){return new MA(e)}function YJ(e){return new $p(e)}function JJ(e){return new OA(e)}function QJ(e){return new $A(e)}function eQ(e){return new DA(e)}function tQ(e){return new zA(e)}function nQ(e){return new GA(e)}function rQ(e){return new UA(e)}function aQ(e){return new Bp(e)}function sQ(e){return new VA(e)}function iQ(e){return new jA(e)}function oQ(e){return new HA(e)}function lQ(e){return new qA(e)}function uQ(e){return new XA(e)}function cQ(e){return new ZA(e)}function hQ(e){return new YA(e)}function dQ(e){return new QA(e)}function pQ(e){return new ny(e)}function fQ(e){return new ey(e)}function mQ(e){return new ty(e)}function AQ(e){return new JA(e)}function yQ(e){return new ry(e)}function gQ(e){return new oy(e)}function xQ(e){return new ly(e)}function wQ(e){return new uy(e)}function rA(e){return new hy(e)}function _Q(e){return rA(e)}function bQ(e){return rA(e)}function aA(e){return new py(e)}function vQ(e){return aA(e)}function kQ(e){return aA(e)}function sA(e){return new my(e)}function IQ(e){return sA(e)}function NQ(e){return sA(e)}function SQ(e){return new Ay(e)}function TQ(e){return new gy(e)}function g3(e){return new yy(e)}function x3(e){return new xy(e)}function w3(e){return new cy(e)}function _3(e){return new dy(e)}function EQ(e){return new fy(e)}function CQ(e){return new LA(e)}function RQ(e){return new Lp(e)}function FQ(e){return new WA(e)}function MQ(e){return new Sc(e)}function OQ(e){return new PA(e)}function $Q(e){return new Pp(e)}function DQ(e){return new BA(e)}function zQ(e){return new Wp(e)}function PQ(e){return new Pr(e)}function LQ(e){return new zp(e)}function WQ(e){return new _y(e)}function BQ(e){return new wy(e)}var VQ=g3,UQ=x3,jQ=w3,GQ=_3;function HQ(e){return new ay(e)}function qQ(e){return new sy(e)}function XQ(e){return new iy(e)}function KQ(e){return new KA(e)}var T7={};$e(T7,{MAPE:()=>Ite,MSE:()=>Tte,binaryAccuracy:()=>mte,binaryCrossentropy:()=>Ate,categoricalAccuracy:()=>gte,categoricalCrossentropy:()=>xte,cosineProximity:()=>bte,mape:()=>Nte,meanAbsoluteError:()=>vte,meanAbsolutePercentageError:()=>kte,meanSquaredError:()=>Ste,mse:()=>Ete,precision:()=>wte,recall:()=>_te,sparseCategoricalAccuracy:()=>yte});function mte(e,t){return hA(e,t)}function Ate(e,t){return D3(e,t)}function yte(e,t){return z3(e,t)}function gte(e,t){return dA(e,t)}function xte(e,t){return pA(e,t)}function wte(e,t){return $3(e,t)}function _te(e,t){return fee(e,t)}function bte(e,t){return uA(e,t)}function vte(e,t){return Sp(e,t)}function kte(e,t){return Sl(e,t)}function Ite(e,t){return Sl(e,t)}function Nte(e,t){return Sl(e,t)}function Ste(e,t){return pi(e,t)}function Tte(e,t){return pi(e,t)}function Ete(e,t){return pi(e,t)}var E7={};$e(E7,{modelFromJSON:()=>Xee});var C7={};$e(C7,{l1:()=>Rte,l1l2:()=>Cte,l2:()=>Fte});function Cte(e){return new kc(e)}function Rte(e){return nte(e)}function Fte(e){return rte(e)}var R7=class extends Nl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof na))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Up(e,t){return e<t}function F7(e,t){return e>t}var M7=class extends R7{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Me("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Up:this.mode==="max"?this.monitorFunc=F7:this.monitor.indexOf("acc")!==-1?this.monitorFunc=F7:this.monitorFunc=Up,this.monitorFunc===Up&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Up?Infinity:-Infinity}async onEpochEnd(e,t){await Fa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Mte(e){return new M7(e)}var Ote={earlyStopping:Mte},xr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(xr||(xr={}));var O7;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(O7||(O7={}));var by={};function $te(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};by[e]=n}function $7(e){return by[e]}function Dte(e){delete by[e]}function I(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return yn(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>yn(h,n,r,a));let c=yn(t.inputNames.slice(o)[0],n,r,a),u=c.dataSync();return s.type==="number"?u[0]:k.toNestedArray(c.shape,u)}let i=t.attrParams[e];return i&&i.value}function yn(e,t,n,r){let[a,s]=Fn(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[jp(a,o)]);return i!==void 0?t[jp(a,i)][s]:void 0}function zte(e,t,n){return t[jp(e,n.currentContextId)]}function ra(e,t){let[n,r]=Fn(e);return[jp(n,t&&t.currentContextId),r]}function jp(e,t){return t?`${e}-${t}`:e}function Fn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function Gp(e,t,n){let r=I("pad",e,t,n);if(r==="explicit"){r=I("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function aa(e){return e.kept?e:Yn(e)}var D7={};$e(D7,{json:()=>Pte});var Pte=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],z7={};$e(z7,{json:()=>Lte});var Lte=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],P7={};$e(P7,{json:()=>Wte});var Wte=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],L7={};$e(L7,{json:()=>Bte});var Bte=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],W7={};$e(W7,{json:()=>Vte});var Vte=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],B7={};$e(B7,{json:()=>Ute});var Ute=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],V7={};$e(V7,{json:()=>jte});var jte=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],U7={};$e(U7,{json:()=>Gte});var Gte=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],j7={};$e(j7,{json:()=>Hte});var Hte=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}],G7={};$e(G7,{json:()=>qte});var qte=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],H7={};$e(H7,{json:()=>Xte});var Xte=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],q7={};$e(q7,{json:()=>Kte});var Kte=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],X7={};$e(X7,{json:()=>Zte});var Zte=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],K7={};$e(K7,{json:()=>Yte});var Yte=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],Z7={};$e(Z7,{json:()=>Jte});var Jte=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],Y7={};$e(Y7,{json:()=>Qte});var Qte=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],J7={};$e(J7,{json:()=>ene});var ene=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],ev=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[D7,z7,P7,L7,W7,B7,V7,H7,G7,U7,q7,X7,K7,Z7,Y7,J7,j7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?a.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],c={},u={};t!=null&&(c=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(f=>{let m=i[f];m.inputNames.forEach(A=>{let[y]=ra(A);m.inputs.push(i[y]),i[y].children.push(m)})}),Object.keys(u).length===0?h.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(u).forEach(f=>{let[m]=ra(f),A=i[m];A!=null&&(A.signatureKey=u[f],l.push(A))}),Object.keys(c).length>0?Object.keys(c).forEach(f=>{let[m]=ra(f),A=i[m];A&&(A.signatureKey=c[f],o.push(A))}):o=r;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let d={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:p};return s.length>0&&(d.initNodes=s),d}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=$7(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=vy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=vy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=Ry(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Ry(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=Iy(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=Iy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=Cy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Cy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=ky(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=ky(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=My(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=My(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=Ey(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Ey(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=Fy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Fy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=Sy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Sy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=Ty(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Ty(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=Q7(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Q7(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((c,u)=>(c[u.name]=this.mapNode(u),u.op==="Const"&&r.push(c[u.name]),c),{}));let s=[],i=[];e.signature.inputArg.forEach(c=>{let[u]=ra(c.name),h={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Ny(c.type),type:"dtype"}},children:[]};h.signatureKey=c.name,s.push(h),a[u]=h}),Object.keys(a).forEach(c=>{let u=a[c];u.inputNames.forEach(h=>{let[p]=ra(h);u.inputs.push(a[p]),a[p].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(c=>{let[u,h]=ra(o[c.name]),p=a[u];p!=null&&(p.defaultOutput=h,i.push(p))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function tne(e){let t=Q().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function tv(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):tne(e);return t?n:n.toLowerCase()}function vy(e,t,n,r=!1){let a=e[t];return a!=null?tv(a.s,r):n}function ky(e,t,n){let r=e[t];return r?r.b:n}function Iy(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function Ny(e){switch(typeof e=="string"&&(e=xr[e]),e){case xr.DT_FLOAT:return"float32";case xr.DT_INT32:case xr.DT_INT64:case xr.DT_INT8:case xr.DT_UINT8:return"int32";case xr.DT_BOOL:return"bool";case xr.DT_DOUBLE:return"float32";case xr.DT_STRING:return"string";default:return null}}function Q7(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function Sy(e,t,n){let r=e[t];return r&&r.type?Ny(r.type):n}function Ty(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>Ny(a)):n}function nv(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Ey(e,t,n){let r=e[t];return r&&r.shape?nv(r.shape):n}function Cy(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function Ry(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>tv(s,r)):n}function Fy(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>nv(a)):n}function My(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var nne=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return yn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return yn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Iy(this.node.rawAttrs,e,t);if(n.s!=null)return vy(this.node.rawAttrs,e,t);if(n.b!=null)return ky(this.node.rawAttrs,e,t);if(n.shape!=null)return Ey(this.node.rawAttrs,e,t);if(n.type!=null)return Sy(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Cy(this.node.rawAttrs,e,t);if(n.list.s!=null)return Ry(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Fy(this.node.rawAttrs,e,t);if(n.list.b!=null)return My(this.node.rawAttrs,e,t);if(n.list.type!=null)return Ty(this.node.rawAttrs,e,t)}return t}},rne=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[Xo(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[Mf(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[L(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[be(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[vf(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Jh(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[Ae(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[rl(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Er(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[Zr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[bd(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},ane=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Ft(I("x",e,t,n))];case"Acos":return[of(I("x",e,t,n))];case"Acosh":return[lf(I("x",e,t,n))];case"Asin":return[cf(I("x",e,t,n))];case"Asinh":return[hf(I("x",e,t,n))];case"Atan":return[df(I("x",e,t,n))];case"Atan2":return[pf(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[ff(I("x",e,t,n))];case"Ceil":return[gf(I("x",e,t,n))];case"Complex":return[Aa(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[zu(I("x",e,t,n))];case"Cosh":return[rd(I("x",e,t,n))];case"Elu":return[Qo(I("x",e,t,n))];case"Erf":return[kf(I("x",e,t,n))];case"Exp":return[Ln(I("x",e,t,n))];case"Expm1":return[If(I("x",e,t,n))];case"Floor":return[el(I("x",e,t,n))];case"Log":return[vn(I("x",e,t,n))];case"Log1p":return[od(I("x",e,t,n))];case"Imag":return[sd(I("x",e,t,n))];case"Neg":return[xt(I("x",e,t,n))];case"Reciprocal":return[Df(I("x",e,t,n))];case"Real":return[ju(I("x",e,t,n))];case"Relu":return[Rr(I("x",e,t,n))];case"Round":return[zf(I("x",e,t,n))];case"Selu":return[Ad(I("x",e,t,n))];case"Sigmoid":return[_n(I("x",e,t,n))];case"Sin":return[yd(I("x",e,t,n))];case"Sign":return[Lf(I("x",e,t,n))];case"Sinh":return[gd(I("x",e,t,n))];case"Softplus":return[tl(I("x",e,t,n))];case"Sqrt":return[qt(I("x",e,t,n))];case"Square":return[it(I("x",e,t,n))];case"Tanh":return[Zo(I("x",e,t,n))];case"Tan":return[Vf(I("x",e,t,n))];case"ClipByValue":return[hn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[fd(I("x",e,t,n))];case"Rsqrt":return[md(yn(e.inputNames[0],t,n))];case"Prod":return[dd(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Lu(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[Uu(I("x",e,t,n),I("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function sr(e,t,n=""){k.assert(sne(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function sne(e,t){if(e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==-1&&t[n]!==-1&&e[n]!==t[n])return!1;return!0}var ine=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ke(0),Lt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),sr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Lt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r<this.size();r++)e.push(r)}if(e.length===0)return ur([],[0].concat(this.elementShape));let n=this.readMany(e);return sr(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Nn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ur([],[0].concat(this.elementShape));let t=[];for(let r=0;r<this.size();r++)t.push(r);let n=this.readMany(t);return sr(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),rt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,er(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];W(()=>{t=q(t,[1,n,a]);for(let o=0;o<e.length;++o){let l=o===0?0:r[o-1],c=[0,l,0],u=[1,e[o],a];s[o]=q(Ee(t,c,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Cc=class{constructor(e,t,n,r=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(a=>{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);sr(t,a.shape,"TensorList shape mismatch: "),Lt(a)}),this.idTensor=ke(0),this.maxNumElements=r,Lt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Cc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);return sr(e,this.elementShape,"TensorList shape mismatch: "),W(()=>{let r=this.tensors.map(a=>q(a,e));return Nn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=this.tensors.pop();return sr(n.shape,e,"TensorList shape mismatch: "),q(n,e)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(sr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Lt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);return sr(this.tensors[e].shape,t,"TensorList shape mismatch: "),this.tensors[e]}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);sr(this.elementShape,t.shape,"TensorList shape mismatch: "),Lt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);return sr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size()),e.length===0?ur([],[0].concat(this.elementShape)):W(()=>{let r=e.map(a=>q(this.tensors[a],n));return Nn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);return sr(this.elementShape,t,"TensorList shape mismatch: "),this.size()===0?ur([],[0].concat(this.elementShape)):W(()=>{let n=this.tensors.map(r=>q(r,t));return rt(n,0)})}};function one(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);sr(a,t,"TensorList shape mismatch: ");let s=er(e);return new Cc(s,t,r)}function lne(e,t,n){return new Cc([],e,t,n)}function une(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Cc([],n,e.dtype,r),i=er(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function cne(e,t,n){let r=0,a=t.map(l=>(r+=l,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${r}, and tensor's shape is: ${e.shape}`);let s=r===0?0:e.size/r,i=W(()=>{let l=[];e=q(e,[1,r,s]);for(let c=0;c<t.length;++c){let u=c===0?0:a[c-1],h=[0,u,0],p=[1,t[c],s];l[c]=q(Ee(e,h,p),n)}return e.dispose(),l}),o=new Cc([],n,e.dtype,t.length);for(let l=0;l<i.length;l++)o.setItem(l,i[l]);return o}var hne=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let r=I("thenBranch",e,t,n),a=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=I("body",e,t,n),a=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let c=s;for(;l[0];){let u=c;c=await n.functionMap[r].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);let h=c.map(d=>d.id);u.forEach(d=>{!d.kept&&o.indexOf(d.id)===-1&&h.indexOf(d.id)===-1&&d.dispose()});let p=await n.functionMap[a].executeFunctionAsync(c,n.tensorArrayMap,n.tensorListMap);l=await p[0].data(),p.forEach(d=>{!d.kept&&o.indexOf(d.id)===-1&&h.indexOf(d.id)===-1&&d.dispose()})}return c}case"LoopCond":{let r=I("pred",e,t,n);return[aa(r)]}case"Switch":{let r=I("pred",e,t,n),a=I("data",e,t,n);return a.kept||(a=aa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>yn(a,t,n)!==void 0);if(r){let a=yn(r,t,n);return[aa(a)]}return}case"Enter":{let r=I("frameName",e,t,n),a=I("tensor",e,t,n);return n.enterFrame(r),[aa(a)]}case"Exit":{let r=I("tensor",e,t,n);return n.exitFrame(),[aa(r)]}case"NextIteration":{let r=I("tensor",e,t,n);return n.nextIteration(),[aa(r)]}case"TensorArrayV3":{let r=I("size",e,t,n),a=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),c=I("name",e,t,n),u=new ine(c,a,r,s,l,i,o);return n.addTensorArray(u),[u.idTensor,ke(1)]}case"TensorArrayWriteV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=I("tensorArrayId",e,t,n),a=I("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=I("tensorArrayId",e,t,n),a=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=I("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=I("tensorArrayId",e,t,n),a=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[ke(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=I("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=I("tensorListId",e,t,n),a=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=I("indices",e,t,n),a=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=une(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=lne(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=I("tensorListId",e,t,n),a=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=one(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=I("tensorListId",e,t,n),a=n.getTensorList(r.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=I("tensorListId",e,t,n),a=I("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=I("tensorListId",e,t,n),a=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=I("tensor",e,t,n),a=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=cne(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function rv(e,t,n){let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let c=I("strides",e,t,n),u=Gp(e,t,n),h=I("dataFormat",e,t,n).toUpperCase(),p=I("dilations",e,t,n),[d,f]=I("args",e,t,n),m=I("leakyreluAlpha",e,t,n);return{stride:c,pad:u,dataFormat:h,dilations:p,biasArg:d,preluArg:f,activationFunc:a,leakyreluAlpha:m}}var dne=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[td(I("x",e,t,n),I("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=Gp(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[Xr(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=rv(e,t,n);return[Ia.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:c,leakyreluAlpha:u}=rv(e,t,n);return[Ia.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:c,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),s=Gp(e,t,n);return[nd(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=Gp(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[Jo(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[wf(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Ou(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Bu(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=C5(I("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[yf(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Rf(I("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),s=I("dilations",e,t,n),i=r[1],o=r[2],l=s[1],c=s[2];return[bf(I("x",e,t,n),I("filter",e,t,n),[i,o],a,[l,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},pne=(e,t,n)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),s=I("value",e,t,n);return[Pu(r,s,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("num",e,t,n);return[v5(r,a,s)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),s=I("seed",e,t,n);return[R5(r,a,s)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[jo(r,a,s,i)]}case"Ones":return[Cr(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[kn(I("x",e,t,n))];case"RandomUniform":return[al(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),s=I("step",e,t,n);return[pd(r,a,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[vd(r,a,s,I("dtype",e,t,n),i)]}case"Zeros":return[Nt(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Be(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Oy(e,t,n){let r=I("boxes",e,t,n),a=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var fne=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Oy(e,t,n),c=await Je.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[c.selectedIndices,c.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Oy(e,t,n),l=I("padToMaxOutputSize",e,t,n),c=await Je.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[c.selectedIndices,c.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Oy(e,t,n);return[await Je.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=me(I("condition",e,t,n),"bool"),a=[await Gf(r)];return r.dispose(),a}case"ListDiff":return O5(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},mne=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),s=I("sorted",e,t,n),i=Uf(r,a,s);return[i.values,i.indices]}case"Unique":{let r=I("x",e,t,n),a=kd(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),s=kd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ane=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[yn(e.name,t,n)||r];case"Placeholder":return[yn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[aa(c)]}case"IdentityN":return I("x",e,t,n).map(c=>aa(c));case"Snapshot":let a=I("x",e,t,n);return[aa(a)];case"Shape":return[Wt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>Wt(c.shape));case"Size":return[ke(I("x",e,t,n).size,"int32")];case"Rank":return[ke(I("x",e,t,n).rank,"int32")];case"NoOp":return[ke(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let c=0;c<i.length;c++)console.log(Array.prototype.slice.call(i[c].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},yne=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ke(0),this.tensorMap=new Map,Lt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),W(()=>{let r=er(t),a=n.length,s=r.length;k.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i<a;i++){let o=n[i],l=r[i];Lt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return W(()=>{let r=[];for(let a=0;a<n.length;a++){let s=n[a],i=this.findWithDefault(s,t);r.push(i)}return Nn(r)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},gne=async(e,t,n,r)=>{switch(e.op){case"HashTable":case"HashTableV2":{let a=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new yne(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=I("tableHandle",e,t,n,r),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},xne=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Je.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Je.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Je.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},wne=(e,t,n)=>{switch(e.op){case"Equal":return[_a(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Ys(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Jn(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[va(I("a",e,t,n),I("b",e,t,n))];case"Less":return[id(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Ks(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[Qn(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Wu(I("a",e,t,n))];case"LogicalOr":return[cd(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[dn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},_ne=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[je(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Transpose":return[nt(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,u]=I("args",e,t,n);return[Ia.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},bne=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[qs(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[qs(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[Sf(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[Hu(I("x",e,t,n))];case"LogSoftmax":return[ud(I("x",e,t,n))];case"SparseToDense":return[Hf(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},vne=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Wn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[wt(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[nl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ie(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Qh(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Ru(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[Fu(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[uf(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[dd(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[ad(I("x",e,t,n),i,o,l)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),s=I("size",e,t,n);return[p5(r,a,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[g5(i,o,l,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},kne=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,r),[rt(s,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[Xs(r,me(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[Xs(s,me(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i<r.length;i++)r[i]&&a.push(i);let s=I("x",e,t,n);return[In(s,a)]}case"ReverseV2":{let r=I("axis",e,t,n),a=I("x",e,t,n);return[In(a,r)]}case"Slice":{let r=I("begin",e,t,n),a=I("size",e,t,n);return[Ee(I("x",e,t,n),r,a)]}case"StridedSlice":{let r=I("begin",e,t,n),a=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),c=I("newAxisMask",e,t,n),u=I("shrinkAxisMask",e,t,n),h=I("x",e,t,n);return[Bf(h,r,a,s,i,o,l,c,u)]}case"Pack":return W(()=>{let r=I("axis",e,t,n),a=I("tensors",e,t,n),s=a[0].shape,i=ka(a[0]).shape,o=a.map(l=>{let c=k.arraysEqual(l.shape,s);if(!c&&!k.arraysEqual(ka(l).shape,i))throw new Error("the input tensors shape does not match");return c?l:q(l,s)});return[Nn(o,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return er(a,r)}case"Tile":{let r=I("reps",e,t,n);return[ba(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return Ht(s,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),s=I("shape",e,t,n);return[P5(r,a,s)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[L5(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[Hf(r,s,a,s.dtype===i.dtype?i:me(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ine=(e,t,n)=>{switch(e.op){case"FFT":return[qu(I("x",e,t,n))];case"IFFT":return[sl(I("x",e,t,n))];case"RFFT":return[Xu(I("x",e,t,n))];case"IRFFT":return[_d(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nne=(e,t,n)=>{switch(e.op){case"Cast":return[me(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[bn(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[ka(I("x",e,t,n),r)]}case"Reshape":return[q(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Ff(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[Kr(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[Vu(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[$u(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[_f(I("x",e,t,n),r,a)]}case"BroadcastTo":return[Du(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function av(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return W(()=>rne(s,i,o));case"basic_math":return W(()=>ane(s,i,o));case"control":return hne(s,i,o);case"convolution":return W(()=>dne(s,i,o));case"creation":return W(()=>pne(s,i,o));case"dynamic":return fne(s,i,o);case"evaluation":return W(()=>mne(s,i,o));case"image":return W(()=>xne(s,i,o));case"graph":return W(()=>Ane(s,i,o));case"logical":return W(()=>wne(s,i,o));case"matrices":return W(()=>_ne(s,i,o));case"normalization":return W(()=>bne(s,i,o));case"reduction":return W(()=>vne(s,i,o));case"slice_join":return W(()=>kne(s,i,o));case"spectral":return W(()=>Ine(s,i,o));case"transformation":return W(()=>Nne(s,i,o));case"hash_table":return gne(s,i,o,r);case"custom":let l=$7(s.op);if(l&&l.customExecutor)return l.customExecutor(new nne(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var sv=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function ov(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,c=Object.keys(e).map(p=>Fn(p)[0]),u=[];r!=null&&(u=r.map(p=>Fn(p.name)[0]));let h=[...t];for(;h.length>0;){let p=h.pop();if((iv(p)||Sne(p)||Tne(p))&&i==null&&(i=p,o=i.children.map(d=>d.name).filter(d=>a.has(d))),a.add(p.name),n[p.name]==null&&c.indexOf(p.name)===-1&&u.indexOf(p.name)===-1){if(p.inputs.length===0){s.push(p.name);continue}p.inputs.forEach(d=>{l.has(d.name)||(l.add(d.name),h.push(d))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Ene(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(u=>Fn(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{r.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{r.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{r.has(u.name)&&s.push(u)});let l=new Set,c=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||c.push(u),u.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(p=>l.has(p.name))&&s.push(h)})}return c}var Cne=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Rne=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Fne=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function iv(e){return Cne.indexOf(e.op)>=0}function Sne(e){return Rne.indexOf(e.op)>=0}function Tne(e){return Fne.indexOf(e.op)>=0}var $y=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new $y(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=ov(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Ene(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(u=>this.graph.nodes[Fn(u)[0]]),a=t.map(u=>Fn(u)[0]),s=a.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},c={};return W(()=>{let u=new sv(this.weightMap,l,c,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,A]=Fn(f),y=[];y[A]=e[f],h[m]=y});let p=this.getFrozenTensorIds(h),d={};for(let f=0;f<o.length;f++){let m=o[f];if(!h[m.name]){let A=av(m,h,u,this._resourceManager);if(k.isPromise(A))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);h[m.name]=A,this.checkTensorForDisposal(m.name,m,h,u,p,a,d)}}return this.parent==null&&u.dispose(p),t.map(f=>yn(f,h,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=zte(o.name,n,r);l!=null&&l.forEach(c=>{if(c&&!a.has(c.id)){let u=i[c.id];u===1?(c.dispose(),delete i[c.id]):u!=null&&i[c.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new sv(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>yn(h,i,s)),l=o.map(h=>h.id),c=Object.keys(e).map(h=>e[h].id),u=new Set([...l,...c,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(p=>{p&&!p.isDisposed&&!u.has(p.id)&&p.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[Fn(g)[0]]),i=n.map(g=>Fn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:c,dynamicNode:u,syncInputs:h}=ov(e,o,this.weightMap,this._initNodes),p=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),d=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[_,x]=Fn(g),w=[];w[x]=e[g],d[_]=w});let f={},m=this.getFrozenTensorIds(d),A={};for(;p.length>0;){let g=this.processStack(s,p,t,d,A,m,i,f,l);await Promise.all(g)}u==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!iv(g)&&!yn(g.name,d,t)).map(g=>g.name);if(y.length>0){let g="";throw u!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${c}]. ${g}`)}return d}processStack(e,t,n,r,a,s,i,o,l){let c=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let h="";if(u.node.op==="Enter"&&I("isConstant",u.node,r,n)&&([h]=ra(u.node.name,n)),r[u.node.name]==null){let p=av(u.node,r,n,this._resourceManager);h||([h]=ra(u.node.name,n));let d=n.currentContext;k.isPromise(p)?c.push(p.then(f=>(r[h]=f,n.currentContext=d,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l),f))):(r[h]=p,this.checkTensorForDisposal(h,u.node,r,n,s,i,o),this.processChildNodes(u.node,t,n,r,a,l))}else this.processChildNodes(u.node,t,n,r,a,l)}return c}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=ra(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!yn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!yn(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=Fn(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&k.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=Fn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Fn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Mne=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},One="?tfjs-format=file",$ne="model.json",lv=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Mne}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=cn.browserHTTPRequest(e,this.loadOptions);else{let t=cn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(cn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=cn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new $y(ev.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=ev.Instance.transformGraph(e.modelInitializer);this.initializer=new $y(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=cn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Xe)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Tt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${$ne}${One}`);let n=new lv(e,t);return await n.load(),n}var Dne="3.0.0",uv={};$e(uv,{CSVDataset:()=>hv,Dataset:()=>Cl,FileDataSource:()=>dv,TextLineDataset:()=>cv,URLDataSource:()=>pv,array:()=>zne,csv:()=>Lne,func:()=>Wne,generator:()=>Bne,microphone:()=>Une,version_data:()=>jne,webcam:()=>Vne,zip:()=>Pne});var Gne=Mi(Z2()),Hne=Mi(Z2());function qne(e,t){return Hp(e,t)}function Hp(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Rl(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=Hp(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function Xne(e,t=mv){return fv(e,t)}function fv(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Rl(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(c=>c[i]),l=fv(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function mv(e){return e===null?null:Rl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function Av(e,t){let n=new Map;Hp(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(k.isPromise(a)){let s=await a;n.set(r,s)}}return Hp(e,t,n)}function Rl(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Xe))}function Zne(e){return e==null||Kne(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Xe||k.isTypedArray(e)}function Kne(e){return e===null||typeof e!="object"&&typeof e!="function"}function Jne(e){return qne(e,Yne)}function Yne(e){return e instanceof Xe?{value:e.clone(),recurse:!1}:Rl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var yv=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},Dy=class extends yv{constructor(){super(Dy.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;r<n;r++)t[r]=this.get(this.wrap(this.begin+r));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Dy.INITIAL_CAPACITY=32;function gv(e){return new Qne(e)}function zy(e){return new ere(e)}function tre(e,t){return new xv(e,t)}function rre(e,t=Da.FAIL){return new nre(e,t)}var jt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new cre(this,e)}filter(e){return new lre(this,e)}map(e){return new ure(this,e)}mapAsync(e){return new wv(this,e)}serialMapAsync(e){return new wv(this,e).serial()}flatmap(e){return new hre(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new ore(this,e,t)}columnMajorBatch(e,t=!0,n=mv){return this.rowMajorBatch(e,t).map(r=>Xne(r,n))}concatenate(e,t){return new xv(gv([this,e]),t)}take(e){return e<0||e==null?this:new ire(this,e)}skip(e){return e<0||e==null?this:new sre(this,e)}prefetch(e){return new _v(this,e)}shuffle(e,t){return new dre(this,e,t)}serial(){return new are(this)}},Qne=class extends jt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Jne(e),done:!1}}},ere=class extends jt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},are=class extends jt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},sre=class extends jt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ne(e.value)}return this.upstream.next()}},ire=class extends jt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},ore=class extends jt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},lre=class extends jt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ne(e.value)}}},ure=class extends jt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=lr.getTensorsInContainer(e.value),n=this.transform(e.value),r=lr.getTensorsInContainer(n);for(let a of t)lr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},cre=class extends jt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},wv=class extends jt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=lr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=lr.getTensorsInContainer(n);for(let a of t)lr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Py=class extends jt{constructor(){super();this.outputQueue=new Dy,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},hre=class extends Py{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=lr.getTensorsInContainer(e.value),n=this.transform(e.value),r=lr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)lr.isTensorInList(a,r)||a.dispose();return!0}},xv=class extends jt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Da;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Da||(Da={}));var nre=class extends jt{constructor(e,t=Da.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof jt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await Av(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Da.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Da.SHORTEST:return{value:null,done:!0};case Da.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},_v=class extends jt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new yv(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},dre=class extends _v{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Hne.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Cl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Mn(async()=>(await n.iterator()).columnMajorBatch(e,t,pre),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Mn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Mn(async()=>(await t.iterator()).filter(r=>W(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Mn(async()=>(await t.iterator()).map(n=>W(()=>e(n))),this.size)}mapAsync(e){let t=this;return Mn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Mn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Mn(async()=>{let r=zy(async()=>({value:await t.iterator(),done:!1}));return tre(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Mn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=Gne.alea(t||k.now().toString());return Mn(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Mn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Cl.MAX_BUFFER_SIZE=1e4;function Mn(e,t=null){return new class extends Cl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function zne(e){return Mn(async()=>gv(e),e.length)}function Pne(e){if(!Rl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Mn(async()=>{let n=await Av(e,r=>{if(r instanceof Cl)return{value:r.iterator(),recurse:!1};if(Rl(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return rre(n,Da.SHORTEST)},t)}function pre(e){if(e===null)return null;let t=e[0];return Zne(t)?{value:fre(e),recurse:!1}:{value:null,recurse:!0}}function fre(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Xe?Nn(e):ur(e)}var cv=class extends Cl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},qp='"',Rc=Symbol("out"),bv=Symbol("field"),Xp=Symbol("quote"),Ly=Symbol("quoteafterquote"),vv=Symbol("quoteinquote"),hv=class extends Cl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new cv(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a<this.fullColumnNames.length;a++){let s=this.fullColumnNames[a],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[a],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let c=Number(o);if(isNaN(c))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=c;else switch(i.dtype){case"float32":l=c;break;case"int32":l=Math.floor(c);break;case"bool":l=this.getBoolean(o);break;default:l=c}}i&&i.isLabel?r[s]=l:n[s]=l}}return Object.keys(r).length===0?n:{xs:n,ys:r}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],r=0,a=e.length,s=Rc;for(let i=0;i<a;i++)switch(s){case Rc:switch(e.charAt(i)){case qp:r=i+1,s=Xp;break;case this.delimiter:if(r=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Rc;break;default:s=bv,r=i;break}break;case bv:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i)),s=Rc,r=i+1;break;default:}break;case Xp:switch(e.charAt(i)){case qp:s=Ly;break;default:}break;case Ly:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i-1)),s=Rc,r=i+1;break;case qp:s=Xp;break;default:s=vv;break}break;case vv:switch(e.charAt(i)){case qp:s=Xp;break;default:}break;default:}if(s===Ly?n.push(e.substring(r,a-1)):n.push(e.substring(r)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},kv=class extends jt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Q().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new kv(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),ur(n,t)}},Iv=class extends jt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Wt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=pn([s,a,o,i],[1,4])}else this.cropBox=pn([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Q().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new Iv(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Go.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return W(()=>{let t=bn(me(e,"float32"),0),n;n=Je.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return q(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},Nv=class{},Sv=class extends jt{split(e){return new mre(this,e)}},mre=class extends Sv{constructor(e,t){super();this.upstream=e,this.impl=new Are(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Are=class extends Py{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},gre=class extends jt{decodeUTF8(){return new yre(this)}},yre=class extends Sv{constructor(e){super();this.upstream=e,this.impl=new xre(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},xre=class extends Py{constructor(e){super();if(this.upstream=e,Q().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=N8();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Q().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},Tv=class extends gre{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(Q().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function _re(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=wre(e));let a=await k.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new Tv(s,t)}else throw new Error(a.statusText)}var wre=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function Ev(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var dv=class extends Nv{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Ev(this.input)&&Q().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new Tv(this.input,this.options)}},pv=class extends Nv{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Ev(this.url)?new dv(this.url,this.fileOptions).iterator():_re(this.url,this.fileOptions)}};function Lne(e,t={}){return new hv(new pv(e),t)}function Wne(e){let t=zy(e);return Mn(async()=>t)}function Bne(e){return Mn(async()=>{let t=await e();return zy(()=>t.next())})}async function Vne(e,t){return Iv.create(e,t)}async function Une(e){return kv.create(e)}var jne="3.0.0",bre={tfjs:S8,"tfjs-core":T8,"tfjs-data":E8,"tfjs-layers":C8,"tfjs-converter":R8,"tfjs-backend-cpu":Cx,"tfjs-backend-webgl":Yw,"tfjs-backend-wasm":Vb};var ln={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Cv(){if(!af(ln.name)){Te("backend registration:",ln.name);try{ln.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(ln.width,ln.height):document.createElement("canvas")}catch(e){Te("error: cannot create canvas:",e);return}try{ln.gl=ln.canvas.getContext("webgl2",ln.webGLattr)}catch(e){Te("error: cannot get WebGL2 context:",e);return}try{Gd(2,ln.gl)}catch(e){Te("error: cannot set WebGL2 context:",e);return}try{let e=new Kd(ln.gl);qo(ln.name,()=>new Yd(e),ln.priority)}catch(e){Te("error: cannot register WebGL backend:",e);return}try{Lo("webgl").forEach(t=>{let n={...t,backendName:ln.name};Bs(n)})}catch(e){Te("error: cannot update WebGL backend registration:",e);return}try{tn.set("WEBGL_VERSION",2),tn.set("WEBGL_MAX_TEXTURE_SIZE",ln.gl.getParameter(ln.gl.MAX_TEXTURE_SIZE)),tn.set("WEBGL_FORCE_F16_TEXTURES",!0),tn.set("WEBGL_PACK_DEPTHWISECONV",!0)}catch(e){Te("error: cannot set WebGL backend flags:",e);return}Te("backend registered:",ln.name)}}var Rv=6;function vre(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r<t.strides.length;r++){let a=t.strides[r],s=Math.floor((e+a-1)/a),i=Math.floor((e+a-1)/a),o=t.anchors[r];for(let l=0;l<s;l++){let c=a*(l+.5);for(let u=0;u<i;u++){let h=a*(u+.5);for(let p=0;p<o;p++)n.push([h,c])}}}return n}var kre=e=>({startEndTensor:e,startPoint:Ee(e,[0,0],[-1,2]),endPoint:Ee(e,[0,2],[-1,2])});function Ire(e,t,n){let r=Ee(e,[0,1],[-1,2]),a=se(r,t),s=Ee(e,[0,3],[-1,2]),i=be(s,n),o=be(a,n),l=be(i,2),c=Ae(o,l),u=se(o,l),h=L(c,n),p=L(u,n);return Yo([h,p],1)}var Fv=class{constructor(t,n){this.blazeFaceModel=t,this.width=n.face.detector.inputSize,this.height=n.face.detector.inputSize,this.anchorsData=vre(n.face.detector.inputSize),this.anchors=pn(this.anchorsData),this.inputSize=Wt([this.width,this.height]),this.config=n,this.scaleFaces=.8}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=W(()=>{let h=t.resizeBilinear([this.width,this.height]),p=Ae(h.div(127.5),1),d=this.blazeFaceModel.predict(p),f;if(Array.isArray(d)){let g=d.sort((b,N)=>b.size-N.size),_=rt([g[0],g[2]],2),x=rt([g[1],g[3]],2);f=rt([x,_],1).squeeze(0)}else f=d.squeeze();let m=Ire(f,this.anchors,this.inputSize),A=Ee(f,[0,0],[-1,1]),y=_n(A).squeeze();return[f,m,y]}),s=await Je.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>Ee(r,[h,0],[1,-1])).map(h=>{let p=h.arraySync();return h.dispose(),p}),c=a.dataSync(),u=[];for(let h=0;h<l.length;h++){let p=i[h],d=c[p];if(d>this.config.face.detector.minConfidence){let f=kre(l[h]),m=this.anchorsData[p],A=W(()=>Ee(n,[p,Rv-1],[1,-1]).squeeze().reshape([Rv,-1]));u.push({box:f,landmarks:A,anchor:m,confidence:d})}}return n.dispose(),r.dispose(),a.dispose(),n.dispose(),{boxes:u,scaleFactor:[t.shape[2]/this.width,t.shape[1]/this.height]}}};async function Mv(e){let t=await Tt(e.face.detector.modelPath,{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new Fv(t,e);return Te(`load model: ${e.face.detector.modelPath.match(/\/(.*)\./)[1]}`),n}function Ov(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function Fc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Mc(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Wy(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Je.cropAndResize(t,s,[0],n)}function Kp(e,t=1.5){let n=Mc(e),r=Fc(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function Zp(e){let t=Mc(e),n=Fc(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}var Yp=[[1,0,0],[0,1,0],[0,0,1]];function Nre(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function $v(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Nre(n)}function Dv(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function za(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function Sre(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function zv(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(za(e[a],Sre(t,s)))}return n}function By(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=Dv(t[0],t[1]),i=zv(s,a),o=Dv(-t[0],-t[1]);return zv(i,o)}function Pv(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-za(t[0],n),-za(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function Lv(e,t){return[za(e,t[0]),za(e,t[1])]}var Wr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Vy=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Uy=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Wv=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Tre=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Ere=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Cre=[33,133,362,263,1,78,308],Tae=Tre.map(e=>Uy[e]),Eae=Ere.map(e=>Uy[e]),Cae=Cre.map(e=>Uy[e]);var Rre=468,Fre=13,Mre=[Fre,Wr.midwayBetweenEyes[0]],Ore=3,$re=2,Dre=[Ore,$re],jy=Wr.leftEyeLower0,Gy=[jy[0],jy[jy.length-1]],Hy=Wr.rightEyeLower0,qy=[Hy[0],Hy[Hy.length-1]],zre=3,Pre=4,Lre=71,Xy=76;function Jp(e,t,n,r=null){for(let a=0;a<Vy.length;a++){let{key:s,indices:i}=Vy[a],o=Wr[`${n}${s}`];if(r===null||r.includes(s))for(let c=0;c<i.length;c++){let u=i[c];e[o[c]]=[t[u][0],t[u][1],(t[u][2]+e[o[c]][2])/2]}}}var Ky=class{constructor(t,n,r,a){this.storedBoxes=[],this.runsWithoutFaceDetector=0,this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=r,this.meshWidth=a.face.mesh.inputSize,this.meshHeight=a.face.mesh.inputSize,this.irisSize=a.face.iris.inputSize,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,r,a){let s=Fc({startPoint:n.startPoint,endPoint:n.endPoint}),i=[s[0]/this.meshWidth,s[1]/this.meshHeight],o=t.map(p=>[i[0]*(p[0]-this.meshWidth/2),i[1]*(p[1]-this.meshHeight/2),p[2]]),l=r!==0?By(r,[0,0]):Yp,c=r!==0?o.map(p=>[...Lv(p,l),p[2]]):o,u=r!==0?Pv(a):Yp,h=[...Mc({startPoint:n.startPoint,endPoint:n.endPoint}),1];return c.map(p=>[p[0]+za(h,u[0]),p[1]+za(h,u[1]),p[2]])}getLeftToRightEyeDepthDifference(t){let n=t[Gy[0]][2],r=t[qy[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=Zp(Kp(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=Fc(i),l=Je.cropAndResize(n,[[i.startPoint[1]/this.meshHeight,i.startPoint[0]/this.meshWidth,i.endPoint[1]/this.meshHeight,i.endPoint[0]/this.meshWidth]],[0],[this.irisSize,this.irisSize]);return s&&(l=Je.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i<Xy;i++){let o=t[i*3],l=t[i*3+1],c=t[i*3+2];s.push([(a?1-o/this.irisSize:o/this.irisSize)*r[0]+n.startPoint[0],l/this.irisSize*r[1]+n.startPoint[1],c])}return{rawCoords:s,iris:s.slice(Lre)}}getAdjustedIrisCoords(t,n,r){let a=t[Wr[`${r}EyeUpper0`][zre]][2],s=t[Wr[`${r}EyeLower0`][Pre]][2],i=(a+s)/2;return n.map((o,l)=>{let c=i;return l===2?c=a:l===4&&(c=s),[o[0],o[1],c]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.boxes&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let o=Ov({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},a.scaleFactor),l=Kp(o),c=Zp(l),u=this.storedBoxes[i].landmarks.arraySync(),h=this.storedBoxes[i].confidence;this.storedBoxes[i]={...c,confidence:h,landmarks:u}}this.runsWithoutFaceDetector=0}a&&a.boxes&&a.boxes.forEach(i=>{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=W(()=>this.storedBoxes.map((i,o)=>{let l,c=0,u;if(n.face.detector.rotation){let[w,b]=i.landmarks.length>=Rre?Mre:Dre;c=$v(i.landmarks[w],i.landmarks[b]);let N=Mc({startPoint:i.startPoint,endPoint:i.endPoint}),T=[N[0]/t.shape[2],N[1]/t.shape[1]],E=Je.rotateWithOffset(t,c,0,T);u=By(-c,N),l=Wy({startPoint:i.startPoint,endPoint:i.endPoint},E,[this.meshHeight,this.meshWidth]).div(255)}else{u=Yp;let w=t.clone();l=Wy({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.meshHeight,this.meshWidth]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,confidence:i.confidence,image:l};let[,h,p]=this.meshDetector.predict(l),d=h.dataSync()[0];if(d<n.face.detector.minConfidence)return null;let m=q(p,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:w,boxSize:b,crop:N}=this.getEyeBox(m,l,Gy[0],Gy[1],!0),{box:T,boxSize:E,crop:M}=this.getEyeBox(m,l,qy[0],qy[1]),P=this.irisModel.predict(rt([N,M])).dataSync(),V=P.slice(0,Xy*3),{rawCoords:H,iris:U}=this.getEyeCoords(V,w,b,!0),K=P.slice(Xy*3),{rawCoords:X,iris:ee}=this.getEyeCoords(K,T,E),Z=this.getLeftToRightEyeDepthDifference(m);Math.abs(Z)<30?(Jp(m,H,"left"),Jp(m,X,"right")):Z<1?Jp(m,H,"left",["EyeUpper0","EyeLower0"]):Jp(m,X,"right",["EyeUpper0","EyeLower0"]);let ae=this.getAdjustedIrisCoords(m,U,"left"),J=this.getAdjustedIrisCoords(m,ee,"right");m=m.concat(ae).concat(J)}let A=this.transformRawCoords(m,i,c,u),y=Kp(this.calculateLandmarksBoundingBox(A)),g=Zp(y),_=pn(A),x={coords:_,box:y,faceConfidence:d,confidence:i.confidence,image:l,rawCoords:m};return n.face.mesh.returnRawData||delete x.rawCoords,this.storedBoxes[o]={...g,landmarks:_.arraySync(),confidence:i.confidence,faceConfidence:d},x}));return s=s.filter(i=>i!==null),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};var k6=eu(Vv());var Jy={};br(Jy,{FaceBoxes:()=>Qy,load:()=>Bre});var Yy={};function Br(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(o=>o.kernelTimeMs>0).reduce((o,l)=>o+=l.kernelTimeMs,0),a=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.kernelTimeMs>0).sort((o,l)=>l.kernelTimeMs-o.kernelTimeMs),s=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.totalBytesSnapshot>0).sort((o,l)=>l.totalBytesSnapshot-o.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n);let i={newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s};Yy[e]=i,Te("Human profiler",e,i)}var Qy=class{constructor(t,n){this.enlarge=1.1,this.model=t,this.config=n}async estimateFaces(t,n){n&&(this.config=n);let r=[],a=Je.resizeBilinear(t,[this.config.face.detector.inputSize,this.config.face.detector.inputSize]),s=a.toInt(),i,o;if(n.profile){let l=await cr(()=>this.model.executeAsync(s));i=l.result[0].dataSync(),o=l.result[1].squeeze().arraySync(),l.result.forEach(u=>u.dispose()),Br("faceboxes",l)}else{let[l,c,u]=await this.model.executeAsync(s);i=l.dataSync();let h=c.squeeze();o=h.arraySync(),l.dispose(),c.dispose(),h.dispose(),u.dispose()}s.dispose(),a.dispose();for(let l in o)if(i[l]&&i[l]>this.config.face.detector.minConfidence){let c=[o[l][0]/this.enlarge,o[l][1]/this.enlarge,o[l][2]*this.enlarge,o[l][3]*this.enlarge],u=[c[1],c[0],c[3]-c[1],c[2]-c[0]],h=[parseInt((u[0]*t.shape[2]).toString()),parseInt((u[1]*t.shape[1]).toString()),parseInt((u[2]*t.shape[2]).toString()),parseInt((u[3]*t.shape[1]).toString())],p=Je.cropAndResize(t,[c],[0],[this.config.face.detector.inputSize,this.config.face.detector.inputSize]),d=p.div([255]);p.dispose(),r.push({confidence:i[l],box:h,boxRaw:this.config.face.mesh.returnRawData?u:null,image:d})}return r}};async function Bre(e){let t=await Tt(e.face.detector.modelPath);Te(`load model: ${e.face.detector.modelPath.match(/\/(.*)\./)[1]}`);let n=new Qy(t,e);return e.face.mesh.enabled&&Te(`load model: ${e.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),e.face.iris.enabled&&Te(`load model: ${e.face.iris.modelPath.match(/\/(.*)\./)[1]}`),n}var e2={};br(e2,{load:()=>t2,predict:()=>n2});var gi={age:null},Qp={age:0},e0=Number.MAX_SAFE_INTEGER;async function t2(e){return gi.age||(gi.age=await Tt(e.face.age.modelPath),Te(`load model: ${e.face.age.modelPath.match(/\/(.*)\./)[1]}`)),gi.age}async function n2(e,t){return gi.age?e0<t.face.age.skipFrames&&t.videoOptimized&&Qp.age&&Qp.age>0?(e0++,Qp):(t.videoOptimized?e0=0:e0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Je.resizeBilinear(e,[t.face.age.inputSize,t.face.age.inputSize],!1),a=L(r,[255]);Ne(r);let s,i={age:void 0};if(gi.age){if(!t.profile)t.face.age.enabled&&(s=await gi.age.predict(a));else{let o=t.face.age.enabled?await cr(()=>gi.age.predict(a)):{};s=o.result.clone(),o.result.dispose(),Br("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),Qp=i}n(i)})):null}var r2={};br(r2,{load:()=>o2,predict:()=>l2});var xi={gender:null},a2={gender:""},t0=Number.MAX_SAFE_INTEGER,s2=!1,i2=[.2989,.587,.114];async function o2(e){return xi.gender||(xi.gender=await Tt(e.face.gender.modelPath),s2=xi.gender.inputs[0].shape[3]===1,Te(`load model: ${e.face.gender.modelPath.match(/\/(.*)\./)[1]}`)),xi.gender}async function l2(e,t){return xi.gender?t0<t.face.gender.skipFrames&&t.videoOptimized&&a2.gender!==""?(t0++,a2):(t.videoOptimized?t0=0:t0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Je.resizeBilinear(e,[t.face.gender.inputSize,t.face.gender.inputSize],!1),a;s2?a=W(()=>{let[o,l,c]=Ht(r,3,3),u=L(o,i2[0]),h=L(l,i2[1]),p=L(c,i2[2]);return Xo([u,h,p]).sub(.5).mul(2)}):a=L(r,[255]),Ne(r);let s,i={gender:void 0,confidence:void 0};if(!t.profile)t.face.gender.enabled&&(s=await xi.gender.predict(a));else{let o=t.face.gender.enabled?await cr(()=>xi.gender.predict(a)):{};s=o.result.clone(),o.result.dispose(),Br("gender",o)}if(a.dispose(),s){let o=s.dataSync();if(s2){let l=Math.trunc(100*Math.abs(o[0]-o[1]))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=l)}else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}}s.dispose(),a2=i,n(i)})):null}var u2={};br(u2,{load:()=>d2,predict:()=>p2});var Vre=["angry","disgust","fear","happy","sad","surprise","neutral"],Fl={emotion:null},c2=[],n0=Number.MAX_SAFE_INTEGER,h2=[.2989,.587,.114],Uv=1;async function d2(e){return Fl.emotion||(Fl.emotion=await Tt(e.face.emotion.modelPath),Te(`load model: ${e.face.emotion.modelPath.match(/\/(.*)\./)[1]}`)),Fl.emotion}async function p2(e,t){return Fl.emotion?n0<t.face.emotion.skipFrames&&t.videoOptimized&&c2.length>0?(n0++,c2):(t.videoOptimized?n0=0:n0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Je.resizeBilinear(e,[t.face.emotion.inputSize,t.face.emotion.inputSize],!1),[a,s,i]=Ht(r,3,3);r.dispose();let o=L(a,h2[0]),l=L(s,h2[1]),c=L(i,h2[2]);a.dispose(),s.dispose(),i.dispose();let u=Xo([o,l,c]);o.dispose(),l.dispose(),c.dispose();let h=W(()=>u.sub(.5).mul(2));u.dispose();let p=[];if(t.face.emotion.enabled){let d;if(t.profile){let f=await cr(()=>Fl.emotion.predict(h));d=f.result.dataSync(),f.result.dispose(),Br("emotion",f)}else{let f=await Fl.emotion.predict(h);d=f.dataSync(),Ne(f)}for(let f=0;f<d.length;f++)Uv*d[f]>t.face.emotion.minConfidence&&p.push({score:Math.min(.99,Math.trunc(100*Uv*d[f])/100),emotion:Vre[f]});p.sort((f,m)=>m.score-f.score)}h.dispose(),c2=p,n(p)})):null}var Ml={embedding:null};async function f2(e){return Ml.embedding||(Ml.embedding=await Tt(e.face.embedding.modelPath),Te(`load model: ${e.face.embedding.modelPath.match(/\/(.*)\./)[1]}`)),Ml.embedding}function jv(e,t){if((e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let n=2,r=10*e.map((a,s)=>a-t[s]).reduce((a,s)=>a+s**n,0)**(1/n);return Math.trunc(1e3*(1-r))/1e3}async function m2(e,t){return Ml.embedding?new Promise(async n=>{let r=Je.resizeBilinear(e,[t.face.embedding.inputSize,t.face.embedding.inputSize],!1),a=[];if(t.face.embedding.enabled)if(t.profile){let s=await cr(()=>Ml.embedding.predict({img_inputs:r}));a=[...s.result.dataSync()],s.result.dispose(),Br("emotion",s)}else{let s=await Ml.embedding.predict({img_inputs:r});a=[...s.dataSync()],Ne(s)}r.dispose(),n(a)}):null}var S2={};br(S2,{PoseNet:()=>T2,load:()=>E2});var Ure=[-123.15,-115.9,-103.06];function jre(e){let[t,n,r,a]=e;return{offsets:t,heatmap:n,displacementFwd:r,displacementBwd:a}}function Gre(e){let[t,n,r,a]=e;return{offsets:r,heatmap:a,displacementFwd:t,displacementBwd:n}}var A2=class{constructor(t){this.model=t}predict(t,n){return W(()=>{let a=(n.body.modelType==="ResNet"?t.toFloat().add(Ure):t.toFloat().div(127.5).sub(1)).expandDims(0),i=this.model.predict(a).map(l=>l.squeeze([0])),o=n.body.modelType==="ResNet"?Gre(i):jre(i);return{heatmapScores:o.heatmap.sigmoid(),offsets:o.offsets,displacementFwd:o.displacementFwd,displacementBwd:o.displacementBwd}})}dispose(){this.model.dispose()}};function y2(e){return Math.floor(e/2)}var g2=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(y2(t),t);)this.exchange(t,y2(t)),t=y2(t)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let r=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=r}};function Hre(e,t,n,r,a,s){let[i,o]=s.shape,l=!0,c=Math.max(n-a,0),u=Math.min(n+a+1,i);for(let h=c;h<u;++h){let p=Math.max(r-a,0),d=Math.min(r+a+1,o);for(let f=p;f<d;++f)if(s.get(h,f,e)>t){l=!1;break}if(!l)break}return l}function Gv(e,t,n){let[r,a,s]=n.shape,i=new g2(r*a*s,({score:o})=>o);for(let o=0;o<r;++o)for(let l=0;l<a;++l)for(let c=0;c<s;++c){let u=n.get(o,l,c);u<e||Hre(c,u,o,l,t,n)&&i.enqueue({score:u,part:{heatmapY:o,heatmapX:l,id:c}})}return i}var sa=eu(r0());var Hv=eu(r0());function _2(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+Hv.NUM_KEYPOINTS)}}function a0(e,t,n){let{heatmapY:r,heatmapX:a,id:s}=e,{y:i,x:o}=_2(r,a,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function b2(e,t,n){return e<t?t:e>n?n:e}function qv(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function v2(e,t){return{x:e.x+t.x,y:e.y+t.y}}var s0=eu(r0());function Xv(e,t){let n=t.shape[0],r=new Float32Array(n);for(let a=0;a<n;a++){let s=t.get(a,0),i=t.get(a,1);r[a]=e.get(s,i,a)}return r}function Qre(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+s0.NUM_KEYPOINTS)}}function eae(e,t){let n=[];for(let r=0;r<s0.NUM_KEYPOINTS;r++){let a=e.get(r,0).valueOf(),s=e.get(r,1).valueOf(),{x:i,y:o}=Qre(a,s,r,t);n.push(o),n.push(i)}return pn(n,[s0.NUM_KEYPOINTS,2])}function Kv(e,t,n){return W(()=>e.toTensor().mul(ke(t,"int32")).toFloat().add(eae(e,n)))}function tae(e,t){return W(()=>{let n=e.div(ke(t,"int32"));return e.sub(n.mul(ke(t,"int32")))})}function Zv(e){let[t,n,r]=e.shape;return W(()=>{let s=e.reshape([t*n,r]).argMax(0),i=s.div(ke(n,"int32")).expandDims(1),o=tae(s,n).expandDims(1);return rt([i,o],1)})}var Yv=sa.poseChain.map(([e,t])=>[sa.partIds[e],sa.partIds[t]]),k2=Yv.map(([,e])=>e),Jv=Yv.map(([e])=>e);function nae(e,t,n){let r=n.shape[2]/2;return{y:n.get(t.y,t.x,e),x:n.get(t.y,t.x,r+e)}}function I2(e,t,n,r){return{y:b2(Math.round(e.y/t),0,n-1),x:b2(Math.round(e.x/t),0,r-1)}}function Qv(e,t,n,r,a,s,i,o=2){let[l,c]=r.shape,u=I2(t.position,s,l,c),h=nae(e,u,i),d=v2(t.position,h);for(let A=0;A<o;A++){let y=I2(d,s,l,c),g=_2(y.y,y.x,n,a);d=v2({x:y.x*s,y:y.y*s},{x:g.x,y:g.y})}let f=I2(d,s,l,c),m=r.get(f.y,f.x,n);return{position:d,part:sa.partNames[n],score:m}}function e6(e,t,n,r,a,s){let i=t.shape[2],o=k2.length,l=new Array(i),{part:c,score:u}=e,h=a0(c,r,n);l[c.id]={score:u,part:sa.partNames[c.id],position:h};for(let p=o-1;p>=0;--p){let d=k2[p],f=Jv[p];l[d]&&!l[f]&&(l[f]=Qv(p,l[d],f,t,n,r,s))}for(let p=0;p<o;++p){let d=Jv[p],f=k2[p];l[d]&&!l[f]&&(l[f]=Qv(p,l[d],f,t,n,r,a))}return l}async function t6(e,t,n){let r=0,a=Zv(e),s=await Promise.all([e.buffer(),t.buffer(),a.buffer()]),i=s[0],o=s[1],l=s[2],c=Kv(l,n.body.outputStride,o),u=await c.buffer(),p=Array.from(Xv(i,l)).map((f,m)=>(r+=f,{position:{y:u.get(m,0),x:u.get(m,1)},part:sa.partNames[m],score:f})),d=p.filter(f=>f.score>n.body.scoreThreshold);return a.dispose(),c.dispose(),{keypoints:d,score:r/p.length}}var rae=1;function n6(e,t,{x:n,y:r},a){return e.some(({keypoints:s})=>{let i=s[a].position;return qv(r,n,i.y,i.x)<=t})}function aae(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(n6(e,t,s,o)||(a+=i),a),0)/n.length}function r6(e,t,n,r,a){let s=[],i=Gv(a.body.scoreThreshold,rae,e),o=a.body.nmsRadius^2;for(;s.length<a.body.maxDetections&&!i.empty();){let l=i.dequeue(),c=a0(l.part,a.body.outputStride,t);if(n6(s,o,c,l.part.id))continue;let u=e6(l,e,t,a.body.outputStride,n,r),h=aae(s,o,u);h>a.body.scoreThreshold&&s.push({keypoints:u,score:h})}return s}async function a6(e){return Promise.all(e.map(t=>t.buffer()))}function sae(e,t,n){return{score:e.score,keypoints:e.keypoints.map(({score:r,part:a,position:s})=>({score:r,part:a,position:{x:s.x*n,y:s.y*t}}))}}function s6(e,[t,n]){let r=e.squeeze(0),a=r.resizeBilinear([t,n]);return r.dispose(),a}function N2(e,[t,n],[r,a]){return e.map(i=>sae(i,t/r,n/a))}async function iae(e,t,n){return new Promise(async r=>{let a=e.shape[1],s=e.shape[2],i=await a6([t.heatmapScores,t.offsets,t.displacementFwd,t.displacementBwd]),o=i[0],l=i[1],c=i[2],u=i[3],h=await r6(o,l,c,u,n),p=N2(h,[a,s],[n.body.inputSize,n.body.inputSize]);r(p)})}async function oae(e,t,n){return new Promise(async r=>{let a=e.shape[1],s=e.shape[2],o=[await t6(t.heatmapScores,t.offsets,n)],l=N2(o,[a,s],[n.body.inputSize,n.body.inputSize]);r(l)})}var T2=class{constructor(t){this.baseModel=t}async estimatePoses(t,n){let r=s6(t,[n.body.inputSize,n.body.inputSize]),a=this.baseModel.predict(r,n),s=n.body.maxDetections<2?await oae(t,a,n):await iae(t,a,n);return a.heatmapScores.dispose(),a.offsets.dispose(),a.displacementFwd.dispose(),a.displacementBwd.dispose(),r.dispose(),s}dispose(){this.baseModel.dispose()}};async function E2(e){let t=await Tt(e.body.modelPath),n=new A2(t);return Te(`load model: ${e.body.modelPath.match(/\/(.*)\./)[1]}`),new T2(n)}var O2={};br(O2,{HandPose:()=>D2,load:()=>z2});function i0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Oc(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function i6(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Je.cropAndResize(t,s,[0],n)}function o6(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function o0(e,t=1.5){let n=Oc(e),r=i0(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function l0(e){let t=Oc(e),n=i0(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var C2=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=pn(this.anchors),this.inputSizeTensor=Wt([n,n]),this.doubleInputSizeTensor=Wt([n*2,n*2])}normalizeBoxes(t){return W(()=>{let n=Ee(t,[0,0],[-1,2]),r=Ee(t,[0,2],[-1,2]),a=se(be(n,this.inputSizeTensor),this.anchorsTensor),s=be(r,this.doubleInputSizeTensor),i=L(Ae(a,s),this.inputSizeTensor),o=L(se(a,s),this.inputSizeTensor);return Yo([i,o],1)})}normalizeLandmarks(t,n){return W(()=>{let r=se(be(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return L(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=W(()=>_n(Ee(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Ee(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let c=await Je.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),u=c.arraySync();s.dispose(),c.dispose();let h=[];for(let p of u)if(i[p]>=n.hand.minConfidence){let d=Ee(l,[p,0],[1,-1]),f=Ee(a,[p,5],[1,14]),m=W(()=>this.normalizeLandmarks(f,p).reshape([-1,2]));f.dispose(),h.push({box:d,palmLandmarks:m,confidence:i[p]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=W(()=>t.resizeBilinear([n.hand.inputSize,n.hand.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let c=l.box.dataSync(),u=c.slice(0,2),h=c.slice(2,4),p=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(o6({startPoint:u,endPoint:h,palmLandmarks:p,confidence:l.confidence},[a/n.hand.inputSize,r/n.hand.inputSize]))}return o}};function lae(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function l6(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return lae(n)}var u6=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Pa(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function uae(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function c6(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(Pa(e[a],uae(t,s)))}return n}function R2(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=u6(t[0],t[1]),i=c6(s,a),o=u6(-t[0],-t[1]);return c6(i,o)}function h6(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-Pa(t[0],n),-Pa(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function F2(e,t){return[Pa(e,t[0]),Pa(e,t[1])]}var cae=5,d6=1.65,p6=[0,5,9,13,17,1,2],hae=0,dae=2,M2=class{constructor(t,n,r){this.handDetector=t,this.landmarkDetector=n,this.inputSize=r,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}getBoxForPalmLandmarks(t,n){let r=t.map(s=>F2([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return o0(l0(a),cae)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=o0(l0(n),d6);r.palmLandmarks=[];for(let a=0;a<p6.length;a++)r.palmLandmarks.push(t[p6[a]].slice(0,2));return r}transformRawCoords(t,n,r,a){let s=i0(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(d=>[i[0]*(d[0]-this.inputSize/2),i[1]*(d[1]-this.inputSize/2),i[2]*d[2]]),l=R2(r,[0,0]),c=o.map(d=>[...F2(d,l),d[2]]),u=h6(a),h=[...Oc(n),1],p=[Pa(h,u[0]),Pa(h,u[1])];return c.map(d=>[d[0]+p[0],d[1]+p[1],d[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let l=n.hand.rotation?l6(o.palmLandmarks[hae],o.palmLandmarks[dae]):0,c=Oc(o),u=[c[0]/t.shape[2],c[1]/t.shape[1]],h=n.hand.rotation?Je.rotateWithOffset(t,l,0,u):t.clone(),p=R2(-l,c),d=r?this.getBoxForPalmLandmarks(o.palmLandmarks,p):o,f=i6(d,h,[this.inputSize,this.inputSize]),m=f.div(255);f.dispose(),h.dispose();let[A,y]=await this.landmarkDetector.predict(m);m.dispose();let g=A.dataSync()[0];if(A.dispose(),g>=n.hand.minConfidence){let _=q(y,[-1,3]),x=_.arraySync();y.dispose(),_.dispose();let w=this.transformRawCoords(x,d,l,p),b=this.getBoxForHandLandmarks(w);this.storedBoxes[i]=b;let N={landmarks:w,confidence:g,box:{topLeft:b.startPoint,bottomRight:b.endPoint}};s.push(N)}else this.storedBoxes[i]=null;y.dispose()}else{let l=o0(l0(o),d6),c={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(c)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};var f6=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var $2={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},D2=class{constructor(t){this.handPipeline=t}static getAnnotations(){return $2}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let l of Object.keys($2))i[l]=$2[l].map(c=>s.landmarks[c]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-s.box.topLeft[0],Math.min(t.shape[1],s.box.bottomRight[1])-s.box.topLeft[1]]:0;a.push({confidence:s.confidence,box:o,landmarks:s.landmarks,annotations:i})}return a}};async function z2(e){let[t,n]=await Promise.all([e.hand.enabled?Tt(e.hand.detector.modelPath,{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Tt(e.hand.skeleton.modelPath,{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),r=new C2(t,e.hand.inputSize,f6),a=new M2(r,n,e.hand.inputSize),s=new D2(a);return e.hand.enabled&&Te(`load model: ${e.hand.detector.modelPath.match(/\/(.*)\./)[1]}`),e.hand.landmarks&&Te(`load model: ${e.hand.skeleton.modelPath.match(/\/(.*)\./)[1]}`),s}var m6=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=e[n].keypoints.find(l=>l.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.y<s.position.y&&a.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&r&&r.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&a&&a.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},A6=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let r=e[n].mesh[35][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing camera"}):t.push({face:n,gesture:`facing ${r<0?"right":"left"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},y6=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let r=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],a=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(r*a),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o);Math.abs(s-l)/Math.max(s,l)<.25&&t.push({iris:n,gesture:"looking at camera"})}return t},g6=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=[];for(let[a,s]of Object.entries(e[n].annotations))a!=="palmBase"&&r.push({name:a.toLowerCase(),position:s[0]});if(r&&r.length>0){let a=r.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=r.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${a.name} forward ${s.name} up`})}}return t};var _6=eu(w6()),It=null,Zt=null;function P2(e,t){let n;if(e instanceof Xe)n=Yn(e);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,s=r,i=a;if(t.filter.width>0?s=t.filter.width:t.filter.height>0&&(s=r*(t.filter.height/a)),t.filter.height>0?i=t.filter.height:t.filter.width>0&&(i=a*(t.filter.width/r)),!s||!i)return Te("Human: invalid input",e),null;(!It||It.width!==s||It.height!==i)&&(It=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas"),It.width!==s&&(It.width=s),It.height!==i&&(It.height=i));let o=It.getContext("2d");if(e instanceof ImageData?o.putImageData(e,0,0):o.drawImage(e,0,0,r,a,0,0,It.width,It.height),t.filter.enabled){if((!this.fx||!Zt||It.width!==Zt.width||It.height!==Zt.height)&&(Zt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(It.width,It.height):document.createElement("canvas"),Zt.width!==It.width&&(Zt.width=It.width),Zt.height!==It.height&&(Zt.height=It.height),this.fx=tn.flags.IS_BROWSER?new _6.GLImageFilter({canvas:Zt}):null),!this.fx)return It;this.fx.reset(),this.fx.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&this.fx.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&this.fx.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&this.fx.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&this.fx.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&this.fx.addFilter("hue",t.filter.hue),t.filter.negative&&this.fx.addFilter("negative"),t.filter.sepia&&this.fx.addFilter("sepia"),t.filter.vintage&&this.fx.addFilter("brownie"),t.filter.sepia&&this.fx.addFilter("sepia"),t.filter.kodachrome&&this.fx.addFilter("kodachrome"),t.filter.technicolor&&this.fx.addFilter("technicolor"),t.filter.polaroid&&this.fx.addFilter("polaroid"),t.filter.pixelate!==0&&this.fx.addFilter("pixelate",t.filter.pixelate),this.fx.apply(It)}else Zt=It;let l;if(Zt.data){let u=[Zt.height,Zt.width,3];l=Xh(Zt.data,u,"int32")}else if(t.backend==="webgl"||Zt instanceof ImageData)l=Go.fromPixels(Zt);else{let u=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas");u.width=s,u.height=i;let h=u.getContext("2d");h==null||h.drawImage(Zt,0,0);let p=h==null?void 0:h.getImageData(0,0,s,i);l=Go.fromPixels(p)}let c=l.toFloat();n=c.expandDims(0),l.dispose(),c.dispose()}return{tensor:n,canvas:t.filter.return?Zt:null}}var b6={backend:"webgl",wasmPath:"../assets/",async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"../models/blazeface-back.json",inputSize:256,rotation:!1,maxFaces:10,skipFrames:11,minConfidence:.5,iouThreshold:.2,scoreThreshold:.5},mesh:{enabled:!0,modelPath:"../models/facemesh.json",inputSize:192,returnRawData:!1},iris:{enabled:!0,modelPath:"../models/iris.json",inputSize:64},age:{enabled:!0,modelPath:"../models/age-ssrnet-imdb.json",inputSize:64,skipFrames:31},gender:{enabled:!0,minConfidence:.1,modelPath:"../models/gender-ssrnet-imdb.json",inputSize:64,skipFrames:41},emotion:{enabled:!0,inputSize:64,minConfidence:.2,skipFrames:21,modelPath:"../models/emotion-large.json"},embedding:{enabled:!1,inputSize:112,modelPath:"../models/mobilefacenet.json"}},body:{enabled:!0,modelPath:"../models/posenet.json",inputSize:257,maxDetections:10,scoreThreshold:.5,nmsRadius:20,outputStride:16,modelType:"MobileNet"},hand:{enabled:!0,rotation:!1,inputSize:256,skipFrames:12,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"../models/handdetect.json"},skeleton:{modelPath:"../models/handskeleton.json"}}};var u0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,c0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;var v6="0.11.5";var dt=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Ol(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Ol(s,i):n[a]=i}),n),{})}var L2=class{constructor(t={}){this.tf=rh,this.version=v6,this.config=Ol(b6,t),this.fx=null,this.state="idle",this.numTensors=0,this.analyzeMemoryLeaks=!1,this.checkSanity=!1,this.firstRun=!0,this.perf={},this.models={facemesh:null,posenet:null,handpose:null,iris:null,age:null,gender:null,emotion:null},this.facemesh=k6,this.age=e2,this.gender=r2,this.emotion=u2,this.body=S2,this.hand=O2}profile(){return this.config.profile?Yy:{}}analyze(...t){if(!this.analyzeMemoryLeaks)return;let n=Pn().state.numTensors,r=this.numTensors;this.numTensors=n;let a=n-r;a!==0&&Te(...t,a)}sanity(t){if(!this.checkSanity)return null;if(!t)return"input is not defined";if(tn.flags.IS_NODE&&!(t instanceof Xe))return"input must be a tensor";try{Yh()}catch(n){return"backend not loaded"}return null}simmilarity(t,n){return this.config.face.embedding.enabled?jv(t,n):0}async load(t=null){this.state="load";let n=dt();t&&(this.config=Ol(this.config,t)),this.firstRun&&(Te(`version: ${this.version} TensorFlow/JS version: ${r5}`),await this.checkBackend(!0),tn.flags.IS_BROWSER&&(Te("configuration:",this.config),Te("tf flags:",tn.flags)));let r=this.config.face.detector.modelPath.includes("faceboxes")?Jy:k6;this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.posenet,this.models.handpose]=await Promise.all([this.models.face||(this.config.face.enabled?r.load(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?t2(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?o2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?d2(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?f2(this.config):null),this.models.posenet||(this.config.body.enabled?E2(this.config):null),this.models.handpose||(this.config.hand.enabled?z2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await r.load(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await t2(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await o2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await d2(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await f2(this.config)),this.config.body.enabled&&!this.models.posenet&&(this.models.posenet=await E2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await z2(this.config))),this.firstRun&&(Te("tf engine state:",Pn().state.numBytes,"bytes",Pn().state.numTensors,"tensors"),this.firstRun=!1);let a=Math.trunc(dt()-n);a>(this.perf.load||0)&&(this.perf.load=a)}async checkBackend(t=!1){if(this.config.backend&&this.config.backend!==""&&t||Yh()!==this.config.backend){let n=dt();this.state="backend",Te("setting backend:",this.config.backend),this.config.backend==="wasm"&&(Te("settings wasm path:",this.config.wasmPath),Bb(this.config.wasmPath),await Q().getAsync("WASM_HAS_SIMD_SUPPORT")||Te("warning: wasm simd support is not enabled")),this.config.backend==="humangl"&&Cv();try{await s5(this.config.backend)}catch(r){Te("error: cannot set backend:",this.config.backend,r)}if(a5(),Yh()==="webgl"){this.config.deallocate&&(Te("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),tn.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1)),tn.set("WEBGL_FORCE_F16_TEXTURES",!0),tn.set("WEBGL_PACK_DEPTHWISECONV",!0);let r=await sf().getGPGPUContext().gl;Te(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await i5(),this.perf.backend=Math.trunc(dt()-n)}}async detectFace(t){var c,u,h,p,d,f;let n,r,a,s,i,o=[];this.state="run:face",n=dt();let l=await((c=this.models.face)==null?void 0:c.estimateFaces(t,this.config));this.perf.face=Math.trunc(dt()-n);for(let m of l){if(this.analyze("Get Face"),!m.image||m.image.isDisposedInternal){Te("Face object is disposed:",m.image);continue}this.analyze("Start Age:"),this.config.async?r=this.config.face.age.enabled?n2(m.image,this.config):{}:(this.state="run:age",n=dt(),r=this.config.face.age.enabled?await n2(m.image,this.config):{},this.perf.age=Math.trunc(dt()-n)),this.analyze("Start Gender:"),this.config.async?a=this.config.face.gender.enabled?l2(m.image,this.config):{}:(this.state="run:gender",n=dt(),a=this.config.face.gender.enabled?await l2(m.image,this.config):{},this.perf.gender=Math.trunc(dt()-n)),this.analyze("Start Emotion:"),this.config.async?s=this.config.face.emotion.enabled?p2(m.image,this.config):{}:(this.state="run:emotion",n=dt(),s=this.config.face.emotion.enabled?await p2(m.image,this.config):{},this.perf.emotion=Math.trunc(dt()-n)),this.analyze("End Emotion:"),this.analyze("Start Embedding:"),this.config.async?i=this.config.face.embedding.enabled?m2(m.image,this.config):{}:(this.state="run:embedding",n=dt(),i=this.config.face.embedding.enabled?await m2(m.image,this.config):{},this.perf.embedding=Math.trunc(dt()-n)),this.analyze("End Emotion:"),this.config.async&&([r,a,s,i]=await Promise.all([r,a,s,i])),this.analyze("Finish Face:"),!this.config.face.iris.enabled&&((u=m==null?void 0:m.annotations)==null?void 0:u.leftEyeIris)&&((h=m==null?void 0:m.annotations)==null?void 0:h.rightEyeIris)&&(delete m.annotations.leftEyeIris,delete m.annotations.rightEyeIris);let A=((p=m.annotations)==null?void 0:p.leftEyeIris)&&((d=m.annotations)==null?void 0:d.rightEyeIris)?11.7*Math.max(Math.abs(m.annotations.leftEyeIris[3][0]-m.annotations.leftEyeIris[1][0]),Math.abs(m.annotations.rightEyeIris[4][1]-m.annotations.rightEyeIris[2][1])):0;o.push({confidence:m.confidence,box:m.box,mesh:m.mesh,boxRaw:m.boxRaw,meshRaw:m.meshRaw,annotations:m.annotations,age:r.age,gender:a.gender,genderConfidence:a.confidence,emotion:s,embedding:i,iris:A!==0?Math.trunc(A)/100:0}),(f=m.image)==null||f.dispose(),this.analyze("End Face")}return this.analyze("End FaceMesh:"),this.config.async&&(this.perf.face&&delete this.perf.face,this.perf.age&&delete this.perf.age,this.perf.gender&&delete this.perf.gender,this.perf.emotion&&delete this.perf.emotion),o}async image(t,n={}){this.state="image",this.config=Ol(this.config,n);let r=P2(t,this.config);return r.tensor.dispose(),r.canvas}async detect(t,n={}){return new Promise(async r=>{var p,d,f,m;this.state="config";let a;this.config=Ol(this.config,n),this.state="check";let s=this.sanity(t);s&&(Te(s,t),r({error:s}));let i,o,l,c=dt();await this.checkBackend(),await this.load(),this.config.scoped&&Pn().startScope(),this.analyze("Start Scope:"),a=dt();let u=P2(t,this.config);if(!u||!u.tensor){Te("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(dt()-a),this.analyze("Get Image:"),this.config.async?(l=this.config.face.enabled?this.detectFace(u.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",a=dt(),l=this.config.face.enabled?await this.detectFace(u.tensor):[],this.perf.face=Math.trunc(dt()-a)),this.analyze("Start Body:"),this.config.async?(i=this.config.body.enabled?(p=this.models.posenet)==null?void 0:p.estimatePoses(u.tensor,this.config):[],this.perf.body&&delete this.perf.body):(this.state="run:body",a=dt(),i=this.config.body.enabled?await((d=this.models.posenet)==null?void 0:d.estimatePoses(u.tensor,this.config)):[],this.perf.body=Math.trunc(dt()-a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(o=this.config.hand.enabled?(f=this.models.handpose)==null?void 0:f.estimateHands(u.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",a=dt(),o=this.config.hand.enabled?await((m=this.models.handpose)==null?void 0:m.estimateHands(u.tensor,this.config)):[],this.perf.hand=Math.trunc(dt()-a)),this.analyze("End Hand:"),this.config.async&&([l,i,o]=await Promise.all([l,i,o])),u.tensor.dispose(),this.config.scoped&&Pn().endScope(),this.analyze("End Scope:");let h=[];this.config.gesture.enabled&&(a=dt(),h=[...A6(l),...m6(i),...g6(o),...y6(l)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(dt()-a)),this.perf.total=Math.trunc(dt()-c),this.state="idle",r({face:l,body:i,hand:o,gesture:h,performance:this.perf,canvas:u.canvas})})}async warmupBitmap(){let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t(u0);break;case"full":n=await t(c0);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,this.config),a.close()}return r}async warmupCanvas(){return new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+u0;break;case"full":r=1200,n="data:image/jpeg;base64,"+c0;break;default:n=null}let a=new Image(r,r);a.onload=()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=r,s.height=r;let i=s.getContext("2d");i.drawImage(a,0,0);let o=i.getImageData(0,0,r,r);this.detect(o,this.config).then(l=>t(l))},n?a.src=n:t(null)})}async warmupNode(){let t=i=>Buffer.from(i,"base64"),n=this.config.warmup==="face"?t(u0):t(c0),r=(void 0).decodeJpeg(n),a=r.expandDims(0);Ne(r);let s=await this.detect(a,this.config);return Ne(a),s}async warmup(t){let n=dt();t&&(this.config=Ol(this.config,t));let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await this.warmupBitmap():typeof Image!="undefined"?a=await this.warmupCanvas():a=await this.warmupNode(),this.config.videoOptimized=r;let s=dt();return Te("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};return mae;})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=human.ts.map
|