mirror of https://github.com/vladmandic/human
4950 lines
1.3 MiB
4950 lines
1.3 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Human=(()=>{var Z4=Object.create,eh=Object.defineProperty,Y4=Object.getPrototypeOf,J4=Object.prototype.hasOwnProperty,Q4=Object.getOwnPropertyNames,e8=Object.getOwnPropertyDescriptor;var N1=e=>eh(e,"__esModule",{value:!0});var cg=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),Un=(e,t)=>{for(var n in t)eh(e,n,{get:t[n],enumerable:!0})},t8=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of Q4(t))!J4.call(e,r)&&r!=="default"&&eh(e,r,{get:()=>t[r],enumerable:!(n=e8(t,r))||n.enumerable});return e},th=e=>t8(N1(eh(e!=null?Z4(Y4(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e);var Jv=cg(Yv=>{N1(Yv);Un(Yv,{MediaPipeFaceMesh:()=>t2,load:()=>nae});var t2=class{constructor(t,n,r,a){this.facePipeline=new e2(t,n,r,a),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():null,o=s.rawCoords,l={};if(i&&i.length>0)for(let h of Object.keys(Ur))l[h]=Ur[h].map(d=>i[d]);let u=n.face.mesh.returnRawData&&s.box?{topLeft:s.box.startPoint,bottomRight:s.box.endPoint}:null,c=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[2],s.box.endPoint[0])-s.box.startPoint[0],Math.min(t.shape[1],s.box.endPoint[1])-s.box.startPoint[1]]:0;a.push({confidence:s.faceConfidence||s.boxConfidence||0,boxConfidence:s.boxConfidence,faceConfidence:s.faceConfidence,box:c,mesh:i,boxRaw:u,meshRaw:o,annotations:l,image:s.image?nr(s.image):null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},ki=[null,null,null];async function nae(e){ki=await Promise.all([!ki[0]&&e.face.enabled?Hv(e):null,!ki[1]&&e.face.mesh.enabled?Nt(e.face.mesh.modelPath,{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!ki[2]&&e.face.iris.enabled?Nt(e.face.iris.modelPath,{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]);let t=new t2(ki[0],ki[1],ki[2],e);return e.face.mesh.enabled&&e.debug&&Se(`load model: ${e.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),e.face.iris.enabled&&e.debug&&Se(`load model: ${e.face.iris.modelPath.match(/\/(.*)\./)[1]}`),t}Yv.triangulation=vi});var t0=cg(k2=>{N1(k2);Un(k2,{NUM_KEYPOINTS:()=>cae,connectedPartIndices:()=>dae,partChannels:()=>fae,partIds:()=>I2,partNames:()=>uae,poseChain:()=>pae});var uae=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],cae=k2.partNames.length,I2=k2.partNames.reduce((e,t,n)=>(e[t]=n,e),{}),hae=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],dae=hae.map(([e,t])=>[I2[e],I2[t]]),pae=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]],fae=["left_face","right_face","right_upper_leg_front","right_lower_leg_back","right_upper_leg_back","left_lower_leg_front","left_upper_leg_front","left_upper_leg_back","left_lower_leg_back","right_feet","right_lower_leg_front","left_feet","torso_front","torso_back","right_upper_arm_front","right_upper_arm_back","right_lower_arm_back","left_lower_arm_front","left_upper_arm_front","left_upper_arm_back","left_lower_arm_back","right_hand","right_lower_arm_front","left_hand"]});var $ae={};Un($ae,{default:()=>Y2});function Se(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}function hg(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);n&&n[0]&&(e=n[0].match(/\(([^()]+)\)/g)[0].replace(/\(|\)/g,""),t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," "))}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var nh={};Un(nh,{Abs:()=>Bi,Acos:()=>Vi,Acosh:()=>Ui,AdadeltaOptimizer:()=>Td,AdagradOptimizer:()=>Ed,AdamOptimizer:()=>Cd,AdamaxOptimizer:()=>Rd,Add:()=>ga,AddN:()=>Ja,All:()=>lh,Any:()=>uh,ArgMax:()=>Qa,ArgMin:()=>Jl,Asin:()=>Hi,Asinh:()=>ji,Atan:()=>Gi,Atan2:()=>Xi,Atanh:()=>qi,AvgPool:()=>es,AvgPool3D:()=>Ql,AvgPool3DGrad:()=>hh,AvgPoolGrad:()=>ch,BackendWasm:()=>Zb,BatchMatMul:()=>ts,BatchToSpaceND:()=>eu,Bincount:()=>dh,BroadcastTo:()=>Ng,Callback:()=>B7,CallbackList:()=>L3,Cast:()=>ns,Ceil:()=>rs,ClipByValue:()=>xa,Complex:()=>ph,ComplexAbs:()=>tu,Concat:()=>Ki,Conv2D:()=>as,Conv2DBackpropFilter:()=>fh,Conv2DBackpropInput:()=>ss,Conv3D:()=>nu,Conv3DBackpropFilterV2:()=>mh,Conv3DBackpropInputV2:()=>Ah,Cos:()=>is,Cosh:()=>Zi,CropAndResize:()=>Yi,Cumsum:()=>os,CustomCallback:()=>B3,DataStorage:()=>ah,DenseBincount:()=>yh,DepthToSpace:()=>Ji,DepthwiseConv2dNative:()=>ls,DepthwiseConv2dNativeBackpropFilter:()=>gh,DepthwiseConv2dNativeBackpropInput:()=>xh,Diag:()=>wh,Dilation2D:()=>ru,Dilation2DBackpropFilter:()=>bh,Dilation2DBackpropInput:()=>_h,ENV:()=>Ya,EarlyStopping:()=>U7,Elu:()=>Qi,EluGrad:()=>vh,Environment:()=>kg,Equal:()=>to,Erf:()=>eo,Exp:()=>cs,ExpandDims:()=>no,Expm1:()=>ro,FFT:()=>kh,Fill:()=>au,FlipLeftRight:()=>ao,Floor:()=>hs,FloorDiv:()=>ds,FromPixels:()=>Ph,FusedBatchNorm:()=>ps,FusedConv2D:()=>js,FusedDepthwiseConv2D:()=>Gs,GPGPUContext:()=>Xd,GatherNd:()=>io,GatherV2:()=>so,GraphModel:()=>xv,Greater:()=>oo,GreaterEqual:()=>fs,History:()=>W3,IFFT:()=>Ih,Identity:()=>ms,Imag:()=>Nh,InputSpec:()=>Gt,IsFinite:()=>lo,IsInf:()=>uo,IsNan:()=>co,KernelBackend:()=>Kl,LRN:()=>ou,LRNGrad:()=>Th,LayerVariable:()=>$3,LayersModel:()=>sa,LeakyRelu:()=>As,Less:()=>ho,LessEqual:()=>po,LinSpace:()=>Sh,Log:()=>ys,Log1p:()=>fo,LogSoftmax:()=>Sg,LogicalAnd:()=>mo,LogicalNot:()=>su,LogicalOr:()=>iu,MathBackendCPU:()=>Od,MathBackendWebGL:()=>bl,Max:()=>gs,MaxPool:()=>ws,MaxPool3D:()=>lu,MaxPool3DGrad:()=>Ch,MaxPoolGrad:()=>Eh,MaxPoolWithArgmax:()=>Rh,Maximum:()=>xs,Mean:()=>_s,Min:()=>bs,Minimum:()=>vs,MirrorPad:()=>uu,Mod:()=>Ao,MomentumOptimizer:()=>Fd,Multinomial:()=>Fh,Multiply:()=>ks,Neg:()=>yo,NonMaxSuppressionV3:()=>xo,NonMaxSuppressionV4:()=>wo,NonMaxSuppressionV5:()=>_o,NotEqual:()=>go,OP_SCOPE_SUFFIX:()=>Pg,OneHot:()=>Is,OnesLike:()=>bo,Optimizer:()=>ta,Pack:()=>vo,PadV2:()=>Ns,Pool:()=>hk,Pow:()=>Ss,Prelu:()=>Ts,Prod:()=>ko,RMSPropOptimizer:()=>Md,RNN:()=>Br,Range:()=>cu,Rank:()=>P1,Real:()=>Mh,RealDiv:()=>us,Reciprocal:()=>Io,Reduction:()=>ln,Relu:()=>Es,Relu6:()=>Rs,Reshape:()=>No,ResizeBilinear:()=>Cs,ResizeBilinearGrad:()=>Oh,ResizeNearestNeighbor:()=>hu,ResizeNearestNeighborGrad:()=>$h,Reverse:()=>Fs,RotateWithOffset:()=>Wo,Round:()=>Ms,Rsqrt:()=>$s,SGDOptimizer:()=>Uu,ScatterNd:()=>So,Select:()=>To,Selu:()=>Eo,Sequential:()=>Fl,Sigmoid:()=>Ds,Sign:()=>Fo,Sin:()=>Os,Sinh:()=>Ro,Slice:()=>Co,Softmax:()=>Ls,Softplus:()=>Mo,SpaceToBatchND:()=>du,SparseToDense:()=>Dh,SplitV:()=>$o,Sqrt:()=>zs,Square:()=>pu,SquaredDifference:()=>Ws,Step:()=>_a,StridedSlice:()=>Oo,Sub:()=>Bs,Sum:()=>Ps,SymbolicTensor:()=>_r,Tan:()=>Do,Tanh:()=>Vs,Tensor:()=>Ze,TensorBuffer:()=>$t,Tile:()=>wa,TopK:()=>zo,Transpose:()=>Us,Unique:()=>zh,Unpack:()=>Po,UnsortedSegmentSum:()=>fu,Variable:()=>_u,ZerosLike:()=>Lo,_FusedMatMul:()=>Hs,abs:()=>Ot,acos:()=>hf,acosh:()=>df,add:()=>se,addN:()=>Yo,all:()=>Yh,any:()=>Iu,argMax:()=>Nu,argMin:()=>pf,asin:()=>ff,asinh:()=>mf,atan:()=>Af,atan2:()=>yf,atanh:()=>gf,avgPool:()=>Tu,avgPool3d:()=>_f,backend:()=>g5,backend_util:()=>C,basicLSTMCell:()=>LI,batchNorm:()=>Qs,batchNorm2d:()=>b5,batchNorm3d:()=>v5,batchNorm4d:()=>k5,batchToSpaceND:()=>Eu,bincount:()=>I5,booleanMaskAsync:()=>HT,broadcastTo:()=>Cu,browser:()=>Xo,buffer:()=>Le,callbacks:()=>Yte,cast:()=>me,ceil:()=>bf,clipByValue:()=>gn,clone:()=>nr,complex:()=>ba,concat:()=>rt,concat1d:()=>N5,concat2d:()=>el,concat3d:()=>S5,concat4d:()=>T5,constraints:()=>o3,conv1d:()=>Qh,conv2d:()=>Yr,conv2dTranspose:()=>ed,conv3d:()=>kf,conv3dTranspose:()=>oN,copyRegisteredKernels:()=>fk,cos:()=>Ru,cosh:()=>td,cosineWindow:()=>Yf,cumsum:()=>nd,customGrad:()=>Rr,data:()=>wv,denseBincount:()=>C5,deprecationWarn:()=>uf,depthToSpace:()=>If,depthwiseConv2d:()=>tl,deregisterOp:()=>Qte,device_util:()=>Hh,diag:()=>mN,dilation2d:()=>Nf,disableDeprecationWarnings:()=>Q9,dispose:()=>Ee,disposeVariables:()=>eI,div:()=>ge,divNoNan:()=>Sf,dot:()=>R5,dropout:()=>J5,elu:()=>nl,enableDebugMode:()=>J9,enableProdMode:()=>Y9,enclosingPowerOfTwo:()=>Q5,engine:()=>Er,env:()=>J,equal:()=>Sa,erf:()=>Tf,exp:()=>Gn,expandDims:()=>Tn,expm1:()=>Ef,eye:()=>Cf,fft:()=>Bu,fill:()=>Fu,findBackend:()=>cf,findBackendFactory:()=>iI,floor:()=>rl,floorDiv:()=>Zh,forceHalfFloat:()=>u_,fused:()=>Ra,gather:()=>ei,gatherND:()=>Y5,gather_util:()=>tf,getBackend:()=>aI,getGradient:()=>O1,getKernel:()=>Lh,getKernelsForBackend:()=>Vo,gpgpu_util:()=>Mw,grad:()=>HN,grads:()=>jN,greater:()=>rr,greaterEqual:()=>Ea,ifft:()=>ll,imag:()=>rd,image:()=>Ge,inTopKAsync:()=>tE,initializers:()=>f3,input:()=>S3,io:()=>yn,irfft:()=>xd,isFinite:()=>F5,isInf:()=>M5,isNaN:()=>$5,keep:()=>Vt,kernel_impls:()=>Or,layers:()=>N3,leakyRelu:()=>Mu,less:()=>ad,lessEqual:()=>ti,linalg:()=>hx,linspace:()=>O5,loadGraphModel:()=>Nt,loadLayersModel:()=>yte,localResponseNormalization:()=>Rf,log:()=>En,log1p:()=>sd,logSigmoid:()=>z5,logSoftmax:()=>od,logSumExp:()=>$f,logicalAnd:()=>ar,logicalNot:()=>$u,logicalOr:()=>ld,logicalXor:()=>B5,losses:()=>AC,matMul:()=>He,math:()=>e5,max:()=>qn,maxPool:()=>Ou,maxPool3d:()=>Of,maxPoolWithArgmax:()=>V5,maximum:()=>Fr,mean:()=>bt,memory:()=>Kh,metrics:()=>P7,min:()=>sl,minimum:()=>il,mirrorPad:()=>Df,mod:()=>zf,model:()=>mte,models:()=>L7,moments:()=>ud,movingAverage:()=>qT,mul:()=>P,multiRNNCell:()=>wS,multinomial:()=>U5,neg:()=>_t,nextFrame:()=>$d,norm:()=>vd,notEqual:()=>ri,oneHot:()=>qo,ones:()=>Mr,onesLike:()=>Cn,op:()=>O,outerProduct:()=>IS,pad:()=>Jr,pad1d:()=>TS,pad2d:()=>CS,pad3d:()=>FS,pad4d:()=>$S,pool:()=>H5,pow:()=>Qr,prelu:()=>zu,print:()=>Xg,prod:()=>cd,profile:()=>jn,rand:()=>US,randomGamma:()=>qS,randomNormal:()=>j5,randomUniform:()=>ol,range:()=>hd,ready:()=>rI,real:()=>Pu,reciprocal:()=>Wf,registerBackend:()=>Zo,registerCallbackConstructor:()=>gte,registerGradient:()=>Tg,registerKernel:()=>qs,registerOp:()=>Jte,regularizers:()=>W7,relu:()=>$r,relu6:()=>dd,removeBackend:()=>sI,reshape:()=>j,reverse:()=>Rn,reverse1d:()=>nT,reverse2d:()=>aT,reverse3d:()=>iT,reverse4d:()=>lT,rfft:()=>Vu,round:()=>Bf,rsqrt:()=>pd,scalar:()=>be,scatterND:()=>Z5,scatter_util:()=>nf,selu:()=>fd,separableConv2d:()=>Vf,sequential:()=>Ate,serialization:()=>re,setBackend:()=>nI,setPlatform:()=>oI,setWasmPath:()=>dZ,setWasmPaths:()=>pZ,setWebGLContext:()=>Hd,setdiff1dAsync:()=>G5,shared:()=>tm,sigmoid:()=>Sn,sign:()=>Uf,signal:()=>mC,sin:()=>md,sinh:()=>Ad,slice:()=>Ce,slice1d:()=>yd,slice2d:()=>Hf,slice3d:()=>gd,slice4d:()=>Lu,slice_util:()=>on,softmax:()=>Wu,softplus:()=>al,spaceToBatchND:()=>Du,sparseToDense:()=>Zf,spectral:()=>fC,split:()=>Jt,sqrt:()=>Qt,square:()=>it,squaredDifference:()=>wd,squeeze:()=>Ca,stack:()=>Fn,step:()=>ul,stridedSlice:()=>jf,sub:()=>Ae,sum:()=>Te,sumOutType:()=>Uh,tan:()=>Gf,tanh:()=>Qo,tensor:()=>mr,tensor1d:()=>Ut,tensor2d:()=>wn,tensor3d:()=>qh,tensor4d:()=>$T,tensor5d:()=>OT,tensor6d:()=>DT,tensor_util:()=>fr,test_util:()=>m5,tidy:()=>B,tile:()=>Ta,time:()=>tI,topk:()=>qf,train:()=>si,transpose:()=>nt,truncatedNormal:()=>_d,unique:()=>bd,unregisterGradient:()=>pk,unregisterKernel:()=>dk,unsortedSegmentSum:()=>Xf,unstack:()=>sr,upcastType:()=>tr,util:()=>v,valueAndGrad:()=>GN,valueAndGrads:()=>qN,variable:()=>q5,variableGrads:()=>D5,version:()=>Pre,version_converter:()=>Jne,version_core:()=>Z9,version_cpu:()=>Bx,version_layers:()=>wA,version_wasm:()=>Jb,version_webgl:()=>l_,webgl:()=>MP,webgl_util:()=>ow,where:()=>xn,whereAsync:()=>Kf,zeros:()=>Et,zerosLike:()=>Ve});var n8=Object.create,rh=Object.defineProperty,r8=Object.getPrototypeOf,a8=Object.prototype.hasOwnProperty,s8=Object.getOwnPropertyNames,i8=Object.getOwnPropertyDescriptor,o8=e=>rh(e,"__esModule",{value:!0}),Je=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),De=(e,t)=>{for(var n in t)rh(e,n,{get:t[n],enumerable:!0})},l8=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of s8(t))!a8.call(e,r)&&r!=="default"&&rh(e,r,{get:()=>t[r],enumerable:!(n=i8(t,r))||n.enumerable});return e},Pi=e=>l8(o8(rh(e!=null?n8(r8(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),u8=Je(()=>{}),c8=Je((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=h.toString();for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),h8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),d8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),p8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,m,f;return p=h[d],p^=p>>>7,m=p^p<<24,p=h[d+1&7],m^=p^p>>>10,p=h[d+3&7],m^=p^p>>>3,p=h[d+4&7],m^=p^p<<7,p=h[d+7&7],p=p^p<<13,m^=p^p<<9,h[d]=m,u.i=d+1&7,m};function c(h,d){var p,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,p=0;p<d.length;++p)f[p&7]=f[p&7]<<15^d.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],h.x=f,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),f8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,m,f;return u.w=h=h+1640531527|0,f=d[p+34&127],m=d[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[p]=f^m,u.i=p,f+(h^h>>>16)|0};function c(h,d){var p,m,f,A,y,g=[],b=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,b=Math.max(b,d.length)),f=0,A=-32;A<b;++A)d&&(m^=d.charCodeAt((A+32)%d.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=m+y,f=p==0?f+1:0);for(f>=128&&(g[(d&&d.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;h.w=y,h.X=g,h.i=f}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),m8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,m=u.d,f=u.a;return d=d<<25^d>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-m|0,u.d=m<<16^p>>>16^f,u.a=f-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),S1=Je(()=>{}),A8=Je((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",u=r.pow(s,i),c=r.pow(2,o),h=c*2,d=s-1,p;function m(w,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=g(y(x.entropy?[w,_(n)]:w==null?b():w,3),T),M=new f(T),D=function(){for(var L=M.g(i),W=u,U=0;L<c;)L=(L+U)*s,W*=s,U=M.g(1);for(;L>=h;)L/=2,W/=2,U>>>=1;return(L+U)/W};return D.int32=function(){return M.g(4)|0},D.quick=function(){return M.g(4)/4294967296},D.double=D,g(_(M.S),n),(x.pass||N||function(L,W,U,H){return H&&(H.S&&A(H,M),L.state=function(){return A(M,{})}),U?(r[l]=L,W):L})(D,E,"global"in x?x.global:this==r,x.state)}r["seed"+l]=m;function f(w){var x,N=w.length,T=this,E=0,M=T.i=T.j=0,D=T.S=[];for(N||(w=[N++]);E<s;)D[E]=E++;for(E=0;E<s;E++)D[E]=D[M=d&M+w[E%N]+(x=D[E])],D[M]=x;(T.g=function(L){for(var W,U=0,H=T.i,X=T.j,G=T.S;L--;)W=G[H=d&H+1],U=U*s+G[d&(G[H]=G[X=d&X+W])+(G[X]=W)];return T.i=H,T.j=X,U})(s)}function A(w,x){return x.i=w.i,x.j=w.j,x.S=w.S.slice(),x}function y(w,x){var N=[],T=typeof w,E;if(x&&T=="object")for(E in w)try{N.push(y(w[E],x-1))}catch(M){}return N.length?N:T=="string"?w:w+"\0"}function g(w,x){for(var N=w+"",T,E=0;E<N.length;)x[d&E]=d&(T^=x[d&E]*19)+N.charCodeAt(E++);return _(x)}function b(){try{var w;return p&&(w=p.randomBytes)?w=w(s):(w=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(w)),_(w)}catch(T){var x=a.navigator,N=x&&x.plugins;return[+new Date,a,N,a.screen,_(n)]}}function _(w){return String.fromCharCode.apply(0,w)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{p=S1()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),y8=Je((e,t)=>{var n=c8(),r=h8(),a=d8(),s=p8(),i=f8(),o=m8(),l=A8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),g8=Je((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=h.toString();for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),x8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),w8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),_8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,m,f;return p=h[d],p^=p>>>7,m=p^p<<24,p=h[d+1&7],m^=p^p>>>10,p=h[d+3&7],m^=p^p>>>3,p=h[d+4&7],m^=p^p<<7,p=h[d+7&7],p=p^p<<13,m^=p^p<<9,h[d]=m,u.i=d+1&7,m};function c(h,d){var p,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,p=0;p<d.length;++p)f[p&7]=f[p&7]<<15^d.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],h.x=f,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),b8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,m,f;return u.w=h=h+1640531527|0,f=d[p+34&127],m=d[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[p]=f^m,u.i=p,f+(h^h>>>16)|0};function c(h,d){var p,m,f,A,y,g=[],b=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,b=Math.max(b,d.length)),f=0,A=-32;A<b;++A)d&&(m^=d.charCodeAt((A+32)%d.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=m+y,f=p==0?f+1:0);for(f>=128&&(g[(d&&d.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;h.w=y,h.X=g,h.i=f}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),v8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,m=u.d,f=u.a;return d=d<<25^d>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-m|0,u.d=m<<16^p>>>16^f,u.a=f-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),k8=Je((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",u=r.pow(s,i),c=r.pow(2,o),h=c*2,d=s-1,p;function m(w,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=g(y(x.entropy?[w,_(n)]:w==null?b():w,3),T),M=new f(T),D=function(){for(var L=M.g(i),W=u,U=0;L<c;)L=(L+U)*s,W*=s,U=M.g(1);for(;L>=h;)L/=2,W/=2,U>>>=1;return(L+U)/W};return D.int32=function(){return M.g(4)|0},D.quick=function(){return M.g(4)/4294967296},D.double=D,g(_(M.S),n),(x.pass||N||function(L,W,U,H){return H&&(H.S&&A(H,M),L.state=function(){return A(M,{})}),U?(r[l]=L,W):L})(D,E,"global"in x?x.global:this==r,x.state)}r["seed"+l]=m;function f(w){var x,N=w.length,T=this,E=0,M=T.i=T.j=0,D=T.S=[];for(N||(w=[N++]);E<s;)D[E]=E++;for(E=0;E<s;E++)D[E]=D[M=d&M+w[E%N]+(x=D[E])],D[M]=x;(T.g=function(L){for(var W,U=0,H=T.i,X=T.j,G=T.S;L--;)W=G[H=d&H+1],U=U*s+G[d&(G[H]=G[X=d&X+W])+(G[X]=W)];return T.i=H,T.j=X,U})(s)}function A(w,x){return x.i=w.i,x.j=w.j,x.S=w.S.slice(),x}function y(w,x){var N=[],T=typeof w,E;if(x&&T=="object")for(E in w)try{N.push(y(w[E],x-1))}catch(M){}return N.length?N:T=="string"?w:w+"\0"}function g(w,x){for(var N=w+"",T,E=0;E<N.length;)x[d&E]=d&(T^=x[d&E]*19)+N.charCodeAt(E++);return _(x)}function b(){try{var w;return p&&(w=p.randomBytes)?w=w(s):(w=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(w)),_(w)}catch(T){var x=a.navigator,N=x&&x.plugins;return[+new Date,a,N,a.screen,_(n)]}}function _(w){return String.fromCharCode.apply(0,w)}if(g(r.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{p=S1()}catch(w){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),I8=Je((e,t)=>{var n=g8(),r=x8(),a=w8(),s=_8(),i=b8(),o=v8(),l=k8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Xl=Je(()=>{}),N8=Je(()=>{}),S8=Je(()=>{}),T8=Je((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return Q.buffer!=We&&Zt(Q.buffer),dn}function i(){return Q.buffer!=We&&Zt(Q.buffer),xt}function o(){return Q.buffer!=We&&Zt(Q.buffer),pn}function l(){return Q.buffer!=We&&Zt(Q.buffer),Bn}function u(){return Q.buffer!=We&&Zt(Q.buffer),sn}var c=typeof a!="undefined"?a:{},h,d;c.ready=new Promise(function(I,S){h=I,d=S});var p={},m;for(m in c)c.hasOwnProperty(m)&&(p[m]=c[m]);var f=[],A="./this.program",y=function(I,S){throw S},g=!1,b=!1,_=!1,w=!1;g=typeof window=="object",b=typeof importScripts=="function",_=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",w=!g&&!_&&!b;var x=c.ENVIRONMENT_IS_PTHREAD||!1;x&&(We=c.buffer);var N="";function T(I){return c.locateFile?c.locateFile(I,N):N+I}var E,M,D,L,W,U;if(_){b?N=Xl().dirname(N)+"/":N=__dirname+"/",E=function(I,S){return W||(W=require("fs")),U||(U=Xl()),I=U.normalize(I),W.readFileSync(I,S?null:"utf8")},D=function(I){var S=E(I,!0);return S.buffer||(S=new Uint8Array(S)),pe(S.buffer),S},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof ql))throw I}),process.on("unhandledRejection",Gr),y=function(I){process.exit(I)},c.inspect=function(){return"[Emscripten Module object]"};var H;try{H=N8()}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}global.Worker=H.Worker}else w?(typeof read!="undefined"&&(E=function(I){return read(I)}),D=function(I){var S;return typeof readbuffer=="function"?new Uint8Array(readbuffer(I)):(S=read(I,"binary"),pe(typeof S=="object"),S)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||b)&&(b?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof r!="undefined"&&r&&(N=r),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",_?(E=function(I,S){return W||(W=require("fs")),U||(U=Xl()),I=U.normalize(I),W.readFileSync(I,S?null:"utf8")},D=function(I){var S=E(I,!0);return S.buffer||(S=new Uint8Array(S)),pe(S.buffer),S}):(E=function(I){var S=new XMLHttpRequest;return S.open("GET",I,!1),S.send(null),S.responseText},b&&(D=function(I){var S=new XMLHttpRequest;return S.open("GET",I,!1),S.responseType="arraybuffer",S.send(null),new Uint8Array(S.response)}),M=function(I,S,z){var q=new XMLHttpRequest;q.open("GET",I,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){S(q.response);return}z()},q.onerror=z,q.send(null)}),L=function(I){document.title=I});_&&typeof performance=="undefined"&&(global.performance=S8().performance);var X=c.print||console.log.bind(console),G=c.printErr||console.warn.bind(console);for(m in p)p.hasOwnProperty(m)&&(c[m]=p[m]);p=null,c.arguments&&(f=c.arguments),c.thisProgram&&(A=c.thisProgram),c.quit&&(y=c.quit);var ee=Atomics.load,Y=Atomics.store,ae=Atomics.compareExchange,te;c.wasmBinary&&(te=c.wasmBinary);var ie=c.noExitRuntime||!0;typeof WebAssembly!="object"&&Gr("no native wasm support detected");var Q,he,oe=!1,fe;function pe(I,S){I||Gr("Assertion failed: "+S)}function ve(I){var S=c["_"+I];return pe(S,"Cannot call unknown function "+I+", make sure it is exported"),S}function Ie(I,S,z,q,de){var le={string:function(An){var zi=0;if(An!=null&&An!==0){var ug=(An.length<<2)+1;zi=$i(ug),et(An,zi,ug)}return zi},array:function(An){var zi=$i(An.length);return Xe(An,zi),zi}};function ce(An){return S==="string"?Me(An):S==="boolean"?Boolean(An):An}var we=ve(I),tt=[],Wt=0;if(q)for(var Ft=0;Ft<q.length;Ft++){var ma=le[z[Ft]];ma?(Wt===0&&(Wt=Gl()),tt[Ft]=ma(q[Ft])):tt[Ft]=q[Ft]}var Di=we.apply(null,tt);return Di=ce(Di),Wt!==0&&Mi(Wt),Di}function Fe(I,S,z,q){z=z||[];var de=z.every(function(ce){return ce==="number"}),le=S!=="string";return le&&de&&!q?ve(I):function(){return Ie(I,S,z,arguments,q)}}function Oe(I,S,z){for(var q=S+z,de="";!(S>=q);){var le=I[S++];if(!le)return de;if(!(le&128)){de+=String.fromCharCode(le);continue}var ce=I[S++]&63;if((le&224)==192){de+=String.fromCharCode((le&31)<<6|ce);continue}var we=I[S++]&63;if((le&240)==224?le=(le&15)<<12|ce<<6|we:le=(le&7)<<18|ce<<12|we<<6|I[S++]&63,le<65536)de+=String.fromCharCode(le);else{var tt=le-65536;de+=String.fromCharCode(55296|tt>>10,56320|tt&1023)}}return de}function Me(I,S){return I?Oe(i(),I,S):""}function Qe(I,S,z,q){if(!(q>0))return 0;for(var de=z,le=z+q-1,ce=0;ce<I.length;++ce){var we=I.charCodeAt(ce);if(we>=55296&&we<=57343){var tt=I.charCodeAt(++ce);we=65536+((we&1023)<<10)|tt&1023}if(we<=127){if(z>=le)break;S[z++]=we}else if(we<=2047){if(z+1>=le)break;S[z++]=192|we>>6,S[z++]=128|we&63}else if(we<=65535){if(z+2>=le)break;S[z++]=224|we>>12,S[z++]=128|we>>6&63,S[z++]=128|we&63}else{if(z+3>=le)break;S[z++]=240|we>>18,S[z++]=128|we>>12&63,S[z++]=128|we>>6&63,S[z++]=128|we&63}}return S[z]=0,z-de}function et(I,S,z){return Qe(I,i(),S,z)}function st(I){for(var S=0,z=0;z<I.length;++z){var q=I.charCodeAt(z);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|I.charCodeAt(++z)&1023),q<=127?++S:q<=2047?S+=2:q<=65535?S+=3:S+=4}return S}function Xe(I,S){s().set(I,S)}function ht(I,S){return I%S>0&&(I+=S-I%S),I}var We,dn,xt,Wn,Kt,pn,Bn,Nn,sn;function Zt(I){We=I,c.HEAP8=dn=new Int8Array(I),c.HEAP16=Wn=new Int16Array(I),c.HEAP32=pn=new Int32Array(I),c.HEAPU8=xt=new Uint8Array(I),c.HEAPU16=Kt=new Uint16Array(I),c.HEAPU32=Bn=new Uint32Array(I),c.HEAPF32=Nn=new Float32Array(I),c.HEAPF64=sn=new Float64Array(I)}var Ir=c.INITIAL_MEMORY||16777216;if(x)Q=c.wasmMemory,We=c.buffer;else if(c.wasmMemory)Q=c.wasmMemory;else if(Q=new WebAssembly.Memory({initial:Ir/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),_&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(We=Q.buffer),Ir=We.byteLength,Zt(We);var Yn,Jn=[],ua=[],Hr=[],ca=[],Ni=[],pr=!1,Rc=!1;x||ua.push({func:function(){qc()}}),x&&(pr=!0);function h0(){if(!x){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)$c(c.preRun.shift());Ti(Jn)}}function Fc(){pr=!0,Ti(ua)}function d0(){x||Ti(Hr)}function Mc(){x||(Rc=!0)}function fn(){if(!x){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)p0(c.postRun.shift());Ti(Ni)}}function $c(I){Jn.unshift(I)}function p0(I){Ni.unshift(I)}var jr=0,ha=null,Ga=null;function f0(I){pe(!x,"addRunDependency cannot be used in a pthread worker"),jr++,c.monitorRunDependencies&&c.monitorRunDependencies(jr)}function m0(I){if(jr--,c.monitorRunDependencies&&c.monitorRunDependencies(jr),jr==0&&(ha!==null&&(clearInterval(ha),ha=null),Ga)){var S=Ga;Ga=null,S()}}c.preloadedImages={},c.preloadedAudios={};function Gr(I){c.onAbort&&c.onAbort(I),x&&console.error("Pthread aborting at "+new Error().stack),I+="",G(I),oe=!0,fe=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.";var S=new WebAssembly.RuntimeError(I);throw d(S),S}function Oc(I,S){return String.prototype.startsWith?I.startsWith(S):I.indexOf(S)===0}var Si="data:application/octet-stream;base64,";function Dc(I){return Oc(I,Si)}var A0="file://";function zc(I){return Oc(I,A0)}var mn="tfjs-backend-wasm-threaded-simd.wasm";Dc(mn)||(mn=T(mn));function y0(I){try{if(I==mn&&te)return new Uint8Array(te);if(D)return D(I);throw"both async and sync fetching of the wasm failed"}catch(S){Gr(S)}}function Pc(){if(!te&&(g||b)){if(typeof fetch=="function"&&!zc(mn))return fetch(mn,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+mn+"'";return I.arrayBuffer()}).catch(function(){return y0(mn)});if(M)return new Promise(function(I,S){M(mn,function(z){I(new Uint8Array(z))},S)})}return Promise.resolve().then(function(){return y0(mn)})}function g0(){var I={a:l1};function S(ce,we){var tt=ce.exports;if(c.asm=tt,Yn=c.asm.F,he=we,!x){var Wt=ke.unusedWorkers.length;ke.unusedWorkers.forEach(function(Ft){ke.loadWasmModuleToWorker(Ft,function(){--Wt||m0("wasm-instantiate")})})}}x||f0("wasm-instantiate");function z(ce){S(ce.instance,ce.module)}function q(ce){return Pc().then(function(we){return WebAssembly.instantiate(we,I)}).then(ce,function(we){G("failed to asynchronously prepare wasm: "+we),Gr(we)})}function de(){return!te&&typeof WebAssembly.instantiateStreaming=="function"&&!Dc(mn)&&!zc(mn)&&typeof fetch=="function"?fetch(mn,{credentials:"same-origin"}).then(function(ce){var we=WebAssembly.instantiateStreaming(ce,I);return we.then(z,function(tt){return G("wasm streaming compile failed: "+tt),G("falling back to ArrayBuffer instantiation"),q(z)})}):q(z)}if(c.instantiateWasm)try{var le=c.instantiateWasm(I,S);return le}catch(ce){return G("Module.instantiateWasm callback failed with error: "+ce),!1}return de().catch(d),{}}var Lc={8991:function(I,S){setTimeout(function(){rg(I,S)},0)}};function x0(){ke.initRuntime()}function Ti(I){for(;I.length>0;){var S=I.shift();if(typeof S=="function"){S(c);continue}var z=S.func;typeof z=="number"?S.arg===void 0?Yn.get(z)():Yn.get(z)(S.arg):z(S.arg===void 0?null:S.arg)}}function Ei(I,S){if(I<=0||I>s().length||I&!0||S<0)return-28;if(S==0)return 0;S>=2147483647&&(S=Infinity);var z=Atomics.load(o(),Oi>>2),q=0;if(z==I){var de=Atomics.compareExchange(o(),Oi>>2,z,0);if(de==z&&(--S,q=1,S<=0))return 1}var le=Atomics.notify(o(),I>>2,S);if(le>=0)return le+q;throw"Atomics.notify returned an unexpected value "+le}c._emscripten_futex_wake=Ei;function w0(I){if(x)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in killThread!";o()[I+12>>2]=0;var S=ke.pthreads[I];S.worker.terminate(),ke.freeThreadData(S),ke.runningWorkers.splice(ke.runningWorkers.indexOf(S.worker),1),S.worker.pthread=void 0}function _0(I){if(x)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cancelThread!";var S=ke.pthreads[I];S.worker.postMessage({cmd:"cancel"})}function b0(I){if(x)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cleanupThread!";o()[I+12>>2]=0;var S=ke.pthreads[I];if(S){var z=S.worker;ke.returnWorkerToPool(z)}}var ke={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var I=8,S=0;S<I;++S)ke.allocateUnusedWorker()},initRuntime:function(){for(var I=Xa(228),S=0;S<228/4;++S)l()[I/4+S]=0;o()[I+12>>2]=I;var z=I+152;o()[z>>2]=z;for(var q=Xa(512),S=0;S<128;++S)l()[q/4+S]=0;Atomics.store(l(),I+100>>2,q),Atomics.store(l(),I+40>>2,I),Jc(I,!b,1),ng(I)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;ke.threadExitHandlers.length>0;)ke.threadExitHandlers.pop()();x&&Fi()&&tg()},threadExit:function(I){var S=Fi();S&&(Atomics.store(l(),S+4>>2,I),Atomics.store(l(),S+0>>2,1),Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),ke.runExitHandlers(),Ei(S+0,2147483647),Jc(0,0,0),x&&postMessage({cmd:"exit"}))},threadCancel:function(){ke.runExitHandlers();var I=Fi();Atomics.store(l(),I+4>>2,-1),Atomics.store(l(),I+0>>2,1),Ei(I+0,2147483647),Jc(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in ke.pthreads){var S=ke.pthreads[I];S&&S.worker&&ke.returnWorkerToPool(S.worker)}ke.pthreads={};for(var z=0;z<ke.unusedWorkers.length;++z){var q=ke.unusedWorkers[z];q.terminate()}ke.unusedWorkers=[];for(var z=0;z<ke.runningWorkers.length;++z){var q=ke.runningWorkers[z],S=q.pthread;ke.freeThreadData(S),q.terminate()}ke.runningWorkers=[]},freeThreadData:function(I){if(I){if(I.threadInfoStruct){var S=o()[I.threadInfoStruct+100>>2];o()[I.threadInfoStruct+100>>2]=0,jl(S),jl(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&jl(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){ke.runWithoutMainThreadQueuedCalls(function(){delete ke.pthreads[I.pthread.threadInfoStruct],ke.unusedWorkers.push(I),ke.runningWorkers.splice(ke.runningWorkers.indexOf(I),1),ke.freeThreadData(I.pthread),I.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(I){o()[lg>>2]=0;try{I()}finally{o()[lg>>2]=1}},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,S){I.onmessage=function(z){var q=z.data,de=q.cmd;if(I.pthread&&(ke.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Fi()){var le=ke.pthreads[q.targetThread];le?le.worker.postMessage(z.data,q.transferList):console.error('Internal error! Worker sent a message "'+de+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),ke.currentProxiedOperationCallerThread=void 0;return}if(de==="processQueuedMainThreadWork")v1();else if(de==="spawnThread")jc(z.data);else if(de==="cleanupThread")b0(q.thread);else if(de==="killThread")w0(q.thread);else if(de==="cancelThread")_0(q.thread);else if(de==="loaded")I.loaded=!0,S&&S(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(de==="print")X("Thread "+q.threadId+": "+q.text);else if(de==="printErr")G("Thread "+q.threadId+": "+q.text);else if(de==="alert")alert("Thread "+q.threadId+": "+q.text);else if(de==="exit"){var ce=I.pthread&&Atomics.load(l(),I.pthread.threadInfoStruct+64>>2);ce&&ke.returnWorkerToPool(I)}else if(de==="exitProcess")try{K4(q.returnCode)}catch(we){if(we instanceof ql)return;throw we}else de==="cancelDone"?ke.returnWorkerToPool(I):de==="objectTransfer"?ke.receiveObjectTransfer(z.data):z.data.target==="setimmediate"?I.postMessage(z.data):G("worker sent an unknown command "+de);ke.currentProxiedOperationCallerThread=void 0},I.onerror=function(z){G("pthread sent an error! "+z.filename+":"+z.lineno+": "+z.message)},_&&(I.on("message",function(z){I.onmessage({data:z})}),I.on("error",function(z){I.onerror(z)}),I.on("exit",function(z){})),I.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||r,wasmMemory:Q,wasmModule:he})},allocateUnusedWorker:function(){var I=T("tfjs-backend-wasm-threaded-simd.worker.js");ke.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return ke.unusedWorkers.length==0&&(ke.allocateUnusedWorker(),ke.loadWasmModuleToWorker(ke.unusedWorkers[0])),ke.unusedWorkers.length>0?ke.unusedWorkers.pop():null},busySpinWait:function(I){for(var S=performance.now()+I;performance.now()<S;);}};function v0(I,S){ig(I,S),Mi(I)}c.establishStackSpace=v0;function k0(){return ie}c.getNoExitRuntime=k0;function I0(I,S){return Yn.get(I)(S)}c.invokeEntryPoint=I0;function N0(I,S,z,q){Gr("Assertion failed: "+Me(I)+", at: "+[S?Me(S):"unknown filename",z,q?Me(q):"unknown function"])}function S0(I,S){var z=_main(I,S)}var qa;_?qa=function(){var I=process.hrtime();return I[0]*1e3+I[1]/1e6}:x?qa=function(){return performance.now()-c.__performance_now_clock_drift}:typeof dateNow!="undefined"?qa=dateNow:qa=function(){return performance.now()};function T0(I){return o()[Q2()>>2]=I,I}function E0(I,S){if(x)return da(1,1,I,S)}function C0(I,S){if(I==S)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var z=ke.pthreads[I],q=z&&z.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function R0(){Gr()}function F0(I,S,z){var q=z0(S,z);return Lc[I].apply(null,q)}function M0(I,S){}function $0(I,S,z){if(I<=0||I>s().length||I&!0)return-28;if(g){if(Atomics.load(o(),I>>2)!=S)return-6;for(var q=performance.now(),de=q+z,le=Atomics.exchange(o(),Oi>>2,I);;){if(q=performance.now(),q>de)return le=Atomics.exchange(o(),Oi>>2,0),-73;if(le=Atomics.exchange(o(),Oi>>2,0),le==0)break;if(v1(),Atomics.load(o(),I>>2)!=S)return-6;le=Atomics.exchange(o(),Oi>>2,I)}return 0}else{var ce=Atomics.wait(o(),I>>2,S,z);if(ce==="timed-out")return-73;if(ce==="not-equal")return-6;if(ce==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ce}}function O0(I,S,z){i().copyWithin(I,S,S+z)}function D0(){return _?require("os").cpus().length:navigator.hardwareConcurrency}function da(I,S){for(var z=arguments.length-2,q=Gl(),de=z,le=$i(de*8),ce=le>>3,we=0;we<z;we++){var tt=arguments[2+we];u()[ce+we]=tt}var Wt=sg(I,de,le,S);return Mi(q),Wt}var Ll=[],Wl=[];function z0(I,S){Wl.length=0;var z;for(S>>=2;z=i()[I++];){var q=z<105;q&&S&1&&S++,Wl.push(q?u()[S++>>1]:o()[S]),++S}return Wl}function P0(I,S,z){Ll.length=S;for(var q=z>>3,de=0;de<S;de++)Ll[de]=u()[q+de];var le=I<0,ce=le?Lc[-I-1]:o1[I];return ce.apply(null,Ll)}function L0(){return i().length}function W0(I){try{return Q.grow(I-We.byteLength+65535>>>16),Zt(Q.buffer),1}catch(S){}}function B0(I){var S=L0();if(I<=S)return!1;var z=2147483648;if(I>z)return!1;for(var q=1;q<=4;q*=2){var de=S*(1+.2/q);de=Math.min(de,I+100663296);var le=Math.min(z,ht(Math.max(I,de),65536)),ce=W0(le);if(ce)return!0}return!1}var Pe={inEventHandler:0,removeAllEventListeners:function(){for(var I=Pe.eventHandlers.length-1;I>=0;--I)Pe._removeHandler(I);Pe.eventHandlers=[],Pe.deferredCalls=[]},registerRemoveEventListeners:function(){Pe.removeEventListenersRegistered||(ca.push(Pe.removeAllEventListeners),Pe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,S,z){function q(ce,we){if(ce.length!=we.length)return!1;for(var tt in ce)if(ce[tt]!=we[tt])return!1;return!0}for(var de in Pe.deferredCalls){var le=Pe.deferredCalls[de];if(le.targetFunction==I&&q(le.argsList,z))return}Pe.deferredCalls.push({targetFunction:I,precedence:S,argsList:z}),Pe.deferredCalls.sort(function(ce,we){return ce.precedence<we.precedence})},removeDeferredCalls:function(I){for(var S=0;S<Pe.deferredCalls.length;++S)Pe.deferredCalls[S].targetFunction==I&&(Pe.deferredCalls.splice(S,1),--S)},canPerformEventHandlerRequests:function(){return Pe.inEventHandler&&Pe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Pe.canPerformEventHandlerRequests())for(var I=0;I<Pe.deferredCalls.length;++I){var S=Pe.deferredCalls[I];Pe.deferredCalls.splice(I,1),--I,S.targetFunction.apply(null,S.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(I,S){for(var z=0;z<Pe.eventHandlers.length;++z)Pe.eventHandlers[z].target==I&&(!S||S==Pe.eventHandlers[z].eventTypeString)&&Pe._removeHandler(z--)},_removeHandler:function(I){var S=Pe.eventHandlers[I];S.target.removeEventListener(S.eventTypeString,S.eventListenerFunc,S.useCapture),Pe.eventHandlers.splice(I,1)},registerOrRemoveHandler:function(I){var S=function(q){++Pe.inEventHandler,Pe.currentEventHandler=I,Pe.runDeferredCalls(),I.handlerFunc(q),Pe.runDeferredCalls(),--Pe.inEventHandler};if(I.callbackfunc)I.eventListenerFunc=S,I.target.addEventListener(I.eventTypeString,S,I.useCapture),Pe.eventHandlers.push(I),Pe.registerRemoveEventListeners();else for(var z=0;z<Pe.eventHandlers.length;++z)Pe.eventHandlers[z].target==I.target&&Pe.eventHandlers[z].eventTypeString==I.eventTypeString&&Pe._removeHandler(z--)},queueEventHandlerOnThread_iiii:function(I,S,z,q,de){var le=Gl(),ce=$i(12);o()[ce>>2]=z,o()[ce+4>>2]=q,o()[ce+8>>2]=de,k1(0,I,637534208,S,q,ce),Mi(le)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return ke.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function V0(I){var S=st(I)+1,z=Xa(S);return et(I,z,S),z}function U0(I,S,z,q){var de=Gl(),le=$i(12),ce=0;S&&(ce=V0(S)),o()[le>>2]=ce,o()[le+4>>2]=z,o()[le+8>>2]=q,k1(0,I,657457152,0,ce,le),Mi(de)}function H0(I,S,z,q){S=S?Me(S):"",U0(I,S,z,q)}function j0(I){return I>2?Me(I):I}var G0=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function q0(I){I=j0(I);var S=G0[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return S}function Bl(I){return q0(I)}function Wc(I,S,z){var q=Bl(I);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=S,o()[q.canvasSharedPtr+4>>2]=z),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var de=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var le=q.GLctxObject.GLctx.getParameter(2978);de=le[0]===0&&le[1]===0&&le[2]===q.width&&le[3]===q.height}q.width=S,q.height=z,de&&q.GLctxObject.GLctx.viewport(0,0,S,z)}else if(q.canvasSharedPtr){var ce=o()[q.canvasSharedPtr+8>>2];return H0(ce,I,S,z),1}else return-4;return 0}function Bc(I,S,z){return x?da(2,1,I,S,z):Wc(I,S,z)}function X0(I,S,z){var q=Bl(I);return q?Wc(I,S,z):Bc(I,S,z)}function K0(I){}function Z0(I,S){}function Y0(I){var S=I.getExtension("ANGLE_instanced_arrays");if(S)return I.vertexAttribDivisor=function(z,q){S.vertexAttribDivisorANGLE(z,q)},I.drawArraysInstanced=function(z,q,de,le){S.drawArraysInstancedANGLE(z,q,de,le)},I.drawElementsInstanced=function(z,q,de,le,ce){S.drawElementsInstancedANGLE(z,q,de,le,ce)},1}function J0(I){var S=I.getExtension("OES_vertex_array_object");if(S)return I.createVertexArray=function(){return S.createVertexArrayOES()},I.deleteVertexArray=function(z){S.deleteVertexArrayOES(z)},I.bindVertexArray=function(z){S.bindVertexArrayOES(z)},I.isVertexArray=function(z){return S.isVertexArrayOES(z)},1}function Q0(I){var S=I.getExtension("WEBGL_draw_buffers");if(S)return I.drawBuffers=function(z,q){S.drawBuffersWEBGL(z,q)},1}function e1(I){return!!(I.multiDrawWebgl=I.getExtension("WEBGL_multi_draw"))}var Ye={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(I){Ye.lastError||(Ye.lastError=I)},getNewId:function(I){for(var S=Ye.counter++,z=I.length;z<S;z++)I[z]=null;return S},getSource:function(I,S,z,q){for(var de="",le=0;le<S;++le){var ce=q?o()[q+le*4>>2]:-1;de+=Me(o()[z+le*4>>2],ce<0?void 0:ce)}return de},createContext:function(I,S){var z=I.getContext("webgl",S);if(!z)return 0;var q=Ye.registerContext(z,S);return q},registerContext:function(I,S){var z=Xa(8);o()[z+4>>2]=Fi();var q={handle:z,attributes:S,version:S.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=q),Ye.contexts[z]=q,(typeof S.enableExtensionsByDefault=="undefined"||S.enableExtensionsByDefault)&&Ye.initExtensions(q),z},makeContextCurrent:function(I){return Ye.currentContext=Ye.contexts[I],c.ctx=pa=Ye.currentContext&&Ye.currentContext.GLctx,!(I&&!pa)},getContext:function(I){return Ye.contexts[I]},deleteContext:function(I){Ye.currentContext===Ye.contexts[I]&&(Ye.currentContext=null),typeof Pe=="object"&&Pe.removeAllHandlersOnTarget(Ye.contexts[I].GLctx.canvas),Ye.contexts[I]&&Ye.contexts[I].GLctx.canvas&&(Ye.contexts[I].GLctx.canvas.GLctxObject=void 0),jl(Ye.contexts[I].handle),Ye.contexts[I]=null},initExtensions:function(I){if(I||(I=Ye.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var S=I.GLctx;Y0(S),J0(S),Q0(S),S.disjointTimerQueryExt=S.getExtension("EXT_disjoint_timer_query"),e1(S);var z=S.getSupportedExtensions()||[];z.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&S.getExtension(q)})}},populateUniformTable:function(I){for(var S=Ye.programs[I],z=Ye.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=z.uniforms,de=pa.getProgramParameter(S,35718),le=0;le<de;++le){var ce=pa.getActiveUniform(S,le),we=ce.name;z.maxUniformLength=Math.max(z.maxUniformLength,we.length+1),we.slice(-1)=="]"&&(we=we.slice(0,we.lastIndexOf("[")));var tt=pa.getUniformLocation(S,we);if(tt){var Wt=Ye.getNewId(Ye.uniforms);q[we]=[ce.size,Wt],Ye.uniforms[Wt]=tt;for(var Ft=1;Ft<ce.size;++Ft){var ma=we+"["+Ft+"]";tt=pa.getUniformLocation(S,ma),Wt=Ye.getNewId(Ye.uniforms),Ye.uniforms[Wt]=tt}}}}},t1=["default","low-power","high-performance"];function n1(I,S){var z=S>>2,q=o()[z+(24>>2)],de={alpha:!!o()[z+(0>>2)],depth:!!o()[z+(4>>2)],stencil:!!o()[z+(8>>2)],antialias:!!o()[z+(12>>2)],premultipliedAlpha:!!o()[z+(16>>2)],preserveDrawingBuffer:!!o()[z+(20>>2)],powerPreference:t1[q],failIfMajorPerformanceCaveat:!!o()[z+(28>>2)],majorVersion:o()[z+(32>>2)],minorVersion:o()[z+(36>>2)],enableExtensionsByDefault:o()[z+(40>>2)],explicitSwapControl:o()[z+(44>>2)],proxyContextToMainThread:o()[z+(48>>2)],renderViaOffscreenBackBuffer:o()[z+(52>>2)]},le=Bl(I);if(!le||de.explicitSwapControl)return 0;var ce=Ye.createContext(le,de);return ce}function r1(I,S){return n1(I,S)}var Ci={mappings:{},buffers:[null,[],[]],printChar:function(I,S){var z=Ci.buffers[I];S===0||S===10?((I===1?X:G)(Oe(z,0)),z.length=0):z.push(S)},varargs:void 0,get:function(){Ci.varargs+=4;var I=o()[Ci.varargs-4>>2];return I},getStr:function(I){var S=Me(I);return S},get64:function(I,S){return I}};function Vc(I){return x?da(3,1,I):0}function Uc(I,S,z,q,de){if(x)return da(4,1,I,S,z,q,de)}function Hc(I,S,z,q){if(x)return da(5,1,I,S,z,q);for(var de=0,le=0;le<z;le++){for(var ce=o()[S+le*8>>2],we=o()[S+(le*8+4)>>2],tt=0;tt<we;tt++)Ci.printChar(I,i()[ce+tt]);de+=we}return o()[q>>2]=de,0}function a1(I){var S=ke.threadExitHandlers.pop();I&&S()}function s1(I,S){ke.threadExitHandlers.push(function(){Yn.get(I)(S)})}function jc(I){if(x)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var S=ke.getNewWorker();if(S.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";ke.runningWorkers.push(S);for(var z=Xa(128*4),q=0;q<128;++q)o()[z+q*4>>2]=0;var de=I.stackBase+I.stackSize,le=ke.pthreads[I.pthread_ptr]={worker:S,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,threadInfoStruct:I.pthread_ptr},ce=le.threadInfoStruct>>2;Atomics.store(l(),ce+(64>>2),I.detached),Atomics.store(l(),ce+(100>>2),z),Atomics.store(l(),ce+(40>>2),le.threadInfoStruct),Atomics.store(l(),ce+(80>>2),I.stackSize),Atomics.store(l(),ce+(76>>2),de),Atomics.store(l(),ce+(104>>2),I.stackSize),Atomics.store(l(),ce+(104+8>>2),de),Atomics.store(l(),ce+(104+12>>2),I.detached);var we=eg(),tt=we+40;Atomics.store(l(),ce+(172>>2),tt),S.pthread=le;var Wt={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};S.runPthread=function(){Wt.time=performance.now(),S.postMessage(Wt,I.transferList)},S.loaded&&(S.runPthread(),delete S.runPthread)}function i1(I,S,z,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return G("pthread_create called with a null thread pointer!"),28;var de=[],le=0;if(x&&(de.length===0||le))return ag(687865856,I,S,z,q);if(le)return le;var ce=0,we=0,tt=0;S&&S!=-1?(ce=o()[S>>2],ce+=81920,we=o()[S+8>>2],tt=o()[S+12>>2]!==0):ce=2097152;var Wt=we==0;Wt?we=og(16,ce):(we-=ce,pe(we>0));for(var Ft=Xa(228),ma=0;ma<228>>2;++ma)l()[(Ft>>2)+ma]=0;o()[I>>2]=Ft,o()[Ft+12>>2]=Ft;var Di=Ft+152;o()[Di>>2]=Di;var An={stackBase:we,stackSize:ce,allocatedOwnStack:Wt,detached:tt,startRoutine:z,pthread_ptr:Ft,arg:q,transferList:de};return x?(An.cmd="spawnThread",postMessage(An,de)):jc(An),0}function Gc(I){if(x)return da(6,1,I);switch(I){case 30:return 16384;case 85:var S=2147483648;return S/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return T0(28),-1}x||ke.initMainThreadBlock();var pa,o1=[null,E0,Bc,Vc,Uc,Hc,Gc],l1={e:N0,r:S0,x:C0,b:R0,y:F0,j:M0,c:$0,d:Ei,f:qa,p:O0,z:D0,u:P0,q:B0,v:X0,i:K0,t:Z0,w:r1,m:Vc,n:Uc,g:Hc,o:x0,a:Q||c.wasmMemory,k:a1,l:s1,h:i1,s:Gc},J2=g0(),qc=c.___wasm_call_ctors=function(){return(qc=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},u1=c._init=function(){return(u1=c._init=c.asm.B).apply(null,arguments)},c1=c._register_tensor=function(){return(c1=c._register_tensor=c.asm.C).apply(null,arguments)},h1=c._dispose_data=function(){return(h1=c._dispose_data=c.asm.D).apply(null,arguments)},d1=c._dispose=function(){return(d1=c._dispose=c.asm.E).apply(null,arguments)},p1=c._Abs=function(){return(p1=c._Abs=c.asm.G).apply(null,arguments)},f1=c._Add=function(){return(f1=c._Add=c.asm.H).apply(null,arguments)},m1=c._AddN=function(){return(m1=c._AddN=c.asm.I).apply(null,arguments)},A1=c._ArgMax=function(){return(A1=c._ArgMax=c.asm.J).apply(null,arguments)},y1=c._AvgPool=function(){return(y1=c._AvgPool=c.asm.K).apply(null,arguments)},g1=c._BatchMatMul=function(){return(g1=c._BatchMatMul=c.asm.L).apply(null,arguments)},x1=c._Ceil=function(){return(x1=c._Ceil=c.asm.M).apply(null,arguments)},w1=c._ClipByValue=function(){return(w1=c._ClipByValue=c.asm.N).apply(null,arguments)},_1=c._Conv2D=function(){return(_1=c._Conv2D=c.asm.O).apply(null,arguments)},Xc=c._Conv2DBackpropInput=function(){return(Xc=c._Conv2DBackpropInput=c.asm.P).apply(null,arguments)},Kc=c._Cos=function(){return(Kc=c._Cos=c.asm.Q).apply(null,arguments)},Vl=c._CropAndResize=function(){return(Vl=c._CropAndResize=c.asm.R).apply(null,arguments)},Ri=c._Cumsum=function(){return(Ri=c._Cumsum=c.asm.S).apply(null,arguments)},b1=c._DepthToSpace=function(){return(b1=c._DepthToSpace=c.asm.T).apply(null,arguments)},Ul=c._DepthwiseConv2dNative=function(){return(Ul=c._DepthwiseConv2dNative=c.asm.U).apply(null,arguments)},K=c._Equal=function(){return(K=c._Equal=c.asm.V).apply(null,arguments)},ne=c._Exp=function(){return(ne=c._Exp=c.asm.W).apply(null,arguments)},Ne=c._FlipLeftRight=function(){return(Ne=c._FlipLeftRight=c.asm.X).apply(null,arguments)},Ke=c._Floor=function(){return(Ke=c._Floor=c.asm.Y).apply(null,arguments)},kt=c._FloorDiv=function(){return(kt=c._FloorDiv=c.asm.Z).apply(null,arguments)},ft=c._FusedBatchNorm=function(){return(ft=c._FusedBatchNorm=c.asm._).apply(null,arguments)},Be=c._FusedConv2D=function(){return(Be=c._FusedConv2D=c.asm.$).apply(null,arguments)},Ue=c._FusedDepthwiseConv2D=function(){return(Ue=c._FusedDepthwiseConv2D=c.asm.aa).apply(null,arguments)},Yt=c._Gather=function(){return(Yt=c._Gather=c.asm.ba).apply(null,arguments)},qr=c._GatherNd=function(){return(qr=c._GatherNd=c.asm.ca).apply(null,arguments)},Xr=c._Greater=function(){return(Xr=c._Greater=c.asm.da).apply(null,arguments)},Zc=c._GreaterEqual=function(){return(Zc=c._GreaterEqual=c.asm.ea).apply(null,arguments)},Hl=c._LeakyRelu=function(){return(Hl=c._LeakyRelu=c.asm.fa).apply(null,arguments)},Vn=c._Less=function(){return(Vn=c._Less=c.asm.ga).apply(null,arguments)},fa=c._LessEqual=function(){return(fa=c._LessEqual=c.asm.ha).apply(null,arguments)},Yc=c._Log=function(){return(Yc=c._Log=c.asm.ia).apply(null,arguments)},a4=c._LogicalAnd=function(){return(a4=c._LogicalAnd=c.asm.ja).apply(null,arguments)},s4=c._Max=function(){return(s4=c._Max=c.asm.ka).apply(null,arguments)},i4=c._MaxPool=function(){return(i4=c._MaxPool=c.asm.la).apply(null,arguments)},o4=c._Maximum=function(){return(o4=c._Maximum=c.asm.ma).apply(null,arguments)},l4=c._Mean=function(){return(l4=c._Mean=c.asm.na).apply(null,arguments)},u4=c._Min=function(){return(u4=c._Min=c.asm.oa).apply(null,arguments)},c4=c._Minimum=function(){return(c4=c._Minimum=c.asm.pa).apply(null,arguments)},h4=c._Multiply=function(){return(h4=c._Multiply=c.asm.qa).apply(null,arguments)},d4=c._Neg=function(){return(d4=c._Neg=c.asm.ra).apply(null,arguments)},p4=c._NonMaxSuppressionV3=function(){return(p4=c._NonMaxSuppressionV3=c.asm.sa).apply(null,arguments)},f4=c._NonMaxSuppressionV4=function(){return(f4=c._NonMaxSuppressionV4=c.asm.ta).apply(null,arguments)},m4=c._NonMaxSuppressionV5=function(){return(m4=c._NonMaxSuppressionV5=c.asm.ua).apply(null,arguments)},A4=c._NotEqual=function(){return(A4=c._NotEqual=c.asm.va).apply(null,arguments)},y4=c._OneHot=function(){return(y4=c._OneHot=c.asm.wa).apply(null,arguments)},g4=c._PadV2=function(){return(g4=c._PadV2=c.asm.xa).apply(null,arguments)},x4=c._Pow=function(){return(x4=c._Pow=c.asm.ya).apply(null,arguments)},w4=c._Prelu=function(){return(w4=c._Prelu=c.asm.za).apply(null,arguments)},_4=c._Prod=function(){return(_4=c._Prod=c.asm.Aa).apply(null,arguments)},b4=c._RealDiv=function(){return(b4=c._RealDiv=c.asm.Ba).apply(null,arguments)},v4=c._Relu=function(){return(v4=c._Relu=c.asm.Ca).apply(null,arguments)},k4=c._Relu6=function(){return(k4=c._Relu6=c.asm.Da).apply(null,arguments)},I4=c._ResizeBilinear=function(){return(I4=c._ResizeBilinear=c.asm.Ea).apply(null,arguments)},N4=c._Reverse=function(){return(N4=c._Reverse=c.asm.Fa).apply(null,arguments)},S4=c._RotateWithOffset=function(){return(S4=c._RotateWithOffset=c.asm.Ga).apply(null,arguments)},T4=c._Round=function(){return(T4=c._Round=c.asm.Ha).apply(null,arguments)},E4=c._Rsqrt=function(){return(E4=c._Rsqrt=c.asm.Ia).apply(null,arguments)},C4=c._ScatterNd=function(){return(C4=c._ScatterNd=c.asm.Ja).apply(null,arguments)},R4=c._SelectV2=function(){return(R4=c._SelectV2=c.asm.Ka).apply(null,arguments)},F4=c._Sigmoid=function(){return(F4=c._Sigmoid=c.asm.La).apply(null,arguments)},M4=c._Sin=function(){return(M4=c._Sin=c.asm.Ma).apply(null,arguments)},$4=c._Softmax=function(){return($4=c._Softmax=c.asm.Na).apply(null,arguments)},O4=c._Sqrt=function(){return(O4=c._Sqrt=c.asm.Oa).apply(null,arguments)},D4=c._Square=function(){return(D4=c._Square=c.asm.Pa).apply(null,arguments)},z4=c._SquaredDifference=function(){return(z4=c._SquaredDifference=c.asm.Qa).apply(null,arguments)},P4=c._Step=function(){return(P4=c._Step=c.asm.Ra).apply(null,arguments)},L4=c._StridedSlice=function(){return(L4=c._StridedSlice=c.asm.Sa).apply(null,arguments)},W4=c._Sub=function(){return(W4=c._Sub=c.asm.Ta).apply(null,arguments)},B4=c._Sum=function(){return(B4=c._Sum=c.asm.Ua).apply(null,arguments)},V4=c._Tanh=function(){return(V4=c._Tanh=c.asm.Va).apply(null,arguments)},U4=c._Tile=function(){return(U4=c._Tile=c.asm.Wa).apply(null,arguments)},H4=c._TopK=function(){return(H4=c._TopK=c.asm.Xa).apply(null,arguments)},j4=c._Transpose=function(){return(j4=c._Transpose=c.asm.Ya).apply(null,arguments)},G4=c.__FusedMatMul=function(){return(G4=c.__FusedMatMul=c.asm.Za).apply(null,arguments)},Xa=c._malloc=function(){return(Xa=c._malloc=c.asm._a).apply(null,arguments)},jl=c._free=function(){return(jl=c._free=c.asm.$a).apply(null,arguments)},Q2=c.___errno_location=function(){return(Q2=c.___errno_location=c.asm.ab).apply(null,arguments)},eg=c._emscripten_get_global_libc=function(){return(eg=c._emscripten_get_global_libc=c.asm.bb).apply(null,arguments)},Fi=c._pthread_self=function(){return(Fi=c._pthread_self=c.asm.cb).apply(null,arguments)},tg=c.___pthread_tsd_run_dtors=function(){return(tg=c.___pthread_tsd_run_dtors=c.asm.db).apply(null,arguments)},v1=c._emscripten_main_thread_process_queued_calls=function(){return(v1=c._emscripten_main_thread_process_queued_calls=c.asm.eb).apply(null,arguments)},q4=c._emscripten_current_thread_process_queued_calls=function(){return(q4=c._emscripten_current_thread_process_queued_calls=c.asm.fb).apply(null,arguments)},ng=c._emscripten_register_main_browser_thread_id=function(){return(ng=c._emscripten_register_main_browser_thread_id=c.asm.gb).apply(null,arguments)},rg=c.__emscripten_do_dispatch_to_thread=function(){return(rg=c.__emscripten_do_dispatch_to_thread=c.asm.hb).apply(null,arguments)},ag=c._emscripten_sync_run_in_main_thread_4=function(){return(ag=c._emscripten_sync_run_in_main_thread_4=c.asm.ib).apply(null,arguments)},sg=c._emscripten_run_in_main_runtime_thread_js=function(){return(sg=c._emscripten_run_in_main_runtime_thread_js=c.asm.jb).apply(null,arguments)},k1=c.__emscripten_call_on_thread=function(){return(k1=c.__emscripten_call_on_thread=c.asm.kb).apply(null,arguments)},X4=c._emscripten_tls_init=function(){return(X4=c._emscripten_tls_init=c.asm.lb).apply(null,arguments)},Jc=c.__emscripten_thread_init=function(){return(Jc=c.__emscripten_thread_init=c.asm.mb).apply(null,arguments)},Gl=c.stackSave=function(){return(Gl=c.stackSave=c.asm.nb).apply(null,arguments)},Mi=c.stackRestore=function(){return(Mi=c.stackRestore=c.asm.ob).apply(null,arguments)},$i=c.stackAlloc=function(){return($i=c.stackAlloc=c.asm.pb).apply(null,arguments)},ig=c._emscripten_stack_set_limits=function(){return(ig=c._emscripten_stack_set_limits=c.asm.qb).apply(null,arguments)},og=c._memalign=function(){return(og=c._memalign=c.asm.rb).apply(null,arguments)},lg=c.__emscripten_allow_main_runtime_queued_calls=9880,Oi=c.__emscripten_main_thread_futex=11368;c.cwrap=Fe,c.PThread=ke,c.PThread=ke,c.wasmMemory=Q,c.ExitStatus=ql;var Qc;function ql(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}Ga=function I(){Qc||I1(),Qc||(Ga=I)};function I1(I){if(I=I||f,jr>0)return;if(x){h(c),postMessage({cmd:"loaded"});return}if(h0(),jr>0)return;function S(){Qc||(Qc=!0,c.calledRun=!0,!oe&&(Fc(),d0(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),fn()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),S()},1)):S()}c.run=I1;function K4(I,S){if(!(S&&ie&&I===0)){if(!S&&x)throw postMessage({cmd:"exitProcess",returnCode:I}),new ql(I);ie||(ke.terminateAllThreads(),fe=I,Mc(),c.onExit&&c.onExit(I),oe=!0),y(I,new ql(I))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return x&&(ie=!1,ke.initWorker()),I1(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),E8=Je((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(K,ne){i=K,o=ne});var l={},u;for(u in s)s.hasOwnProperty(u)&&(l[u]=s[u]);var c=[],h="./this.program",d=function(K,ne){throw ne},p=!1,m=!1,f=!1,A=!1;p=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!p&&!f&&!m;var y="";function g(K){return s.locateFile?s.locateFile(K,y):y+K}var b,_,w,x,N,T;f?(m?y=Xl().dirname(y)+"/":y=__dirname+"/",b=function(K,ne){return N||(N=require("fs")),T||(T=Xl()),K=T.normalize(K),N.readFileSync(K,ne?null:"utf8")},w=function(K){var ne=b(K,!0);return ne.buffer||(ne=new Uint8Array(ne)),X(ne.buffer),ne},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof b1))throw K}),process.on("unhandledRejection",pr),d=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(b=function(K){return read(K)}),w=function(K){var ne;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(ne=read(K,"binary"),X(typeof ne=="object"),ne)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(d=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),r&&(y=r),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",b=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.send(null),ne.responseText},m&&(w=function(K){var ne=new XMLHttpRequest;return ne.open("GET",K,!1),ne.responseType="arraybuffer",ne.send(null),new Uint8Array(ne.response)}),_=function(K,ne,Ne){var Ke=new XMLHttpRequest;Ke.open("GET",K,!0),Ke.responseType="arraybuffer",Ke.onload=function(){if(Ke.status==200||Ke.status==0&&Ke.response){ne(Ke.response);return}Ne()},Ke.onerror=Ne,Ke.send(null)},x=function(K){document.title=K});var E=s.print||console.log.bind(console),M=s.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(s[u]=l[u]);l=null,s.arguments&&(c=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(d=s.quit);var D;s.wasmBinary&&(D=s.wasmBinary);var L=s.noExitRuntime||!0;typeof WebAssembly!="object"&&pr("no native wasm support detected");var W,U=!1,H;function X(K,ne){K||pr("Assertion failed: "+ne)}function G(K){var ne=s["_"+K];return X(ne,"Cannot call unknown function "+K+", make sure it is exported"),ne}function ee(K,ne,Ne,Ke,kt){var ft={string:function(Vn){var fa=0;if(Vn!=null&&Vn!==0){var Yc=(Vn.length<<2)+1;fa=Vl(Yc),he(Vn,fa,Yc)}return fa},array:function(Vn){var fa=Vl(Vn.length);return oe(Vn,fa),fa}};function Be(Vn){return ne==="string"?ie(Vn):ne==="boolean"?Boolean(Vn):Vn}var Ue=G(K),Yt=[],qr=0;if(Ke)for(var Xr=0;Xr<Ke.length;Xr++){var Zc=ft[Ne[Xr]];Zc?(qr===0&&(qr=Xc()),Yt[Xr]=Zc(Ke[Xr])):Yt[Xr]=Ke[Xr]}var Hl=Ue.apply(null,Yt);return Hl=Be(Hl),qr!==0&&Kc(qr),Hl}function Y(K,ne,Ne,Ke){Ne=Ne||[];var kt=Ne.every(function(Be){return Be==="number"}),ft=ne!=="string";return ft&&kt&&!Ke?G(K):function(){return ee(K,ne,Ne,arguments,Ke)}}var ae=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function te(K,ne,Ne){for(var Ke=ne+Ne,kt=ne;K[kt]&&!(kt>=Ke);)++kt;if(kt-ne>16&&K.subarray&&ae)return ae.decode(K.subarray(ne,kt));for(var ft="";ne<kt;){var Be=K[ne++];if(!(Be&128)){ft+=String.fromCharCode(Be);continue}var Ue=K[ne++]&63;if((Be&224)==192){ft+=String.fromCharCode((Be&31)<<6|Ue);continue}var Yt=K[ne++]&63;if((Be&240)==224?Be=(Be&15)<<12|Ue<<6|Yt:Be=(Be&7)<<18|Ue<<12|Yt<<6|K[ne++]&63,Be<65536)ft+=String.fromCharCode(Be);else{var qr=Be-65536;ft+=String.fromCharCode(55296|qr>>10,56320|qr&1023)}}return ft}function ie(K,ne){return K?te(Ie,K,ne):""}function Q(K,ne,Ne,Ke){if(!(Ke>0))return 0;for(var kt=Ne,ft=Ne+Ke-1,Be=0;Be<K.length;++Be){var Ue=K.charCodeAt(Be);if(Ue>=55296&&Ue<=57343){var Yt=K.charCodeAt(++Be);Ue=65536+((Ue&1023)<<10)|Yt&1023}if(Ue<=127){if(Ne>=ft)break;ne[Ne++]=Ue}else if(Ue<=2047){if(Ne+1>=ft)break;ne[Ne++]=192|Ue>>6,ne[Ne++]=128|Ue&63}else if(Ue<=65535){if(Ne+2>=ft)break;ne[Ne++]=224|Ue>>12,ne[Ne++]=128|Ue>>6&63,ne[Ne++]=128|Ue&63}else{if(Ne+3>=ft)break;ne[Ne++]=240|Ue>>18,ne[Ne++]=128|Ue>>12&63,ne[Ne++]=128|Ue>>6&63,ne[Ne++]=128|Ue&63}}return ne[Ne]=0,Ne-kt}function he(K,ne,Ne){return Q(K,Ie,ne,Ne)}function oe(K,ne){ve.set(K,ne)}function fe(K,ne){return K%ne>0&&(K+=ne-K%ne),K}var pe,ve,Ie,Fe,Oe,Me,Qe,et,st;function Xe(K){pe=K,s.HEAP8=ve=new Int8Array(K),s.HEAP16=Fe=new Int16Array(K),s.HEAP32=Me=new Int32Array(K),s.HEAPU8=Ie=new Uint8Array(K),s.HEAPU16=Oe=new Uint16Array(K),s.HEAPU32=Qe=new Uint32Array(K),s.HEAPF32=et=new Float32Array(K),s.HEAPF64=st=new Float64Array(K)}var ht=s.INITIAL_MEMORY||16777216,We,dn=[],xt=[],Wn=[],Kt=[],pn=!1;xt.push({func:function(){Pc()}});function Bn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Ir(s.preRun.shift());ha(dn)}function Nn(){pn=!0,ha(xt)}function sn(){ha(Wn)}function Zt(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)Yn(s.postRun.shift());ha(Kt)}function Ir(K){dn.unshift(K)}function Yn(K){Kt.unshift(K)}var Jn=0,ua=null,Hr=null;function ca(K){Jn++,s.monitorRunDependencies&&s.monitorRunDependencies(Jn)}function Ni(K){if(Jn--,s.monitorRunDependencies&&s.monitorRunDependencies(Jn),Jn==0&&(ua!==null&&(clearInterval(ua),ua=null),Hr)){var ne=Hr;Hr=null,ne()}}s.preloadedImages={},s.preloadedAudios={};function pr(K){s.onAbort&&s.onAbort(K),K+="",M(K),U=!0,H=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var ne=new WebAssembly.RuntimeError(K);throw o(ne),ne}function Rc(K,ne){return String.prototype.startsWith?K.startsWith(ne):K.indexOf(ne)===0}var h0="data:application/octet-stream;base64,";function Fc(K){return Rc(K,h0)}var d0="file://";function Mc(K){return Rc(K,d0)}var fn="tfjs-backend-wasm.wasm";Fc(fn)||(fn=g(fn));function $c(K){try{if(K==fn&&D)return new Uint8Array(D);if(w)return w(K);throw"both async and sync fetching of the wasm failed"}catch(ne){pr(ne)}}function p0(){if(!D&&(p||m)){if(typeof fetch=="function"&&!Mc(fn))return fetch(fn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+fn+"'";return K.arrayBuffer()}).catch(function(){return $c(fn)});if(_)return new Promise(function(K,ne){_(fn,function(Ne){K(new Uint8Array(Ne))},ne)})}return Promise.resolve().then(function(){return $c(fn)})}function jr(){var K={a:mn};function ne(Be,Ue){var Yt=Be.exports;s.asm=Yt,W=s.asm.g,Xe(W.buffer),We=s.asm.m,Ni("wasm-instantiate")}ca("wasm-instantiate");function Ne(Be){ne(Be.instance)}function Ke(Be){return p0().then(function(Ue){return WebAssembly.instantiate(Ue,K)}).then(Be,function(Ue){M("failed to asynchronously prepare wasm: "+Ue),pr(Ue)})}function kt(){return!D&&typeof WebAssembly.instantiateStreaming=="function"&&!Fc(fn)&&!Mc(fn)&&typeof fetch=="function"?fetch(fn,{credentials:"same-origin"}).then(function(Be){var Ue=WebAssembly.instantiateStreaming(Be,K);return Ue.then(Ne,function(Yt){return M("wasm streaming compile failed: "+Yt),M("falling back to ArrayBuffer instantiation"),Ke(Ne)})}):Ke(Ne)}if(s.instantiateWasm)try{var ft=s.instantiateWasm(K,ne);return ft}catch(Be){return M("Module.instantiateWasm callback failed with error: "+Be),!1}return kt().catch(o),{}}function ha(K){for(;K.length>0;){var ne=K.shift();if(typeof ne=="function"){ne(s);continue}var Ne=ne.func;typeof Ne=="number"?ne.arg===void 0?We.get(Ne)():We.get(Ne)(ne.arg):Ne(ne.arg===void 0?null:ne.arg)}}function Ga(){pr()}function f0(K,ne,Ne){Ie.copyWithin(K,ne,ne+Ne)}function m0(){return Ie.length}function Gr(K){try{return W.grow(K-pe.byteLength+65535>>>16),Xe(W.buffer),1}catch(ne){}}function Oc(K){var ne=m0(),Ne=2147483648;if(K>Ne)return!1;for(var Ke=1;Ke<=4;Ke*=2){var kt=ne*(1+.2/Ke);kt=Math.min(kt,K+100663296);var ft=Math.min(Ne,fe(Math.max(K,kt),65536)),Be=Gr(ft);if(Be)return!0}return!1}var Si={mappings:{},buffers:[null,[],[]],printChar:function(K,ne){var Ne=Si.buffers[K];ne===0||ne===10?((K===1?E:M)(te(Ne,0)),Ne.length=0):Ne.push(ne)},varargs:void 0,get:function(){Si.varargs+=4;var K=Me[Si.varargs-4>>2];return K},getStr:function(K){var ne=ie(K);return ne},get64:function(K,ne){return K}};function Dc(K){return 0}function A0(K,ne,Ne,Ke,kt){}function zc(K,ne,Ne,Ke){for(var kt=0,ft=0;ft<Ne;ft++){for(var Be=Me[ne+ft*8>>2],Ue=Me[ne+(ft*8+4)>>2],Yt=0;Yt<Ue;Yt++)Si.printChar(K,Ie[Be+Yt]);kt+=Ue}return Me[Ke>>2]=kt,0}var mn={a:Ga,d:f0,e:Oc,f:Dc,c:A0,b:zc},y0=jr(),Pc=s.___wasm_call_ctors=function(){return(Pc=s.___wasm_call_ctors=s.asm.h).apply(null,arguments)},g0=s._init=function(){return(g0=s._init=s.asm.i).apply(null,arguments)},Lc=s._register_tensor=function(){return(Lc=s._register_tensor=s.asm.j).apply(null,arguments)},x0=s._dispose_data=function(){return(x0=s._dispose_data=s.asm.k).apply(null,arguments)},Ti=s._dispose=function(){return(Ti=s._dispose=s.asm.l).apply(null,arguments)},Ei=s._Abs=function(){return(Ei=s._Abs=s.asm.n).apply(null,arguments)},w0=s._Add=function(){return(w0=s._Add=s.asm.o).apply(null,arguments)},_0=s._AddN=function(){return(_0=s._AddN=s.asm.p).apply(null,arguments)},b0=s._ArgMax=function(){return(b0=s._ArgMax=s.asm.q).apply(null,arguments)},ke=s._AvgPool=function(){return(ke=s._AvgPool=s.asm.r).apply(null,arguments)},v0=s._BatchMatMul=function(){return(v0=s._BatchMatMul=s.asm.s).apply(null,arguments)},k0=s._Ceil=function(){return(k0=s._Ceil=s.asm.t).apply(null,arguments)},I0=s._ClipByValue=function(){return(I0=s._ClipByValue=s.asm.u).apply(null,arguments)},N0=s._Conv2D=function(){return(N0=s._Conv2D=s.asm.v).apply(null,arguments)},S0=s._Conv2DBackpropInput=function(){return(S0=s._Conv2DBackpropInput=s.asm.w).apply(null,arguments)},qa=s._Cos=function(){return(qa=s._Cos=s.asm.x).apply(null,arguments)},T0=s._CropAndResize=function(){return(T0=s._CropAndResize=s.asm.y).apply(null,arguments)},E0=s._Cumsum=function(){return(E0=s._Cumsum=s.asm.z).apply(null,arguments)},C0=s._DepthToSpace=function(){return(C0=s._DepthToSpace=s.asm.A).apply(null,arguments)},R0=s._DepthwiseConv2dNative=function(){return(R0=s._DepthwiseConv2dNative=s.asm.B).apply(null,arguments)},F0=s._Equal=function(){return(F0=s._Equal=s.asm.C).apply(null,arguments)},M0=s._Exp=function(){return(M0=s._Exp=s.asm.D).apply(null,arguments)},$0=s._FlipLeftRight=function(){return($0=s._FlipLeftRight=s.asm.E).apply(null,arguments)},O0=s._Floor=function(){return(O0=s._Floor=s.asm.F).apply(null,arguments)},D0=s._FloorDiv=function(){return(D0=s._FloorDiv=s.asm.G).apply(null,arguments)},da=s._FusedBatchNorm=function(){return(da=s._FusedBatchNorm=s.asm.H).apply(null,arguments)},Ll=s._FusedConv2D=function(){return(Ll=s._FusedConv2D=s.asm.I).apply(null,arguments)},Wl=s._FusedDepthwiseConv2D=function(){return(Wl=s._FusedDepthwiseConv2D=s.asm.J).apply(null,arguments)},z0=s._Gather=function(){return(z0=s._Gather=s.asm.K).apply(null,arguments)},P0=s._GatherNd=function(){return(P0=s._GatherNd=s.asm.L).apply(null,arguments)},L0=s._Greater=function(){return(L0=s._Greater=s.asm.M).apply(null,arguments)},W0=s._GreaterEqual=function(){return(W0=s._GreaterEqual=s.asm.N).apply(null,arguments)},B0=s._LeakyRelu=function(){return(B0=s._LeakyRelu=s.asm.O).apply(null,arguments)},Pe=s._Less=function(){return(Pe=s._Less=s.asm.P).apply(null,arguments)},V0=s._LessEqual=function(){return(V0=s._LessEqual=s.asm.Q).apply(null,arguments)},U0=s._Log=function(){return(U0=s._Log=s.asm.R).apply(null,arguments)},H0=s._LogicalAnd=function(){return(H0=s._LogicalAnd=s.asm.S).apply(null,arguments)},j0=s._Max=function(){return(j0=s._Max=s.asm.T).apply(null,arguments)},G0=s._MaxPool=function(){return(G0=s._MaxPool=s.asm.U).apply(null,arguments)},q0=s._Maximum=function(){return(q0=s._Maximum=s.asm.V).apply(null,arguments)},Bl=s._Mean=function(){return(Bl=s._Mean=s.asm.W).apply(null,arguments)},Wc=s._Min=function(){return(Wc=s._Min=s.asm.X).apply(null,arguments)},Bc=s._Minimum=function(){return(Bc=s._Minimum=s.asm.Y).apply(null,arguments)},X0=s._Multiply=function(){return(X0=s._Multiply=s.asm.Z).apply(null,arguments)},K0=s._Neg=function(){return(K0=s._Neg=s.asm._).apply(null,arguments)},Z0=s._NonMaxSuppressionV3=function(){return(Z0=s._NonMaxSuppressionV3=s.asm.$).apply(null,arguments)},Y0=s._NonMaxSuppressionV4=function(){return(Y0=s._NonMaxSuppressionV4=s.asm.aa).apply(null,arguments)},J0=s._NonMaxSuppressionV5=function(){return(J0=s._NonMaxSuppressionV5=s.asm.ba).apply(null,arguments)},Q0=s._NotEqual=function(){return(Q0=s._NotEqual=s.asm.ca).apply(null,arguments)},e1=s._OneHot=function(){return(e1=s._OneHot=s.asm.da).apply(null,arguments)},Ye=s._PadV2=function(){return(Ye=s._PadV2=s.asm.ea).apply(null,arguments)},t1=s._Pow=function(){return(t1=s._Pow=s.asm.fa).apply(null,arguments)},n1=s._Prelu=function(){return(n1=s._Prelu=s.asm.ga).apply(null,arguments)},r1=s._Prod=function(){return(r1=s._Prod=s.asm.ha).apply(null,arguments)},Ci=s._RealDiv=function(){return(Ci=s._RealDiv=s.asm.ia).apply(null,arguments)},Vc=s._Relu=function(){return(Vc=s._Relu=s.asm.ja).apply(null,arguments)},Uc=s._Relu6=function(){return(Uc=s._Relu6=s.asm.ka).apply(null,arguments)},Hc=s._ResizeBilinear=function(){return(Hc=s._ResizeBilinear=s.asm.la).apply(null,arguments)},a1=s._Reverse=function(){return(a1=s._Reverse=s.asm.ma).apply(null,arguments)},s1=s._RotateWithOffset=function(){return(s1=s._RotateWithOffset=s.asm.na).apply(null,arguments)},jc=s._Round=function(){return(jc=s._Round=s.asm.oa).apply(null,arguments)},i1=s._Rsqrt=function(){return(i1=s._Rsqrt=s.asm.pa).apply(null,arguments)},Gc=s._ScatterNd=function(){return(Gc=s._ScatterNd=s.asm.qa).apply(null,arguments)},pa=s._SelectV2=function(){return(pa=s._SelectV2=s.asm.ra).apply(null,arguments)},o1=s._Sigmoid=function(){return(o1=s._Sigmoid=s.asm.sa).apply(null,arguments)},l1=s._Sin=function(){return(l1=s._Sin=s.asm.ta).apply(null,arguments)},J2=s._Softmax=function(){return(J2=s._Softmax=s.asm.ua).apply(null,arguments)},qc=s._Sqrt=function(){return(qc=s._Sqrt=s.asm.va).apply(null,arguments)},u1=s._Square=function(){return(u1=s._Square=s.asm.wa).apply(null,arguments)},c1=s._SquaredDifference=function(){return(c1=s._SquaredDifference=s.asm.xa).apply(null,arguments)},h1=s._Step=function(){return(h1=s._Step=s.asm.ya).apply(null,arguments)},d1=s._StridedSlice=function(){return(d1=s._StridedSlice=s.asm.za).apply(null,arguments)},p1=s._Sub=function(){return(p1=s._Sub=s.asm.Aa).apply(null,arguments)},f1=s._Sum=function(){return(f1=s._Sum=s.asm.Ba).apply(null,arguments)},m1=s._Tanh=function(){return(m1=s._Tanh=s.asm.Ca).apply(null,arguments)},A1=s._Tile=function(){return(A1=s._Tile=s.asm.Da).apply(null,arguments)},y1=s._TopK=function(){return(y1=s._TopK=s.asm.Ea).apply(null,arguments)},g1=s._Transpose=function(){return(g1=s._Transpose=s.asm.Fa).apply(null,arguments)},x1=s.__FusedMatMul=function(){return(x1=s.__FusedMatMul=s.asm.Ga).apply(null,arguments)},w1=s._malloc=function(){return(w1=s._malloc=s.asm.Ha).apply(null,arguments)},_1=s._free=function(){return(_1=s._free=s.asm.Ia).apply(null,arguments)},Xc=s.stackSave=function(){return(Xc=s.stackSave=s.asm.Ja).apply(null,arguments)},Kc=s.stackRestore=function(){return(Kc=s.stackRestore=s.asm.Ka).apply(null,arguments)},Vl=s.stackAlloc=function(){return(Vl=s.stackAlloc=s.asm.La).apply(null,arguments)};s.cwrap=Y;var Ri;function b1(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}Hr=function K(){Ri||Ul(),Ri||(Hr=K)};function Ul(K){if(K=K||c,Jn>0||(Bn(),Jn>0))return;function ne(){Ri||(Ri=!0,s.calledRun=!0,!U&&(Nn(),sn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Zt()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ne()},1)):ne()}if(s.run=Ul,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return Ul(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),C8=Je((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=String(h);for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),R8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),F8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),M8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,m,f;return p=h[d],p^=p>>>7,m=p^p<<24,p=h[d+1&7],m^=p^p>>>10,p=h[d+3&7],m^=p^p>>>3,p=h[d+4&7],m^=p^p<<7,p=h[d+7&7],p=p^p<<13,m^=p^p<<9,h[d]=m,u.i=d+1&7,m};function c(h,d){var p,m,f=[];if(d===(d|0))m=f[0]=d;else for(d=""+d,p=0;p<d.length;++p)f[p&7]=f[p&7]<<15^d.charCodeAt(p)+f[p+1&7]<<13;for(;f.length<8;)f.push(0);for(p=0;p<8&&f[p]===0;++p);for(p==8?m=f[7]=-1:m=f[p],h.x=f,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),$8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,m,f;return u.w=h=h+1640531527|0,f=d[p+34&127],m=d[p=p+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=d[p]=f^m,u.i=p,f+(h^h>>>16)|0};function c(h,d){var p,m,f,A,y,g=[],b=128;for(d===(d|0)?(m=d,d=null):(d=d+"\0",m=0,b=Math.max(b,d.length)),f=0,A=-32;A<b;++A)d&&(m^=d.charCodeAt((A+32)%d.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,p=g[A&127]^=m+y,f=p==0?f+1:0);for(f>=128&&(g[(d&&d.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],p=g[f=f+1&127],m^=m<<13,p^=p<<17,m^=m>>>15,p^=p>>>12,g[f]=m^p;h.w=y,h.X=g,h.i=f}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),O8=Je((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,m=u.d,f=u.a;return d=d<<25^d>>>7^p,p=p-m|0,m=m<<24^m>>>8^f,f=f-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-m|0,u.d=m<<16^p>>>16^f,u.a=f-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,m=(c.next()>>>0)/4294967296,f=(p+m)/(1<<21);while(f===0);return f},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),D8=Je((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",u=a.pow(s,i),c=a.pow(2,o),h=c*2,d=s-1,p;function m(w,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=g(y(x.entropy?[w,_(r)]:w==null?b():w,3),T),M=new f(T),D=function(){for(var L=M.g(i),W=u,U=0;L<c;)L=(L+U)*s,W*=s,U=M.g(1);for(;L>=h;)L/=2,W/=2,U>>>=1;return(L+U)/W};return D.int32=function(){return M.g(4)|0},D.quick=function(){return M.g(4)/4294967296},D.double=D,g(_(M.S),r),(x.pass||N||function(L,W,U,H){return H&&(H.S&&A(H,M),L.state=function(){return A(M,{})}),U?(a[l]=L,W):L})(D,E,"global"in x?x.global:this==a,x.state)}function f(w){var x,N=w.length,T=this,E=0,M=T.i=T.j=0,D=T.S=[];for(N||(w=[N++]);E<s;)D[E]=E++;for(E=0;E<s;E++)D[E]=D[M=d&M+w[E%N]+(x=D[E])],D[M]=x;(T.g=function(L){for(var W,U=0,H=T.i,X=T.j,G=T.S;L--;)W=G[H=d&H+1],U=U*s+G[d&(G[H]=G[X=d&X+W])+(G[X]=W)];return T.i=H,T.j=X,U})(s)}function A(w,x){return x.i=w.i,x.j=w.j,x.S=w.S.slice(),x}function y(w,x){var N=[],T=typeof w,E;if(x&&T=="object")for(E in w)try{N.push(y(w[E],x-1))}catch(M){}return N.length?N:T=="string"?w:w+"\0"}function g(w,x){for(var N=w+"",T,E=0;E<N.length;)x[d&E]=d&(T^=x[d&E]*19)+N.charCodeAt(E++);return _(x)}function b(){try{var w;return p&&(w=p.randomBytes)?w=w(s):(w=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(w)),_(w)}catch(T){var x=n.navigator,N=x&&x.plugins;return[+new Date,n,N,n.screen,_(r)]}}function _(w){return String.fromCharCode.apply(0,w)}if(g(a.random(),r),typeof t=="object"&&t.exports){t.exports=m;try{p=S1()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return m}):a["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),dg=Je((e,t)=>{var n=C8(),r=R8(),a=F8(),s=M8(),i=$8(),o=O8(),l=D8();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),z8=Je(()=>{}),P8="3.2.0",L8="3.2.0",W8="3.2.0",B8="3.2.0",V8="3.2.0",U8=1e-7,H8=1e-4,ah=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Kl=class{refCount(e){return Qn("refCount")}incRef(e){return Qn("incRef")}timerAvailable(){return!0}time(e){return Qn("time")}read(e){return Qn("read")}readSync(e){return Qn("readSync")}numDataIds(){return Qn("numDataIds")}disposeData(e,t){return Qn("disposeData")}write(e,t,n){return Qn("write")}move(e,t,n,r,a){return Qn("move")}memory(){return Qn("memory")}floatPrecision(){return Qn("floatPrecision")}epsilon(){return this.floatPrecision()===32?U8:H8}dispose(){return Qn("dispose")}};function Qn(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function pg(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function j8(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,a,s=0;for(;n>0;)s=Math.random()*n|0,n--,r=e[n],a=t[n],e[n]=e[s],t[n]=t[s],e[s]=r,t[s]=a}function Zl(e,t,n){return Math.max(e,Math.min(t,n))}function G8(e){return e%2==0?e:e+1}function q8(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function X8(e,t){let n=Math.random();return t*n+(1-n)*e}function K8(e,t){let n=0;for(let r=0;r<e.length;r++){let a=Number(e[r])-Number(t[r]);n+=a*a}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function rn(e,t,n=""){F(Kr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Ka(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Za(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||an(e)&&!n)for(let r=0;r<e.length;++r)Za(e[r],t,n);else t.push(e);return t}function Mt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function Z8(e){return e.length===0}function Kr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Bt(e){return e%1==0}function Y8(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function J8(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function Q8(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return pg(t),t}function Yl(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function ek(e,t=r=>0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function tk(e,t){let n=1,r=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function er(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),F(e.every(r=>r>=-n&&r<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(r=>Bt(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function fg(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:er(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function mg(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Ag(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function yg(e,t){for(let n=0;n<e.length;n++){let r=e[n];if(isNaN(r)||!isFinite(r))throw Error(`A tensor of type ${t} being uploaded contains ${r}.`)}}function gg(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function nk(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function an(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function T1(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function xg(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Aa(e){return typeof e=="string"||e instanceof String}function wg(e){return typeof e=="boolean"}function _g(e){return typeof e=="number"}function sh(e){return Array.isArray(e)?sh(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":_g(e)?"float32":Aa(e)?"string":wg(e)?"bool":"float32"}function ya(e){return!!(e&&e.constructor&&e.call&&e.apply)}function ih(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Li(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let r=t-3;r>=0;--r)n[r]=n[r+1]*e[r+1];return n}function bg(e,t,n){let r=new Array;if(t.length===1){let a=t[0];for(let s=0;s<a;s++)r[s]=n[e+s]}else{let a=t[0],s=t.slice(1),i=s.reduce((o,l)=>o*l);for(let o=0;o<a;o++)r[o]=bg(e+o*i,s,n)}return r}function Wi(e,t){if(e.length===0)return t[0];let n=e.reduce((r,a)=>r*a);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return bg(0,e,t)}function E1(e,t){let n=oh(e,t);for(let r=0;r<n.length;r++)n[r]=1;return n}function oh(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function rk(e,t){let n=e.reduce((r,a)=>r*a,1);if(t==null||t==="float32")return Wi(e,new Float32Array(n));if(t==="int32")return Wi(e,new Int32Array(n));if(t==="bool")return Wi(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function C1(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function ak(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a<e.length-1;++a)r+=n[a]*e[a];return r}function sk(e,t,n){if(t===0)return[];if(t===1)return[e];let r=new Array(t);for(let a=0;a<r.length-1;++a)r[a]=Math.floor(e/n[a]),e-=r[a]*n[a];return r[r.length-1]=e,r}function R1(e){return e&&e.then&&typeof e.then=="function"}var vg="tfjsflags",kg=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let r=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${r}.`),this.set(e,r)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(R1(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=ik(this.global.location.search);vg in e&&e[vg].split(",").forEach(t=>{let[n,r]=t.split(":");this.urlFlags[n]=ok(n,r)})}};function ik(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(lk(t,r[0],r[1]),r.join("="))),t}function lk(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function ok(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return Ya}var Ya=null;function uk(e){Ya=e}var F1;function Ig(){if(F1==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");F1=e}return F1}function ck(){let e=Ig();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function M1(e,t){let n=ck();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var Bi="Abs",Vi="Acos",Ui="Acosh",ga="Add",Ja="AddN",lh="All",uh="Any",Qa="ArgMax",Jl="ArgMin",Hi="Asin",ji="Asinh",Gi="Atan",qi="Atanh",Xi="Atan2",es="AvgPool",ch="AvgPoolGrad",Ql="AvgPool3D",hh="AvgPool3DGrad",ts="BatchMatMul",eu="BatchToSpaceND",dh="Bincount",Ng="BroadcastTo",ns="Cast",rs="Ceil",xa="ClipByValue",ph="Complex",tu="ComplexAbs",Ki="Concat",as="Conv2D",fh="Conv2DBackpropFilter",ss="Conv2DBackpropInput",nu="Conv3D",mh="Conv3DBackpropFilterV2",Ah="Conv3DBackpropInputV2",is="Cos",Zi="Cosh",os="Cumsum",Yi="CropAndResize",yh="DenseBincount",Ji="DepthToSpace",ls="DepthwiseConv2dNative",gh="DepthwiseConv2dNativeBackpropFilter",xh="DepthwiseConv2dNativeBackpropInput",wh="Diag",ru="Dilation2D",_h="Dilation2DBackpropInput",bh="Dilation2DBackpropFilter",us="RealDiv",Qi="Elu",vh="EluGrad",eo="Erf",to="Equal",cs="Exp",no="ExpandDims",ro="Expm1",kh="FFT",au="Fill",ao="FlipLeftRight",hs="Floor",ds="FloorDiv",ps="FusedBatchNorm",so="GatherV2",io="GatherNd",oo="Greater",fs="GreaterEqual",ms="Identity",Ih="IFFT",Nh="Imag",lo="IsFinite",uo="IsInf",co="IsNan",As="LeakyRelu",ho="Less",po="LessEqual",Sh="LinSpace",ys="Log",fo="Log1p",mo="LogicalAnd",su="LogicalNot",iu="LogicalOr",Sg="LogSoftmax",ou="LRN",Th="LRNGrad",gs="Max",xs="Maximum",ws="MaxPool",Eh="MaxPoolGrad",lu="MaxPool3D",Ch="MaxPool3DGrad",Rh="MaxPoolWithArgmax",_s="Mean",bs="Min",vs="Minimum",uu="MirrorPad",Ao="Mod",Fh="Multinomial",ks="Multiply",yo="Neg",go="NotEqual",xo="NonMaxSuppressionV3",wo="NonMaxSuppressionV4",_o="NonMaxSuppressionV5",bo="OnesLike",Is="OneHot",vo="Pack",Ns="PadV2",hk="Pool",Ss="Pow",Ts="Prelu",ko="Prod",cu="Range",Mh="Real",Io="Reciprocal",Es="Relu",No="Reshape",hu="ResizeNearestNeighbor",$h="ResizeNearestNeighborGrad",Cs="ResizeBilinear",Oh="ResizeBilinearGrad",Rs="Relu6",Fs="Reverse",Ms="Round",$s="Rsqrt",So="ScatterNd",To="Select",Eo="Selu",Co="Slice",Os="Sin",Ro="Sinh",Fo="Sign",Ds="Sigmoid",Mo="Softplus",zs="Sqrt",Ps="Sum",du="SpaceToBatchND",$o="SplitV",Ls="Softmax",Ws="SquaredDifference",pu="Square",Bs="Sub",Dh="SparseToDense",Oo="StridedSlice",Do="Tan",Vs="Tanh",wa="Tile",zo="TopK",Us="Transpose",zh="Unique",Po="Unpack",fu="UnsortedSegmentSum",Lo="ZerosLike",_a="Step",Ph="FromPixels",Wo="RotateWithOffset",Hs="_FusedMatMul",js="FusedConv2D",Gs="FusedDepthwiseConv2D",Bo=M1("kernelRegistry",()=>new Map),mu=M1("gradRegistry",()=>new Map);function Lh(e,t){let n=$1(e,t);return Bo.get(n)}function O1(e){return mu.get(e)}function Vo(e){let t=Bo.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function qs(e){let{kernelName:t,backendName:n}=e,r=$1(t,n);Bo.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),Bo.set(r,e)}function Tg(e){let{kernelName:t}=e;mu.has(t)&&J().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),mu.set(t,e)}function dk(e,t){let n=$1(e,t);if(!Bo.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Bo.delete(n)}function pk(e){if(!mu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);mu.delete(e)}function fk(e,t){Vo(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});qs(r)})}function $1(e,t){return`${t}_${e}`}var v={};De(v,{arraysEqual:()=>Kr,assert:()=>F,assertNonNegativeIntegerDimensions:()=>C1,assertNonNull:()=>Ka,assertShapesMatch:()=>rn,bytesFromStringArray:()=>xg,bytesPerElement:()=>T1,checkConversionForErrors:()=>yg,clamp:()=>Zl,computeStrides:()=>Li,createScalarValue:()=>mk,createShuffledIndices:()=>Q8,decodeString:()=>Bh,distSquared:()=>K8,encodeString:()=>yu,fetch:()=>Ak,flatten:()=>Za,getArrayFromDType:()=>Ag,getTypedArrayFromDType:()=>mg,hasEncodingLoss:()=>nk,indexToLoc:()=>sk,inferDtype:()=>sh,inferFromImplicitShape:()=>tk,isBoolean:()=>wg,isFunction:()=>ya,isInt:()=>Bt,isNumber:()=>_g,isPromise:()=>R1,isScalarShape:()=>Z8,isString:()=>Aa,isTypedArray:()=>an,isValidDtype:()=>gg,locToIndex:()=>ak,makeOnesTypedArray:()=>E1,makeZerosNestedTypedArray:()=>rk,makeZerosTypedArray:()=>oh,nearestDivisor:()=>ih,nearestLargerEven:()=>G8,now:()=>Au,parseAxisParam:()=>er,randUniform:()=>X8,repeatedTry:()=>ek,rightPad:()=>Yl,shuffle:()=>pg,shuffleCombo:()=>j8,sizeFromShape:()=>Mt,sizeToSquarishShape:()=>J8,squeezeShape:()=>fg,sum:()=>q8,tanh:()=>Y8,toNestedArray:()=>Wi,toTypedArray:()=>Wh});function mk(e,t){return t==="string"?yu(e):Wh([e],t)}function yk(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Wh(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Za(e)),J().getBool("DEBUG")&&yg(e,t),yk(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r<n.length;++r)Math.round(e[r])!==0&&(n[r]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Au(){return J().platform.now()}function Ak(e,t){return J().platform.fetch(e,t)}function yu(e,t="utf-8"){return t=t||"utf-8",J().platform.encode(e,t)}function Bh(e,t="utf-8"){return t=t||"utf-8",J().platform.decode(e,t)}var wk=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new xk)}profileKernel(e,t,n){let r,a=()=>{r=n()},s,i=Au();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of r)o.dataSync();s=Promise.resolve({kernelMs:Au()-i})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<r.length;o++){let l=r[o];l.data().then(u=>{gk(u,l.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function gk(e,t,n){if(t!=="float32")return!1;for(let r=0;r<e.length;r++){let a=e[r];if(isNaN(a)||!isFinite(a))return console.warn(`Found ${a} in the result of '${n}'`),!0}return!1}var xk=class{logKernelProfile(e,t,n,r,a,s){let i=typeof r=="number"?Yl(`${r}ms`,9):r.error,o=Yl(e,25),l=t.rank,u=t.size,c=Yl(t.shape.toString(),14),h="";for(let d in a){let p=a[d];if(p!=null){let m=p.shape||t.shape,f=m.length;h+=`${d}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${c} %c${u} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function _k(e,t,n){let r={},a={};for(let l=0;l<t.length;l++)r[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let h in c){let d=c[h],p=!1;for(let m=0;m<t.length;m++)if(r[d.id]){u.outputs.forEach(f=>r[f.id]=!0),p=!0,a[u.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let h=0;h<u.outputs.length;h++)if(s[u.outputs[h].id]){for(let d in c)s[c[d].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(a[u.id]&&i[u.id]){let c={};for(let d in u.inputs){let p=u.inputs[d];r[p.id]&&(c[d]=p)}let h=Object.assign({},u);h.inputs=c,h.outputs=u.outputs,o.push(h)}}return o}function bk(e,t,n,r){for(let a=t.length-1;a>=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!Kr(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let h=e[c.id];e[c.id]=r(h,u),h.dispose()}}}}var Eg=20,gu=3,D1=7;function kk(e,t,n,r){let a=Li(t),s=vk(e,t,n,a),i=t.length,o=Vh(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function vk(e,t,n,r){let a=Mt(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?wu(e):e;if(o>1)for(let u=0;u<a/s;u++){let c=u*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],xu(l[c+h],0,n).length)}return i}function xu(e,t,n){let r;return Array.isArray(e)?r=`${parseFloat(e[0].toFixed(D1))} + ${parseFloat(e[1].toFixed(D1))}j`:Aa(e)?r=`'${e}'`:n==="bool"?r=Cg(e):r=parseFloat(e.toFixed(D1)).toString(),Yl(r,t)}function Cg(e){return e===0?"false":"true"}function Vh(e,t,n,r,a,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=wu(e);return[xu(f[0],0,n)]}return n==="bool"?[Cg(e[0])]:[e[0].toString()]}if(l===1){if(o>Eg){let A=gu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-gu)*i,o*i));return n==="complex64"&&(y=wu(y),g=wu(g)),["["+y.map((b,_)=>xu(b,a[_],n)).join(", ")+", ..., "+g.map((b,_)=>xu(b,a[o-gu+_],n)).join(", ")+"]"]}let f=n==="complex64"?wu(e):Array.from(e);return["["+f.map((A,y)=>xu(A,a[y],n)).join(", ")+"]"]}let u=t.slice(1),c=r.slice(1),h=r[0]*i,d=[];if(o>Eg){for(let f=0;f<gu;f++){let A=f*h,y=A+h;d.push(...Vh(e.slice(A,y),u,n,c,a,!1))}d.push("...");for(let f=o-gu;f<o;f++){let A=f*h,y=A+h;d.push(...Vh(e.slice(A,y),u,n,c,a,f===o-1))}}else for(let f=0;f<o;f++){let A=f*h,y=A+h;d.push(...Vh(e.slice(A,y),u,n,c,a,f===o-1))}let p=l===2?",":"";d[0]="["+d[0]+p;for(let f=1;f<d.length-1;f++)d[f]=" "+d[f]+p;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":m),d}function wu(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var $t=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Mt(e),n!=null){let r=n.length;F(r===this.size,()=>`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Ag(t,this.size),this.strides=Li(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;r<e.length-1;++r)n+=this.strides[r]*e[r];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Nr().makeTensor(this.values,this.shape,this.dtype)}},Nr=null,Uo=null,Ik=null;function Nk(e){Nr=e}function Sk(e){Uo=e}function Tk(e){Ik=e}var Ze=class{constructor(e,t,n,r){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Mt(e),this.strides=Li(e),this.dataId=n,this.id=r,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Uo.buffer(this.shape,this.dtype,e)}bufferSync(){return Uo.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Wi(this.shape,e)}arraySync(){return Wi(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=Nr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Bh(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=Nr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Bh(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Nr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Nr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Uo.print(this,e)}clone(){return this.throwIfDisposed(),Uo.clone(this)}toString(e=!1){let t=this.dataSync();return kk(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Uo.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Nr().makeVariable(this,e,t,n)}};Object.defineProperty(Ze,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return M1("Tensor",()=>Ze)}Z();var _u=class extends Ze{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Kr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Nr().disposeTensor(this),this.dataId=e.dataId,Nr().incRef(this,null)}dispose(){Nr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(_u,Symbol.hasInstance,{value:e=>e instanceof Ze&&e.assign!=null&&e.assign instanceof Function});var fr={};De(fr,{assertTypesMatch:()=>Rg,getTensorsInContainer:()=>z1,isTensorInList:()=>Ek,makeTypesMatch:()=>wt});var P1;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(P1||(P1={}));var L1;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(L1||(L1={}));var W1;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(W1||(W1={}));var B1;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(B1||(B1={}));var V1;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(V1||(V1={}));var Ck={float32:B1,int32:L1,bool:W1,complex64:V1};function tr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return Ck[e][t]}function Uh(e){return tr(e,"int32")}function wt(e,t){if(e.dtype===t.dtype)return[e,t];let n=tr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function Rg(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function Ek(e,t){return t.some(n=>n.id===e.id)}function z1(e){let t=[],n=new Set;return Fg(e,t,n),t}function Fg(e,t,n){if(e==null)return;if(e instanceof Ze){t.push(e);return}if(!Rk(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),Fg(s,t,n))}}function Rk(e){return Array.isArray(e)||typeof e=="object"}function U1(e){return e.kernelName!=null}var Mg=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},bu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Mg}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new wk(this.backendInstance),!0}setupRegisteredKernels(){Vo(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Vo(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Kl)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(r<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=a,{success:a,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:r,asyncInit:a}=this.initializeBackend(n);if(a||r)return{name:n,asyncInit:a}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),r=n.backend,a=this.readSync(t),s=r.refCount(t);r.disposeData(t,!0),n.backend=e,e.move(t,a,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let r;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return bu.nextTensorId++}nextVariableId(){return bu.nextVariableId++}clone(e){let t=$.runKernel(ms,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(ns,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(Lh(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=U1(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(U1(e)){let{kernelName:p,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let A=Lh(p,this.backendName);F(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,y,g);let b=g.map(_=>{if(_.rank!=null)return _;let{dataId:w,shape:x,dtype:N}=_;return this.makeTensorFromDataId(w,x,N)});if(r){let _=this.getTensorsForGradient(p,m,b);n=this.saveTensorsForBackwardMode(_)}return b}}else{let{forwardFunc:p}=e,m=f=>{!r||(n=f.map(A=>this.keep(this.clone(A))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,m));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,A),A}}let{inputs:u,attrs:c}=e,h=U1(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,u,t,h,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=O1(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&Aa(e[0])&&(a=e.map(o=>yu(o)));let s=r.write(a,t,n),i=new Ze(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=xg(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new Ze(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new _u(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*T1(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof _u||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*T1(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=O1(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((u,c)=>{if(u==null){let h=n[c],d=oh(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return u}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=z1(e),n=new Set(t.map(a=>a.id));for(let a=0;a<this.state.activeScope.track.length;a++){let s=this.state.activeScope.track[a];!s.kept&&!n.has(s.id)&&s.dispose()}let r=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(a=>{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(a instanceof Ze,()=>"The result y returned by f() must be a tensor.");let s=_k(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?Fk(a.shape):n,bk(i,s,l=>this.tidy(l),Mk);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return F(ya(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof Ze),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),F(n.value instanceof Ze,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(ya(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];F(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(u.every(h=>h instanceof Ze),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((h,d)=>{c[d]=()=>h}),c};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Au(),n=await this.backend.time(e);return n.wallMs=Au()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Mg;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};bu.nextTensorId=0;bu.nextVariableId=0;function Fk(e){let t=E1(Mt(e),"float32");return $.makeTensor(t,e,"float32")}function $g(){let e=Ig();if(e._tfengine==null){let t=new kg(e);e._tfengine=new bu(t)}return uk(e._tfengine.ENV),Nk(()=>e._tfengine),e._tfengine}var $=$g();function Mk(e,t){let n={a:e,b:t};return $.runKernel(ga,n)}var Hh={};De(Hh,{isBrowser:()=>Og,isMobile:()=>$k});function Ok(){return typeof navigator!="undefined"&&navigator!=null}function $k(){if(Ok()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function Og(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Sr=J();Sr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Sr.registerFlag("IS_BROWSER",()=>Og());Sr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Sr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Sr.registerFlag("PROD",()=>!1);Sr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Sr.getBool("DEBUG"));Sr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Sr.registerFlag("IS_TEST",()=>!1);Sr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);function Tr(e,t){let n=e;if(an(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||an(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Dg(e,r,[]),r}function Dg(e,t,n){if(n=n||[],!Array.isArray(e)&&!an(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a<e.length;++a)Dg(e[a],r,n.concat(a))}function zg(e,t,n,r){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${r}' must be ${e} tensor, but got ${t} tensor`)}}function R(e,t,n,r="numeric"){if(e instanceof Ze)return zg(r,e.dtype,t,n),e;let a=sh(e);if(a!=="string"&&["bool","int32","float32"].indexOf(r)>=0&&(a=r),zg(r,a,t,n),e==null||!an(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Tr(e,a);!an(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?Wh(e,a):Za(e,[],!0);return $.makeTensor(i,s,a)}function vu(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>R(a,`${t}[${s}]`,n,r))}var Pg="__op";function O(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Pg;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return R1(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function Dk(e,t){let n=R(e,"real","complex"),r=R(t,"imag","complex");rn(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(ph,a)}var ba=O({complex_:Dk});function va(e,t,n,r){if(r==null&&(r=sh(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!an(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){C1(t);let a=Mt(t),s=Mt(n);F(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Mt(t.slice(i)):!0;F(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!an(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?Wh(e,r):Za(e,[],!0),$.makeTensor(e,t,r)}function mr(e,t,n){let r=Tr(e,n);return va(e,t,r,n)}var H1={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},jh=4;async function Pk(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<a.length;++i){let o=a[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async h=>{let d=await l.bytes(),p=d.reduce((A,y)=>A+y.length,0)+jh*d.length,m=new Uint8Array(p),f=0;for(let A=0;A<d.length;A++){let y=d[A],g=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(g,f),f+=jh,m.set(y,f),f+=y.length}h(m)});r.push(c)}else r.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(r);return{data:zk(s),specs:n}}function Lg(e,t){let n={},r,a=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=Mt(l),c;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=H1[h.dtype],p=e.slice(a,a+u*d),m=h.dtype==="uint8"?new Uint8Array(p):new Uint16Array(p);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){c=new Float32Array(m.length);for(let f=0;f<m.length;f++){let A=m[f];c[f]=A*h.scale+h.min}}else if(h.dtype==="float16")r===void 0&&(r=Lk()),c=r(m);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);c=new Int32Array(m.length);for(let f=0;f<m.length;f++){let A=m[f];c[f]=Math.round(A*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*d}else if(o==="string"){let h=Mt(s.shape);c=[];for(let d=0;d<h;d++){let p=new Uint32Array(e.slice(a,a+jh))[0];a+=jh;let m=new Uint8Array(e.slice(a,a+p));c.push(m),a+=p}}else{let h=H1[o],d=e.slice(a,a+u*h);if(o==="float32")c=new Float32Array(d);else if(o==="int32")c=new Int32Array(d);else if(o==="bool")c=new Uint8Array(d);else if(o==="complex64"){c=new Float32Array(d);let p=new Float32Array(c.length/2),m=new Float32Array(c.length/2);for(let y=0;y<p.length;y++)p[y]=c[y*2],m[y]=c[y*2+1];let f=mr(p,l,"float32"),A=mr(m,l,"float32");n[i]=ba(f,A),f.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*h}o!=="complex64"&&(n[i]=mr(c,l,o))}return n}function zk(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var j1=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Wg(e){return j1?Buffer.byteLength(e):new Blob([e]).size}function Wk(e){if(j1)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r<a;r++)n+=String.fromCharCode(t[r]);return btoa(n)}function Bk(e){if(j1){let r=Buffer.from(e,"base64");return r.buffer.slice(r.byteOffset,r.byteOffset+r.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let r=0;r<t.length;++r)n.set([t.charCodeAt(r)],r);return n.buffer}function G1(e){if(e.length===1)return e[0];let t=0;e.forEach(a=>{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function Bg(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function ku(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Wg(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Wg(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function Vk(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function Uk(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function Hk(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function Lk(){let e=Vk(),t=Uk(),n=Hk();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i<r.length;i++){let o=r[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var It=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return It.instance==null&&(It.instance=new It),It.instance}static registerSaveRouter(e){It.getInstance().saveRouters.push(e)}static registerLoadRouter(e){It.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return It.getHandlers(e,"save")}static getLoadHandlers(e,t){return It.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?It.getInstance().loadRouters:It.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},jk=e=>It.registerSaveRouter(e),Gk=e=>It.registerLoadRouter(e),qk=e=>It.getSaveHandlers(e),Xk=(e,t)=>It.getLoadHandlers(e,t),q1="tensorflowjs",X1=1,Xs="models_store",ka="model_info_store";function Vg(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function K1(e){let t=e.result;t.createObjectStore(Xs,{keyPath:"modelPath"}),t.createObjectStore(ka,{keyPath:"modelPath"})}var Ks=class{constructor(e){if(this.indexedDB=Vg(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(q1,X1);a.onupgradeneeded=()=>K1(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(Xs,"readonly"),o=i.objectStore(Xs).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=ku(t),o=s.transaction(ka,"readwrite"),l=o.objectStore(ka),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),c;u.onsuccess=()=>{c=s.transaction(Xs,"readwrite");let h=c.objectStore(Xs).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(ka);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=m=>(s.close(),r(h.error))}},u.onerror=h=>(s.close(),r(u.error)),o.oncomplete=()=>{c==null?s.close():c.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};Ks.URL_SCHEME="indexeddb://";var Ug=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ks.URL_SCHEME)?Kk(e.slice(Ks.URL_SCHEME.length)):null;It.registerSaveRouter(Ug);It.registerLoadRouter(Ug);function Kk(e){return new Ks(e)}function Zk(e){return e.startsWith(Ks.URL_SCHEME)?e.slice(Ks.URL_SCHEME.length):e}var Yk=class{constructor(){this.indexedDB=Vg()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(q1,X1);n.onupgradeneeded=()=>K1(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(ka,"readonly"),s=a.objectStore(ka).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=Zk(e),new Promise((t,n)=>{let r=this.indexedDB.open(q1,X1);r.onupgradeneeded=()=>K1(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(ka,"readwrite"),i=s.objectStore(ka),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),c=()=>{l=a.transaction(Xs,"readwrite");let h=l.objectStore(Xs).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};u.onsuccess=c,u.onerror=h=>(c(),a.close(),n(o.error))}},o.onerror=u=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},Zr="/",Ho="tensorflowjs_models",Hg="info",Jk="model_topology",Qk="weight_specs",e9="weight_data",t9="model_metadata";function jg(e){return{info:[Ho,e,Hg].join(Zr),topology:[Ho,e,Jk].join(Zr),weightSpecs:[Ho,e,Qk].join(Zr),weightData:[Ho,e,e9].join(Zr),modelMetadata:[Ho,e,t9].join(Zr)}}function n9(e){let t=e.split(Zr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Zr)}function r9(e){return e.startsWith(Zs.URL_SCHEME)?e.slice(Zs.URL_SCHEME.length):e}var Zs=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=jg(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=ku(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,Wk(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=Bk(s),t}};Zs.URL_SCHEME="localstorage://";var Gg=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Zs.URL_SCHEME)?a9(e.slice(Zs.URL_SCHEME.length)):null;It.registerSaveRouter(Gg);It.registerLoadRouter(Gg);function a9(e){return new Zs(e)}var s9=class{constructor(){F(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Ho+Zr,n=Zr+Hg;for(let r=0;r<this.LS.length;++r){let a=this.LS.key(r);if(a.startsWith(t)&&a.endsWith(n)){let s=n9(a);e[s]=JSON.parse(this.LS.getItem(a))}}return e}async removeModel(e){e=r9(e);let t=jg(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},jo="://",Hn=class{constructor(){this.managers={}}static getInstance(){return Hn.instance==null&&(Hn.instance=new Hn),Hn.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(jo)&&(e=e.slice(0,e.indexOf(jo))),F(e.length>0,()=>"scheme must not be an empty string.");let n=Hn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Gh(e){if(e.indexOf(jo)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Hn.getSchemes().join(",")}`);return{scheme:e.split(jo)[0],path:e.split(jo)[1]}}async function qg(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=It.getLoadHandlers(e);F(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=It.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Gh(e).scheme,l=Gh(e).path,u=o===Gh(e).scheme,c=await a.load();n&&u&&await Hn.getManager(o).removeModel(l);let h=await i.save(c);return n&&!u&&await Hn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function i9(){let e=Hn.getSchemes(),t={};for(let n of e){let r=await Hn.getManager(n).listModels();for(let a in r){let s=n+jo+a;t[s]=r[a]}}return t}async function o9(e){let t=Gh(e);return Hn.getManager(t.scheme).removeModel(t.path)}async function l9(e,t){return qg(e,t,!1)}async function u9(e,t){return qg(e,t,!0)}var c9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new c9);try{Hn.registerManager(Zs.URL_SCHEME,new s9)}catch(e){}try{Hn.registerManager(Ks.URL_SCHEME,new Yk)}catch(e){}}var h9={importFetch:()=>u8()},Z1,d9=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Z1==null&&(Z1=h9.importFetch()),Z1(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new d9);function Le(e,t="float32",n){return t=t||"float32",C1(e),new $t(e,t,n)}function p9(e,t){let n=R(e,"x","cast");if(!gg(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(ns,r,a)}var me=O({cast_:p9});function f9(e){let t={x:R(e,"x","clone","string_or_numeric")};return $.runKernel(ms,t)}var nr=O({clone_:f9});function Xg(e,t=!1){console.log(e.toString(t))}$g();var m9={buffer:Le,cast:me,clone:nr,print:Xg};Sk(m9);var yn={};De(yn,{browserFiles:()=>A9,browserHTTPRequest:()=>g9,concatenateArrayBuffers:()=>G1,copyModel:()=>l9,decodeWeights:()=>Lg,encodeWeights:()=>Pk,fromMemory:()=>x9,getLoadHandlers:()=>Xk,getModelArtifactsInfoForJSON:()=>ku,getSaveHandlers:()=>qk,http:()=>J1,isHTTPScheme:()=>Y1,listModels:()=>i9,loadWeights:()=>y9,moveModel:()=>u9,registerLoadRouter:()=>Gk,registerSaveRouter:()=>jk,removeModel:()=>o9,weightsLoaderFactory:()=>Kg,withSaveHandler:()=>w9});var _9="model",b9=".json",v9=".weights.bin";function Zg(e){return new Promise(t=>setTimeout(t)).then(e)}var Go=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Go.URL_SCHEME)&&(e=e.slice(Go.URL_SCHEME.length)),(e==null||e.length===0)&&(e=_9),this.modelTopologyFileName=e+b9,this.weightDataFileName=e+v9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await Zg(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Zg(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:ku(e)}}}};Go.URL_SCHEME="downloads://";var k9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let c=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(m=>{h.push(m),d.push(null)}),c.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(m=>{let f=new FileReader;f.onload=A=>{let y=A.target.result,g=h.indexOf(m);if(d[g]=y,d.indexOf(null)===-1){let b={modelTopology:o,weightSpecs:c,weightData:G1(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(b.signature=i.signature),i.userDefinedMetadata!=null&&(b.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(b.modelInitializer=i.modelInitializer),n(b)}},f.onerror=A=>r(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(u[m])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>Bg(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=Bg(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},N9=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Go.URL_SCHEME)?I9(e.slice(Go.URL_SCHEME.length)):null;It.registerSaveRouter(N9);function I9(e="model"){return new Go(e)}function A9(e){return new k9(e)}function Yg(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(u=>{let c=n+ ++a/e.length*(r-n);return t(c),u}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),F(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function Jg(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(u=>n(u,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await Yg(r,t.onProgress,a,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await Yg(i,t.onProgress,o,l)}async function y9(e,t="",n,r){return Kg(a=>Jg(a,{requestInit:r}))(e,t,n)}function Kg(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,m)=>{let f=0;p.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=H1[y]*Mt(A.shape),b=()=>{a[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:A,groupOffset:f,sizeBytes:g})};r!=null?r.forEach((_,w)=>{_===A.name&&(b(),i[w]=!0)}):b(),o.push(A.name),f+=g})}),!i.every(p=>p)){let p=r.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,m,f)=>(m&&p.push(f),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let c=await e(u),h={},d=0;return l.forEach(p=>{let m=t[p].paths.length,f=0;for(let b=0;b<m;b++)f+=c[d+b].byteLength;let A=new ArrayBuffer(f),y=new Uint8Array(A),g=0;for(let b=0;b<m;b++){let _=new Uint8Array(c[d+b]);y.set(_,g),g+=_.byteLength}s[p].forEach(b=>{let _=A.slice(b.groupOffset,b.groupOffset+b.sizeBytes),w=Lg(_,[b.manifestEntry]);for(let x in w)h[x]=w[x]}),d+=m}),h}}var S9="application/octet-stream",T9="application/json",Q1=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:T9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:S9}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:ku(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,c;r!=null&&([u,c]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:u,weightData:c,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=E9(t),a=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(c)):i.push(a+c+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await Jg(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,G1(l)]}};Q1.URL_SCHEME_REGEX=/^https?:\/\//;function E9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Y1(e){return e.match(Q1.URL_SCHEME_REGEX)!=null}var Qg=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Y1(r)):n=Y1(e),n)return J1(e,t)}return null};It.registerSaveRouter(Qg);It.registerLoadRouter(Qg);function J1(e,t){return new Q1(e,t)}function g9(e,t){return J1(e,t)}var ef=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},C9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function x9(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new ef(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new ef({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new ef({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function w9(e){return new C9(e)}var e5={};De(e5,{confusionMatrix:()=>R9});function F9(e,t,n=!1,r=!1){let a=R(e,"a","matMul"),s=R(t,"b","matMul");[a,s]=wt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(ts,i,o)}var He=O({matMul_:F9});function M9(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:R(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(Is,a,s)}var qo=O({oneHot_:M9});function $9(e,t){let n=R(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(Us,r,a)}var nt=O({transpose_:$9});function O9(e,t,n){let r=R(e,"labels","confusionMatrix"),a=R(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),F(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),F(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=qo(me(r,"int32"),n),i=qo(me(a,"int32"),n),o=nt(s),l=He(o,i);return me(l,"int32")}var R9=O({confusionMatrix_:O9}),Xo={};De(Xo,{fromPixels:()=>z9,toPixels:()=>D9});function qh(e,t,n){if(Ka(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Tr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return va(e,t,r,n)}var Ko;function P9(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Lh(Ph,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(Ph,d,p)}let[l,u]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],c;i?c=e.getContext("2d").getImageData(0,0,l,u).data:r||n?c=e.data:(s||a||o)&&(Ko==null&&(Ko=document.createElement("canvas").getContext("2d")),Ko.canvas.width=l,Ko.canvas.height=u,Ko.drawImage(e,0,0,l,u),c=Ko.getImageData(0,0,l,u).data);let h;if(t===4)h=new Int32Array(c);else{let d=l*u;h=new Int32Array(d*t);for(let p=0;p<d;p++)for(let m=0;m<t;++m)h[p*t+m]=c[p*4+m]}return qh(h,[u,l,t],"int32")}async function D9(e,t){let n=R(e,"img","toPixels");if(!(e instanceof Ze)){let u=n;n=me(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[r,a]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let u=0;u<r*a;++u){let c=[0,0,0,255];for(let d=0;d<s;d++){let p=i[u*s+d];if(n.dtype==="float32"){if(p<0||p>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(c[0]=p*o,c[1]=p*o,c[2]=p*o):c[d]=p*o}let h=u*4;l[h+0]=Math.round(c[0]),l[h+1]=Math.round(c[1]),l[h+2]=Math.round(c[2]),l[h+3]=Math.round(c[3])}if(t!=null){t.width=a,t.height=r;let u=t.getContext("2d"),c=new ImageData(l,a,r);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var z9=O({fromPixels_:P9}),tf={};De(tf,{prepareAndValidate:()=>t5});function t5(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Mt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;h<a.length-1;++h)i*=a[h];let o=e.shape,l=a.slice();l.pop();let u=1;for(let h=s;h<n;++h)u*=o[h],l.push(o[h]);let c=[...Li(e.shape).map(h=>h/u),1].slice(0,s);return[l,i,u,c]}var nf={};De(nf,{calculateShapes:()=>n5,validateInput:()=>af,validateUpdateShape:()=>rf});function rf(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank<a)throw new Error(s+` update.rank < ${a}. `);if(e.length<r+(n.rank-a))throw new Error(s+` Output shape length < ${r+(n.rank-a)}`);if(n.rank!==a+e.length-r)throw new Error(s+` update.rank != ${a+e.length-r}`);for(let i=0;i<a;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-a;++i)if(n.shape[i+a]!==e[i+r])throw new Error(s+` updates.shape[${i+a}] (${n.shape[i+a]}) != shape[${i+a}] (${e[i+a]})`)}function af(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}rf(n,t,e)}function n5(e,t,n){let r=t.shape.length,a=r>1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;h<s;++h)i*=n[h];let o=a<1?1:a,l=Mt(t.shape)/o,u=[...Li(n.slice(0,a)),1],c=Mt(n);return{sliceRank:a,numUpdates:l,sliceSize:i,strides:u,outputSize:c}}var on={};De(on,{assertParamsValid:()=>L9,computeFlatOffset:()=>B9,computeOutShape:()=>r5,getNormalizedAxes:()=>s5,isSliceContinous:()=>W9,maskToAxes:()=>Xh,parseSliceParams:()=>h5,sliceInfo:()=>V9,startForAxis:()=>u5,startIndicesWithElidedDims:()=>i5,stopForAxis:()=>c5,stopIndicesWithElidedDims:()=>o5,stridesForAxis:()=>l5,stridesWithElidedDims:()=>a5});function L9(e,t,n){let r=e.shape.length;F(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),F(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a<r;++a)F(t[a]+n[a]<=e.shape[a],()=>`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function Xh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function r5(e,t,n){let r=[];for(let a=0;a<e.length;a++)r[a]=Math.ceil((t[a]-e[a])/n[a]);return r}function a5(e,t,n,r){let a=[...e];for(let s=a.length;s<r.length;s++)a.push(1);for(let s=0;s<n;s++)s===0?a[t]=1:(a.splice(t,0,1),a.pop());return a}function d5(e,t,n){return n<=e?n:n-(t-1)}function p5(e,t){let n=[];for(let r=0;r<e;r++)n.push(t+r);return n}function s5(e,t,n,r,a,s,i,o,l){let u=e.length,c=new Array(u),h=new Array(u),d=new Array(u);if(t.length&&n>0){let p=t[0],m=n+1;c=i5(i,p,m,r,e),h=o5(o,p,m,a,e),d=a5(s,p,m,e)}else for(let p=0;p<u;p++)c[p]=u5(i,r,s,e,p,l),h[p]=c5(o,a,s,e,p,l),d[p]=l5(s,p,l);return{begin:c,end:h,strides:d}}function i5(e,t,n,r,a){let s=[...a],i=p5(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=d5(t,n,o),u=r[l];e&1<<l&&(u=0),s[o]=u}return s}function o5(e,t,n,r,a){let s=[...a],i=p5(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=d5(t,n,o),u=r[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=a[o];s[o]<0&&(s[o]+=l),s[o]=Zl(0,s[o],a[o])}return s}function l5(e,t,n){let r=e[t];return(n&1<<t||r==null)&&(r=1),r}function u5(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=Zl(0,i,l-1),i}function c5(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=Zl(0,i,l):i=Zl(-1,i,l-1),i}function W9(e,t,n){let r=n.length;for(let a=0;a<n.length;a++)if(n[a]>1){r=a;break}for(let a=r+1;a<n.length;a++)if(t[a]>0||n[a]!==e[a])return!1;return!0}function B9(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r<e.length-1;r++)n+=e[r]*t[r];return n}function h5(e,t,n){let r,a=e.shape.length;typeof t=="number"?r=[t,...new Array(a-1).fill(0)]:t.length<a?r=t.concat(new Array(a-t.length).fill(0)):r=t.slice(),r.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.length<a?s=n.concat(new Array(a-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function V9(e,t,n,r,a,s,i,o,l){let u=t.slice(),c=n.slice(),h=r;r==null&&(h=new Array(u.length));let d=Xh(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,m=Xh(o),f=e.slice();m.forEach(x=>{u[x]=0,c[x]=1,f.splice(x,0,1)});let{begin:A,end:y,strides:g}=s5(f,d,p,u,c,h,a,s,i);u=A,c=y,h=g;let b=Xh(l);b.forEach(x=>{c[x]=u[x]+1,h[x]=1});let _=r5(u,c,h),w=_.filter((x,N)=>b.indexOf(N)===-1);return{nonStrided:h.every(x=>x===1),$begin:u,$end:c,$strides:h,size:_,newShape:f,outShape:w}}var re={};De(re,{Serializable:()=>f5,SerializationMap:()=>Ys,registerClass:()=>Ia});var f5=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Ys=class{constructor(){this.classNameMap={}}static getMap(){return Ys.instance==null&&(Ys.instance=new Ys),Ys.instance}static register(e){Ys.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Ia(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Ys.register(e)}var m5={};De(m5,{TEST_EPSILON_FLOAT16:()=>A5,encodeStrings:()=>y5,expectArrayBuffersEqual:()=>X9,expectArraysClose:()=>U9,expectArraysEqual:()=>j9,expectNumbersClose:()=>G9,expectPromiseToFail:()=>H9,expectValuesInRange:()=>q9,testEpsilon:()=>sf});var K9=.001,A5=.1;function U9(e,t,n){return n==null&&(n=sf()),of(e,t,(r,a)=>lf(r,a,n))}function sf(){return $.backend.floatPrecision()===32?K9:A5}function of(e,t,n){let r=!0;if((an(e)||an(t))&&(r=!1),an(e)&&an(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Tr(e),o=Tr(t);if(!Kr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=an(e)?e:Za(e),s=an(t)?t:Za(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=a[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`)}}function H9(e,t){e().then(()=>t.fail(),()=>t())}function j9(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Aa(e)||Aa(e[0])||Aa(t)||Aa(t[0])?of(e,n,(r,a)=>r==a):of(e,t,(r,a)=>lf(r,a,0))}function G9(e,t,n){if(n==null&&(n=sf()),!lf(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function lf(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function q9(e,t,n){for(let r=0;r<e.length;r++)if(e[r]<t||e[r]>n)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function X9(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function y5(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?y5(n):e[t]=yu(n)}return e}var Z9="3.2.0";function Y9(){J().set("PROD",!0)}function J9(){J().set("DEBUG",!0)}function Q9(){J().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function uf(e){J().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}Tk(uf);function eI(){$.disposeVariables()}function Er(){return $}function Kh(){return $.memory()}function jn(e){return $.profile(e)}function B(e,t){return $.tidy(e,t)}function Ee(e){z1(e).forEach(t=>t.dispose())}function Vt(e){return $.keep(e)}function tI(e){return $.time(e)}function nI(e){return $.setBackend(e)}function rI(){return $.ready()}function aI(){return $.backendName}function sI(e){$.removeBackend(e)}function cf(e){return $.findBackend(e)}function iI(e){return $.findBackendFactory(e)}function Zo(e,t,n=1){return $.registerBackend(e,t,n)}function g5(){return $.backend}function oI(e,t){J().setPlatform(e,t)}function lI(e,t){let n=R(e,"a","add"),r=R(t,"b","add");[n,r]=wt(n,r);let a={a:n,b:r};return $.runKernel(ga,a)}var se=O({add_:lI});function uI(e,t){let n=R(e,"a","floorDiv"),r=R(t,"b","floorDiv");[n,r]=wt(n,r);let a={a:n,b:r};return $.runKernel(ds,a)}var Zh=O({floorDiv_:uI});function cI(e,t){let n=R(e,"a","div"),r=R(t,"b","div");if([n,r]=wt(n,r),n.dtype==="int32"&&r.dtype==="int32")return Zh(n,r);let a={a:n,b:r},s={};return $.runKernel(us,a,s)}var ge=O({div_:cI});function hI(e,t){let n=R(e,"a","mul"),r=R(t,"b","mul");[n,r]=wt(n,r);let a={a:n,b:r};return $.runKernel(ks,a)}var P=O({mul_:hI});function dI(e){let t=R(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(tu,n)}else{let n={x:t};return $.runKernel(Bi,n)}}var Ot=O({abs_:dI});function pI(e){let t={x:R(e,"x","acos")};return $.runKernel(Vi,t)}var hf=O({acos_:pI});function fI(e){let t={x:R(e,"x","acosh")};return $.runKernel(Ui,t)}var df=O({acosh_:fI});function mI(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>R(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!Kr(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(Ja,r)}var Yo=O({addN_:mI});function AI(e,t=null,n=!1){let r={x:R(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(lh,r,a)}var Yh=O({all_:AI});function yI(e,t=null,n=!1){let r={x:R(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(uh,r,a)}var Iu=O({any_:yI});function gI(e,t=0){let n={x:R(e,"x","argMax")},r={axis:t};return $.runKernel(Qa,n,r)}var Nu=O({argMax_:gI});function xI(e,t=0){let n={x:R(e,"x","argMin")},r={axis:t};return $.runKernel(Jl,n,r)}var pf=O({argMin_:xI});function wI(e){let t={x:R(e,"x","asin")};return $.runKernel(Hi,t)}var ff=O({asin_:wI});function _I(e){let t={x:R(e,"x","asinh")};return $.runKernel(ji,t)}var mf=O({asinh_:_I});function bI(e){let t={x:R(e,"x","atan")};return $.runKernel(Gi,t)}var Af=O({atan_:bI});function vI(e,t){let n=R(e,"a","atan2"),r=R(t,"b","atan2");[n,r]=wt(n,r);let a={a:n,b:r};return $.runKernel(Xi,a)}var yf=O({atan2_:vI});function kI(e){let t={x:R(e,"x","atanh")};return $.runKernel(qi,t)}var gf=O({atanh_:kI});function II(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=x5(a);return Su(e,o,n,s,r,null,null,l)}function w5(e,t,n,r,a,s,i="channelsLast"){let[o,l]=Jh(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Su(e,u,n,r,a,s,!1,i)}function NI(e,t,n,r,a,s,i="NDHWC"){let[o,l,u]=xf(t),c,h;if(i==="NDHWC")h="channelsLast",c=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",c=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return _5(e,c,n,r,a,!1,h,s)}function Su(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,u,c,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,h]=e;else if(o==="channelsFirst")[l,h,u,c]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,m]=t,[f,A]=Jh(n),[y,g]=Jh(r),b=Jo(d,y),_=Jo(p,g),{padInfo:w,outHeight:x,outWidth:N}=SI(a,u,c,f,A,b,_,s,o),T=i?m*h:m,E;return o==="channelsFirst"?E=[l,T,x,N]:o==="channelsLast"&&(E=[l,x,N,T]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:c,inChannels:h,outHeight:x,outWidth:N,outChannels:T,padInfo:w,strideHeight:f,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:b,effectiveFilterWidth:_,dilationHeight:y,dilationWidth:g,inShape:e,outShape:E,filterShape:t}}function _5(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,u,c,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,h,d]=e;else if(i==="channelsFirst")[l,d,u,c,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,m,f,,A]=t,[y,g,b]=xf(n),[_,w,x]=xf(r),N=Jo(p,_),T=Jo(m,w),E=Jo(f,x),{padInfo:M,outDepth:D,outHeight:L,outWidth:W}=TI(a,u,c,h,y,g,b,N,T,E,o),U=s?A*d:A,H;return i==="channelsFirst"?H=[l,U,D,L,W]:i==="channelsLast"&&(H=[l,D,L,W,U]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:c,inWidth:h,inChannels:d,outDepth:D,outHeight:L,outWidth:W,outChannels:U,padInfo:M,strideDepth:y,strideHeight:g,strideWidth:b,filterDepth:p,filterHeight:m,filterWidth:f,effectiveFilterDepth:N,effectiveFilterHeight:T,effectiveFilterWidth:E,dilationDepth:_,dilationHeight:w,dilationWidth:x,inShape:e,outShape:H,filterShape:t}}function EI(e,t,n,r,a){r==null&&(r=wf(e,t,n));let s=e[0],i=e[1],o=Js((s-t+2*r)/n+1,a),l=Js((i-t+2*r)/n+1,a);return[o,l]}function CI(e,t,n,r,a,s){a==null&&(a=wf(e,t,r));let i=e[0],o=e[1],l=e[2],u=Js((i-t+2*a)/r+1,s),c=Js((o-t+2*a)/r+1,s),h=Js((l-t+2*a)/r+1,s);return[u,c,h,n]}function wf(e,t,n,r=1){let a=Jo(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function Jh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function xf(e){return typeof e=="number"?[e,e,e]:e}function Jo(e,t){return t<=1?e:e+(e-1)*(t-1)}function SI(e,t,n,r,a,s,i,o,l){let u,c,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=EI([t,n],s,r,e,o);c=d[0],h=d[1]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(c-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),m=Math.floor(d/2),f=d-m,A=Math.floor(p/2),y=p-A;u={top:m,bottom:f,left:A,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:p,left:m,right:f,type:d===0&&p===0&&m===0&&f===0?"VALID":"EXPLICIT"},c=Js((t-s+d+p)/r+1,o),h=Js((n-i+m+f)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:h}}function TI(e,t,n,r,a,s,i,o,l,u,c){let h,d,p,m;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=CI([t,n,r,1],o,1,a,e,c);d=f[0],p=f[1],m=f[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),m=Math.ceil(r/i);let f=(d-1)*a+o-t,A=(p-1)*s+l-n,y=(m-1)*i+u-r,g=Math.floor(f/2),b=f-g,_=Math.floor(A/2),w=A-_,x=Math.floor(y/2),N=y-x;h={top:_,bottom:w,left:x,right:N,front:g,back:b,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),m=Math.ceil((r-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:m}}function Js(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Na(e){let[t,n,r]=Jh(e);return t===1&&n===1&&r===1}function Cr(e,t){return Na(e)||Na(t)}function x5(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function RI(e,t){let n={x:R(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(No,n,r)}var j=O({reshape_:RI});function FI(e,t,n,r,a){let s=R(e,"x","avgPool","float32"),i=1;F(Cr(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=j(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&F(Bt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(es,u,c);return h=me(h,s.dtype),l?j(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Tu=O({avgPool_:FI});function MI(e,t,n,r,a,s="NDHWC"){let i=R(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Bt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Ql,u,c);return h=me(h,o.dtype),l?j(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var _f=O({avgPool3d_:MI});function $I(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=vu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return nr(n[0]);let r=n,a={axis:t};return $.runKernel(Ki,r,a)}var rt=O({concat_:$I});function OI(e){let t={x:R(e,"x","sigmoid")};return $.runKernel(Ds,t)}var Sn=O({sigmoid_:OI});function DI(e,t,n){let r=R(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Co,a,s)}var Ce=O({slice_:DI});function zI(e){let t={x:R(e,"x","tanh")};return $.runKernel(Vs,t)}var Qo=O({tanh_:zI});function PI(e,t,n,r,a,s){let i=R(e,"forgetBias","basicLSTMCell"),o=R(t,"lstmKernel","basicLSTMCell"),l=R(n,"lstmBias","basicLSTMCell"),u=R(r,"data","basicLSTMCell"),c=R(a,"c","basicLSTMCell"),h=R(s,"h","basicLSTMCell"),d=rt([u,h],1),p=He(d,o),m=se(p,l),f=m.shape[0],A=m.shape[1]/4,y=[f,A],g=Ce(m,[0,0],y),b=Ce(m,[0,A],y),_=Ce(m,[0,A*2],y),w=Ce(m,[0,A*3],y),x=se(P(Sn(g),Qo(b)),P(c,Sn(se(i,_)))),N=P(Qo(x),Sn(w));return[x,N]}var LI=O({basicLSTMCell_:PI});function WI(e,t,n){let r=R(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);F(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(eu,s,i)}var Eu=O({batchToSpaceND_:WI});function BI(e){let t;return e.rank===0||e.rank===1?t=j(e,[1,1,1,e.size]):e.rank===2?t=j(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=j(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function VI(e,t,n,r,a,s){s==null&&(s=.001);let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;r!=null&&(c=R(r,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:BI(i),scale:u,offset:c,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(ps,h,d);return j(p,i.shape)}var Qs=O({batchNorm_:VI});function UI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Qs(i,o,l,c,u,s)}var b5=O({batchNorm2d_:UI});function HI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Qs(i,o,l,c,u,s)}var v5=O({batchNorm3d_:HI});function jI(e,t,n,r,a,s){let i=R(e,"x","batchNorm"),o=R(t,"mean","batchNorm"),l=R(n,"variance","batchNorm"),u;a!=null&&(u=R(a,"scale","batchNorm"));let c;return r!=null&&(c=R(r,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Qs(i,o,l,c,u,s)}var k5=O({batchNorm4d_:jI});function GI(e,t,n){let r=R(e,"x","bincount"),a=R(t,"weights","bincount");F(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(dh,s,i)}var I5=O({bincount_:GI});function qI(e,t){let n=R(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=j(n,l)}let a=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return nr(n);let i={x:n},o={reps:s};return $.runKernel(wa,i,o)}var Cu=O({broadcastTo_:qI});function XI(e){let t={x:R(e,"x","ceil")};return $.runKernel(rs,t)}var bf=O({ceil_:XI});function KI(e,t,n){let r=R(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(xa,a,s)}var gn=O({clipByValue_:KI});function ZI(e){return rt(e,0)}var N5=O({concat1d_:ZI});function YI(e,t){return rt(e,t)}var el=O({concat2d_:YI});function JI(e,t){return rt(e,t)}var S5=O({concat3d_:JI});function QI(e,t){return rt(e,t)}var T5=O({concat4d_:QI});function eN(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","conv2d"),l=R(t,"filter","conv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=j(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Bt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?u.shape[3]:u.shape[1];F(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),F(Cr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:u,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},m=$.runKernel(as,d,p);return c?j(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Yr=O({conv2d_:eN});function tN(e,t,n,r,a="NWC",s=1,i){let o=R(e,"x","conv1d"),l=R(t,"filter","conv1d"),u=o,c=!1;o.rank===2&&(c=!0,u=j(o,[1,o.shape[0],o.shape[1]])),F(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Bt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(Cr(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=j(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=j(u,[u.shape[0],1,u.shape[1],u.shape[2]]),p=Yr(d,h,[1,n],r,"NHWC",[1,s],i);return c?j(p,[p.shape[2],p.shape[3]]):j(p,[p.shape[0],p.shape[2],p.shape[3]])}var Qh=O({conv1d_:tN});function nN(e,t,n,r,a,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=j(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];F(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),F(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Bt(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},m=$.runKernel(ss,d,p);return u?j(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var vf=O({conv2DBackpropInput_:nN});function rN(e,t,n,r,a,s){let i=R(e,"x","conv2dTranspose"),o=R(t,"filter","conv2dTranspose");return vf(n,i,o,r,a,"NHWC",s)}var ed=O({conv2dTranspose_:rN});function aN(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=R(e,"x","conv3d"),o=R(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Cr(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let c={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(nu,c,h);return u?j(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var kf=O({conv3d_:aN});function sN(e,t,n,r,a){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=j(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(Ah,c,h);return o?j(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var E5=O({conv3DBackpropInput_:sN});function iN(e,t,n,r,a){let s=R(e,"x","conv3dTranspose"),i=R(t,"filter","conv3dTranspose");return E5(n,s,i,r,a)}var oN=O({conv3dTranspose_:iN});function lN(e){let t={x:R(e,"x","cos")};return $.runKernel(is,t)}var Ru=O({cos_:lN});function uN(e){let t={x:R(e,"x","cosh")};return $.runKernel(Zi,t)}var td=O({cosh_:uN});function cN(e,t=0,n=!1,r=!1){let a={x:R(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(os,a,s)}var nd=O({cumsum_:cN});function hN(e,t,n,r=!1){let a=R(e,"x","denseBincount"),s=R(t,"weights","denseBincount");F(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),F(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(yh,i,o)}var C5=O({denseBincount_:hN});function dN(e,t,n="NHWC"){let r=R(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];F(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${r.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${r.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(Ji,o,l)}var If=O({depthToSpace_:dN});function pN(e,t,n,r,a="NHWC",s=[1,1],i){let o=R(e,"x","depthwiseConv2d"),l=R(t,"filter","depthwiseConv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=j(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Bt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:u,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(ls,h,d);return c?j(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var tl=O({depthwiseConv2d_:pN});function fN(e){let t={x:R(e,"x","diag")};return $.runKernel(wh,t)}var mN=O({diag_:fN});function AN(e,t,n,r,a=[1,1],s="NHWC"){let i=R(e,"x","dilation2d"),o=R(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=j(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let c={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(ru,c,h);return u?j(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Nf=O({dilation2d_:AN});function yN(e,t){let n=e.length,r=[];for(let a=0;a<n;a++){let s=n-1-a,i=e[s]||1;(t[t.length-1-a]||1)>1&&i===1&&r.unshift(s)}return r}function Dt(e,t){let n=[];for(let r=0;r<t.length;r++){let a=e[e.length-r-1],s=t.length-r-1,i=t[s];(a==null||a===1&&i>1)&&n.unshift(s)}return n}function mt(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a<r;a++){let s=e[e.length-a-1];s==null&&(s=1);let i=t[t.length-a-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function gN(e,t){let n=R(e,"a","equal"),r=R(t,"b","equal");[n,r]=wt(n,r),mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(to,a)}var Sa=O({equal_:gN});function xN(e,t,n){let r=R(t,"a","where"),a=R(n,"b","where"),s=R(e,"condition","where","bool"),i=mt(r.shape,a.shape),o=Cu(r,i),l=Cu(a,i);s.rank===1&&F(s.shape[0]===r.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&rn(s.shape,l.shape,"Error in where: ");let u={condition:s,t:o,e:l};return $.runKernel(To,u)}var xn=O({where_:xN});function wN(e){let t={x:R(e,"x","zerosLike")};return $.runKernel(Lo,t)}var Ve=O({zerosLike_:wN});function _N(e,t){let n=R(e,"a","div"),r=R(t,"b","div");[n,r]=wt(n,r);let a=ge(n,r),s=Ve(a),i=Sa(r,s);return xn(i,s,a)}var Sf=O({divNoNan_:_N});function bN(e,t){let n=R(e,"t1","dot"),r=R(t,"t2","dot");F((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(F(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=j(n,[1,-1]),o=j(r,[-1,1]),l=He(i,o);return j(l,[])}else if(n.rank===1&&r.rank===2){let i=j(n,[1,-1]),o=j(r,[r.shape[0],r.shape[1]]),l=He(i,o);return j(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=j(r,[-1,1]),o=He(n,i);return j(o,[o.size])}else{let i=j(r,[r.shape[0],r.shape[1]]);return He(n,i)}}var R5=O({dot_:bN});function vN(e){let t={x:R(e,"x","elu")};return $.runKernel(Qi,t)}var nl=O({elu_:vN});function kN(e){let t=R(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=me(t,"float32"));let n={x:t};return $.runKernel(eo,n)}var Tf=O({erf_:kN});function IN(e){let t={x:R(e,"x","exp")};return $.runKernel(cs,t)}var Gn=O({exp_:IN});function NN(e,t=0){let n=R(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(no,r,a)}var Tn=O({expandDims_:NN});function SN(e){let t={x:R(e,"x","expm1")};return $.runKernel(ro,t)}var Ef=O({expm1_:SN});function TN(e,t){let n=R(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel(wa,r,a)}var Ta=O({tile_:TN});function EN(e,t,n,r="float32"){t==null&&(t=e);let a=Le([e,t],r),s=e<=t?e:t;for(let o=0;o<s;++o)a.set(1,o,o);let i=j(a.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ta(Tn(i,0),[n[0],1,1]);if(n.length===2)return Ta(Tn(Tn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ta(Tn(Tn(Tn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var Cf=O({eye_:EN});function Fu(e,t,n){let r={shape:e,value:t,dtype:n};return $.runKernel(au,{},r)}function CN(e){let t={x:R(e,"x","floor")};return $.runKernel(hs,t)}var rl=O({floor_:CN});function RN(e,t,n=0,r=0){let a=R(e,"x","gather"),s=R(t,"indices","gather","int32"),i={x:a,indices:s},o={axis:n,batchDims:r};return $.runKernel(so,i,o)}var ei=O({gather_:RN});function FN(e,t){let n=R(e,"a","greater"),r=R(t,"b","greater");[n,r]=wt(n,r),mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(oo,a)}var rr=O({greater_:FN});function MN(e,t){let n=R(e,"a","greaterEqual"),r=R(t,"b","greaterEqual");[n,r]=wt(n,r),mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(fs,a)}var Ea=O({greaterEqual_:MN});function $N(e){let t={input:R(e,"input","imag")};return $.runKernel(Nh,t)}var rd=O({imag_:$N});function ON(e){let t={x:R(e,"x","isFinite")};return $.runKernel(lo,t)}var F5=O({isFinite_:ON});function DN(e){let t={x:R(e,"x","isInf")};return $.runKernel(uo,t)}var M5=O({isInf_:DN});function zN(e){let t={x:R(e,"x","isNaN")};return $.runKernel(co,t)}var $5=O({isNaN_:zN});function PN(e,t=.2){let n={x:R(e,"x","leakyRelu")},r={alpha:t};return $.runKernel(As,n,r)}var Mu=O({leakyRelu_:PN});function LN(e,t){let n=R(e,"a","less"),r=R(t,"b","less");[n,r]=wt(n,r),mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(ho,a)}var ad=O({less_:LN});function WN(e,t){let n=R(e,"a","lessEqual"),r=R(t,"b","lessEqual");[n,r]=wt(n,r),mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(po,a)}var ti=O({lessEqual_:WN});function O5(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let r={start:e,stop:t,num:n};return $.runKernel(Sh,{},r)}function BN(e,t=5,n=1,r=1,a=.5){let s=R(e,"x","localResponseNormalization");F(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),F(Bt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=j(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:r,beta:a},c=$.runKernel(ou,l,u);return o?j(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var Rf=O({localResponseNormalization_:BN});function VN(e){let t={x:R(e,"x","log")};return $.runKernel(ys,t)}var En=O({log_:VN});function UN(e){let t={x:R(e,"x","log1p")};return $.runKernel(fo,t)}var sd=O({log1p_:UN});function HN(e){return F(ya(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=R(t,"x","tf.grad","string_or_numeric"),a=n!=null?R(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&rn(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),id(i),i[0]})}}function jN(e){return F(ya(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=vu(t,"args","tf.grads","string_or_numeric"),a=n!=null?R(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&rn(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),id(i),i})}}function GN(e){return F(ya(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof Ze,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof Ze,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return id(r),{grad:r[0],value:a}}}function qN(e){return F(ya(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(a=>a instanceof Ze),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof Ze,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&rn(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),id(r.grads),r}}function D5(e,t){F(ya(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(u=>u instanceof _u),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in $.registeredVariables)t.push($.registeredVariables[u])}let r=n?t.filter(u=>!u.trainable):null,a=t.length;t=t.filter(u=>u.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);F(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,c)=>{o[c]!=null&&(l[u.name]=o[c])}),r!=null&&r.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Rr(e){return $.customGrad(e)}function id(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function XN(e){let t={x:R(e,"x","neg")};return $.runKernel(yo,t)}var _t=O({neg_:XN});function KN(e){let t={x:R(e,"x","softplus")};return $.runKernel(Mo,t)}var al=O({softplus_:KN});function ZN(e){let t=R(e,"x","logSigmoid");return Rr(n=>({value:_t(al(_t(n))),gradFunc:r=>P(r,Sn(_t(n)))}))(t)}var z5=O({logSigmoid_:ZN});function YN(e,t=null,n=!1){let r={x:R(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(gs,r,a)}var qn=O({max_:YN});function JN(e,t){let n=R(e,"a","sub"),r=R(t,"b","sub");[n,r]=wt(n,r);let a={a:n,b:r};return $.runKernel(Bs,a)}var Ae=O({sub_:JN});function QN(e,t=null,n=!1){let r=R(e,"x","sum");r.dtype==="bool"&&(r=me(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(Ps,a,s)}var Te=O({sum_:QN});function eS(e,t=-1){let n=R(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Rr((r,a)=>{let s=!0,i=qn(r,t,!0),o=Ae(r,i),l=Ae(me(o,"float32"),En(Te(Gn(o),t,s)));return a([l]),{value:l,gradFunc:(u,c)=>{let[h]=c,d=!0,p=Gn(h);return Ae(u,P(Te(u,t,d),p))}}})(n)}var od=O({logSoftmax_:eS});function Ff(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function P5(e,t,n){let r=e.length+t.length,a=[],s=0,i=0;for(let o=0;o<r;o++)n.indexOf(o)===-1?a.push(e[s++]):a.push(t[i++]);return a}function L5(e,t){let n=[],r=e.length;for(let s=0;s<r;s++)t.indexOf(s)===-1&&n.push(e[s]);let a=t.map(s=>e[s]);return[n,a]}function ni(e,t){let n=t.map(r=>1);return P5(e,n,t)}function tS(e,t,n){F(Ff(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function W5(e,t){if(Ff(e,t))return null;let n=[];for(let r=0;r<t;++r)e.indexOf(r)===-1&&n.push(r);return e.forEach(r=>n.push(r)),n}function Mf(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function nS(e,t){let n=[];for(let r=t-e;r<t;++r)n.push(r);return n}function rS(e,t=null,n=!1){let r=R(e,"x","logSumExp"),a=er(t,r.shape),s=qn(r,a,!0),i=Ae(r,s),o=Gn(i),l=Te(o,a),u=En(l),c=se(j(s,u.shape),u);if(n){let h=ni(c.shape,a);return j(c,h)}return c}var $f=O({logSumExp_:rS});function aS(e,t){let n=R(e,"a","logicalAnd","bool"),r=R(t,"b","logicalAnd","bool");mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(mo,a)}var ar=O({logicalAnd_:aS});function sS(e){let t={x:R(e,"x","logicalNot","bool")};return $.runKernel(su,t)}var $u=O({logicalNot_:sS});function iS(e,t){let n=R(e,"a","logicalOr","bool"),r=R(t,"b","logicalOr","bool");mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(iu,a)}var ld=O({logicalOr_:iS});function oS(e,t){let n=R(e,"a","logicalXor","bool"),r=R(t,"b","logicalXor","bool");return mt(n.shape,r.shape),ar(ld(e,t),$u(ar(e,t)))}var B5=O({logicalXor_:oS});function lS(e,t,n,r,a){let s=R(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=j(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Cr(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(Bt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(ws,u,c);return l?j(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Ou=O({maxPool_:lS});function uS(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=R(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Bt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(lu,u,c);return l?j(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Of=O({maxPool3d_:uS});function cS(e,t,n,r,a=!1){let s={x:R(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(Rh,s,i);return{result:o[0],indexes:o[1]}}var V5=O({maxPoolWithArgmax_:cS});function hS(e,t){let n=R(e,"a","maximum"),r=R(t,"b","maximum");[n,r]=wt(n,r),n.dtype==="bool"&&(n=me(n,"int32"),r=me(r,"int32")),mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(xs,a)}var Fr=O({maximum_:hS});function dS(e,t=null,n=!1){let r={x:R(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(_s,r,a)}var bt=O({mean_:dS});function pS(e,t=null,n=!1){let r={x:R(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(bs,r,a)}var sl=O({min_:pS});function fS(e,t){let n=R(e,"a","minimum"),r=R(t,"b","minimum");[n,r]=wt(n,r),n.dtype==="bool"&&(n=me(n,"int32"),r=me(r,"int32")),mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(vs,a)}var il=O({minimum_:fS});function mS(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=R(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o<r.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(uu,i,s)}var Df=O({mirrorPad_:mS});function AS(e,t){let n=R(e,"a","mod"),r=R(t,"b","mod");[n,r]=wt(n,r);let a={a:n,b:r};return $.runKernel(Ao,a)}var zf=O({mod_:AS});function yS(e){let t=R(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var it=O({square_:yS});function gS(e,t=null,n=!1){e=R(e,"x","moments");let r=er(t,e.shape),a=bt(e,r,n),s=a.shape;n||(s=ni(a.shape,r));let i=it(Ae(me(e,"float32"),j(a,s))),o=bt(i,r,n);return{mean:a,variance:o}}var ud=O({moments_:gS});function xS(e,t,n,r){let a=R(t,"data","multiRNNCell"),s=vu(n,"c","multiRNNCell"),i=vu(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h<e.length;h++){let d=e[h](o,s[h],i[h]);l.push(d[0]),l.push(d[1]),o=d[1]}let u=[],c=[];for(let h=0;h<l.length;h+=2)u.push(l[h]),c.push(l[h+1]);return[u,c]}var wS=O({multiRNNCell_:xS});function _S(e,t,n,r=!1){let a=R(e,"logits","multinomial"),s=a.size,i=a.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?j(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},u=$.runKernel(Fh,o,l);return i===1?j(u,[u.size]):u}var U5=O({multinomial_:_S});function bS(e,t){let n=R(e,"a","notEqual"),r=R(t,"b","notEqual");[n,r]=wt(n,r),mt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(go,a)}var ri=O({notEqual_:bS});function Et(e,t="float32"){if(t==="complex64"){let r=Et(e,"float32"),a=Et(e,"float32");return ba(r,a)}let n=oh(Mt(e),t);return $.makeTensor(n,e,t)}function Mr(e,t="float32"){if(t==="complex64"){let r=Mr(e,"float32"),a=Et(e,"float32");return ba(r,a)}let n=E1(Mt(e),t);return $.makeTensor(n,e,t)}function vS(e){let t={x:R(e,"x","onesLike")};return $.runKernel(bo,t)}var Cn=O({onesLike_:vS});function kS(e,t){let n=R(e,"v1","outerProduct"),r=R(t,"v2","outerProduct");F(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=j(n,[-1,1]),s=j(r,[1,-1]);return He(a,s)}var IS=O({outerProduct_:kS});function NS(e,t,n=0){let r=R(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(Ns,s,a)}var Jr=O({pad_:NS});function SS(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Jr(e,[t],n)}var TS=O({pad1d_:SS});function ES(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jr(e,t,n)}var CS=O({pad2d_:ES});function RS(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jr(e,t,n)}var FS=O({pad3d_:RS});function MS(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Jr(e,t,n)}var $S=O({pad4d_:MS});function OS(e,t,n){let r=R(e,"x","spaceToBatchND");F(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel(du,a,s)}var Du=O({spaceToBatchND_:OS});function PS(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=R(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(Cr(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let u=w5(o.shape,t,s,a,r),c=[u.dilationHeight,u.dilationWidth],h;r==="same"?h=zS([u.filterHeight,u.filterWidth],c):h=[[0,0],[0,0]];let d=c[0]===1&&c[1]===1,[p,m]=DS([u.inHeight,u.inWidth],c,h),f=d?r:"valid",A=d?o:Du(o,c,p),y=(n==="avg"?()=>Tu(A,t,s,f):()=>Ou(A,t,s,f))(),g=d?y:Eu(y,c,m);return l?j(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function DS(e,t,n){let r=n.map(c=>c[0]),a=n.map(c=>c[1]),s=e.concat(r,a),i=t.map((c,h)=>(c-s[h]%c)%c),o=a.map((c,h)=>c+i[h]),l=t.map((c,h)=>[r[h],o[h]]),u=t.map((c,h)=>[0,i[h]]);return[l,u]}function zS(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var H5=O({pool_:PS});function LS(e,t){let n=R(e,"base","pow"),r=R(t,"exp","pow");[n,r]=wt(n,r);let a={a:n,b:r};return $.runKernel(Ss,a)}var Qr=O({pow_:LS});function WS(e,t){let n=R(e,"x","prelu"),r=R(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(Ts,a)}var zu=O({prelu_:WS});function BS(e,t=null,n=!1){let r=R(e,"x","prod");r.dtype==="bool"&&(r=me(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(ko,a,s)}var cd=O({prod_:BS});function VS(e,t,n){let r=Mt(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<r;s++)a[s]=t();return $.makeTensor(a,e,n)}var US=O({rand_:VS}),Pf=Pi(y8()),Lf=class{constructor(e,t,n,r,a){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=r,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=a||Math.random();this.random=Pf.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let r=this.nextVal;return this.nextVal=NaN,r}let e,t,n=!1;for(;!n;){let r,a,s;do r=2*this.random()-1,a=2*this.random()-1,s=r*r+a*a;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},HS=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Pf.alea(a.toString()),this.randn=new Lf(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),a<t||Math.log(a)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},jS=class{constructor(e=0,t=1,n,r){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Pf.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function GS(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new HS(t,n,r,a),i=Le(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var qS=O({randomGamma_:GS});function XS(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error(`Unsupported data type ${r}`);let s=new Lf(t,n,r,!1,a),i=Le(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var j5=O({randomNormal_:XS});function KS(e,t=0,n=1,r="float32",a){let s=Le(e,r),i=new jS(t,n,null,a);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var ol=O({randomUniform_:KS});function hd(e,t,n=1,r="float32"){if(n===0)throw new Error("Cannot have a step of zero");let a={start:e,stop:t,step:n,dtype:r};return $.runKernel(cu,{},a)}function ZS(e){let t={input:R(e,"input","real")};return $.runKernel(Mh,t)}var Pu=O({real_:ZS});function YS(e){let t={x:R(e,"x","reciprocal")};return $.runKernel(Io,t)}var Wf=O({reciprocal_:YS});function JS(e){let t={x:R(e,"x","relu")};return $.runKernel(Es,t)}var $r=O({relu_:JS});function QS(e){let t={x:R(e,"x","relu6")};return $.runKernel(Rs,t)}var dd=O({relu6_:QS});function eT(e,t){let n={x:R(e,"x","reverse")},r={dims:t};return $.runKernel(Fs,n,r)}var Rn=O({reverse_:eT});function tT(e){let t=R(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Rn(t,0)}var nT=O({reverse1d_:tT});function rT(e,t){let n=R(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Rn(n,t)}var aT=O({reverse2d_:rT});function sT(e,t){let n=R(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Rn(n,t)}var iT=O({reverse3d_:sT});function oT(e,t){let n=R(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Rn(n,t)}var lT=O({reverse4d_:oT});function uT(e){let t={x:R(e,"x","round")};return $.runKernel(Ms,t)}var Bf=O({round_:uT});function cT(e){let t={x:R(e,"x","rsqrt")};return $.runKernel($s,t)}var pd=O({rsqrt_:cT});function be(e,t){if((an(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&an(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return va(e,[],[],t)}function hT(e){let t={x:R(e,"x","selu")};return $.runKernel(Eo,t)}var fd=O({selu_:hT});function dT(e,t,n,r,a,s=[1,1],i="NHWC"){let o=R(e,"x","separableConv2d"),l=R(t,"depthwiseFilter","separableConv2d"),u=R(n,"pointwiseFilter","separableConv2d"),c=o,h=!1;if(o.rank===3&&(h=!0,c=j(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),F(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],p=l.shape[3];F(u.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${u.shape[2]}.`);let m=tl(c,l,r,a,i,s),f=Yr(m,u,1,"valid",i);return h?j(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Vf=O({separableConv2d_:dT});async function pT(e,t){let n=R(e,"x","setdiff1d"),r=R(t,"y","setdiff1d");F(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let c=0;c<a.length;c++)i.has(a[c])||o++;let l=new $t([o],n.dtype),u=new $t([o],"int32");for(let c=0,h=0;c<a.length;c++)i.has(a[c])||(l.values[h]=a[c],u.values[h]=c,h++);return[l.toTensor(),u.toTensor()]}var G5=pT;function fT(e){let t={x:R(e,"x","sign")};return $.runKernel(Fo,t)}var Uf=O({sign_:fT});function mT(e){let t={x:R(e,"x","sin")};return $.runKernel(Os,t)}var md=O({sin_:mT});function AT(e){let t={x:R(e,"x","sinh")};return $.runKernel(Ro,t)}var Ad=O({sinh_:AT});function yT(e,t,n){let r=R(e,"x","slice1d");return F(r.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),Ce(r,[t],[n])}var yd=O({slice1d_:yT});function gT(e,t,n){let r=R(e,"x","slice2d");return F(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),Ce(r,t,n)}var Hf=O({slice2d_:gT});function xT(e,t,n){let r=R(e,"x","slice3d");return F(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),Ce(r,t,n)}var gd=O({slice3d_:xT});function wT(e,t,n){let r=R(e,"x","slice4d");return F(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),Ce(r,t,n)}var Lu=O({slice4d_:wT});function _T(e,t=-1){let n=R(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(Ls,r,a)}var Wu=O({softmax_:_T});function bT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(kh,t)}var Bu=O({fft_:bT});function vT(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Ih,t)}var ll=O({ifft_:vT});function kT(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=j(e,[n,t]);r=ll(a)}else{let a=[n,2*(t-1)],s=j(Pu(e),[n,t]),i=j(rd(e),[n,t]),o=Rn(Ce(s,[0,1],[n,t-2]),1),l=P(Rn(Ce(i,[0,1],[n,t-2]),1),be(-1)),u=rt([s,o],1),c=rt([i,l],1),h=j(ba(u,c),[a[0],a[1]]);r=ll(h)}if(r=Pu(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=j(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var xd=O({irfft_:kT});function IT(e,t,n=0){let r={x:R(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel($o,r,a)}var Jt=O({split_:IT});function NT(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t<n){let m=e.shape.map(A=>0),f=e.shape.map(A=>A);f[e.shape.length-1]=t,a=Ce(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,a=rt([e,Et(m)],e.shape.length-1),n=t}else a=e;let s=Ve(a),i=j(ba(a,s),[r,n]),o=Bu(i),l=Math.floor(n/2)+1,u=Pu(o),c=rd(o),h=Jt(u,[l,n-l],u.shape.length-1),d=Jt(c,[l,n-l],c.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,j(ba(h[0],d[0]),p)}var Vu=O({rfft_:NT});function ST(e){let t={x:R(e,"x","sqrt")};return $.runKernel(zs,t)}var Qt=O({sqrt_:ST});function TT(e,t){let n=R(e,"a","squaredDifference"),r=R(t,"b","squaredDifference");[n,r]=wt(n,r),mt(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(Ws,a,s)}var wd=O({squaredDifference_:TT});function ET(e,t){let n=R(e,"x","squeeze");return j(n,fg(n.shape,t).newShape)}var Ca=O({squeeze_:ET});function CT(e,t=0){let n=vu(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(vo,r,a)}var Fn=O({stack_:CT});function RT(e,t=0){let n={x:R(e,"x","step")},r={alpha:t};return $.runKernel(_a,n,r)}var ul=O({step_:RT});function FT(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let u={x:R(e,"x","stridedSlice")},c={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(Oo,u,c)}var jf=O({stridedSlice_:FT});function MT(e){let t={x:R(e,"x","tan")};return $.runKernel(Do,t)}var Gf=O({tan_:MT});function Ut(e,t){Ka(e);let n=Tr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return va(e,null,n,t)}function wn(e,t,n){if(Ka(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Tr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return va(e,t,r,n)}function $T(e,t,n){if(Ka(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Tr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return va(e,t,r,n)}function OT(e,t,n){if(Ka(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Tr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return va(e,t,r,n)}function DT(e,t,n){if(Ka(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Tr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,va(e,t,r,n)}function zT(e,t=1,n=!0){let r=R(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(zo,s,i);return{values:o,indices:l}}var qf=O({topk_:zT});function PT(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Lf(t,n,r,!0,a),i=Le(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var _d=O({truncatedNormal_:PT});function LT(e,t=0){let n=R(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(zh,r,a);return{values:s,indices:i}}var bd=O({unique_:LT});function WT(e,t,n){let r=R(e,"x","unsortedSegmentSum"),a=R(t,"segmentIds","unsortedSegmentSum","int32");F(Bt(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(fu,s,i)}var Xf=O({unsortedSegmentSum_:WT});function BT(e,t=0){let n=R(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(Po,r,a)}var sr=O({unstack_:BT});function q5(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function X5(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let r=Le(e,"int32"),a=Le([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=r.indexToLoc(n[s]),o=s*e.length;a.values.set(i,o)}return a.toTensor()}async function VT(e){let t=R(e,"condition","whereAsync","bool"),n=await t.data(),r=X5(t.shape,n);return e!==t&&t.dispose(),r}var Kf=VT;async function UT(e,t,n){let r=R(e,"tensor","boolMask"),a=R(t,"mask","boolMask","bool"),s=n==null?0:n,i=a.rank,o=r.shape;F(i>0,()=>"mask cannot be scalar"),rn(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),c=j(r,u),h=j(a,[-1]),d=await Kf(h),p=Ca(d,[1]),m=ei(c,p,s);return e!==r&&r.dispose(),t!==a&&a.dispose(),p.dispose(),c.dispose(),h.dispose(),d.dispose(),m}var HT=UT;function jT(e,t="euclidean",n=null,r=!1){e=R(e,"x","norm");let a=K5(e,t,n),s=a.shape;if(r){let i=er(n,e.shape);s=ni(a.shape,i)}return j(a,s)}function K5(e,t,n=null){if(e.rank===0)return Ot(e);if(e.rank!==1&&n===null)return K5(j(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Te(Ot(e),n);if(t===Infinity)return qn(Ot(e),n);if(t===-Infinity)return sl(Ot(e),n);if(t==="euclidean"||t===2)return Qt(Te(Qr(Ot(e),be(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return qn(Te(Ot(e),n[0]),n[1]-1);if(t===Infinity)return qn(Te(Ot(e),n[1]),n[0]);if(t===-Infinity)return sl(Te(Ot(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Qt(Te(it(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var vd=O({norm_:jT});function GT(e,t,n,r,a=!0){let s=R(e,"v","movingAverage"),i=R(t,"x","movingAverage"),o=R(n,"decay","movingAverage");Rg(s,i),F(Kr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=be(1),u=Ae(l,o),c=P(Ae(i,s),u);if(a){F(r!=null,()=>"When using zeroDebias: true, step is required.");let h=R(r,"step","movingAverage");c=ge(c,Ae(l,Qr(o,h)))}return se(s,c)}var qT=O({movingAverage_:GT});function XT(e,t,n){let r=R(e,"indices","scatterND","int32"),a=R(t,"updates","scatterND");af(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(So,s,i)}var Z5=O({scatterND_:XT});function KT(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function ZT(e,t,n,r=0){let a=R(e,"sparseIndices","sparseToDense","int32"),s=R(t,"sparseValues","sparseToDense"),i=R(r,"defaultValue","sparseToDense",s.dtype);KT(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(Dh,o,l)}var Zf=O({sparseToDense_:ZT});function YT(e,t){let n=R(t,"indices","gatherND","int32"),r={params:R(e,"x","gatherND"),indices:n};return $.runKernel(io,r)}var Y5=O({gatherND_:YT});function JT(e,t){if(t==null)return e.shape.slice();if(Kr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r<e.shape.length;r++)t[r]==null&&e.shape[r]!=null?n.push(e.shape[r]):n.push(t[r]);return n}return t}function QT(e,t,n,r){let a=R(e,"x","dropout");if(F(a.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ze?a.clone():a;let s=JT(a,n),i=1-t,o=ge(rl(se(ol(s,0,1,"float32",r),i)),i);return P(a,o)}var J5=O({dropout_:QT});function Q5(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Yf(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+r-1);a[s]=t-n*Math.cos(i)}return Ut(a,"float32")}async function eE(e,t,n=1){let r=R(e,"predictions","inTopK"),a=R(t,"targets","inTopK");F(r.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),F(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),rn(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,u]=[i.length/s,s],c=mg("bool",l);for(let h=0;h<l;h++){let d=h*u,p=i.subarray(d,d+u),m=[];for(let f=0;f<p.length;f++)m.push({value:p[f],index:f});m.sort((f,A)=>A.value-f.value),c[h]=0;for(let f=0;f<n;f++)if(m[f].index===o[h]){c[h]=1;break}}return e!==r&&r.dispose(),t!==a&&a.dispose(),mr(c,a.shape,"bool")}var tE=eE,Ra={};De(Ra,{conv2d:()=>nE,depthwiseConv2d:()=>rE,matMul:()=>aE});function sE(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=j(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=j(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),F(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),i!=null&&F(Bt(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(fh,h,d)}var Jf=O({conv2DBackpropFilter_:sE});function kd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return P(e,ul(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Id(e,t){let n=t,r=Dt(e.shape,t.shape);return r.length>0&&(n=Te(n,r)),j(n,e.shape)}function Nd(e,t,n,r){if(t==="linear")return e;if(t==="relu")return $r(e);if(t==="elu")return nl(e);if(t==="relu6")return dd(e);if(t==="prelu")return zu(e,n);if(t==="leakyrelu")return Mu(e,r);throw new Error(`Unknown fused activation ${t}.`)}var Sd=(e,t)=>!(e>0)||t==="linear";function iE({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Sd($.state.gradientDepth,l)===!1){let w=Yr(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),Nd(w,l,u,c)}let h=R(e,"x","conv2d"),d=R(t,"filter","conv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=j(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&F(Bt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),F(Cr(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let f=Su(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=wt(A,h),mt(f.outShape,A.shape));let y;u!=null&&(y=R(u,"prelu weights","fused conv2d"));let g=(w,x)=>{let[N,T,E,M]=x,D=kd(w,E,l);F(Na(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let L=vf(T.shape,D,N,n,r),W=Jf(T,D,N.shape,n,r),U=[L,W];if(M!=null){let H=Id(M,D);U.push(H)}return U},b={x:p,filter:d,bias:A,preluActivationWeights:y},_={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Rr((w,x,N)=>{let T=$.runKernel(js,b,_);return N([x,w,T]),m&&(T=j(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Rr((w,x,N,T)=>{let E=$.runKernel(js,b,_);return T([x,w,E,N]),m&&(E=j(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var nE=O({fusedConv2d_:iE});function oE(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=j(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=j(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(gh,u,c)}var ex=O({depthwiseConv2dNativeBackpropFilter_:oE});function lE(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=j(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(xh,u,c);return l?j(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var tx=O({depthwiseConv2dNativeBackpropInput_:lE});function uE({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Sd($.state.gradientDepth,l)===!1){let w=tl(e,t,n,r,a,s,i);return o!=null&&(w=se(w,o)),Nd(w,l,u,c)}let h=R(e,"x","depthwiseConv2d"),d=R(t,"filter","depthwiseConv2d"),p=h,m=!1;h.rank===3&&(m=!0,p=j(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),F(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),F(Cr(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Bt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let f=Su(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=R(o,"bias","fused conv2d"),[A]=wt(A,h),mt(f.outShape,A.shape));let y;u!=null&&(y=R(u,"prelu weights","fused depthwiseConv2d"));let g=(w,x)=>{F(Na(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,T,E,M]=x,D=kd(w,E,l),L=tx(T.shape,D,N,n,r,s,i),W=ex(T,D,N.shape,n,r,s,i);if(M!=null){let U=Id(A,D);return[L,W,U]}return[L,W]},b={x:p,filter:d,bias:A,preluActivationWeights:y},_={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Rr((w,x,N)=>{let T=$.runKernel(Gs,b,_);return N([x,w,T]),m&&(T=j(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(p,d):Rr((w,x,N,T)=>{let E=$.runKernel(Gs,b,_);return T([x,w,E,N]),m&&(E=j(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(p,d,A)}var rE=O({fusedDepthwiseConv2d_:uE});function cE({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Sd($.state.gradientDepth,s)===!1){let M=He(e,t,n,r);return a!=null&&(M=se(M,a)),Nd(M,s,i,o)}let l=R(e,"a","fused matMul"),u=R(t,"b","fused matMul");[l,u]=wt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),A=Mt(m),y=Mt(f);F(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),F(Kr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),F(c===h,()=>`Error in fused matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${r} must match.`);let g=l.shape.slice(0,-2).concat([d,p]),b=n?j(l,[A,c,d]):j(l,[A,d,c]),_=r?j(u,[y,p,h]):j(u,[y,h,p]),w;a!=null&&(w=R(a,"bias","fused matMul"),[w]=wt(w,l),mt(g,w.shape));let x;i!=null&&(x=R(i,"prelu weights","fused matMul"));let N=(M,D)=>{let[L,W,U,H]=D,X=kd(j(M,U.shape),U,s),G,ee;if(!n&&!r?(G=He(X,W,!1,!0),ee=He(L,X,!0,!1)):!n&&r?(G=He(X,W,!1,!1),ee=He(X,L,!0,!1)):n&&!r?(G=He(W,X,!1,!0),ee=He(L,X,!1,!1)):(G=He(W,X,!0,!0),ee=He(X,L,!0,!0)),a!=null){let Y=Id(H,X);return[G,ee,Y]}else return[G,ee]},T={a:b,b:_,bias:w,preluActivationWeights:x},E={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Rr((M,D,L)=>{let W=$.runKernel(Hs,T,E);return L([M,D,W]),{value:j(W,g),gradFunc:N}})(b,_):Rr((M,D,L,W)=>{let U=$.runKernel(Hs,T,E);return W([M,D,U,L]),{value:j(U,g),gradFunc:N}})(b,_,w)}var aE=O({fusedMatMul_:cE});function hE(e){return Yf(e,.54,.46)}var dE=O({hammingWindow_:hE});function pE(e){return Yf(e,.5,.5)}var nx=O({hannWindow_:pE});function fE(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Ce(e,s,t)),s+=n;if(r)for(;s<e.size;){let o=s+t-e.size,l=rt([Ce(e,s,t-o),Fu([o],a)]);i.push(l),s+=n}return i.length===0?wn([],[0,t]):j(rt(i),[i.length,t])}var rx=O({frame_:fE});function mE(e,t,n,r,a=nx){r==null&&(r=Q5(t));let s=rx(e,t,n),i=P(s,a(t)),o=[];for(let l=0;l<s.shape[0];l++)o.push(Vu(Ce(i,[l,0],[1,t]),r));return rt(o)}var AE=O({stft_:mE});function yE(e,t,n,r,a="bilinear",s=0){let i=R(e,"image","cropAndResize"),o=R(t,"boxes","cropAndResize","float32"),l=R(n,"boxInd","cropAndResize","int32"),u=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),F(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),F(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),F(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let c={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(Yi,c,h)}var gE=O({cropAndResize_:yE});function xE(e){let t=R(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(ao,n,{})}var wE=O({flipLeftRight_:xE});function _E(e,t,n=0,r=.5){let a=R(e,"image","rotateWithOffset","float32");F(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(Wo,s,i)}var bE=O({rotateWithOffset_:_E});function cl(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function vE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppression"),i=R(t,"scores","nonMaxSuppression"),o=cl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(xo,{boxes:s,scores:i},l)}var kE=O({nonMaxSuppression_:vE});function NE(e,t,n){let r=IE(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function IE(e,t,n){return TE(e,t,n||SE)}function SE(e,t){return e>t?1:e<t?-1:0}function TE(e,t,n){let r=0,a=e.length,s=0,i=!1;for(;r<a;){s=r+(a-r>>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function ax(e,t,n,r,a){return Qf(e,t,n,r,a,0)}function sx(e,t,n,r,a,s){return Qf(e,t,n,r,a,0,!1,s,!0)}function ix(e,t,n,r,a,s){return Qf(e,t,n,r,a,s,!0)}function Qf(e,t,n,r,a,s,i=!1,o=!1,l=!1){let u=[];for(let A=0;A<t.length;A++)t[A]>a&&u.push({score:t[A],boxIndex:A,suppressBeginIndex:0});u.sort(ox);let c=s>0?-.5/s:0,h=[],d=[];for(;h.length<n&&u.length>0;){let A=u.pop(),{score:y,boxIndex:g,suppressBeginIndex:b}=A;if(y<a)break;let _=!1;for(let w=h.length-1;w>=b;--w){let x=EE(e,g,h[w]);if(x>=r){_=!0;break}if(A.score=A.score*CE(r,c,x),A.score<=a)break}A.suppressBeginIndex=h.length,_||(A.score===y?(h.push(g),d.push(A.score)):A.score>a&&NE(u,A,ox))}let p=h.length,m=n-p;o&&m>0&&(h.push(...new Array(m).fill(0)),d.push(...new Array(m).fill(0)));let f={selectedIndices:h};return i&&(f.selectedScores=d),l&&(f.validOutputs=p),f}function EE(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),u=Math.min(a[0],a[2]),c=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),m=(h-u)*(d-c);if(p<=0||m<=0)return 0;let f=Math.max(s,u),A=Math.max(i,c),y=Math.min(o,h),g=Math.min(l,d),b=Math.max(y-f,0)*Math.max(g-A,0);return b/(p+m-b)}function CE(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function ox(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function RE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=R(e,"boxes","nonMaxSuppressionAsync"),i=R(t,"scores","nonMaxSuppressionAsync"),o=cl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],c=l[1],{selectedIndices:h}=ax(u,c,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),Ut(h,"int32")}var FE=RE;function ME(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=cl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},c={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(_o,u,c);return{selectedIndices:h[0],selectedScores:h[1]}}var $E=O({nonMaxSuppressionWithScore_:ME});async function OE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=cl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),c=u[0],h=u[1],{selectedIndices:d,selectedScores:p}=ix(c,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ut(d,"int32"),selectedScores:Ut(p)}}var DE=OE;function zE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppression"),o=R(t,"scores","nonMaxSuppression"),l=cl(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:h,padToMaxOutputSize:s},m=$.runKernel(wo,d,p);return{selectedIndices:m[0],validOutputs:m[1]}}var PE=O({nonMaxSuppressionPadded_:zE});async function LE(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=R(e,"boxes","nonMaxSuppressionAsync"),o=R(t,"scores","nonMaxSuppressionAsync"),l=cl(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=sx(d,p,u,c,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Ut(m,"int32"),validOutputs:be(f,"int32")}}var WE=LE;function BE(e,t,n=!1,r=!1){let a=R(e,"images","resizeBilinear");F(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=j(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(Cs,o,l);return i?j(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var lx=O({resizeBilinear_:BE});function VE(e,t,n=!1,r=!1){let a=R(e,"images","resizeNearestNeighbor");F(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=j(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(hu,o,l);return i?j(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var ux=O({resizeNearestNeighbor_:VE});function UE(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=R(e,"a","bandPart");F(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=j(hd(0,s,1,"int32"),[-1,1]),l=hd(0,i,1,"int32"),u=Ae(o,l),c=ar(ti(u,be(+t,"int32")),Ea(u,be(-n,"int32"))),h=Et([s,i],r.dtype);return j(Fn(sr(j(r,[-1,s,i])).map(d=>xn(c,d,h))),a)}var HE=O({bandPart_:UE});function jE(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s<e.length;++s)F(e[s].shape[0]===a,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Jt(e,e.shape[0],0).map(a=>Ca(a,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a<e.length;++a)n.push($.tidy(()=>{let s=r[a];if(a>0)for(let i=0;i<a;++i){let o=P(Te(P(n[i],s)),n[i]);s=Ae(s,o)}return ge(s,vd(s,"euclidean"))}));return t?Fn(n,0):n}var GE=O({gramSchmidt_:jE});function qE(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return cx(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),r=sr(j(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[u,c]=cx(l,t);a.push(u),s.push(c)});let i=j(Fn(a,0),e.shape),o=j(Fn(s,0),e.shape);return[i,o]}}function cx(e,t=!1){return $.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=Cf(n),s=nr(e),i=wn([[1]],[1,1]),o=nr(i),l=n>=r?r:n;for(let u=0;u<l;++u){let c=s,h=o,d=a;[o,s,a]=$.tidy(()=>{let p=Ce(s,[u,u],[n-u,1]),m=vd(p),f=Ce(s,[u,u],[1,1]),A=xn(rr(f,0),wn([[-1]]),wn([[1]])),y=Ae(f,P(A,m)),g=ge(p,y);g.shape[0]===1?o=nr(i):o=rt([i,Ce(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let b=_t(ge(He(A,y),m)),_=Ce(s,[u,0],[n-u,r]),w=P(b,o),x=nt(o);if(u===0)s=Ae(_,He(w,He(x,_)));else{let E=Ae(_,He(w,He(x,_)));s=rt([Ce(s,[0,0],[u,r]),E],0)}let N=nt(w),T=Ce(a,[0,u],[n,a.shape[1]-u]);if(u===0)a=Ae(T,He(He(T,o),N));else{let E=Ae(T,He(He(T,o),N));a=rt([Ce(a,[0,0],[n,u]),E],1)}return[o,s,a]}),Ee([c,h,d])}return!t&&n>r&&(a=Ce(a,[0,0],[n,r]),s=Ce(s,[0,0],[r,r])),[a,s]})}var XE=O({qr_:qE}),ln;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(ln||(ln={}));function KE(e,t,n=ln.SUM_BY_NONZERO_WEIGHTS){let r=R(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=R(t,"weights","computeWeightedLoss"));let s=a==null?r:P(r,a);if(n===ln.NONE)return s;if(n===ln.SUM)return Te(s);if(n===ln.MEAN){if(a==null)return bt(s);{let i=r.size/a.size,o=ge(Te(s),Te(a));return i>1?ge(o,be(i)):o}}if(n===ln.SUM_BY_NONZERO_WEIGHTS){if(a==null)return ge(Te(s),be(r.size));{let i=P(a,Mr(r.shape)),o=me(Te(ri(i,be(0))),"float32");return ge(Te(s),o)}}throw Error(`Unknown reduction: ${n}`)}var ea=O({computeWeightedLoss_:KE});function ZE(e,t,n,r=ln.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","absoluteDifference"),s=R(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=R(n,"weights","absoluteDifference")),rn(a.shape,s.shape,"Error in absoluteDifference: ");let o=Ot(Ae(a,s));return ea(o,i,r)}var YE=O({absoluteDifference_:ZE});function JE(e,t,n,r,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","cosineDistance"),i=R(t,"predictions","cosineDistance"),o=null;r!=null&&(o=R(r,"weights","cosineDistance")),rn(s.shape,i.shape,"Error in cosineDistance: ");let l=be(1),u=Ae(l,Te(P(s,i),n,!0));return ea(u,o,a)}var QE=O({cosineDistance_:JE});function eC(e,t,n,r=ln.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","hingeLoss"),s=R(t,"predictions","hingeLoss"),i=null;n!=null&&(i=R(n,"weights","hingeLoss")),rn(a.shape,s.shape,"Error in hingeLoss: ");let o=be(1);a=Ae(P(be(2),a),o);let l=$r(Ae(o,P(a,s)));return ea(l,i,r)}var tC=O({hingeLoss_:eC});function nC(e,t,n,r=1,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","huberLoss"),i=R(t,"predictions","huberLoss"),o=null;n!=null&&(o=R(n,"weights","huberLoss")),rn(s.shape,i.shape,"Error in huberLoss: ");let l=be(r),u=Ot(Ae(i,s)),c=il(u,l),h=Ae(u,c),d=se(P(be(.5),it(c)),P(l,h));return ea(d,o,a)}var rC=O({huberLoss_:nC});function aC(e,t,n,r=1e-7,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"labels","logLoss"),i=R(t,"predictions","logLoss"),o=null;n!=null&&(o=R(n,"weights","logLoss")),rn(s.shape,i.shape,"Error in logLoss: ");let l=be(1),u=be(r),c=_t(P(s,En(se(i,u)))),h=P(Ae(l,s),En(se(Ae(l,i),u))),d=Ae(c,h);return ea(d,o,a)}var sC=O({logLoss_:aC});function iC(e,t,n,r=ln.SUM_BY_NONZERO_WEIGHTS){let a=R(e,"labels","meanSquaredError"),s=R(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=R(n,"weights","meanSquaredError")),rn(a.shape,s.shape,"Error in meanSquaredError: ");let o=wd(a,s);return ea(o,i,r)}var oC=O({meanSquaredError_:iC});function lC(e,t){let n=R(e,"labels","sigmoidCrossEntropyWithLogits"),r=R(t,"logits","sigmoidCrossEntropyWithLogits");rn(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=$r(r),s=P(r,n),i=sd(Gn(_t(Ot(r))));return se(Ae(a,s),i)}function uC(e,t,n,r=0,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"multiClassLabels","sigmoidCrossEntropy"),i=R(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","sigmoidCrossEntropy")),rn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let u=be(r),c=be(1),h=be(.5);s=se(P(s,Ae(c,u)),P(h,u))}let l=lC(s,i);return ea(l,o,a)}var cC=O({sigmoidCrossEntropy_:uC});function hC(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Rr((r,a,s)=>{let i=$f(a,[n],!0),o=Ae(me(a,"float32"),i);s([r,o]);let l=_t(P(o,r));return{value:Te(l,[n]),gradFunc:(u,c)=>{let[h,d]=c,p=ni(u.shape,[n]);return[P(j(u,p),Ae(me(h,"float32"),Gn(d))),P(j(u,p),Ae(Gn(d),me(h,"float32")))]}}})(e,t)}function dC(e,t,n,r=0,a=ln.SUM_BY_NONZERO_WEIGHTS){let s=R(e,"onehotLabels","softmaxCrossEntropy"),i=R(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=R(n,"weights","softmaxCrossEntropy")),rn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let u=be(r),c=be(1),h=be(s.shape[1]);s=se(P(s,Ae(c,u)),ge(u,h))}let l=hC(s,i);return ea(l,o,a)}var pC=O({softmaxCrossEntropy_:dC}),fC={fft:Bu,ifft:ll,rfft:Vu,irfft:xd},mC={hammingWindow:dE,hannWindow:nx,frame:rx,stft:AE},Ge={flipLeftRight:wE,resizeNearestNeighbor:ux,resizeBilinear:lx,rotateWithOffset:bE,cropAndResize:gE,nonMaxSuppression:kE,nonMaxSuppressionAsync:FE,nonMaxSuppressionWithScore:$E,nonMaxSuppressionWithScoreAsync:DE,nonMaxSuppressionPadded:PE,nonMaxSuppressionPaddedAsync:WE},hx={bandPart:HE,gramSchmidt:GE,qr:XE},AC={absoluteDifference:YE,computeWeightedLoss:ea,cosineDistance:QE,hingeLoss:tC,huberLoss:rC,logLoss:sC,meanSquaredError:oC,sigmoidCrossEntropy:cC,softmaxCrossEntropy:pC},ta=class extends f5{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Ee(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return D5(e,t)}dispose(){this.iterations_!=null&&Ee(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:be(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(ta,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Td=class extends ta{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:B(()=>Ve(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:B(()=>Ve(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;B(()=>{let l=se(P(i,this.rho),P(it(s),1-this.rho)),u=P(ge(Qt(se(o,this.epsilon)),Qt(se(i,this.epsilon))),s),c=se(P(o,this.rho),P(it(u),1-this.rho));i.assign(l),o.assign(c);let h=se(P(u,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ee(this.accumulatedGrads.map(e=>e.variable)),Ee(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Td.className="Adadelta";Ia(Td);var Ed=class extends ta{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:B(()=>Fu(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;B(()=>{let i=se(s,it(a));s.assign(i);let o=se(P(ge(a,Qt(se(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ee(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Ed.className="Adagrad";Ia(Ed);var Cd=class extends ta{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],B(()=>{this.accBeta1=be(t).variable(),this.accBeta2=be(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);B(()=>{let n=Ae(1,this.accBeta1),r=Ae(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:B(()=>Ve(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:B(()=>Ve(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedSecondMoment[s].variable,h=se(P(u,this.beta1),P(l,1-this.beta1)),d=se(P(c,this.beta2),P(it(l),1-this.beta2)),p=ge(h,n),m=ge(d,r);u.assign(h),c.assign(d);let f=se(P(ge(p,se(Qt(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(P(this.accBeta1,this.beta1)),this.accBeta2.assign(P(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ee(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),B(()=>{this.accBeta1.assign(Qr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Qr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Cd.className="Adam";Ia(Cd);var Rd=class extends ta{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],B(()=>{this.iteration=be(0).variable(),this.accBeta1=be(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);B(()=>{let n=Ae(1,this.accBeta1),r=ge(-this.learningRate,se(P(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:Ve(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:Ve(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedWeightedInfNorm[s].variable,h=se(P(u,this.beta1),P(l,1-this.beta1)),d=P(c,this.beta2),p=Ot(l),m=Fr(d,p);u.assign(h),c.assign(m);let f=se(P(ge(r,n),ge(h,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(P(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ee(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Rd.className="Adamax";Ia(Rd);var Uu=class extends ta{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];B(()=>{let s=se(P(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Vt(be(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Uu.className="SGD";Ia(Uu);var Fd=class extends Uu{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=be(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:B(()=>Ve(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&B(()=>{let i,o=se(P(this.m,a),s);this.useNesterov?i=se(P(this.c,se(s,P(o,this.m))),r):i=se(P(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ee(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Fd.className="Momentum";Ia(Fd);var Md=class extends ta{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:B(()=>Ve(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:B(()=>Ve(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:B(()=>Ve(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;B(()=>{let l=se(P(i,this.decay),P(it(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,c=se(P(u,this.decay),P(s,1-this.decay)),h=ge(P(s,this.learningRate),Qt(Ae(l,se(it(c),this.epsilon)))),d=se(P(o,this.momentum),h);i.assign(l),u.assign(c),o.assign(d);let p=Ae(r,d);r.assign(p)}else{let u=se(P(i,this.decay),P(it(s),1-this.decay)),c=se(P(o,this.momentum),ge(P(s,this.learningRate),Qt(se(u,this.epsilon))));i.assign(u),o.assign(c);let h=Ae(r,c);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ee(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ee(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ee(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Md.className="RMSProp";Ia(Md);var ai=class{static sgd(e){return new Uu(e)}static momentum(e,t,n=!1){return new Fd(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new Md(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new Cd(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new Td(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new Rd(e,t,n,r,a)}static adagrad(e,t=.1){return new Ed(e,t)}},si={sgd:ai.sgd,momentum:ai.momentum,adadelta:ai.adadelta,adagrad:ai.adagrad,rmsprop:ai.rmsprop,adamax:ai.adamax,adam:ai.adam},yC=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function $d(){return new Promise(e=>yC(()=>e()))}var C={};De(C,{ERF_A1:()=>TC,ERF_A2:()=>EC,ERF_A3:()=>CC,ERF_A4:()=>RC,ERF_A5:()=>FC,ERF_P:()=>SC,PARALLELIZE_THRESHOLD:()=>em,SELU_SCALE:()=>px,SELU_SCALEALPHA:()=>dx,applyActivation:()=>Nd,assertAndGetBroadcastShape:()=>mt,assertAxesAreInnerMostDims:()=>tS,assertParamsConsistent:()=>gC,assignToTypedArray:()=>WC,axesAreInnerMostDims:()=>Ff,calculateShapes:()=>n5,combineLocations:()=>P5,complexWithEvenIndex:()=>zC,complexWithOddIndex:()=>PC,computeConv2DInfo:()=>Su,computeConv3DInfo:()=>_5,computeDefaultPad:()=>wf,computeDilation2DInfo:()=>II,computeOptimalWindowSize:()=>wC,computeOutAndReduceShapes:()=>L5,computeOutShape:()=>xC,computePool2DInfo:()=>w5,computePool3DInfo:()=>NI,convertConv2DDataFormat:()=>x5,eitherStridesOrDilationsAreOne:()=>Cr,expandShapeToKeepDim:()=>ni,exponent:()=>VC,exponents:()=>BC,fromStringArrayToUint8:()=>jC,fromUint8ToStringArray:()=>HC,getAxesPermutation:()=>W5,getBroadcastDims:()=>yN,getComplexWithIndex:()=>LC,getFusedBiasGradient:()=>Id,getFusedDyActivation:()=>kd,getImageCenter:()=>_C,getInnerMostAxes:()=>nS,getPermuted:()=>vC,getReductionAxes:()=>Dt,getReshaped:()=>bC,getReshapedPermuted:()=>kC,getSliceBeginCoords:()=>IC,getSliceSize:()=>NC,getUndoAxesPermutation:()=>Mf,log:()=>$C,mergeRealAndImagArrays:()=>OC,prepareAndValidate:()=>t5,prepareSplitSize:()=>UC,segment_util:()=>fx,shouldFuse:()=>Sd,slice_util:()=>on,splitRealAndImagArrays:()=>DC,tupleValuesAreOne:()=>Na,upcastType:()=>tr,validateInput:()=>af,validateUpdateShape:()=>rf,warn:()=>MC});function gC(e,t){let n=e[0].length;e.forEach((a,s)=>{F(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i<n;i++)F(i===t||a[i]===r[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function xC(e,t){let n=e[0].slice();for(let r=1;r<e.length;r++)n[t]+=e[r][t];return n}var em=30;function wC(e){return e<=em?e:ih(e,Math.floor(Math.sqrt(e)))}function _C(e,t,n){let r=n*(typeof e=="number"?e:e[0]),a=t*(typeof e=="number"?e:e[1]);return[r,a]}function bC(e,t,n,r=!0){let a=[];if(r)a=a.concat(t.slice(0)),a.push(e[0]/n),a=a.concat(e.slice(1));else{a=a.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)a=a.concat([e[i+1]/t[i],t[i]]);a=a.concat(e.slice(s+1))}return a}function vC(e,t,n=!0){let r=[];if(n){r.push(t);for(let a=t+1;a<e;++a)a<=2*t?(r.push(a),r.push(a-(t+1))):r.push(a)}else{let a=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function kC(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?r?a.push(t[s-1]*e[s]):a.push(e[s]/t[s-1]):a.push(e[s]);return a}function IC(e,t){let n=[0];for(let r=0;r<t;++r)n.push(e[r][0]);return n}function NC(e,t,n){let r=e.slice(0,1);for(let a=0;a<n;++a)r.push(e[a+1]-t[a][0]-t[a][1]);return r}var dx=1.7580993408473768,px=1.0507009873554805,SC=.3275911,TC=.254829592,EC=-.284496736,CC=1.421413741,RC=-1.453152027,FC=1.061405429;function MC(...e){J().getBool("IS_TEST")||console.warn(...e)}function $C(...e){J().getBool("IS_TEST")||console.log(...e)}function OC(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let r=0;r<n.length;r+=2)n[r]=e[r/2],n[r+1]=t[r/2];return n}function DC(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let r=0;r<e.length;r+=2)t[r/2]=e[r],n[r/2]=e[r+1];return{real:t,imag:n}}function zC(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=0;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function PC(e){let t=Math.floor(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=2;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function LC(e,t){let n=e[t*2],r=e[t*2+1];return{real:n,imag:r}}function WC(e,t,n,r){e[r*2]=t,e[r*2+1]=n}function BC(e,t){let n=new Float32Array(e/2),r=new Float32Array(e/2);for(let a=0;a<Math.ceil(e/2);a++){let s=(t?2:-2)*Math.PI*(a/e);n[a]=Math.cos(s),r[a]=Math.sin(s)}return{real:n,imag:r}}function VC(e,t,n){let r=(n?2:-2)*Math.PI*(e/t),a=Math.cos(r),s=Math.sin(r);return{real:a,imag:s}}function UC(e,t,n=0){let r=[];if(typeof t=="number")F(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var fx={};De(fx,{collectGatherOpShapeInfo:()=>XC,computeOutShape:()=>qC,segOpComputeOptimalWindowSize:()=>GC});function GC(e,t){let n=!1,r;for(e<=em?(r=e,n=!0):r=ih(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=ih(e,r+1);return r}function qC(e,t,n){let r=[],a=e.length;for(let s=0;s<a;s++)s!==t?r.push(e[s]):r.push(n);return r}function XC(e,t,n,r){let a=t.shape.length,s=e.shape.length;if(r!==0&&(r<-a||r>a))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) (
|
|
${s}).`);if(n<r)throw new Error(`batchDims (${r}) must be less than or equal to axis (${n}).`);for(let h=0;h<r;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[n],o=[],l=1,u=1,c=1;for(let h=0;h<r;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=r;h<n;h++)o.push(e.shape[h]),u*=e.shape[h];for(let h=r;h<a;h++)o.push(t.shape[h]);for(let h=n+1;h<s;h++)o.push(e.shape[h]),c*=e.shape[h];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:i,outputShape:o}}function HC(e){try{return e.map(t=>Bh(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function jC(e){return e.map(t=>yu(t))}var Or={};De(Or,{nonMaxSuppressionV3Impl:()=>ax,nonMaxSuppressionV4Impl:()=>sx,nonMaxSuppressionV5Impl:()=>ix,whereImpl:()=>X5});function _e(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var KC=Or.whereImpl,Od=class extends Kl{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new ah(this,Er())}nextDataId(){return Od.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&C.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let a=n.map(s=>v.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>v.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Er().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){_e([e],"where");let t=this.readSync(e.dataId);return KC(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Od.nextDataId=0;var tm={};De(tm,{addImpl:()=>Ax,bincountImpl:()=>nm,bincountReduceImpl:()=>yx,ceilImpl:()=>gx,concatImpl:()=>rm,expImpl:()=>xx,expm1Impl:()=>wx,floorImpl:()=>_x,gatherV2Impl:()=>bx,greaterImpl:()=>vx,lessImpl:()=>kx,linSpaceImpl:()=>Ix,logImpl:()=>Nx,maxImpl:()=>Sx,maximumImpl:()=>Tx,minimumImpl:()=>Ex,multiplyImpl:()=>am,negImpl:()=>Cx,notEqualImpl:()=>Rx,prodImpl:()=>Fx,rangeImpl:()=>im,rsqrtImpl:()=>Mx,simpleAbsImpl:()=>mx,sliceImpl:()=>Dd,squaredDifferenceImpl:()=>$x,stridedSliceImpl:()=>Ox,subImpl:()=>Dx,tileImpl:()=>zx,topKImpl:()=>Px,transposeImpl:()=>sm,uniqueImpl:()=>Lx});function mx(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var ZC=e=>{let{x:t}=e.inputs,n=e.backend;_e(t,"abs");let r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=mx(a),n.makeOutput(r,t.shape,"float32")},YC={kernelName:Bi,backendName:"cpu",kernelFunc:ZC};function Ct(e){return(t,n,r,a,s)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),c=v.getTypedArrayFromDType(s,u),h=t.length,d=n.length,p=v.computeStrides(t),m=v.computeStrides(n),f=C.getBroadcastDims(t,i),A=C.getBroadcastDims(n,i);if(f.length+A.length===0)for(let y=0;y<c.length;++y)c[y]=e(r[y%r.length],a[y%a.length]);else for(let y=0;y<c.length;++y){let g=v.indexToLoc(y,o,l),b=g.slice(-h);f.forEach(N=>b[N]=0);let _=v.locToIndex(b,h,p),w=g.slice(-d);A.forEach(N=>w[N]=0);let x=v.locToIndex(w,d,m);c[y]=e(r[_],a[x])}return[c,i]}}function Mn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var JC={kernelName:ph,backendName:"cpu",kernelFunc:Mn};function zd(e,t,n="float32"){if(n==="complex64"){let a=zd(e,t,"float32"),s=zd(e,t,"float32");return Mn({inputs:{real:a,imag:s},backend:e})}let r=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function Dr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var QC={kernelName:ms,backendName:"cpu",kernelFunc:Dr};function ii(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var eR={kernelName:Mh,backendName:"cpu",kernelFunc:ii};function Fa(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Dr({inputs:{x:a},backend:n});let i=zd(n,a.shape,a.dtype),o=Fa({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Mn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=ii({inputs:{input:a},backend:n}),o=Fa({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=Dr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=v.toTypedArray([0],a.dtype),[l,u]=Ct((c,h)=>c!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var tR={kernelName:ns,backendName:"cpu",kernelFunc:Fa};function Ht(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;_e([i,o],e);let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Fa({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),h=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,p=l.data.get(h.dataId).values,m=l.data.get(d.dataId).values,f=Fa({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(f.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,b=l.data.get(y.dataId).values,_=l.data.get(g.dataId).values,[w,x,N]=n(i.shape,o.shape,p,m,b,_),T=l.makeTensorInfo(N,"float32",w),E=l.makeTensorInfo(N,"float32",x),M=Mn({inputs:{real:T,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(E),M}else{let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}}}function om(e){return(t,n,r,a,s,i)=>{let o=C.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,c=v.computeStrides(o),h=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),p=C.getBroadcastDims(t,o),m=C.getBroadcastDims(n,o),f=C.mergeRealAndImagArrays(r,a),A=C.mergeRealAndImagArrays(s,i),y=t.length,g=v.computeStrides(t),b=n.length,_=v.computeStrides(n);if(p.length+m.length===0)for(let w=0;w<h.length;w++){let x=w%f.length,N=w%A.length,T=e(f[x*2],f[x*2+1],A[N*2],A[N*2+1]);h[w]=T.real,d[w]=T.imag}else for(let w=0;w<h.length;w++){let x=v.indexToLoc(w,u,c),N=x.slice(-y);p.forEach(L=>N[L]=0);let T=v.locToIndex(N,y,g),E=x.slice(-b);m.forEach(L=>E[L]=0);let M=v.locToIndex(E,b,_),D=e(f[T*2],f[T*2+1],A[M*2],A[M*2+1]);h[w]=D.real,d[w]=D.imag}return[h,d,o]}}var Ax=Ct((e,t)=>e+t),nR=om((e,t,n,r)=>({real:e+n,imag:t+r})),Hu=Ht(ga,Ax,nR),rR={kernelName:ga,backendName:"cpu",kernelFunc:Hu};function nm(e,t,n,r,a){let s=v.sizeFromShape(r),i=v.makeZerosTypedArray(a,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function yx(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Le([a,n],t.dtype);for(let o=0;o<a;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(r?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function hl(e){return(t,n,r)=>{let a=v.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)a[s]=e(t[s],r);return a}}function at(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(_e(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),c=n||i.dtype,h=v.getArrayFromDType(c,u);for(let d=0;d<u;++d)h[d]=t(l[d],a);return o.makeTensorInfo(i.shape,c,h)}}function dl(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(_e(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,c=t(l,u,a);return o.makeTensorInfo(i.shape,u,c)}}var gx=hl(e=>Math.ceil(e)),aR=dl(rs,gx),sR={kernelName:rs,backendName:"cpu",kernelFunc:aR};function rm(e,t,n,r){let a=v.getArrayFromDType(n,v.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let c=u*t[1]+s;for(let h=0;h<i.shape[1];++h)a[c+h]=o[l++]}s+=i.shape[1]})}return a}var xx=hl(e=>Math.exp(e)),Wx=dl(cs,xx),iR={kernelName:cs,backendName:"cpu",kernelFunc:Wx},wx=hl(e=>Math.expm1(e)),oR=dl(ro,wx),lR={kernelName:ro,backendName:"cpu",kernelFunc:oR},_x=hl(e=>Math.floor(e)),uR=dl(hs,_x),cR={kernelName:hs,backendName:"cpu",kernelFunc:uR};function bx(e,t,n){let r=Le(n,e.dtype);for(let a=0;a<r.size;++a){let s=r.indexToLoc(a).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);r.values[a]=e.values[u]}return r}var vx=Ct((e,t)=>e>t?1:0),hR=Ht(oo,vx,null,"bool"),dR={kernelName:oo,backendName:"cpu",kernelFunc:hR},kx=Ct((e,t)=>e<t?1:0),pR=Ht(ho,kx,null,"bool"),fR={kernelName:ho,backendName:"cpu",kernelFunc:pR};function Ix(e,t,n){let r=(t-e)/(n-1),a=v.makeZerosTypedArray(n,"float32");a[0]=e;for(let s=1;s<a.length;s++)a[s]=a[s-1]+r;return a}var Nx=hl(e=>Math.log(e)),mR=dl(ys,Nx),AR={kernelName:ys,backendName:"cpu",kernelFunc:mR};function Sx(e,t,n,r){let a=v.getTypedArrayFromDType(r,v.sizeFromShape(n));for(let s=0;s<a.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];u>o&&(o=u)}a[s]=o}return a}var Tx=Ct((e,t)=>Math.max(e,t)),yR=Ht(xs,Tx),gR={kernelName:xs,backendName:"cpu",kernelFunc:yR},Ex=Ct((e,t)=>Math.min(e,t)),xR=Ht(vs,Ex),wR={kernelName:vs,backendName:"cpu",kernelFunc:xR},am=Ct((e,t)=>e*t),_R=om((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),lm=Ht(ks,am,_R),bR={kernelName:ks,backendName:"cpu",kernelFunc:lm};function Cx(e,t,n){let r=v.createScalarValue(-1,n);return am([],t,r,e,n)}function vR(e){let{inputs:t,backend:n}=e,{x:r}=t;_e(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=Cx(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var kR={kernelName:yo,backendName:"cpu",kernelFunc:vR},Rx=Ct((e,t)=>e!==t?1:0),IR=Ht(go,Rx,null,"bool"),NR={kernelName:go,backendName:"cpu",kernelFunc:IR};function sm(e,t,n,r,a){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(a),u=v.getTypedArrayFromDType(n,v.sizeFromShape(a));for(let c=0;c<i;++c){let h=v.indexToLoc(c,s,o),d=new Array(h.length);for(let m=0;m<d.length;m++)d[m]=h[r[m]];let p=v.locToIndex(d,s,l);u[p]=e[c]}return u}function ir(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{perm:s}=n;_e(a,"transpose");let i=a.shape.length,o=new Array(i);for(let c=0;c<o.length;c++)o[c]=a.shape[s[c]];let l=r.data.get(a.dataId).values,u=sm(l,a.shape,a.dtype,s,o);return{dataId:r.write(u,o,a.dtype),shape:o,dtype:a.dtype}}var SR={kernelName:Us,backendName:"cpu",kernelFunc:ir};function Fx(e,t,n,r){let[a,s]=C.computeOutAndReduceShapes(e,r),i=tr(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(a),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let c=u*l,h=1;for(let d=0;d<l;++d)h*=n[c+d];o[u]=h}return{outVals:o,outShape:a,outDtype:i}}function TR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"prod");let o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=C.getAxesPermutation(l,o),c=l,h=a,d=[];u!=null&&(h=ir({inputs:{x:a},backend:n,attrs:{perm:u}}),d.push(h),c=C.getInnerMostAxes(c.length,o));let p=n.data.get(h.dataId).values,{outVals:m,outShape:f,outDtype:A}=Fx(h.shape,h.dtype,p,c),y=f;return i&&(y=C.expandShapeToKeepDim(f,l)),d.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,m)}var ER={kernelName:ko,backendName:"cpu",kernelFunc:TR};function im(e,t,n,r){let a=e===t,s=e<t&&n<0,i=t<e&&n>1;if(a||s||i)return v.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,r);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var Mx=hl(e=>1/Math.sqrt(e)),CR=dl($s,Mx),RR={kernelName:$s,backendName:"cpu",kernelFunc:CR};function Dd(e,t,n,r,a){let s=on.isSliceContinous(r,t,n),i=v.sizeFromShape(n),o=v.computeStrides(r);if(s){let h=on.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?C.fromUint8ToStringArray(e):e,u=Le(r,a,l),c=Le(n,a);for(let h=0;h<c.size;++h){let d=c.indexToLoc(h),p=d.map((m,f)=>m+t[f]);c.set(u.get(...p),...d)}return a==="string"?C.fromStringArrayToUint8(c.values):c.values}function oi(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;_e(a,"slice");let[o,l]=on.parseSliceParams(a,s,i);on.assertParamsValid(a,o,l);let u=n.data.get(a.dataId).values,c=Dd(u,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,c)}var FR={kernelName:Co,backendName:"cpu",kernelFunc:oi},$x=Ct((e,t)=>{let n=e-t;return n*n}),MR=Ht(Ws,$x),$R={kernelName:Ws,backendName:"cpu",kernelFunc:MR};function Ox(e,t,n,r){let a=Le(e,t.dtype);for(let s=0;s<a.size;s++){let i=a.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+r[l];a.set(t.get(...o),...i)}return a}var Dx=Ct((e,t)=>e-t),OR=om((e,t,n,r)=>({real:e-n,imag:t-r})),um=Ht(Bs,Dx,OR),DR={kernelName:Bs,backendName:"cpu",kernelFunc:um};function zx(e,t){let n=new Array(e.rank);for(let a=0;a<n.length;a++)n[a]=e.shape[a]*t[a];let r=Le(n,e.dtype);for(let a=0;a<r.values.length;++a){let s=r.indexToLoc(a),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);r.values[a]=e.values[o]}return r}function Px(e,t,n,r,a){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(n,i*r),u=v.getTypedArrayFromDType("int32",i*r);for(let h=0;h<i;h++){let d=h*o,p=e.subarray(d,d+o),m=[];for(let g=0;g<p.length;g++)m.push({value:p[g],index:g});m.sort((g,b)=>b.value-g.value);let f=h*r,A=l.subarray(f,f+r),y=u.subarray(f,f+r);for(let g=0;g<r;g++)A[g]=m[g].value,y[g]=m[g].index}let c=t.slice();return c[c.length-1]=r,[Le(c,n,l),Le(c,"int32",u)]}function Lx(e,t,n,r){let a=v.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<a;m++)s[0]*=n[m];s[1]=n[a];for(let m=a+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[a]),l=new $t(s,r,e),u=[],c=s[0]===1&&s[2]===1;for(let m=0;m<n[a];m++){let f;if(c)f=e[m].toString();else{let A=[];for(let y=0;y<s[0];y++)for(let g=0;g<s[2];g++)A.push(l.get(y,m,g));f=A.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let A=Object.keys(i).length;i[f]=A,o[m]=A,u.push(m)}}let h=s.slice();h[1]=Object.keys(i).length;let d=new $t(h,r);u.forEach((m,f)=>{for(let A=0;A<s[0];A++)for(let y=0;y<s[2];y++)d.set(l.get(A,m,y),A,f,y)});let p=n.slice();return p[a]=h[1],{outputValues:d.values,outputShape:p,indices:o}}var Bx="3.2.0";Zo("cpu",()=>new Od,1);var Vx=at(Qi,e=>e>=0?e:Math.exp(e)-1),zR={kernelName:Qi,backendName:"cpu",kernelFunc:Vx};function Ux(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;_e([a],"leakyRelu");let i=v.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(a.shape,"float32",l)}var PR={kernelName:As,backendName:"cpu",kernelFunc:Ux},LR=Ct((e,t)=>e<0?t*e:e);function Hx(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;_e([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=LR(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var WR={kernelName:Ts,backendName:"cpu",kernelFunc:Hx},jx=at(Es,e=>Math.max(0,e)),BR={kernelName:Es,backendName:"cpu",kernelFunc:jx},Gx=at(Rs,e=>Math.min(Math.max(0,e),6)),VR={kernelName:Rs,backendName:"cpu",kernelFunc:Gx};function cm(e,t,n,r,a){if(n==="linear")return Dr({inputs:{x:t},backend:e});if(n==="relu")return jx({inputs:{x:t},backend:e});if(n==="elu")return Vx({inputs:{x:t},backend:e});if(n==="relu6")return Gx({inputs:{x:t},backend:e});if(n==="prelu")return Hx({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return Ux({inputs:{x:t},backend:e,attrs:{alpha:a}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function At(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=v.sizeFromShape(a.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let u=n.data.get(a.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;c.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var UR={kernelName:No,backendName:"cpu",kernelFunc:At};function qx(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;_e([a,s],"matMul");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=v.sizeFromShape(m),y=v.sizeFromShape(f),g=A===y||A===1||y===1;v.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let b=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);v.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let _=i?[A,c,d]:[A,d,c],w=o?[y,p,h]:[y,h,p],x=At({inputs:{x:a},backend:n,attrs:{shape:_}}),N=At({inputs:{x:s},backend:n,attrs:{shape:w}}),T=i?x.shape[1]:x.shape[2],E=i?x.shape[2]:x.shape[1],M=o?N.shape[1]:N.shape[2],D=Math.max(A,y),L=n.data.get(x.dataId).values,W=n.data.get(N.dataId).values,U=v.computeStrides(x.shape),H=v.computeStrides(N.shape),[X,G,ee]=i?[U[0],1,U[1]]:[U[0],U[1],1],[Y,ae,te]=o?[1,H[1],H[0]]:[H[1],1,H[0]],ie=E*M,Q=Le([D,E,M],x.dtype),he=Q.values,oe=n.blockSize;for(let fe=0;fe<D;fe++)for(let pe=0;pe<E;pe+=oe)for(let ve=0;ve<M;ve+=oe)for(let Ie=0;Ie<T;Ie+=oe){let Fe=Math.min(pe+oe,E),Oe=Math.min(ve+oe,M),Me=Math.min(Ie+oe,T);for(let Qe=pe;Qe<Fe;Qe++)for(let et=ve;et<Oe;et++){let st=0;for(let Xe=Ie;Xe<Me;Xe++){let ht=Math.min(fe,A-1)*X,We=Math.min(fe,y-1)*te,dn=L[ht+Qe*G+Xe*ee],xt=W[Xe*Y+et*ae+We];st+=dn*xt}he[fe*ie+(Qe*M+et)]+=st}}return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(b,Q.dtype,Q.values)}var HR={kernelName:ts,backendName:"cpu",kernelFunc:qx};function jR(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r,d,p,m,f=[];d=qx({inputs:{a,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(p=Hu({inputs:{a:d,b:i},backend:n}),f.push(d),d=p),c&&(m=cm(n,d,c,o,h),f.push(d),d=m);for(let A of f)n.disposeIntermediateTensorInfo(A);return d}var GR={kernelName:Hs,backendName:"cpu",kernelFunc:jR},qR=at(Vi,e=>Math.acos(e)),XR={kernelName:Vi,backendName:"cpu",kernelFunc:qR},KR=at(Ui,e=>Math.acosh(e)),ZR={kernelName:Ui,backendName:"cpu",kernelFunc:KR};function YR(e){let{inputs:t,backend:n}=e,r=t;_e(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Le(r[0].shape,r[0].dtype),i=s.values;for(let o=0;o<r.length;o++){let l=a[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var JR={kernelName:Ja,backendName:"cpu",kernelFunc:YR};function QR(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"all");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=ir({inputs:{x:a},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("all",l,c.shape.length);let[h,d]=C.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),m=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),f=n.data.get(c.dataId).values;for(let y=0;y<m.length;++y){let g=y*p,b=f[g];for(let _=0;_<p;++_){let w=f[g+_];b=b&&w}m[y]=b}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,m);if(i){let y=C.expandShapeToKeepDim(h,o),g=At({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var eF={kernelName:lh,backendName:"cpu",kernelFunc:QR};function tF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"any");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=ir({inputs:{x:a},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("any",l,c.shape.length);let[h,d]=C.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),m=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),f=n.data.get(c.dataId).values;for(let y=0;y<m.length;++y){let g=y*p,b=f[g];for(let _=0;_<p;++_){let w=f[g+_];b=b||w}m[y]=b}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,m);if(i){let y=C.expandShapeToKeepDim(h,o),g=At({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var nF={kernelName:uh,backendName:"cpu",kernelFunc:tF};function rF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;_e(a,"argMax");let i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=ir({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[c,h]=C.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(c),p=v.makeZerosTypedArray(d,"int32"),m=v.sizeFromShape(h),f=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*m,g=f[y],b=0;for(let _=0;_<m;++_){let w=f[y+_];w>g&&(g=w,b=_)}p[A]=b}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var aF={kernelName:Qa,backendName:"cpu",kernelFunc:rF};function sF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;_e(a,"argMin");let i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=ir({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[c,h]=C.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(c),p=v.makeZerosTypedArray(d,"int32"),m=v.sizeFromShape(h),f=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let y=A*m,g=f[y],b=0;for(let _=0;_<m;++_){let w=f[y+_];w<g&&(g=w,b=_)}p[A]=b}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var iF={kernelName:Jl,backendName:"cpu",kernelFunc:sF},oF=at(Hi,e=>Math.asin(e)),lF={kernelName:Hi,backendName:"cpu",kernelFunc:oF},uF=at(ji,e=>Math.asinh(e)),cF={kernelName:ji,backendName:"cpu",kernelFunc:uF},hF=at(Gi,e=>Math.atan(e)),dF={kernelName:Gi,backendName:"cpu",kernelFunc:hF},pF=Ct((e,t)=>Math.atan2(e,t)),fF=Ht(Xi,pF),mF={kernelName:Xi,backendName:"cpu",kernelFunc:fF},AF=at(qi,e=>Math.atanh(e)),yF={kernelName:qi,backendName:"cpu",kernelFunc:AF};function hm(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,u=a.dilationWidth,c=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Le(a.outShape,n),A=f.values,y=a.outShape[1]*a.outShape[2]*a.outShape[3],g=a.outShape[2]*a.outShape[3],b=a.outShape[3];for(let _=0;_<a.batchSize;++_){let w=_*y,x=_*r[0];for(let N=0;N<a.inChannels;++N)for(let T=0;T<a.outHeight;++T){let E=T*i-d,M=Math.max(0,E),D=Math.min(a.inHeight,c+E),L=w+T*g;for(let W=0;W<a.outWidth;++W){let U=W*o-p,H=Math.max(0,U),X=Math.min(a.inWidth,h+U),G=m,ee=0,Y=0;for(let te=M;te<D;te+=l){let ie=x+te*r[1];for(let Q=H;Q<X;Q+=u){let he=ie+Q*r[2],oe=e[he+N];s==="max"&&oe>G?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let ae=L+W*b+N;A[ae]=s==="avg"?ee/Y:G}}}return f}function Xx(e,t,n,r,a=!1,s=!1){let i=Le(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,u=r.dilationHeight,c=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,m=r.padInfo.left,f=Le(t,n,e);for(let A=0;A<r.batchSize;++A)for(let y=0;y<r.inChannels;++y)for(let g=0;g<r.outHeight;++g){let b=g*o-p,_=b;for(;_<0;)_+=u;let w=Math.min(r.inHeight,h+b);for(let x=0;x<r.outWidth;++x){let N=x*l-m,T=N;for(;T<0;)T+=c;let E=Math.min(r.inWidth,d+N),M=Number.NEGATIVE_INFINITY,D=-1;for(let L=_;L<w;L+=u){let W=L-b;for(let U=T;U<E;U+=c){let H=U-N,X=f.get(A,L,U,y);X>M&&(M=X,a?D=s?((A*r.inHeight+L)*r.inWidth+U)*r.inChannels+y:(L*r.inWidth+U)*r.inChannels+y:D=W*d+H)}}i.set(D,A,g,x,y)}}return i}function Kx(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,u=a.dilationDepth,c=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,m=a.effectiveFilterWidth,f=a.padInfo.front,A=a.padInfo.top,y=a.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,b=Le(a.outShape,n),_=b.values,w=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],x=a.outShape[2]*a.outShape[3]*a.outShape[4],N=a.outShape[3]*a.outShape[4],T=a.outShape[4];for(let E=0;E<a.batchSize;++E){let M=E*w,D=E*r[0];for(let L=0;L<a.inChannels;++L)for(let W=0;W<a.outDepth;++W){let U=W*i-f,H=U;for(;H<0;)H+=u;let X=Math.min(a.inDepth,d+U),G=M+W*x;for(let ee=0;ee<a.outHeight;++ee){let Y=ee*o-A,ae=Y;for(;ae<0;)ae+=c;let te=Math.min(a.inHeight,p+Y),ie=G+ee*N;for(let Q=0;Q<a.outWidth;++Q){let he=Q*l-y,oe=he;for(;oe<0;)oe+=h;let fe=Math.min(a.inWidth,m+he),pe=ie+Q*T,ve=g,Ie=0,Fe=0;for(let Me=H;Me<X;Me+=u){let Qe=D+Me*r[1];for(let et=ae;et<te;et+=c){let st=Qe+et*r[2];for(let Xe=oe;Xe<fe;Xe+=h){let ht=st+Xe*r[3],We=e[ht+L];if(s==="max"&&We>ve?ve=We:s==="avg"&&(Ie+=We,Fe++),isNaN(ve))break}if(isNaN(ve))break}if(isNaN(ve))break}let Oe=pe+L;_[Oe]=s==="avg"?Ie/Fe:ve}}}}return b}function gF(e,t){let n=Le(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let A=0;A<t.inChannels;++A)for(let y=0;y<t.outDepth;++y){let g=y*r-d,b=g;for(;b<0;)b+=i;let _=Math.min(t.inDepth,u+g);for(let w=0;w<t.outHeight;++w){let x=w*a-p,N=x;for(;N<0;)N+=o;let T=Math.min(t.inHeight,c+x);for(let E=0;E<t.outWidth;++E){let M=E*s-m,D=M;for(;D<0;)D+=l;let L=Math.min(t.inWidth,h+M),W=Number.NEGATIVE_INFINITY,U=-1;for(let H=b;H<_;H+=i){let X=H-g;for(let G=N;G<T;G+=o){let ee=G-x;for(let Y=D;Y<L;Y+=l){let ae=Y-M,te=e.get(f,H,G,Y,A);te>=W&&(W=te,U=X*c*h+ee*c+ae)}}}n.set(U,f,y,w,E,A)}}}return n}function xF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;_e(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=Dr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),m=hm(d,a.shape,a.dtype,p,c,"avg");h=n.makeTensorInfo(c.outShape,a.dtype,m.values)}return h}var wF={kernelName:es,backendName:"cpu",kernelFunc:xF};function _F(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;_e(a,"avgPool3d");let c=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=Kx(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var bF={kernelName:Ql,backendName:"cpu",kernelFunc:_F};function vF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;_e([a,s],"avgPool3DGrad");let c=C.computePool3DInfo(s.shape,i,o,1,l,u),h=c.strideDepth,d=c.strideHeight,p=c.strideWidth,m=c.filterDepth,f=c.filterHeight,A=c.filterWidth,y=c.dilationDepth,g=c.dilationHeight,b=c.dilationWidth,_=c.effectiveFilterDepth,w=c.effectiveFilterHeight,x=c.effectiveFilterWidth,N=_-1-c.padInfo.front,T=x-1-c.padInfo.left,E=w-1-c.padInfo.top,M=Le(s.shape,"float32"),D=1/(m*f*A),L=n.bufferSync(a);for(let W=0;W<c.batchSize;++W)for(let U=0;U<c.inChannels;++U)for(let H=0;H<c.inDepth;++H)for(let X=0;X<c.inHeight;++X)for(let G=0;G<c.inWidth;++G){let ee=H-N,Y=X-E,ae=G-T,te=0;for(let ie=0;ie<_;ie+=y){let Q=(ee+ie)/h;if(!(Q<0||Q>=c.outDepth||Math.floor(Q)!==Q))for(let he=0;he<w;he+=g){let oe=(Y+he)/d;if(!(oe<0||oe>=c.outHeight||Math.floor(oe)!==oe))for(let fe=0;fe<x;fe+=b){let pe=(ae+fe)/p;pe<0||pe>=c.outWidth||Math.floor(pe)!==pe||(te+=L.get(W,Q,oe,pe,U))}}}M.set(te*D,W,H,X,G,U)}return n.makeTensorInfo(M.shape,M.dtype,M.values)}var kF={kernelName:hh,backendName:"cpu",kernelFunc:vF};function IF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;_e([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=C.computePool2DInfo(i.shape,o,l,1,u),h=c.strideHeight,d=c.strideWidth,p=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,A=c.dilationWidth,y=c.effectiveFilterHeight,g=c.effectiveFilterWidth,b=g-1-c.padInfo.left,_=y-1-c.padInfo.top,w=Le(i.shape,"float32"),x=1/(p*m),N=n.data.get(a.dataId).values,T=Le(a.shape,"float32",N);for(let E=0;E<c.batchSize;++E)for(let M=0;M<c.inChannels;++M)for(let D=0;D<c.inHeight;++D)for(let L=0;L<c.inWidth;++L){let W=D-_,U=L-b,H=0;for(let X=0;X<y;X+=f){let G=(W+X)/h;if(!(G<0||G>=c.outHeight||Math.floor(G)!==G))for(let ee=0;ee<g;ee+=A){let Y=(U+ee)/d;Y<0||Y>=c.outWidth||Math.floor(Y)!==Y||(H+=T.get(E,G,Y,M))}}w.set(H*x,E,D,L,M)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var NF={kernelName:ch,backendName:"cpu",kernelFunc:IF};function SF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),_e([a,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=r;u==null&&(u=.001);let c=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(c.length),A=m.length,y=p.length,g=d.length,b=h.length,_=0,w=0,x=0,N=0;for(let T=0;T<c.length;++T)f[T]=m[_++]+(c[T]-h[w++])*p[x++]/Math.sqrt(d[N++]+u),_>=A&&(_=0),w>=b&&(w=0),x>=y&&(x=0),N>=g&&(N=0);return n.makeTensorInfo(a.shape,a.dtype,f)}var TF={kernelName:ps,backendName:"cpu",kernelFunc:SF};function EF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;_e([a],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),c=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),d=C.getSliceSize(c,i,s.length),p=At({inputs:{x:a},backend:n,attrs:{shape:l}}),m=ir({inputs:{x:p},backend:n,attrs:{perm:u}}),f=At({inputs:{x:m},backend:n,attrs:{shape:c}}),A=oi({inputs:{x:f},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var CF={kernelName:eu,backendName:"cpu",kernelFunc:EF};function RF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,u=nm(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var FF={kernelName:dh,backendName:"cpu",kernelFunc:RF},MF=at(xa,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),$F={kernelName:xa,backendName:"cpu",kernelFunc:MF},OF=e=>{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let c=o[u],h=l[u];r[u]=Math.hypot(c,h)}return n.makeOutput(r,t.shape,"float32")},DF={kernelName:tu,backendName:"cpu",kernelFunc:OF};function pl(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.imag,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var zF={kernelName:Nh,backendName:"cpu",kernelFunc:pl};function fl(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=v.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(f=>f.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>v.sizeFromShape(f.shape)>0);if(o.length===1)return Dr({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(_=>ii({inputs:{input:_},backend:n})),A=o.map(_=>pl({inputs:{input:_},backend:n})),y=fl({inputs:f,backend:n,attrs:{axis:s}}),g=fl({inputs:A,backend:n,attrs:{axis:s}}),b=Mn({inputs:{real:y,imag:g},backend:n});return f.forEach(_=>n.disposeIntermediateTensorInfo(_)),A.forEach(_=>n.disposeIntermediateTensorInfo(_)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),b}let u=o.map(f=>{let A=v.sizeFromShape(f.shape.slice(s));return At({inputs:{x:f},backend:n,attrs:{shape:[-1,A]}})}),c=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=C.computeOutShape(u.map(f=>f.shape),1);let h=u[0].shape[0]===1,d=rm(c,i,t[0].dtype,h),p=C.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(p,t[0].dtype,d);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var PF={kernelName:Ki,backendName:"cpu",kernelFunc:fl};function Zx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r;_e([a,s],"conv2d");let h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,A=d.dilationWidth,y=d.padInfo.left,g=d.padInfo.top,b=d.dataFormat==="channelsLast",_=new $t(d.outShape,a.dtype),w=v.computeStrides(a.shape),x=v.computeStrides(s.shape),N=w[0],T=b?w[1]:w[2],E=b?w[2]:1,M=b?1:w[1],D=_.strides[0],L=b?_.strides[1]:_.strides[2],W=b?_.strides[2]:1,U=b?1:_.strides[1],H=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=_.values;for(let ee=0;ee<d.batchSize;++ee){let Y=ee*N,ae=ee*D;for(let te=0;te<d.outHeight;++te){let ie=ae+te*L,Q=te*d.strideHeight-g;for(let he=0;he<p;++he){let oe=Q+he*f;if(oe<0||oe>=d.inHeight)continue;let fe=he*x[0],pe=Y+oe*T;for(let ve=0;ve<d.outWidth;++ve){let Ie=ie+ve*W,Fe=ve*d.strideWidth-y;for(let Oe=0;Oe<m;++Oe){let Me=Fe+Oe*A;if(Me<0||Me>=d.inWidth)continue;let Qe=fe+Oe*x[1],et=pe+Me*E,st=Qe;for(let Xe=0;Xe<d.inChannels;++Xe){let ht=H[et+Xe*M];for(let We=0;We<d.outChannels;++We)G[Ie+We*U]+=ht*X[st+We];st+=d.outChannels}}}}}}return n.makeTensorInfo(_.shape,_.dtype,G)}var LF={kernelName:as,backendName:"cpu",kernelFunc:Zx};function WF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=r;_e([a,s],"conv2dBackpropFilter");let h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,c,i,1,o,u,!1,h),{strideHeight:p,strideWidth:m,filterHeight:f,filterWidth:A}=d,y=d.dataFormat==="channelsLast",g=new $t(d.filterShape,"float32"),b=d.padInfo.left,_=d.padInfo.top,w=n.data.get(a.dataId).values,x=n.data.get(s.dataId).values,N=new $t(a.shape,a.dtype,w),T=new $t(s.shape,s.dtype,x);for(let E=0;E<f;++E){let M=Math.max(0,Math.ceil((_-E)/p)),D=Math.min(d.outHeight,(d.inHeight+_-E)/p);for(let L=0;L<A;++L){let W=Math.max(0,Math.ceil((b-L)/m)),U=Math.min(d.outWidth,(d.inWidth+b-L)/m);for(let H=0;H<d.inChannels;++H)for(let X=0;X<d.outChannels;++X){let G=0;for(let ee=0;ee<d.batchSize;++ee)for(let Y=M;Y<D;++Y){let ae=E+Y*p-_;for(let te=W;te<U;++te){let ie=L+te*m-b;y?G+=N.get(ee,ae,ie,H)*T.get(ee,Y,te,X):G+=N.get(ee,H,ae,ie)*T.get(ee,X,Y,te)}}g.set(G,E,L,H,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var BF={kernelName:fh,backendName:"cpu",kernelFunc:WF};function VF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=r;_e([a,s],"conv2dBackpropInput");let h=v.computeStrides(s.shape),d=v.computeStrides(a.shape),p=C.convertConv2DDataFormat(u),m=C.computeConv2DInfo(i,s.shape,o,1,l,c,!1,p),f=new $t(m.inShape,"float32"),A=f.values,y=n.data.get(a.dataId).values,g=n.data.get(s.dataId).values,[b,_,w]=h,{batchSize:x,filterHeight:N,filterWidth:T,inChannels:E,inHeight:M,inWidth:D,outChannels:L,outHeight:W,outWidth:U,strideHeight:H,strideWidth:X}=m;p=m.dataFormat;let G=N-1-m.padInfo.top,ee=T-1-m.padInfo.left,Y=p==="channelsLast",ae=f.strides[0],te=Y?f.strides[1]:f.strides[2],ie=Y?f.strides[2]:1,Q=Y?1:f.strides[1],he=d[0],oe=Y?d[1]:d[2],fe=Y?d[2]:1,pe=Y?1:d[1];for(let ve=0;ve<x;++ve)for(let Ie=0;Ie<E;++Ie)for(let Fe=0;Fe<M;++Fe){let Oe=Fe-G,Me=Math.max(0,Math.ceil(Oe/H)),Qe=Math.min(W,(N+Oe)/H);for(let et=0;et<D;++et){let st=et-ee,Xe=Math.max(0,Math.ceil(st/X)),ht=Math.min(U,(T+st)/X),We=0;for(let xt=Me;xt<Qe;++xt){let Wn=xt*H-Oe;for(let Kt=Xe;Kt<ht;++Kt){let pn=Kt*X-st,Bn=he*ve+oe*xt+fe*Kt,Nn=b*(N-1-Wn)+_*(T-1-pn)+w*Ie;for(let sn=0;sn<L;++sn){let Zt=y[Bn+pe*sn],Ir=g[Nn+sn];We+=Zt*Ir}}}let dn=ae*ve+te*Fe+ie*et+Q*Ie;A[dn]=We}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var UF={kernelName:ss,backendName:"cpu",kernelFunc:VF};function HF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r;_e([a,s],"conv3d");let u=C.computeConv3DInfo(a.shape,s.shape,i,l,o),{filterDepth:c,filterHeight:h,filterWidth:d,dilationDepth:p,dilationHeight:m,dilationWidth:f,padInfo:A}=u,y=A.front,g=A.left,b=A.top,_=new $t(u.outShape,a.dtype),w=n.data.get(a.dataId).values,x=n.data.get(s.dataId).values,N=_.values,T=v.computeStrides(a.shape),E=v.computeStrides(s.shape);for(let M=0;M<u.batchSize;++M){let D=M*T[0],L=M*_.strides[0];for(let W=0;W<u.outDepth;++W){let U=L+W*_.strides[1],H=W*u.strideDepth-y;for(let X=0;X<c;++X){let G=H+X*p;if(G<0||G>=u.inDepth)continue;let ee=X*E[0],Y=D+G*T[1];for(let ae=0;ae<u.outHeight;++ae){let te=U+ae*_.strides[2],ie=ae*u.strideHeight-b;for(let Q=0;Q<h;++Q){let he=ie+Q*m;if(he<0||he>=u.inHeight)continue;let oe=ee+Q*E[1],fe=Y+he*T[2];for(let pe=0;pe<u.outWidth;++pe){let ve=te+pe*u.outChannels,Ie=pe*u.strideWidth-g;for(let Fe=0;Fe<d;++Fe){let Oe=Ie+Fe*f;if(Oe<0||Oe>=u.inWidth)continue;let Me=oe+Fe*E[2],Qe=fe+Oe*u.inChannels,et=Me;for(let st=0;st<u.inChannels;++st){let Xe=w[Qe+st];for(let ht=0;ht<u.outChannels;++ht)N[ve+ht]+=Xe*x[et+ht];et+=u.outChannels}}}}}}}}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var jF={kernelName:nu,backendName:"cpu",kernelFunc:HF};function GF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r;_e([a,s],"conv3dBackpropFilterV2");let u=v.computeStrides(a.shape),c=v.computeStrides(s.shape),h=C.computeConv3DInfo(a.shape,l,i,1,o),d=h.strideDepth,p=h.strideHeight,m=h.strideWidth,f=h.filterDepth,A=h.filterHeight,y=h.filterWidth,g=new $t(h.filterShape,"float32"),b=g.values,[_,w,x,N]=g.strides,T=n.data.get(s.dataId).values,[E,M,D,L]=c,W=n.data.get(a.dataId).values,[U,H,X,G]=u,ee=h.padInfo.front,Y=h.padInfo.left,ae=h.padInfo.top;for(let te=0;te<f;++te){let ie=Math.max(0,Math.ceil((ee-te)/d)),Q=Math.min(h.outDepth,(h.inDepth+ee-te)/d),he=te*_;for(let oe=0;oe<A;++oe){let fe=Math.max(0,Math.ceil((ae-oe)/p)),pe=Math.min(h.outHeight,(h.inHeight+ae-oe)/p),ve=oe*w+he;for(let Ie=0;Ie<y;++Ie){let Fe=Math.max(0,Math.ceil((Y-Ie)/m)),Oe=Math.min(h.outWidth,(h.inWidth+Y-Ie)/m),Me=Ie*x+ve;for(let Qe=0;Qe<h.inChannels;++Qe){let et=Qe*N+Me;for(let st=0;st<h.outChannels;++st){let Xe=0;for(let ht=0;ht<h.batchSize;++ht){let We=ht*U,dn=ht*E;for(let xt=ie;xt<Q;++xt){let Wn=(te+xt*d-ee)*H+We,Kt=xt*M+dn;for(let pn=fe;pn<pe;++pn){let Bn=(oe+pn*p-ae)*X+Wn,Nn=pn*D+Kt;for(let sn=Fe;sn<Oe;++sn){let Zt=(Ie+sn*m-Y)*G+Bn,Ir=sn*L+Nn;Xe+=W[Zt+Qe]*T[Ir+st]}}}}b[et+st]=Xe}}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var qF={kernelName:mh,backendName:"cpu",kernelFunc:GF};function XF(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r;_e([a],"conv3dBackpropInputV2");let u=v.computeStrides(a.shape),c=v.computeStrides(s.shape),h=C.computeConv3DInfo(l,s.shape,o,1,i),d=new $t(h.inShape,"float32"),p=d.values,[m,f,A,y]=d.strides,g=n.data.get(a.dataId).values,[b,_,w,x]=u,N=n.data.get(s.dataId).values,[T,E,M,D]=c,{batchSize:L,filterDepth:W,filterHeight:U,filterWidth:H,inChannels:X,inDepth:G,inHeight:ee,inWidth:Y,outChannels:ae,outDepth:te,outHeight:ie,outWidth:Q,strideDepth:he,strideHeight:oe,strideWidth:fe}=h,pe=W-1-h.padInfo.front,ve=U-1-h.padInfo.top,Ie=H-1-h.padInfo.left;for(let Fe=0;Fe<L;++Fe)for(let Oe=0;Oe<X;++Oe)for(let Me=0;Me<G;++Me){let Qe=Me-pe,et=Math.max(0,Math.ceil(Qe/he)),st=Math.min(te,(W+Qe)/he);for(let Xe=0;Xe<ee;++Xe){let ht=Xe-ve,We=Math.max(0,Math.ceil(ht/oe)),dn=Math.min(ie,(U+ht)/oe);for(let xt=0;xt<Y;++xt){let Wn=xt-Ie,Kt=Math.max(0,Math.ceil(Wn/fe)),pn=Math.min(Q,(H+Wn)/fe),Bn=0;for(let Nn=et;Nn<st;++Nn){let sn=Nn*he-Qe;for(let Zt=We;Zt<dn;++Zt){let Ir=Zt*oe-ht;for(let Yn=Kt;Yn<pn;++Yn){let Jn=Yn*fe-Wn,ua=b*Fe+_*Nn+w*Zt+x*Yn,Hr=T*(W-1-sn)+E*(U-1-Ir)+M*(H-1-Jn)+D*Oe;for(let ca=0;ca<ae;++ca){let Ni=g[ua+ca],pr=N[Hr+ca];Bn+=Ni*pr}}}}p[m*Fe+f*Me+A*Xe+y*xt+Oe]=Bn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var KF={kernelName:Ah,backendName:"cpu",kernelFunc:XF},ZF=at(is,e=>Math.cos(e)),YF={kernelName:is,backendName:"cpu",kernelFunc:ZF},JF=at(Zi,e=>Math.cosh(e)),QF={kernelName:Zi,backendName:"cpu",kernelFunc:JF};function eM(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,[c,h,d,p]=a.shape,m=s.shape[0],[f,A]=o,y=Le([m,f,A,p],"float32"),g=n.data.get(s.dataId).values,b=n.data.get(i.dataId).values,_=n.data.get(a.dataId).values,w=v.computeStrides(a.shape),x=v.computeStrides(y.shape);for(let N=0;N<m;N++){let T=N*4,E=g[T],M=g[T+1],D=g[T+2],L=g[T+3],W=b[N];if(W>=c)continue;let U=f>1?(D-E)*(h-1)/(f-1):0,H=A>1?(L-M)*(d-1)/(A-1):0;for(let X=0;X<f;X++){let G=f>1?E*(h-1)+X*U:.5*(E+D)*(h-1);if(G<0||G>h-1){for(let ee=0;ee<A;ee++)for(let Y=0;Y<p;Y++){let ae=Y+ee*x[2]+X*x[1]+N*x[0];y.values[ae]=u}continue}if(l==="bilinear"){let ee=Math.floor(G),Y=Math.ceil(G),ae=G-ee;for(let te=0;te<A;te++){let ie=A>1?M*(d-1)+te*H:.5*(M+L)*(d-1);if(ie<0||ie>d-1){for(let fe=0;fe<p;fe++){let pe=fe+te*x[2]+X*x[1]+N*x[0];y.values[pe]=u}continue}let Q=Math.floor(ie),he=Math.ceil(ie),oe=ie-Q;for(let fe=0;fe<p;fe++){let pe=fe+Q*w[2]+ee*w[1]+W*w[0],ve=_[pe];pe=fe+he*w[2]+ee*w[1]+W*w[0];let Ie=_[pe];pe=fe+Q*w[2]+Y*w[1]+W*w[0];let Fe=_[pe];pe=fe+he*w[2]+Y*w[1]+W*w[0];let Oe=_[pe],Me=ve+(Ie-ve)*oe,Qe=Fe+(Oe-Fe)*oe;pe=fe+te*x[2]+X*x[1]+N*x[0],y.values[pe]=Me+(Qe-Me)*ae}}}else for(let ee=0;ee<A;++ee){let Y=A>1?M*(d-1)+ee*H:.5*(M+L)*(d-1);if(Y<0||Y>d-1){for(let ie=0;ie<p;ie++){let Q=ie+ee*x[2]+X*x[1]+N*x[0];y.values[Q]=u}continue}let ae=Math.round(Y),te=Math.round(G);for(let ie=0;ie<p;ie++){let Q=ie+ae*w[2]+te*w[1]+W*w[0],he=ie+ee*x[2]+X*x[1]+N*x[0];y.values[he]=_[Q]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var tM={kernelName:Yi,backendName:"cpu",kernelFunc:eM};function nM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r;_e(a,"cumsum");let l=C.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=ir({inputs:{x:a},backend:n,attrs:{perm:l}}));let c=C.getInnerMostAxes(1,a.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let h=tr(u.dtype,"int32"),d=v.makeZerosTypedArray(v.sizeFromShape(u.shape),h),p=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,g)=>y+m-g-1:(y,g)=>y+g;for(let y=0;y<p.length;y+=m)for(let g=0;g<m;g++){let b=f(y,g);if(g===0)d[b]=i?0:p[b];else{let _=f(y,g-1);d[b]=i?p[_]+d[_]:p[b]+d[_]}}let A=n.makeTensorInfo(u.shape,h,d);if(l!=null){let y=C.getUndoAxesPermutation(l),g=ir({inputs:{x:A},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(u),g}return A}var rM={kernelName:os,backendName:"cpu",kernelFunc:nM};function aM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,c=nm(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(a.shape.length===2){let l=n.bufferSync(a),u=n.bufferSync(s),c=yx(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var sM={kernelName:yh,backendName:"cpu",kernelFunc:aM};function iM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],u=a.shape[2],c=a.shape[3],h=l*s,d=u*s,p=c/(s*s),m=n.data.get(a.dataId).values,f=new Float32Array(o*h*d*p),A=0;for(let y=0;y<o;++y)for(let g=0;g<h;++g){let b=Math.floor(g/s),_=g%s;for(let w=0;w<d;++w){let x=Math.floor(w/s),N=w%s,T=(_*s+N)*p;for(let E=0;E<p;++E){let M=E+T+c*(x+u*(b+l*y));f[A++]=m[M]}}}return n.makeTensorInfo([o,h,d,p],a.dtype,f)}var oM={kernelName:Ji,backendName:"cpu",kernelFunc:iM};function Yx(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=r;_e([a,s],"depthwiseConv2DNative");let c=v.computeStrides(a.shape),h=v.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=C.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:A,dilationWidth:y,padInfo:g}=p,b=g.left,_=g.top,w=p.outChannels/p.inChannels,x=new $t(p.outShape,a.dtype),N=n.data.get(a.dataId).values,T=n.data.get(s.dataId).values,E=x.values;for(let M=0;M<p.batchSize;++M){let D=M*c[0],L=M*x.strides[0];for(let W=0;W<p.outHeight;++W){let U=L+W*x.strides[1],H=W*p.strideHeight-b;for(let X=0;X<m;++X){let G=H+X*A;if(G<0||G>=p.inHeight)continue;let ee=X*h[0],Y=D+G*c[1];for(let ae=0;ae<p.outWidth;++ae){let te=U+ae*x.strides[2],ie=ae*p.strideWidth-_;for(let Q=0;Q<f;++Q){let he=ie+Q*y;if(he<0||he>=p.inWidth)continue;let oe=ee+Q*h[1],fe=Y+he*p.inChannels,pe=te,ve=oe;for(let Ie=0;Ie<p.inChannels;++Ie){let Fe=N[fe+Ie];for(let Oe=0;Oe<w;++Oe)E[pe+Oe]+=Fe*T[ve+Oe];pe+=w,ve+=w}}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var lM={kernelName:ls,backendName:"cpu",kernelFunc:Yx};function uM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=r;_e([a,s],"depthwiseConv2dNativeBackpropFilter");let h=C.computeConv2DInfo(a.shape,c,i,o,l,u,!0),{strideHeight:d,strideWidth:p,filterHeight:m,filterWidth:f}=h,A=new $t(h.filterShape,"float32"),y=h.padInfo.left,g=h.padInfo.top,b=h.outChannels/h.inChannels,_=n.data.get(a.dataId).values,w=new $t(a.shape,a.dtype,_),x=n.data.get(s.dataId).values,N=new $t(s.shape,s.dtype,x);for(let T=0;T<m;++T){let E=Math.max(0,Math.ceil((g-T)/d)),M=Math.min(h.outHeight,(h.inHeight+g-T)/d);for(let D=0;D<f;++D){let L=Math.max(0,Math.ceil((y-D)/p)),W=Math.min(h.outWidth,(h.inWidth+y-D)/p);for(let U=0;U<h.outChannels;++U){let H=Math.trunc(U/b),X=U%b,G=0;for(let ee=0;ee<h.batchSize;++ee)for(let Y=E;Y<M;++Y){let ae=T+Y*d-g;for(let te=L;te<W;++te){let ie=D+te*p-y;G+=w.get(ee,ae,ie,H)*N.get(ee,Y,te,U)}}A.set(G,T,D,H,X)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var cM={kernelName:gh,backendName:"cpu",kernelFunc:uM};function hM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=r;_e([a,s],"depthwiseConv2DNativeBackpropInput");let h=v.computeStrides(a.shape),d=v.computeStrides(s.shape),p=C.computeConv2DInfo(c,s.shape,i,o,l,u,!0),m=new $t(p.inShape,"float32"),f=m.values,[A,y,g]=m.strides,b=n.data.get(a.dataId).values,[_,w,x]=h,N=n.data.get(s.dataId).values,[T,E,M]=d,{batchSize:D,filterHeight:L,filterWidth:W,inChannels:U,inHeight:H,inWidth:X,outChannels:G,outHeight:ee,outWidth:Y,strideHeight:ae,strideWidth:te}=p,ie=L-1-p.padInfo.top,Q=W-1-p.padInfo.left,he=G/U;for(let oe=0;oe<D;++oe)for(let fe=0;fe<U;++fe)for(let pe=0;pe<H;++pe){let ve=pe-ie,Ie=Math.max(0,Math.ceil(ve/ae)),Fe=Math.min(ee,(L+ve)/ae);for(let Oe=0;Oe<X;++Oe){let Me=Oe-Q,Qe=Math.max(0,Math.ceil(Me/te)),et=Math.min(Y,(W+Me)/te),st=0;for(let Xe=Ie;Xe<Fe;++Xe){let ht=Xe*ae-ve;for(let We=Qe;We<et;++We){let dn=We*te-Me,xt=_*oe+w*Xe+x*We,Wn=T*(L-1-ht)+E*(W-1-dn)+M*fe;for(let Kt=0;Kt<he;++Kt){let pn=fe*he+Kt,Bn=b[xt+pn],Nn=N[Wn+Kt];st+=Bn*Nn}}}f[A*oe+y*pe+g*Oe+fe]=st}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var dM={kernelName:xh,backendName:"cpu",kernelFunc:hM};function pM(e){let{inputs:t,backend:n}=e,{x:r}=t,a=v.sizeFromShape(r.shape),s=n.data.get(r.dataId).values,i=Le([a,a],r.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*a+u]=s[u];let l=[...r.shape,...r.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var fM={kernelName:wh,backendName:"cpu",kernelFunc:pM},mM={kernelName:ru,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(r.dataId).values,c=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:m,inWidth:f,inChannels:A,outHeight:y,outWidth:g,padInfo:b,strideHeight:_,strideWidth:w,filterHeight:x,filterWidth:N,dilationHeight:T,dilationWidth:E,outShape:M}=C.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),D=v.sizeFromShape(M),L=M.length,W=v.getArrayFromDType(r.dtype,D);for(let U=0;U<p;++U)for(let H=0;H<y;++H){let X=H*_-b.top;for(let G=0;G<g;++G){let ee=G*w-b.left;for(let Y=0;Y<A;++Y){let ae=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<x;++ie){let Q=X+ie*T;if(Q>=0&&Q<m)for(let he=0;he<N;++he){let oe=ee+he*E;if(oe>=0&&oe<f){let fe=v.locToIndex([U,Q,oe,Y],c,v.computeStrides(r.shape)),pe=v.locToIndex([ie,he,Y],d,v.computeStrides(a.shape)),ve=u[fe]+h[pe];ve>ae&&(ae=ve)}}}let te=v.locToIndex([U,H,G,Y],L,v.computeStrides(M));W[te]=ae}}}return{dataId:l.write(v.toTypedArray(W,r.dtype),M,r.dtype),shape:M,dtype:r.dtype}}},AM={kernelName:bh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:b,strideWidth:_,filterHeight:w,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${bh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=v.toNestedArray(E,u.data.get(s.dataId).values),D=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let L=0;L<d;++L)for(let W=0;W<A;++W){let U=W*b-g.top;for(let H=0;H<y;++H){let X=H*_-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=0,ae=0;for(let te=0;te<w;++te){let ie=U+te*N;if(ie>=0&&ie<p)for(let Q=0;Q<x;++Q){let he=X+Q*T;if(he>=0&&he<m){let oe=c[L][ie][he][G]+h[te][Q][G];oe>ee&&(ee=oe,Y=te,ae=Q)}}}D[Y][ae][G]+=M[L][W][H][G]}}}return{dataId:u.write(v.toTypedArray(D,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},yM={kernelName:_h,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:b,strideWidth:_,filterHeight:w,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${_h}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=v.toNestedArray(E,u.data.get(s.dataId).values),D=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let L=0;L<d;++L)for(let W=0;W<A;++W){let U=W*b-g.top;for(let H=0;H<y;++H){let X=H*_-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=U<0?0:U,ae=X<0?0:X;for(let te=0;te<w;++te){let ie=U+te*N;if(ie>=0&&ie<p)for(let Q=0;Q<x;++Q){let he=X+Q*T;if(he>=0&&he<m){let oe=c[L][ie][he][G]+h[te][Q][G];oe>ee&&(ee=oe,Y=ie,ae=he)}}}D[L][Y][ae][G]+=M[L][W][H][G]}}}return{dataId:u.write(v.toTypedArray(D,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function gM(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;_e([r,a],"eluGrad");let s=new Float32Array(v.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(a.shape,"float32",s)}var xM={kernelName:vh,backendName:"cpu",kernelFunc:gM},wM=Ct((e,t)=>e===t?1:0),Jx=Ht(to,wM,null,"bool"),_M={kernelName:to,backendName:"cpu",kernelFunc:Jx},bM=C.ERF_P,vM=C.ERF_A1,kM=C.ERF_A2,IM=C.ERF_A3,NM=C.ERF_A4,SM=C.ERF_A5,TM=at(eo,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+bM*n);return t*(1-((((SM*r+NM)*r+IM)*r+kM)*r+vM)*r*Math.exp(-n*n))}),EM={kernelName:eo,backendName:"cpu",kernelFunc:TM};function Pd(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),At({inputs:{x:a},backend:n,attrs:{shape:o}})}var CM={kernelName:no,backendName:"cpu",kernelFunc:Pd},RM=Ct((e,t)=>e/t),dm=Ht(us,RM),pm={kernelName:us,backendName:"cpu",kernelFunc:dm};function Qx(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[a,s],c=v.sizeFromShape(u),h=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let A=0;A<a;A++){let y=oi({inputs:{x:o},backend:n,attrs:{begin:[A,0],size:[1,s]}}),g=oi({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,s]}}),b=Mn({inputs:{real:y,imag:g},backend:n}),{real:_,imag:w}=FM(b,t,n),x=C.mergeRealAndImagArrays(_,w);for(let N=0;N<s;N++){let T=C.getComplexWithIndex(x,N);h[A*s+N]=T.real,d[A*s+N]=T.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(b)}let p=n.makeTensorInfo(u,"float32",h),m=n.makeTensorInfo(u,"float32",d),f=Mn({inputs:{real:p,imag:m},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),f}function FM(e,t,n){let r=v.sizeFromShape(e.shape),a=n.data.get(e.dataId),s=n.data.get(a.complexTensorInfos.real.dataId).values,i=n.data.get(a.complexTensorInfos.imag.dataId).values;if(MM(r)){let o=fm(s,i,r,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),c=n.makeTensorInfo(l,"float32",o.imag),h=n.makeTensorInfo([],"float32",v.createScalarValue(r,"float32")),d=Dr({inputs:{x:h},backend:n}),p=pm.kernelFunc({inputs:{a:u,b:h},backend:n}),m=pm.kernelFunc({inputs:{a:c,b:d},backend:n}),f=n.data.get(p.dataId).values,A=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),{real:f,imag:A}}return o}else{let o=C.mergeRealAndImagArrays(s,i),l=$M(o,r,t);return C.splitRealAndImagArrays(l)}}function MM(e){return(e&e-1)==0}function fm(e,t,n,r,a){if(n===1)return{real:e,imag:t};let s=C.mergeRealAndImagArrays(e,t),i=n/2,o=C.complexWithEvenIndex(s),l=o.real,u=o.imag,c=[l.length],h=a.makeTensorInfo(c,"float32",l),d=a.makeTensorInfo(c,"float32",u),p=Mn({inputs:{real:h,imag:d},backend:a}),m=C.complexWithOddIndex(s),f=m.real,A=m.imag,y=[f.length],g=a.makeTensorInfo(y,"float32",f),b=a.makeTensorInfo(y,"float32",A),_=Mn({inputs:{real:g,imag:b},backend:a}),w=fm(l,u,i,r,a),x=w.real,N=w.imag,T=[x.length],E=a.makeTensorInfo(T,"float32",x),M=a.makeTensorInfo(T,"float32",N),D=Mn({inputs:{real:E,imag:M},backend:a}),L=fm(f,A,i,r,a),W=L.real,U=L.imag,H=[W.length],X=a.makeTensorInfo(H,"float32",W),G=a.makeTensorInfo(H,"float32",U),ee=Mn({inputs:{real:X,imag:G},backend:a}),Y=C.exponents(n,r),ae=[Y.real.length],te=a.makeTensorInfo(ae,"float32",Y.real),ie=a.makeTensorInfo(ae,"float32",Y.imag),Q=Mn({inputs:{real:te,imag:ie},backend:a}),he=lm({inputs:{a:Q,b:ee},backend:a}),oe=Hu({inputs:{a:D,b:he},backend:a}),fe=um({inputs:{a:D,b:he},backend:a}),pe=ii({inputs:{input:oe},backend:a}),ve=ii({inputs:{input:fe},backend:a}),Ie=pl({inputs:{input:oe},backend:a}),Fe=pl({inputs:{input:fe},backend:a}),Oe=fl({inputs:[pe,ve],backend:a,attrs:{axis:0}}),Me=fl({inputs:[Ie,Fe],backend:a,attrs:{axis:0}}),Qe=a.data.get(Oe.dataId).values,et=a.data.get(Me.dataId).values;return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(b),a.disposeIntermediateTensorInfo(_),a.disposeIntermediateTensorInfo(E),a.disposeIntermediateTensorInfo(M),a.disposeIntermediateTensorInfo(D),a.disposeIntermediateTensorInfo(X),a.disposeIntermediateTensorInfo(G),a.disposeIntermediateTensorInfo(ee),a.disposeIntermediateTensorInfo(te),a.disposeIntermediateTensorInfo(ie),a.disposeIntermediateTensorInfo(Q),a.disposeIntermediateTensorInfo(he),a.disposeIntermediateTensorInfo(oe),a.disposeIntermediateTensorInfo(fe),a.disposeIntermediateTensorInfo(pe),a.disposeIntermediateTensorInfo(Ie),a.disposeIntermediateTensorInfo(ve),a.disposeIntermediateTensorInfo(Fe),a.disposeIntermediateTensorInfo(Oe),a.disposeIntermediateTensorInfo(Me),{real:Qe,imag:et}}function $M(e,t,n){let r=new Float32Array(t*2);for(let a=0;a<t;a++){let s=0,i=0;for(let o=0;o<t;o++){let l=C.exponent(a*o,t,n),u=C.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),C.assignToTypedArray(r,s,i,a)}return r}function OM(e){let{inputs:t,backend:n}=e,{input:r}=t,a=v.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=At({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Qx(o,!1,n),u=At({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var DM={kernelName:kh,backendName:"cpu",kernelFunc:OM};function mm(e){let{backend:t,attrs:n}=e,{shape:r,value:a,dtype:s}=n,i=s||v.inferDtype(a),o=v.getArrayFromDType(i,v.sizeFromShape(r));return zM(o,a,i),t.makeTensorInfo(r,i,o)}var PM={kernelName:au,backendName:"cpu",kernelFunc:mm};function zM(e,t,n){e.fill(t)}var LM={kernelName:ao,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,a=n,s=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[i,o,l,u]=r.shape,c=a.data.get(r.dataId).values;for(let h=0;h<i;h++){let d=h*l*o*u;for(let p=0;p<o;p++){let m=p*(l*u);for(let f=0;f<l;f++){let A=f*u;for(let y=0;y<u;y++){let g=[i,p,f,y][2],b=Math.round(l-g),_=d+m+A+y,w=c[_];if(b>=0&&b<l){let x=b*u,N=d+m+x+y;w=c[N]}s[_]=w}}}}return{dataId:a.write(s,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},WM=Ct((e,t)=>Math.floor(e/t)),BM=Ht(ds,WM,null,"int32"),VM={kernelName:ds,backendName:"cpu",kernelFunc:BM};function UM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=Zx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=Hu({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=cm(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var HM={kernelName:js,backendName:"cpu",kernelFunc:UM};function jM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=Yx({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=f;f=Hu({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=f;f=cm(n,f,p,o,m),n.disposeIntermediateTensorInfo(A)}return f}var GM={kernelName:Gs,backendName:"cpu",kernelFunc:jM};function qM(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=v.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,u,c,h]=C.prepareAndValidate(r,a);if(u===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Le([u,c],r.dtype),p=n.data.get(a.dataId).values,m=n.data.get(r.dataId).values;for(let f=0;f<u;f++){let A=[],y=0;for(let g=0;g<o;g++){let b=p[f*o+g];y+=b*h[g],A.push(b)}if(y<0||y>=s/c)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let g=0;g<c;g++)d.values[f*c+g]=m[y*c+g]}return n.makeTensorInfo(l,d.dtype,d.values)}var XM={kernelName:io,backendName:"cpu",kernelFunc:qM};function KM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r;_e([a,s],"gatherV2");let l=o;o==null&&(l=0);let u=v.sizeFromShape(s.shape),c=v.parseAxisParam(i,a.shape)[0],h=C.segment_util.collectGatherOpShapeInfo(a,s,c,l),d=At({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),p=At({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,u/h.batchSize]}}),m=[h.batchSize,h.outerSize,u/h.batchSize,h.sliceSize],f=n.bufferSync(p),A=n.bufferSync(d),y=bx(A,f,m);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(h.outputShape,y.dtype,y.values)}var ZM={kernelName:so,backendName:"cpu",kernelFunc:KM},YM=Ct((e,t)=>e>=t?1:0),JM=Ht(fs,YM,null,"bool"),QM={kernelName:fs,backendName:"cpu",kernelFunc:JM};function e$(e){let{inputs:t,backend:n}=e,{input:r}=t,a=v.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=At({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=Qx(o,!0,n),u=At({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var t$={kernelName:Ih,backendName:"cpu",kernelFunc:e$},n$=at(lo,e=>Number.isFinite(e)?1:0,"bool"),r$={kernelName:lo,backendName:"cpu",kernelFunc:n$},a$=at(uo,e=>Math.abs(e)===Infinity?1:0,"bool"),s$={kernelName:uo,backendName:"cpu",kernelFunc:a$},i$=at(co,e=>Number.isNaN(e)?1:0,"bool"),o$={kernelName:co,backendName:"cpu",kernelFunc:i$},l$=Ct((e,t)=>e<=t?1:0),u$=Ht(po,l$,null,"bool"),c$={kernelName:po,backendName:"cpu",kernelFunc:u$};function h$(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=Ix(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var d$={kernelName:Sh,backendName:"cpu",kernelFunc:h$},p$=at(fo,e=>Math.log1p(e)),f$={kernelName:fo,backendName:"cpu",kernelFunc:p$},m$=Ct((e,t)=>e&&t),A$=Ht(mo,m$,null,"bool"),y$={kernelName:mo,backendName:"cpu",kernelFunc:A$},g$=at(su,e=>e?0:1,"bool"),x$={kernelName:su,backendName:"cpu",kernelFunc:g$},w$=Ct((e,t)=>e||t),_$=Ht(iu,w$,null,"bool"),b$={kernelName:iu,backendName:"cpu",kernelFunc:_$};function v$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;_e(a,"LRN");let u=a.shape[3],c=u-1,h=n.data.get(a.dataId).values,d=v.sizeFromShape(a.shape),p=new Float32Array(d);function m(f){let A=f%u,y=f-A+Math.max(0,A-s),g=f-A+Math.min(A+s,c),b=0;for(;y<=g;y++){let _=h[y];b+=_*_}return b}for(let f=0;f<d;f++){let A=m(f),y=h[f]*Math.pow(i+o*A,-l);p[f]=y}return n.makeTensorInfo(a.shape,a.dtype,p)}var k$={kernelName:ou,backendName:"cpu",kernelFunc:v$};function I$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=r;_e(i,"LRNGrad");let h=v.sizeFromShape(i.shape),d=i.shape[3],p=n.data.get(i.dataId).values,m=n.data.get(a.dataId).values,f=n.data.get(s.dataId).values,A=new Float32Array(h),y=h;for(let g=0;g<y;g++){let b=g%d,_=g-b+Math.max(0,b-o),w=g-b+Math.min(d,b+o+1),x=0;for(let N=_;N<w;N++)x+=Math.pow(m[N],2);x=u*x+l;for(let N=_;N<w;N++){let T=-2*u*c*m[N]*f[g]/x;g===N&&(T+=Math.pow(x,-c)),T*=p[g],A[N]+=T}}return n.makeTensorInfo(i.shape,a.dtype,A)}var N$={kernelName:Th,backendName:"cpu",kernelFunc:I$};function ew(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=n,l=a.shape,u=l.length,c=v.parseAxisParam(s,l),h=c,d=C.getAxesPermutation(h,u),p=o.data.get(a.dataId).values;if(d!=null){let _=new Array(u);for(let w=0;w<_.length;w++)_[w]=l[d[w]];p=sm(p,l,a.dtype,d,_),h=C.getInnerMostAxes(h.length,u),l=_}_e(a,"max"),C.assertAxesAreInnerMostDims("max",h,u);let[m,f]=C.computeOutAndReduceShapes(l,h),A=v.sizeFromShape(f),y=Sx(p,A,m,a.dtype),g=o.write(y,m,a.dtype),b=m;return i&&(b=C.expandShapeToKeepDim(m,c)),{dataId:g,shape:b,dtype:a.dtype}}var S$={kernelName:gs,backendName:"cpu",kernelFunc:ew};function T$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;_e(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=Dr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),m=hm(d,a.shape,a.dtype,p,c,"max");h=n.makeTensorInfo(c.outShape,a.dtype,m.values)}return h}var E$={kernelName:ws,backendName:"cpu",kernelFunc:T$};function C$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;_e(a,"maxPool3d");let c=C.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=Kx(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var R$={kernelName:lu,backendName:"cpu",kernelFunc:C$};function F$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;_e([a,s],"maxPool3DGrad");let c=C.computePool3DInfo(s.shape,i,o,1,l,u),h=n.bufferSync(s),d=gF(h,c),p=c.strideDepth,m=c.strideHeight,f=c.strideWidth,A=c.dilationDepth,y=c.dilationHeight,g=c.dilationWidth,b=c.effectiveFilterDepth,_=c.effectiveFilterHeight,w=c.effectiveFilterWidth,x=b-1-c.padInfo.front,N=w-1-c.padInfo.left,T=_-1-c.padInfo.top,E=Le(s.shape,"float32"),M=n.bufferSync(a);for(let D=0;D<c.batchSize;++D)for(let L=0;L<c.inChannels;++L)for(let W=0;W<c.inDepth;++W)for(let U=0;U<c.inHeight;++U)for(let H=0;H<c.inWidth;++H){let X=W-x,G=U-T,ee=H-N,Y=0;for(let ae=0;ae<b;ae+=A){let te=(X+ae)/p;if(!(te<0||te>=c.outDepth||Math.floor(te)!==te))for(let ie=0;ie<_;ie+=y){let Q=(G+ie)/m;if(!(Q<0||Q>=c.outHeight||Math.floor(Q)!==Q))for(let he=0;he<w;he+=g){let oe=(ee+he)/f;if(oe<0||oe>=c.outWidth||Math.floor(oe)!==oe)continue;let fe=b*_*w-1-d.get(D,te,Q,oe,L),pe=ae*_*w+ie*w+he,ve=fe===pe?1:0;ve!==0&&(Y+=M.get(D,te,Q,oe,L)*ve)}}}E.set(Y,D,W,U,H,L)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var M$={kernelName:Ch,backendName:"cpu",kernelFunc:F$};function $$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;_e([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=C.computePool2DInfo(o.shape,l,u,1,c,h),p=n.data.get(o.dataId).values,m=Le(d.outShape,o.dtype,Xx(p,o.shape,o.dtype,d).values),f=d.strideHeight,A=d.strideWidth,y=d.dilationHeight,g=d.dilationWidth,b=d.effectiveFilterHeight,_=d.effectiveFilterWidth,w=_-1-d.padInfo.left,x=b-1-d.padInfo.top,N=Le(o.shape,"float32"),T=n.data.get(a.dataId).values,E=Le(a.shape,"float32",T);for(let M=0;M<d.batchSize;++M)for(let D=0;D<d.inChannels;++D)for(let L=0;L<d.inHeight;++L)for(let W=0;W<d.inWidth;++W){let U=L-x,H=W-w,X=0;for(let G=0;G<b;G+=y){let ee=(U+G)/f;if(!(ee<0||ee>=d.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y<_;Y+=g){let ae=(H+Y)/A;if(ae<0||ae>=d.outWidth||Math.floor(ae)!==ae)continue;let te=b*_-1-m.get(M,ee,ae,D),ie=G*_+Y,Q=te===ie?1:0;Q!==0&&(X+=E.get(M,ee,ae,D)*Q)}}N.set(X,M,L,W,D)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var O$={kernelName:Eh,backendName:"cpu",kernelFunc:$$};function D$(e,t,n,r,a){let s=v.computeStrides(t),i=hm(e,t,n,s,a,"max"),o=Xx(e,t,n,a,!0,r);return[i.values,o.values]}var z$={kernelName:Rh,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;_e(r,"MaxPoolWithArgmax");let u=l.data.get(r.dataId).values,c=C.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=D$(u,r.shape,r.dtype,o,c),p=l.write(h,c.outShape,r.dtype),m=l.write(d,c.outShape,r.dtype);return[{dataId:p,shape:c.outShape,dtype:r.dtype},{dataId:m,shape:c.outShape,dtype:"int32"}]}};function Ld(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"sum");let o;a.dtype==="bool"?o=Fa({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=Dr({inputs:{x:a},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),c=C.getAxesPermutation(u,l),h=u,d=o;c!=null&&(d=ir({inputs:{x:o},backend:n,attrs:{perm:c}}),h=C.getInnerMostAxes(h.length,l)),C.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,m]=C.computeOutAndReduceShapes(d.shape,h),f=C.upcastType(d.dtype,"int32"),A=zd(n,p,f),y=v.sizeFromShape(m),g=n.data.get(A.dataId).values,b=n.data.get(d.dataId).values;for(let _=0;_<g.length;++_){let w=_*y,x=0;for(let N=0;N<y;++N)x+=b[w+N];g[_]=x}if(i){let _=C.expandShapeToKeepDim(A.shape,u),w=A;A=At({inputs:{x:A},backend:n,attrs:{shape:_}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(o),c!=null&&n.disposeIntermediateTensorInfo(d),A}var P$={kernelName:Ps,backendName:"cpu",kernelFunc:Ld};function L$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=v.parseAxisParam(s,a.shape),l=C.computeOutAndReduceShapes(a.shape,o)[1],u=v.sizeFromShape(l),c=[],h=n.makeTensorInfo([],"float32",new Float32Array([u]));c.push(h);let d=Fa({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});c.push(d);let p=dm({inputs:{a:d,b:h},backend:n});c.push(p);let m=Ld({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var W$={kernelName:_s,backendName:"cpu",kernelFunc:L$};function B$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;_e(a,"min");let o=v.parseAxisParam(s,a.shape),l=o,u=C.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=ir({inputs:{x:a},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",l,c.shape.length);let[h,d]=C.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),m=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),f=n.data.get(c.dataId).values;for(let y=0;y<m.length;++y){let g=y*p,b=f[g];for(let _=0;_<p;++_){let w=f[g+_];w<b&&(b=w)}m[y]=b}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,m);if(i){let y=C.expandShapeToKeepDim(h,o),g=At({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var V$={kernelName:bs,backendName:"cpu",kernelFunc:B$};function U$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,mode:i}=r;_e(a,"mirrorPad");let o=s.map((g,b)=>g[0]+a.shape[b]+g[1]),l=s.map(g=>g[0]),u=s.map((g,b)=>g[0]+a.shape[b]),c=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=v.computeStrides(a.shape),m=v.sizeFromShape(o),f=o.length,A=v.computeStrides(o),y=v.getTypedArrayFromDType(a.dtype,m);for(let g=0;g<m;g++){let b=v.indexToLoc(g,f,A);for(let w=0;w<f;w++)b[w]<l[w]?b[w]=l[w]*2-b[w]-c:b[w]>=u[w]&&(b[w]=(u[w]-1)*2-b[w]+c);b=b.map((w,x)=>w-l[x]);let _=v.locToIndex(b,d,p);y[g]=h[_]}return{dataId:n.write(y,o,a.dtype),shape:o,dtype:a.dtype}}var H$={kernelName:uu,backendName:"cpu",kernelFunc:U$},j$=Ct((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),G$=Ht(Ao,j$),q$={kernelName:Ao,backendName:"cpu",kernelFunc:G$},X$=Pi(I8());function tw(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],a.shape),u=ew({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=C.expandShapeToKeepDim(u.shape,l),h=At({inputs:{x:u},backend:n,attrs:{shape:c}}),d=um({inputs:{a,b:h},backend:n}),p=Wx({inputs:{x:d},backend:n}),m=Ld({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),f=At({inputs:{x:m},backend:n,attrs:{shape:c}}),A=dm({inputs:{a:p,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var K$={kernelName:Ls,backendName:"cpu",kernelFunc:tw};function Z$(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;_e(a,"multinomial");let l=o?a:tw({inputs:{logits:a},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],h=n.data.get(l.dataId).values,d=[u,s],p=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let m=0;m<u;++m){let f=m*c,A=new Float32Array(c-1);A[0]=h[f];for(let b=1;b<A.length;++b)A[b]=A[b-1]+h[f+b];let y=X$.alea(i.toString()),g=m*s;for(let b=0;b<s;++b){let _=y();p[g+b]=A.length;for(let w=0;w<A.length;w++)if(_<A[w]){p[g+b]=w;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",p)}var Y$={kernelName:Fh,backendName:"cpu",kernelFunc:Z$},J$=Or.nonMaxSuppressionV3Impl;function Q$(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r;_e(a,"NonMaxSuppression");let u=n.data.get(a.dataId).values,c=n.data.get(s.dataId).values,{selectedIndices:h}=J$(u,c,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var eO={kernelName:xo,backendName:"cpu",kernelFunc:Q$},tO=Or.nonMaxSuppressionV4Impl;function nO(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=r;_e(a,"NonMaxSuppressionPadded");let c=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,{selectedIndices:d,validOutputs:p}=tO(c,h,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var rO={kernelName:wo,backendName:"cpu",kernelFunc:nO},aO=Or.nonMaxSuppressionV5Impl;function sO(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=r;_e(a,"NonMaxSuppressionWithScore");let c=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,d=i,p=o,m=l,f=u,{selectedIndices:A,selectedScores:y}=aO(c,h,d,p,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var iO={kernelName:_o,backendName:"cpu",kernelFunc:sO};function oO(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r;_e(a,"oneHot");let l=v.sizeFromShape(a.shape),u=new Float32Array(l*s);u.fill(o);let c=n.data.get(a.dataId).values;for(let h=0;h<l;++h)c[h]>=0&&c[h]<s&&(u[h*s+c[h]]=i);return n.makeTensorInfo([...a.shape,s],"int32",u)}var lO={kernelName:Is,backendName:"cpu",kernelFunc:oO};function Wd(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(r.dtype==="complex64"){let a=ii({inputs:{input:r},backend:n}),s=Wd({inputs:{x:a},backend:n}),i=pl({inputs:{input:r},backend:n}),o=Wd({inputs:{x:i},backend:n}),l=Mn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return mm({backend:n,attrs:{shape:r.shape,value:0,dtype:r.dtype}})}var uO={kernelName:Lo,backendName:"cpu",kernelFunc:Wd};function nw(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(r.dtype==="complex64"){let a=ii({inputs:{input:r},backend:n}),s=nw({inputs:{x:a},backend:n}),i=pl({inputs:{input:r},backend:n}),o=Wd({inputs:{x:i},backend:n}),l=Mn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return mm({backend:n,attrs:{shape:r.shape,value:1,dtype:r.dtype}})}var cO={kernelName:bo,backendName:"cpu",kernelFunc:nw};function rw(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return Pd({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=Pd({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=fl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var hO={kernelName:vo,backendName:"cpu",kernelFunc:rw};function dO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;_e(a,"pad");let o=s.map((y,g)=>y[0]+a.shape[g]+y[1]),l=s.map(y=>y[0]),u=n.data.get(a.dataId).values,c=v.sizeFromShape(a.shape),h=a.shape.length,d=v.computeStrides(a.shape),p=v.sizeFromShape(o),m=o.length,f=v.computeStrides(o),A=v.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let y=0;y<c;y++){let g=v.indexToLoc(y,h,d).map((_,w)=>_+l[w]),b=v.locToIndex(g,m,f);A[b]=u[y]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var aw={kernelName:Ns,backendName:"cpu",kernelFunc:dO},pO=Ct((e,t)=>Math.pow(e,t)),fO=Ht(Ss,pO),mO={kernelName:Ss,backendName:"cpu",kernelFunc:fO};function AO(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=im(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var yO={kernelName:cu,backendName:"cpu",kernelFunc:AO},gO=at(Io,e=>1/e),xO={kernelName:Io,backendName:"cpu",kernelFunc:gO};function wO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;_e(a,"resizeBilinear");let l=v.computeStrides(a.shape),[u,c]=o,[h,d,p,m]=a.shape,f=n.data.get(a.dataId).values,A=new Float32Array(v.sizeFromShape([h,u,c,m])),y=[s&&u>1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],b=0,_=y[0]/g[0],w=y[1]/g[1];for(let x=0;x<h;x++)for(let N=0;N<u;N++){let T;i?T=_*(N+.5)-.5:T=_*N;let E=Math.max(0,Math.floor(T)),M=T-E,D=Math.min(d-1,Math.ceil(T)),L=x*l[0]+E*l[1],W=x*l[0]+D*l[1];for(let U=0;U<c;U++){let H;i?H=w*(U+.5)-.5:H=w*U;let X=Math.max(0,Math.floor(H)),G=H-X,ee=Math.min(p-1,Math.ceil(H)),Y=L+X*l[2],ae=W+X*l[2],te=L+ee*l[2],ie=W+ee*l[2];for(let Q=0;Q<m;Q++){let he=f[Y+Q],oe=f[ae+Q],fe=f[te+Q],pe=f[ie+Q],ve=he+(fe-he)*G,Ie=oe+(pe-oe)*G,Fe=ve+(Ie-ve)*M;A[b++]=Fe}}}return n.makeTensorInfo([h,u,c,m],"float32",A)}var _O={kernelName:Cs,backendName:"cpu",kernelFunc:wO};function bO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;_e([s,a],"resizeBilinearGrad");let o=v.computeStrides(a.shape),[l,u,c,h]=a.shape,[,d,p]=s.shape,m=new Float32Array(l*u*c*h),f=[i&&d>1?u-1:u,i&&p>1?c-1:c],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],y=f[0]/A[0],g=f[1]/A[1],b=n.data.get(s.dataId).values,_=0;for(let w=0;w<l;w++){let x=w*o[0];for(let N=0;N<d;N++){let T=N*y,E=Math.floor(T),M=Math.min(Math.ceil(T),u-1),D=x+E*o[1],L=x+M*o[1],W=T-E,U=1-W;for(let H=0;H<p;H++){let X=H*g,G=Math.floor(X),ee=Math.min(Math.ceil(X),c-1),Y=X-G,ae=1-Y,te=D+G*o[2],ie=D+ee*o[2],Q=L+G*o[2],he=L+ee*o[2],oe=U*ae,fe=U*Y,pe=W*ae,ve=W*Y;for(let Ie=0;Ie<h;Ie++){let Fe=b[_++];m[te+Ie]+=Fe*oe,m[ie+Ie]+=Fe*fe,m[Q+Ie]+=Fe*pe,m[he+Ie]+=Fe*ve}}}}return n.makeTensorInfo([l,c,u,h],"float32",m)}var vO={kernelName:Oh,backendName:"cpu",kernelFunc:bO};function kO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;_e(a,"resizeNearestNeighbor");let l=v.computeStrides(a.shape),[u,c]=o,[h,d,p,m]=a.shape,f=n.data.get(a.dataId).values,A=new Float32Array(h*u*c*m),y=[s&&u>1?d-1:d,s&&c>1?p-1:p],g=[s&&u>1?u-1:u,s&&c>1?c-1:c],b=y[0]/g[0],_=y[1]/g[1],w=0;for(let x=0;x<h;x++){let N=x*l[0];for(let T=0;T<u;T++){let E=i?b*(T+.5):b*T,M=Math.min(d-1,s?Math.round(E):Math.floor(E));i&&(M=Math.max(0,M));let D=N+M*l[1];for(let L=0;L<c;L++){let W=i?_*(L+.5):_*L,U=Math.min(p-1,s?Math.round(W):Math.floor(W));i&&(U=Math.max(0,U));let H=D+U*l[2];for(let X=0;X<m;X++){let G=f[H+X];A[w++]=G}}}}return n.makeTensorInfo([h,u,c,m],a.dtype,A)}var IO={kernelName:hu,backendName:"cpu",kernelFunc:kO};function NO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;_e([s,a],"resizeNearestNeighborGrad");let o=v.computeStrides(a.shape),l=v.computeStrides(s.shape),[u,c,h,d]=a.shape,[,p,m]=s.shape,f=new Float32Array(u*c*h*d),A=n.data.get(s.dataId).values,y=[i&&p>1?c-1:c,i&&m>1?h-1:h],g=[i&&p>1?p-1:p,i&&m>1?m-1:m],b=y[0]/g[0],_=y[1]/g[1],w=1/b,x=1/_,N=Math.ceil(w)*2+2,T=Math.ceil(x)*2+2;for(let E=0;E<u;E++){let M=E*o[0];for(let D=0;D<c;D++){let L=M+D*o[1],W=Math.floor(D*w),U=Math.floor(W-N/2);for(let H=0;H<h;H++){let X=L+H*o[2],G=Math.floor(H*x),ee=Math.floor(G-T/2);for(let Y=0;Y<d;Y++){let ae=0;for(let te=0;te<N;te++){let ie=te+U;if(ie<0||ie>=p)continue;let Q=M+ie*l[1],he=ie*b,oe=Math.min(c-1,i?Math.round(he):Math.floor(he));if(D===oe)for(let fe=0;fe<T;fe++){let pe=fe+ee;if(pe<0||pe>=m)continue;let ve=Q+pe*l[2],Ie=pe*_,Fe=Math.min(h-1,i?Math.round(Ie):Math.floor(Ie));H===Fe&&(ae+=A[ve+Y])}}f[X+Y]=ae}}}}return n.makeTensorInfo(a.shape,a.dtype,f)}var SO={kernelName:$h,backendName:"cpu",kernelFunc:NO};function TO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;_e(a,"reverse");let i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return Dr({inputs:{x:a},backend:n});let l=new $t(a.shape,a.dtype),u=n.bufferSync(a);for(let c=0;c<l.size;c++){let h=l.indexToLoc(c),d=h.slice();o.forEach(p=>d[p]=a.shape[p]-1-d[p]),l.set(u.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var EO={kernelName:Fs,backendName:"cpu",kernelFunc:TO},CO={kernelName:Wo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[u,c,h,d]=r.shape,[p,m]=C.getImageCenter(i,c,h),f=255,A=Math.sin(a),y=Math.cos(a),g=o.data.get(r.dataId).values;for(let b=0;b<u;b++){let _=b*h*c*d;for(let w=0;w<c;w++){let x=w*(h*d);for(let N=0;N<h;N++){let T=N*d;for(let E=0;E<d;E++){let M=[u,w,N,E],D=M[2],L=M[1],W=(D-p)*y-(L-m)*A,U=(D-p)*A+(L-m)*y;W=Math.round(W+p),U=Math.round(U+m);let H=s;if(typeof s!="number"&&(E===3?H=f:H=s[E]),W>=0&&W<h&&U>=0&&U<c){let G=U*(h*d),ee=W*d,Y=_+G+ee+E;H=g[Y]}let X=_+x+T+E;l[X]=H}}}}return{dataId:o.write(l,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},RO=at(Ms,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),FO={kernelName:Ms,backendName:"cpu",kernelFunc:RO};function sw(e,t,n,r,a,s,i,o,l,u){let c=[r/a,a],h=e.values,d=t.values;if(r===0)return Le(n,t.dtype);let p=Le(c,t.dtype);p.values.fill(l);for(let m=0;m<s;m++){let f=[],A=0;for(let y=0;y<i;y++){let g=h[m*i+y];f.push(g),A+=g*o[y]}if(A<0||A>=r/a)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<a;y++)u?p.values[A*a+y]+=d[m*a+y]:p.values[A*a+y]=t.rank===0?d[0]:d[m*a+y]}return p}function MO(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:h}=C.calculateShapes(s,a,i),d=!0,p=n.bufferSync(a),m=n.bufferSync(s),f=sw(p,m,i,h,u,l,o,c,0,d);return n.makeTensorInfo(i,f.dtype,f.values)}var $O={kernelName:So,backendName:"cpu",kernelFunc:MO};function OO(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t;_e([r,a,s],"select");let i=r.shape.length,o=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,c=tr(a.dtype,s.dtype),h=v.makeZerosTypedArray(v.sizeFromShape(a.shape),c),d=0,p=i===0||i>1||a.shape.length===1?1:v.sizeFromShape(a.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<p;f++)o[m]===1?h[d++]=l[m]:h[d++]=u[m];return n.makeTensorInfo(a.shape,c,h)}var DO={kernelName:To,backendName:"cpu",kernelFunc:OO},zO=C.SELU_SCALEALPHA,PO=C.SELU_SCALE,LO=at(Eo,e=>e>=0?PO*e:zO*(Math.exp(e)-1)),WO={kernelName:Eo,backendName:"cpu",kernelFunc:LO},BO=at(Ds,e=>1/(1+Math.exp(-e))),VO={kernelName:Ds,backendName:"cpu",kernelFunc:BO},UO=at(Fo,e=>e<0?-1:e>0?1:0),HO={kernelName:Fo,backendName:"cpu",kernelFunc:UO},jO=at(Os,e=>Math.sin(e)),GO={kernelName:Os,backendName:"cpu",kernelFunc:jO},qO=at(Ro,e=>Math.sinh(e)),XO={kernelName:Ro,backendName:"cpu",kernelFunc:qO},KO=11920928955078125e-23,iw=Math.log(KO)+2,ZO=at(Mo,e=>{let t=e>-iw,n=e<iw,r=Math.exp(e),a;return n?a=r:t?a=e:a=Math.log(1+r),a}),YO={kernelName:Mo,backendName:"cpu",kernelFunc:ZO};function JO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;_e([a],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<a.shape.length;++A)l.push([0,0]);let u=aw.kernelFunc({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),c=C.getReshaped(u.shape,s,o,!1),h=C.getPermuted(c.length,s.length,!1),d=C.getReshapedPermuted(u.shape,s,o,!1),p=At({inputs:{x:u},backend:n,attrs:{shape:c}}),m=ir({inputs:{x:p},backend:n,attrs:{perm:h}}),f=At({inputs:{x:m},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),f}var QO={kernelName:du,backendName:"cpu",kernelFunc:JO};function eD(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:u,sliceSize:c,strides:h,outputSize:d}=C.calculateShapes(s,a,o),p=!1,m=n.bufferSync(a),f=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=sw(m,f,o,d,c,u,l,h,A,p);return n.makeTensorInfo(o,y.dtype,y.values)}var tD={kernelName:Dh,backendName:"cpu",kernelFunc:eD};function nD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),c=a.shape.slice();return l.map(h=>{let d=[...c];d[o]=h;let p=oi({inputs:{x:a},backend:n,attrs:{begin:u,size:d}});return u[o]+=h,p})}var rD={kernelName:$o,backendName:"cpu",kernelFunc:nD},aD=at(zs,e=>Math.sqrt(e)),sD={kernelName:zs,backendName:"cpu",kernelFunc:aD},iD={kernelName:pu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;_e(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i<a.length;++i){let o=a[i];s[i]=o*o}return{dataId:r.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},oD=at(_a,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),lD={kernelName:_a,backendName:"cpu",kernelFunc:oD};function uD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r;_e(a,"stridedSlice");let{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=on.sliceInfo(a.shape,s,i,o,l,u,c,h,d),b=At({inputs:{x:a},backend:n,attrs:{shape:y}}),_;if(p){let x=oi({inputs:{x:b},backend:n,attrs:{begin:m,size:A}});_=At({inputs:{x},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(x)}else if(g.some(x=>x===0))_=n.makeTensorInfo(g,a.dtype,[]);else{let x=n.bufferSync(b),N=Ox(g,x,f,m);_=n.makeTensorInfo(N.shape,N.dtype,N.values)}let w=At({inputs:{x:_},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(_),w}var cD={kernelName:Oo,backendName:"cpu",kernelFunc:uD},hD=at(Do,e=>Math.tan(e)),dD={kernelName:Do,backendName:"cpu",kernelFunc:hD},pD=at(Vs,e=>Math.tanh(e)),fD={kernelName:Vs,backendName:"cpu",kernelFunc:pD};function mD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;_e(a,"tile");let i=zx(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var AD={kernelName:wa,backendName:"cpu",kernelFunc:mD};function yD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;_e(a,"topk");let o=n.data.get(a.dataId).values,[l,u]=Px(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var gD={kernelName:zo,backendName:"cpu",kernelFunc:yD};function xD(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;_e(s,"unique");let i=r.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=Lx(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var wD={kernelName:zh,backendName:"cpu",kernelFunc:xD};function _D(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),u=0;for(let p=0;p<i;p++)p!==s&&(l[u++]=a.shape[p]);let c=new Array(i).fill(0),h=a.shape.slice();h[s]=1;let d=new Array(o);for(let p=0;p<d.length;p++){c[s]=p;let m=oi({inputs:{x:a},backend:n,attrs:{begin:c,size:h}});d[p]=At({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return d}var bD={kernelName:Po,backendName:"cpu",kernelFunc:_D};function vD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r;_e(a,"unsortedSegmentSum");let o=a.shape.length,l=s.shape.length,u=[],c=[],h=o-l,d=s;for(let m=0;m<h;++m){let f=Pd({inputs:{input:d},backend:n,attrs:{dim:m+1}});d=f,c.push(f)}for(let m=0;m<i;++m){let f=v.createScalarValue(m,"int32"),A=n.makeTensorInfo([],"int32",f),y=Jx({inputs:{a:A,b:d},backend:n}),g=Fa({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),b=lm({inputs:{a:g,b:a},backend:n}),_=Ld({inputs:{x:b},backend:n,attrs:{axis:0,keepDims:!1}});u.push(_),c.push(A),c.push(y),c.push(g),c.push(b),c.push(_)}let p=rw({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),p}var kD={kernelName:fu,backendName:"cpu",kernelFunc:vD},ID=[GR,YC,XR,ZR,rR,JR,eF,nF,aF,iF,lF,cF,dF,mF,yF,wF,bF,kF,NF,HR,TF,CF,FF,tR,sR,$F,JC,DF,PF,BF,UF,LF,qF,KF,jF,YF,QF,tM,rM,sM,oM,lM,cM,dM,fM,mM,yM,AM,pm,zR,xM,_M,EM,iR,CM,lR,DM,PM,LM,cR,VM,HM,GM,XM,ZM,dR,QM,QC,t$,zF,r$,s$,o$,PR,fR,c$,d$,AR,f$,y$,x$,b$,k$,N$,gR,E$,R$,M$,O$,z$,S$,W$,V$,wR,H$,q$,Y$,bR,kR,eO,rO,iO,NR,lO,cO,hO,aw,mO,WR,ER,yO,eR,xO,BR,VR,UR,_O,vO,IO,SO,EO,CO,FO,RR,$O,DO,WO,VO,HO,GO,XO,FR,K$,YO,QO,tD,rD,sD,iD,$R,lD,cD,DR,P$,dD,fD,AD,gD,SR,wD,bD,kD,uO];for(let e of ID)qs(e);var ow={};De(ow,{assertNotComplex:()=>ml,bindCanvasToFramebuffer:()=>TD,bindColorTextureToFramebuffer:()=>Vd,bindTextureToProgramUniformSampler:()=>bw,bindTextureUnit:()=>xw,bindVertexBufferToProgramAttribute:()=>Am,callAndCheck:()=>xe,canBeRepresented:()=>lw,createFragmentShader:()=>hw,createFramebuffer:()=>gw,createProgram:()=>dw,createStaticIndexBuffer:()=>mw,createStaticVertexBuffer:()=>fw,createTexture:()=>Aw,createVertexShader:()=>cw,getBatchDim:()=>li,getExtensionOrThrow:()=>ju,getFramebufferErrorMessage:()=>vw,getMaxTexturesInShader:()=>Nw,getNumChannels:()=>ND,getProgramUniformLocation:()=>_w,getProgramUniformLocationOrThrow:()=>ww,getRowsCols:()=>ui,getShapeAs3D:()=>Ud,getTextureShapeFromLogicalShape:()=>kw,getWebGLDisjointQueryTimerVersion:()=>Sw,getWebGLErrorMessage:()=>uw,getWebGLMaxTextureSize:()=>Iw,hasExtension:()=>Xn,isCapableOfRenderingToFloatTexture:()=>Tw,isDownloadFloatTextureEnabled:()=>Ew,isReshapeFree:()=>qu,isWebGLFenceEnabled:()=>Cw,isWebGLVersionEnabled:()=>gm,linkProgram:()=>pw,resetMaxTextureSize:()=>ED,resetMaxTexturesInShader:()=>CD,unbindColorTextureFromFramebuffer:()=>ym,unbindTextureUnit:()=>SD,validateFramebuffer:()=>Gu,validateProgram:()=>Bd,validateTextureSize:()=>yw});var ci={},xm={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Hd(e,t){ci[e]=t}function zr(e){if(!(e in ci)){let n=RD(e);if(n!==null)ci[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=ci[e];return t.isContextLost()?(delete ci[e],zr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),ci[e])}function FD(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function RD(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=FD(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete ci[e]},!1),e===1?t.getContext("webgl",xm)||t.getContext("experimental-webgl",xm):t.getContext("webgl2",xm)}var Xu;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Xu||(Xu={}));var Kn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Kn||(Kn={}));var en;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(en||(en={}));function Ku(e,t){return[t,e]}function MD(e,t){return e*t}function Zu(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function Al(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function $D(e,t){let[n,r]=Al(e,t);return n*r*4}function wm(e,t){let n=e,r,a,s,i,o,l,u,c,h,d;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,c=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,c=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:h,textureTypeFloat:d}}function xe(e,t){let n=t();return J().getBool("DEBUG")&&OD(e),n}function OD(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+uw(e,t))}var DD=596e-10,zD=65504;function lw(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||DD<Math.abs(e)&&Math.abs(e)<zD)}function uw(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function ju(e,t){return na(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function cw(e,t){let n=na(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function hw(e,t){let n=na(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw PD(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var LD=/ERROR: [0-9]+:([0-9]+):/g;function PD(e,t){let n=LD.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(`
|
|
`),s=a.length.toString().length+2,i=a.map((h,d)=>v.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,r-1),u=i.slice(r-1,r),c=i.slice(r);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function dw(e){return na(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function pw(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Bd(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function fw(e,t){let n=na(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function mw(e,t){let n=na(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function ND(){return J().getNumber("WEBGL_VERSION")===2?1:4}function Aw(e){return na(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function yw(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function gw(e){return na(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Am(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),xe(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),xe(e,()=>e.enableVertexAttribArray(o)),!0)}function xw(e,t,n){Rw(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function SD(e,t){Rw(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function ww(e,t,n){return na(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function _w(e,t,n){return e.getUniformLocation(t,n)}function bw(e,t,n,r){xe(e,()=>xw(e,t,r)),xe(e,()=>e.uniform1i(n,r))}function TD(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Vd(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function ym(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Gu(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+vw(e,t))}function vw(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function na(e,t,n){let r=xe(e,()=>t());if(r==null)throw new Error(n);return r}function Rw(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(r<e.TEXTURE0||r>n){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function li(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function ui(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Ud(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[li(e),...ui(e)]),t}function kw(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?v.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=li(e),s=2,i=2;return e.length&&([s,i]=ui(e)),r=a*(s/2)*(i/2),v.sizeToSquarishShape(r).map(o=>o*2)}return v.sizeToSquarishShape(r)}function jd(e){return e%2==0}function qu(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||jd(n)&&jd(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&jd(e[0])&&jd(t[0])}var Gd,qd;function Iw(e){if(Gd==null){let t=zr(e);Gd=t.getParameter(t.MAX_TEXTURE_SIZE)}return Gd}function ED(){Gd=null}function CD(){qd=null}function Nw(e){if(qd==null){let t=zr(e);qd=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,qd)}function Sw(e){if(e===0)return 0;let t,n=zr(e);return Xn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Xn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Xn(e,t){return e.getExtension(t)!=null}function gm(e){try{if(zr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function Tw(e){if(e===0)return!1;let t=zr(e);if(e===1){if(!Xn(t,"OES_texture_float"))return!1}else if(!Xn(t,"EXT_color_buffer_float"))return!1;return _m(t)}function Ew(e){if(e===0)return!1;let t=zr(e);if(e===1){if(!Xn(t,"OES_texture_float")||!Xn(t,"WEBGL_color_buffer_float"))return!1}else{if(Xn(t,"EXT_color_buffer_float"))return _m(t);let n="EXT_color_buffer_half_float";if(Xn(t,n)){let r=t.getExtension(n);return WD(t,r)}return!1}return _m(t)}function _m(e){let t=wm(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function WD(e,t){let n=wm(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function Cw(e){return e!==2?!1:zr(e).fenceSync!=null}function ml(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Re=J();Re.registerFlag("HAS_WEBGL",()=>Re.getNumber("WEBGL_VERSION")>0);Re.registerFlag("WEBGL_VERSION",()=>gm(2)?2:gm(1)?1:0);Re.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Re.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Re.get("WEBGL_VERSION")===2);Re.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Re.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Re.registerFlag("WEBGL_PACK",()=>Re.getBool("HAS_WEBGL"));Re.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_CLIP",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);Re.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_PACK_REDUCE",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_LAZILY_UNPACK",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_CONV_IM2COL",()=>Re.getBool("WEBGL_PACK"));Re.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>Iw(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>Nw(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Re.getNumber("WEBGL_VERSION");return e===0?0:Sw(e)});Re.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Re.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Hh.isMobile());Re.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>Tw(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Re.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Re.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Re.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>Ew(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Cw(Re.getNumber("WEBGL_VERSION")));Re.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Re.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Re.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Re.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function un(){let e,t,n,r,a,s,i,o,l,u;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",r="varying",a="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function hi(e,t,n="index"){let r=v.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function bm(e){let t=v.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var Fw=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,BD=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Xu.DENSE;let t=Zu(e),n=un();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${hi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},VD=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Xu.DENSE;let t=Zu(e),n=un();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${hi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},UD=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Kn.DOWNLOAD;let t=un();this.outputShape=e,this.userCode=`
|
|
${Fw}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},HD=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Kn.DOWNLOAD;let t=un();this.outputShape=e,this.userCode=`
|
|
${Fw}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},jD=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=un(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${bm(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${s};
|
|
int c = imod(flatIndex, ${s});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
|
|
vec4 values = ${r.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${r.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}},GD=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=un(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let c=l*2+u;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${u} < ${e[2]}) {
|
|
localCoords[2] += ${u};
|
|
if(localCoords[1] + ${l} < ${e[1]}) {
|
|
localCoords[1] += ${l};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${s};
|
|
c = imod(flatIndex, ${s});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
|
|
values = ${r.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${c}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${c}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${c}] = values[2];
|
|
} else {
|
|
result[${c}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${bm(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${r.output} = ${o};
|
|
}
|
|
`}},Mw={};De(Mw,{bindVertexProgramAttributeStreams:()=>Vw,createBufferFromOutputTexture:()=>jw,createFloat16MatrixTexture:()=>Pw,createFloat16PackedMatrixTexture:()=>Bw,createFloat32MatrixTexture:()=>zw,createIndexBuffer:()=>Dw,createPackedMatrixTexture:()=>Ww,createUnsignedBytesMatrixTexture:()=>Lw,createVertexBuffer:()=>Ow,createVertexShader:()=>$w,downloadByteEncodedFloatMatrixFromOutputTexture:()=>qw,downloadFloat32MatrixFromBuffer:()=>Gw,downloadMatrixFromPackedOutputTexture:()=>Kw,downloadPackedMatrixFromBuffer:()=>Xw,getInternalFormatForFloat16MatrixTexture:()=>km,getInternalFormatForFloat16PackedMatrixTexture:()=>Sm,getInternalFormatForFloat32MatrixTexture:()=>vm,getInternalFormatForPackedMatrixTexture:()=>Nm,getInternalFormatForUnsignedBytesMatrixTexture:()=>Im,uploadDenseMatrixToTexture:()=>Uw,uploadPixelDataToTexture:()=>Hw});function $w(e){let t=un(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return cw(e,n)}function Ow(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return fw(e,t)}function Dw(e){let t=new Uint16Array([0,1,2,2,1,3]);return mw(e,t)}function Yu(e,t,n,r,a,s){yw(t,n);let i=Aw(e),o=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(o,i)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function vm(e){return e.internalFormatFloat}function zw(e,t,n,r){let[a,s]=Ku(t,n);return Yu(e,a,s,vm(r),r.textureFormatFloat,e.FLOAT)}function km(e){return e.internalFormatHalfFloat}function Pw(e,t,n,r){let[a,s]=Ku(t,n);return Yu(e,a,s,km(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function Im(e){return e.downloadTextureFormat}function Lw(e,t,n,r){let[a,s]=Ku(t,n);return Yu(e,a,s,Im(r),e.RGBA,e.UNSIGNED_BYTE)}function Nm(e){return e.internalFormatPackedFloat}function Ww(e,t,n,r){let[a,s]=Al(t,n);return Yu(e,a,s,Nm(r),e.RGBA,e.FLOAT)}function Sm(e){return e.internalFormatPackedHalfFloat}function Bw(e,t,n,r){let[a,s]=Al(t,n);return Yu(e,a,s,Sm(r),e.RGBA,r.textureTypeHalfFloat)}function Vw(e,t,n){let r=0,a=3*4,s=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Am(e,t,"clipSpacePos",n,3,s,r)&&Am(e,t,"uv",n,2,s,a)}function Uw(e,t,n,r,a,s){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Hw(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function jw(e,t,n,r){let a=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function Gw(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function qw(e,t,n,r){let[a,s]=Ku(t,n),i=4,o=new Uint8Array(MD(t*n,i));return xe(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function Xw(e,t,n,r,a,s,i,o){let l=e,u=new Float32Array($D(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function Kw(e,t,n){let r=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var Xd=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Hd(t,e)):this.gl=zr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=ju(this.gl,a),Xn(this.gl,s))this.textureHalfFloatExtension=ju(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Xn(this.gl,r))this.colorBufferHalfFloatExtension=ju(this.gl,r);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Xn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Xn(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=Ow(this.gl),this.indexBuffer=Dw(this.gl),this.framebuffer=gw(this.gl),this.textureConfig=wm(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),zw(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),Pw(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),Lw(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Hw(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),Uw(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Bw(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),Ww(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(ym(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>qw(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return Xw(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Gw(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=jw(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Kw(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=hw(t,e),r=$w(t),a=dw(t);return xe(t,()=>t.attachShader(a,r)),xe(t,()=>t.attachShader(a,n)),pw(t,a),this.debug&&Bd(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=Vw(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Bd(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?ww(this.gl,e,t):_w(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),bw(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=Al(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Bd(this.gl,this.program),Gu(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=ju(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=qD(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Vd(this.gl,e,this.framebuffer),this.debug&&Gu(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Vd(this.gl,this.outputTexture,this.framebuffer),this.debug&&Gu(this.gl)):ym(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;Vd(r,e,this.framebuffer),this.debug&&Gu(r),this.outputTexture=e,xe(r,()=>r.viewport(0,0,t,n)),xe(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function qD(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:Zw}=C;function nz(e,t,n,r){let a=[];e.forEach(p=>{let m=v.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${m>1?`[${m}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(`
|
|
`),i=e.map(p=>XD(p,t,r)).join(`
|
|
`),o=t.texShape,l=un(),u=YD(l),c,h,d=ez(l);return t.isPacked?(c=KD(t.logicalShape,o),h=QD(l)):(c=ZD(t.logicalShape,o),h=JD(l)),r&&(d+=tz),[d,u,h,s,c,i,n].join(`
|
|
`)}function yl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return rz(e);case 1:return az(e);case 2:return sz(e);case 3:return iz(e);case 4:return oz(e);case 5:return lz(e);case 6:return uz(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function Yw(e){switch(e.shapeInfo.logicalShape.length){case 0:return cz(e);case 1:return hz(e);case 2:return dz(e);case 3:return pz(e);default:return fz(e)}}function XD(e,t,n=!1){let r="";n?r+=Yw(e):r+=yl(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=mz(e,t):r+=Az(e,t)),r}function KD(e,t){switch(e.length){case 0:return Jw();case 1:return yz(e,t);case 2:return wz(e,t);case 3:return gz(e,t);default:return xz(e,t)}}function ZD(e,t){switch(e.length){case 0:return Jw();case 1:return _z(e,t);case 2:return Nz(e,t);case 3:return bz(e,t);case 4:return vz(e,t);case 5:return kz(e,t);case 6:return Iz(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function YD(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function JD(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function QD(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function ez(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${Sz}
|
|
${Tz}
|
|
${Ez}
|
|
`}var Sz=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Tz=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,Ez=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,tz=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function Jw(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function yz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function _z(e,t){return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function gz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function bz(e,t){let n=hi(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function xz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+i,o=`b${l}, `+o;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${o});
|
|
}
|
|
`}function vz(e,t){let n=hi(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function kz(e,t){let n=hi(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function Iz(e,t){let n=hi(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function wz(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Nz(e,t){return v.arraysEqual(e,t)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function di(e){return`offset${e}`}function cz(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=un();return`
|
|
vec4 ${n}() {
|
|
return ${r.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function rz(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let[s,i]=e.shapeInfo.texShape,o=di(t);return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function hz(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=e.shapeInfo.texShape,a=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],s=un();return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${a[0]}, ${a[1]}, index);
|
|
return ${s.texture2D}(${t}, uv);
|
|
}
|
|
`}function az(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${gl(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],s=r[1];if(s===1&&a===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let i=di(t);return s===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:a===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${s}, index + ${i});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function dz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=a[0],i=a[1],o=un();if(a!=null&&v.arraysEqual(t,a))return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
|
|
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(t[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function sz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(t,a)){let h=a[0],d=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:i}=v.squeezeShape(t),o=s;if(o.length<t.length){let h=xl(e,o),d=["row","col"];return`
|
|
${yl(h)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${wl(d,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
|
|
${gl(e)}
|
|
}
|
|
`;let l=a[0],u=a[1],c=di(n);return u===1?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${t[1]} + col + ${c};
|
|
vec2 uv = uvFromFlat(${l}, ${u}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function pz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(t[0]===1){let h=t.slice(1),d=[1,2],p=xl(e,h),m=["b","row","col"];return`
|
|
${Yw(p)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${wl(m,d)});
|
|
}
|
|
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),u=l*Math.ceil(t[1]/2),c=un();return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${i}, ${o}, ${u}, ${l}, b, row, col);
|
|
return ${c.texture2D}(${n}, uv);
|
|
}
|
|
`}function iz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=v.squeezeShape(t),l=i;if(l.length<t.length){let m=xl(e,l),f=["row","col","depth"];return`
|
|
${yl(m)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${wl(f,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${s}, 1)));
|
|
${gl(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,c=u[0],h=u[1],d=e.shapeInfo.flatOffset;if(h===a&&d==null)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===s&&d==null)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let p=di(n);return`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${s} + depth + ${p};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function fz(e){let t=e.shapeInfo.logicalShape,n=t.length,r=e.name,a="get"+r.charAt(0).toUpperCase()+r.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],u=Math.ceil(t[n-1]/2),c=u*Math.ceil(t[n-2]/2),h="int b, int row, int col",d=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let m=2;m<n-1;m++)h=`int b${m}, `+h,c*=t[n-m-1],d=`b${m} * ${c} + `+d;let p=un();return`
|
|
vec4 ${a}(${h}) {
|
|
int index = ${d};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
|
|
return ${p.texture2D}(${r}, uv);
|
|
}
|
|
`}function oz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[3],s=t[2]*a,i=t[1]*s,{newShape:o,keptDims:l}=v.squeezeShape(t);if(o.length<t.length){let m=xl(e,o),f=["row","col","depth","depth2"];return`
|
|
${yl(m)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${wl(f,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${s}, ${a}, 1)));
|
|
${gl(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],d=c[1];if(d===i&&u==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(d===a&&u==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${t[1]*t[2]}, ${t[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let p=di(n);return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${s} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${h}, ${d}, index + ${p});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function lz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[4],s=t[3]*a,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let f=xl(e,l),A=["row","col","depth","depth2","depth3"];return`
|
|
${yl(f)}
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${r}(${wl(A,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${a})) +
|
|
depth3;
|
|
${gl(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,d=h[0],p=h[1];if(p===o&&c==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===a&&c==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=di(n);return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${a} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function uz(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:a,keptDims:s}=v.squeezeShape(t);if(a.length<t.length){let A=xl(e,a),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${yl(A)}
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${r}(${wl(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${gl(e)}
|
|
}
|
|
`;let h=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],m=d[1];if(m===c&&h==null)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&h==null)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=di(n);return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function gl(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function mz(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=Zw(e.shapeInfo.logicalShape,t.logicalShape),l=ot(i),u=i-s,c,h=["x","y","z","w","u","v"];s===0?c="":i<2&&o.length>=1?c="coords = 0;":c=o.map(A=>`coords.${h[A+u]} = 0;`).join(`
|
|
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,y)=>`coords.${h[y+u]}`).join(", ");let p="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,f=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)p=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?p=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:p=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let A=s-2,y=s-1;o.indexOf(A)>-1&&o.indexOf(y)>-1?p="return vec4(outputValue.x);":o.indexOf(A)>-1?p="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(p="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${a}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${r}(${d});
|
|
${p}
|
|
}
|
|
`}function Az(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
|
|
float ${a}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=ot(l),c=Zw(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(f=>`coords.${p[f+h]} = 0;`).join(`
|
|
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,A)=>`coords.${p[A+h]}`).join(", "),`
|
|
float ${a}() {
|
|
${u} coords = getOutputCoords();
|
|
${d}
|
|
return get${r}(${m});
|
|
}
|
|
`}function ot(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function xl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function wl(e,t){return t.map(n=>e[n]).join(", ")}function Cz(e,t,n,r){let a=t.userCode,s=n.map((p,m)=>{let f={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(f.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=nz(s,o,a,t.packedInputs),u=e.createProgram(l),c=null,h=e.getUniformLocation(u,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(u,"INFINITY",!1));let d={};for(let p=0;p<t.variableNames.length;p++){let m=t.variableNames[p],f=!1;d[m]=e.getUniformLocation(u,m,f),d[`offset${m}`]=e.getUniformLocation(u,`offset${m}`,f)}return{program:t,source:l,webGLProgram:u,uniformLocations:d,inShapeInfos:i,outShapeInfo:o,infLoc:c,nanLoc:h}}function Qw(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,r)=>{let a=n.logicalShape,s=t[r],i=s.shape;if(!v.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function Rz(e,t,n,r,a){Qw(t.inShapeInfos,n),Qw([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let u=t.program.variableNames[l],c=t.uniformLocations[u],h=t.uniformLocations[`offset${u}`];if(c!=null){if(o.isUniform){if(v.sizeFromShape(o.shape)<2)e.gl.uniform1f(c,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(c,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,c,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function Fz(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:Mz,bincountImpl:e_,bincountReduceImpl:$z,ceilImpl:Oz,concatImpl:Dz,expImpl:zz,expm1Impl:Pz,floorImpl:Lz,gatherV2Impl:Wz,greaterImpl:Bz,lessImpl:Vz,linSpaceImpl:Uz,logImpl:Hz,maxImpl:jz,maximumImpl:Gz,minimumImpl:qz,multiplyImpl:Xz,negImpl:Kz,prodImpl:Zz,rangeImpl:Yz,rsqrtImpl:Jz,simpleAbsImpl:t_,sliceImpl:Qz,stridedSliceImpl:eP,subImpl:tP,tileImpl:nP,topKImpl:rP,transposeImpl:Tm,uniqueImpl:aP}=tm;function n_(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function cn(e,t){return t===1?[e]:n_(e,t)}function sP(e,t){if(e===1)return"rc";let n="";for(let r=0;r<e;r++)n+=t[r],r<e-1&&(n+=",");return n}var uP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=cn("rc",t),r=ot(t),a=iP(t,e,n),s=oP(t,e[e.length-1],e[e.length-2],n),i=lP(e,n);this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
|
|
if(${a}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function cP(e,t){let n=[];for(let r=0;r<=1;r++)for(let a=0;a<=1;a++){let s=`${r===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function iP(e,t,n){if(e===1)return`rc > ${t[0]}`;let r="";for(let a=e-2;a<e;a++)r+=`${n[a]} >= ${t[a]}`,a<e-1&&(r+="||");return r}function oP(e,t,n,r){if(e===1)return"";let a=r.slice(-2);return`
|
|
int r = ${a[0]};
|
|
int c = ${a[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function lP(e,t){let n=e.length,r=cP(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${r[0]}),
|
|
cEdge ? 0. : getA(${r[1]}),
|
|
rEdge ? 0. : getA(${r[2]}),
|
|
rEdge || cEdge ? 0. : getA(${r[3]})`}var r_=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=`
|
|
${a}
|
|
${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${r}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${r>0?"}":""}
|
|
`}this.userCode=`
|
|
${hP(t)}
|
|
${bm(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function hP(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${hi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var dP=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=s_(t,n),a=i_(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=a_(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===en.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===en.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===en.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===en.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===en.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=s_(n,r),s=i_(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=a_(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function pP(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function a_(e,t,n,r,a){let s=fP(t,r),i;if(a){let[l,u]=Al(e[0],e[1]);i=l*u}else{let[l,u]=Ku(e[0],e[1]);i=l*u}let o=pP(n,s);return i*o}function fP(e,t){switch(e){case en.PACKED_2X2_FLOAT32:return Nm(t);case en.PACKED_2X2_FLOAT16:return Sm(t);case en.UNPACKED_FLOAT32:return vm(t);case en.UNPACKED_FLOAT16:return km(t);case en.PACKED_4X1_UNSIGNED_BYTE:return Im(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function mP(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?en.PACKED_2X2_FLOAT32:en.UNPACKED_FLOAT32:e?en.PACKED_2X2_FLOAT16:en.UNPACKED_FLOAT16}function s_(e,t){if(e===Kn.UPLOAD)return en.PACKED_2X2_FLOAT32;if(e===Kn.RENDER||e==null)return mP(t);if(e===Kn.DOWNLOAD||e===Kn.PIXELS)return en.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function i_(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Ma=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Ar="if (isnan(x)) return x;",AP="return x;",o_="return abs(x);",yP="return (x >= 0.0) ? x : (exp(x) - 1.0);",gP=Ar+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,xP=Ar+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Kd="return x;",wP="return x;",_P=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,bP=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,vP=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,_l=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},kP=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=cn("rc",t),r=ot(t),a=sP(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${a});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},IP=Or.whereImpl,NP=1e-7,SP=1e-4,Em={};function TP(e){return e in Em||(Em[e]={}),Em[e]}var EP=128,CP=600;function RP(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*CP/1024/1024}var bl=class extends Kl{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=zr(J().getNumber("WEBGL_VERSION"));this.binaryCache=TP(J().getNumber("WEBGL_VERSION")),this.gpgpu=new Xd(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new dP(this.gpgpu),this.numMBBeforeWarning=RP(),this.texData=new ah(this,Er())}nextDataId(){return bl.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:Kn.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,a){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:Kn.UPLOAD,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new _l(i,Kd):h=new Ma(i,Kd);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let c;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);c=C.mergeRealAndImagArrays(h,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(m=>p.push(m))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new _l(r,Kd):p=new Ma(r,Kd);let m=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let p=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...Zu(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=p[0],f=p[1];c=C.mergeRealAndImagArrays(m,f)}else if(l==null)c=this.getValuesFromTexture(e);else{let p=v.sizeFromShape(r);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}u!=null&&this.disposeIntermediateTensorInfo(u);let h=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Er().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>v.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!lw(n))throw J().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:r}=this.texData.get(e),a=v.sizeFromShape(t);if(J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),d=this.texData.get(h.dataId),p=this.gpgpu.downloadMatrixFromPackedTexture(d.texture,...Zu(t)).subarray(0,a);return this.disposeIntermediateTensorInfo(h),p}let s=J().getBool("WEBGL_PACK")&&r===!0,i=s?Ud(t):t,o=s?new HD(i):new UD(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,a);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return J().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Er().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=EP){let n=this.getCPUBackend();return!J().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(r=>this.texData.get(r.dataId).texture==null&&v.sizeFromShape(r.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return IP(e.shape,t)}packedUnaryOp(e,t,n){let r=new _l(e.shape,t),a=this.compileAndRun(r,[e],n);return Er().makeTensorFromDataId(a.dataId,a.shape,a.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let r=t_(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,r)}if(J().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,o_,e.dtype);let t=new Ma(e.shape,o_),n=this.compileAndRun(t,[e]);return Er().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let a=n.map(s=>v.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return Er().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new kP(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new uP(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[li(e.shape),...ui(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[li(t),...ui(t)],s=new r_(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=Ud(r),i;n?i=new VD(s):i=new BD(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Xu.DENSE){let f=Zu(e.outputShape);i.texShape=f.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),v.sizeFromShape(s.shape)===0)return i.values=v.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(f.dataId);if(A.texture==null){if(!e.packedInputs&&v.sizeFromShape(f.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=f.shape)}else if(!!A.isPacked!=!!e.packedInputs)f=A.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),A=this.texData.get(f.dataId);else if(A.isPacked&&!qu(A.shape,f.shape)){let y=f,g=f.shape;f.shape=A.shape,f=this.packedReshape(f,g),o.push(f),A=this.texData.get(f.dataId),y.shape=g}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let u={shape:s.shape,texData:i,isUniform:!1},c=Fz(e,l,u),h=this.getAndSaveBinary(c,()=>Cz(this.gpgpu,e,l,u)),d=this.activeTimers!=null,p;d&&(p=this.startTimer()),Rz(this.gpgpu,h,l,u,r),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=v.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,r,a=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=B(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(be(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?NP:SP}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let c=t.texShape;if(c==null&&(c=kw(n,o),t.texShape=c),a!=null){let h=Ud(n),d,p=c[1],m=c[0],f=a instanceof Uint8Array;o?([p,m]=Al(c[0],c[1]),d=new GD(h,[m,p],f)):d=new jD(h,[m,p],f);let A=this.makeTensorInfo([m,p],r);f?this.texData.get(A.dataId).usage=Kn.PIXELS:this.texData.get(A.dataId).usage=Kn.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,m,a);let y=!0,g=this.runWebGLProgram(d,[A],r,null,y),b=this.texData.get(g.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=v.now()-u)}else{let h=this.acquireTexture(c,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=FP(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}};bl.nextDataId=0;function FP(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;r<n.length;++r)n[r]=Math.round(e[r]);return n}else throw new Error(`Unknown dtype ${t}`)}var l_="3.2.0";function u_(){J().set("WEBGL_FORCE_F16_TEXTURES",!0)}Hh.isBrowser()&&Zo("webgl",()=>new bl,2);var MP={forceHalfFloat:u_},c_=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,vl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Zd=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Ju=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||v.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${ot(a)} coords = getOutputCoords();
|
|
`,a===1)s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=cn("coords",a);s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[a-2]} + 1) >= ${this.outputShape[a-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[a-1]} + 1) >= ${this.outputShape[a-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function $n(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var $P={kernelName:ms,backendName:"webgl",kernelFunc:$n};function $a(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=$n({inputs:{x:r},backend:n}),l=$n({inputs:{x:a},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var OP={kernelName:ph,backendName:"webgl",kernelFunc:$a},h_="return (a < 0.) ? b * a : a;",d_=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function DP(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ju(d_,a.shape,i.shape):new vl(h_,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var zP={kernelName:As,backendName:"webgl",kernelFunc:DP},p_="return (a < 0.) ? b * a : a;",f_=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function PP(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ju(f_,r.shape,a.shape):new vl(p_,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var LP={kernelName:Ts,backendName:"webgl",kernelFunc:PP},m_="if (isnan(x)) return x;",WP=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,BP=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function qe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let u=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new _l(i.shape,t):c=new Ma(i.shape,e),o.runWebGLProgram(c,[i],l)}}function tn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,c=o;if(r&&l.dtype==="complex64"){let m=c.texData.get(l.dataId),f=c.texData.get(u.dataId),[A,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(b=>{let[_,w]=b,x={dataId:_.dataId,dtype:_.dtype,shape:l.shape},N={dataId:w.dataId,dtype:w.dtype,shape:u.shape},T=new vl(e,l.shape,u.shape);return c.runWebGLProgram(T,[x,N],tr(_.dtype,w.dtype))}),g=$a({inputs:{real:A,imag:y},backend:c});return c.disposeIntermediateTensorInfo(A),c.disposeIntermediateTensorInfo(y),g}let h=s||tr(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&a!=null){let m=c.texData.get(l.dataId),f=c.texData.get(u.dataId),[A,y]=a(l.shape,u.shape,m.values,f.values,h),g=c.makeTensorInfo(y,h),b=c.texData.get(g.dataId);return b.values=A,g}let d=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new Ju(t,l.shape,u.shape,n):p=new vl(e,l.shape,u.shape),c.runWebGLProgram(p,[l,u],h)}}function Yd(e,t=!1){if(e==="linear")return t?wP:AP;if(e==="relu")return t?bP:gP;if(e==="elu")return t?_P:yP;if(e==="relu6")return t?vP:xP;if(e==="prelu")return t?f_:p_;if(e==="leakyrelu")return t?d_:h_;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var A_=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=r?e[1]:e[2],c=Math.ceil(u/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",A="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",b="rc.x";e[0]<t[0]?g=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(b=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${g};
|
|
int batchB = ${b};
|
|
vec4 a = getMatrixA(batchA, ${h});
|
|
vec4 b = getMatrixB(batchB, ${d});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${p[0]} * ${m[0]});
|
|
result += (${p[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${A}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},y_={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},g_=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},x_="return a * b;";function w_(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=C.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),u=new g_(y_.REAL,r.shape,a.shape),c=new g_(y_.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],d=n.runWebGLProgram(u,h,"float32"),p=n.runWebGLProgram(c,h,"float32"),m=$a({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[u,c]=Xz(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(c,s),d=n.texData.get(h.dataId);return d.values=u,h}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Ju(x_,r.shape,a.shape):i=new vl(x_,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var VP={kernelName:ks,backendName:"webgl",kernelFunc:w_};function UP(e,t,n){let r=[li(e.shape),...ui(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[li(t),...ui(t)],i=new r_(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function ye(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=v.sizeFromShape(a.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(a.dataId);return c.isPacked&&!qu(a.shape,l)&&!(c.texture!==null&&qu(c.shape,l))?UP(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var HP={kernelName:No,backendName:"webgl",kernelFunc:ye},__=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${v.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";a%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},jP=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,h=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
}
|
|
`,d="vec4";t==="all"?(i="1.0",h=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,d="bvec4"):t==="any"&&(i="0.0",h=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,d="bvec4");let p="";a%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===2}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===3}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function GP(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function pi(e,t,n,r){let a=GP(e.shape),s=e;for(let i=0;i<a.length;i++){let{inSize:o,windowSize:l,outSize:u}=a[i],c,h;n==="mean"?c=i===0?new __({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new __({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):c=new jP({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),h=s,s=r.runWebGLProgram(c,[s],t),h.dataId!==e.dataId&&r.disposeIntermediateTensorInfo(h)}return s}var XP=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let r=ot(this.rank),a=qP(t);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function qP(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a<e.length;a++)r[e[a]]=n[a];return r.join()}var KP=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=ot(this.rank),a=n_("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=a[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${a[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${a[this.rank-1]};
|
|
if(++${a[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Jd(e,t,n){let r=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new KP(e.shape,t):new XP(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function ZP(e,t,n,r){let a=t,s=e.shape.length,i=v.parseAxisParam(a,e.shape),o=i,l=C.getAxesPermutation(o,s),u=l!=null,c=e;u&&(c=Jd(e,l,r),o=C.getInnerMostAxes(o.length,s)),C.assertAxesAreInnerMostDims("sum",o,s);let[h,d]=C.computeOutAndReduceShapes(c.shape,o),p=h;n&&(p=C.expandShapeToKeepDim(h,i));let m=v.sizeFromShape(d),f=v.sizeFromShape(e.shape)/m,A=ye({inputs:{x:c},attrs:{shape:[f,m]},backend:r}),y=Uh(e.dtype),g=pi(A,y,"sum",r),b=ye({inputs:{x:g},attrs:{shape:p},backend:r});return r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(g),u&&r.disposeIntermediateTensorInfo(c),b}function Cm(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;return ZP(a,s,i,n)}var YP={kernelName:Ps,backendName:"webgl",kernelFunc:Cm};function _n(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{perm:s}=r,i=n,o=a.shape.length,l=new Array(o);for(let c=0;c<l.length;c++)l[c]=a.shape[s[c]];let u;if(i.shouldExecuteOnCPU([a])){let c=i.texData.get(a.dataId).values,h=Tm(c,a.shape,a.dtype,s,l);u=i.makeTensorInfo(l,a.dtype);let d=i.texData.get(u.dataId);d.values=h}else u=Jd(a,s,i);return u}var JP={kernelName:Us,backendName:"webgl",kernelFunc:_n},b_=1e3;function Qd({a:e,b:t,transposeA:n,transposeB:r,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,h=n?e.shape[u-2]:e.shape[u-1],d=r?t.shape[c-1]:t.shape[c-2],p=n?e.shape[u-1]:e.shape[u-2],m=r?t.shape[c-2]:t.shape[c-1],f=e.shape.slice(0,-2),A=t.shape.slice(0,-2),y=v.sizeFromShape(f),g=v.sizeFromShape(A),b=y===g||y===1||g===1;v.assert(u>=2&&c>=2&&b,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${A}).`);let _=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,m]);v.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let w=n?[y,h,p]:[y,p,h],x=r?[g,m,d]:[g,d,m],N=ye({inputs:{x:e},backend:a,attrs:{shape:w}}),T=ye({inputs:{x:t},backend:a,attrs:{shape:x}}),E=[N,T],M=Math.max(y,g),D=n?N.shape[1]:N.shape[2],L=s!=null,W=i!=null,U=l==="leakyrelu",H=l!=null?Yd(l,!0):null,X=L||W||U||H!=null,G;if((p===1||m===1)&&D>b_&&X===!1){let Y=N,ae=T;n&&(Y=_n({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),E.push(Y)),r&&(ae=_n({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),E.push(ae));let te=m!==1,ie=m===1,Q=Y;te&&(Q=ye({inputs:{x:Y},backend:a,attrs:{shape:[M,D,1]}}),E.push(Q));let he=m===1?2:1,oe=ae;ie&&(oe=ye({inputs:{x:ae},backend:a,attrs:{shape:[M,1,D]}}),E.push(oe));let fe=w_({inputs:{a:Q,b:oe},backend:a});G=Cm({inputs:{x:fe},backend:a,attrs:{axis:he,keepDims:!0}}),E.push(fe)}else{let Y=tr(e.dtype,t.dtype),ae=new A_(w,x,[M,p,m],n,r,L,H,W,U),te=[N,T];if(s!=null&&te.push(s),W&&te.push(i),U){let ie=a.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));te.push(ie),E.push(ie)}G=a.runWebGLProgram(ae,te,Y)}let ee=ye({inputs:{x:G},backend:a,attrs:{shape:_}});E.push(G);for(let Y of E)a.disposeIntermediateTensorInfo(Y);return ee}function QP(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r;return Qd({a,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:c})}var eL={kernelName:Hs,backendName:"webgl",kernelFunc:QP},v_="return abs(x);";function tL(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=t_(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new _l(r.shape,v_):a=new Ma(r.shape,v_),n.runWebGLProgram(a,[r],r.dtype)}var nL={kernelName:Bi,backendName:"webgl",kernelFunc:tL},rL=Ar+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,aL=qe({opSnippet:rL}),sL={kernelName:Vi,backendName:"webgl",kernelFunc:aL},iL=Ar+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,oL=qe({opSnippet:iL}),lL={kernelName:Ui,backendName:"webgl",kernelFunc:oL},k_="return a + b;",uL=tn({opSnippet:k_,packedOpSnippet:k_,supportsComplex:!0,cpuKernelImpl:Mz}),cL={kernelName:ga,backendName:"webgl",kernelFunc:uL},hL=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${r};
|
|
setOutput(result);
|
|
}
|
|
`}},dL=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${r};
|
|
setOutput(result);
|
|
}
|
|
`}};function ep(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return $n({inputs:{x:r[0]},backend:n});if(r.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=ep({inputs:r.slice(0,o),backend:n}),u=ep({inputs:r.slice(o),backend:n});return ep({inputs:[l,u],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>tr(o,l)),s=r.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new dL(r[0].shape,s):new hL(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var pL={kernelName:Ja,backendName:"webgl",kernelFunc:ep};function fL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=C.getAxesPermutation(u,o),h=a;c!=null&&(h=_n({inputs:{x:a},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("all",u,o);let[d,p]=C.computeOutAndReduceShapes(h.shape,u),m=v.sizeFromShape(p),f=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=pi(f,f.dtype,"all",n),y;if(i){let g=C.expandShapeToKeepDim(d,l);y=ye({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ye({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var mL={kernelName:lh,backendName:"webgl",kernelFunc:fL};function AL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=C.getAxesPermutation(u,o),h=a;c!=null&&(h=_n({inputs:{x:a},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,o)),C.assertAxesAreInnerMostDims("any",u,o);let[d,p]=C.computeOutAndReduceShapes(h.shape,u),m=v.sizeFromShape(p),f=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=pi(f,f.dtype,"any",n),y;if(i){let g=C.expandShapeToKeepDim(d,l);y=ye({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ye({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var yL={kernelName:uh,backendName:"webgl",kernelFunc:AL},gL=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${r};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${r}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},xL=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=ot(o),u=cn("coords",o),c,h;if(s===1){h=o+1;let N=ot(h);c=`
|
|
${N} sourceLocR = ${N}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${N} sourceLocG = ${N}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${N} sourceLocA = ${N}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${N} sourceLocB = ${N}(${u.join()}, 0);
|
|
--${u[o-2]};`}else h=o,c=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],m=d.map(N=>"int "+N),f=cn("sourceLocR",h-1).concat("inIdx.r"),A=cn("sourceLocG",h-1).concat("inIdx.g"),y=cn("sourceLocB",h-1).concat("inIdx.b"),g=cn("sourceLocA",h-1).concat("inIdx.a"),b=n==="max"?"greaterThan":"lessThan",_=r?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${g.join()})));`,w=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,x=r?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}
|
|
${x}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${p}, sourceLocG${p},
|
|
sourceLocB${p}, sourceLocA${p}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${w};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${_}
|
|
vec4 candidate = ${w};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${b}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function I_(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=C.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new gL(o,n,r==null),u=[t];r!=null&&u.push(r);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let h=I_(e,t,n,c);return e.disposeIntermediateTensorInfo(c),h}function N_(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=C.computeOptimalWindowSize(s),o=new xL(a,i,n,r==null),l=r==null?[t]:[t,r],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let c=N_(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function S_(e,t,n,r){let a=[n];if(C.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=C.computeOutAndReduceShapes(t.shape,a),l=v.sizeFromShape(o),u=ye({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(u);let c=I_(e,u,r);s.push(c);let h=ye({inputs:{x:c},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return N_(e,t,r)}function wL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=_n({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let c=S_(n,l,i[0],"max");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),c}var _L={kernelName:Qa,backendName:"webgl",kernelFunc:wL};function bL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=v.parseAxisParam(s,a.shape),o=C.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=_n({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let c=S_(n,l,i[0],"min");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),c}var vL={kernelName:Jl,backendName:"webgl",kernelFunc:bL},kL=Ar+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,IL=qe({opSnippet:kL}),NL={kernelName:Hi,backendName:"webgl",kernelFunc:IL},SL=Ar+"return log(x + sqrt(x * x + 1.0));",TL=qe({opSnippet:SL}),EL={kernelName:ji,backendName:"webgl",kernelFunc:TL},CL=Ar+`
|
|
return atan(x);
|
|
`,RL=qe({opSnippet:CL}),FL={kernelName:Gi,backendName:"webgl",kernelFunc:RL},ML=WP+`
|
|
return atan(a, b);
|
|
`,$L=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+BP+`
|
|
return result;
|
|
`,OL=tn({opSnippet:ML,packedOpSnippet:$L}),DL={kernelName:Xi,backendName:"webgl",kernelFunc:OL},zL=Ar+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,PL=qe({opSnippet:zL}),LL={kernelName:qi,backendName:"webgl",kernelFunc:PL},Qu=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${N} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${r?a?f:A:`wR * ${h} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let g="max",b=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(b="avgValue / count");let _=Math.floor(s/4)*4,w=s%4,x=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${g}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${p});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${_}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${x}
|
|
}
|
|
|
|
int xC = xCCorner + ${_};
|
|
if (${w===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${x}
|
|
} else if (${w===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${x}
|
|
} else if (${w===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${x}
|
|
}
|
|
}
|
|
setOutput(${b});
|
|
}
|
|
`}},Rm=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",b="0.0";if(g||(b="-1.0 / 1e-20"),n){let E=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${A}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${h}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${E} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let _="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let x=Math.floor(s/4)*4,N=s%4,T=`
|
|
if (${g}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${_}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${A}, ${y});
|
|
const float initializationValue = ${b};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${b});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${x}; wC += 4) {
|
|
int xC = xCCorner + wC * ${h};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${x};
|
|
if (${N===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${N===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${N===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${w});
|
|
}
|
|
}
|
|
`}};function WL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ml(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return $n({inputs:{x:a},backend:n});let h=new Qu(c,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var BL={kernelName:es,backendName:"webgl",kernelFunc:WL};function VL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r,c=[1,1,1],h=C.computePool3DInfo(a.shape,s,i,c,o,l,u),d=new Rm(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var UL={kernelName:Ql,backendName:"webgl",kernelFunc:VL},HL=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,c=l-1-e.padInfo.left,h=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${c});
|
|
const float avgMultiplier = float(${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},jL=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=c-1-e.padInfo.front,m=h-1-e.padInfo.top,f=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${m}, ${f});
|
|
const float avgMultiplier = float(${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${a}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function GL(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=r,h=[1,1,1],d=C.computePool3DInfo(i.shape,o,l,h,u,c),p=new jL(d);return n.runWebGLProgram(p,[a],i.dtype)}var qL={kernelName:hh,backendName:"webgl",kernelFunc:GL};function XL(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;ml([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=C.computePool2DInfo(i.shape,o,l,1,u),h=new HL(c);return n.runWebGLProgram(h,[a],i.dtype)}var KL={kernelName:ch,backendName:"webgl",kernelFunc:XL};function ZL(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return Qd({a,b:s,transposeA:i,transposeB:o,backend:n})}var YL={kernelName:ts,backendName:"webgl",kernelFunc:ZL},JL=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},QL=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},eW=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;v.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[r,a,s],c=null;i!=null&&(c=i.shape,u.push(i));let h=null;o!=null&&(h=o.shape,u.push(o));let d=J().getBool("WEBGL_PACK_NORMALIZATION")?new QL(r.shape,a.shape,s.shape,c,h,l):new JL(r.shape,a.shape,s.shape,c,h,l);return t.runWebGLProgram(d,u,u[0].dtype)},tW={kernelName:ps,backendName:"webgl",kernelFunc:eW},rW=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ot(this.rank),n=`uniform int start[${this.rank}];`,r=nW(this.rank),a,s=e.map((i,o)=>`sourceLoc.${Fm[o]} = start[${o}] + coords.${Fm[o]};`);a=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${a}
|
|
setOutput(getSource(${r}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},Fm=["x","y","z","w","u","v"];function nW(e){if(e===1)return"sourceLoc";if(e<=6)return Fm.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var aW=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=ot(this.rank),n=cn("coords",this.rank),r=cn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${r[this.rank-1]};
|
|
result.y = ${s};
|
|
--${r[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${r[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${r[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${r[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function sW(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=on.computeFlatOffset(t,v.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function ec(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=on.parseSliceParams(a,s,i);if(on.assertParamsValid(a,o,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=Qz(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:u}=n.texData.get(a.dataId),c=on.isSliceContinous(a.shape,o,l);if(u||!c){let h=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new aW(l):new rW(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),sW(a,o,l,n)}var iW={kernelName:Co,backendName:"webgl",kernelFunc:ec},oW=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;v.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,b)=>g*b),l=C.getReshaped(a.shape,s,o),u=C.getPermuted(l.length,s.length),c=C.getReshapedPermuted(a.shape,s,o),h=C.getSliceBeginCoords(i,s.length),d=C.getSliceSize(c,i,s.length),p=[],m=ye({inputs:{x:a},backend:n,attrs:{shape:l}}),f=_n({inputs:{x:m},backend:n,attrs:{perm:u}}),A=ye({inputs:{x:f},backend:n,attrs:{shape:c}}),y=ec({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(m),p.push(f),p.push(A),p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},lW={kernelName:eu,backendName:"webgl",kernelFunc:oW};function uW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),u=e_(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var cW={kernelName:dh,backendName:"webgl",kernelFunc:uW},hW="return float(a != b);",T_=tn({opSnippet:hW,dtype:"bool"}),dW={kernelName:go,backendName:"webgl",kernelFunc:T_};function tc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return $n({inputs:{x:a.complexTensorInfos.real},backend:n})}var pW={kernelName:Mh,backendName:"webgl",kernelFunc:tc},fW="return float(int(x));";function mW(e,t){let n=new Ma(e.shape,fW),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function Mm(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return $n({inputs:{x:a},backend:n});let i=Et(a.shape),o=Mm({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=$a({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=tc({inputs:{input:a},backend:n}),o=Mm({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=$n({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return mW(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=T_({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var AW={kernelName:ns,backendName:"webgl",kernelFunc:Mm},E_="return ceil(x);",yW=qe({opSnippet:E_,packedOpSnippet:E_,cpuKernelImpl:Oz}),gW={kernelName:rs,backendName:"webgl",kernelFunc:yW},xW=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},wW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function _W(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;J().getBool("WEBGL_PACK_CLIP")?o=new wW(a.shape):o=new xW(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var bW={kernelName:xa,backendName:"webgl",kernelFunc:_W},vW=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function C_(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function kW(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new vW(r.shape),i=[C_(r,a.complexTensorInfos.real),C_(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var IW={kernelName:tu,backendName:"webgl",kernelFunc:kW},NW=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let r=t.length,a=t[t.length-1];n.push(`else setOutput(getT${r}(yR, yC-${a}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},SW=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,r=n.length,a=ot(r),s=cn("coords",r),i=["x","y","z","w","u","v"].slice(0,r);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),c=i.join(),h=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${u.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];h+=`
|
|
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${tp(i,l,f)}),
|
|
vec2(${tp(u,l,f)}));
|
|
}`}let d=o.length,p=o[o.length-1];h+=`
|
|
return getChannel(
|
|
getT${d}(${tp(i,l,p)}),
|
|
vec2(${tp(u,l,p)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${h}
|
|
}
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[r-1]} = ${s[r-1]} + 1;
|
|
if (${s[r-1]} < ${n[r-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[r-2]} = ${s[r-2]} + 1;
|
|
if (${s[r-2]} < ${n[r-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[r-1]} = ${s[r-1]} - 1;
|
|
if (${s[r-2]} < ${n[r-2]} &&
|
|
${s[r-1]} < ${n[r-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function tp(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function np(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return $n({inputs:{x:a.complexTensorInfos.imag},backend:n})}var TW={kernelName:Nh,backendName:"webgl",kernelFunc:np};function kl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(m=>tc({inputs:{input:m},backend:n})),c=e.map(m=>np({inputs:{input:m},backend:n})),h=kl(u,t,n),d=kl(c,t,n),p=$a({inputs:{real:h,imag:d},backend:n});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),c.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(r==="string"){let{tensors2D:u,outShape:c}=R_(e,t,n),h=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),d=u[0].shape[0]===1,p=Dz(h,c,r,d),m=C.computeOutShape(e.map(A=>A.shape),t),f=n.makeTensorInfo(m,r,p);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),f}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),c=kl(e.slice(0,u),t,n),h=kl(e.slice(u),t,n),d=kl([c,h],t,n);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),d}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new SW(e.map(c=>c.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:a,outShape:s}=R_(e,t,n),i=new NW(a.map(u=>u.shape)),o=n.runWebGLProgram(i,a,r);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let l=ye({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function R_(e,t,n){let r=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ye({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function F_(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=v.parseAxisParam(a,t[0].shape)[0],i=C.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>v.sizeFromShape(u.shape)>0);if(o.length===1)return $n({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return C.assertParamsConsistent(l,s),kl(o,s,n)}var EW={kernelName:Ki,backendName:"webgl",kernelFunc:F_},M_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",A=f?1:2,y=f?2:3,g=f?3:1,b="",_="";n&&(r?b=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?b=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:b=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,_="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${b}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${g}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${A}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${p}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${p}) *
|
|
getW(wR, wC, ${p}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${p}, xR, xC) *
|
|
getW(wR, wC, ${p}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${p}, d2),
|
|
getW(wR, wC, ${p} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${p}),
|
|
getX(batch, xR, xC, ${p} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${p}, xR, xC),
|
|
getX(batch, ${p} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${p}, d2),
|
|
getW(wR, wC, ${p} + 1, d2),
|
|
getW(wR, wC, ${p} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${p}),
|
|
getX(batch, xR, xC, ${p} + 1),
|
|
getX(batch, xR, xC, ${p} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${p}, xR, xC),
|
|
getX(batch, ${p} + 1, xR, xC),
|
|
getX(batch, ${p} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${w}
|
|
${_}
|
|
setOutput(result);
|
|
}
|
|
`}},CW=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${a}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${r});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${p}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${p}) *
|
|
getW(wF, wR, wC, ${p}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${p}),
|
|
getX(batch, xF, xR, xC, ${p} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${p}, d2),
|
|
getW(wF, wR, wC, ${p} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${p}),
|
|
getX(batch, xF, xR, xC, ${p} + 1),
|
|
getX(batch, xF, xR, xC, ${p} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${p}, d2),
|
|
getW(wF, wR, wC, ${p} + 1, d2),
|
|
getW(wF, wR, wC, ${p} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},RW=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:u,dilationHeight:c,dataFormat:h}=n,{left:d,top:p}=o,m=a*r,f=un(),A=h==="channelsLast",y=A?0:1,g=A?1:2,b="";for(let _=0;_<=1;_++)for(let w=0;w<=1;w++)b+=`
|
|
blockIndex = rc.y + ${w};
|
|
pos = rc.x + ${_};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${l})) * ${i} - ${p};
|
|
d0 = offsetY + ${c} * (pos / ${m});
|
|
|
|
if(d0 < ${t[y]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.);
|
|
d1 = offsetX + ${u} * (int(mod(float(pos), ${m}.) / ${a}.));
|
|
|
|
if(d1 < ${t[g]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${a}.));
|
|
|
|
if (${A}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${_*2+w}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${_*2+w}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${b}
|
|
|
|
${f.output} = result;
|
|
}
|
|
`}};function $_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=r.texData.get(e.dataId),c=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",m=!1,f=!1,A,y=[],g=(h===1||d===1)&&c>b_,b=l[2]%2!=0&&!!u.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!b){let _=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],w=ye({inputs:{x:e},backend:r,attrs:{shape:[1,_,n.inChannels]}}),x=ye({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=Qd({a:w,b:x,transposeA:m,transposeB:f,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=ye({inputs:{x:N},backend:r,attrs:{shape:n.outShape}}),y.push(w),y.push(x),y.push(N)}else{let _=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),w={dataId:e.dataId,shape:[1,_,n.inChannels],dtype:e.dtype},x=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(qu(u.shape,w.shape),()=>`packed reshape ${u.shape} to ${w.shape} isn't free`);let N=ye({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(N);let T=Qd({a:w,b:N,backend:r,transposeA:m,transposeB:f,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),E=r.texData.get(T.dataId);v.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=x,E.shape=n.outShape,A=$n({inputs:{x:T},backend:r}),A.shape=n.outShape,y.push(T)}for(let _ of y)r.disposeIntermediateTensorInfo(_);return A}function O_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:h,outHeight:d,dataFormat:p}=n,m=p==="channelsLast",f=l*u*c,A=d*h,y=[f,A],g=!0,b=!1,_=[],w=ye({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),x=ye({inputs:{x:t},backend:r,attrs:{shape:[1,f,v.sizeFromShape(t.shape)/f]}});_.push(w),_.push(x);let N=new RW(y,w.shape,n),T=r.runWebGLProgram(N,[w],"float32"),E=ye({inputs:{x:T},backend:r,attrs:{shape:[1,y[0],y[1]]}});_.push(T),_.push(E);let M=a!=null,D=s!=null,L=o==="leakyrelu",W=o?Yd(o,!0):null,U=new A_(E.shape,x.shape,[1,A,n.outChannels],g,b,M,W,D,L),H=[E,x];if(a&&H.push(a),D&&H.push(s),L){let Y=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));H.push(Y),_.push(Y)}let X=r.runWebGLProgram(U,H,"float32"),G=m?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=ye({inputs:{x:X},backend:r,attrs:{shape:G}});_.push(X);for(let Y of _)r.disposeIntermediateTensorInfo(Y);return ee}function FW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r,h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=$_({x:a,filter:s,convInfo:d,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=O_({x:a,filter:s,convInfo:d,backend:n});else{let f=new M_(d);p=n.runWebGLProgram(f,[a,s],"float32")}let m=ye({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),m}var MW={kernelName:as,backendName:"webgl",kernelFunc:FW},$W=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${r};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},OW=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,c=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},DW=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${a};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${r} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},zW=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=r-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${a}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${r}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${r} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function PW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=r,h=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(a.shape,c,i,1,o,u,!1,h),p=new $W(d);return n.runWebGLProgram(p,[a,s],"float32")}var LW={kernelName:fh,backendName:"webgl",kernelFunc:PW};function WW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=r,h=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(i,s.shape,o,1,l,c,!1,h),p=new OW(d);return n.runWebGLProgram(p,[a,s],"float32")}var BW={kernelName:ss,backendName:"webgl",kernelFunc:WW};function VW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,u=C.computeConv3DInfo(a.shape,s.shape,i,l,o),c=new CW(u);return n.runWebGLProgram(c,[a,s],"float32")}var UW={kernelName:nu,backendName:"webgl",kernelFunc:VW};function HW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,u=C.computeConv3DInfo(a.shape,l,i,1,o),c=new DW(u);return n.runWebGLProgram(c,[a,s],"float32")}var jW={kernelName:mh,backendName:"webgl",kernelFunc:HW};function GW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,u=C.computeConv3DInfo(l,s.shape,o,1,i),c=new zW(u);return n.runWebGLProgram(c,[a,s],"float32")}var qW={kernelName:Ah,backendName:"webgl",kernelFunc:GW},XW=m_+`
|
|
return cos(x);
|
|
`,KW=qe({opSnippet:XW}),ZW={kernelName:is,backendName:"webgl",kernelFunc:KW},YW=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,JW=qe({opSnippet:YW}),QW={kernelName:Zi,backendName:"webgl",kernelFunc:JW},eB=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[c,h]=n;this.outputShape=[u,c,h,l];let d=r==="bilinear"?1:0,[p,m]=[`${i-1}.0`,`${o-1}.0`],[f,A,y]=c>1?[`${(i-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[g,b,_]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${g});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${A};
|
|
float width_scale = ${b};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${p} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
float in_x = ${_};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${d} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},tB=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,c=new eB(a.shape,s.shape,o,l,u);return n.runWebGLProgram(c,[a,s,i],"float32")},nB={kernelName:Yi,backendName:"webgl",kernelFunc:tB},P_=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${D_(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${ot(r)} coords = getOutputCoords();
|
|
int end = ${z_(r,"coords")};
|
|
float val = ${a};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${z_(r,"coords")} = idx;
|
|
val += getX(${D_(r,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function D_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function z_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function rB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,u=C.getAxesPermutation([s],l),c=a;u!=null&&(c=_n({inputs:{x:a},backend:n,attrs:{perm:u}}));let h=C.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=c.shape[h],p=$n({inputs:{x:c},backend:n});for(let m=0;m<=Math.ceil(Math.log2(d))-1;m++){let f=new P_(c.shape,!1,o),A=f.getCustomSetupFunc(m),y=p;p=n.runWebGLProgram(f,[p],p.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let m=new P_(c.shape,i,o),f=p;p=n.runWebGLProgram(m,[p],p.dtype),n.disposeIntermediateTensorInfo(f)}if(u!=null){let m=C.getUndoAxesPermutation(u),f=_n({inputs:{x:p},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),f}return p}var aB={kernelName:os,backendName:"webgl",kernelFunc:rB};function sB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),u=n.readSync(s.dataId),c=e_(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(a.shape.length===2){let l=n.bufferSync(a),u=n.bufferSync(s),c=$z(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var iB={kernelName:yh,backendName:"webgl",kernelFunc:sB},oB=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function lB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],c=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=u*s,p=c/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=new oB(m,s,i);return n.runWebGLProgram(f,[a],a.dtype)}var uB={kernelName:Ji,backendName:"webgl",kernelFunc:lB},L_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,A="",y="";n&&(r?A=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?A=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:A=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,y="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${c});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${f};
|
|
int q = d2 - d1 * ${f};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${h};
|
|
|
|
if (xR < 0 || xR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${g}
|
|
${y}
|
|
setOutput(result);
|
|
}
|
|
`}},W_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,m=e.filterWidth,f=m,A="int xR; int xC; int xCOffset;";for(let _=0;_<p;_++)for(let w=0;w<m;w++)A+=`
|
|
vec4 xTexelR${_}C${w*2} = vec4(0.);
|
|
vec4 wR${_}C${w} = vec4(0.);
|
|
vec4 xR${_}C${w} = vec4(0.);`;for(let _=0;_<p;_++)for(let w=0;w<f;w++){let x=w*2;if(A+=`
|
|
xR = xRCorner + ${_*h};
|
|
xC = xCCorner + ${x*d};
|
|
`,c===1){if(x<m&&(l%2==1?A+=`
|
|
xCOffset = xC + 1;
|
|
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${_}C${x} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
xTexelR${_}C${x}.zw = vec2(0.);
|
|
}
|
|
} else {
|
|
xTexelR${_}C${x} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + 1 - 2;
|
|
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
vec4 previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
previous.zw = vec2(0.);
|
|
}
|
|
|
|
xR${_}C${x} = vec4(previous.zw, xTexelR${_}C${x}.xy);
|
|
} else {
|
|
xR${_}C${x} = vec4(0, 0, xTexelR${_}C${x}.xy);
|
|
}
|
|
`:A+=`
|
|
if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) {
|
|
xTexelR${_}C${x} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${_}C${x} = vec4(0.);
|
|
}
|
|
|
|
xR${_}C${x} = xTexelR${_}C${x};
|
|
`,x+1<m)){let N=l%2==0?v.nearestLargerEven(d):d;d%2==0&&l%2==1||d%2!=0&&l%2!=1?(A+=`
|
|
xCOffset = xC + ${l%2} + ${N};
|
|
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${_}C${x+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
`,d>1&&(A+=`
|
|
xCOffset -= 2;
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${_}C${x} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${_}C${x} = vec4(0.);
|
|
}
|
|
`),A+=`
|
|
xR${_}C${x+1} = vec4(
|
|
xTexelR${_}C${x}.zw, xTexelR${_}C${x+2}.xy);
|
|
`):A+=`
|
|
xCOffset = xC + ${N};
|
|
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${_}C${x+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
|
|
xR${_}C${x+1} = xTexelR${_}C${x+2};
|
|
`}}else x<m&&(A+=`
|
|
if(xR >= 0 && xR < ${s}) {
|
|
`,l%2==1?(A+=`
|
|
xCOffset = xC + 1 - ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${_}C${x} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${_}C${x} = vec4(0.);
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${i}) {
|
|
xTexelR${_}C${x+2} = getX(batch, xR, xC + 1, d1);
|
|
} else {
|
|
xTexelR${_}C${x+2} = vec4(0.);
|
|
}
|
|
|
|
xR${_}C${x} = vec4(
|
|
xTexelR${_}C${x}.zw, xTexelR${_}C${x+2}.zw);
|
|
`,x+1<m&&(A+=`
|
|
vec4 final = vec4(0.);
|
|
xCOffset = xC + 1 + ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xR${_}C${x+1} = vec4(xTexelR${_}C${x+2}.xy, final.xy);
|
|
`)):(A+=`
|
|
if(xC >= 0 && xC < ${i}) {
|
|
xTexelR${_}C${x} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${_}C${x} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${_}C${x+2} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${_}C${x+2} = vec4(0.);
|
|
}
|
|
|
|
xR${_}C${x} = vec4(
|
|
xTexelR${_}C${x}.xy, xTexelR${_}C${x+2}.xy);
|
|
`,x+1<m&&(A+=`
|
|
xR${_}C${x+1} = vec4(
|
|
xTexelR${_}C${x}.zw, xTexelR${_}C${x+2}.zw);
|
|
`)),A+="}");x<m&&(A+=`
|
|
vec4 wTexelR${_}C${x} = getW(${_}, ${x}, d1, q);
|
|
wR${_}C${x} = vec4(wTexelR${_}C${x}.xz, wTexelR${_}C${x}.xz);
|
|
`,x+1<m&&(A+=`
|
|
vec4 wTexelR${_}C${x+1} = getW(${_}, ${x+1}, d1, q);
|
|
wR${_}C${x+1} =
|
|
vec4(wTexelR${_}C${x+1}.xz, wTexelR${_}C${x+1}.xz);`))}for(let _=0;_<p;_++)for(let w=0;w<m;w++)A+=`dotProd += xR${_}C${w} * wR${_}C${w};`;let y="",g="";n&&(r?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?y=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:y=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,g="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${y}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${c});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2;
|
|
int q = 0;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
vec4 dotProd = vec4(0.);
|
|
|
|
${A}
|
|
|
|
vec4 result = dotProd;
|
|
${b}
|
|
${g}
|
|
setOutput(result);
|
|
}
|
|
`}};function cB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=r,c=l;c==null&&(c=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=C.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!0),d;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new W_(h):d=new L_(h),n.runWebGLProgram(d,[a,s],"float32")}var hB={kernelName:ls,backendName:"webgl",kernelFunc:cB},dB=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${r};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},pB=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function fB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=r,h=C.computeConv2DInfo(a.shape,c,i,o,l,u,!0),d=new dB(h);return n.runWebGLProgram(d,[a,s],"float32")}var mB={kernelName:gh,backendName:"webgl",kernelFunc:fB};function AB(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=r,h=C.computeConv2DInfo(c,s.shape,i,o,l,u,!0),d=new pB(h);return n.runWebGLProgram(d,[a,s],"float32")}var yB={kernelName:xh,backendName:"webgl",kernelFunc:AB},gB=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function xB(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=v.sizeFromShape(r.shape),i=ye({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new gB(s),l=n.runWebGLProgram(o,[i],i.dtype),u=ye({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var wB={kernelName:wh,backendName:"webgl",kernelFunc:xB},_B=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:c,left:h}=r;this.userCode=`
|
|
const ivec2 strides = ivec2(${a}, ${s});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function bB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,u=C.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),c,h=new _B(u);c=n.runWebGLProgram(h,[a,s],"float32");let d=ye({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var vB={kernelName:ru,backendName:"webgl",kernelFunc:bB},kB="return (x >= 0.0) ? x : (exp(x) - 1.0);",IB=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,NB=qe({opSnippet:kB,packedOpSnippet:IB}),SB={kernelName:Qi,backendName:"webgl",kernelFunc:NB},TB="return (b >= 1.0) ? a : a * (b + 1.0);",EB=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,CB=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ju(EB,r.shape,a.shape):new vl(TB,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},RB={kernelName:vh,backendName:"webgl",kernelFunc:CB},FB=`
|
|
return vec4(equal(a, b));
|
|
`,MB="return float(a == b);",$B=tn({opSnippet:MB,packedOpSnippet:FB,dtype:"bool"}),OB={kernelName:to,backendName:"webgl",kernelFunc:$B},DB=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${C.ERF_P};
|
|
float a1 = ${C.ERF_A1};
|
|
float a2 = ${C.ERF_A2};
|
|
float a3 = ${C.ERF_A3};
|
|
float a4 = ${C.ERF_A4};
|
|
float a5 = ${C.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,zB=qe({opSnippet:DB}),PB={kernelName:eo,backendName:"webgl",kernelFunc:zB},B_="return exp(x);",V_=qe({opSnippet:B_,packedOpSnippet:B_,cpuKernelImpl:zz}),LB={kernelName:cs,backendName:"webgl",kernelFunc:V_};function $m(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(v.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),ye({inputs:{x:s},backend:r,attrs:{shape:o}})}var WB={kernelName:no,backendName:"webgl",kernelFunc:$m},U_="return exp(x) - 1.0;",BB=qe({opSnippet:U_,packedOpSnippet:U_,cpuKernelImpl:Pz}),VB={kernelName:ro,backendName:"webgl",kernelFunc:BB},H_=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${a};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${r});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${r}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function j_(e,t,n){let r=n.texData.get(e.dataId),a=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=ye({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new H_("real",l,t),c=new H_("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(u,h,"float32"),p=n.runWebGLProgram(c,h,"float32"),m=$a({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let f=ye({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function UB(e){let{inputs:t,backend:n}=e,{input:r}=t;return j_(r,!1,n)}var HB={kernelName:kh,backendName:"webgl",kernelFunc:UB},jB=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Om(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||v.inferDtype(a),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new jB(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var GB={kernelName:au,backendName:"webgl",kernelFunc:Om},qB=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},XB={kernelName:ao,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new qB(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},G_="return floor(x);",KB=qe({opSnippet:G_,packedOpSnippet:G_,cpuKernelImpl:Lz}),ZB={kernelName:hs,backendName:"webgl",kernelFunc:KB},YB=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,JB=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,QB=tn({opSnippet:YB,packedOpSnippet:JB,dtype:"int32"}),eV={kernelName:ds,backendName:"webgl",kernelFunc:QB},tV=class{constructor(e){this.variableNames=["A"];let t=un(),[n,r]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},nV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=un(),[n,r]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${r}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},aV={kernelName:Ph,backendName:"webgl",kernelFunc:rV},Il;function rV(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,l=typeof ImageBitmap!="undefined"&&a instanceof ImageBitmap,[u,c]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],h=[c,u],d=[c,u,s];(o||i||l)&&(Il==null&&(Il=document.createElement("canvas").getContext("2d")),Il.canvas.width=u,Il.canvas.height=c,Il.drawImage(a,0,0,u,c),a=Il.canvas);let p=n.makeTensorInfo(h,"int32");n.texData.get(p.dataId).usage=Kn.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),a);let m=J().getBool("WEBGL_PACK")?new nV(d):new tV(d),f=n.runWebGLProgram(m,[p],"int32");return n.disposeData(p.dataId),f}function sV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=r,f=C.convertConv2DDataFormat(c),A=C.computeConv2DInfo(a.shape,s.shape,l,h,u,d,!1,f),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=$_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)y=O_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:m});else{let _=i!=null,w=o!=null,x=p==="leakyrelu",N=p?Yd(p,!1):null,T=new M_(A,_,N,w,x),E=[a,s];if(i&&E.push(i),o&&E.push(o),x){let M=n.makeTensorInfo([],"float32",v.createScalarValue(m,"float32"));E.push(M),g.push(M)}y=n.runWebGLProgram(T,E,"float32")}let b=ye({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(_=>n.disposeIntermediateTensorInfo(_)),b}var iV={kernelName:js,backendName:"webgl",kernelFunc:sV};function oV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,m=[],f=c;f==null&&(f=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let A=C.computeConv2DInfo(a.shape,s.shape,l,f,u,h,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=d?Yd(d,y):null,b=[a,s],_=i!=null,w=o!=null,x=d==="leakyrelu";if(_&&b.push(i),w&&b.push(o),x){let E=n.makeTensorInfo([],"float32",v.createScalarValue(p,"float32"));b.push(E),m.push(E)}let N;y?N=new W_(A,_,g,w,x):N=new L_(A,_,g,w,x);let T=n.runWebGLProgram(N,b,"float32");return m.forEach(E=>n.disposeIntermediateTensorInfo(E)),T}var lV={kernelName:Gs,backendName:"webgl",kernelFunc:oV},uV=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=ot(t.length),a=ot(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${r} strides = ${r}(${this.strides});
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function cV(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,u,c]=C.prepareAndValidate(r,a),h=ye({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=ye({inputs:{x:r},backend:n,attrs:{shape:[v.sizeFromShape(r.shape)/u,u]}}),p=new uV(i,c,[l,u]),m=n.runWebGLProgram(p,[d,h],d.dtype),f=ye({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(m),f}var hV={kernelName:io,backendName:"webgl",kernelFunc:cV},pV=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ot(this.rank),r=dV(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function dV(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;a<e.length;a++)a===2?r.push("int(getIndices(resRC.x, resRC.z))"):r.push(`${n[a]}`);return r.join()}function fV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r,l=v.parseAxisParam(i,a.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),c=v.sizeFromShape(s.shape),h=[],d=ye({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),p=ye({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});h.push(d),h.push(p);let m=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([a,s])||a.dtype==="string"){let g=n.bufferSync(p),b=n.bufferSync(d),_=Wz(b,g,m);return h.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(u.outputShape,_.dtype,_.values)}let f=new pV(d.shape,m),A=n.runWebGLProgram(f,[d,p],d.dtype);h.push(A);let y=ye({inputs:{x:A},backend:n,attrs:{shape:u.outputShape}});return h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var mV={kernelName:so,backendName:"webgl",kernelFunc:fV},AV="return float(a > b);",yV=`
|
|
return vec4(greaterThan(a, b));
|
|
`,gV=tn({opSnippet:AV,packedOpSnippet:yV,cpuKernelImpl:Bz,dtype:"bool"}),xV={kernelName:oo,backendName:"webgl",kernelFunc:gV},wV="return float(a >= b);",_V=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,bV=tn({opSnippet:wV,packedOpSnippet:_V,dtype:"bool"}),vV={kernelName:fs,backendName:"webgl",kernelFunc:bV};function kV(e){let{inputs:t,backend:n}=e,{input:r}=t;return j_(r,!0,n)}var IV={kernelName:Ih,backendName:"webgl",kernelFunc:kV},NV="return float(!isnan(x) && !isinf(x));",SV=qe({opSnippet:NV,dtype:"bool"}),TV={kernelName:lo,backendName:"webgl",kernelFunc:SV},EV="return float(isinf(x));",CV=qe({opSnippet:EV,dtype:"bool"}),RV={kernelName:uo,backendName:"webgl",kernelFunc:CV},FV="return float(isnan(x));",MV=qe({opSnippet:FV,dtype:"bool"}),$V={kernelName:co,backendName:"webgl",kernelFunc:MV},OV="return float(a < b);",DV=`
|
|
return vec4(lessThan(a, b));
|
|
`,zV=tn({opSnippet:OV,packedOpSnippet:DV,cpuKernelImpl:Vz,dtype:"bool"}),PV={kernelName:ho,backendName:"webgl",kernelFunc:zV},LV="return float(a <= b);",WV=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,BV=tn({opSnippet:LV,packedOpSnippet:WV,dtype:"bool"}),VV={kernelName:po,backendName:"webgl",kernelFunc:BV};function UV(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=Uz(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var HV={kernelName:Sh,backendName:"webgl",kernelFunc:UV},jV=`if (x < 0.0) return NAN;
|
|
return log(x);`,GV=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,qV=qe({opSnippet:jV,packedOpSnippet:GV,cpuKernelImpl:Hz}),XV={kernelName:ys,backendName:"webgl",kernelFunc:qV},KV="return log(1.0 + x);",ZV=qe({opSnippet:KV}),YV={kernelName:fo,backendName:"webgl",kernelFunc:ZV},JV="return float(a >= 1.0 && b >= 1.0);",QV=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,eU=tn({opSnippet:JV,packedOpSnippet:QV,dtype:"bool"}),tU={kernelName:mo,backendName:"webgl",kernelFunc:eU},nU="return float(!(x >= 1.0));",rU=qe({opSnippet:nU}),aU={kernelName:su,backendName:"webgl",kernelFunc:rU},sU="return float(a >= 1.0 || b >= 1.0);",iU=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,oU=tn({opSnippet:sU,packedOpSnippet:iU,dtype:"bool"}),lU={kernelName:iu,backendName:"webgl",kernelFunc:oU},uU=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},cU=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},hU=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,u=J().getBool("WEBGL_PACK_NORMALIZATION")?new cU(a.shape,s,i,o,l):new uU(a.shape,s,i,o,l);return n.runWebGLProgram(u,[a],a.dtype)},dU={kernelName:ou,backendName:"webgl",kernelFunc:hU},pU=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${r}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${r})
|
|
* float(${a})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${a});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},fU=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=r,h=new pU(a.shape,o,l,u,c);return n.runWebGLProgram(h,[a,s,i],a.dtype)},mU={kernelName:Th,backendName:"webgl",kernelFunc:fU};function AU(e,t,n,r){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=ye({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=pi(i,e.dtype,"max",r),l=ye({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function q_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=C.getAxesPermutation(u,o),h=c!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let g=n.texData.get(p.dataId).values,b=new Array(o);for(let x=0;x<b.length;x++)b[x]=a.shape[c[x]];let _=Tm(g,a.shape,a.dtype,c,b);p=n.makeTensorInfo(b,a.dtype);let w=n.texData.get(p.dataId);w.values=_}else p=Jd(a,c,n);u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("max",u,o);let[m,f]=C.computeOutAndReduceShapes(p.shape,u),A=m;i&&(A=C.expandShapeToKeepDim(m,l));let y;if(d){let g=n.texData.get(p.dataId).values,b=jz(g,v.sizeFromShape(f),A,a.dtype);y=n.makeTensorInfo(A,a.dtype);let _=n.texData.get(y.dataId);_.values=b}else y=AU(p,f,A,n);return h&&n.disposeIntermediateTensorInfo(p),y}var yU={kernelName:gs,backendName:"webgl",kernelFunc:q_},gU=c_+`
|
|
return max(a, b);
|
|
`,xU=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Zd+`
|
|
return result;
|
|
`,wU=tn({opSnippet:gU,packedOpSnippet:xU,cpuKernelImpl:Gz}),_U={kernelName:xs,backendName:"webgl",kernelFunc:wU};function bU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;ml(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=C.computePool2DInfo(a.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return $n({inputs:{x:a},backend:n});let h=new Qu(c,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var vU={kernelName:ws,backendName:"webgl",kernelFunc:bU};function kU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=r,c=[1,1,1],h=C.computePool3DInfo(a.shape,s,i,c,o,u,l),d=new Rm(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var IU={kernelName:lu,backendName:"webgl",kernelFunc:kU},NU=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${a};
|
|
wR += ${r}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},SU=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=u-1-e.padInfo.left,p=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${h}, ${d});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${a}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${p} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function TU(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=r,h=[1,1,1],d=C.computePool3DInfo(i.shape,o,l,h,u,c),p=new Rm(d,"max",!0),m=n.runWebGLProgram(p,[i],i.dtype),f=new SU(d),A=n.runWebGLProgram(f,[a,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var EU={kernelName:Ch,backendName:"webgl",kernelFunc:TU};function CU(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;ml([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=C.computePool2DInfo(o.shape,l,u,1,c,h),p=!0,m=new Qu(d,"max",p),f=n.runWebGLProgram(m,[o],o.dtype),A=new NU(d),y=n.runWebGLProgram(A,[a,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var RU={kernelName:Eh,backendName:"webgl",kernelFunc:CU};function FU(e,t,n,r){let a=new Qu(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new Qu(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var MU={kernelName:Rh,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;v.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let u=[1,1];v.assert(C.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,s,u,i),[h,d]=FU(r,o,c,l);return[h,d]}};function $U(e,t,n,r){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=ye({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=pi(i,"float32","mean",r),l=ye({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var OU={kernelName:_s,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,c=C.getAxesPermutation(u,o),h=c!=null,d=i.shouldExecuteOnCPU([r]),p=[],m=r;if(h){if(d){let b=i.texData.get(m.dataId).values,_=new Array(o);for(let N=0;N<_.length;N++)_[N]=r.shape[c[N]];let w=Tm(b,r.shape,r.dtype,c,_);m=i.makeTensorInfo(_,r.dtype);let x=i.texData.get(m.dataId);x.values=w}else m=Jd(r,c,i);p.push(m),u=C.getInnerMostAxes(u.length,o)}C.assertAxesAreInnerMostDims("sum",u,o);let[f,A]=C.computeOutAndReduceShapes(m.shape,u),y=f;a&&(y=C.expandShapeToKeepDim(f,l));let g=$U(m,A,y,i);for(let b of p)i.disposeIntermediateTensorInfo(b);return g}};function DU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=C.getAxesPermutation(u,o),h=a;c!=null&&(h=_n({inputs:{x:a},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,a.shape.length)),C.assertAxesAreInnerMostDims("min",u,o);let[d,p]=C.computeOutAndReduceShapes(h.shape,u),m=v.sizeFromShape(p),f=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,m]}}),A=pi(f,f.dtype,"min",n),y;if(i){let g=C.expandShapeToKeepDim(d,l);y=ye({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=ye({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),y}var zU={kernelName:bs,backendName:"webgl",kernelFunc:DU},PU=c_+`
|
|
return min(a, b);
|
|
`,LU=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Zd+`
|
|
return result;
|
|
`,WU=tn({opSnippet:PU,packedOpSnippet:LU,cpuKernelImpl:qz}),BU={kernelName:vs,backendName:"webgl",kernelFunc:WU},VU=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let r=e.length,a=ot(r),s=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
for (int i = 0; i < ${r}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},UU=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,m)=>p[0]+e[m]+p[1]);let r=e.length,a=ot(r),s=t.map(p=>p[0]).join(","),i=t.map((p,m)=>p[0]+e[m]).join(","),o=cn("rc",r),l=cn("source",r),u=`${o[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=`
|
|
${a} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${h};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${h};
|
|
}
|
|
source -= start;
|
|
`;d=`
|
|
${a} rc = outputLoc;
|
|
${p}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${o[r-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`}else{let p=`
|
|
${a} source = rc;
|
|
${a} lt = ${a}(lessThan(source, start));
|
|
${a} gte = ${a}(greaterThanEqual(source, end));
|
|
${a} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${h}) +
|
|
gte * ((end - 1) * 2 - source + ${h});
|
|
source -= start;
|
|
`;d=`
|
|
${a} rc = outputLoc;
|
|
${p}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${o[r-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${o[r-2]} += 1;
|
|
if(${o[r-2]} < ${this.outputShape[r-2]}) {
|
|
${p}
|
|
result[2] = getChannel(getX(${l.join()}), ${c});
|
|
${o[r-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[3] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}},HU=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new UU(r.shape,a,s):new VU(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},jU={kernelName:uu,backendName:"webgl",kernelFunc:HU},GU=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,qU=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Zd+`
|
|
return result;
|
|
`,XU=tn({opSnippet:GU,packedOpSnippet:qU}),KU={kernelName:Ao,backendName:"webgl",kernelFunc:XU},ZU=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},YU=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,JU=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,X_=tn({opSnippet:YU,packedOpSnippet:JU,checkOutOfBounds:!0}),QU={kernelName:us,backendName:"webgl",kernelFunc:X_},K_="return a - b;",Z_=tn({opSnippet:K_,packedOpSnippet:K_,supportsComplex:!0,cpuKernelImpl:tP}),eH={kernelName:Bs,backendName:"webgl",kernelFunc:Z_};function Y_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=v.parseAxisParam([s],a.shape),o=q_({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),u=ye({inputs:{x:o},backend:n,attrs:{shape:l}}),c=Z_({inputs:{a,b:u},backend:n}),h=V_({inputs:{x:c},backend:n}),d=Cm({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=ye({inputs:{x:d},backend:n,attrs:{shape:l}}),m=X_({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),m}var tH={kernelName:Ls,backendName:"webgl",kernelFunc:Y_};function nH(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:Y_({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),u=l.shape[0],c=l.shape[1],h=new ZU(u,c,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var rH={kernelName:Fh,backendName:"webgl",kernelFunc:nH},J_="return -x;";function aH(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=Kz(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new _l(r.shape,J_):a=new Ma(r.shape,J_),n.runWebGLProgram(a,[r],r.dtype)}var sH={kernelName:yo,backendName:"webgl",kernelFunc:aH},iH=Or.nonMaxSuppressionV3Impl;function oH(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,u=n.readSync(a.dataId),c=n.readSync(s.dataId),{selectedIndices:h}=iH(u,c,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var lH={kernelName:xo,backendName:"webgl",kernelFunc:oH},uH=Or.nonMaxSuppressionV4Impl;function cH(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=r,c=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=uH(c,h,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var hH={kernelName:wo,backendName:"webgl",kernelFunc:cH},dH=Or.nonMaxSuppressionV5Impl;function pH(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=r,c=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,m=l,f=u,{selectedIndices:A,selectedScores:y}=dH(c,h,d,p,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var fH={kernelName:_o,backendName:"webgl",kernelFunc:pH},mH=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${r}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},AH=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=v.sizeFromShape(a.shape),u=new mH(l,s,i,o),c=ye({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(u,[c],a.dtype);n.disposeIntermediateTensorInfo(c);let d=[...a.shape,s],p=ye({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},yH={kernelName:Is,backendName:"webgl",kernelFunc:AH};function rp(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=tc({inputs:{input:r},backend:n}),s=rp({inputs:{x:a},backend:n}),i=np({inputs:{input:r},backend:n}),o=rp({inputs:{x:i},backend:n}),l=$a({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Om({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var gH={kernelName:Lo,backendName:"webgl",kernelFunc:rp};function Q_(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=tc({inputs:{input:r},backend:n}),s=Q_({inputs:{x:a},backend:n}),i=np({inputs:{input:r},backend:n}),o=rp({inputs:{x:i},backend:n}),l=$a({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Om({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var xH={kernelName:bo,backendName:"webgl",kernelFunc:Q_};function wH(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return $m({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=$m({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=F_({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var _H={kernelName:vo,backendName:"webgl",kernelFunc:wH},bH=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let r=e.length,a=ot(r),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(float(${n}));
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(float(${n}));
|
|
} else {
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},vH=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let r=e.length,a=ot(r),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=cn("rc",r),l=cn("source",r),u=`${o[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1;
|
|
if(${u}) {
|
|
`,r===1?"":`}
|
|
rc = outputLoc;
|
|
${o[r-2]} += 1;
|
|
if(${o[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${o[r-1]} += 1;
|
|
if(${u}) {`],d=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let m=0,f=r===1?2:4;m<f;m++)p+=`
|
|
${h[m]}
|
|
if (${d}) {
|
|
result[${m}] = float(${n});
|
|
} else {
|
|
${a} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`;p+=r===1?"} ":"}}",this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},eb=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new vH(a.shape,s,i):new bH(a.shape,s,i);return n.runWebGLProgram(o,[a],a.dtype)},kH={kernelName:Ns,backendName:"webgl",kernelFunc:eb},IH=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,NH=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Zd+`
|
|
return result;
|
|
`,SH=tn({opSnippet:IH,packedOpSnippet:NH}),TH={kernelName:Ss,backendName:"webgl",kernelFunc:SH};function EH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],u=v.parseAxisParam(s,a.shape),c=u,h=C.getAxesPermutation(c,o),d=a;h!=null&&(d=_n({inputs:{x:a},backend:n,attrs:{perm:h}}),c=C.getInnerMostAxes(c.length,o),l.push(d)),C.assertAxesAreInnerMostDims("prod",c,o);let p;if(n.shouldExecuteOnCPU([d])){let m=n.texData.get(d.dataId).values,{outVals:f,outShape:A,outDtype:y}=Zz(d.shape,d.dtype,m,c);p=n.makeTensorInfo(A,y,f)}else{let[m,f]=C.computeOutAndReduceShapes(d.shape,c),A=v.sizeFromShape(f),y=ye({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),g=Uh(a.dtype),b=pi(y,g,"prod",n);p=ye({inputs:{x:b},backend:n,attrs:{shape:m}}),l.push(y),l.push(b)}if(i){l.push(p);let m=C.expandShapeToKeepDim(p.shape,u);p=ye({inputs:{x:p},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),p}var CH={kernelName:ko,backendName:"webgl",kernelFunc:EH},tb=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=Yz(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},RH={kernelName:cu,backendName:"webgl",kernelFunc:tb},FH="return 1.0 / x;",MH=qe({opSnippet:FH}),$H={kernelName:Io,backendName:"webgl",kernelFunc:MH},OH=Ar+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,DH=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,zH=qe({opSnippet:OH,packedOpSnippet:DH}),PH={kernelName:Es,backendName:"webgl",kernelFunc:zH},LH=Ar+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,WH=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,BH=qe({opSnippet:LH,packedOpSnippet:WH}),VH={kernelName:Rs,backendName:"webgl",kernelFunc:BH},UH=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},HH=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function jH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,c=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new HH(a.shape,l,u,s,i):new UH(a.shape,l,u,s,i);return n.runWebGLProgram(c,[a],"float32")}var GH={kernelName:Cs,backendName:"webgl",kernelFunc:jH},qH=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],h=1/u,d=1/c,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${p});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function XH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new qH(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var KH={kernelName:Oh,backendName:"webgl",kernelFunc:XH},ZH=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function YH(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,c=new ZH(a.shape,l,u,s,i);return n.runWebGLProgram(c,[a],a.dtype)}var JH={kernelName:hu,backendName:"webgl",kernelFunc:YH},QH=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],h=1/u,d=1/c,p=Math.ceil(h)*2+2,m=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${p});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function ej(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new QH(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var tj={kernelName:$h,backendName:"webgl",kernelFunc:ej},nj=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let r=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>r(o)).join(","),s=ot(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${a}));
|
|
}
|
|
`}},rj=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=cn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ot(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${a}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(r.slice())};
|
|
if(${a}){
|
|
result.g = ${l(r.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(r.slice())};
|
|
if(${a}) {
|
|
result.a = ${c(r.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function u(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function c(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let m=e.map((y,g)=>d(g,p)),f=m.join(","),A=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${A}))`}function d(p,m){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${m[p]} - 1`:`${m[p]}`}}};function aj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return $n({inputs:{x:a},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new rj(a.shape,o):new nj(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var sj={kernelName:Fs,backendName:"webgl",kernelFunc:aj},ij=class{constructor(e,t,n,r){this.variableNames=["Image"],this.outputShape=[];let a=e[1],s=e[2],i=Math.sin(t).toFixed(3),o=Math.cos(t).toFixed(3);this.outputShape=e;let[l,u]=C.getImageCenter(r,a,s),c=l.toFixed(3),h=u.toFixed(3),d="";typeof n=="number"?d=`float outputValue = ${n.toFixed(2)};`:d=`
|
|
vec3 fill = vec3(${n.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - ${c}) * ${o} - (float(y) - ${h}) * ${i};
|
|
float coordYFloat = (float(x) - ${c}) * ${i} + (float(y) - ${h}) * ${o};
|
|
int coordX = int(round(coordXFloat + ${c}));
|
|
int coordY = int(round(coordYFloat + ${h}));
|
|
${d}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${a}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},oj={kernelName:Wo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new ij(r.shape,a,s,i);return o.runWebGLProgram(l,[r],r.dtype)}},lj=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,uj=qe({opSnippet:lj}),cj={kernelName:Ms,backendName:"webgl",kernelFunc:uj},hj="return inversesqrt(x);",dj=qe({opSnippet:hj,cpuKernelImpl:Jz}),pj={kernelName:$s,backendName:"webgl",kernelFunc:dj},nb=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=ot(a.length),l=ot(s.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${a});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${p};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${d};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function fj(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:h}=C.calculateShapes(s,a,i),d=[h/u,u];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=ye({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),m=ye({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new nb(l,o,p.shape.length,m.shape.length,c,d),y=n.runWebGLProgram(A,[m,p,f],m.dtype),g=ye({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),g}var mj={kernelName:So,backendName:"webgl",kernelFunc:fj},Aj=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);r=o.join(),a=l.join()}let s=ot(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${r});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${a}));
|
|
} else {
|
|
setOutput(getB(${a}));
|
|
}
|
|
}
|
|
`}};function yj(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=new Aj(r.shape.length,a.shape,a.shape.length);return n.runWebGLProgram(i,[r,a,s],tr(a.dtype,s.dtype))}var gj={kernelName:To,backendName:"webgl",kernelFunc:yj},xj=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${C.SELU_SCALEALPHA};
|
|
float scale = ${C.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,wj=qe({opSnippet:xj}),_j={kernelName:Eo,backendName:"webgl",kernelFunc:wj},bj="return 1.0 / (1.0 + exp(-1.0 * x));",vj=qe({opSnippet:bj}),kj={kernelName:Ds,backendName:"webgl",kernelFunc:vj},Ij=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Nj=qe({opSnippet:Ij}),Sj={kernelName:Fo,backendName:"webgl",kernelFunc:Nj},Tj=m_+`
|
|
return sin(x);
|
|
`,Ej=qe({opSnippet:Tj}),Cj={kernelName:Os,backendName:"webgl",kernelFunc:Ej},Rj=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Fj=qe({opSnippet:Rj}),Mj={kernelName:Ro,backendName:"webgl",kernelFunc:Fj},$j=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Oj=qe({opSnippet:$j}),Dj={kernelName:Mo,backendName:"webgl",kernelFunc:Oj},zj=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;v.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<a.shape.length;++y)l.push([0,0]);let u=[],c=eb({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),h=C.getReshaped(c.shape,s,o,!1),d=C.getPermuted(h.length,s.length,!1),p=C.getReshapedPermuted(c.shape,s,o,!1),m=ye({inputs:{x:c},backend:n,attrs:{shape:h}}),f=_n({inputs:{x:m},backend:n,attrs:{perm:d}}),A=ye({inputs:{x:f},backend:n,attrs:{shape:p}});return u.push(c),u.push(m),u.push(f),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},Pj={kernelName:du,backendName:"webgl",kernelFunc:zj};function Lj(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:u,strides:c,outputSize:h}=C.calculateShapes(s,a,o),d=!1,p=new nb(u,l,a.shape.length,s.shape.length,c,[h,1],d),m=n.runWebGLProgram(p,[s,a,i],s.dtype),f=ye({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var Wj={kernelName:Dh,backendName:"webgl",kernelFunc:Lj};function Bj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=a.shape.length,c=new Array(u).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let m=ec({inputs:{x:a},backend:n,attrs:{begin:c,size:p}});return c[o]+=d,m})}var Vj={kernelName:$o,backendName:"webgl",kernelFunc:Bj},Uj="return sqrt(x);",Hj=qe({opSnippet:Uj}),jj={kernelName:zs,backendName:"webgl",kernelFunc:Hj},Gj="return x * x;",qj=qe({opSnippet:Gj}),Xj={kernelName:pu,backendName:"webgl",kernelFunc:qj},rb="return (a - b) * (a - b);",Kj=tn({opSnippet:rb,packedOpSnippet:rb}),Zj={kernelName:Ws,backendName:"webgl",kernelFunc:Kj};function Yj({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=Ar+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Ma(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var Jj={kernelName:_a,backendName:"webgl",kernelFunc:Yj},Qj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=ot(n.length),s=ot(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${a} begin = ${a}(${e});
|
|
${a} strides = ${a}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function eG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=on.sliceInfo(a.shape,s,i,o,l,u,c,h,d),b=ye({inputs:{x:a},backend:n,attrs:{shape:y}}),_;if(p){let x=ec({inputs:{x:b},backend:n,attrs:{begin:m,size:A}});_=ye({inputs:{x},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(x)}else if(g.some(x=>x===0))_=n.makeTensorInfo(g,a.dtype,[]);else if(n.shouldExecuteOnCPU([b])){let x=n.texData.get(b.dataId).values,N=Le(b.shape,b.dtype,x),T=eP(g,N,f,m);_=n.makeTensorInfo(g,b.dtype,T.values)}else{let x=new Qj(m,f,g);_=n.runWebGLProgram(x,[b],b.dtype)}let w=ye({inputs:{x:_},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(_),w}var tG={kernelName:Oo,backendName:"webgl",kernelFunc:eG},nG="return tan(x);",rG=qe({opSnippet:nG}),aG={kernelName:Do,backendName:"webgl",kernelFunc:rG},sG=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,iG=qe({opSnippet:sG}),oG={kernelName:Vs,backendName:"webgl",kernelFunc:iG},uG=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let r=ot(this.rank),a=lG(e);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function lG(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a<e.length;a++)r.push(`imod(${n[a]}, ${e[a]})`);return r.join()}function ab(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;if(a.dtype==="string"){let o=n.readSync(a.dataId).map(c=>v.decodeString(c)),l=Le(a.shape,a.dtype,o),u=nP(l,s);return n.makeTensorInfo(u.shape,u.dtype,u.values)}let i=new uG(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var cG={kernelName:wa,backendName:"webgl",kernelFunc:ab};function hG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,u]=rP(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var dG={kernelName:zo,backendName:"webgl",kernelFunc:hG};function pG(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;ml(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=aP(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var fG={kernelName:zh,backendName:"webgl",kernelFunc:pG};function mG(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),c=0;for(let f=0;f<o;f++)f!==s&&(u[c++]=i.shape[f]);let h=[],d=new Array(o).fill(0),p=i.shape.slice();p[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){d[s]=f;let A=ec({inputs:{x:i},backend:n,attrs:{begin:d,size:p}}),y=ye({inputs:{x:A},backend:n,attrs:{shape:u}});m[f]=y,h.push(A)}return h.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var AG={kernelName:Po,backendName:"webgl",kernelFunc:mG},yG=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,h=`
|
|
sumValue += dot(values, segFilter);
|
|
`,d="";a%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`);let p="";a%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${p}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function gG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],u=0,c=C.getAxesPermutation([u],o),h=a;c!=null&&(h=_n({inputs:{x:a},backend:n,attrs:{perm:c}}),l.push(h),u=C.getInnerMostAxes(1,o)[0]);let d=C.segment_util.computeOutShape(h.shape,u,i),p=v.sizeFromShape([h.shape[u]]),m=ye({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(m);let f=Uh(a.dtype),A=(_,w,x,N,T)=>{let E=_.shape[0],M=_.shape[1],D=C.segment_util.segOpComputeOptimalWindowSize(M,T),L={windowSize:D,inSize:M,batchSize:E,numSegments:T},W=new yG(L,w),U=n.compileAndRun(W,[_,x],N);if(l.push(U),U.shape[1]===T)return U;let H=tb({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),X=ab({inputs:{x:H},backend:n,attrs:{reps:[M/D]}});return l.push(H),l.push(X),A(U,w,X,N,T)},y=A(m,"unsortedSegmentSum",s,f,i),g=ye({inputs:{x:y},backend:n,attrs:{shape:d}}),b=g;if(c!=null){l.push(g);let _=C.getUndoAxesPermutation(c);b=_n({inputs:{x:b},backend:n,attrs:{perm:_}})}return l.forEach(_=>n.disposeIntermediateTensorInfo(_)),b}var xG={kernelName:fu,backendName:"webgl",kernelFunc:gG},wG=[dU,mU,eL,nL,sL,lL,cL,pL,mL,yL,_L,vL,NL,EL,DL,FL,LL,UL,BL,qL,KL,YL,tW,lW,cW,AW,gW,bW,IW,OP,EW,LW,BW,MW,jW,qW,UW,ZW,QW,nB,aB,iB,uB,mB,yB,hB,wB,vB,SB,RB,OB,PB,LB,WB,VB,HB,GB,XB,ZB,eV,aV,iV,lV,hV,mV,xV,vV,$P,IV,TW,TV,RV,$V,zP,PV,VV,HV,YV,XV,tU,aU,lU,yU,IU,vU,EU,RU,MU,_U,OU,zU,BU,jU,KU,rH,VP,sH,lH,hH,fH,dW,yH,xH,_H,kH,TH,LP,CH,RH,pW,QU,$H,VH,PH,HP,GH,KH,JH,tj,sj,oj,cj,pj,mj,gj,_j,kj,Sj,Cj,Mj,iW,tH,Dj,Pj,Wj,Vj,jj,Xj,Zj,Jj,tG,eH,YP,aG,oG,cG,dG,JP,fG,AG,xG,gH];for(let e of wG)qs(e);var On;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(On||(On={}));var nc;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(nc||(nc={}));var sb;function _G(e){sb=e.wasm.cwrap(Hs,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function bG(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);m=T.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,A=nc[c];if(A==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?a.shape[2]:a.shape[1],g=u?s.shape[1]:s.shape[2],b=a.shape[0],_=n.makeOutput([b,y,g],a.dtype),w=n.dataIdMap.get(_.dataId).id,x=new Uint8Array(new Int32Array(a.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return sb(d,x,a.shape.length,p,N,s.shape.length,l,u,A,m,f,h||0,w),_}var vG={kernelName:Hs,backendName:"wasm",setupFunc:_G,kernelFunc:bG};function bn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),u=s.dataIdMap.get(l.dataId).id;return v.sizeFromShape(l.shape)===0||t(o,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var kG=bn(Bi);function hn(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:c}=l,h=o.dataIdMap.get(u.dataId).id,d=o.dataIdMap.get(c.dataId).id,p=n!=null?n:u.dtype,m=C.assertAndGetBroadcastShape(u.shape,c.shape),f=o.makeOutput(m,p);if(v.sizeFromShape(m)===0)return f;let A=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),g=o.dataIdMap.get(f.dataId).id,b=()=>r(h,A,u.shape.length,d,y,c.shape.length,On[u.dtype],g);if(t&&u.dtype==="float32")return b(),f;let _=C.getBroadcastDims(u.shape,m),w=C.getBroadcastDims(c.shape,m),x=_.every((T,E)=>T===E),N=w.every((T,E)=>T===E);if(x&&N)return b(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var IG=!0,NG=hn(ga,IG),ib;function SG(e){ib=e.wasm.cwrap(Ja,null,["array","number","number","number"])}function TG(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return ib(s,a.length,On[r.dtype],i),r}var EG={kernelName:Ja,backendName:"wasm",setupFunc:SG,kernelFunc:TG};function ap(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var CG={kernelName:ms,backendName:"wasm",kernelFunc:ap},ob;function RG(e){ob=e.wasm.cwrap(Us,null,["number","array","number","number","number","array","number"])}function sp(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=MG(t.x.shape,r.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=FG(t.x.shape,r.perm),l={dataId:t.x.dataId,shape:a,dtype:t.x.dtype};if(i){let m=ap({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),c=n.dataIdMap.get(l.dataId).id,h=n.dataIdMap.get(u.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),p=new Uint8Array(new Int32Array(l.shape).buffer);return ob(c,p,l.shape.length,On[l.dtype],h,d,s.length),u}function FG(e,t){let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[t[r]];return n}function MG(e,t){let n=[],r=[];for(let a=0;a<e.length;++a)e[a]!==1&&n.push(e[a]),e[t[a]]!==1&&r.push(t[a]);for(let a=0;a<r.length;++a){let s=-1;for(let i=0;i<r.length;++i)r[i]>=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var $G={kernelName:Us,backendName:"wasm",kernelFunc:sp,setupFunc:RG};function Nl(e,t,n){let r=e.shape,a=e.shape.length,s=v.parseAxisParam(t,r),i=s,o=C.getAxesPermutation(i,a),l=null,u=!1;if(o!=null){let c=new Array(a);for(let d=0;d<c.length;d++)c[d]=r[o[d]];i=C.getInnerMostAxes(i.length,a),l=sp({inputs:{x:e},attrs:{perm:o},backend:n});let h=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==h&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var lb;function OG(e){lb=e.wasm.cwrap(Qa,null,["number","number","number","number","number"])}function DG(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:c,inputWasTransposed:h}=Nl(s,a,t);if(h){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let d=l.shape.slice(0,-1),p=t.makeOutput(d,"int32"),m=t.dataIdMap.get(p.dataId).id,f=v.sizeFromShape(p.shape),A=l.shape[c[0]];return lb(o,On[l.dtype],f,A,m),h&&t.disposeData(u.dataId),p}var zG={kernelName:Qa,backendName:"wasm",kernelFunc:DG,setupFunc:OG},ub;function PG(e){ub=e.wasm.cwrap(es,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function LG(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=C.computePool2DInfo(a.shape,i,o,1,l,u),h=c.filterHeight,d=c.filterWidth,p=c.padInfo.top,m=c.padInfo.right,f=c.padInfo.bottom,A=c.padInfo.left,y=c.strideHeight,g=c.strideWidth,b=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let _=r.makeOutput(c.outShape,"float32"),w=r.dataIdMap.get(_.dataId).id;return ub(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,m,f,A,y,g,b,w),_}var WG={kernelName:es,backendName:"wasm",setupFunc:PG,kernelFunc:LG};function yr(e){let{inputs:t,attrs:n}=e,{x:r}=t,{shape:a}=n,s=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:i,dtype:r.dtype}}var BG={kernelName:No,backendName:"wasm",kernelFunc:yr},cb;function VG(e){cb=e.wasm.cwrap(ts,null,["number","array","number","number","array","number","number","number","number"])}function UG(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],m=a.shape.slice(0,-2),f=s.shape.slice(0,-2),A=v.sizeFromShape(m),y=v.sizeFromShape(f),g=A===y||A===1||y===1;v.assert(l>=2&&u>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let b=(A>y?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);v.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let _=i?[A,c,d]:[A,d,c],w=o?[y,p,h]:[y,h,p],x=yr({inputs:{x:a},backend:n,attrs:{shape:_}}),N=yr({inputs:{x:s},backend:n,attrs:{shape:w}}),T=n.dataIdMap.get(x.dataId).id,E=n.dataIdMap.get(N.dataId).id,M=i?x.shape[2]:x.shape[1],D=o?N.shape[1]:N.shape[2],L=Math.max(A,y),W=n.makeOutput([L,M,D],x.dtype),U=n.dataIdMap.get(W.dataId).id,H=new Uint8Array(new Int32Array(x.shape).buffer),X=new Uint8Array(new Int32Array(N.shape).buffer);return cb(T,H,x.shape.length,E,X,N.shape.length,i,o,U),n.disposeData(x.dataId),n.disposeData(N.dataId),W.shape=b,W}var HG={kernelName:ts,backendName:"wasm",setupFunc:VG,kernelFunc:UG};function ip(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var jG={kernelName:ns,backendName:"wasm",kernelFunc:ip},GG=bn(rs),hb;function qG(e){hb=e.wasm.cwrap(xa,null,["number","number","number","number"])}function XG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(l.dataId).id;return hb(o,s,i,u),l}var KG={kernelName:xa,backendName:"wasm",setupFunc:qG,kernelFunc:XG};function db(e){let{inputs:t,backend:n}=e,r=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=C.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>v.sizeFromShape(p.shape)>0);if(s.length===1)return ap({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(v.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(C.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(b=>{let _=v.sizeFromShape(b.shape.slice(r));return yr({inputs:{x:b},backend:n,attrs:{shape:[-1,_]}})}),m=p.map(b=>({vals:n.readSync(b.dataId),shape:b.shape}));a=C.computeOutShape(p.map(b=>b.shape),1);let f=p[0].shape[0]===1,A=rm(m,a,t[0].dtype,f),y=C.computeOutShape(s.map(b=>b.shape),r);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=C.fromStringArrayToUint8(A),p.forEach(b=>n.disposeData(b.dataId)),i}let l=v.sizeFromShape(s[0].shape.slice(0,r)),u=0,c=s.map(p=>{let m=v.sizeFromShape(p.shape.slice(r));return u+=m,m}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p<l;p++){let m=p*u;for(let f=0;f<h.length;f++){let A=c[f],y=p*A,g=h[f].subarray(y,y+A);d.set(g,m),m+=A}}return i}var ZG={kernelName:Ki,backendName:"wasm",kernelFunc:db},pb;function YG(e){pb=e.wasm.cwrap(as,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function JG(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:h,dataFormat:d}=n,p=C.convertConv2DDataFormat(d),m=C.computeConv2DInfo(a.shape,s.shape,l,u,c,h,!1,p),f=m.filterHeight,A=m.filterWidth,y=m.padInfo.top,g=m.padInfo.right,b=m.padInfo.bottom,_=m.padInfo.left,w=m.dilationHeight,x=m.dilationWidth,N=m.strideHeight,T=m.strideWidth,E=m.inChannels,M=m.outChannels,D=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let L=r.makeOutput(m.outShape,"float32"),W=r.dataIdMap.get(L.dataId).id;return pb(i,a.shape[0],a.shape[1],a.shape[2],o,f,A,y,g,b,_,D,w,x,N,T,E,M,W),L}var QG={kernelName:as,backendName:"wasm",setupFunc:YG,kernelFunc:JG},fb;function eq(e){fb=e.wasm.cwrap(ss,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function tq(e){let{backend:t,inputs:n,attrs:r}=e,{dy:a,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:c}=r,h=1,d=C.convertConv2DDataFormat(l),p=C.computeConv2DInfo(c,s.shape,i,h,o,u,!1,d),{batchSize:m,filterHeight:f,filterWidth:A,inChannels:y,inHeight:g,inWidth:b,outChannels:_,outHeight:w,outWidth:x,strideHeight:N,strideWidth:T}=p,E=f-1-p.padInfo.top,M=A-1-p.padInfo.left,D=p.dataFormat==="channelsLast",L=v.computeStrides(p.inShape),W=v.computeStrides(a.shape),[U,H,X]=v.computeStrides(s.shape),G=L[0],ee=D?L[1]:L[2],Y=D?L[2]:1,ae=D?1:L[1],te=W[0],ie=D?W[1]:W[2],Q=D?W[2]:1,he=D?1:W[1],oe=t.makeOutput(p.inShape,"float32"),fe=t.dataIdMap.get(oe.dataId).id,pe=t.dataIdMap.get(a.dataId).id,ve=t.dataIdMap.get(s.dataId).id;return fb(pe,ve,m,f,A,g,b,y,w,x,_,N,T,E,M,U,H,X,G,ee,Y,ae,te,ie,Q,he,fe),oe}var nq={kernelName:ss,backendName:"wasm",setupFunc:eq,kernelFunc:tq},rq=bn(is),Dm;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Dm||(Dm={}));var mb;function aq(e){mb=e.wasm.cwrap(Yi,null,["number","number","number","number","array","number","number","number","number","number"])}function sq(e){let{backend:t,inputs:n,attrs:r}=e,{method:a,extrapolationValue:s,cropSize:i}=r,{image:o,boxes:l,boxInd:u}=n,c=l.shape[0],[h,d]=i,p=[c,h,d,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=ip({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let A=m.id,y=t.dataIdMap.get(l.dataId).id,g=t.dataIdMap.get(u.dataId).id,b=t.makeOutput(p,"float32"),_=t.dataIdMap.get(b.dataId).id,w=new Uint8Array(new Int32Array(o.shape).buffer);return mb(A,y,g,c,w,h,d,Dm[a],s,_),f!=null&&t.disposeData(f.dataId),b}var iq={kernelName:Yi,backendName:"wasm",setupFunc:aq,kernelFunc:sq},Ab;function oq(e){Ab=e.wasm.cwrap(os,null,["number","number","number","number","number","number"])}function lq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length;v.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumsum does not support ${a.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([s],l),c=a;u!==null&&(c=sp({inputs:{x:a},attrs:{perm:u},backend:n}));let h=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(c.shape,c.dtype),p=c.shape[h],m=n.dataIdMap.get(c.dataId).id,f=n.dataIdMap.get(d.dataId).id;Ab(m,i?1:0,o?1:0,p,f,On[a.dtype]);let A=d;if(u!==null){let y=C.getUndoAxesPermutation(u);A=sp({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return A}var uq={kernelName:os,backendName:"wasm",setupFunc:oq,kernelFunc:lq},yb;function cq(e){yb=e.wasm.cwrap(Ji,null,["number","number","number","array","number","array","array","number","number"])}function hq(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],c=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=u*s,p=c/(s*s),m=i==="NHWC"?[o,h,d,p]:[o,p,h,d],f=t.makeOutput(m,"float32"),A=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),g=new Uint8Array(new Int32Array(m).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer),_=t.dataIdMap.get(f.dataId).id;return yb(A,s,i==="NHWC"?1:0,y,a.shape.length-1,g,b,m.length,_),f}var dq={kernelName:Ji,backendName:"wasm",setupFunc:cq,kernelFunc:hq},gb;function pq(e){gb=e.wasm.cwrap(ls,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fq(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:h}=n,d=u==null?[1,1]:u,p=C.computeConv2DInfo(a.shape,s.shape,l,d,c,h,!0),m=p.filterHeight,f=p.filterWidth,A=p.padInfo.top,y=p.padInfo.right,g=p.padInfo.bottom,b=p.padInfo.left,_=p.dilationHeight,w=p.dilationWidth,x=p.strideHeight,N=p.strideWidth,T=p.inChannels,E=p.outChannels,M=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let D=r.makeOutput(p.outShape,"float32"),L=r.dataIdMap.get(D.dataId).id;return gb(i,a.shape[0],a.shape[1],a.shape[2],o,m,f,A,y,g,b,M,_,w,x,N,T,E,L),D}var mq={kernelName:ls,backendName:"wasm",setupFunc:pq,kernelFunc:fq},Aq=!1,yq=hn(to,Aq,"bool"),gq=bn(cs);function zm(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),yr({inputs:{x:a},backend:r,attrs:{shape:o}})}var xq={kernelName:no,backendName:"wasm",kernelFunc:zm};function wq(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var _q={kernelName:au,backendName:"wasm",kernelFunc:wq},xb;function bq(e){xb=e.wasm.cwrap(ao,null,["number","number","number","number","number","number"])}function vq(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,u,c]=r.shape;return xb(s,o,l,u,c,i),a}var kq={kernelName:ao,backendName:"wasm",kernelFunc:vq,setupFunc:bq},Iq=bn(hs),Nq=!1,Sq=hn(ds,Nq),wb;function Tq(e){wb=e.wasm.cwrap(ps,null,["number","number","number","number","number","number","number"])}function Eq(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:u}=n,c=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return f;let A=t.dataIdMap.get(f.dataId).id;return wb(c,h,d,p,m,a,A),f}var Cq={kernelName:ps,backendName:"wasm",setupFunc:Tq,kernelFunc:Eq},_b;function Rq(e){_b=e.wasm.cwrap(js,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Fq(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(a.shape,s.shape,l,c,u,d),A=nc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,b=f.outChannels,_=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==b)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${b})`);_=Q.id}let w=f.filterHeight,x=f.filterWidth,N=f.padInfo.top,T=f.padInfo.right,E=f.padInfo.bottom,M=f.padInfo.left,D=f.dilationHeight,L=f.dilationWidth,W=f.strideHeight,U=f.strideWidth,H=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return _b(y,G,ee,Y,g,w,x,_,N,T,E,M,X,D,L,W,U,H,b,A,ie,m||0,te),ae}var Mq={kernelName:js,backendName:"wasm",setupFunc:Rq,kernelFunc:Fq},bb;function $q(e){bb=e.wasm.cwrap(Gs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Oq(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(a.shape,s.shape,l,c,u,d,!0),A=nc[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=r.dataIdMap.get(a.dataId).id,g=r.dataIdMap.get(s.dataId).id,b=f.outChannels,_=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==b)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${b})`);_=Q.id}let w=f.filterHeight,x=f.filterWidth,N=f.padInfo.top,T=f.padInfo.right,E=f.padInfo.bottom,M=f.padInfo.left,D=f.dilationHeight,L=f.dilationWidth,W=f.strideHeight,U=f.strideWidth,H=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let ae=r.makeOutput(f.outShape,"float32"),te=r.dataIdMap.get(ae.dataId).id,ie=o==null?0:r.dataIdMap.get(o.dataId).id;return bb(y,G,ee,Y,g,w,x,_,N,T,E,M,X,D,L,W,U,H,b,A,ie,m||0,te),ae}var Dq={kernelName:Gs,backendName:"wasm",setupFunc:$q,kernelFunc:Oq},vb;function zq(e){vb=e.wasm.cwrap(io,null,["number","number","number","number","number","number","array","number"])}function Pq(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=tf.prepareAndValidate(r,a),u=t.makeOutput(s,r.dtype);if(i===0)return u;let c=a.shape,h=c[c.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return vb(d,On[r.dtype],p,i,h,o,m,f),u}var Lq={kernelName:io,backendName:"wasm",setupFunc:zq,kernelFunc:Pq},kb;function Wq(e){kb=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Bq(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=v.parseAxisParam(i,a.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(a,s,l,o),c=yr({inputs:{x:a},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),h=v.sizeFromShape(s.shape),d=yr({inputs:{x:s},attrs:{shape:[u.batchSize,h/u.batchSize]},backend:t}),p=[u.batchSize,u.outerSize,h/u.batchSize,u.sliceSize],m=t.makeOutput(p,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let f=c.shape.length-1,A=t.dataIdMap.get(c.dataId).id,y=t.dataIdMap.get(d.dataId).id,g=t.dataIdMap.get(m.dataId).id,b=new Uint8Array(new Int32Array(v.computeStrides(c.shape)).buffer),_=new Uint8Array(new Int32Array(v.computeStrides(p)).buffer);return kb(A,On[a.dtype],b,f,y,u.batchSize,_,g),t.disposeData(c.dataId),t.disposeData(d.dataId),m.shape=u.outputShape,m}var Vq={kernelName:so,backendName:"wasm",setupFunc:Wq,kernelFunc:Bq},Uq=!1,Hq=hn(oo,Uq,"bool"),jq=!1,Gq=hn(fs,jq,"bool"),Ib;function qq(e){Ib=e.wasm.cwrap(As,null,["number","number","number"])}function Xq(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(v.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;Ib(a,n,i)}return s}var Kq={kernelName:As,backendName:"wasm",setupFunc:qq,kernelFunc:Xq},Zq=!1,Yq=hn(ho,Zq,"bool"),Jq=!1,Qq=hn(po,Jq,"bool"),eX=bn(ys),tX=!1,nX=hn(mo,tX,"bool"),Nb;function rX(e){Nb=e.wasm.cwrap(gs,null,["number, number, number"])}function aX(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:c,originalAxes:h,inputWasTransposed:d}=Nl(i,a,t);if(d){let g=t.dataIdMap.get(u.dataId).id;l=u,o=g}let p=l.shape.length;C.assertAxesAreInnerMostDims("max",c,p);let[m,f]=C.computeOutAndReduceShapes(l.shape,c),A=v.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(v.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;Nb(o,A,g)}if(d&&t.disposeData(u.dataId),s){let g=C.expandShapeToKeepDim(y.shape,h);y.shape=g}return y}var sX={kernelName:gs,backendName:"wasm",setupFunc:rX,kernelFunc:aX},iX=!1,oX=hn(xs,iX),Sb;function lX(e){Sb=e.wasm.cwrap(ws,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function uX(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=C.computePool2DInfo(a.shape,i,o,1,l,u),h=c.filterHeight,d=c.filterWidth,p=c.padInfo.top,m=c.padInfo.right,f=c.padInfo.bottom,A=c.padInfo.left,y=c.dilationHeight,g=c.dilationWidth,b=c.strideHeight,_=c.strideWidth,w=c.inChannels,x=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let N=r.makeOutput(c.outShape,"float32"),T=r.dataIdMap.get(N.dataId).id;return Sb(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,m,f,A,y,g,b,_,w,x,T),N}var cX={kernelName:ws,backendName:"wasm",setupFunc:lX,kernelFunc:uX},Tb;function hX(e){Tb=e.wasm.cwrap(_s,null,["number, number, number"])}function dX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Nl(i,a,t),m=h;if(p){let _=t.dataIdMap.get(c.dataId).id;_!==o&&(u=c,l=_,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,A]=C.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(A),g=u;u.dtype!=="float32"&&(g=ip({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let b=t.makeOutput(f,"float32");if(v.sizeFromShape(u.shape)!==0){let _=t.dataIdMap.get(b.dataId).id;Tb(l,y,_)}if(p&&t.disposeData(c.dataId),s){let _=C.expandShapeToKeepDim(b.shape,d);b.shape=_}return u.dtype!=="float32"&&t.disposeData(g.dataId),b}var pX={kernelName:_s,backendName:"wasm",setupFunc:hX,kernelFunc:dX},Eb;function fX(e){Eb=e.wasm.cwrap(bs,null,["number, number, number"])}function mX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Nl(i,a,t);if(p){let b=t.dataIdMap.get(c.dataId).id;b!==o&&(u=c,l=b)}let m=u.shape.length;C.assertAxesAreInnerMostDims("min",h,m);let[f,A]=C.computeOutAndReduceShapes(u.shape,h),y=v.sizeFromShape(A),g=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(g.dataId).id;Eb(l,y,b)}if(p&&t.disposeData(c.dataId),s){let b=C.expandShapeToKeepDim(g.shape,d);g.shape=b}return g}var AX={kernelName:bs,backendName:"wasm",setupFunc:fX,kernelFunc:mX},yX=!1,gX=hn(vs,yX),xX=!0,wX=hn(ks,xX),_X=bn(yo);function Pm(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var Cb;function bX(e){Cb=e.wasm.cwrap(xo,"number",["number","number","number","number","number"])}function vX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,c=t.dataIdMap.get(l.dataId).id,h=Cb(u,c,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:m,pValidOutputs:f}=Pm(t,h);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([p],"int32",d)}var kX={kernelName:xo,backendName:"wasm",setupFunc:bX,kernelFunc:vX},Rb;function IX(e){Rb=e.wasm.cwrap(wo,"number",["number","number","number","number","number","bool"])}function NX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,d=Rb(c,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=Pm(t,d);t.wasm._free(f);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([],"int32",A);return[y,g]}var SX={kernelName:wo,backendName:"wasm",setupFunc:IX,kernelFunc:NX},Fb;function TX(e){Fb=e.wasm.cwrap(_o,"number",["number","number","number","number","number","number"])}function EX(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,d=Fb(c,h,s,a,i,o),{pSelectedIndices:p,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=Pm(t,d);t.wasm._free(A);let y=t.makeOutput([m],"int32",p),g=t.makeOutput([m],"float32",f);return[y,g]}var CX={kernelName:_o,backendName:"wasm",setupFunc:TX,kernelFunc:EX},RX=!1,FX=hn(go,RX,"bool"),Mb;function MX(e){Mb=e.wasm.cwrap(Is,null,["number","number","number","number","number"])}function $X(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,c=n.dataIdMap.get(a.dataId).id;return Mb(c,s,i,o,u),l}var OX={kernelName:Is,backendName:"wasm",setupFunc:MX,kernelFunc:$X};function DX(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var zX={kernelName:bo,backendName:"wasm",kernelFunc:DX};function PX(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return zm({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=zm({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=db({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeData(c.dataId)),u}var LX={kernelName:vo,backendName:"wasm",kernelFunc:PX},$b;function WX(e){$b=e.wasm.cwrap(Ns,null,["number","array","number","number","array","array","number","number"])}function BX(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=r.map(m=>m[0]),h=r.map(m=>m[1]),d=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(h).buffer);return $b(i,u,t.shape.length,On[t.dtype],d,p,a,l),o}var VX={kernelName:Ns,backendName:"wasm",kernelFunc:BX,setupFunc:WX},UX=!1,HX=hn(Ss,UX),Ob;function jX(e){Ob=e.wasm.cwrap(Ts,null,["number","number","number"])}function GX(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return Ob(s,i,l),o}var qX={kernelName:Ts,backendName:"wasm",setupFunc:jX,kernelFunc:GX},Db;function XX(e){Db=e.wasm.cwrap(ko,null,["number","number","number","number"])}function KX(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Nl(i,a,t),m=h;if(p){let b=t.dataIdMap.get(c.dataId).id;b!==o&&(u=c,l=b,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,A]=C.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(A),g=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(g.dataId).id;Db(l,y,On[g.dtype],b)}if(p&&t.disposeData(c.dataId),s){let b=C.expandShapeToKeepDim(g.shape,d);g.shape=b}return g}var ZX={kernelName:ko,backendName:"wasm",setupFunc:XX,kernelFunc:KX},YX=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=im(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},JX={kernelName:cu,backendName:"wasm",kernelFunc:YX},QX=!0,eK=hn(us,QX),tK=bn(Es),nK=bn(Rs),zb;function rK(e){zb=e.wasm.cwrap(Cs,null,["number","number","number","number","number","number","number","number","number","number"])}function aK(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,[c,h,d,p]=a.shape,m=[c,l,u,p],f=t.dataIdMap.get(a.dataId),A;f.dtype!=="float32"&&(A=ip({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(A.dataId));let y=f.id,g=t.makeOutput(m,"float32");if(v.sizeFromShape(a.shape)===0)return g;let b=t.dataIdMap.get(g.dataId).id;return zb(y,c,h,d,p,l,u,s?1:0,i?1:0,b),A!=null&&t.disposeData(A.dataId),g}var sK={kernelName:Cs,backendName:"wasm",setupFunc:rK,kernelFunc:aK},Pb;function iK(e){Pb=e.wasm.cwrap(Fs,null,["number","array","number","array","number","number"])}function oK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=v.parseAxisParam(s,a.shape);if(a.shape.length===0)return ap({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);Pb(l,c,i.length,h,a.shape.length,u);let d=yr({inputs:{x:o},attrs:{shape:a.shape},backend:n});return n.disposeData(o.dataId),d}var lK={kernelName:Fs,backendName:"wasm",kernelFunc:oK,setupFunc:iK},Lb;function uK(e){Lb=e.wasm.cwrap(Wo,null,["number","number","number","number","number","number","number","number","array","number","number"])}function cK(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(l.dataId).id,[h,d,p,m]=a.shape,[f,A]=C.getImageCenter(o,d,p),y=i===0,g=255,b=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],_=new Uint8Array(new Int32Array(b).buffer);return Lb(u,h,d,p,m,s,f,A,_,b.length,c),l}var hK={kernelName:Wo,backendName:"wasm",kernelFunc:cK,setupFunc:uK},dK=bn(Ms),pK=bn($s),Wb;function fK(e){Wb=e.wasm.cwrap(So,null,["number","number","number","number","number","number","array","number","number"])}function mK(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:h,outputSize:d}=nf.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return Wb(p,m,On[s.dtype],l,u,c,f,d,A),o}var AK={kernelName:So,backendName:"wasm",setupFunc:fK,kernelFunc:mK},Bb;function yK(e){Bb=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function gK(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(u.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:v.sizeFromShape(a.shape.slice(1));return Bb(i,o,l,p,c),u}var xK={kernelName:To,backendName:"wasm",kernelFunc:gK,setupFunc:yK},Vb;function wK(e){Vb=e.wasm.cwrap(Ds,null,["number","number"])}function _K(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return v.sizeFromShape(a.shape)===0||Vb(r,s),a}var bK={kernelName:"Sigmoid",backendName:"wasm",setupFunc:wK,kernelFunc:_K},vK=bn(Os);function op(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=on.parseSliceParams(t,n,r),o=on.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),u=a.makeOutput(i,t.dtype),c=v.computeStrides(t.shape),h=a.dataIdMap.get(u.dataId);if(o){let m=on.computeFlatOffset(s,c);return t.dtype==="string"?h.stringBytes=l.slice(m,m+v.sizeFromShape(i)):a.typedArrayFromHeap(u).set(l.subarray(m,m+v.sizeFromShape(i))),u}if(t.dtype==="string"){let m=Dd(l,s,i,t.shape,t.dtype);return h.stringBytes=m,u}let d=a.typedArrayFromHeap(u),p=t.shape.length;if(p===2)kK(l,c[0],d,s,i);else if(p===3)IK(l,c[0],c[1],d,s,i);else if(p===4)NK(l,c[0],c[1],c[2],d,s,i);else{let m=Dd(l,s,i,t.shape,t.dtype);d.set(m)}return u}function kK(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let u=i;u<l;u++){let c=u*t+o;n.set(e.subarray(c,c+a[1]),s),s+=a[1]}}function IK(e,t,n,r,a,s){let i=0,o=a[0],l=a[1],u=a[2],c=o+s[0],h=l+s[1];for(let d=o;d<c;d++)for(let p=l;p<h;p++){let m=d*t+p*n+u;r.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function NK(e,t,n,r,a,s,i){let o=0,l=s[0],u=s[1],c=s[2],h=l+i[0],d=u+i[1],p=c+i[2],m=s[3];for(let f=l;f<h;f++)for(let A=u;A<d;A++)for(let y=c;y<p;y++){let g=f*t+A*n+y*r+m;a.set(e.subarray(g,g+i[3]),o),o+=i[3]}}var SK={kernelName:Co,backendName:"wasm",kernelFunc:op},Ub;function TK(e){Ub=e.wasm.cwrap(Ls,null,["number","number","number","number"])}function EK(e){let{backend:t,inputs:{logits:n},attrs:{dim:r}}=e,a=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[r],l=v.sizeFromShape(n.shape)/o;return v.sizeFromShape(s.shape)===0||Ub(a,i,o,l),s}var CK={kernelName:Ls,backendName:"wasm",setupFunc:TK,kernelFunc:EK};function RK(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=C.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),c=a.shape.slice();return l.map(h=>{let d=[...c];d[o]=h;let p=op({inputs:{x:a},attrs:{begin:u,size:d},backend:r});return u[o]+=h,p})}var FK={kernelName:$o,backendName:"wasm",kernelFunc:RK},MK=bn(zs),$K=bn(pu),OK=!0,DK=hn(Ws,OK),Hb;function zK(e){Hb=e.wasm.cwrap(_a,null,["number","number","number"])}function PK(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return Hb(i,a,l),o}var LK={kernelName:_a,backendName:"wasm",setupFunc:zK,kernelFunc:PK},jb;function WK(e){jb=e.wasm.cwrap(Oo,null,["number","array","number","array","array","array","array","array","number","number"])}function BK(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r,p=C.slice_util.maskToAxes(c);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=a.shape.length-s.length,f=C.slice_util.maskToAxes(h),A=a.shape.slice();f.forEach(M=>{s[M]=0,i[M]=1,A.splice(M,0,1)});let y=yr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:g,end:b,strides:_}=C.slice_util.getNormalizedAxes(y.shape,p,m,s,i,o,l,u,c);s=g,i=b,o=_;let w=C.slice_util.maskToAxes(d);w.forEach(M=>{i[M]=s[M]+1,o[M]=1});let x=C.slice_util.computeOutShape(s,i,o),N=x.filter((M,D)=>w.indexOf(D)===-1);if(o.every(M=>M===1)){let M=op({inputs:{x:a},attrs:{begin:s,size:x},backend:t});t.disposeData(y.dataId);let D=yr({inputs:{x:M},attrs:{shape:N},backend:t});return t.disposeData(M.dataId),D}let T=t.makeOutput(N,"float32");if(!N.some(M=>M===0)){let M=t.dataIdMap.get(y.dataId).id,D=new Uint8Array(new Int32Array(v.computeStrides(y.shape)).buffer),L=new Uint8Array(new Int32Array(s).buffer),W=new Uint8Array(new Int32Array(i).buffer),U=new Uint8Array(new Int32Array(o).buffer),H=new Uint8Array(new Int32Array(N).buffer),X=new Uint8Array(new Int32Array(v.computeStrides(N)).buffer),G=t.dataIdMap.get(T.dataId).id;jb(M,D,y.shape.length,L,W,U,H,X,N.length,G)}t.disposeData(y.dataId);let E=yr({inputs:{x:T},attrs:{shape:N},backend:t});return t.disposeData(T.dataId),E}var VK={kernelName:Oo,backendName:"wasm",setupFunc:WK,kernelFunc:BK},UK=!0,HK=hn(Bs,UK),Gb;function jK(e){Gb=e.wasm.cwrap(Ps,null,["number, number, number"])}function GK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Nl(i,a,t),m=h;if(p){let b=t.dataIdMap.get(c.dataId).id;b!==o&&(u=c,l=b,m=C.getInnerMostAxes(m.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,A]=C.computeOutAndReduceShapes(u.shape,m),y=v.sizeFromShape(A),g=t.makeOutput(f,u.dtype);if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(g.dataId).id;Gb(l,y,b)}if(p&&t.disposeData(c.dataId),s){let b=C.expandShapeToKeepDim(g.shape,d);g.shape=b}return g}var qK={kernelName:Ps,backendName:"wasm",setupFunc:jK,kernelFunc:GK},XK=bn(Vs),qb;function KK(e){qb=e.wasm.cwrap(wa,null,["number","array","number","array","number","number"])}function ZK(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d<o.length;d++)o[d]=a.shape[d]*i[d];let l=new Uint8Array(new Int32Array(a.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),c=n.makeOutput(o,a.dtype),h=n.dataIdMap.get(c.dataId).id;return qb(s,l,a.shape.length,u,o.length,On[c.dtype],h),c}var YK={kernelName:wa,backendName:"wasm",setupFunc:KK,kernelFunc:ZK},Xb;function JK(e){Xb=e.wasm.cwrap(zo,null,["number","array","number","number","number","bool","number","number"])}var QK=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let u=t.makeOutput(l,r.dtype),c=t.dataIdMap.get(u.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return Xb(i,o,r.shape.length,On[r.dtype],a,s,c,d),[u,h]},eZ={kernelName:zo,backendName:"wasm",setupFunc:JK,kernelFunc:QK};function tZ(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),u=0;for(let p=0;p<o;p++)p!==s&&(l[u++]=a.shape[p]);let c=new Array(i),h=new Array(o).fill(0),d=a.shape.slice();d[s]=1;for(let p=0;p<c.length;p++)h[s]=p,c[p]=op({inputs:{x:a},attrs:{begin:h,size:d},backend:n});return c.map(({dataId:p,dtype:m})=>({dataId:p,dtype:m,shape:l}))}var nZ={kernelName:Po,backendName:"wasm",kernelFunc:tZ};function rZ(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var aZ={kernelName:Lo,backendName:"wasm",kernelFunc:rZ},sZ=[kG,NG,EG,zG,WG,HG,jG,GG,KG,ZG,QG,nq,rq,iq,uq,dq,mq,yq,gq,xq,_q,kq,Iq,Sq,vG,Cq,Mq,Dq,Lq,Vq,Hq,Gq,CG,Kq,Yq,Qq,eX,nX,sX,oX,cX,pX,AX,gX,wX,_X,kX,SX,CX,FX,OX,zX,LX,VX,HX,qX,ZX,JX,eK,tK,nK,BG,sK,lK,hK,pK,dK,AK,xK,bK,vK,SK,CK,FK,MK,$K,DK,LK,VK,HK,qK,XK,YK,eZ,$G,nZ,aZ];for(let e of sZ)qs(e);var Lm=J();Lm.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Lm.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Lm.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Kb=Pi(T8()),iZ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',oZ=Pi(E8()),Zb=class extends Kl{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new ah(this,Er())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,r,a){let s=this.dataIdNextNumber++;if(r==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:r,memoryOffset:null,refCount:a});return}let i=v.sizeFromShape(n),o=i*v.bytesPerElement(r),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:r,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+v.sizeFromShape(r)*v.bytesPerElement(n));return lZ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let a=this.dataIdNextNumber++;r={id:a},this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function uZ(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance)})})}),{})}function Yb(e,t,n){if(lp!=null)return lp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),rc!=null&&rc[r]!=null?rc[r]:n+r}async function cZ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=iZ,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return o.endsWith(".wasm")?Yb(e,t,ac!=null?ac:l):l+o},Wm&&(a.instantiateWasm=uZ(Yb(e,t,ac!=null?ac:"")));let s=!1;a.onAbort=()=>{s||sc||(sc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&lp==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Kb.default.toString()],{type:"text/javascript"}),i=(0,Kb.default)(a)):i=(0,oZ.default)(a),i.then(o=>{s=!0,sc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function lZ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var hZ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],lp=null,ac=null,rc={},sc=!1,Wm=!1;function dZ(e,t=!1){if(uf("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),sc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");lp=e,Wm=t}function pZ(e,t=!1){if(sc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")ac=e;else{rc=e;let n=hZ.filter(r=>rc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Wm=t}var Jb="3.2.0",fZ=2;Zo("wasm",async()=>{let{wasm:e}=await cZ();return new Zb(e)},fZ);Z().prototype.abs=function(){return this.throwIfDisposed(),Ot(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),hf(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),df(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),Yh(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Iu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),Nu(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),pf(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),j(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),me(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),j(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),j(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),j(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),j(this,[e,t,n,r])};Z().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),j(this,[e,t,n,r,a])};Z().prototype.asin=function(){return this.throwIfDisposed(),ff(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),mf(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),Af(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),yf(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),gf(this)};Z().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Tu(this,e,t,n,r)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Eu(this,e,t)};Z().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),Qs(this,e,t,n,r,a)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Cu(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),me(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),bf(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),gn(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ze&&(e=[e]),rt([this,...e],t)};Z().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Qh(this,e,t,n,r,a,s)};Z().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),ed(this,e,t,n,r,a)};Z().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Yr(this,e,t,n,r,a,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),Ru(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),td(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),nd(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),If(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),tl(this,e,t,n,r,a,s)};Z().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),Nf(this,e,t,n,r,a)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),Sf(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),R5(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),nl(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Sa(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),Tf(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),Gn(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),Tn(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),Ef(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),Bu(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),j(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),rl(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),Zh(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),ei(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Ea(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),rr(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),ll(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),xd(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),F5(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),M5(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),$5(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Mu(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),ti(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),ad(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),Rf(this,e,t,n,r)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),z5(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),od(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),$f(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),En(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),sd(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),ar(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),$u(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),ld(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),B5(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),He(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),Ou(this,e,t,n,r)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),qn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Fr(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),bt(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),sl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),il(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Df(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),zf(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),P(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),_t(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),vd(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),ri(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),qo(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Cn(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),Jr(this,e,t)};Z().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),H5(this,e,t,n,r,a)};Z().prototype.pow=function(e){return this.throwIfDisposed(),Qr(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),zu(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),cd(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),Wf(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),$r(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),dd(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),j(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),j(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),lx(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),ux(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Rn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),Vu(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Bf(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),pd(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),fd(this)};Z().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Vf(this,e,t,n,r,a,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),Sn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),Uf(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),md(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),Ad(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Ce(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),Wu(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),al(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Du(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),Jt(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),Qt(this)};Z().prototype.square=function(){return this.throwIfDisposed(),it(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),wd(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),Ca(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ze?[this,e]:[this,...e];return Fn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),ul(this,e)};Z().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),jf(this,e,t,n,r,a,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),Ae(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Te(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),Gf(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),Qo(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Ta(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),me(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),me(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),me(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),qf(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),nt(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),bd(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),Xf(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),sr(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),xn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),Ve(this)};var Qb={kernelName:Bi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,ul(me(n,"float32"),-1))}}},mZ={kernelName:Vi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=it(me(n,"float32")),a=Qt(Ae(be(1),r));return _t(ge(e,a))}}}},AZ={kernelName:Ui,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Qt(Ae(it(me(n,"float32")),1));return ge(e,r)}}}},yZ={kernelName:ga,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=mt(n.shape,r.shape);return{a:()=>{let s=e,i=Dt(n.shape,a);return i.length>0&&(s=Te(s,i)),j(s,n.shape)},b:()=>{let s=e,i=Dt(r.shape,a);return i.length>0&&(s=Te(s,i)),j(s,r.shape)}}}},gZ={kernelName:Ja,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},xZ={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ve(n)}}},wZ={kernelName:Jl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ve(n)}}},_Z={kernelName:Hi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,Qt(Ae(be(1),it(me(n,"float32")))))}}},bZ={kernelName:ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=Qt(se(be(1),it(me(n,"float32"))));return ge(e,r)}}}},vZ={kernelName:Xi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=mt(n.shape,r.shape);return{a:()=>{let s=se(it(n),it(r)),i=P(e,ge(r,s)),o=Dt(n.shape,a);return o.length>0&&(i=Te(i,o)),j(i,n.shape)},b:()=>{let s=se(it(n),it(r)),i=_t(P(e,ge(n,s))),o=Dt(r.shape,a);return o.length>0&&(i=Te(i,o)),j(i,r.shape)}}}},kZ={kernelName:Gi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,se(it(me(n,"float32")),1))}}},IZ={kernelName:qi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,Ae(be(1),it(me(n,"float32"))))}}};function NZ(e,t,n,r,a,s){let i=R(e,"dy","avgPool3dGrad"),o=R(t,"input","avgPool3dGrad"),l=i,u=o,c=!1;o.rank===4&&(c=!0,l=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=j(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),F(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&F(Bt(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:u},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=$.runKernel(hh,h,d);return c?j(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var SZ=O({avgPool3dGrad_:NZ}),TZ={kernelName:Ql,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>SZ(e,r,a,s,i,o)}}};function EZ(e,t,n,r,a){let s=R(e,"dy","avgPoolGrad"),i=R(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=j(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let c={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel(ch,c,h);return u?j(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var CZ=O({avgPoolGrad_:EZ}),RZ={kernelName:es,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>CZ(e,r,a,s,i)}}},FZ={kernelName:ts,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>He(e,a,!1,!0),b:()=>He(r,e,!0,!1)}:!s&&i?{a:()=>He(e,a,!1,!1),b:()=>He(e,r,!0,!1)}:s&&!i?{a:()=>He(a,e,!1,!0),b:()=>He(r,e,!1,!1)}:{a:()=>He(a,e,!0,!0),b:()=>He(e,r,!0,!0)}}},MZ={kernelName:eu,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>Du(e,r,a)}}},$Z={kernelName:Ng,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Te(e,o,!0)}}},OZ={kernelName:ns,gradFunc:e=>({x:()=>e.clone()})},DZ={kernelName:rs,gradFunc:e=>({x:()=>Ve(e)})},zZ={kernelName:xa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>xn(ar(Ea(r,a),ti(r,s)),e,Ve(e))}}},PZ={kernelName:tu,inputsToSave:["x"],gradFunc:Qb.gradFunc},LZ={kernelName:Ki,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=er(a,t[0].shape)[0],i=r.map(o=>o[s]);return Jt(e,i,s).map(o=>()=>o)}},WZ={kernelName:as,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return F(Na(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>vf(r.shape,e,a,i,o,l),filter:()=>Jf(r,e,a.shape,i,o,l)}}},BZ={kernelName:ss,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>Yr(e,a,s,i,o,1,l),filter:()=>Jf(e,r,a.shape,s,i,o,l)}}};function VZ(e,t,n,r,a){let s=e;e.rank===4&&(s=j(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=j(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(mh,o,l)}var UZ=O({conv3DBackpropFilter_:VZ}),HZ={kernelName:nu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;F(Na(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>E5(i.shape,e,o,a,s),filter:()=>UZ(i,e,o.shape,a,s)}}},jZ={kernelName:is,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(_t(md(me(n,"float32"))),e)}}},GZ={kernelName:Zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(Ad(me(n,"float32")),e)}}},qZ={kernelName:os,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=W5([a],r.rank),l=nd(e,a,s,!i);return o!=null&&(l=nt(l,o)),l}}}},XZ={kernelName:ls,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;F(Na(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),F(Cr(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&F(Bt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>tx(l.shape,e,u,a,s,r,i),filter:()=>ex(l,e,u.shape,a,s,r,i)}}},KZ={kernelName:ru,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(_h,s,n),filter:()=>$.runKernel(bh,i,n)}}},ZZ={kernelName:Qi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(vh,r)}}},YZ={kernelName:eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=P(Gn(_t(it(n))),2/Math.sqrt(Math.PI));return{x:()=>P(e,r)}}},JZ={kernelName:cs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,n)}}},QZ={kernelName:no,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>j(e,n.shape)}}},eY={kernelName:ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,Gn(n))}}},tY={kernelName:hs,gradFunc:e=>({x:()=>Ve(e)})},nY={kernelName:ds,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=mt(n.shape,r.shape);return{a:()=>{let s=ge(e,me(r,"float32")),i=Dt(n.shape,a);return i.length>0?j(Te(s,i),n.shape):s},b:()=>{let s=P(e,me(n,"float32")),i=Dt(r.shape,a);i.length>0&&(s=j(Te(s,i),r.shape));let o=it(r);return _t(ge(s,me(o,"float32")))}}}},rY={kernelName:ps,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?be(1):o,u=Dt(s.shape,a.shape),c=[];if(s.rank===1){for(let f=0;f<a.shape.length-1;++f)c.push(a.shape[f]);c.push(1)}let h=Ae(a,s),d=P(e,l),p=pd(se(i,be(r))),m=P(P(P(p,p),p),be(-.5));return{x:()=>s.rank===1?j(P(P(e,Ta(j(p,[1,1,1,s.shape[0]]),c)),l),a.shape):j(P(P(e,p),l),a.shape),mean:()=>{let f=P(P(p,be(-1)),d);return s.rank===1&&(f=Te(f,u)),j(f,s.shape)},variance:()=>{let f=P(P(m,h),d);return s.rank===1&&(f=Te(f,u)),j(f,s.shape)},scale:()=>{let f=P(h,p),A=P(e,f);return s.rank===1&&(A=Te(A,u)),j(A,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Te(f,u)),j(f,s.shape)}}}},aY={kernelName:so,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=er(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,u=o.slice(0,i),c=u.length,h=o.slice(s,o.length).slice(1),d=h.length,p=e3(0,c),m=e3(c+1,c+1+d),f=t3([u,[l],h]),A=j(e,f),y=j(a,[l]),g=t3([[c],p,m]),b=nt(A,g),_=Xf(b,y,r.shape[i]),w=Mf(g);return _=nt(_,w),_},indices:()=>a}}};function e3(e,t){let n=[];for(let r=e;r<t;++r)n.push(r);return n}function t3(e){let t=[];for(let n=0;n<e.length;++n)for(let r=0;r<e[n].length;++r)t.push(e[n][r]);return t}var sY={kernelName:fs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>Ve(n),b:()=>Ve(r)}}},iY={kernelName:ms,gradFunc:e=>({x:()=>me(e,"float32")})},oY={kernelName:lo,gradFunc:e=>({x:()=>Ve(e)})},lY={kernelName:uo,gradFunc:e=>({x:()=>Ve(e)})},uY={kernelName:co,gradFunc:e=>({x:()=>Ve(e)})},cY={kernelName:As,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=rr(r,0);return{x:()=>xn(s,e,P(e,a))}}},hY={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,se(n,1))}}},dY={kernelName:ys,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,me(n,"float32"))}}},pY={kernelName:Sg,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=Gn(r);return Ae(e,P(Te(e,a,s),i))}}}};function fY(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(Th,o,l)}var mY=O({localResponseNormalizationBackprop_:fY}),AY={kernelName:ou,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>mY(r,a,e,s,i,o,l)}}};function n3(e,t,n,r){return t.rank<n.rank&&(t=j(t,ni(t.shape,r))),e.rank<n.rank&&(e=j(e,ni(e.shape,r))),{x:()=>P(e,me(Sa(n,t),e.dtype))}}var r3={kernelName:gs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=er(a,s.shape),l=n3(e,i,s,o);return{x:()=>l.x()}}},yY={kernelName:xs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>P(e,me(Ea(n,r),"float32")),b:()=>P(e,me(ad(n,r),"float32"))}}};function gY(e,t,n,r,a,s,i){let o=R(e,"dy","maxPool3dGrad"),l=R(t,"input","maxPool3dGrad"),u=R(n,"output","maxPool3dGrad"),c=o,h=l,d=u,p=!1;l.rank===4&&(p=!0,c=j(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=j(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=j(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),F(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),F(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),F(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&F(Bt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:c,input:h,output:d},f={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=$.runKernel(Ch,m,f);return p?j(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var xY=O({maxPool3dGrad_:gY}),wY={kernelName:lu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>xY(e,r,a,s,i,o,l)}}};function _Y(e,t,n,r,a,s,i){let o=R(e,"dy","maxPoolGrad"),l=R(t,"input","maxPoolGrad"),u=R(n,"output","maxPoolGrad");F(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&F(Bt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let c={dy:o,input:l,output:u},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(Eh,c,h)}var bY=O({maxPoolGrad_:_Y}),vY={kernelName:ws,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>bY(e,r,a,s,i,o)}}},kY={kernelName:_s,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=er(a,r.shape),i=L5(r.shape,s)[1],o=Mt(i);return{x:()=>{let l=r.shape.slice();s.forEach(c=>{l[c]=1});let u=j(e,l);return ge(P(u,Mr(r.shape,"float32")),o)}}}},IY={kernelName:bs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=er(a,s.shape),l=n3(e,i,s,o);return{x:()=>l.x()}}},NY={kernelName:vs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>P(e,me(ti(n,r),"float32")),b:()=>P(e,me(rr(n,r),"float32"))}}},SY={kernelName:uu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Ce(e,s,r.shape)}}},TY={kernelName:Ao,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=mt(n.shape,r.shape);return{a:()=>{let s=Dt(n.shape,a);return s.length>0?j(Te(e,s),n.shape):e},b:()=>{let s=P(e,_t(rl(ge(n,r)))),i=Dt(r.shape,a);return i.length>0?j(Te(s,i),r.shape):s}}}},EY={kernelName:ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=mt(n.shape,r.shape);return{a:()=>{let s=P(e,me(r,"float32")),i=Dt(n.shape,a);return i.length>0?j(Te(s,i),n.shape):s},b:()=>{let s=P(e,me(n,"float32")),i=Dt(r.shape,a);return i.length>0?j(Te(s,i),r.shape):s}}}},CY={kernelName:yo,gradFunc:e=>({x:()=>_t(e)})},RY={kernelName:Is,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Et(n.shape,"float32")}}},FY={kernelName:bo,gradFunc:e=>({x:()=>Ve(e)})},MY={kernelName:vo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return sr(e,r).map(a=>()=>a)}},a3={kernelName:Ns,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>Ce(e,s,r.shape)}}},$Y={kernelName:Ss,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=mt(s.shape,i.shape);return{a:()=>{let l=me(i,"float32"),u=P(e,P(l,Qr(s,Ae(l,be(1))))),c=Dt(s.shape,o);return c.length>0&&(u=Te(u,c)),j(u,s.shape)},b:()=>{let l=rr(s,0),u=xn(l,En(s),Ve(s)),c=P(e,P(a,u)),h=Dt(i.shape,o);return h.length>0&&(c=Te(c,h)),j(c,i.shape)}}}},OY={kernelName:Ts,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=rr(n,0);return{x:()=>xn(a,e,P(e,r)),alpha:()=>{let s=xn(a,Ve(e),P(e,n)),i=Dt(r.shape,e.shape);return i.length>0&&(s=Te(s,i)),j(s,r.shape)}}}},DY={kernelName:us,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=mt(n.shape,r.shape);return{a:()=>{let s=ge(e,me(r,"float32")),i=Dt(n.shape,a);return i.length>0?j(Te(s,i),n.shape):s},b:()=>{let s=P(e,me(n,"float32")),i=Dt(r.shape,a);i.length>0&&(s=j(Te(s,i),r.shape));let o=it(r);return _t(ge(s,me(o,"float32")))}}}},zY={kernelName:Io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,_t(it(n)))}}},PY={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=P(ti(n,6),ul(n));return{x:()=>P(e,me(r,"float32"))}}},LY={kernelName:Es,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,me(ul(n),"float32"))}}},WY={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(e,n.shape)}}},BY={kernelName:Cs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(Oh,a,n)}}},VY={kernelName:hu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel($h,a,n)}}},UY={kernelName:Fs,gradFunc:(e,t,n)=>{let{dims:r}=n,a=er(r,e.shape);return{x:()=>Rn(e,a)}}},HY={kernelName:Ms,gradFunc:e=>({x:()=>Ve(e)})},jY={kernelName:$s,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_t(ge(e,P(Qr(n,1.5),2)))}}},GY={kernelName:To,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>me(Ve(n),"float32"),t:()=>P(e,me(n,e.dtype)),e:()=>P(e,me($u(n),e.dtype))}}},qY={kernelName:Eo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=rr(n,be(0)),a=be(dx),s=be(px),i=P(e,s),o=P(P(e,a),Gn(me(n,"float32")));return xn(r,i,o)}}}},XY={kernelName:Ds,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,P(n,Ae(be(1),n)))}}},KY={kernelName:Fo,gradFunc:e=>({x:()=>Ve(e)})},ZY={kernelName:Os,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(Ru(me(n,"float32")),e)}}},YY={kernelName:Ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(td(me(n,"float32")),e)}}},JY={kernelName:Co,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=h5(r,a,s),u=[];for(let c=0;c<e.rank;c++)u.push([o[c],i[c]-o[c]-l[c]]);return{x:()=>Jr(e,u)}}},QY={kernelName:Ls,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=P(e,r);return{logits:()=>Ae(i,P(Te(i,[a],s),r))}}},eJ={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,Sn(n))}}},s3={kernelName:du,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>Eu(e,r,a)}}},i3={kernelName:$o,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>rt(e,r)}}},tJ={kernelName:zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,P(Qt(me(n,"float32")),2))}}},nJ={kernelName:pu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(e,P(me(n,"float32"),2))}}},rJ={kernelName:Ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=be(2);return{a:()=>P(e,P(a,Ae(n,r))),b:()=>P(e,P(a,Ae(r,n)))}}},aJ={kernelName:_a,gradFunc:e=>({x:()=>Ve(e)})},sJ={kernelName:Bs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=mt(n.shape,r.shape);return{a:()=>{let s=e,i=Dt(n.shape,a);return i.length>0&&(s=Te(s,i)),j(s,n.shape)},b:()=>{let s=e,i=Dt(r.shape,a);return i.length>0&&(s=Te(s,i)),j(_t(s),r.shape)}}}},iJ={kernelName:Ps,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;er(s,r.shape).forEach(l=>{a[l]=1});let i=j(e,a),o=P(i,Mr(r.shape,"float32"));return{x:()=>o}}},oJ={kernelName:Do,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ge(e,it(Ru(n)))}}},lJ={kernelName:Vs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>P(Ae(be(1),it(n)),e)}}},uJ={kernelName:wa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=Ve(r);if(r.rank===1)for(let i=0;i<a[0];++i)s=se(s,Ce(e,[i*r.shape[0]],[r.shape[0]]));else if(r.rank===2)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)s=se(s,Ce(e,[i*r.shape[0],o*r.shape[1]],[r.shape[0],r.shape[1]]));else if(r.rank===3)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)s=se(s,Ce(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2]],[r.shape[0],r.shape[1],r.shape[2]]));else if(r.rank===4)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)for(let u=0;u<a[3];++u)s=se(s,Ce(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2],u*r.shape[3]],[r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${r.rank} tensors yet.`);return s}}}},cJ={kernelName:Us,gradFunc:(e,t,n)=>{let r=n,{perm:a}=r,s=Mf(a);return{x:()=>nt(e,s)}}},hJ={kernelName:Po,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>Fn(e,a)}}},pJ={kernelName:fu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>dJ(e,n)}}};function dJ(e,t){let n=Fr(t,Ve(t)),r=ei(e,n),a=Ea(t,be(0,"int32")),s=r.rank-a.rank;for(let o=0;o<s;++o)a=Tn(a,o+1);a=ar(a,Mr(r.shape,"bool"));let i=Ve(r);return xn(a,r,i)}var fJ={kernelName:Lo,gradFunc:e=>({x:()=>Ve(e)})},mJ=[Qb,mZ,AZ,yZ,gZ,xZ,wZ,_Z,bZ,vZ,kZ,IZ,TZ,RZ,FZ,MZ,$Z,OZ,DZ,zZ,PZ,LZ,BZ,WZ,HZ,jZ,GZ,qZ,XZ,KZ,DY,ZZ,YZ,JZ,QZ,eY,nY,tY,rY,aY,sY,iY,oY,lY,uY,cY,hY,dY,pY,AY,r3,r3,yY,wY,vY,kY,IY,NY,SY,TY,EY,CY,RY,FY,MY,a3,a3,$Y,OY,zY,PY,LY,WY,BY,VY,UY,HY,jY,GY,qY,XY,KY,ZY,YY,JY,QY,eJ,s3,s3,i3,i3,tJ,rJ,nJ,aJ,sJ,iJ,oJ,lJ,uJ,cJ,hJ,pJ,fJ];for(let e of mJ)Tg(e);var o3={};De(o3,{maxNorm:()=>AJ,minMaxNorm:()=>xJ,nonNeg:()=>gJ,unitNorm:()=>yJ});var Bm;function zt(){return Bm==null&&(Bm=g5().epsilon()),Bm}function gr(){return"channelsLast"}var ra=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ra.prototype)}},xr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,xr.prototype)}},V=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,V.prototype)}},$e=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,$e.prototype)}},l3=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,l3.prototype)}};function fi(e,t){if(Array.isArray(e)){let n=[];for(let r=0;r<t;r++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Pr(e,t){if(!e)throw new l3(t)}function u3(e,t){let n=0;for(let r of e)r===t&&n++;return n}function vn(e){return e.length===1?e[0]:e}function dt(e){return Array.isArray(e)?e:[e]}function aa(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function mi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var or={};function Vm(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Um(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Um(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:Um(r))}}}function ic(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in or)i=or[s];else if(i=t[s],i==null)throw new V(`Unknown ${r}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new V(`${r}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in or?[o,l]=or.className:i in t&&([o,l]=t[i]),o==null)throw new V(`Unknown ${r}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let p of Object.keys(or))u[p]=or[p];for(let p of Object.keys(n))u[p]=n[p];let c=s.config;c.customObjects=u;let h=Object.assign({},or);for(let p of Object.keys(n))or[p]=n[p];Um(s.config);let d=l(o,s.config,n,a);return or=Object.assign({},h),d}else{let u=Object.assign({},or);for(let h of Object.keys(n))or[h]=n[h];let c=new o(s.config);return or=Object.assign({},u),c}}}function wJ(e,t){return e<t?-1:e>t?1:0}function up(e,t){return-1*wJ(e,t)}function Oa(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function _J(e){if(e==null)throw new V(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Ai(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new V(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Hm(e,t,n=0,r=Infinity){return Pr(n>=0),Pr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function jt(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>jt(n,`element ${r+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${c3(e)}.`)}function c3(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>c3(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function bJ(e,t){let n=v.now(),r;return(...a)=>{let s=v.now();return s-n<t||(n=s,r=e(...a)),r}}function h3(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function jm(e,t){return B(()=>Qt(Te(P(e,e),t,!0)))}var oc=class extends re.Serializable{getConfig(){return{}}},Gm=class extends oc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return B(()=>{let t=jm(e,this.axis),n=gn(t,0,this.maxValue);return P(e,ge(n,se(zt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Gm.className="MaxNorm";re.registerClass(Gm);var qm=class extends oc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return B(()=>ge(e,se(zt(),jm(e,this.axis))))}getConfig(){return{axis:this.axis}}};qm.className="UnitNorm";re.registerClass(qm);var Xm=class extends oc{apply(e){return $r(e)}};Xm.className="NonNeg";re.registerClass(Xm);var Km=class extends oc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return B(()=>{let t=jm(e,this.axis),n=se(P(this.rate,gn(t,this.minValue,this.maxValue)),P(1-this.rate,t));return P(e,ge(n,se(zt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Km.className="MinMaxNorm";re.registerClass(Km);var d3={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Pt(e){return Vm(e)}function p3(e,t={}){return ic(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Lt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in d3?d3[e]:e,config:{}};return p3(t)}else return e instanceof oc?e:p3(e)}function AJ(e){return new Gm(e)}function yJ(e){return new qm(e)}function gJ(){return new Xm}function xJ(e){return new Km(e)}var f3={};De(f3,{constant:()=>IJ,glorotNormal:()=>FJ,glorotUniform:()=>RJ,heNormal:()=>MJ,heUniform:()=>$J,identity:()=>EJ,leCunNormal:()=>OJ,leCunUniform:()=>DJ,ones:()=>kJ,orthogonal:()=>zJ,randomNormal:()=>SJ,randomUniform:()=>NJ,truncatedNormal:()=>TJ,varianceScaling:()=>CJ,zeros:()=>vJ});var PJ=["channelsFirst","channelsLast"],LJ=["nearest","bilinear"],WJ=["valid","same","causal"],BJ=["max","avg"],VJ=["sum","mul","concat","ave"],Sl=new Map;function St(e){Ai(PJ,"DataFormat",e)}function UJ(e){Ai(LJ,"InterpolationFormat",e)}function Zn(e){Ai(WJ,"PaddingMode",e)}function m3(e){Ai(BJ,"PoolMode",e)}var lc=[],A3="/";function yi(e,t){lc.push(e);try{let n=t();return lc.pop(),n}catch(n){throw lc.pop(),n}}function HJ(){return lc.length===0?"":lc.join(A3)+A3}function g3(e){if(!y3(e))throw new Error("Not a valid tensor name: '"+e+"'");return HJ()+e}function x3(e){if(!y3(e))throw new Error("Not a valid tensor name: '"+e+"'");Sl.has(e)||Sl.set(e,0);let t=Sl.get(e);if(Sl.set(e,Sl.get(e)+1),t>0){let n=`${e}_${t}`;return Sl.set(n,1),n}else return e}var jJ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function y3(e){return!!e.match(jJ)}function GJ(e){return e===parseInt(e.toString(),10)}function Da(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a<n;++a)r*=e[a];return r}function w3(e){return e=Array.isArray(e)?new Float32Array(e):e,Ut(e)}function Tl(e){return sl(w3(e)).dataSync()[0]}function za(e){return qn(w3(e)).dataSync()[0]}function wr(e,t){if(t<e)throw new V(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let r=e;r<t;++r)n.push(r);return n}function uc(e,t){return e.asType(t)}function cc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function qJ(e,t){return B(()=>{if(e.shape.length!==2)throw new V(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=cc(e,1);return Zm(n,[1,t,1])})}function XJ(e){let t=[Da(e.shape)];return e.reshape(t)}function KJ(e){if(e.rank<=1)throw new V(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Da(e.shape,1)];return e.reshape(t)}function gi(e,t,n){return B(()=>{switch(e.rank){case 1:return yd(e,t,n);case 2:return Hf(e,[t,0],[n,e.shape[1]]);case 3:return gd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Lu(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Ce(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Ce(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new V(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Ym(e,t,n){return B(()=>{switch(e.rank){case 1:return yd(e,t,n);case 2:return Hf(e,[0,t],[e.shape[0],n]);case 3:return gd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Lu(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function cp(e,t,n,r){return B(()=>{switch(e.rank){case 1:return yd(e,t,n);case 2:switch(r){case 1:return gi(e,t,n);case 2:return Ym(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return gi(e,t,n);case 2:return gd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return Ym(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return gi(e,t,n);case 2:return Lu(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Lu(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return Ym(e,t,n);default:throw new V(`The axis is not within the rank of the tensor ${r}`)}default:throw new V(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Jm(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),rt(e,t)}function _3(e,t){switch(e.rank){case 1:return N5([e,t]);case 2:return el([e,t],0);case 3:return S5([e,t],0);case 4:return T5([e,t],0);default:throw new V(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Zm(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new V(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ta(e,t)}function hp(e,t=0,n=1,r,a){return j5(e,t,n,r,a)}function Lr(e,t,n,r){if(e.rank<2||t.rank<2)throw new $e(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new $e(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return Ra.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?Qm(e.rank,r,gr()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],c=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(c).reshape([l,-1]);let h=[...a,...u],d=!1,p=!1;return Ra.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?Qm(e.rank,r,gr()):null,activation:n}).reshape(h)}}function b3(e,t,n){return B(()=>(Array.isArray(t)?t=Ut(t,"int32"):t=t.toInt(),ei(e,t,n)))}function hc(e){return P(e,e)}function Qm(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new V(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new V(`Unsupported input rank by biasAdd: ${t.rank}`)}function Wr(e,t,n){return B(()=>(n==null&&(n=gr()),St(n),e.add(Qm(e.rank,t,n))))}function ZJ(e,t=1){if(t!==1)throw new $e(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return nl(e)}function YJ(e){return B(()=>ge(e,Ot(e).add(1)))}function v3(e,t,n,r){return B(()=>J5(e,t,n,r))}function JJ(e){return B(()=>{let t=se(.5,P(.2,e));return gn(t,0,1)})}function dc(e,t,n=!1){return n?e():t()}var QJ=["fanIn","fanOut","fanAvg"],eQ=["normal","uniform","truncatedNormal"];function tQ(e){Ai(QJ,"FanMode",e)}function nQ(e){Ai(eQ,"Distribution",e)}var lr=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},eA=class extends lr{apply(e,t){return Et(e,t)}};eA.className="Zeros";re.registerClass(eA);var dp=class extends lr{apply(e,t){return Mr(e,t)}};dp.className="Ones";re.registerClass(dp);var tA=class extends lr{constructor(e){super();if(typeof e!="object")throw new V(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new V(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return B(()=>P(be(this.value),Mr(e,t)))}getConfig(){return{value:this.value}}};tA.className="Constant";re.registerClass(tA);var nA=class extends lr{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return ol(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};nA.className="RandomUniform";re.registerClass(nA);var rA=class extends lr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`randomNormal does not support dType ${t}.`);return hp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};rA.className="RandomNormal";re.registerClass(rA);var aA=class extends lr{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`truncatedNormal does not support dType ${t}.`);return _d(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};aA.className="TruncatedNormal";re.registerClass(aA);var sA=class extends lr{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return B(()=>{if(e.length!==2||e[0]!==e[1])throw new V("Identity matrix initializer can only be used for 2D square matrices.");return P(this.gain,Cf(e[0]))})}getConfig(){return{gain:this.gain}}};sA.className="Identity";re.registerClass(sA);function rQ(e,t="channelsLast"){let n,r;if(St(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Da(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Da(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Da(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var kn=class extends lr{constructor(e){super();if(e.scale<0)throw new V(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,tQ(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,nQ(this.distribution),this.seed=e.seed}apply(e,t){let n=rQ(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new $e(`${this.getClassName()} does not support dType ${t}.`);return _d(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return ol(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};kn.className="VarianceScaling";re.registerClass(kn);var pp=class extends kn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return kn.className}};pp.className="GlorotUniform";re.registerClass(pp);var fp=class extends kn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return kn.className}};fp.className="GlorotNormal";re.registerClass(fp);var mp=class extends kn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return kn.className}};mp.className="HeNormal";re.registerClass(mp);var Ap=class extends kn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return kn.className}};Ap.className="HeUniform";re.registerClass(Ap);var yp=class extends kn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return kn.className}};yp.className="LeCunNormal";re.registerClass(yp);var gp=class extends kn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return kn.className}};gp.className="LeCunNormal";re.registerClass(gp);var iA=class extends lr{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new $e("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return B(()=>{if(e.length<2)throw new $e("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=hp(n,0,1,"float32"),a=hx.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),P(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};iA.className="Orthogonal";re.registerClass(iA);var k3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function I3(e,t={}){return ic(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function vt(e){return Vm(e)}function yt(e){if(typeof e=="string"){let t=e in k3?k3[e]:e;if(t==="GlorotNormal")return new fp;if(t==="GlorotUniform")return new pp;if(t==="HeNormal")return new mp;if(t==="HeUniform")return new Ap;if(t==="LeCunNormal")return new yp;if(t==="LeCunUniform")return new gp;{let n={};return n.className=t,n.config={},I3(n)}}else return e instanceof lr?e:I3(e)}function vJ(){return new eA}function kJ(){return new dp}function IJ(e){return new tA(e)}function NJ(e){return new nA(e)}function SJ(e){return new rA(e)}function TJ(e){return new aA(e)}function EJ(e){return new sA(e)}function CJ(e){return new kn(e)}function RJ(e){return new pp(e)}function FJ(e){return new fp(e)}function MJ(e){return new mp(e)}function $J(e){return new Ap(e)}function OJ(e){return new yp(e)}function DJ(e){return new gp(e)}function zJ(e){return new iA(e)}var N3={};De(N3,{Layer:()=>je,RNN:()=>Br,RNNCell:()=>pc,activation:()=>xQ,add:()=>TQ,alphaDropout:()=>hee,average:()=>EQ,averagePooling1d:()=>oA,averagePooling2d:()=>lA,averagePooling3d:()=>uA,avgPool1d:()=>PQ,avgPool2d:()=>WQ,avgPool3d:()=>VQ,avgPooling1d:()=>LQ,avgPooling2d:()=>BQ,avgPooling3d:()=>UQ,batchNormalization:()=>OQ,bidirectional:()=>ree,concatenate:()=>CQ,conv1d:()=>hQ,conv2d:()=>dQ,conv2dTranspose:()=>pQ,conv3d:()=>fQ,convLstm2d:()=>QQ,convLstm2dCell:()=>eee,cropping2D:()=>AQ,dense:()=>wQ,depthwiseConv2d:()=>gQ,dot:()=>$Q,dropout:()=>_Q,elu:()=>sQ,embedding:()=>SQ,flatten:()=>vQ,gaussianDropout:()=>cee,gaussianNoise:()=>uee,globalAveragePooling1d:()=>HQ,globalAveragePooling2d:()=>jQ,globalMaxPool1d:()=>see,globalMaxPool2d:()=>iee,globalMaxPooling1d:()=>T3,globalMaxPooling2d:()=>E3,gru:()=>qQ,gruCell:()=>XQ,input:()=>S3,inputLayer:()=>aQ,layerNormalization:()=>DQ,leakyReLU:()=>oQ,lstm:()=>KQ,lstmCell:()=>ZQ,masking:()=>dee,maxPool1d:()=>oee,maxPool2d:()=>lee,maxPooling1d:()=>C3,maxPooling2d:()=>R3,maxPooling3d:()=>GQ,maximum:()=>RQ,minimum:()=>FQ,multiply:()=>MQ,permute:()=>NQ,prelu:()=>lQ,reLU:()=>iQ,repeatVector:()=>kQ,reshape:()=>IQ,rnn:()=>tee,separableConv2d:()=>mQ,simpleRNN:()=>YQ,simpleRNNCell:()=>JQ,softmax:()=>uQ,spatialDropout1d:()=>bQ,stackedRNNCells:()=>nee,thresholdedReLU:()=>cQ,timeDistributed:()=>aee,upSampling2d:()=>yQ,zeroPadding2d:()=>zQ});var pee=0;function F3(){return pee++}var xp={};function wp(e=""){return e in xp||(xp[e]=0),xp[e]+=1,e+xp[e].toString()}function cA(e){return Array.isArray(e)&&Array.isArray(e[0])}function _p(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function ze(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new V(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function lt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new V(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function bp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var M3="Variable",$3=class{constructor(e,t="float32",n=M3,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=F3(),n=n==null?M3:n,this.originalName=g3(n),this.name=x3(this.originalName),this.trainable_=r,this.constraint=a,this.val=q5(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),fee(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function fee(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function hA(e){return e.map(t=>t.read())}function dA(e){e.forEach(t=>{t[0].write(t[1])})}var Gt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},_r=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=F3(),s!=null&&(this.originalName=g3(s),this.name=x3(this.originalName)),this.rank=t.length}},mee=0,vp=class{constructor(e,t){this.callArgs=t,this.id=mee++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},Aee=0,je=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=Aee++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=aa(n)+"_"+wp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new xr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new V(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return vn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return vn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ra(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ra(`Layer ${this.name} is not connected, no input to return.`);return vn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ra(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ra(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return vn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=dt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=dt(this.inputSpec);if(e.length!==t.length)throw new V(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let r=e[n],a=t[n];if(a==null)continue;let s=r.rank;if(a.ndim!=null&&s!==a.ndim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${a.ndim}, found ndim=${s}`);if(a.maxNDim!=null&&s>a.maxNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s<a.minNDim)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${a.minNDim}, found ndim=${s}.`);if(a.dtype!=null&&r.dtype!==a.dtype)throw new V(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${a.dtype}, found dtype=${r.dtype}.`);if(a.axes){let i=r.shape;for(let o in a.axes){let l=Number(o),u=a.axes[o],c=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i<a.shape.length;++i){let o=a.shape[i],l=r.shape[i];if(o!=null&&l!=null&&o!==l)throw new V(`Input ${n} is incompatible with layer ${this.name}: expected shape=${a.shape}, found shape=${r.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=dt(e),r=!0;for(let s of n)if(!(s instanceof _r)){r=!1;break}let a=!0;for(let s of n)if(s instanceof _r){a=!1;break}if(r===a)throw new V("Arguments to apply() must be all SymbolicTensors or all Tensors");return yi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of dt(e))s.push(i.shape);this.build(vn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=dt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=vn(o),this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=yee(e),i=this.computeOutputShape(s),o,l=gee(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,c)=>new _r(l,u,this,dt(e),t,this.name,c)):o=new _r(l,i,this,dt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new $e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ra(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ra(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new xr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return bp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return hA(e?this.trainableWeights:this.weights)}setWeights(e){B(()=>{let t=this.weights;if(t.length!==e.length)throw new V(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=hA(t);for(let a=0;a<r.length;++a){let s=r[a],i=t[a],o=e[a];if(!v.arraysEqual(s.shape,o.shape))throw new V(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}dA(n)})}addWeight(e,t,n,r,a,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new V(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(r=yt("zeros"));let o=r.apply(t,n),l=new $3(o,n,e,s,i);return o.dispose(),a!=null&&this.addLoss(()=>a.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=dt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=dt(e);t=dt(t),n=dt(n),r=dt(r),a=_p(a),s=_p(s);let l=[],u=[],c=[];for(let h of o)l.push(h.sourceLayer),u.push(h.nodeIndex),c.push(h.tensorIndex);new vp({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function yee(e){e=dt(e);let t=[];for(let n of e)t.push(n.shape);return vn(t)}function gee(e){return"float32"}function O3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s<r.inboundLayers.length;s++){let i=r.inputTensors[s],o=r.inboundLayers[s],l=r.nodeIndices[s],u=O3(i,o,l);for(let c of u)a.indexOf(c)===-1&&a.push(c)}return a}}}var El=class extends je{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:wp("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new V("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new V("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new V("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let r=new _r(this.dtype,this.batchInputShape,this,[],{},this.name);r.nodeIndex=0,r.tensorIndex=0,new vp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[r],outputTensors:[r],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new V(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};El.className="InputLayer";re.registerClass(El);function D3(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new V("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new El({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Pa(e){if(e==null)return;let t=[],n=[],r=[];for(let a in e){let s=e[a];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(a),r.push(i)}}if(t.length>0){let a=await Promise.all(t);for(let s=0;s<a.length;++s)e[n[s]]=a[s][0];Ee(r)}}function z3(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var P3;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(P3||(P3={}));var xee=125,Cl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},L3=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},wee=class extends Cl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let r in t){let a=t[r];if(typeof a=="number")this.totals.hasOwnProperty(r)||(this.totals[r]=0),this.totals[r]=this.totals[r]+a*n;else{let s;r in this.totals?s=this.totals[r]:this.totals[r]=0;let i=B(()=>se(this.totals[r],P(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:B(()=>{let r=P(ge(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Vt(t[n])}))}},W3=class extends Cl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(a),n.push(i)}}let r=await Promise.all(e);for(let a=0;a<r.length;++a)this.history[t[a]][n[a]].dispose(),this.history[t[a]][n[a]]=r[a][0]}},B3=class extends Cl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=xee),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=bJ(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let r=[];this.yield!=null&&(await Pa(n),r.push(this.yield(e,t,n))),r.push($d()),await Promise.all(r)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Pa(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Pa(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push($d()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Pa(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Pa(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push($d()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Pa(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Pa(e),await this.trainEnd(e))}};function V3(e,t){return e==null&&(e={}),e instanceof Cl?[e]:Array.isArray(e)&&e[0]instanceof Cl?e:dt(e).map(n=>new B3(n,t))}var ur=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),ur.checkForDuplicate(t),ur.constructors[e]==null&&(ur.constructors[e]=[]),ur.constructors[e].push(t)}static checkForDuplicate(e){for(let t in ur.constructors)ur.constructors[+t].forEach(n=>{if(n===e)throw new V("Duplicate callback constructor.")})}static clear(){ur.constructors={}}static createCallbacks(e){let t=[];for(let n in ur.constructors){let r=+n;e>=r&&t.push(...ur.constructors[r])}return t.map(n=>new n)}};ur.constructors={};function U3(e,t,n,r,a,s,i,o,l){let u=new W3,c=[new wee,...ur.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let h=new L3(c);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:u}}function br(e,t={},n=!1){return ic(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function kp(e,t){return B(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Te(hc(e),t,!0),r=Fu(n.shape,zt()),a=Qt(Fr(n,r));return ge(e,a)})}function xi(e,t){return B(()=>bt(hc(Ae(t,e)),-1))}function Ip(e,t){return B(()=>bt(Ot(Ae(t,e)),-1))}function Rl(e,t){return B(()=>{let n=Ae(e,t),r=gn(Ot(e),zt(),Number.MAX_VALUE),a=Ot(ge(n,r));return P(100,bt(a,-1))})}function _ee(e,t){return B(()=>{let n=gn(t,zt(),Number.MAX_VALUE),r=En(se(1,n)),a=gn(e,zt(),Number.MAX_VALUE),s=En(se(1,a));return bt(hc(Ae(r,s)),-1)})}function bee(e,t){return B(()=>{let n=Fr(0,Ae(1,P(e,t)));return bt(hc(n),-1)})}function vee(e,t){return B(()=>{let n=Fr(0,Ae(1,P(e,t)));return bt(n,-1)})}function kee(e,t){return B(()=>{let n=Te(P(e,t),-1),r=qn(P(Ae(1,e),t),-1);return Fr(0,se(1,Ae(r,n)))})}function Iee(e,t){return B(()=>{let n=Math.log(2),r=Ae(t,e),a=Ae(se(r,al(P(-2,r))),n);return bt(a,-1)})}function fc(e,t,n=!1){return B(()=>{if(n)t=Wu(t);else{let r=Te(t,t.shape.length-1,!0);t=ge(t,r)}return t=gn(t,zt(),1-zt()),_t(Te(P(e.toFloat(),En(t)),t.shape.length-1))})}function Np(e,t,n=!1){return B(()=>{let r=rl(XJ(e)).toInt();t=gn(t,zt(),1-zt());let a=t.shape,s=qo(r,a[a.length-1]).reshape(a);return fc(s,t,n)})}function Nee(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new V(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return B(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function Sp(e,t){return B(()=>{let n;return n=gn(t,zt(),1-zt()),n=En(ge(n,Ae(1,n))),bt(Nee(e,n),-1)})}function See(e,t){return B(()=>{let n=gn(e,zt(),1),r=gn(t,zt(),1);return Te(P(e,En(ge(n,r))),-1)})}function Tee(e,t){return B(()=>{let n=En(se(zt(),t));return bt(Ae(t,P(e,n)),-1)})}function pA(e,t){return B(()=>{let n=kp(e,-1),r=kp(t,-1),a=P(n,r);return _t(Te(a,-1))})}var Tp={meanSquaredError:xi,meanAbsoluteError:Ip,meanAbsolutePercentageError:Rl,meanSquaredLogarithmicError:_ee,squaredHinge:bee,hinge:vee,categoricalHinge:kee,logcosh:Iee,categoricalCrossentropy:fc,sparseCategoricalCrossentropy:Np,binaryCrossentropy:Sp,kullbackLeiblerDivergence:See,poisson:Tee,cosineProximity:pA};function fA(e){if(typeof e=="string"){if(e in Tp)return Tp[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new V(t)}else return e}function mA(e,t){return B(()=>{let n=P(.5,Cn(t)),r=uc(rr(t,n),e.dtype);return bt(Sa(e,r),-1)})}function AA(e,t){return B(()=>uc(Sa(Nu(e,-1),Nu(t,-1)),"float32"))}function H3(e,t){return B(()=>ar(e.equal(1),t.equal(1)).sum().cast("float32"))}function Eee(e,t){return B(()=>ar(e.equal(1),t.equal(0)).sum().cast("float32"))}function Cee(e,t){return B(()=>ar(e.equal(0),t.equal(1)).sum().cast("float32"))}function j3(e,t){return B(()=>{let n=H3(e,t),r=Cee(e,t),a=n.add(r);return xn(rr(a,0),n.div(a),0).cast("float32")})}function Ree(e,t){return B(()=>{let n=H3(e,t),r=Eee(e,t),a=n.add(r);return xn(rr(a,0),n.div(a),0).cast("float32")})}function G3(e,t){return Sp(e,t)}function q3(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Sa(e,t).asType("float32")}var Fee=xi,Mee=xi,$ee=Ip,Oee=Ip,Dee=Rl,zee=Rl,yA=fc,Pee=pA,X3=Np,Ep={binaryAccuracy:mA,categoricalAccuracy:AA,precision:j3,categoricalCrossentropy:yA,sparseCategoricalCrossentropy:X3,mse:Fee,MSE:Mee,mae:$ee,MAE:Oee,mape:Dee,MAPE:zee,cosine:Pee};function Lee(e){if(typeof e=="string"&&e in Ep)return Ep[e];if(typeof e!="string"&&e!=null)return e;throw new V(`Unknown metric ${e}`)}function Cp(e){if(Pr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Tp))if(Tp[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Ep))if(Ep[n]===e){t=n;break}return t!==void 0?t:e.name}}function Wee(e){let t={Adagrad:()=>si.adagrad(.01),Adadelta:()=>si.adadelta(1,.95,zt()),Adam:()=>si.adam(.001,.9,.999,zt()),Adamax:()=>si.adamax(.002,.9,.999,zt(),0),RMSProp:()=>si.rmsprop(.001,.9,0,zt()),SGD:()=>si.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new V(`Unknown Optimizer ${e}`)}var K3=1*1024*1024;function Z3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!gA(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>K3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${K3}.`)}}function gA(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!gA(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!gA(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function jee(e,t,n,r=console.log){let a=Vee(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let i;if(!a){s.push("Receives inputs"),i=[];for(let c in e.nodesByDepth)i.push(...e.nodesByDepth[c])}r("_".repeat(t)),Rp(s,n,r),r("=".repeat(t));let o=e.layers;for(let c=0;c<o.length;++c)a?Uee(o[c],n,r):Hee(o[c],n,i,r),r((c===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=Bee(e),u=bp(e.nonTrainableWeights);r(`Total params: ${l+u}`),r(`Trainable params: ${l}`),r(`Non-trainable params: ${u}`),r("_".repeat(t))}function Bee(e){let t;return e.collectedTrainableWeights!=null?t=bp(e.collectedTrainableWeights):t=bp(e.trainableWeights),t}function Vee(e){let t=!0,n=[],r=[];for(let a in e.nodesByDepth)n.push(e.nodesByDepth[a]);for(let a of n){if(a.length>1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function Rp(e,t,n=console.log){let r="";for(let a=0;a<e.length;++a)a>0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function Uee(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];Rp(i,t,n)}function Hee(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(c){a="multiple"}let s=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let h=0;h<c.inboundLayers.length;++h){let d=c.inboundLayers[h].name,p=c.nodeIndices[h],m=c.tensorIndices[h];s.push(`${d}[${p}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],u=[`${i} (${o})`,a,e.countParams().toString(),l];Rp(u,t,r);for(let c=1;c<s.length;++c)Rp(["","","",s[c]],t,r)}function Y3(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function mc(e,t){if(e===null)return null;if(typeof e=="string")return mi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];Y3(t,a,s)?n.push(s):n.push(mc(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r];if(r==="name"&&typeof a=="string")n[r]=a;else{let s=mi(r);n[s]=mc(a,s)}}return n}}function xA(e,t){if(e==null)return null;if(typeof e=="string")return aa(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];Y3(t,a,s)?n.push(s):n.push(xA(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r],s=aa(r);(r==="name"||r==="className")&&typeof a=="string"?n[s]=a:n[s]=xA(a,r)}return n}}var wA="3.2.0";function Gee(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return me(t,e.dtype)}catch(n){throw new V(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var wi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof wi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Gee(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new V(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof _r){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof _r){if(this.id2Value[e.id]==null)throw new V(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new V(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ee(this.id2Mask)}},_A={},J3={};function Ac(e,t,n,r){let a=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let c=o.join(",")+"|"+t.names().join(","),h,d;if(_A[c]==null){let m=qee(i,t);h=m.sorted,d=m.recipientCounts,_A[c]=h,J3[c]=d}h=_A[c],d={},a||Object.assign(d,J3[c]);let p=new wi(t);for(let m=0;m<h.length;++m){if(r!=null){let E=Kh().numTensors;E>r.maxNumTensors&&(r.maxNumTensors=E),E<r.minNumTensors&&(r.minNumTensors=E)}let f=h[m],A=f.sourceLayer;if(A instanceof El)continue;let y=[],g=[],b=[],_=!1;for(let E of f.inputs){let M=p.getValue(E),D=p.getMask(E);y.push(M),g.push(D),D!=null&&(_=!0),a||(d[E.name]--,d[E.name]===0&&!t.hasKey(E)&&o.indexOf(E.name)===-1&&!M.isDisposed&&E.sourceLayer.stateful!==!0&&b.push(M))}_&&(n=n||{},n.mask=g[0]);let w=dt(A.apply(y,n)),x=null;A.supportsMasking&&(x=A.computeMask(y,g));let N=Xee(f),T=Array.isArray(N)?N:[N];for(let E=0;E<T.length;++E){p.hasKey(T[E])||p.add(T[E],w[E],Array.isArray(x)?x[0]:x);let M=o.indexOf(T[E].name);M!==-1&&(l[M]=w[E])}a||Ee(b)}return p.disposeMasks(),s?l:l[0]}function qee(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=Q3(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=Q3(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(u=>r[l].add(u))}}return{sorted:n,recipientCounts:Kee(r)}}function Kee(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Q3(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)a[u.name]==null&&(a[u.name]=new Set),a[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:r,recipientMap:a}}function Xee(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;r<e.sourceLayer.inboundNodes.length;++r)for(let a of e.sourceLayer.inboundNodes[r].outputTensors)if(a.id===e.id){n=r;break}t=e.sourceLayer.getOutputAt(n)}return t}var Vr=class extends je{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=wp(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Oa(this.inputs).length!==this.inputs.length)throw new V(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Oa(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,b=y.nodeIndex,_=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(b),this.outputLayersTensorIndices.push(_)}for(let y of this.inputs){let g=y.sourceLayer,b=y.nodeIndex,_=y.tensorIndex;Pr(b===0,"input layer has >1 nodes"),Pr(_===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(b),this.inputLayersTensorIndices.push(_)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let g=this.inputLayers[y];if(!(g instanceof El))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${g.getClassName()}.`);this.inputNames.push(g.name),this.feedInputShapes.push(g.batchInputShape),this.feedInputNames.push(g.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},r={},a={},s={},i=[],o=(y,g,b,_,w,x)=>{(_==null||w==null||x==null)&&(_=y.sourceLayer,w=y.nodeIndex,x=y.tensorIndex);let N=_.inboundNodes[w];if(b.indexOf(N)!==-1)throw new xr(`The tensor ${y.name} at layer "${_.name}" is part of a cycle.`);if(g.indexOf(N)!==-1)return;this.containerNodes.add(Vr.nodeKey(_,w)),_.id in s||(s[_.id]=Object.keys(s).length),b.indexOf(N)===-1&&b.push(N);let T=N.inboundLayers.length;for(let E=0;E<T;E++){let M=N.inputTensors[E],D=N.inboundLayers[E],L=N.nodeIndices[E],W=N.tensorIndices[E];o(M,g,b,D,L,W)}for(g.push(N);b.indexOf(N)>=0;)b.splice(b.indexOf(N),1);i.push(N)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let c=i.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],b=r[y.outboundLayer.id]==null?0:r[y.outboundLayer.id];g=Math.max(g,b),r[y.outboundLayer.id]=g,a[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let _=0;_<y.inboundLayers.length;_++){let w=y.inboundLayers[_],x=y.nodeIndices[_],N=w.inboundNodes[x],T=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(g+1,T),n[N.id]=N}}let h={};for(let y in t){let g=t[y];g in h||(h[g]=[]),h[g].push(n[y])}let d={};for(let y in r){let g=r[y];g in d||(d[g]=[]),d[g].push(a[y])}let p=Object.keys(d).map(y=>parseInt(y,10)).sort(up);this.layers=[];for(let y of p){let g=d[y];g.sort((b,_)=>{let w=s[b.id],x=s[_.id];return w<x?-1:w>x?1:0});for(let b of g)b instanceof Vr&&this.internalContainerRefs.push(b),this.layers.push(b)}this.layersByDepth=d,p=Object.keys(h).map(y=>parseInt(y,10)).sort(up);let m=this.inputs.slice(),f=[];for(let y of p)for(let g of h[y]){let b=g.outboundLayer;if(b!=null){for(let _ of g.inputTensors)if(m.indexOf(_)===-1)throw new xr(`Graph disconnected: cannot obtain value for tensor ${_} at layer "${b.name}". The following previous layers were accessed without issue: ${f}`);for(let _ of g.outputTensors)m.push(_);f.push(b.name)}}this.nodesByDepth=h;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(b=>b===y).length;if(g!==1)throw new xr(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new vp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new V("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new V(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new V(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new V(`${s.length} of ${r} weights are not set: ${s}`)}dA(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${wA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=xA(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return B(()=>{e=dt(e);let n=new wi;for(let r=0;r<this.inputs.length;++r)n.add(this.inputs[r],e[r]);return Ac(this.outputs,n,t)})}computeMask(e,t){return B(()=>{e=dt(e);let n;return t==null?n=fi(null,e.length):n=dt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=_p(e);if(t.length!==this.inputLayers.length)throw new V(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let r=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(up);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let c=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],A=l.nodeIndices[m],y=l.tensorIndices[m],g=`${f.name}_${A}_${y}`,b=n[g];c.push(b)}let h=u.computeOutputShape(vn(c)),d=_p(h),p=u.inboundNodes.indexOf(l);for(let m=0;m<d.length;m++){let f=`${u.name}_${p}_${m}`;n[f]=d[m]}}}let a=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],c=`${o.name}_${l}_${u}`;s.push(c)}for(let i=0;i<s.length;i++){let o=s[i];Pr(o in n),a.push(n[o])}return vn(a)}runInternalGraph(e,t){t==null&&(t=fi(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],c=t[o];n[l.id]=[u,c]}let r=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(up);for(let o of r){let l=this.nodesByDepth[o];for(let u of l){let c=u.outboundLayer,h=u.inputTensors,d=u.outputTensors,p=new Array;for(let m of h)m.id in n&&p.push(n[m.id]);if(p.length===h.length){let m={},f,A,y,g;if(u.callArgs!=null&&(m=u.callArgs),p.length===1){let[b,_]=p[0];m.mask==null&&(m.mask=_),y=dt(c.call(b,m)),g=dt(c.computeMask(b,_)),f=[b],A=[_]}else f=p.map(b=>b[0]),A=p.map(b=>b[1]),m.mask==null&&(m.mask=A),y=dt(c.call(f,m)),g=dt(c.computeMask(f,A));if(c.activityRegularizer)throw new $e("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let b=0;b<d.length;++b){let _=d[b],w=y[b],x=g[b];n[_.id]=[w,x]}}}}let a=[],s=[],i=[];for(let o of this.outputs){Pr(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),a.push(l),s.push(u)}return[a,s,i]}buildNodeConversionMap(e){let t={},n;for(let r of this.layers){n=r instanceof Vr?1:0;for(let a=0;a<r.inboundNodes.length;a++){let s=Vr.nodeKey(r,a);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new V(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new V("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new V(`No such layer: ${e}`)}calculateLosses(){return B(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let r=Vr.nodeKey(t,n);this.containerNodes.has(r)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let c=0;c<s.inboundNodes.length;c++){let h=s.inboundNodes[c],d=Vr.nodeKey(s,c),p={};if(this.containerNodes.has(d)){if(h.callArgs)try{JSON.stringify(h.callArgs),p=h.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),p={}}if(h.inboundLayers.length>0){let m=[];for(let f=0;f<h.inboundLayers.length;f++){let A=h.inboundLayers[f],y=h.nodeIndices[f],g=h.tensorIndices[f],b=Vr.nodeKey(A,y),_=t[b];_==null&&(_=0),m.push([A.name,_,g,p])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let r=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Vr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[s];r.push([i.name,u,c])}e.inputLayers=r;let a=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Vr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[s];a.push([i.name,u,c])}return e.outputLayers=a,e}static fromConfig(e,t,n={},r=!1){let a={},s={};function i(f,A){f.name in s?s[f.name].push(A):s[f.name]=[A]}function o(f,A){let y=[],g;for(let b of A){let _=b[0],w=b[1],x=b[2];if(g=b[3]==null?{}:b[3],!(_ in a)){i(f,A);return}let N=a[_];if(N.inboundNodes.length<=w){i(f,A);return}let T=N.inboundNodes[w];y.push(T.outputTensors[x])}y.length>0&&f.apply(vn(y),g)}function l(f){let A=f.name,y=br(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(r),a[A]=y,f.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new V(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let u=t.name,c=t.layers;for(let f of c)l(f);for(;!_J(s);)for(let f of c){let A=a[f.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let h=[],d=[],p=t.inputLayers;for(let f of p){let A=f[0],y=f[1],g=f[2];Pr(A in a);let b=a[A].inboundNodes[y].outputTensors;h.push(b[g])}let m=t.outputLayers;for(let f of m){let A=f[0],y=f[1],g=f[2];Pr(A in a);let b=a[A].inboundNodes[y].outputTensors;d.push(b[g])}return new e({inputs:h,outputs:d,name:u})}get stateful(){if(this._stateful)throw new V("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){B(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Zee(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function e7(e,t){return Zee(e,t,"classWeight")}async function t7(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=B(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());Ee(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Ut(i,"float32")}else return null}function Yee(e,t){return P(e,t)}var Jee=32;function r7(e,t){let n,r,a=t;n=a.xs,r=a.ys,v.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=n7("input",e.inputNames,n),i=n7("output",e.outputNames,r),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)v.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)v.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function n7(e,t,n){if(n instanceof Ze)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new V(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function Qee(e){if(e.length===3)throw new $e("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function tte(e,t,n){let r=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(a7(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Qee(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;a?u=l.slice().concat(l.map(A=>"val_"+A)):u=l.slice();let c=V3(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=U3(c,h,n.epochs,null,null,ete(t,n),null,a,u);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let A={};await d.onEpochBegin(m);let y=0,g=0;for(r||(f=await t.iterator());r?y<n.batchesPerEpoch:!0;){let b=await f.next();if(r&&b.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(b.value!=null){let{xs:_,ys:w}=r7(e,b.value),x={};x.batch=g,x.size=_[0].shape[0],await d.onBatchBegin(g,x);let N=[];if(n.classWeight!=null){let M=e7(n.classWeight,e.outputNames);for(let D=0;D<M.length;++D)N.push(await t7(w[D],null,M[D]))}let T=_.concat(w).concat(N),E=o(T);Ee(T);for(let M=0;M<l.length;++M){let D=l[M],L=E[M];x[D]=L,Vt(L)}await d.onBatchEnd(g,x),z3(x),g++,y++}if(r?y>=n.batchesPerEpoch:b.done){if(a){let _;a7(n.validationData)?_=dt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):_=dt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?Jee:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)A[`val_${e.metricsNames[w]}`]=_[w]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(m,A),m++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function ete(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function a7(e){return typeof e.iterator=="function"}function nte(e){return typeof e.next=="function"}async function rte(e,t,n){n=n||{};let r=n.batches!=null,a=e.testFunction,s=[];if(n.verbose>0)throw new $e("Verbose mode is not implemented yet.");v.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=nte(t)?t:await t.iterator(),o=0,l=0;for(;r?l<n.batches:!0;){let u=await i.next();if(s=B(()=>{if(u.value){let{xs:c,ys:h}=r7(e,u.value),d=c.concat(h),p=B(()=>a(d));if(Ee(d),l===0)for(let f=0;f<p.length;++f)s.push(be(0));let m=d[0].shape[0];for(let f=0;f<p.length;++f){let A=p[f],y=s[f];s[f]=B(()=>se(s[f],P(m,A))),l>0&&Ee(y)}Ee(p),o+=m,++l}return s}),u.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=ge(s[u],o),Ee(c)}return vn(s)}function bA(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function yc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>gi(r,t,n-t)):gi(e,t,n-t)}function vA(e,t){return B(()=>e==null?null:Array.isArray(e)?e.map(n=>vA(n,t)):b3(e,t.dtype==="int32"?t:t.toInt()))}function kA(e,t){let n=[],r=0,a=null;for(;r<e;)a=r+t,a>=e&&(a=e),n.push([r,a]),r=a;return n}async function ate(e,t,n,r,a,s,i,o,l,u,c,h,d,p,m){a==null&&(a=32),s==null&&(s=1),c==null&&(c=!0),d==null&&(d=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,p==null))throw new V("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),y;A!=null&&(y=wr(0,A)),i==null&&(i=1);let{callbackList:g,history:b}=U3(o,i,s,d,A,p,a,f,h);g.setModel(e),e.history=b,await g.onTrainBegin(),e.stopTraining_=!1;for(let _=d;_<s;++_){await g.onEpochBegin(_);let w={};if(p!=null)throw new $e("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new $e("batch shuffling is not implemneted yet");c&&v.shuffle(y);let x=Ut(y),N=kA(A,a);for(let T=0;T<N.length;++T){let E={};if(await g.onBatchBegin(T,E),B(()=>{let M=N[T][0],D=N[T][1],L=gi(x,M,D-M);E.batch=T,E.size=D-M;let W=vA(n,L),U=t(W);for(let H=0;H<r.length;++H){let X=r[H],G=U[H];E[X]=G,Vt(G)}if(T===N.length-1&&f){let H=e.testLoop(l,u,a);for(let X=0;X<r.length;++X){let G=r[X],ee=H[X];Vt(ee),w["val_"+G]=ee}}}),await g.onBatchEnd(T,E),z3(E),e.stopTraining_)break}x.dispose()}if(await g.onEpochEnd(_,w),e.stopTraining_)break}return await g.onTrainEnd(),await e.history.syncData(),e.history}async function ste(e,t,n,r={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let a,s,i,o,l,u,c;try{let h=r.batchSize==null?32:r.batchSize;bA(h);let d=!1,p=await e.standardizeUserData(t,n,r.sampleWeight,r.classWeight,d,h);a=p[0],s=p[1],c=p[2];let m=!1,f;if(r.validationData!=null&&r.validationData.length>0){if(m=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new $e("validationData including sample weights is not supported yet."):new V(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let x=!0,N=await e.standardizeUserData(i,o,null,null,x,h);l=N[0],u=N[1],f=l.concat(u)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){m=!0;let x=Math.floor(a[0].shape[0]*(1-r.validationSplit)),N=a[0].shape[0];l=yc(a,x,N),a=yc(a,0,x),u=yc(s,x,N),s=yc(s,0,x),f=l.concat(u)}else r.validationSteps!=null&&(m=!0);let A=a.concat(s).concat(c);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),b,_;m?(e.makeTestFunction(),b=e.testFunction,_=g.slice().concat(g.map(x=>"val_"+x))):(b=null,f=[],_=g.slice());let w=V3(r.callbacks,r.yieldEvery);return await ate(e,y,A,g,h,r.epochs,r.verbose,w,b,f,r.shuffle,_,r.initialEpoch,null,null)}finally{e.isTraining=!1,_i(a,t),_i(s,n),_i(l,i),_i(u,o),c!=null&&Ee(c)}}function s7(e){let t=[];e instanceof Ze&&(e=[e]);for(let n=0;n<e.length;++n){let r=e[n];if(r.rank===1)t.push(cc(r,1));else{if(r.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(r)}}return t}function _i(e,t){if(e==null)return;let n=[];if(t instanceof Ze)n.push(t.id);else if(Array.isArray(t))t.forEach(a=>n.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof Ze)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function ite(e){return e instanceof Ze}function IA(e){return Array.isArray(e)}function i7(e){return!ite(e)&&!IA(e)}function o7(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(IA(e)&&e.length>0)i=!0;else if(i7(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new V(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(i7(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new V(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(IA(e)){if(e=e,e.length!==t.length)throw new V(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new V(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=s7(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let u=o.shape[l],c=n[i][l];if(c!=null&&c>=0&&u!==c)throw new V(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function ote(e,t,n){let r=Oa(e.map(s=>s.shape[0]));r.sort();let a=Oa(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new V(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new V(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!v.arraysEqual(r,a))throw new V(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function lte(e,t,n){let r=[xi,Sp,fc];for(let a=0;a<e.length;++a){let s=e[a],i=t[a],o=n[a];if(i!=null){if(i===fc&&s.shape[s.shape.length-1]===1)throw new V(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(r.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let c=0;c<l.length;++c){let h=l[c],d=u[c];if(d!=null&&h!==d)throw new V(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function l7(e,t,n,r=!0,a=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new V(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new V(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new V(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let u=o.shape[l],c=n[i][l];if(c!=null&&c!==u)throw new V(`Error when checking ${a}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function ute(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var cte="layers-model",sa=class extends Vr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new V("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");jee(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=Wee(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof ta))throw new V("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new V(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(fA(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new V(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>fA(s))}else{let s=fA(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],yi("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=ute(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};yi("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=r[s];(o=>{let l="",u,c,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Sp?["accuracy","acc"].indexOf(d)!==-1?c=mA:["crossentropy","ce"].indexOf(d)!==-1&&(c=G3):this.lossFunctions[s]===Np?["accuracy","acc"].indexOf(d)!==-1?c=q3:["crossentropy","ce"].indexOf(d)!==-1&&(c=X3):["accuracy","acc"].indexOf(d)!==-1?c=AA:["crossentropy","ce"].indexOf(d)!==-1&&(c=yA);let f;["accuracy","acc"].indexOf(d)!==-1?f="acc":["crossentropy","ce"].indexOf(d)!==-1&&(f="ce"),h=c,u=l+f}else h=Lee(d),u=l+Cp(d);let p;yi(u,()=>{p=h}),a(s,u,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;bA(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return vn(l)}finally{_i(s[0],e),_i(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),rte(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new V(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new V(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new V("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new wi;if(e instanceof Ze&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new V(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new V(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Ac(a,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=fi(null,e.length),n=e.length;for(let r of this.layers){let a=Array.isArray(r.output)?r.output:[r.output],s=a.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=a[o],n--),n===0)break}if(n===0)break}if(n>0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new V(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return B(()=>{let r=this.checkNumSamples(e);if(n)throw new $e("Verbose predictLoop() is not implemented yet.");let a=kA(r,t),s=this.outputs.map(i=>[]);for(let i=0;i<a.length;++i)B(()=>{let o=a[i][0],l=a[i][1],u=yc(e,o,l),c=[];if(Array.isArray(u))for(let d=0;d<u.length;++d)c.push({key:this.inputs[d],value:u[d]});else c.push({key:this.inputs[0],value:u});let h=new wi(c);return Ac(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return vn(s.map(i=>rt(i,0)))})}predict(e,t={}){let n=s7(e);l7(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return bA(r),this.predictLoop(n,r)}finally{_i(n,e)}}predictOnBatch(e){l7(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new xr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Np?a.push(i.slice(0,i.length-1).concat([1])):a.push(i)}if(e=o7(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=o7(t,this.feedOutputNames,a,!1,"target"),ote(e,t,null),lte(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&r!=null&&r>0&&e[0].shape[0]%r!=0)throw new V(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let u=e7(r,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await t7(o[c],null,u[c]))}return[i,o,l]}testLoop(e,t,n,r=0,a){return B(()=>{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new $e("Verbose mode is not implemented yet.");if(a!=null)throw new $e("steps mode in testLoop() is not implemented yet");{let o=kA(s,n),l=Ut(wr(0,s));for(let u=0;u<o.length;++u){let c=o[u][0],h=o[u][1],d=gi(l,c,h-c),p=vA(t,d),m=e(p);if(u===0)for(let f=0;f<m.length;++f)i.push(be(0));for(let f=0;f<m.length;++f){let A=m[f];i[f]=se(i[f],P(h-c,A))}}for(let u=0;u<i.length;++u)i[u]=ge(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let r=e[n],a=r;u3(e,r)>1&&(a+=`_${u3(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let p=0;p<this.inputs.length;++p)u.push({key:this.inputs[p],value:n[p]});let c=new wi(u),h=Ac(this.outputs,c,{training:!0}),d;for(let p=0;p<this.lossFunctions.length;++p){let m=this.lossFunctions[p](r[p],h[p]);a[p]!=null&&(m=Yee(m,a[p]));let f=bt(m);t.push(f),p===0?d=m:d=se(d,m)}for(let p=0;p<this.metricsTensors.length;++p){let m;if(this.outputs.length>1&&p<this.outputs.length)m=t[p];else{let f=this.metricsTensors[p][0],A=this.metricsTensors[p][1];m=bt(f(r[A],h[A]))}Vt(m),s.push(m)}return d=bt(d),this.calculateLosses().forEach(p=>{d=se(d,p)}),d},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>B(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:r[l]});let i=new wi(s),o=Ac(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=bt(u(a[l],o[l]));l===0?n=c:n=se(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],h=bt(u(a[c],o[c]));t.push(h)}return t})}async fit(e,t,n={}){return ste(this,e,t,n)}async fitDataset(e,t){return tte(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),r=n[0],a=n[1],s=this.makeTrainFunction()(r.concat(a)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Ee(s),vn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,r=n?this.trainableWeights:this.weights,a=this.getWeights(n);for(let s=0;s<r.length;++s)n&&!r[s].trainable||t.push({name:r[s].originalName,tensor:a[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Kh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Kh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=aa(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>aa(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=aa(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[aa(Cp(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>aa(Cp(e)));{let e={};for(let t in this.metrics)e[t]=aa(Cp(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=mc(e.optimizer_config),n=br(t),r;if(typeof e.loss=="string")r=mi(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>mi(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=mi(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>mi(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=mi(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=yn.getSaveHandlers(e);if(i.length===0)throw new V(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new V(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new V("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await yn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:cte,generatedBy:`TensorFlow.js tfjs-layers v${wA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await yn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=yn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;Z3(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){Z3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};sa.className="Model";re.registerClass(sa);var u7=class extends sa{};u7.className="Functional";re.registerClass(u7);async function hte(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=mc(n),a=br(r,t);if(e.weightsManifest!=null){let s=await yn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),Ee(s)}return a}async function pte(e,t){if(t==null&&(t={}),typeof e=="string"){let n=yn.getLoadHandlers(e,t);if(n.length===0)n.push(yn.browserHTTPRequest(e,t));else if(n.length>1)throw new V(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return dte(e,void 0,t)}async function dte(e,t,n){if(n==null&&(n={}),e.load==null)throw new V("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=br(mc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new V("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=fte(r.weightData,r.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&c.length>0&&await o.optimizer.setWeights(c),Ee(u),Ee(c.map(h=>h.tensor))}return o}function fte(e,t){let n=yn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Fl=class extends sa{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:wp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new V(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Fl||e instanceof sa,n;if(t){if(n=e,n.outputs.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new V("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new V("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=D3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new V(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new V("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=O3(this.outputs[0])}this.inboundNodes=[],new vp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:fi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(lt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new sa({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new xr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new V("Legacy serialization format not supported yet.");a=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Fl))throw new $e(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=br(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new V("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new V("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Fl.className="Sequential";re.registerClass(Fl);function mte(e){return new sa(e)}function Ate(e){return new Fl(e)}function yte(e,t){return t==null&&(t={}),pte(e,t)}function S3(e){return D3(e)}function gte(e,t){ur.registerCallbackConstructor(e,t)}var Dn=class extends re.Serializable{getConfig(){return{}}},c7=class extends Dn{apply(e,t=1){return ZJ(e,t)}};c7.className="elu";re.registerClass(c7);var h7=class extends Dn{apply(e){return fd(e)}};h7.className="selu";re.registerClass(h7);var d7=class extends Dn{apply(e){return $r(e)}};d7.className="relu";re.registerClass(d7);var p7=class extends Dn{apply(e){return B(()=>il(6,$r(e)))}};p7.className="relu6";re.registerClass(p7);var f7=class extends Dn{apply(e){return e}};f7.className="linear";re.registerClass(f7);var m7=class extends Dn{apply(e){return Sn(e)}};m7.className="sigmoid";re.registerClass(m7);var A7=class extends Dn{apply(e){return JJ(e)}};A7.className="hardSigmoid";re.registerClass(A7);var y7=class extends Dn{apply(e){return al(e)}};y7.className="softplus";re.registerClass(y7);var g7=class extends Dn{apply(e){return YJ(e)}};g7.className="softsign";re.registerClass(g7);var x7=class extends Dn{apply(e){return Qo(e)}};x7.className="tanh";re.registerClass(x7);var NA=class extends Dn{apply(e,t=-1){return Wu(e,t)}};NA.className="softmax";re.registerClass(NA);var w7=class extends Dn{apply(e,t=-1){return od(e,t)}};w7.className="logSoftmax";re.registerClass(w7);var _7=class extends Dn{apply(e,t=1){return B(()=>Sn(e.mul(t)).mul(e))}};_7.className="swish";re.registerClass(_7);function La(e){return e.getClassName()}function SA(e,t={}){return ic(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function Wa(e){if(e==null){let t={};return t.className="linear",t.config={},SA(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},SA(t)}else return e instanceof Dn?e:SA(e)}function TA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var b7=class extends re.Serializable{},gc=class extends b7{constructor(e){super();TA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return B(()=>{let t=Et([1]);return this.hasL1&&(t=se(t,Te(P(this.l1,Ot(e))))),this.hasL2&&(t=se(t,Te(P(this.l2,hc(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};gc.className="L1L2";re.registerClass(gc);function xte(e){return TA(e),new gc({l1:e!=null?e.l1:null,l2:0})}function wte(e){return TA(e),new gc({l2:e!=null?e.l2:null,l1:0})}var v7={l1l2:"L1L2"};function ut(e){return Vm(e)}function k7(e,t={}){return ic(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function gt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in v7?v7[e]:e,config:{}};return k7(t)}else return e instanceof b7?e:k7(e)}var EA=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=ze(e);let n=$r(e);return this.maxValue!=null&&(n=gn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};EA.className="ReLU";re.registerClass(EA);var CA=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return Mu(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};CA.className="LeakyReLU";re.registerClass(CA);var RA=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=yt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=gt(e.alphaRegularizer),this.alphaConstraint=Lt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new V(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=lt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r<e.length;++r)n[r]=e[r];this.inputSpec=[new Gt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=ze(e),zu(e,this.alpha.read())}getConfig(){let e={alphaInitializer:vt(this.alphaInitializer),alphaRegularizer:ut(this.alphaRegularizer),alphaConstraint:Pt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};RA.className="PReLU";re.registerClass(RA);var FA=class extends je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new $e(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=ze(e);return nl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};FA.className="ELU";re.registerClass(FA);var MA=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=ze(e);return n.mul(uc(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};MA.className="ThresholdedReLU";re.registerClass(MA);var $A=class extends je{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new NA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=ze(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};$A.className="Softmax";re.registerClass($A);function Ml(e,t,n){if(typeof e=="number")return fi(e,t);if(e.length!==t)throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let r=0;r<t;++r){let a=e[r];if(!GJ(a))throw new V(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${a}`)}return e}function vr(e,t,n,r,a=1){if(e==null)return e;let s=t+(t-1)*(a-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+r-1)/r)}function Fp(e,t,n,r){if(e==null)return null;if(r==="valid")e=e*t+za([n-t,0]);else if(r==="same")e=e*t;else throw new V(`Unsupport padding mode: ${r}.`);return e}function OA(e,t){return B(()=>(St(t),t==="channelsFirst"?nt(e,[0,2,3,1]):e))}function I7(e,t){return B(()=>(St(t),t==="channelsFirst"?nt(e,[0,2,3,4,1]):e))}function _te(e,t,n,r=1,a="valid",s,i=1){return B(()=>{if(s==null&&(s=gr()),St(s),e.shape.length!==3)throw new V(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new V(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new V(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=nt(e,[0,2,1])),a==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Qh(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Wr(o,n)),o})}function N7(e,t,n,r=[1,1],a="valid",s,i,o=null){return B(()=>{if(s==null&&(s=gr()),St(s),e.rank!==3&&e.rank!==4)throw new V(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new V(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=OA(e,s);if(a==="causal")throw new $e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ra.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=nt(l,[0,3,1,2])),l})}function bte(e,t,n,r=[1,1,1],a="valid",s,i){return B(()=>{if(s==null&&(s=gr()),St(s),e.rank!==4&&e.rank!==5)throw new V(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new V(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=I7(e,s);if(a==="causal")throw new $e("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=kf(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Wr(o,n)),s==="channelsFirst"&&(o=nt(o,[0,4,1,2,3])),o})}var DA=class extends je{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",DA.verifyArgs(t),this.rank=e,jt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new $e(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Ml(t.kernelSize,e,"kernelSize"),this.strides=Ml(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Zn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,St(this.dataFormat),this.activation=Wa(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=yt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Lt(t.biasConstraint),this.biasRegularizer=gt(t.biasRegularizer),this.activityRegularizer=gt(t.activityRegularizer),this.dilationRate=Ml(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new V(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new V(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new V(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Pr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Hm(e.kernelSize,"number",1,3))throw new V(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:La(this.activation),useBias:this.useBias,biasInitializer:vt(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},xc=class extends DA{constructor(e,t){super(e,t);this.kernel=null,xc.verifyArgs(t),this.filters=t.filters,jt(this.filters,"filters"),this.kernelInitializer=yt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Lt(t.kernelConstraint),this.kernelRegularizer=gt(t.kernelRegularizer)}build(e){e=lt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return B(()=>{e=ze(e);let n,r=this.bias==null?null:this.bias.read(),a=h3(this.activation.getClassName());if(a!=null&&this.rank===2)n=N7(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=_te(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=N7(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=bte(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new $e("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=lt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a<n.length;++a){let s=vr(n[a],this.kernelSize[a],this.padding,this.strides[a],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[a]);t.push(s)}let r=[e[0]];return this.dataFormat==="channelsLast"?(r=r.concat(t),r.push(this.filters)):(r.push(this.filters),r=r.concat(t)),r}getConfig(){let e={filters:this.filters,kernelInitializer:vt(this.kernelInitializer),kernelRegularizer:ut(this.kernelRegularizer),kernelConstraint:Pt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new V(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},wc=class extends xc{constructor(e){super(2,e);wc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Hm(e.kernelSize,"number",1,2))throw new V(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};wc.className="Conv2D";re.registerClass(wc);var Mp=class extends xc{constructor(e){super(3,e);Mp.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new V(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Mp.className="Conv3D";re.registerClass(Mp);var zA=class extends wc{constructor(e){super(e);if(this.inputSpec=[new Gt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new V(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=lt(e),e.length!==4)throw new V("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new V("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Gt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return B(()=>{let n=ze(e);if(n.shape.length!==4)throw new V(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],u=this.kernelSize[0],c=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=Fp(o,h,u,this.padding),m=Fp(l,d,c,this.padding),f=[a,p,m,this.filters];this.dataFormat!=="channelsLast"&&(n=nt(n,[0,2,3,1]));let A=ed(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=nt(A,[0,3,1,2])),this.bias!=null&&(A=Wr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=lt(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=Fp(t[r],o,s,this.padding),t[a]=Fp(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};zA.className="Conv2DTranspose";re.registerClass(zA);var S7=class extends xc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new V("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new V("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new V(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=yt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=gt(t.depthwiseRegularizer),this.depthwiseConstraint=Lt(t.depthwiseConstraint),this.pointwiseInitializer=yt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=gt(t.pointwiseRegularizer),this.pointwiseConstraint=Lt(t.pointwiseConstraint)}build(e){if(e=lt(e),e.length<this.rank+2)throw new V(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],r=this.kernelSize.concat([n,this.depthMultiplier]),a=[];for(let i=0;i<this.rank;++i)a.push(1);a.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",r,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",a,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Gt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return B(()=>{e=ze(e);let n;if(this.rank===1)throw new $e("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=nt(e,[0,2,3,1])),n=Vf(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Wr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=nt(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=vt(this.depthwiseInitializer),e.pointwiseInitializer=vt(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseConstraint),e.pointwiseConstraint=Pt(this.pointwiseConstraint),e}};S7.className="SeparableConv";var PA=class extends S7{constructor(e){super(2,e)}};PA.className="SeparableConv2D";re.registerClass(PA);var $p=class extends xc{constructor(e){super(1,e);$p.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Hm(e.kernelSize,"number",1,1))throw new V(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};$p.className="Conv1D";re.registerClass($p);var LA=class extends je{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return B(()=>{if(e=ze(e),this.dataFormat==="channelsLast"){let n=cp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return cp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=cp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return cp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};LA.className="Cropping2D";re.registerClass(LA);var WA=class extends je{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,St(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,UJ(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return B(()=>{let n=ze(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=nt(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return nt(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};WA.className="UpSampling2D";re.registerClass(WA);function vte(e,t,n=[1,1],r="valid",a,s){return B(()=>{a==null&&(a=gr()),St(a);let i=OA(e,a);if(e.rank!==4)throw new V(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new V(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=tl(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=nt(i,[0,3,1,2])),i})}var BA=class extends DA{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=yt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Lt(e.depthwiseConstraint),this.depthwiseRegularizer=gt(e.depthwiseRegularizer)}build(e){if(e=lt(e),e.length<4)throw new V(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new V(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return B(()=>{e=ze(e);let n=vte(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Wr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=lt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=vr(t,this.kernelSize[0],this.padding,this.strides[0]),s=vr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=vt(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseRegularizer),e}};BA.className="DepthwiseConv2D";re.registerClass(BA);function T7(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new V("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function E7(e,t,n,r=!1,a,s,i=!1,o=!1){return B(()=>{let l=t.shape.length;if(l<3)throw new V(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(wr(2,l));if(t=nt(t,u),s!=null)throw new $e("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=Tn(a,-1)),a=nt(a,u)),r&&(t=Rn(t,0),a!=null&&(a=Rn(a,0)));let c=[],h,d=n,p=t.shape[0],m=sr(t),f;a!=null&&(f=sr(a));for(let y=0;y<p;++y){let g=m[y],b=B(()=>e(g,d));if(a==null)h=b[0],d=b[1];else{let _=B(()=>{let w=f[y],x=Cn(w).sub(w),N=b[0].mul(w).add(d[0].mul(x)),T=d.map((E,M)=>b[1][M].mul(w).add(E.mul(x)));return{output:N,newStates:T}});h=_.output,d=_.newStates}o&&c.push(h)}let A;return o&&(A=Fn(c,1)),[h,A,d]})}var Br=class extends je{constructor(e){super(e);let t;if(e.cell==null)throw new V("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Op({cells:e.cell}):t=e.cell,t.stateSize==null)throw new V("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Gt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return wr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){cA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return B(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new $e("Constants support is not implemented in RNN yet.");cA(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new Gt({shape:[n,null,...r]});let a=[e[0]].concat(e.slice(2));if(t!=null)throw new $e("Constants support is not implemented in RNN yet.");this.cell.build(a);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new V(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Gt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){B(()=>{if(!this.stateful)throw new ra("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Et([n,r])):this.states_=[Et([n,this.cell.stateSize])];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Et([n,r])):this.states_[0]=Et([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let r=0;r<this.states_.length;++r){let a=e[r],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[r]:this.cell.stateSize,i=[n,s];if(!v.arraysEqual(a.shape,i))throw new V(`State ${r} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${a.shape}`);this.states_[r]=a}}this.states_=this.states_.map(r=>Vt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=T7(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Gt({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof _r){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let c=super.apply(o,t);return this.inputSpec=u,c}else return super.apply(e,t)}call(e,t){return B(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=ze(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new V(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=E7((d,p)=>{let m=this.cell.call([d].concat(p),i);return[m[0],m.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],c=o[2];this.stateful&&this.resetStates(c,r);let h=this.returnSequences?u:l;return this.returnState?[h].concat(c):h})}getInitialState(e){return B(()=>{let t=Et(e.shape);return t=Te(t,[1,2]),t=cc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Zm(t,[1,n]):t):this.cell.stateSize>1?[Zm(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Br.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=br(r,n);return new e(Object.assign(t,{cell:a}))}};Br.className="RNN";re.registerClass(Br);var pc=class extends je{},Dp=class extends pc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,jt(this.units,"units"),this.activation=Wa(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=yt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=yt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=yt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=gt(e.kernelRegularizer),this.recurrentRegularizer=gt(e.recurrentRegularizer),this.biasRegularizer=gt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Tl([1,za([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Tl([1,za([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=lt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return B(()=>{if(e=e,e.length!==2)throw new V(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ba({ones:()=>Cn(e),rate:this.dropout,training:r})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ba({ones:()=>Cn(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Lr(P(e,s),this.kernel.read()):a=Lr(e,this.kernel.read()),this.bias!=null&&(a=Wr(a,this.bias.read())),i!=null&&(n=P(n,i));let o=se(a,Lr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:La(this.activation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),recurrentInitializer:vt(this.recurrentInitializer),biasInitializer:vt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};Dp.className="SimpleRNNCell";re.registerClass(Dp);var VA=class extends Br{constructor(e){e.cell=new Dp(e),super(e)}call(e,t){return B(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};VA.className="SimpleRNN";re.registerClass(VA);var zp=class extends pc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new V("GRUCell does not support reset_after parameter set to true.");this.units=e.units,jt(this.units,"units"),this.activation=Wa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Wa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=yt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=yt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=yt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=gt(e.kernelRegularizer),this.recurrentRegularizer=gt(e.recurrentRegularizer),this.biasRegularizer=gt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Tl([1,za([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Tl([1,za([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=lt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return B(()=>{if(e=e,e.length!==2)throw new V(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ba({ones:()=>Cn(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ba({ones:()=>Cn(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=P(e,a[0]));let u=Lr(e,this.kernel.read());this.useBias&&(u=Wr(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(r=P(r,s[0]));let c=this.recurrentKernel.read(),[h,d]=Jt(c,[2*this.units,this.units],c.rank-1),p=Lr(r,h),[m,f,A]=Jt(u,3,u.rank-1),[y,g]=Jt(p,2,p.rank-1);i=this.recurrentActivation.apply(se(m,y)),o=this.recurrentActivation.apply(se(f,g));let b=Lr(P(o,r),d);l=this.activation.apply(se(A,b));let _=se(P(i,r),P(se(1,_t(i)),l));return[_,_]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:La(this.activation),recurrentActivation:La(this.recurrentActivation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),recurrentInitializer:vt(this.recurrentInitializer),biasInitializer:vt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};zp.className="GRUCell";re.registerClass(zp);var UA=class extends Br{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new zp(e),super(e)}call(e,t){return B(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};UA.className="GRU";re.registerClass(UA);var _c=class extends pc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,jt(this.units,"units"),this.activation=Wa(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=Wa(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=yt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=yt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=yt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=gt(e.kernelRegularizer),this.recurrentRegularizer=gt(e.recurrentRegularizer),this.biasRegularizer=gt(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Tl([1,za([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Tl([1,za([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=lt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends lr{apply(i,o){let l=a.apply([s]),u=new dp().apply([s]),c=a.apply([s*2]);return _3(_3(l,u),c)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return B(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new V(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ba({ones:()=>Cn(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ba({ones:()=>Cn(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,c;0<this.dropout&&this.dropout<1&&(e=P(e,s[0]));let h=Lr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(r=P(r,i[0])),h=se(h,Lr(r,this.recurrentKernel.read())),this.useBias&&(h=Wr(h,this.bias.read()));let[d,p,m,f]=Jt(h,4,h.rank-1);o=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(p),u=se(P(l,a),P(o,this.activation.apply(m))),c=this.recurrentActivation.apply(f);let A=P(c,this.activation.apply(u));return[A,A,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:La(this.activation),recurrentActivation:La(this.recurrentActivation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),recurrentInitializer:vt(this.recurrentInitializer),biasInitializer:vt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};_c.className="LSTMCell";re.registerClass(_c);var HA=class extends Br{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new _c(e),super(e)}call(e,t){return B(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};HA.className="LSTM";re.registerClass(HA);var Op=class extends pc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return B(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=r[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),a.push(s.slice(1))}n=[];for(let i of a.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){cA(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,r)=>{yi(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(br(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return hA(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],a[s]])}dA(t)}};Op.className="StackedRNNCells";re.registerClass(Op);function Ba(e){let{ones:t,rate:n,training:r=!1,count:a=1}=e,s=()=>v3(t(),n),i=()=>dc(s,t,r);return!a||a<=1?Vt(i().clone()):Array(a).fill(void 0).map(i).map(o=>Vt(o.clone()))}var kte=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a<r.length;a++)t.indexOf(r[a])<0&&Object.prototype.propertyIsEnumerable.call(e,r[a])&&(n[r[a]]=e[r[a]]);return n},C7=class extends Br{constructor(e){if(e.unroll)throw new $e("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new $e("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Gt({ndim:5})]}call(e,t){return B(()=>{if(this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new V("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return B(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Et(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){B(()=>{if(!this.stateful)throw new ra("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new V("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Et(a)):this.states_=[Et(a)];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Et(a)):this.states_[0]=Et(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new V(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=a;if(!v.arraysEqual(i.shape,o))throw new V(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Vt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],c=vr(l,r[0],a,s[0],i[0]),h=vr(u,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,c,h]:[c,h,n]]}};C7.className="ConvRNN2D";var Pp=class extends _c{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,jt(this.filters,"filters"),this.kernelSize=Ml(n,2,"kernelSize"),this.kernelSize.forEach(o=>jt(o,"kernelSize")),this.strides=Ml(r||1,2,"strides"),this.strides.forEach(o=>jt(o,"strides")),this.padding=a||"valid",Zn(this.padding),this.dataFormat=s||"channelsLast",St(this.dataFormat),this.dilationRate=Ml(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>jt(o,"dilationRate"))}build(e){var t;e=lt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new V(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends lr{apply(c,h){let d=l.apply([u]),p=Mr([u]),m=l.apply([u*2]);return Jm([d,p,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return B(()=>{if(e.length!==3)throw new V(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Ba({ones:()=>Cn(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,ae,te)=>!ae||!ae[te]?Y:P(ae[te],Y),u=l(r,o,0),c=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Ba({ones:()=>Cn(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,m=l(a,p,0),f=l(a,p,1),A=l(a,p,2),y=l(a,p,3),g=3,[b,_,w,x]=Jt(this.kernel.read(),i,g),[N,T,E,M]=this.useBias?Jt(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,b,N,this.padding),c=this.inputConv(c,_,T,this.padding),h=this.inputConv(h,w,E,this.padding),d=this.inputConv(d,x,M,this.padding);let[D,L,W,U]=Jt(this.recurrentKernel.read(),i,g);m=this.recurrentConv(m,D),f=this.recurrentConv(f,L),A=this.recurrentConv(A,W),y=this.recurrentConv(y,U);let H=this.recurrentActivation.apply(se(u,m)),X=this.recurrentActivation.apply(se(c,f)),G=se(P(X,s),P(H,this.activation.apply(se(h,A)))),ee=P(this.recurrentActivation.apply(se(d,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=kte(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=Yr(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Wr(a,n,this.dataFormat):a}recurrentConv(e,t){return Yr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Pp.className="ConvLSTM2DCell";re.registerClass(Pp);var jA=class extends C7{constructor(e){let t=new Pp(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};jA.className="ConvLSTM2D";re.registerClass(jA);var Lp=class extends je{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r<this.noiseShape.length;++r)n.push(this.noiseShape[r]==null?t[r]:this.noiseShape[r]);return n}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e);if(0<this.rate&&this.rate<1){let r=t.training==null?!1:t.training,a=this.getNoiseShape(n);return dc(()=>v3(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Lp.className="Dropout";re.registerClass(Lp);var GA=class extends Lp{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};GA.className="SpatialDropout1D";re.registerClass(GA);var qA=class extends je{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,jt(this.units,"units"),this.activation=Wa(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=yt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=yt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Lt(e.kernelConstraint),this.biasConstraint=Lt(e.biasConstraint),this.kernelRegularizer=gt(e.kernelRegularizer),this.biasRegularizer=gt(e.biasRegularizer),this.activityRegularizer=gt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=lt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=lt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e),r=h3(this.activation.getClassName()),a;return r!=null?a=Lr(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Lr(n,this.kernel.read()),this.bias!=null&&(a=Wr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:La(this.activation),useBias:this.useBias,kernelInitializer:vt(this.kernelInitializer),biasInitializer:vt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};qA.className="Dense";re.registerClass(qA);var XA=class extends je{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=lt(e);for(let t of e.slice(1))if(t==null)throw new V(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Da(e,1)]}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a<n.rank;++a)r.push(a);r.push(1),n=n.transpose(r)}return KJ(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};XA.className="Flatten";re.registerClass(XA);var KA=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.activation=Wa(e.activation)}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.activation.apply(n)})}getConfig(){let e={activation:La(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};KA.className="Activation";re.registerClass(KA);var ZA=class extends je{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return B(()=>(e=ze(e),qJ(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};ZA.className="RepeatVector";re.registerClass(ZA);var YA=class extends je{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",r=t.slice(),a=1,s=null;for(let o=0;o<r.length;++o){let l=r[o];if(this.isUnknown(l))if(s===null)s=o;else throw new V("Can only specifiy one unknown dimension.");else a*=l}let i=Da(e);if(s!==null){if(a===0||i%a!=0)throw new V(n);r[s]=i/a}else if(i!==a)throw new V(n);return r}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};YA.className="Reshape";re.registerClass(YA);var JA=class extends je{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=wr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Gt({ndim:this.dims.length+1})]}computeOutputShape(e){e=lt(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return nt(ze(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};JA.className="Permute";re.registerClass(JA);var QA=class extends je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=ze(e),r=-1;return Iu(ri(n,this.maskValue),r)}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e),r=-1,a=!0,s=Iu(ri(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};QA.className="Masking";re.registerClass(QA);var ey=class extends je{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(dt(e.inputLength))}this.inputDim=e.inputDim,jt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,jt(this.outputDim,"outputDim"),this.embeddingsInitializer=yt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=gt(e.embeddingsRegularizer),this.activityRegularizer=gt(e.activityRegularizer),this.embeddingsConstraint=Lt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return B(()=>this.maskZero?(e=ze(e),ri(e,Ve(e))):null)}computeOutputShape(e){if(e=lt(e),this.inputLength==null)return[...e,this.outputDim];let t=dt(this.inputLength);if(t.length!==e.length-1)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r<t.length;++r){let a=t[r],s=e[r+1];if(a!=null&&s!=null&&a!==s)throw new V(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);a==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e);return n.dtype!=="int32"&&(n=uc(n,"int32")),b3(this.embeddings.read(),n.as1D()).reshape(lt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:vt(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Pt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};ey.className="Embedding";re.registerClass(ey);var bi=class extends je{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new $e}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let r=0;r<t.length;++r){let a=e[e.length-t.length+r],s=t[r];if(a==null||s==null||a<0||s<0)n.push(null);else if(a===1)n.push(s);else if(s===1)n.push(a);else{if(a!==s)throw new V("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(a)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[lt(e)]),e=e,e.length<2)throw new V(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let a of e)a!=null&&a[0]!==null&&t.push(a[0]);if(t=Oa(t),t.length>1)throw new V(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;a<e.length;++a){let s=e[a]==null?null:e[a].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let r=e.map(a=>a.length);e.indexOf(null)===-1&&Oa(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return B(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=za(r);for(let s of e){let i=s.rank;for(let o=0;o<a-i;++o)s=cc(s,1);n.push(s)}return this.mergeFunction(n)}else{let a=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,c=u[0],h=u.slice(1).concat([c]),d=o.reshape([c].concat(Da(u.slice(1))));d=nt(d,[1,0]),d=d.reshape(h),n.push(d),a=!0}else if(l>1){let u=wr(1,l).concat([0]);n.push(nt(o,u)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,u=o[l-1],c=[u].concat(o.slice(0,o.length-1));s=nt(s.reshape([-1,u]),[1,0]).reshape(c)}else if(i>1){let o=[i-1].concat(wr(0,i-1));s=nt(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);t=this.computeElementwiseOpOutputShape(t,a)}let n=[];for(let r of e)r!=null&&r[0]!==null&&n.push(r[0]);return n=Oa(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return B(()=>{if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an Array");if(!Array.isArray(e))throw new V("`inputs` should be an Array");if(t.length!==e.length)throw new V(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:Tn(r,0));let n=t[0];for(let r=1;r<t.length-1;++r)n=ar(n,t[r]);return n})}},ty=class extends bi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return t})}};ty.className="Add";re.registerClass(ty);var ny=class extends bi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=P(t,e[n]);return t})}};ny.className="Multiply";re.registerClass(ny);var ry=class extends bi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return P(1/e.length,t)})}};ry.className="Average";re.registerClass(ry);var ay=class extends bi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Fr(t,e[n]);return t})}};ay.className="Maximum";re.registerClass(ay);var sy=class extends bi{constructor(e){super(e)}mergeFunction(e){return B(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=il(t,e[n]);return t})}};sy.className="Minimum";re.registerClass(sy);var iy=class extends bi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new V("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let r of e)if(r!=null){t=!1;break}if(t)return;let n=[];for(let r=0;r<e.length;++r){let a=e[r].slice();a.splice(this.axis,1);let s=!1;for(let i of n)if(v.arraysEqual(i,a)){s=!0;break}s||n.push(a)}if(n.length>1)throw new V("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return B(()=>Jm(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new V("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new V("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new V("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new V(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return B(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s<e.length;++s)t[s]==null?r.push(Cn(e[s]).asType("bool")):t[s].rank<e[s].rank?r.push(Tn(t[s],-1)):r.push(t[s]);let a=rt(r,this.axis);return Yh(a,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};iy.className="Concatenate";re.registerClass(iy);function bc(e,t){for(;e<0;)e+=t;return e}function Ite(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new $e("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new $e("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return B(()=>{let i;if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);t=t.reshape(t.shape.concat(l))}else if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=e.matMul(t,l,u)}if(i>0){let l;r>a?l=r+a-3:l=r-1;let u=[];for(let c=l;c<l+i;++c)u.push(c);o=o.squeeze(u)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var oy=class extends bi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new V(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new V(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>bc(a,e[s].shape.length)):r=[bc(this.axes,t.shape.length),bc(this.axes,n.shape.length)],this.normalize&&(t=kp(t,r[0]),n=kp(n,r[1])),Ite(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[bc(this.axes,e.length),bc(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new $e("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};oy.className="Dot";re.registerClass(oy);var ly=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e);return dc(()=>hp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};ly.className="GaussianNoise";re.registerClass(ly);var uy=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return B(()=>{this.invokeCallHook(e,t);let n=ze(e);return this.rate>0&&this.rate<1?dc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(hp(n.shape,1,r))},()=>n,t.training||!1):n})}};uy.className="GaussianDropout";re.registerClass(uy);var cy=class extends je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||ze(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return B(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return dc(()=>{let r=ze(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=Ea(ol(n),this.rate);o=uc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(u)},()=>ze(e),t.training||!1)}return e})}};cy.className="AlphaDropout";re.registerClass(cy);function vc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=b5(e,t,n,r,a,s);else if(e.rank===3)i=v5(e,t,n,r,a,s);else if(e.rank===4)i=k5(e,t,n,r,a,s);else throw new $e(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function Nte(e,t,n,r,a=.001){return B(()=>{let s=ud(e,r),i=s.mean,o=s.variance;return[vc(e,i,o,n,t,a),i,o]})}function Ste(e,t,n,r,a=.001){return B(()=>{let s=ud(e,r),i=s.mean,o=s.variance,l=[];for(let p of wr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let u=i.reshape(l),c=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[vc(e,u,c,d,h,a),i,o]})}function Tte(e,t,n,r,a=.001){return v.arraysEqual(r.slice().sort(),wr(0,e.rank-1))?Nte(e,t,n,r,a):Ste(e,t,n,r,a)}var hy=class extends je{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=yt(e.betaInitializer||"zeros"),this.gammaInitializer=yt(e.gammaInitializer||"ones"),this.movingMeanInitializer=yt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=yt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Lt(e.betaConstraint),this.gammaConstraint=Lt(e.gammaConstraint),this.betaRegularizer=gt(e.betaRegularizer),this.gammaRegularizer=gt(e.gammaRegularizer)}build(e){e=lt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new V(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Gt({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return B(()=>{let n=t.training==null?!1:t.training,r=ze(e),a=r.shape,s=a.length,i=wr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=fi(1,s);l[o]=a[o];let u=i.slice();u.sort();let c=!v.arraysEqual(u,wr(0,s).slice(0,s-1)),h=()=>{if(c){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,b=this.scale?this.gamma.read().reshape(l):null;return vc(r,A,y,g,b,this.epsilon)}else return vc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,m]=Tte(r,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(A,y,g)=>{B(()=>{let b=1-g,_=A.read(),w=_.sub(y).mul(b);A.write(_.sub(w))})};return(()=>{f(this.movingMean,p,this.momentum),f(this.movingVariance,m,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:vt(this.betaInitializer),gammaInitializer:vt(this.gammaInitializer),movingMeanInitializer:vt(this.movingMeanInitializer),movingVarianceInitializer:vt(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Pt(this.betaConstraint),gammaConstraint:Pt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};hy.className="BatchNormalization";re.registerClass(hy);var dy=class extends je{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=yt(e.betaInitializer||"zeros"),this.gammaInitializer=yt(e.gammaInitializer||"ones"),this.betaRegularizer=gt(e.betaRegularizer),this.gammaRegularizer=gt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=lt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a<this.axis.length;++a)this.axis[a]<0&&(this.axis[a]+=t);for(let a of this.axis)if(a<0||a>=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Oa(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=ze(e),r=n.shape,a=r.length;return B(()=>{let s=!0,{mean:i,variance:o}=ud(n,this.axis,s),l=fi(1,a);for(let m of this.axis)l[m]=r[m];let u=m=>m!=null&&m.shape.length!==a&&this.axis!==[a-1]?m.reshape(l):m,c=u(this.gamma.read()),h=u(this.beta.read()),d=[],p=[];for(let m=0;m<a;++m)this.axis.indexOf(m)!==-1?(d.push(r[m]),p.push(1)):(d.push(1),p.push(r[m]));return i=i.tile(d),o=o.tile(d),c=c.tile(p),h=h.tile(p),vc(n,i,o,h,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:vt(this.betaInitializer),gammaInitializer:vt(this.gammaInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};dy.className="LayerNormalization";re.registerClass(dy);function Ete(e,t,n){return B(()=>{if(e.rank!==4)throw new V(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new V("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=gr()),n!=="channelsLast"&&n!=="channelsFirst")throw new V(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],Jr(e,r)})}var py=class extends je{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?gr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new V(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new V(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new V(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Gt({ndim:4})]}computeOutputShape(e){e=lt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return B(()=>Ete(ze(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};py.className="ZeroPadding2D";re.registerClass(py);function Wp(e,t,n,r,a,s){return B(()=>{St(a),m3(s),Zn(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=gr()),s==null&&(s="max"),e=OA(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Ou(e,t,n,o):i=Tu(e,t,n,o),a==="channelsFirst"&&(i=nt(i,[0,3,1,2])),i})}function R7(e,t,n,r,a,s){return B(()=>{St(a),m3(s),Zn(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=gr()),s==null&&(s="max"),e=I7(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=Of(e,t,n,o):i=_f(e,t,n,o),a==="channelsFirst"&&(i=nt(i,[0,4,1,2,3])),i})}var F7=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new V(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(jt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new V(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Zn(this.padding),this.inputSpec=[new Gt({ndim:3})]}computeOutputShape(e){e=lt(e);let t=vr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return B(()=>{this.invokeCallHook(e,t),e=cc(ze(e),2);let n=this.poolingFunction(ze(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Ca(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},fy=class extends F7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return St(a),Zn(r),Wp(e,t,n,r,a,"max")}};fy.className="MaxPooling1D";re.registerClass(fy);var my=class extends F7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return St(a),Zn(r),Wp(e,t,n,r,a,"avg")}};my.className="AveragePooling1D";re.registerClass(my);var M7=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new V(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];jt(this.poolSize,"poolSize"),jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,St(this.dataFormat),Zn(this.padding),this.inputSpec=[new Gt({ndim:4})]}computeOutputShape(e){e=lt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=vr(t,this.poolSize[0],this.padding,this.strides[0]),n=vr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return B(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Ay=class extends M7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return St(a),Zn(r),Wp(e,t,n,r,a,"max")}};Ay.className="MaxPooling2D";re.registerClass(Ay);var yy=class extends M7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return St(a),Zn(r),Wp(e,t,n,r,a,"avg")}};yy.className="AveragePooling2D";re.registerClass(yy);var $7=class extends je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new V(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];jt(this.poolSize,"poolSize"),jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,St(this.dataFormat),Zn(this.padding),this.inputSpec=[new Gt({ndim:5})]}computeOutputShape(e){e=lt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=vr(t,this.poolSize[0],this.padding,this.strides[0]),n=vr(n,this.poolSize[1],this.padding,this.strides[1]),r=vr(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return B(()=>(this.invokeCallHook(e,t),this.poolingFunction(ze(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},gy=class extends $7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return St(a),Zn(r),R7(e,t,n,r,a,"max")}};gy.className="MaxPooling3D";re.registerClass(gy);var xy=class extends $7{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return St(a),Zn(r),R7(e,t,n,r,a,"avg")}};xy.className="AveragePooling3D";re.registerClass(xy);var O7=class extends je{constructor(e){super(e);this.inputSpec=[new Gt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new $e}},wy=class extends O7{constructor(e){super(e||{})}call(e,t){return B(()=>{let n=ze(e);return bt(n,1)})}};wy.className="GlobalAveragePooling1D";re.registerClass(wy);var _y=class extends O7{constructor(e){super(e||{})}call(e,t){return B(()=>{let n=ze(e);return qn(n,1)})}};_y.className="GlobalMaxPooling1D";re.registerClass(_y);var D7=class extends je{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,St(this.dataFormat),this.inputSpec=[new Gt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new $e}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},by=class extends D7{call(e,t){return B(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?bt(n,[1,2]):bt(n,[2,3])})}};by.className="GlobalAveragePooling2D";re.registerClass(by);var vy=class extends D7{call(e,t){return B(()=>{let n=ze(e);return this.dataFormat==="channelsLast"?qn(n,[1,2]):qn(n,[2,3])})}};vy.className="GlobalMaxPooling2D";re.registerClass(vy);var z7=class extends je{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=br(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},ky=class extends z7{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=lt(e),e.length<3)throw new V(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=lt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return B(()=>(e=ze(e),E7((n,r)=>[ze(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};ky.className="TimeDistributed";re.registerClass(ky);function Cte(e){Ai(VJ,"BidirectionalMergeMode",e)}var Rte="concat",Iy=class extends z7{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=br(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=br(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Rte:e.mergeMode,Cte(this.mergeMode),e.weights)throw new $e("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):vn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=T7(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new V("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(c=>new Gt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(r!=null)throw new $e("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof _r;for(let l of s)if(l instanceof _r!==o)throw new V("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=u;let h=super.apply(l,t);return this.inputSpec=c,h}else return super.apply(e,t)}call(e,t){return B(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Rn(a,1));let i;return this.mergeMode==="concat"?i=Jm([r,a]):this.mergeMode==="sum"?i=se(r,a):this.mergeMode==="ave"?i=P(.5,se(r,a)):this.mergeMode==="mul"?i=P(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){yi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),yi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=br(t.layer);if(delete t.layer,t.numConstants!=null)throw new $e("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};Iy.className="Bidirectional";re.registerClass(Iy);function aQ(e){return new El(e)}function sQ(e){return new FA(e)}function iQ(e){return new EA(e)}function oQ(e){return new CA(e)}function lQ(e){return new RA(e)}function uQ(e){return new $A(e)}function cQ(e){return new MA(e)}function hQ(e){return new $p(e)}function dQ(e){return new wc(e)}function pQ(e){return new zA(e)}function fQ(e){return new Mp(e)}function mQ(e){return new PA(e)}function AQ(e){return new LA(e)}function yQ(e){return new WA(e)}function gQ(e){return new BA(e)}function xQ(e){return new KA(e)}function wQ(e){return new qA(e)}function _Q(e){return new Lp(e)}function bQ(e){return new GA(e)}function vQ(e){return new XA(e)}function kQ(e){return new ZA(e)}function IQ(e){return new YA(e)}function NQ(e){return new JA(e)}function SQ(e){return new ey(e)}function TQ(e){return new ty(e)}function EQ(e){return new ry(e)}function CQ(e){return new iy(e)}function RQ(e){return new ay(e)}function FQ(e){return new sy(e)}function MQ(e){return new ny(e)}function $Q(e){return new oy(e)}function OQ(e){return new hy(e)}function DQ(e){return new dy(e)}function zQ(e){return new py(e)}function oA(e){return new my(e)}function PQ(e){return oA(e)}function LQ(e){return oA(e)}function lA(e){return new yy(e)}function WQ(e){return lA(e)}function BQ(e){return lA(e)}function uA(e){return new xy(e)}function VQ(e){return uA(e)}function UQ(e){return uA(e)}function HQ(e){return new wy(e)}function jQ(e){return new by(e)}function T3(e){return new _y(e)}function E3(e){return new vy(e)}function C3(e){return new fy(e)}function R3(e){return new Ay(e)}function GQ(e){return new gy(e)}function qQ(e){return new UA(e)}function XQ(e){return new zp(e)}function KQ(e){return new HA(e)}function ZQ(e){return new _c(e)}function YQ(e){return new VA(e)}function JQ(e){return new Dp(e)}function QQ(e){return new jA(e)}function eee(e){return new Pp(e)}function tee(e){return new Br(e)}function nee(e){return new Op(e)}function ree(e){return new Iy(e)}function aee(e){return new ky(e)}var see=T3,iee=E3,oee=C3,lee=R3;function uee(e){return new ly(e)}function cee(e){return new uy(e)}function hee(e){return new cy(e)}function dee(e){return new QA(e)}var P7={};De(P7,{MAPE:()=>Vte,MSE:()=>jte,binaryAccuracy:()=>Fte,binaryCrossentropy:()=>Mte,categoricalAccuracy:()=>Ote,categoricalCrossentropy:()=>Dte,cosineProximity:()=>Lte,mape:()=>Ute,meanAbsoluteError:()=>Wte,meanAbsolutePercentageError:()=>Bte,meanSquaredError:()=>Hte,mse:()=>Gte,precision:()=>zte,recall:()=>Pte,sparseCategoricalAccuracy:()=>$te});function Fte(e,t){return mA(e,t)}function Mte(e,t){return G3(e,t)}function $te(e,t){return q3(e,t)}function Ote(e,t){return AA(e,t)}function Dte(e,t){return yA(e,t)}function zte(e,t){return j3(e,t)}function Pte(e,t){return Ree(e,t)}function Lte(e,t){return pA(e,t)}function Wte(e,t){return Ip(e,t)}function Bte(e,t){return Rl(e,t)}function Vte(e,t){return Rl(e,t)}function Ute(e,t){return Rl(e,t)}function Hte(e,t){return xi(e,t)}function jte(e,t){return xi(e,t)}function Gte(e,t){return xi(e,t)}var L7={};De(L7,{modelFromJSON:()=>hte});var W7={};De(W7,{l1:()=>Xte,l1l2:()=>qte,l2:()=>Kte});function qte(e){return new gc(e)}function Xte(e){return xte(e)}function Kte(e){return wte(e)}var B7=class extends Cl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof sa))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Bp(e,t){return e<t}function V7(e,t){return e>t}var U7=class extends B7{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new $e("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Bp:this.mode==="max"?this.monitorFunc=V7:this.monitor.indexOf("acc")!==-1?this.monitorFunc=V7:this.monitorFunc=Bp,this.monitorFunc===Bp&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Bp?Infinity:-Infinity}async onEpochEnd(e,t){await Pa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Zte(e){return new U7(e)}var Yte={earlyStopping:Zte},kr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(kr||(kr={}));var H7;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(H7||(H7={}));var Ny={};function Jte(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};Ny[e]=n}function j7(e){return Ny[e]}function Qte(e){delete Ny[e]}function k(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return In(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>In(h,n,r,a));let u=In(t.inputNames.slice(o)[0],n,r,a),c=u.dataSync();return s.type==="number"?c[0]:v.toNestedArray(u.shape,c)}let i=t.attrParams[e];return i&&i.value}function In(e,t,n,r){let[a,s]=zn(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[Vp(a,o)]);return i!==void 0?t[Vp(a,i)][s]:void 0}function ene(e,t,n){return t[Vp(e,n.currentContextId)]}function ia(e,t){let[n,r]=zn(e);return[Vp(n,t&&t.currentContextId),r]}function Vp(e,t){return t?`${e}-${t}`:e}function zn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function Up(e,t,n){let r=k("pad",e,t,n);if(r==="explicit"){r=k("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function oa(e){return e.kept?e:nr(e)}var G7={};De(G7,{json:()=>tne});var tne=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],q7={};De(q7,{json:()=>nne});var nne=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],X7={};De(X7,{json:()=>rne});var rne=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],K7={};De(K7,{json:()=>ane});var ane=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Z7={};De(Z7,{json:()=>sne});var sne=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Y7={};De(Y7,{json:()=>ine});var ine=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],J7={};De(J7,{json:()=>one});var one=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],Q7={};De(Q7,{json:()=>lne});var lne=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],ev={};De(ev,{json:()=>une});var une=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]}],tv={};De(tv,{json:()=>cne});var cne=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],nv={};De(nv,{json:()=>hne});var hne=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],rv={};De(rv,{json:()=>dne});var dne=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],av={};De(av,{json:()=>pne});var pne=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],sv={};De(sv,{json:()=>fne});var fne=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],iv={};De(iv,{json:()=>mne});var mne=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],ov={};De(ov,{json:()=>Ane});var Ane=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],lv={};De(lv,{json:()=>yne});var yne=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],cv=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[G7,q7,X7,K7,Z7,Y7,J7,nv,tv,Q7,rv,av,sv,iv,ov,lv,ev],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?r.push(m[f.name]):f.op==="Const"?a.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(m=>{let f=i[m];f.inputNames.forEach(A=>{let[y]=ia(A);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(c).length===0?h.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(c).forEach(m=>{let[f]=ia(m),A=i[f];A!=null&&(A.signatureKey=c[m],l.push(A))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=ia(m),A=i[f];A&&(A.signatureKey=u[m],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=j7(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=Sy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Sy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=Oy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Oy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=Ey(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=Ey(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=$y(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=$y(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=Ty(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Ty(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=zy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=zy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=My(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=My(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=Dy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Dy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=Ry(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Ry(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=Fy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Fy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=uv(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=uv(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((u,c)=>(u[c.name]=this.mapNode(c),c.op==="Const"&&r.push(u[c.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[c]=ia(u.name),h={name:c,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Cy(u.type),type:"dtype"}},children:[]};h.signatureKey=u.name,s.push(h),a[c]=h}),Object.keys(a).forEach(u=>{let c=a[u];c.inputNames.forEach(h=>{let[d]=ia(h);c.inputs.push(a[d]),a[d].children.push(c)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[c,h]=ia(o[u.name]),d=a[c];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function gne(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function hv(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):gne(e);return t?n:n.toLowerCase()}function Sy(e,t,n,r=!1){let a=e[t];return a!=null?hv(a.s,r):n}function Ty(e,t,n){let r=e[t];return r?r.b:n}function Ey(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function Cy(e){switch(typeof e=="string"&&(e=kr[e]),e){case kr.DT_FLOAT:return"float32";case kr.DT_INT32:case kr.DT_INT64:case kr.DT_INT8:case kr.DT_UINT8:return"int32";case kr.DT_BOOL:return"bool";case kr.DT_DOUBLE:return"float32";case kr.DT_STRING:return"string";default:return null}}function uv(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function Ry(e,t,n){let r=e[t];return r&&r.type?Cy(r.type):n}function Fy(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>Cy(a)):n}function dv(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function My(e,t,n){let r=e[t];return r&&r.shape?dv(r.shape):n}function $y(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function Oy(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>hv(s,r)):n}function Dy(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>dv(a)):n}function zy(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var xne=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return In(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return In(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return Ey(this.node.rawAttrs,e,t);if(n.s!=null)return Sy(this.node.rawAttrs,e,t);if(n.b!=null)return Ty(this.node.rawAttrs,e,t);if(n.shape!=null)return My(this.node.rawAttrs,e,t);if(n.type!=null)return Ry(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return $y(this.node.rawAttrs,e,t);if(n.list.s!=null)return Oy(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Dy(this.node.rawAttrs,e,t);if(n.list.b!=null)return zy(this.node.rawAttrs,e,t);if(n.list.type!=null)return Fy(this.node.rawAttrs,e,t)}return t}},wne=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[Yo(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[zf(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[P(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[ge(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[Sf(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[Zh(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[Ae(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[il(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[Fr(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[Qr(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[wd(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},_ne=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Ot(k("x",e,t,n))];case"Acos":return[hf(k("x",e,t,n))];case"Acosh":return[df(k("x",e,t,n))];case"Asin":return[ff(k("x",e,t,n))];case"Asinh":return[mf(k("x",e,t,n))];case"Atan":return[Af(k("x",e,t,n))];case"Atan2":return[yf(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[gf(k("x",e,t,n))];case"Ceil":return[bf(k("x",e,t,n))];case"Complex":return[ba(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[Ru(k("x",e,t,n))];case"Cosh":return[td(k("x",e,t,n))];case"Elu":return[nl(k("x",e,t,n))];case"Erf":return[Tf(k("x",e,t,n))];case"Exp":return[Gn(k("x",e,t,n))];case"Expm1":return[Ef(k("x",e,t,n))];case"Floor":return[rl(k("x",e,t,n))];case"Log":return[En(k("x",e,t,n))];case"Log1p":return[sd(k("x",e,t,n))];case"Imag":return[rd(k("x",e,t,n))];case"Neg":return[_t(k("x",e,t,n))];case"Reciprocal":return[Wf(k("x",e,t,n))];case"Real":return[Pu(k("x",e,t,n))];case"Relu":return[$r(k("x",e,t,n))];case"Round":return[Bf(k("x",e,t,n))];case"Selu":return[fd(k("x",e,t,n))];case"Sigmoid":return[Sn(k("x",e,t,n))];case"Sin":return[md(k("x",e,t,n))];case"Sign":return[Uf(k("x",e,t,n))];case"Sinh":return[Ad(k("x",e,t,n))];case"Softplus":return[al(k("x",e,t,n))];case"Sqrt":return[Qt(k("x",e,t,n))];case"Square":return[it(k("x",e,t,n))];case"Tanh":return[Qo(k("x",e,t,n))];case"Tan":return[Gf(k("x",e,t,n))];case"ClipByValue":return[gn(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[dd(k("x",e,t,n))];case"Rsqrt":return[pd(In(e.inputNames[0],t,n))];case"Prod":return[cd(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[Mu(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[zu(k("x",e,t,n),k("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function cr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;r<e.length;r++){let a=e[r],s=t[r];v.assert(a<0||s<0||a===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function pv(e){return!(typeof e=="number"||e.some(t=>t<0))}function kc(e,t,n){let r=Py(e,n),a=!pv(r);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(a&&t.forEach(s=>{r=Py(s.shape,r)}),!pv(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function Py(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r<e.length;++r){let a=e[r],s=t[r];if(a>=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=a>=0?a:s}return n}var bne=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=be(0),Vt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),cr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Vt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r<this.size();r++)e.push(r)}if(e.length===0)return mr([],[0].concat(this.elementShape));let n=this.readMany(e);return cr(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),Fn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return mr([],[0].concat(this.elementShape));let t=[];for(let r=0;r<this.size();r++)t.push(r);let n=this.readMany(t);return cr(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),rt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,sr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];B(()=>{t=j(t,[1,n,a]);for(let o=0;o<e.length;++o){let l=o===0?0:r[o-1],u=[0,l,0],c=[1,e[o],a];s[o]=j(Ce(t,u,c),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Ic=class{constructor(e,t,n,r=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(a=>{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);cr(t,a.shape,"TensorList shape mismatch: "),Vt(a)}),this.idTensor=be(0),this.maxNumElements=r,Vt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Ic([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);cr(e,this.elementShape,"TensorList shape mismatch: ");let r=kc(this.elementShape,this.tensors,e);return B(()=>{let a=this.tensors.map(s=>j(s,r));return Fn(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=kc(this.elementShape,this.tensors,e),r=this.tensors.pop();return cr(r.shape,e,"TensorList shape mismatch: "),j(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(cr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Vt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);cr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=kc(this.elementShape,this.tensors,t);return j(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);cr(this.elementShape,t.shape,"TensorList shape mismatch: "),Vt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);cr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=kc(this.elementShape,this.tensors,n);return e.length===0?mr([],[0].concat(r)):B(()=>{let a=e.map(s=>j(this.tensors[s],r));return Fn(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);cr(this.elementShape,t,"TensorList shape mismatch: ");let n=kc(this.elementShape,this.tensors,t);return this.size()===0?mr([],[0].concat(n)):B(()=>{let r=this.tensors.map(a=>j(a,n));return rt(r,0)})}};function vne(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);cr(a,t,"TensorList shape mismatch: ");let s=sr(e);return new Ic(s,t,r)}function kne(e,t,n){return new Ic([],e,t,n)}function Ine(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Ic([],n,e.dtype,r),i=sr(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function Nne(e,t,n){let r=0,a=t.map(c=>(r+=c,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${r}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Py(s,n),o=r===0?0:e.size/r,l=B(()=>{let c=[];e=j(e,[1,r,o]);for(let h=0;h<t.length;++h){let d=h===0?0:a[h-1],p=[0,d,0],m=[1,t[h],o];c[h]=j(Ce(e,p,m),i)}return e.dispose(),c}),u=new Ic([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var Sne=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let r=k("thenBranch",e,t,n),a=k("elseBranch",e,t,n),s=k("cond",e,t,n),i=k("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=k("body",e,t,n),a=k("cond",e,t,n),s=k("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(c=>c.id),l=await i[0].data();i.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let h=u.map(p=>p.id);c.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return u}case"LoopCond":{let r=k("pred",e,t,n);return[oa(r)]}case"Switch":{let r=k("pred",e,t,n),a=k("data",e,t,n);return a.kept||(a=oa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>In(a,t,n)!==void 0);if(r){let a=In(r,t,n);return[oa(a)]}return}case"Enter":{let r=k("frameName",e,t,n),a=k("tensor",e,t,n);return n.enterFrame(r),[oa(a)]}case"Exit":{let r=k("tensor",e,t,n);return n.exitFrame(),[oa(r)]}case"NextIteration":{let r=k("tensor",e,t,n);return n.nextIteration(),[oa(r)]}case"TensorArrayV3":{let r=k("size",e,t,n),a=k("dtype",e,t,n),s=k("elementShape",e,t,n),i=k("dynamicSize",e,t,n),o=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),u=k("name",e,t,n),c=new bne(u,a,r,s,l,i,o);return n.addTensorArray(c),[c.idTensor,be(1)]}case"TensorArrayWriteV3":{let r=k("tensorArrayId",e,t,n),a=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=k("tensorArrayId",e,t,n),a=k("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=k("tensorArrayId",e,t,n),a=k("indices",e,t,n),s=k("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=k("tensorArrayId",e,t,n),a=k("indices",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=k("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=k("tensorArrayId",e,t,n),a=k("tensor",e,t,n),s=k("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[be(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=k("tensorListId",e,t,n),a=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=k("tensorListId",e,t,n),a=k("index",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=k("indices",e,t,n),a=k("tensor",e,t,n),s=k("elementShape",e,t,n),i=k("numElements",e,t,n),o=Ine(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=k("elementShape",e,t,n),a=k("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,n),o=kne(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=k("tensorListId",e,t,n),a=k("indices",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=k("tensorListId",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=k("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=k("tensor",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=vne(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=k("tensorListId",e,t,n),a=n.getTensorList(r.id),s=k("dtype",e,t,n),i=k("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=k("tensorListId",e,t,n),a=k("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=k("tensorListId",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=k("tensor",e,t,n),a=k("elementShape",e,t,n),s=k("lengths",e,t,n),i=Nne(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function fv(e,t,n){let[r,a]=k("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=k("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=k("strides",e,t,n),c=Up(e,t,n),h=k("dataFormat",e,t,n).toUpperCase(),d=k("dilations",e,t,n),[p,m]=k("args",e,t,n),f=k("leakyreluAlpha",e,t,n);return{stride:u,pad:c,dataFormat:h,dilations:d,biasArg:p,preluArg:m,activationFunc:a,leakyreluAlpha:f}}var Tne=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=k("stride",e,t,n),a=k("pad",e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilation",e,t,n);return[Qh(k("x",e,t,n),k("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=k("strides",e,t,n),a=Up(e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilations",e,t,n);return[Yr(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=fv(e,t,n);return[Ra.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=fv(e,t,n);return[Ra.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=k("outputShape",e,t,n),a=k("strides",e,t,n),s=Up(e,t,n);return[ed(k("x",e,t,n),k("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=k("strides",e,t,n),a=Up(e,t,n),s=k("dilations",e,t,n),i=k("dataFormat",e,t,n).toUpperCase();return[tl(k("input",e,t,n),k("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilations",e,t,n);return[kf(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[Tu(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[Ou(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n),i=k("includeBatchInIndex",e,t,n),{result:o,indexes:l}=V5(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[_f(k("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[Of(k("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("dilations",e,t,n),i=r[1],o=r[2],l=s[1],u=s[2];return[Nf(k("x",e,t,n),k("filter",e,t,n),[i,o],a,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ene=(e,t,n)=>{switch(e.op){case"Fill":{let r=k("shape",e,t,n),a=k("dtype",e,t,n),s=k("value",e,t,n);return[Fu(r,s,a)]}case"LinSpace":{let r=k("start",e,t,n),a=k("stop",e,t,n),s=k("num",e,t,n);return[O5(r,a,s)]}case"Multinomial":{let r=k("logits",e,t,n),a=k("numSamples",e,t,n),s=k("seed",e,t,n);return[U5(r,a,s)]}case"OneHot":{let r=k("indices",e,t,n),a=k("depth",e,t,n),s=k("onValue",e,t,n),i=k("offValue",e,t,n);return[qo(r,a,s,i)]}case"Ones":return[Mr(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[Cn(k("x",e,t,n))];case"RandomUniform":return[ol(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let r=k("start",e,t,n),a=k("stop",e,t,n),s=k("step",e,t,n);return[hd(r,a,s,k("dtype",e,t,n))]}case"TruncatedNormal":{let r=k("shape",e,t,n),a=k("mean",e,t,n),s=k("stdDev",e,t,n),i=k("seed",e,t,n);return[_d(r,a,s,k("dtype",e,t,n),i)]}case"Zeros":return[Et(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[Ve(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ly(e,t,n){let r=k("boxes",e,t,n),a=k("scores",e,t,n),s=k("maxOutputSize",e,t,n),i=k("iouThreshold",e,t,n),o=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Cne=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Ly(e,t,n),u=await Ge.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Ly(e,t,n),l=k("padToMaxOutputSize",e,t,n),u=await Ge.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Ly(e,t,n);return[await Ge.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=me(k("condition",e,t,n),"bool"),a=[await Kf(r)];return r.dispose(),a}case"ListDiff":return G5(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Rne=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=k("x",e,t,n),a=k("k",e,t,n),s=k("sorted",e,t,n),i=qf(r,a,s);return[i.values,i.indices]}case"Unique":{let r=k("x",e,t,n),a=bd(r);return[a.values,a.indices]}case"UniqueV2":{let r=k("x",e,t,n),a=k("axis",e,t,n),s=bd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Fne=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=k("default",e,t,n);return[In(e.name,t,n)||r];case"Placeholder":return[In(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=k("x",e,t,n);return[oa(u)]}case"IdentityN":return k("x",e,t,n).map(u=>oa(u));case"Snapshot":let a=k("x",e,t,n);return[oa(a)];case"Shape":return[Ut(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(u=>Ut(u.shape));case"Size":return[be(k("x",e,t,n).size,"int32")];case"Rank":return[be(k("x",e,t,n).rank,"int32")];case"NoOp":return[be(1)];case"Print":let s=k("x",e,t,n),i=k("data",e,t,n),o=k("message",e,t,n),l=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Mne=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=be(0),this.tensorMap=new Map,Vt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),B(()=>{let r=sr(t),a=n.length,s=r.length;v.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i<a;i++){let o=n[i],l=r[i];Vt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return B(()=>{let r=[];for(let a=0;a<n.length;a++){let s=n[a],i=this.findWithDefault(s,t);r.push(i)}return Fn(r)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},$ne=async(e,t,n,r)=>{switch(e.op){case"HashTable":case"HashTableV2":{let a=k("keyDType",e,t,n),s=k("valueDType",e,t,n),i=new Mne(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=k("tableHandle",e,t,n,r),s=k("keys",e,t,n),i=k("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=k("tableHandle",e,t,n,r),s=k("keys",e,t,n),i=k("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},One=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=k("images",e,t,n),a=k("size",e,t,n),s=k("alignCorners",e,t,n),i=k("halfPixelCenters",e,t,n);return[Ge.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=k("images",e,t,n),a=k("size",e,t,n),s=k("alignCorners",e,t,n),i=k("halfPixelCenters",e,t,n);return[Ge.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=k("image",e,t,n),a=k("boxes",e,t,n),s=k("boxInd",e,t,n),i=k("cropSize",e,t,n),o=k("method",e,t,n),l=k("extrapolationValue",e,t,n);return[Ge.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Dne=(e,t,n)=>{switch(e.op){case"Equal":return[Sa(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[ri(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[rr(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[Ea(k("a",e,t,n),k("b",e,t,n))];case"Less":return[ad(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[ti(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[ar(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[$u(k("a",e,t,n))];case"LogicalOr":return[ld(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[xn(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},zne=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[He(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Transpose":return[nt(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[r,a]=k("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=k("numArgs",e,t,n),l=k("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=k("args",e,t,n);return[Ra.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:u,activation:a,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Pne=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Qs(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[Qs(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[Rf(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[Wu(k("x",e,t,n))];case"LogSoftmax":return[od(k("x",e,t,n))];case"SparseToDense":return[Zf(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Lne=(e,t,n)=>{switch(e.op){case"Max":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[qn(k("x",e,t,n),i,o)]}case"Mean":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[bt(k("x",e,t,n),i,o)]}case"Min":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[sl(k("x",e,t,n),i,o)]}case"Sum":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Te(k("x",e,t,n),i,o)]}case"All":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Yh(k("x",e,t,n),i,o)]}case"Any":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Iu(k("x",e,t,n),i,o)]}case"ArgMax":{let i=k("axis",e,t,n);return[Nu(k("x",e,t,n),i)]}case"ArgMin":{let i=k("axis",e,t,n);return[pf(k("x",e,t,n),i)]}case"Prod":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[cd(k("x",e,t,n),i,o)]}case"Cumsum":{let i=k("axis",e,t,n),o=k("exclusive",e,t,n),l=k("reverse",e,t,n);return[nd(k("x",e,t,n),i,o,l)]}case"Bincount":let r=k("x",e,t,n),a=k("weights",e,t,n),s=k("size",e,t,n);return[I5(r,a,s)];case"DenseBincount":{let i=k("x",e,t,n),o=k("weights",e,t,n),l=k("size",e,t,n),u=k("binaryOutput",e,t,n);return[C5(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Wne=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=k("n",e,t,n),a=k("axis",e,t,n),s=k("tensors",e,t,n);return s=s.slice(0,r),[rt(s,a)]}case"Gather":{let r=k("x",e,t,n),a=k("indices",e,t,n);return[ei(r,me(a,"int32"),0)]}case"GatherV2":{let r=k("axis",e,t,n),a=k("batchDims",e,t,n),s=k("x",e,t,n),i=k("indices",e,t,n);return[ei(s,me(i,"int32"),r,a)]}case"Reverse":{let r=k("dims",e,t,n),a=[];for(let i=0;i<r.length;i++)r[i]&&a.push(i);let s=k("x",e,t,n);return[Rn(s,a)]}case"ReverseV2":{let r=k("axis",e,t,n),a=k("x",e,t,n);return[Rn(a,r)]}case"Slice":{let r=k("begin",e,t,n),a=k("size",e,t,n);return[Ce(k("x",e,t,n),r,a)]}case"StridedSlice":{let r=k("begin",e,t,n),a=k("end",e,t,n),s=k("strides",e,t,n),i=k("beginMask",e,t,n),o=k("endMask",e,t,n),l=k("ellipsisMask",e,t,n),u=k("newAxisMask",e,t,n),c=k("shrinkAxisMask",e,t,n),h=k("x",e,t,n);return[jf(h,r,a,s,i,o,l,u,c)]}case"Pack":return B(()=>{let r=k("axis",e,t,n),a=k("tensors",e,t,n),s=a[0].shape,i=Ca(a[0]).shape,o=a.map(l=>{let u=v.arraysEqual(l.shape,s);if(!u&&!v.arraysEqual(Ca(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:j(l,s)});return[Fn(o,r)]});case"Unpack":{let r=k("axis",e,t,n),a=k("tensor",e,t,n);return sr(a,r)}case"Tile":{let r=k("reps",e,t,n);return[Ta(k("x",e,t,n),r)]}case"Split":case"SplitV":{let r=k("axis",e,t,n),a=k("numOrSizeSplits",e,t,n),s=k("x",e,t,n);return Jt(s,a,r)}case"ScatterNd":{let r=k("indices",e,t,n),a=k("values",e,t,n),s=k("shape",e,t,n);return[Z5(r,a,s)]}case"GatherNd":{let r=k("x",e,t,n),a=k("indices",e,t,n);return[Y5(r,a)]}case"SparseToDense":{let r=k("sparseIndices",e,t,n),a=k("outputShape",e,t,n),s=k("sparseValues",e,t,n),i=k("defaultValue",e,t,n);return[Zf(r,s,a,s.dtype===i.dtype?i:me(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Bne=(e,t,n)=>{switch(e.op){case"FFT":return[Bu(k("x",e,t,n))];case"IFFT":return[ll(k("x",e,t,n))];case"RFFT":return[Vu(k("x",e,t,n))];case"IRFFT":return[xd(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Vne=(e,t,n)=>{switch(e.op){case"Cast":return[me(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let r=k("axis",e,t,n);return[Tn(k("x",e,t,n),r)]}case"Squeeze":{let r=k("axis",e,t,n);return[Ca(k("x",e,t,n),r)]}case"Reshape":return[j(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[Df(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[Jr(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let r=k("blockShape",e,t,n),a=k("paddings",e,t,n);return[Du(k("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=k("blockShape",e,t,n),a=k("crops",e,t,n);return[Eu(k("x",e,t,n),r,a)]}case"DepthToSpace":{let r=k("blockSize",e,t,n),a=k("dataFormat",e,t,n).toUpperCase();return[If(k("x",e,t,n),r,a)]}case"BroadcastTo":return[Cu(k("x",e,t,n),k("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function mv(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return B(()=>wne(s,i,o));case"basic_math":return B(()=>_ne(s,i,o));case"control":return Sne(s,i,o);case"convolution":return B(()=>Tne(s,i,o));case"creation":return B(()=>Ene(s,i,o));case"dynamic":return Cne(s,i,o);case"evaluation":return B(()=>Rne(s,i,o));case"image":return B(()=>One(s,i,o));case"graph":return B(()=>Fne(s,i,o));case"logical":return B(()=>Dne(s,i,o));case"matrices":return B(()=>zne(s,i,o));case"normalization":return B(()=>Pne(s,i,o));case"reduction":return B(()=>Lne(s,i,o));case"slice_join":return B(()=>Wne(s,i,o));case"spectral":return B(()=>Bne(s,i,o));case"transformation":return B(()=>Vne(s,i,o));case"hash_table":return $ne(s,i,o,r);case"custom":let l=j7(s.op);if(l&&l.customExecutor)return l.customExecutor(new xne(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var Av=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function gv(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(d=>zn(d)[0]),c=[];r!=null&&(c=r.map(d=>zn(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((yv(d)||Une(d)||Hne(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function jne(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(c=>zn(c)[0]).map(c=>e.nodes[c]),o=e.initNodes;i.forEach(c=>{r.has(c.name)&&s.push(c)}),e.weights.forEach(c=>{r.has(c.name)&&s.push(c)}),o!=null&&o.forEach(c=>{r.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return u}var Gne=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],qne=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Xne=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2"];function yv(e){return Gne.indexOf(e.op)>=0}function Une(e){return qne.indexOf(e.op)>=0}function Hne(e){return Xne.indexOf(e.op)>=0}var Wy=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Wy(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=gv(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return jne(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(c=>this.graph.nodes[zn(c)[0]]),a=t.map(c=>zn(c)[0]),s=a.map(c=>this.graph.nodes[c]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return B(()=>{let c=new Av(this.weightMap,l,u,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,A]=zn(m),y=[];y[A]=e[m],h[f]=y});let d=this.getFrozenTensorIds(h),p={};for(let m=0;m<o.length;m++){let f=o[m];if(!h[f.name]){let A=mv(f,h,c,this._resourceManager);if(v.isPromise(A))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);h[f.name]=A,this.checkTensorForDisposal(f.name,f,h,c,d,a,p)}}return this.parent==null&&c.dispose(d),t.map(m=>In(m,h,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=ene(o.name,n,r);l!=null&&l.forEach(u=>{if(u&&!a.has(u.id)){let c=i[u.id];c===1?(u.dispose(),delete i[u.id]):c!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new Av(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>In(h,i,s)),l=o.map(h=>h.id),u=Object.keys(e).map(h=>e[h].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.isDisposed&&!c.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(c),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(g=>this.graph.nodes[zn(g)[0]]),i=n.map(g=>zn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:h}=gv(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[b,_]=zn(g),w=[];w[_]=e[g],p[b]=w});let m={},f=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let g=this.processStack(s,d,t,p,A,f,i,m,l);await Promise.all(g)}c==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!yv(g)&&!In(g.name,p,t)).map(g=>g.name);if(y.length>0){let g="";throw c!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${a}]. Consider providing the following inputs: [${u}]. ${g}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let h="";if(c.node.op==="Enter"&&k("isConstant",c.node,r,n)&&([h]=ia(c.node.name,n)),r[c.node.name]==null){let d=mv(c.node,r,n,this._resourceManager);h||([h]=ia(c.node.name,n));let p=n.currentContext;v.isPromise(d)?u.push(d.then(m=>(r[h]=m,n.currentContext=p,this.checkTensorForDisposal(h,c.node,r,n,s,i,o),this.processChildNodes(c.node,t,n,r,a,l),m))):(r[h]=d,this.checkTensorForDisposal(h,c.node,r,n,s,i,o),this.processChildNodes(c.node,t,n,r,a,l))}else this.processChildNodes(c.node,t,n,r,a,l)}return u}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=ia(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!In(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!In(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=zn(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&v.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=zn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=zn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Kne=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Zne="?tfjs-format=file",Yne="model.json",xv=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Kne}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=yn.browserHTTPRequest(e,this.loadOptions);else{let t=yn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(yn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=yn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Wy(cv.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=cv.Instance.transformGraph(e.modelInitializer);this.initializer=new Wy(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=yn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ze)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Nt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Yne}${Zne}`);let n=new xv(e,t);return await n.load(),n}var Jne="3.2.0",wv={};De(wv,{CSVDataset:()=>bv,Dataset:()=>$l,FileDataSource:()=>vv,TextLineDataset:()=>_v,URLDataSource:()=>kv,array:()=>Qne,csv:()=>tre,func:()=>nre,generator:()=>rre,microphone:()=>sre,version_data:()=>ire,webcam:()=>are,zip:()=>ere});var ore=Pi(dg()),lre=Pi(dg());function ure(e,t){return Hp(e,t)}function Hp(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Ol(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=Hp(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function cre(e,t=Nv){return Iv(e,t)}function Iv(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Ol(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(u=>u[i]),l=Iv(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function Nv(e){return e===null?null:Ol(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function Sv(e,t){let n=new Map;Hp(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let s=await a;n.set(r,s)}}return Hp(e,t,n)}function Ol(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ze))}function dre(e){return e==null||hre(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ze||v.isTypedArray(e)}function hre(e){return e===null||typeof e!="object"&&typeof e!="function"}function fre(e){return ure(e,pre)}function pre(e){return e instanceof Ze?{value:e.clone(),recurse:!1}:Ol(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var Tv=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},By=class extends Tv{constructor(){super(By.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;r<n;r++)t[r]=this.get(this.wrap(this.begin+r));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};By.INITIAL_CAPACITY=32;function Ev(e){return new mre(e)}function Vy(e){return new Are(e)}function yre(e,t){return new Cv(e,t)}function xre(e,t=Va.FAIL){return new gre(e,t)}var qt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new Nre(this,e)}filter(e){return new kre(this,e)}map(e){return new Ire(this,e)}mapAsync(e){return new Rv(this,e)}serialMapAsync(e){return new Rv(this,e).serial()}flatmap(e){return new Sre(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new vre(this,e,t)}columnMajorBatch(e,t=!0,n=Nv){return this.rowMajorBatch(e,t).map(r=>cre(r,n))}concatenate(e,t){return new Cv(Ev([this,e]),t)}take(e){return e<0||e==null?this:new bre(this,e)}skip(e){return e<0||e==null?this:new _re(this,e)}prefetch(e){return new Fv(this,e)}shuffle(e,t){return new Tre(this,e,t)}serial(){return new wre(this)}},mre=class extends qt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:fre(e),done:!1}}},Are=class extends qt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},wre=class extends qt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},_re=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ee(e.value)}return this.upstream.next()}},bre=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},vre=class extends qt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},kre=class extends qt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ee(e.value)}}},Ire=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=fr.getTensorsInContainer(e.value),n=this.transform(e.value),r=fr.getTensorsInContainer(n);for(let a of t)fr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Nre=class extends qt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},Rv=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=fr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=fr.getTensorsInContainer(n);for(let a of t)fr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Uy=class extends qt{constructor(){super();this.outputQueue=new By,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Sre=class extends Uy{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=fr.getTensorsInContainer(e.value),n=this.transform(e.value),r=fr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)fr.isTensorInList(a,r)||a.dispose();return!0}},Cv=class extends qt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Va;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Va||(Va={}));var gre=class extends qt{constructor(e,t=Va.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof qt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await Sv(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Va.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Va.SHORTEST:return{value:null,done:!0};case Va.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},Fv=class extends qt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new Tv(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Tre=class extends Fv{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=lre.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},$l=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),Pn(async()=>(await n.iterator()).columnMajorBatch(e,t,Ere),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Pn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Pn(async()=>(await t.iterator()).filter(r=>B(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Pn(async()=>(await t.iterator()).map(n=>B(()=>e(n))),this.size)}mapAsync(e){let t=this;return Pn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Pn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Pn(async()=>{let r=Vy(async()=>({value:await t.iterator(),done:!1}));return yre(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Pn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=ore.alea(t||v.now().toString());return Pn(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Pn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};$l.MAX_BUFFER_SIZE=1e4;function Pn(e,t=null){return new class extends $l{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function Qne(e){return Pn(async()=>Ev(e),e.length)}function ere(e){if(!Ol(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Pn(async()=>{let n=await Sv(e,r=>{if(r instanceof $l)return{value:r.iterator(),recurse:!1};if(Ol(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return xre(n,Va.SHORTEST)},t)}function Ere(e){if(e===null)return null;let t=e[0];return dre(t)?{value:Cre(e),recurse:!1}:{value:null,recurse:!0}}function Cre(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ze?Fn(e):mr(e)}var _v=class extends $l{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},jp='"',Nc=Symbol("out"),Mv=Symbol("field"),Gp=Symbol("quote"),Hy=Symbol("quoteafterquote"),$v=Symbol("quoteinquote"),bv=class extends $l{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new _v(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a<this.fullColumnNames.length;a++){let s=this.fullColumnNames[a],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[a],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?r[s]=l:n[s]=l}}return Object.keys(r).length===0?n:{xs:n,ys:r}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],r=0,a=e.length,s=Nc;for(let i=0;i<a;i++)switch(s){case Nc:switch(e.charAt(i)){case jp:r=i+1,s=Gp;break;case this.delimiter:if(r=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Nc;break;default:s=Mv,r=i;break}break;case Mv:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i)),s=Nc,r=i+1;break;default:}break;case Gp:switch(e.charAt(i)){case jp:s=Hy;break;default:}break;case Hy:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i-1)),s=Nc,r=i+1;break;case jp:s=Gp;break;default:s=$v;break}break;case $v:switch(e.charAt(i)){case jp:s=Gp;break;default:}break;default:}if(s===Hy?n.push(e.substring(r,a-1)):n.push(e.substring(r)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},Ov=class extends qt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new Ov(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),mr(n,t)}},Dv=class extends qt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ut([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=wn([s,a,o,i],[1,4])}else this.cropBox=wn([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new Dv(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Xo.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return B(()=>{let t=Tn(me(e,"float32"),0),n;n=Ge.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return j(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},zv=class{},Pv=class extends qt{split(e){return new Rre(this,e)}},Rre=class extends Pv{constructor(e,t){super();this.upstream=e,this.impl=new Fre(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Fre=class extends Uy{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},$re=class extends qt{decodeUTF8(){return new Mre(this)}},Mre=class extends Pv{constructor(e){super();this.upstream=e,this.impl=new Ore(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Ore=class extends Uy{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=z8();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},Lv=class extends $re{constructor(e,t={}){super();this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function zre(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=Dre(e));let a=await v.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new Lv(s,t)}else throw new Error(a.statusText)}var Dre=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function Wv(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var vv=class extends zv{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Wv(this.input)&&J().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new Lv(this.input,this.options)}},kv=class extends zv{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Wv(this.url)?new vv(this.url,this.fileOptions).iterator():zre(this.url,this.fileOptions)}};function tre(e,t={}){return new bv(new kv(e),t)}function nre(e){let t=Vy(e);return Pn(async()=>t)}function rre(e){return Pn(async()=>{let t=await e();return Vy(()=>t.next())})}async function are(e,t){return Dv.create(e,t)}async function sre(e){return Ov.create(e)}var ire="3.2.0",Pre={tfjs:P8,"tfjs-core":L8,"tfjs-data":W8,"tfjs-layers":B8,"tfjs-converter":V8,"tfjs-backend-cpu":Bx,"tfjs-backend-webgl":l_,"tfjs-backend-wasm":Jb};var Ln={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Bv(){if(!cf(Ln.name)){Se("backend registration:",Ln.name);try{Ln.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ln.width,Ln.height):document.createElement("canvas")}catch(e){Se("error: cannot create canvas:",e);return}try{Ln.gl=Ln.canvas.getContext("webgl2",Ln.webGLattr)}catch(e){Se("error: cannot get WebGL2 context:",e);return}try{Hd(2,Ln.gl)}catch(e){Se("error: cannot set WebGL2 context:",e);return}try{let e=new Xd(Ln.gl);Zo(Ln.name,()=>new bl(e),Ln.priority)}catch(e){Se("error: cannot register WebGL backend:",e);return}try{Vo("webgl").forEach(t=>{let n={...t,backendName:Ln.name};qs(n)})}catch(e){Se("error: cannot update WebGL backend registration:",e);return}try{Ya.set("WEBGL_VERSION",2)}catch(e){Se("error: cannot set WebGL backend flags:",e);return}Se("backend registered:",Ln.name)}}var Vv=6;function Lre(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r<t.strides.length;r++){let a=t.strides[r],s=Math.floor((e+a-1)/a),i=Math.floor((e+a-1)/a),o=t.anchors[r];for(let l=0;l<s;l++){let u=a*(l+.5);for(let c=0;c<i;c++){let h=a*(c+.5);for(let d=0;d<o;d++)n.push([h,u])}}}return n}var Wre=e=>({startEndTensor:e,startPoint:Ce(e,[0,0],[-1,2]),endPoint:Ce(e,[0,2],[-1,2])});function Bre(e,t,n){let r=Ce(e,[0,1],[-1,2]),a=se(r,t),s=Ce(e,[0,3],[-1,2]),i=ge(s,n),o=ge(a,n),l=ge(i,2),u=Ae(o,l),c=se(o,l),h=P(u,n),d=P(c,n);return el([h,d],1)}var Uv=class{constructor(t,n){this.blazeFaceModel=t,this.width=n.face.detector.inputSize,this.height=n.face.detector.inputSize,this.anchorsData=Lre(n.face.detector.inputSize),this.anchors=wn(this.anchorsData),this.inputSize=Ut([this.width,this.height]),this.config=n,this.scaleFaces=.8}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=B(()=>{let h=t.resizeBilinear([this.width,this.height]),d=Ae(h.div(127.5),1),p=this.blazeFaceModel.predict(d),m;if(Array.isArray(p)){let g=p.sort((x,N)=>x.size-N.size),b=rt([g[0],g[2]],2),_=rt([g[1],g[3]],2);m=rt([_,b],1).squeeze(0)}else m=p.squeeze();let f=Bre(m,this.anchors,this.inputSize),A=Ce(m,[0,0],[-1,1]),y=Sn(A).squeeze();return[m,f,y]}),s=await Ge.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>Ce(r,[h,0],[1,-1])).map(h=>{let d=h.arraySync();return h.dispose(),d}),u=a.dataSync(),c=[];for(let h=0;h<l.length;h++){let d=i[h],p=u[d];if(p>this.config.face.detector.minConfidence){let m=Wre(l[h]),f=this.anchorsData[d],A=B(()=>Ce(n,[d,Vv-1],[1,-1]).squeeze().reshape([Vv,-1]));c.push({box:m,landmarks:A,anchor:f,confidence:p})}}return n.dispose(),r.dispose(),a.dispose(),n.dispose(),{boxes:c,scaleFactor:[t.shape[2]/this.width,t.shape[1]/this.height]}}};async function Hv(e){let t=await Nt(e.face.detector.modelPath,{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new Uv(t,e);return e.debug&&Se(`load model: ${e.face.detector.modelPath.match(/\/(.*)\./)[1]}`),n}function jv(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function Sc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Tc(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function jy(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Ge.cropAndResize(t,s,[0],n)}function qp(e,t=1.6){let n=Tc(e),r=Sc(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function Xp(e){let t=Tc(e),n=Sc(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}var Kp=[[1,0,0],[0,1,0],[0,0,1]];function Vre(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Gv(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Vre(n)}function qv(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function Ua(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function Ure(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function Xv(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(Ua(e[a],Ure(t,s)))}return n}function Gy(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=qv(t[0],t[1]),i=Xv(s,a),o=qv(-t[0],-t[1]);return Xv(i,o)}function Kv(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-Ua(t[0],n),-Ua(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function Zv(e,t){return[Ua(e,t[0]),Ua(e,t[1])]}var Ur={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},qy=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Xy=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],vi=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Hre=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],jre=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Gre=[33,133,362,263,1,78,308],Sce=Hre.map(e=>Xy[e]),Tce=jre.map(e=>Xy[e]),Ece=Gre.map(e=>Xy[e]);var qre=468,Xre=13,Kre=[Xre,Ur.midwayBetweenEyes[0]],Zre=3,Yre=2,Jre=[Zre,Yre],Ky=Ur.leftEyeLower0,Zy=[Ky[0],Ky[Ky.length-1]],Yy=Ur.rightEyeLower0,Jy=[Yy[0],Yy[Yy.length-1]],Qre=3,eae=4,tae=71,Qy=76;function Zp(e,t,n,r){for(let a=0;a<qy.length;a++){let{key:s,indices:i}=qy[a],o=Ur[`${n}${s}`];if(!r||r.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var e2=class{constructor(t,n,r,a){this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=r,this.meshWidth=a.face.mesh.inputSize,this.meshHeight=a.face.mesh.inputSize,this.irisSize=a.face.iris.inputSize,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,r,a){let s=Sc({startPoint:n.startPoint,endPoint:n.endPoint}),i=[s[0]/this.meshWidth,s[1]/this.meshHeight],o=t.map(d=>[i[0]*(d[0]-this.meshWidth/2),i[1]*(d[1]-this.meshHeight/2),d[2]]),l=r!==0?Gy(r,[0,0]):Kp,u=r!==0?o.map(d=>[...Zv(d,l),d[2]]):o,c=r!==0?Kv(a):Kp,h=[...Tc({startPoint:n.startPoint,endPoint:n.endPoint}),1];return u.map(d=>[d[0]+Ua(h,c[0]),d[1]+Ua(h,c[1]),d[2]])}getLeftToRightEyeDepthDifference(t){let n=t[Zy[0]][2],r=t[Jy[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=Xp(qp(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=Sc(i),l=Ge.cropAndResize(n,[[i.startPoint[1]/this.meshHeight,i.startPoint[0]/this.meshWidth,i.endPoint[1]/this.meshHeight,i.endPoint[0]/this.meshWidth]],[0],[this.irisSize,this.irisSize]);return s&&(l=Ge.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i<Qy;i++){let o=t[i*3],l=t[i*3+1],u=t[i*3+2];s.push([(a?1-o/this.irisSize:o/this.irisSize)*r[0]+n.startPoint[0],l/this.irisSize*r[1]+n.startPoint[1],u])}return{rawCoords:s,iris:s.slice(tae)}}getAdjustedIrisCoords(t,n,r){let a=t[Ur[`${r}EyeUpper0`][Qre]][2],s=t[Ur[`${r}EyeLower0`][eae]][2],i=(a+s)/2;return n.map((o,l)=>{let u=i;return l===2?u=a:l===4&&(u=s),[o[0],o[1],u]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.boxes&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(n.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let o=jv({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},a.scaleFactor),l=qp(o),u=Xp(l),c=this.storedBoxes[i].landmarks.arraySync(),h=this.storedBoxes[i].confidence;this.storedBoxes[i]={...u,confidence:h,landmarks:c}}}a&&a.boxes&&a.boxes.forEach(i=>{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=B(()=>this.storedBoxes.map((i,o)=>{let l,u=0,c;if(n.face.detector.rotation){let[w,x]=i.landmarks.length>=qre?Kre:Jre;u=Gv(i.landmarks[w],i.landmarks[x]);let N=Tc({startPoint:i.startPoint,endPoint:i.endPoint}),T=[N[0]/t.shape[2],N[1]/t.shape[1]],E=Ge.rotateWithOffset(t,u,0,T);c=Gy(-u,N),l=jy({startPoint:i.startPoint,endPoint:i.endPoint},E,[this.meshHeight,this.meshWidth]).div(255)}else{c=Kp;let w=t.clone();l=jy({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.meshHeight,this.meshWidth]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,confidence:i.confidence,image:l};let[,h,d]=this.meshDetector.predict(l),p=h.dataSync()[0];if(p<n.face.detector.minConfidence)return null;let f=j(d,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:w,boxSize:x,crop:N}=this.getEyeBox(f,l,Zy[0],Zy[1],!0),{box:T,boxSize:E,crop:M}=this.getEyeBox(f,l,Jy[0],Jy[1]),L=this.irisModel.predict(rt([N,M])).dataSync(),W=L.slice(0,Qy*3),{rawCoords:U,iris:H}=this.getEyeCoords(W,w,x,!0),X=L.slice(Qy*3),{rawCoords:G,iris:ee}=this.getEyeCoords(X,T,E),Y=this.getLeftToRightEyeDepthDifference(f);Math.abs(Y)<30?(Zp(f,U,"left",null),Zp(f,G,"right",null)):Y<1?Zp(f,U,"left",["EyeUpper0","EyeLower0"]):Zp(f,G,"right",["EyeUpper0","EyeLower0"]);let ae=this.getAdjustedIrisCoords(f,H,"left"),te=this.getAdjustedIrisCoords(f,ee,"right");f=f.concat(ae).concat(te)}let A=this.transformRawCoords(f,i,u,c),y=qp(this.calculateLandmarksBoundingBox(A)),g=Xp(y),_={coords:wn(A),box:y,faceConfidence:p,boxConfidence:i.confidence,image:l,rawCoords:f};return n.face.mesh.returnRawData||delete _.rawCoords,this.storedBoxes[o]={...g,landmarks:A,confidence:i.confidence,faceConfidence:p},_}));return s=s.filter(i=>i!==null),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};var r4=th(Jv());var r2={};Un(r2,{FaceBoxes:()=>a2,load:()=>rae});var n2={};function hr(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(o=>o.kernelTimeMs>0).reduce((o,l)=>o+=l.kernelTimeMs,0),a=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.kernelTimeMs>0).sort((o,l)=>l.kernelTimeMs-o.kernelTimeMs),s=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.totalBytesSnapshot>0).sort((o,l)=>l.totalBytesSnapshot-o.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n);let i={newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s};n2[e]=i,Se("Human profiler",e,i)}var a2=class{constructor(t,n){this.enlarge=1.1,this.model=t,this.config=n}async estimateFaces(t,n){n&&(this.config=n);let r=[],a=Ge.resizeBilinear(t,[this.config.face.detector.inputSize,this.config.face.detector.inputSize]),s=a.toInt(),i,o;if(n.profile){let l=await jn(()=>this.model.executeAsync(s));i=l.result[0].dataSync(),o=l.result[1].squeeze().arraySync(),l.result.forEach(c=>c.dispose()),hr("faceboxes",l)}else{let[l,u,c]=await this.model.executeAsync(s);i=l.dataSync();let h=u.squeeze();o=h.arraySync(),l.dispose(),u.dispose(),h.dispose(),c.dispose()}s.dispose(),a.dispose();for(let l in o)if(i[l]&&i[l]>this.config.face.detector.minConfidence){let u=[o[l][0]/this.enlarge,o[l][1]/this.enlarge,o[l][2]*this.enlarge,o[l][3]*this.enlarge],c=[u[1],u[0],u[3]-u[1],u[2]-u[0]],h=[parseInt((c[0]*t.shape[2]).toString()),parseInt((c[1]*t.shape[1]).toString()),parseInt((c[2]*t.shape[2]).toString()),parseInt((c[3]*t.shape[1]).toString())],d=Ge.cropAndResize(t,[u],[0],[this.config.face.detector.inputSize,this.config.face.detector.inputSize]),p=d.div([255]);d.dispose(),r.push({confidence:i[l],box:h,boxRaw:this.config.face.mesh.returnRawData?c:null,image:p})}return r}};async function rae(e){let t=await Nt(e.face.detector.modelPath);e.debug&&Se(`load model: ${e.face.detector.modelPath.match(/\/(.*)\./)[1]}`);let n=new a2(t,e);return e.face.mesh.enabled&&e.debug&&Se(`load model: ${e.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),e.face.iris.enabled&&e.debug&&Se(`load model: ${e.face.iris.modelPath.match(/\/(.*)\./)[1]}`),n}var s2={};Un(s2,{load:()=>i2,predict:()=>o2});var Dl,Yp={age:0},Jp=Number.MAX_SAFE_INTEGER;async function i2(e){return Dl||(Dl=await Nt(e.face.age.modelPath),e.debug&&Se(`load model: ${e.face.age.modelPath.match(/\/(.*)\./)[1]}`)),Dl}async function o2(e,t){return Dl?Jp<t.face.age.skipFrames&&t.videoOptimized&&Yp.age&&Yp.age>0?(Jp++,Yp):(t.videoOptimized?Jp=0:Jp=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Ge.resizeBilinear(e,[t.face.age.inputSize,t.face.age.inputSize],!1),a=P(r,[255]);Ee(r);let s,i={age:0};if(!t.profile)t.face.age.enabled&&(s=await Dl.predict(a));else{let o=t.face.age.enabled?await jn(()=>Dl.predict(a)):{};s=o.result.clone(),o.result.dispose(),hr("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),Yp=i,n(i)})):null}var l2={};Un(l2,{load:()=>d2,predict:()=>p2});var Ii,u2={gender:""},Qp=Number.MAX_SAFE_INTEGER,c2=!1,h2=[.2989,.587,.114];async function d2(e){return Ii||(Ii=await Nt(e.face.gender.modelPath),c2=Ii.inputs[0].shape[3]===1,e.debug&&Se(`load model: ${e.face.gender.modelPath.match(/\/(.*)\./)[1]}`)),Ii}async function p2(e,t){return Ii?Qp<t.face.gender.skipFrames&&t.videoOptimized&&u2.gender!==""?(Qp++,u2):(t.videoOptimized?Qp=0:Qp=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Ge.resizeBilinear(e,[t.face.gender.inputSize,t.face.gender.inputSize],!1),a;c2?a=B(()=>{let[o,l,u]=Jt(r,3,3),c=P(o,h2[0]),h=P(l,h2[1]),d=P(u,h2[2]);return Yo([c,h,d]).sub(.5).mul(2)}):a=P(r,[255]),Ee(r);let s,i={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(s=await Ii.predict(a));else{let o=t.face.gender.enabled?await jn(()=>Ii.predict(a)):{};s=o.result.clone(),o.result.dispose(),hr("gender",o)}if(a.dispose(),s){let o=s.dataSync();if(c2){let l=Math.trunc(100*Math.abs(o[0]-o[1]))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=l)}else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}}s.dispose(),u2=i,n(i)})):null}var f2={};Un(f2,{load:()=>y2,predict:()=>g2});var aae=["angry","disgust","fear","happy","sad","surprise","neutral"],zl,m2=[],e0=Number.MAX_SAFE_INTEGER,A2=[.2989,.587,.114],Qv=1;async function y2(e){return zl||(zl=await Nt(e.face.emotion.modelPath),e.debug&&Se(`load model: ${e.face.emotion.modelPath.match(/\/(.*)\./)[1]}`)),zl}async function g2(e,t){return zl?e0<t.face.emotion.skipFrames&&t.videoOptimized&&m2.length>0?(e0++,m2):(t.videoOptimized?e0=0:e0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Ge.resizeBilinear(e,[t.face.emotion.inputSize,t.face.emotion.inputSize],!1),[a,s,i]=Jt(r,3,3);r.dispose();let o=P(a,A2[0]),l=P(s,A2[1]),u=P(i,A2[2]);a.dispose(),s.dispose(),i.dispose();let c=Yo([o,l,u]);o.dispose(),l.dispose(),u.dispose();let h=B(()=>c.sub(.5).mul(2));c.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let m=await jn(()=>zl.predict(h));p=m.result.dataSync(),m.result.dispose(),hr("emotion",m)}else{let m=await zl.predict(h);p=m.dataSync(),Ee(m)}for(let m=0;m<p.length;m++)Qv*p[m]>t.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*Qv*p[m])/100),emotion:aae[m]});d.sort((m,f)=>f.score-m.score)}h.dispose(),m2=d,n(d)})):null}var Pl;async function x2(e){return Pl||(Pl=await Nt(e.face.embedding.modelPath),e.debug&&Se(`load model: ${e.face.embedding.modelPath.match(/\/(.*)\./)[1]}`)),Pl}function e6(e,t){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let n=2,r=10*e.map((a,s)=>a-t[s]).reduce((a,s)=>a+s**n,0)**(1/n);return Math.trunc(1e3*(1-r))/1e3}async function w2(e,t){return Pl?new Promise(async n=>{let r=Ge.resizeBilinear(e,[t.face.embedding.inputSize,t.face.embedding.inputSize],!1),a=[];if(t.face.embedding.enabled)if(t.profile){let s=await jn(()=>Pl.predict({img_inputs:r}));a=[...s.result.dataSync()],s.result.dispose(),hr("emotion",s)}else{let s=await Pl.predict({img_inputs:r});a=[...s.dataSync()],Ee(s)}r.dispose(),n(a)}):null}var F2={};Un(F2,{PoseNet:()=>M2,load:()=>$2});var sae=[-123.15,-115.9,-103.06];function iae(e){let[t,n,r,a]=e;return{offsets:t,heatmap:n,displacementFwd:r,displacementBwd:a}}function oae(e){let[t,n,r,a]=e;return{offsets:r,heatmap:a,displacementFwd:t,displacementBwd:n}}var _2=class{constructor(t){this.model=t}predict(t,n){return B(()=>{let a=(n.body.modelType==="posenet-resnet"?t.toFloat().add(sae):t.toFloat().div(127.5).sub(1)).expandDims(0),i=this.model.predict(a).map(l=>l.squeeze([0])),o=n.body.modelType==="posenet-resnet"?oae(i):iae(i);return{heatmapScores:o.heatmap.sigmoid(),offsets:o.offsets,displacementFwd:o.displacementFwd,displacementBwd:o.displacementBwd}})}dispose(){this.model.dispose()}};function b2(e){return Math.floor(e/2)}var v2=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(b2(t),t);)this.exchange(t,b2(t)),t=b2(t)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let r=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=r}};function lae(e,t,n,r,a,s){let[i,o]=s.shape,l=!0,u=Math.max(n-a,0),c=Math.min(n+a+1,i);for(let h=u;h<c;++h){let d=Math.max(r-a,0),p=Math.min(r+a+1,o);for(let m=d;m<p;++m)if(s.get(h,m,e)>t){l=!1;break}if(!l)break}return l}function t6(e,t,n){let[r,a,s]=n.shape,i=new v2(r*a*s,({score:o})=>o);for(let o=0;o<r;++o)for(let l=0;l<a;++l)for(let u=0;u<s;++u){let c=n.get(o,l,u);c<e||lae(u,c,o,l,t,n)&&i.enqueue({score:c,part:{heatmapY:o,heatmapX:l,id:u}})}return i}var la=th(t0());var n6=th(t0());function N2(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+n6.NUM_KEYPOINTS)}}function n0(e,t,n){let{heatmapY:r,heatmapX:a,id:s}=e,{y:i,x:o}=N2(r,a,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function S2(e,t,n){return e<t?t:e>n?n:e}function r6(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function T2(e,t){return{x:e.x+t.x,y:e.y+t.y}}var r0=th(t0());function a6(e,t){let n=t.shape[0],r=new Float32Array(n);for(let a=0;a<n;a++){let s=t.get(a,0),i=t.get(a,1);r[a]=e.get(s,i,a)}return r}function mae(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+r0.NUM_KEYPOINTS)}}function Aae(e,t){let n=[];for(let r=0;r<r0.NUM_KEYPOINTS;r++){let a=e.get(r,0).valueOf(),s=e.get(r,1).valueOf(),{x:i,y:o}=mae(a,s,r,t);n.push(o),n.push(i)}return wn(n,[r0.NUM_KEYPOINTS,2])}function s6(e,t,n){return B(()=>e.toTensor().mul(be(t,"int32")).toFloat().add(Aae(e,n)))}function yae(e,t){return B(()=>{let n=e.div(be(t,"int32"));return e.sub(n.mul(be(t,"int32")))})}function i6(e){let[t,n,r]=e.shape;return B(()=>{let s=e.reshape([t*n,r]).argMax(0),i=s.div(be(n,"int32")).expandDims(1),o=yae(s,n).expandDims(1);return rt([i,o],1)})}var o6=la.poseChain.map(([e,t])=>[la.partIds[e],la.partIds[t]]),E2=o6.map(([,e])=>e),l6=o6.map(([e])=>e),gae=16;function xae(e,t,n){let r=n.shape[2]/2;return{y:n.get(t.y,t.x,e),x:n.get(t.y,t.x,r+e)}}function C2(e,t,n,r){return{y:S2(Math.round(e.y/t),0,n-1),x:S2(Math.round(e.x/t),0,r-1)}}function u6(e,t,n,r,a,s,i,o=2){let[l,u]=r.shape,c=C2(t.position,s,l,u),h=xae(e,c,i),p=T2(t.position,h);for(let A=0;A<o;A++){let y=C2(p,s,l,u),g=N2(y.y,y.x,n,a);p=T2({x:y.x*s,y:y.y*s},{x:g.x,y:g.y})}let m=C2(p,s,l,u),f=r.get(m.y,m.x,n);return{position:p,part:la.partNames[n],score:f}}function c6(e,t,n,r,a,s){let i=t.shape[2],o=E2.length,l=new Array(i),{part:u,score:c}=e,h=n0(u,r,n);l[u.id]={score:c,part:la.partNames[u.id],position:h};for(let d=o-1;d>=0;--d){let p=E2[d],m=l6[d];l[p]&&!l[m]&&(l[m]=u6(d,l[p],m,t,n,r,s))}for(let d=0;d<o;++d){let p=l6[d],m=E2[d];l[p]&&!l[m]&&(l[m]=u6(d,l[p],m,t,n,r,a))}return l}async function h6(e,t,n){let r=0,a=i6(e),s=await Promise.all([e.buffer(),t.buffer(),a.buffer()]),i=s[0],o=s[1],l=s[2],u=s6(l,gae,o),c=await u.buffer(),d=Array.from(a6(i,l)).map((m,f)=>(r+=m,{position:{y:c.get(f,0),x:c.get(f,1)},part:la.partNames[f],score:m})),p=d.filter(m=>m.score>n.body.scoreThreshold);return a.dispose(),u.dispose(),{keypoints:p,score:r/d.length}}var wae=1,d6=16;function p6(e,t,{x:n,y:r},a){return e.some(({keypoints:s})=>{let i=s[a].position;return r6(r,n,i.y,i.x)<=t})}function _ae(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(p6(e,t,s,o)||(a+=i),a),0)/n.length}function f6(e,t,n,r,a){let s=[],i=t6(a.body.scoreThreshold,wae,e),o=a.body.nmsRadius^2;for(;s.length<a.body.maxDetections&&!i.empty();){let l=i.dequeue(),u=n0(l.part,d6,t);if(p6(s,o,u,l.part.id))continue;let c=c6(l,e,t,d6,n,r),h=_ae(s,o,c);h>a.body.scoreThreshold&&s.push({keypoints:c,score:h})}return s}async function m6(e){return Promise.all(e.map(t=>t.buffer()))}function bae(e,t,n){return{score:e.score,keypoints:e.keypoints.map(({score:r,part:a,position:s})=>({score:r,part:a,position:{x:Math.trunc(s.x*n),y:Math.trunc(s.y*t)}}))}}function A6(e,[t,n]){let r=e.squeeze(0),a=r.resizeBilinear([t,n]);return r.dispose(),a}function R2(e,[t,n],[r,a]){return e.map(i=>bae(i,t/r,n/a))}async function vae(e,t,n){return new Promise(async r=>{let a=e.shape[1],s=e.shape[2],i=await m6([t.heatmapScores,t.offsets,t.displacementFwd,t.displacementBwd]),o=i[0],l=i[1],u=i[2],c=i[3],h=await f6(o,l,u,c,n),d=R2(h,[a,s],[n.body.inputSize,n.body.inputSize]);r(d)})}async function kae(e,t,n){return new Promise(async r=>{let a=e.shape[1],s=e.shape[2],o=[await h6(t.heatmapScores,t.offsets,n)],l=R2(o,[a,s],[n.body.inputSize,n.body.inputSize]);r(l)})}var M2=class{constructor(t){this.baseModel=t}async estimatePoses(t,n){let r=A6(t,[n.body.inputSize,n.body.inputSize]),a=this.baseModel.predict(r,n),s=n.body.maxDetections<2?await kae(t,a,n):await vae(t,a,n);return a.heatmapScores.dispose(),a.offsets.dispose(),a.displacementFwd.dispose(),a.displacementBwd.dispose(),r.dispose(),s}dispose(){this.baseModel.dispose()}};async function $2(e){let t=await Nt(e.body.modelPath),n=new _2(t);return e.debug&&Se(`load model: ${e.body.modelPath.match(/\/(.*)\./)[1]}`),new M2(n)}var L2={};Un(L2,{HandPose:()=>B2,load:()=>V2});function a0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Ec(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function y6(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Ge.cropAndResize(t,s,[0],n)}function g6(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function s0(e,t=1.5){let n=Ec(e),r=a0(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function i0(e){let t=Ec(e),n=a0(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var O2=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=wn(this.anchors),this.inputSizeTensor=Ut([n,n]),this.doubleInputSizeTensor=Ut([n*2,n*2])}normalizeBoxes(t){return B(()=>{let n=Ce(t,[0,0],[-1,2]),r=Ce(t,[0,2],[-1,2]),a=se(ge(n,this.inputSizeTensor),this.anchorsTensor),s=ge(r,this.doubleInputSizeTensor),i=P(Ae(a,s),this.inputSizeTensor),o=P(se(a,s),this.inputSizeTensor);return el([i,o],1)})}normalizeLandmarks(t,n){return B(()=>{let r=se(ge(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return P(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=B(()=>Sn(Ce(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Ce(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let u=await Ge.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),c=u.arraySync();s.dispose(),u.dispose();let h=[];for(let d of c)if(i[d]>=n.hand.minConfidence){let p=Ce(l,[d,0],[1,-1]),m=Ce(a,[d,5],[1,14]),f=B(()=>this.normalizeLandmarks(m,d).reshape([-1,2]));m.dispose(),h.push({box:p,palmLandmarks:f,confidence:i[d]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=B(()=>t.resizeBilinear([n.hand.inputSize,n.hand.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let u=l.box.dataSync(),c=u.slice(0,2),h=u.slice(2,4),d=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(g6({startPoint:c,endPoint:h,palmLandmarks:d,confidence:l.confidence},[a/n.hand.inputSize,r/n.hand.inputSize]))}return o}};function Iae(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function x6(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Iae(n)}var w6=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Ha(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function Nae(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function _6(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(Ha(e[a],Nae(t,s)))}return n}function D2(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=w6(t[0],t[1]),i=_6(s,a),o=w6(-t[0],-t[1]);return _6(i,o)}function b6(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-Ha(t[0],n),-Ha(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function z2(e,t){return[Ha(e,t[0]),Ha(e,t[1])]}var Sae=5,v6=1.65,k6=[0,5,9,13,17,1,2],Tae=0,Eae=2,P2=class{constructor(t,n,r){this.handDetector=t,this.landmarkDetector=n,this.inputSize=r,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}getBoxForPalmLandmarks(t,n){let r=t.map(s=>z2([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return s0(i0(a),Sae)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=s0(i0(n),v6);r.palmLandmarks=[];for(let a=0;a<k6.length;a++)r.palmLandmarks.push(t[k6[a]].slice(0,2));return r}transformRawCoords(t,n,r,a){let s=a0(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(p=>[i[0]*(p[0]-this.inputSize/2),i[1]*(p[1]-this.inputSize/2),i[2]*p[2]]),l=D2(r,[0,0]),u=o.map(p=>[...z2(p,l),p[2]]),c=b6(a),h=[...Ec(n),1],d=[Ha(h,c[0]),Ha(h,c[1])];return u.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];n.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let l=n.hand.rotation?x6(o.palmLandmarks[Tae],o.palmLandmarks[Eae]):0,u=Ec(o),c=[u[0]/t.shape[2],u[1]/t.shape[1]],h=n.hand.rotation?Ge.rotateWithOffset(t,l,0,c):t.clone(),d=D2(-l,u),p=r?this.getBoxForPalmLandmarks(o.palmLandmarks,d):o,m=y6(p,h,[this.inputSize,this.inputSize]),f=m.div(255);m.dispose(),h.dispose();let[A,y]=await this.landmarkDetector.predict(f);f.dispose();let g=A.dataSync()[0];if(A.dispose(),g>=n.hand.minConfidence){let b=j(y,[-1,3]),_=b.arraySync();y.dispose(),b.dispose();let w=this.transformRawCoords(_,p,l,d),x=this.getBoxForHandLandmarks(w);this.storedBoxes[i]=x;let N={landmarks:w,confidence:g,box:{topLeft:x.startPoint,bottomRight:x.endPoint}};s.push(N)}else this.storedBoxes[i]=null;y.dispose()}else{let l=s0(i0(o),v6),u={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(u)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};var I6=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var W2={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},B2=class{constructor(t){this.handPipeline=t}static getAnnotations(){return W2}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let l of Object.keys(W2))i[l]=W2[l].map(u=>s.landmarks[u]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-s.box.topLeft[0],Math.min(t.shape[1],s.box.bottomRight[1])-s.box.topLeft[1]]:0;a.push({confidence:s.confidence,box:o,landmarks:s.landmarks,annotations:i})}return a}};async function V2(e){let[t,n]=await Promise.all([e.hand.enabled?Nt(e.hand.detector.modelPath,{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Nt(e.hand.skeleton.modelPath,{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),r=new O2(t,e.hand.inputSize,I6),a=new P2(r,n,e.hand.inputSize),s=new B2(a);return e.hand.enabled&&e.debug&&Se(`load model: ${e.hand.detector.modelPath.match(/\/(.*)\./)[1]}`),e.hand.landmarks&&e.debug&&Se(`load model: ${e.hand.skeleton.modelPath.match(/\/(.*)\./)[1]}`),s}var U2={};Un(U2,{load:()=>H2,predict:()=>j2});var N6=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],S6=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var dr;async function H2(e){return dr||(dr=await Nt(e.body.modelPath),dr.width=parseInt(dr.signature.inputs["input_1:0"].tensorShape.dim[2].size),dr.height=parseInt(dr.signature.inputs["input_1:0"].tensorShape.dim[1].size),e.debug&&Se(`load model: ${e.body.modelPath.match(/\/(.*)\./)[1]}`)),dr}async function j2(e,t){if(!dr||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},r=Ge.resizeBilinear(e,[dr.width||t.body.inputSize,dr.height||t.body.inputSize],!1),a=ge(r,[255]);r.dispose();let s;if(t.profile){let u=await jn(()=>dr.predict(a));s=u.result.find(c=>c.size===195||c.size===155).dataSync(),u.result.forEach(c=>c.dispose()),hr("blazepose",u)}else{let u=await dr.predict(a);s=u.find(c=>c.size===195||c.size===155).dataSync(),u.forEach(c=>c.dispose())}a.dispose();let i=[],o=s.length===195?N6:S6,l=5;for(let u=0;u<s.length/l;u++)i.push({id:u,part:o[u],position:{x:Math.trunc(n.width*s[l*u+0]/255),y:Math.trunc(n.height*s[l*u+1]/255),z:Math.trunc(s[l*u+2])+0},score:(100-Math.trunc(100/(1+Math.exp(s[l*u+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(s[l*u+4]))))/100});return[{keypoints:i}]}var T6=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=e[n].keypoints.find(l=>l.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.y<s.position.y&&a.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&r&&r.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&a&&a.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},E6=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let r=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing camera"}):t.push({face:n,gesture:`facing ${r<0?"right":"left"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},C6=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let r=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],a=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(r*a),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o);Math.abs(s-l)/Math.max(s,l)<.25&&t.push({iris:n,gesture:"looking at camera"})}return t},R6=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=[];for(let[a,s]of Object.entries(e[n].annotations))a!=="palmBase"&&r.push({name:a.toLowerCase(),position:s[0]});if(r&&r.length>0){let a=r.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=r.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${a.name} forward ${s.name} up`})}}return t};function Cae(e,t,n){let r=function(o,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(c,(h,d)=>(u[d]=0,h))},a=function(o,l){let u=e.createShader(l);if(e.shaderSource(u,o),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function F6(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,u=null,c=null,h={},d=e.canvas||document.createElement("canvas"),p={},m={INTERMEDIATE:1},f=d.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(w){let x=Array.prototype.slice.call(arguments,1),N=h[w];i.push({func:N,args:x})},this.reset=function(){i=[]};let A=function(w,x){if(!(w===o&&x===l)){if(d.width=w,o=w,d.height=x,l=x,!u){let N=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,u),f.bufferData(f.ARRAY_BUFFER,N,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},y=function(w,x){let N=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,N);let T=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,T);let E=f.createTexture();return f.bindTexture(f.TEXTURE_2D,E),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,w,x,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,E,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:N,texture:E}},g=function(w){return s[w]=s[w]||y(o,l),s[w]},b=function(w=null){var E,M;let x=null,N=null,T=!1;t===0?x=n:x=(E=g(a))==null?void 0:E.texture,t++,r&&!(w&m.INTERMEDIATE)?(N=null,T=t%2==0):(a=(a+1)%2,N=(M=g(a))==null?void 0:M.fbo),f.bindTexture(f.TEXTURE_2D,x),f.bindFramebuffer(f.FRAMEBUFFER,N),f.uniform1f(c.uniform.flipY,T?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(w){if(A(w.width,w.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,w),i.length===0)return b(),d;for(let x=0;x<i.length;x++){r=x===i.length-1;let N=i[x];N.func.apply(this,N.args||[])}return d};let _=function(w){if(p[w])return c=p[w],f.useProgram(c.id),c;let x={};x.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),x.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),c=new Cae(f,x.VERTEX_IDENTITY,w);let N=Float32Array.BYTES_PER_ELEMENT,T=4*N;return f.enableVertexAttribArray(c.attribute.pos),f.vertexAttribPointer(c.attribute.pos,2,f.FLOAT,!1,T,0*N),f.enableVertexAttribArray(c.attribute.uv),f.vertexAttribPointer(c.attribute.uv,2,f.FLOAT,!1,T,2*N),p[w]=c,c};h.colorMatrix=function(w){let x=new Float32Array(w);x[4]/=255,x[9]/=255,x[14]/=255,x[19]/=255;let N=x[18]===1&&x[3]===0&&x[8]===0&&x[13]===0&&x[15]===0&&x[16]===0&&x[17]===0&&x[19]===0?h.colorMatrix.SHADER.WITHOUT_ALPHA:h.colorMatrix.SHADER.WITH_ALPHA,T=_(N);f.uniform1fv(T.uniform.m,x),b()},h.colorMatrix.SHADER={},h.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),h.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),h.brightness=function(w){let x=(w||0)+1;h.colorMatrix([x,0,0,0,0,0,x,0,0,0,0,0,x,0,0,0,0,0,1,0])},h.saturation=function(w){let x=(w||0)*2/3+1,N=(x-1)*-.5;h.colorMatrix([x,N,N,0,0,N,x,N,0,0,N,N,x,0,0,0,0,0,1,0])},h.desaturate=function(){h.saturation(-1)},h.contrast=function(w){let x=(w||0)+1,N=-128*(x-1);h.colorMatrix([x,0,0,0,N,0,x,0,0,N,0,0,x,0,N,0,0,0,1,0])},h.negative=function(){h.contrast(-2)},h.hue=function(w){w=(w||0)/180*Math.PI;let x=Math.cos(w),N=Math.sin(w),T=.213,E=.715,M=.072;h.colorMatrix([T+x*(1-T)+N*-T,E+x*-E+N*-E,M+x*-M+N*(1-M),0,0,T+x*-T+N*.143,E+x*(1-E)+N*.14,M+x*-M+N*-.283,0,0,T+x*-T+N*-(1-T),E+x*-E+N*E,M+x*(1-M)+N*M,0,0,0,0,0,1,0])},h.desaturateLuminance=function(){h.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},h.sepia=function(){h.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},h.brownie=function(){h.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},h.vintagePinhole=function(){h.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},h.kodachrome=function(){h.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},h.technicolor=function(){h.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},h.polaroid=function(){h.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},h.shiftToBGR=function(){h.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},h.convolution=function(w){let x=new Float32Array(w),N=1/o,T=1/l,E=_(h.convolution.SHADER);f.uniform1fv(E.uniform.m,x),f.uniform2f(E.uniform.px,N,T),b()},h.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),h.detectEdges=function(){h.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},h.sobelX=function(){h.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},h.sobelY=function(){h.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},h.sharpen=function(w){let x=w||1;h.convolution.call(this,[0,-1*x,0,-1*x,1+4*x,-1*x,0,-1*x,0])},h.emboss=function(w){let x=w||1;h.convolution.call(this,[-2*x,-1*x,0,-1*x,1,1*x,0,1*x,2*x])},h.blur=function(w){let x=w/7/o,N=w/7/l,T=_(h.blur.SHADER);f.uniform2f(T.uniform.px,0,N),b(m.INTERMEDIATE),f.uniform2f(T.uniform.px,x,0),b()},h.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),h.pixelate=function(w){let x=w/o,N=w/l,T=_(h.pixelate.SHADER);f.uniform2f(T.uniform.size,x,N),b()},h.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var Tt=null,nn=null,Rt=null;function G2(e,t){let n;if(e instanceof Ze)n=nr(e);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,a=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,s=r,i=a;if(t.filter.width>0?s=t.filter.width:t.filter.height>0&&(s=r*(t.filter.height/a)),t.filter.height>0?i=t.filter.height:t.filter.width>0&&(i=a*(t.filter.width/r)),!s||!i)return Se("Human: invalid input",e),null;(!Tt||Tt.width!==s||Tt.height!==i)&&(Tt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas"),Tt.width!==s&&(Tt.width=s),Tt.height!==i&&(Tt.height=i));let o=Tt.getContext("2d");if(e instanceof ImageData?o.putImageData(e,0,0):o.drawImage(e,0,0,r,a,0,0,Tt.width,Tt.height),t.filter.enabled){if((!Rt||!nn||Tt.width!==nn.width||Tt.height!==nn.height)&&(nn=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Tt.width,Tt.height):document.createElement("canvas"),nn.width!==Tt.width&&(nn.width=Tt.width),nn.height!==Tt.height&&(nn.height=Tt.height),Rt=Ya.flags.IS_BROWSER?new F6({canvas:nn}):null),!Rt)return Tt;Rt.reset(),Rt.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Rt.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Rt.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Rt.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Rt.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Rt.addFilter("hue",t.filter.hue),t.filter.negative&&Rt.addFilter("negative"),t.filter.sepia&&Rt.addFilter("sepia"),t.filter.vintage&&Rt.addFilter("brownie"),t.filter.sepia&&Rt.addFilter("sepia"),t.filter.kodachrome&&Rt.addFilter("kodachrome"),t.filter.technicolor&&Rt.addFilter("technicolor"),t.filter.polaroid&&Rt.addFilter("polaroid"),t.filter.pixelate!==0&&Rt.addFilter("pixelate",t.filter.pixelate),Rt.apply(Tt)}else nn=Tt,Rt&&(Rt=null);let l;if(nn.data){let c=[nn.height,nn.width,3];l=qh(nn.data,c,"int32")}else if(t.backend==="webgl"||nn instanceof ImageData)l=Xo.fromPixels(nn);else{let c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(s,i):document.createElement("canvas");c.width=s,c.height=i;let h=c.getContext("2d");h==null||h.drawImage(nn,0,0);let d=h==null?void 0:h.getImageData(0,0,s,i);l=Xo.fromPixels(d)}let u=l.toFloat();n=u.expandDims(0),l.dispose(),u.dispose()}return{tensor:n,canvas:t.filter.return?nn:null}}var pt={backend:"webgl",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"../models/blazeface-back.json",inputSize:256,rotation:!0,maxFaces:10,skipFrames:11,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.1},mesh:{enabled:!0,modelPath:"../models/facemesh.json",inputSize:192,returnRawData:!1},iris:{enabled:!0,modelPath:"../models/iris.json",inputSize:64},age:{enabled:!0,modelPath:"../models/age-ssrnet-imdb.json",inputSize:64,skipFrames:31},gender:{enabled:!0,minConfidence:.1,modelPath:"../models/gender.json",inputSize:64,skipFrames:41},emotion:{enabled:!0,inputSize:64,minConfidence:.1,skipFrames:21,modelPath:"../models/emotion.json"},embedding:{enabled:!1,inputSize:112,modelPath:"../models/mobilefacenet.json"}},body:{enabled:!0,modelPath:"../models/posenet.json",inputSize:257,maxDetections:10,scoreThreshold:.3,nmsRadius:20,modelType:"posenet-mobilenet"},hand:{enabled:!0,rotation:!1,inputSize:256,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"../models/handdetect.json"},skeleton:{modelPath:"../models/handskeleton.json"}}};var o0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,l0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;var q2={};Un(q2,{author:()=>W6,browser:()=>P6,bugs:()=>B6,default:()=>Rae,dependencies:()=>G6,description:()=>$6,devDependencies:()=>X6,engines:()=>H6,homepage:()=>V6,keywords:()=>Z6,license:()=>U6,main:()=>D6,module:()=>z6,name:()=>M6,peerDependencies:()=>q6,repository:()=>j6,scripts:()=>K6,sideEffects:()=>O6,types:()=>L6,version:()=>X2});var M6="@vladmandic/human",X2="0.40.6",$6="Human: AI-powered 3D Face Detection, Face Embedding & Recognition, Body Pose Tracking, Hand & Finger Tracking, Iris Analysis, Age & Gender & Emotion Prediction & Gesture Recognition",O6=!1,D6="dist/human.node.js",z6="dist/human.esm.js",P6="dist/human.esm.js",L6="types/human.d.ts",W6="Vladimir Mandic <mandic00@live.com>",B6={url:"https://github.com/vladmandic/human/issues"},V6="https://github.com/vladmandic/human#readme",U6="MIT",H6={node:">=12.0.0"},j6={type:"git",url:"git+https://github.com/vladmandic/human.git"},G6={},q6={},X6={"@tensorflow/tfjs":"^3.2.0","@tensorflow/tfjs-backend-cpu":"^3.2.0","@tensorflow/tfjs-backend-wasm":"^3.2.0","@tensorflow/tfjs-backend-webgl":"^3.2.0","@tensorflow/tfjs-converter":"^3.2.0","@tensorflow/tfjs-core":"^3.2.0","@tensorflow/tfjs-data":"^3.2.0","@tensorflow/tfjs-layers":"^3.2.0","@tensorflow/tfjs-node":"^3.2.0","@tensorflow/tfjs-node-gpu":"^3.2.0","@types/node":"^14.14.31","@typescript-eslint/eslint-plugin":"^4.16.1","@typescript-eslint/parser":"^4.16.1","@vladmandic/pilogger":"^0.2.14",chokidar:"^3.5.1",dayjs:"^1.10.4",esbuild:"^0.8.56",eslint:"^7.21.0","eslint-config-airbnb-base":"^14.2.1","eslint-plugin-import":"^2.22.1","eslint-plugin-json":"^2.1.2","eslint-plugin-node":"^11.1.0","eslint-plugin-promise":"^4.3.1",rimraf:"^3.0.2",seedrandom:"^3.0.5","simple-git":"^2.36.0",tslib:"^2.1.0",typescript:"^4.2.3"},K6={start:"node --trace-warnings --unhandled-rejections=strict --trace-uncaught --no-deprecation src/node.js",lint:"eslint src demo server",dev:"npm install && node server/serve.js",build:"rimraf dist/* && rimraf types/* && node server/build.js && node server/changelog.js",update:"npm update --depth 20 --force && npm dedupe && npm prune && npm audit"},Z6=["tensorflowjs","face-detection","face-geometry","face-embedding","face-recognition","body-tracking","hand-tracking","iris-tracking","age-estimation","emotion-detection","gender-prediction","gesture-recognition","blazeface","blazepose"],Rae={name:M6,version:X2,description:$6,sideEffects:O6,main:D6,module:z6,browser:P6,types:L6,author:W6,bugs:B6,homepage:V6,license:U6,engines:H6,repository:j6,dependencies:G6,peerDependencies:q6,devDependencies:X6,scripts:K6,keywords:Z6};var K2={};Un(K2,{all:()=>Mae,angles:()=>n4,body:()=>e4,canvas:()=>Fae,face:()=>Q6,gesture:()=>J6,hand:()=>t4,options:()=>ue});var ue={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:20,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!0,bufferedOutput:!1};function u0(e,t,n){e.fillStyle=ue.color,e.beginPath(),e.arc(t,n,ue.pointSize,0,2*Math.PI),e.fill()}function Y6(e,t,n,r,a){if(e.beginPath(),ue.useCurves){let s=(t+t+r)/2,i=(n+n+a)/2;e.ellipse(s,i,r/2,a/2,0,0,2*Math.PI)}else e.lineWidth=ue.lineWidth,e.moveTo(t+ue.roundRect,n),e.lineTo(t+r-ue.roundRect,n),e.quadraticCurveTo(t+r,n,t+r,n+ue.roundRect),e.lineTo(t+r,n+a-ue.roundRect),e.quadraticCurveTo(t+r,n+a,t+r-ue.roundRect,n+a),e.lineTo(t+ue.roundRect,n+a),e.quadraticCurveTo(t,n+a,t,n+a-ue.roundRect),e.lineTo(t,n+ue.roundRect),e.quadraticCurveTo(t,n,t+ue.roundRect,n),e.closePath();e.stroke()}function Z2(e,t=[]){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t)e.lineTo(n[0],parseInt(n[1]));e.stroke(),ue.fillPolygons&&(e.closePath(),e.fill())}}function c0(e,t=[]){if(!(t===void 0||t.length===0)){if(!ue.useCurves||t.length<=2){Z2(e,t);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n<t.length-2;n++){let r=(t[n][0]+t[n+1][0])/2,a=(t[n][1]+t[n+1][1])/2;e.quadraticCurveTo(t[n][0],t[n][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),ue.fillPolygons&&(e.closePath(),e.fill())}}async function J6(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!n)return;n.font=ue.font,n.fillStyle=ue.color;let r=1;for(let a=0;a<t.length;a++){let s=[],i=[];if([s,i]=Object.entries(t[a]),i.length>1&&i[1].length>0){let o=s[1]>0?`#${s[1]}`:"",l=`${s[0]} ${o}: ${i[1]}`;ue.shadowColor&&ue.shadowColor!==""&&(n.fillStyle=ue.shadowColor,n.fillText(l,8,2+r*ue.lineHeight)),n.fillStyle=ue.labelColor,n.fillText(l,6,0+r*ue.lineHeight),r+=1}}}async function Q6(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!!n)for(let r of t){n.font=ue.font,n.strokeStyle=ue.color,n.fillStyle=ue.color,ue.drawBoxes&&Y6(n,r.box[0],r.box[1],r.box[2],r.box[3]);let a=[];if(a.push(`face confidence: ${Math.trunc(100*r.confidence)}%`),r.genderConfidence&&a.push(`${r.gender||""} ${Math.trunc(100*r.genderConfidence)}% confident`),r.age&&a.push(`age: ${r.age||""}`),r.iris&&a.push(`iris distance: ${r.iris}`),r.emotion&&r.emotion.length>0){let s=r.emotion.map(i=>`${Math.trunc(100*i.score)}% ${i.emotion}`);a.push(s.join(" "))}a.length===0&&a.push("face"),n.fillStyle=ue.color;for(let s=a.length-1;s>=0;s--){let i=Math.max(r.box[0],0),o=s*ue.lineHeight+r.box[1];ue.shadowColor&&ue.shadowColor!==""&&(n.fillStyle=ue.shadowColor,n.fillText(a[s],i+5,o+16)),n.fillStyle=ue.labelColor,n.fillText(a[s],i+4,o+15)}if(n.lineWidth=1,r.mesh){if(ue.drawPoints)for(let s of r.mesh)n.fillStyle=ue.useDepth?`rgba(${127.5+2*s[2]}, ${127.5-2*s[2]}, 255, 0.5)`:ue.color,u0(n,s[0],s[1]);if(ue.drawPolygons){for(let s=0;s<vi.length/3;s++){let i=[vi[s*3+0],vi[s*3+1],vi[s*3+2]].map(o=>r.mesh[o]);n.strokeStyle=ue.useDepth?`rgba(${127.5+2*i[0][2]}, ${127.5-2*i[0][2]}, 255, 0.3)`:ue.color,n.fillStyle=ue.useDepth?`rgba(${127.5+2*i[0][2]}, ${127.5-2*i[0][2]}, 255, 0.3)`:ue.color,n.lineWidth=1,Z2(n,i)}if(r.annotations&&r.annotations.leftEyeIris){n.strokeStyle=ue.useDepth?"rgba(255, 200, 255, 0.3)":ue.color,n.beginPath();let s=Math.abs(r.annotations.leftEyeIris[3][0]-r.annotations.leftEyeIris[1][0])/2,i=Math.abs(r.annotations.leftEyeIris[4][1]-r.annotations.leftEyeIris[2][1])/2;n.ellipse(r.annotations.leftEyeIris[0][0],r.annotations.leftEyeIris[0][1],s,i,0,0,2*Math.PI),n.stroke(),ue.fillPolygons&&(n.fillStyle=ue.useDepth?"rgba(255, 255, 200, 0.3)":ue.color,n.fill())}if(r.annotations&&r.annotations.rightEyeIris){n.strokeStyle=ue.useDepth?"rgba(255, 200, 255, 0.3)":ue.color,n.beginPath();let s=Math.abs(r.annotations.rightEyeIris[3][0]-r.annotations.rightEyeIris[1][0])/2,i=Math.abs(r.annotations.rightEyeIris[4][1]-r.annotations.rightEyeIris[2][1])/2;n.ellipse(r.annotations.rightEyeIris[0][0],r.annotations.rightEyeIris[0][1],s,i,0,0,2*Math.PI),n.stroke(),ue.fillPolygons&&(n.fillStyle=ue.useDepth?"rgba(255, 255, 200, 0.3)":ue.color,n.fill())}}}}}var ja=[];async function e4(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!!n){n.lineJoin="round";for(let r=0;r<t.length;r++){if(!ja[r]&&ue.bufferedOutput&&(ja[r]={...t[r]}),n.strokeStyle=ue.color,n.lineWidth=ue.lineWidth,ue.drawPoints)for(let a=0;a<t[r].keypoints.length;a++)n.fillStyle=ue.useDepth&&t[r].keypoints[a].position.z?`rgba(${127.5+2*t[r].keypoints[a].position.z}, ${127.5-2*t[r].keypoints[a].position.z}, 255, 0.5)`:ue.color,ue.bufferedOutput?(ja[r].keypoints[a][0]=(ja[r].keypoints[a][0]+t[r].keypoints[a].position.x)/2,ja[r].keypoints[a][1]=(ja[r].keypoints[a][1]+t[r].keypoints[a].position.y)/2,u0(n,ja[r].keypoints[a][0],ja[r].keypoints[a][1])):u0(n,t[r].keypoints[a].position.x,t[r].keypoints[a].position.y);if(ue.drawLabels){n.font=ue.font;for(let a of t[r].keypoints)n.fillStyle=ue.useDepth&&a.position.z?`rgba(${127.5+2*a.position.z}, ${127.5-2*a.position.z}, 255, 0.5)`:ue.color,n.fillText(`${a.part}`,a.position.x+4,a.position.y+4)}if(ue.drawPolygons){let a,s=[];s.length=0,a=t[r].keypoints.find(i=>i.part==="leftShoulder"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightShoulder"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightHip"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftHip"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftShoulder"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),s.length===5&&Z2(n,s),s.length=0,a=t[r].keypoints.find(i=>i.part==="leftHip"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftKnee"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftAnkle"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftHeel"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftFoot"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),c0(n,s),s.length=0,a=t[r].keypoints.find(i=>i.part==="rightHip"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightKnee"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightAnkle"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightHeel"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightFoot"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),c0(n,s),s.length=0,a=t[r].keypoints.find(i=>i.part==="leftShoulder"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftElbow"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftWrist"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftPalm"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),c0(n,s),s.length=0,a=t[r].keypoints.find(i=>i.part==="rightShoulder"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightElbow"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightWrist"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightPalm"),a&&a.score>pt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),c0(n,s)}}}}async function t4(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!!n){n.lineJoin="round",n.font=ue.font;for(let r of t){if(ue.drawBoxes&&(n.strokeStyle=ue.color,n.fillStyle=ue.color,Y6(n,r.box[0],r.box[1],r.box[2],r.box[3]),ue.shadowColor&&ue.shadowColor!==""&&(n.fillStyle=ue.shadowColor,n.fillText("hand",r.box[0]+3,1+r.box[1]+ue.lineHeight,r.box[2])),n.fillStyle=ue.labelColor,n.fillText("hand",r.box[0]+2,0+r.box[1]+ue.lineHeight,r.box[2]),n.stroke()),ue.drawPoints&&r.landmarks&&r.landmarks.length>0)for(let a of r.landmarks)n.fillStyle=ue.useDepth?`rgba(${127.5+2*a[2]}, ${127.5-2*a[2]}, 255, 0.5)`:ue.color,u0(n,a[0],a[1]);if(ue.drawPolygons){let a=s=>{if(!!s)for(let i=0;i<s.length;i++)n.lineWidth=ue.lineWidth,n.beginPath(),n.strokeStyle=ue.useDepth?`rgba(${127.5+2*s[i][2]}, ${127.5-2*s[i][2]}, 255, 0.5)`:ue.color,n.moveTo(s[i>0?i-1:0][0],s[i>0?i-1:0][1]),n.lineTo(s[i][0],s[i][1]),n.stroke()};a(r.annotations.indexFinger),a(r.annotations.middleFinger),a(r.annotations.ringFinger),a(r.annotations.pinky),a(r.annotations.thumb)}}}}async function n4(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");!n||(n.font=ue.font,n.strokeStyle=ue.color,n.fillStyle=ue.color,n.lineWidth=ue.lineWidth)}async function Fae(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function Mae(e,t){!t||!e||e instanceof HTMLCanvasElement&&(Q6(e,t.face),e4(e,t.body),t4(e,t.hand),J6(e,t.gesture),n4(e,t.face))}var ct=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Cc(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Cc(s,i):n[a]=i}),n),{})}var Y2=class{constructor(t={}){this.calculateFaceAngle=t=>{if(!t||t.length<152)return{};let n=(s,i,o,l)=>Math.atan2(l-i,o-s),r=s=>Math.abs(s*180/Math.PI%360);return{roll:n(t[33][0],t[33][1],t[263][0],t[263][1]),yaw:n(t[33][0],t[33][2],t[263][0],t[263][2]),pitch:n(t[10][1],t[10][2],t[152][1],t[152][2])}};this.tf=nh,this.draw=K2,this.package=q2,this.version=X2,this.config=Cc(pt,t),this.fx=null,this.state="idle",this.numTensors=0,this.analyzeMemoryLeaks=!1,this.checkSanity=!1,this.firstRun=!0,this.perf={},this.models={facemesh:null,posenet:null,blazepose:null,handpose:null,iris:null,age:null,gender:null,emotion:null},this.image=n=>G2(n,this.config),this.facemesh=r4,this.age=s2,this.gender=l2,this.emotion=f2,this.body=this.config.body.modelType.startsWith("posenet")?F2:U2,this.hand=L2,this.sysinfo=hg()}profile(){return this.config.profile?n2:{}}analyze(...t){if(!this.analyzeMemoryLeaks)return;let n=this.tf.engine().state.numTensors,r=this.numTensors;this.numTensors=n;let a=n-r;a!==0&&Se(...t,a)}sanity(t){if(!this.checkSanity)return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof this.tf.Tensor))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null}simmilarity(t,n){return this.config.face.embedding.enabled?e6(t,n):0}async load(t=null){this.state="load";let n=ct();t&&(this.config=Cc(this.config,t)),this.firstRun&&(this.config.debug&&Se(`version: ${this.version}`),this.config.debug&&Se(`tfjs version: ${this.tf.version_core}`),this.config.debug&&Se("platform:",this.sysinfo.platform),this.config.debug&&Se("agent:",this.sysinfo.agent),await this.checkBackend(!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&Se("configuration:",this.config),this.config.debug&&Se("tf flags:",this.tf.ENV.flags)));let r=this.config.face.detector.modelPath.includes("faceboxes")?r2:r4;this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.handpose,this.models.posenet,this.models.blazepose]=await Promise.all([this.models.face||(this.config.face.enabled?r.load(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?i2(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?d2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?y2(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?x2(this.config):null),this.models.handpose||(this.config.hand.enabled?V2(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelType.startsWith("posenet")?$2(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelType.startsWith("blazepose")?H2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await r.load(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await i2(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await d2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await y2(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await x2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await V2(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelType.startsWith("posenet")&&(this.models.posenet=await $2(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelType.startsWith("blazepose")&&(this.models.blazepose=await H2(this.config))),this.firstRun&&(this.config.debug&&Se("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.firstRun=!1);let a=Math.trunc(ct()-n);a>(this.perf.load||0)&&(this.perf.load=a)}async checkBackend(t=!1){if(this.config.backend&&this.config.backend!==""&&t||this.tf.getBackend()!==this.config.backend){let n=ct();if(this.state="backend",this.config.backend&&this.config.backend!==""){if(this.config.debug&&Se("setting backend:",this.config.backend),this.config.backend==="wasm"){this.config.debug&&Se("wasm path:",this.config.wasmPath),this.tf.setWasmPaths(this.config.wasmPath);let r=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&Se(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),r||Se("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&Bv();try{await this.tf.setBackend(this.config.backend)}catch(r){Se("error: cannot set backend:",this.config.backend,r)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"){this.config.deallocate&&(Se("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&Se(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(ct()-n)}}async detectFace(t){var u,c,h,d,p,m;let n,r,a,s,i,o=[];this.state="run:face",n=ct();let l=await((u=this.models.face)==null?void 0:u.estimateFaces(t,this.config));this.perf.face=Math.trunc(ct()-n);for(let f of l){if(this.analyze("Get Face"),!f.image||f.image.isDisposedInternal){Se("Face object is disposed:",f.image);continue}let A=this.calculateFaceAngle(f.mesh);this.analyze("Start Age:"),this.config.async?r=this.config.face.age.enabled?o2(f.image,this.config):{}:(this.state="run:age",n=ct(),r=this.config.face.age.enabled?await o2(f.image,this.config):{},this.perf.age=Math.trunc(ct()-n)),this.analyze("Start Gender:"),this.config.async?a=this.config.face.gender.enabled?p2(f.image,this.config):{}:(this.state="run:gender",n=ct(),a=this.config.face.gender.enabled?await p2(f.image,this.config):{},this.perf.gender=Math.trunc(ct()-n)),this.analyze("Start Emotion:"),this.config.async?s=this.config.face.emotion.enabled?g2(f.image,this.config):{}:(this.state="run:emotion",n=ct(),s=this.config.face.emotion.enabled?await g2(f.image,this.config):{},this.perf.emotion=Math.trunc(ct()-n)),this.analyze("End Emotion:"),this.analyze("Start Embedding:"),this.config.async?i=this.config.face.embedding.enabled?w2(f.image,this.config):[]:(this.state="run:embedding",n=ct(),i=this.config.face.embedding.enabled?await w2(f.image,this.config):[],this.perf.embedding=Math.trunc(ct()-n)),this.analyze("End Emotion:"),this.config.async&&([r,a,s,i]=await Promise.all([r,a,s,i])),this.analyze("Finish Face:"),!this.config.face.iris.enabled&&((c=f==null?void 0:f.annotations)==null?void 0:c.leftEyeIris)&&((h=f==null?void 0:f.annotations)==null?void 0:h.rightEyeIris)&&(delete f.annotations.leftEyeIris,delete f.annotations.rightEyeIris);let y=((d=f.annotations)==null?void 0:d.leftEyeIris)&&((p=f.annotations)==null?void 0:p.rightEyeIris)?11.7*Math.max(Math.abs(f.annotations.leftEyeIris[3][0]-f.annotations.leftEyeIris[1][0]),Math.abs(f.annotations.rightEyeIris[4][1]-f.annotations.rightEyeIris[2][1])):0;o.push({confidence:f.confidence,faceConfidence:f.faceConfidence,boxConfidence:f.boxConfidence,box:f.box,mesh:f.mesh,boxRaw:f.boxRaw,meshRaw:f.meshRaw,annotations:f.annotations,age:r.age,gender:a.gender,genderConfidence:a.confidence,emotion:s,embedding:i,iris:y!==0?Math.trunc(y)/100:0,angle:A}),(m=f.image)==null||m.dispose(),this.analyze("End Face")}return this.analyze("End FaceMesh:"),this.config.async&&(this.perf.face&&delete this.perf.face,this.perf.age&&delete this.perf.age,this.perf.gender&&delete this.perf.gender,this.perf.emotion&&delete this.perf.emotion),o}async detect(t,n={}){return new Promise(async r=>{var d,p,m,f;this.state="config";let a;this.config=Cc(this.config,n),this.state="check";let s=this.sanity(t);s&&(Se(s,t),r({error:s}));let i=ct();await this.checkBackend(),await this.load(),this.config.scoped&&this.tf.engine().startScope(),this.analyze("Start Scope:"),a=ct();let o=G2(t,this.config);if(!o||!o.tensor){Se("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(ct()-a),this.analyze("Get Image:");let l,u,c;this.config.async?(c=this.config.face.enabled?this.detectFace(o.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",a=ct(),c=this.config.face.enabled?await this.detectFace(o.tensor):[],this.perf.face=Math.trunc(ct()-a)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelType.startsWith("posenet")?l=this.config.body.enabled?(d=this.models.posenet)==null?void 0:d.estimatePoses(o.tensor,this.config):[]:l=this.config.body.enabled?j2(o.tensor,this.config):[],this.perf.body&&delete this.perf.body):(this.state="run:body",a=ct(),this.config.body.modelType.startsWith("posenet")?l=this.config.body.enabled?await((p=this.models.posenet)==null?void 0:p.estimatePoses(o.tensor,this.config)):[]:l=this.config.body.enabled?await j2(o.tensor,this.config):[],this.perf.body=Math.trunc(ct()-a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?(m=this.models.handpose)==null?void 0:m.estimateHands(o.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",a=ct(),u=this.config.hand.enabled?await((f=this.models.handpose)==null?void 0:f.estimateHands(o.tensor,this.config)):[],this.perf.hand=Math.trunc(ct()-a)),this.analyze("End Hand:"),this.config.async&&([c,l,u]=await Promise.all([c,l,u])),o.tensor.dispose(),this.config.scoped&&this.tf.engine().endScope(),this.analyze("End Scope:");let h=[];this.config.gesture.enabled&&(a=ct(),h=[...E6(c),...T6(l),...R6(u),...C6(c)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(ct()-a)),this.perf.total=Math.trunc(ct()-i),this.state="idle",r({face:c,body:l,hand:u,gesture:h,performance:this.perf,canvas:o.canvas})})}async warmupBitmap(){let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t(o0);break;case"full":n=await t(l0);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,this.config),a.close()}return r}async warmupCanvas(){return new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+o0;break;case"full":case"body":r=1200,n="data:image/jpeg;base64,"+l0;break;default:n=null}let a=new Image;a.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=a.naturalWidth,s.height=a.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(a,0,0);let o=await this.detect(s,this.config);t(o)},n?a.src=n:t(null)})}async warmupNode(){let t=i=>Buffer.from(i,"base64"),n=this.config.warmup==="face"?t(o0):t(l0),r=(void 0).decodeJpeg(n),a=r.expandDims(0);this.tf.dispose(r);let s=await this.detect(a,this.config);return this.tf.dispose(a),s}async warmup(t){let n=ct();t&&(this.config=Cc(this.config,t));let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await this.warmupBitmap():typeof Image!="undefined"?a=await this.warmupCanvas():a=await this.warmupNode(),this.config.videoOptimized=r;let s=ct();return this.config.debug&&Se("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};return $ae;})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=human.ts.map
|