mirror of https://github.com/vladmandic/human
5546 lines
1.3 MiB
5546 lines
1.3 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Human=(()=>{var tg=Object.defineProperty;var sS=(e,t,n)=>t in e?tg(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var rS=e=>tg(e,"__esModule",{value:!0});var ng=typeof require!="undefined"?require:e=>{throw new Error('Dynamic require of "'+e+'" is not supported')};var sg=(e,t)=>{rS(e);for(var n in t)tg(e,n,{get:t[n],enumerable:!0})};var Re=(e,t,n)=>(sS(e,typeof t!="symbol"?t+"":t,n),n),Wx=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var Vu=(e,t,n)=>(Wx(e,t,"read from private field"),n?n.call(e):t.get(e)),Uu=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},Hu=(e,t,n,s)=>(Wx(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var Ole={};sg(Ole,{Human:()=>fI,default:()=>fI,defaults:()=>Ni,env:()=>xe});function xt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${r} Expecting JSON file`);return r}function ce(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Ze=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function gn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=gn(a,o):n[r]=o}),n),{})}var Ni={backend:"",modelBasePath:"",wasmPath:"",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:11,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.8,iouThreshold:.2,maxDetected:1,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19},segmentation:{enabled:!1,modelPath:"selfie.json"}};var pi={};sg(pi,{Abs:()=>_i,Acos:()=>Fi,Acosh:()=>$i,AdadeltaOptimizer:()=>Wh,AdagradOptimizer:()=>Vh,AdamOptimizer:()=>Uh,AdamaxOptimizer:()=>Hh,Add:()=>jr,AddN:()=>Da,All:()=>Oi,Any:()=>Pi,ArgMax:()=>_a,ArgMin:()=>Ku,Asin:()=>Mi,Asinh:()=>zi,Atan:()=>Li,Atan2:()=>Wi,Atanh:()=>Bi,AvgPool:()=>Fa,AvgPool3D:()=>Zu,AvgPool3DGrad:()=>hp,AvgPoolGrad:()=>pp,BackendWasm:()=>Zk,BatchMatMul:()=>$a,BatchToSpaceND:()=>Vi,Bincount:()=>fp,BroadcastArgs:()=>cg,BroadcastTo:()=>o5,Callback:()=>qv,CallbackList:()=>L3,Cast:()=>Oa,Ceil:()=>Pa,ClipByValue:()=>qr,Complex:()=>mp,ComplexAbs:()=>Yu,Concat:()=>Ui,Conv2D:()=>Ma,Conv2DBackpropFilter:()=>gp,Conv2DBackpropInput:()=>za,Conv3D:()=>Ju,Conv3DBackpropFilterV2:()=>Ap,Conv3DBackpropInputV2:()=>yp,Cos:()=>La,Cosh:()=>Ba,CropAndResize:()=>Hi,Cumsum:()=>Wa,CustomCallback:()=>W3,DataStorage:()=>ip,DenseBincount:()=>xp,DepthToSpace:()=>Gi,DepthwiseConv2dNative:()=>Va,DepthwiseConv2dNativeBackpropFilter:()=>bp,DepthwiseConv2dNativeBackpropInput:()=>vp,Diag:()=>wp,Dilation2D:()=>Qu,Dilation2DBackpropFilter:()=>Ip,Dilation2DBackpropInput:()=>kp,ENV:()=>er,EarlyStopping:()=>Kv,Einsum:()=>Sp,Elu:()=>Ha,EluGrad:()=>Cp,Environment:()=>r5,Equal:()=>qi,Erf:()=>ji,Exp:()=>Ga,ExpandDims:()=>Xi,Expm1:()=>Ki,FFT:()=>Tp,Fill:()=>ec,FlipLeftRight:()=>Zi,Floor:()=>ja,FloorDiv:()=>qa,FromPixels:()=>Xp,FusedBatchNorm:()=>Xa,FusedConv2D:()=>Eo,FusedDepthwiseConv2D:()=>Ro,GPGPUContext:()=>jf,GatherNd:()=>Ji,GatherV2:()=>Yi,GraphModel:()=>T7,Greater:()=>Qi,GreaterEqual:()=>Ka,History:()=>B3,IFFT:()=>Np,Identity:()=>Za,Imag:()=>Ep,InputSpec:()=>Ut,IsFinite:()=>el,IsInf:()=>tl,IsNan:()=>nl,KernelBackend:()=>ju,LRN:()=>sc,LRNGrad:()=>Dp,LayerVariable:()=>$3,LayersModel:()=>_r,LeakyRelu:()=>Ya,Less:()=>sl,LessEqual:()=>rl,LinSpace:()=>Rp,Log:()=>Ja,Log1p:()=>al,LogSoftmax:()=>i5,LogicalAnd:()=>ol,LogicalNot:()=>tc,LogicalOr:()=>nc,MathBackendWebGL:()=>bu,Max:()=>Qa,MaxPool:()=>to,MaxPool3D:()=>rc,MaxPool3DGrad:()=>Fp,MaxPoolGrad:()=>_p,MaxPoolWithArgmax:()=>$p,Maximum:()=>eo,Mean:()=>no,Min:()=>so,Minimum:()=>ro,MirrorPad:()=>ao,Mod:()=>il,MomentumOptimizer:()=>Gh,Multinomial:()=>Op,Multiply:()=>oo,Neg:()=>ll,NonMaxSuppressionV3:()=>cl,NonMaxSuppressionV4:()=>dl,NonMaxSuppressionV5:()=>pl,NotEqual:()=>ul,OP_SCOPE_SUFFIX:()=>w5,OneHot:()=>io,OnesLike:()=>hl,Optimizer:()=>Er,Pack:()=>fl,PadV2:()=>lo,Pool:()=>eC,Pow:()=>uo,Prelu:()=>co,Prod:()=>ml,RMSPropOptimizer:()=>jh,RNN:()=>dr,Range:()=>ac,Rank:()=>mg,Real:()=>Pp,RealDiv:()=>Ua,Reciprocal:()=>gl,Reduction:()=>In,Relu:()=>po,Relu6:()=>fo,Reshape:()=>Al,ResizeBilinear:()=>ho,ResizeBilinearGrad:()=>zp,ResizeNearestNeighbor:()=>oc,ResizeNearestNeighborGrad:()=>Mp,Reverse:()=>mo,RotateWithOffset:()=>_l,Round:()=>go,Rsqrt:()=>Ao,SGDOptimizer:()=>Lc,ScatterNd:()=>yl,Select:()=>xl,Selu:()=>bl,Sequential:()=>ou,Sigmoid:()=>xo,Sign:()=>kl,Sin:()=>yo,Sinh:()=>wl,Slice:()=>vl,Softmax:()=>wo,Softplus:()=>Il,SpaceToBatchND:()=>Sl,SparseFillEmptyRows:()=>Lp,SparseReshape:()=>Bp,SparseSegmentMean:()=>Wp,SparseSegmentSum:()=>Vp,SparseToDense:()=>Up,SplitV:()=>Cl,Sqrt:()=>bo,Square:()=>ic,SquaredDifference:()=>ko,Step:()=>Kr,StridedSlice:()=>Tl,StringNGrams:()=>Hp,StringSplit:()=>Gp,StringToHashBucketFast:()=>jp,Sub:()=>Io,Sum:()=>vo,SymbolicTensor:()=>Hs,Tan:()=>So,Tanh:()=>Co,Tensor:()=>Ge,TensorBuffer:()=>Xt,Tile:()=>Xr,TopK:()=>Nl,Transform:()=>El,Transpose:()=>To,Unique:()=>qp,Unpack:()=>Rl,UnsortedSegmentSum:()=>lc,Variable:()=>gc,ZerosLike:()=>Dl,_FusedMatMul:()=>No,abs:()=>Bt,acos:()=>Hg,acosh:()=>Gg,add:()=>oe,addN:()=>uh,all:()=>ch,any:()=>vc,argMax:()=>Ms,argMin:()=>jg,asin:()=>qg,asinh:()=>Xg,atan:()=>Kg,atan2:()=>Zg,atanh:()=>Yg,avgPool:()=>kc,avgPool3d:()=>eA,backend:()=>zo,backend_util:()=>_,basicLSTMCell:()=>FT,batchNorm:()=>Wo,batchNorm2d:()=>ub,batchNorm3d:()=>cb,batchNorm4d:()=>db,batchToSpaceND:()=>Ic,bincount:()=>tA,booleanMaskAsync:()=>BR,broadcastArgs:()=>pb,broadcastTo:()=>Ul,browser:()=>fs,buffer:()=>je,callbacks:()=>eL,cast:()=>de,ceil:()=>nA,clipByValue:()=>Pn,clone:()=>Ps,complex:()=>Jr,concat:()=>ft,concat1d:()=>hb,concat2d:()=>Hl,concat3d:()=>fb,concat4d:()=>mb,constraints:()=>h3,conv1d:()=>ph,conv2d:()=>Sr,conv2dTranspose:()=>hh,conv3d:()=>rA,conv3dTranspose:()=>Ab,copyRegisteredKernels:()=>sC,cos:()=>Sc,cosh:()=>fh,cosineWindow:()=>DA,cumsum:()=>mh,customGrad:()=>rr,data:()=>N7,denseBincount:()=>yb,deprecationWarn:()=>Wg,depthToSpace:()=>aA,depthwiseConv2d:()=>Gl,deregisterOp:()=>nL,device_util:()=>yc,diag:()=>uN,dilation2d:()=>oA,disableDeprecationWarnings:()=>K9,dispose:()=>Z,disposeVariables:()=>Z9,div:()=>pe,divNoNan:()=>iA,dot:()=>xb,dropout:()=>Bb,einsum:()=>bb,elu:()=>jl,enableDebugMode:()=>X9,enableProdMode:()=>ab,enclosingPowerOfTwo:()=>Wb,engine:()=>Ns,env:()=>Y,equal:()=>Xn,erf:()=>lA,exp:()=>Kn,expandDims:()=>zt,expm1:()=>uA,eye:()=>cA,fft:()=>Pc,fill:()=>ql,findBackend:()=>Ug,findBackendFactory:()=>eT,floor:()=>Xl,floorDiv:()=>lh,forceHalfFloat:()=>t4,fused:()=>aa,gather:()=>Vo,gatherND:()=>Lb,gather_util:()=>$g,getBackend:()=>Bl,getGradient:()=>dg,getKernel:()=>Kp,getKernelsForBackend:()=>Zr,gpgpu_util:()=>E6,grad:()=>LN,grads:()=>BN,greater:()=>Mn,greaterEqual:()=>sa,ifft:()=>Jl,imag:()=>gh,image:()=>Fe,inTopKAsync:()=>YR,initializers:()=>b3,input:()=>cv,io:()=>$n,irfft:()=>Dh,isFinite:()=>vb,isInf:()=>wb,isNaN:()=>dA,keep:()=>sn,kernel_impls:()=>or,layers:()=>D3,leakyRelu:()=>Cc,less:()=>Ah,lessEqual:()=>ra,linalg:()=>Qb,linspace:()=>kb,loadGraphModel:()=>yt,loadLayersModel:()=>cM,localResponseNormalization:()=>pA,log:()=>Zn,log1p:()=>Tc,logSigmoid:()=>Sb,logSoftmax:()=>xh,logSumExp:()=>mA,logicalAnd:()=>Es,logicalNot:()=>Nc,logicalOr:()=>bh,logicalXor:()=>Eb,losses:()=>F_,matMul:()=>Ue,math:()=>B5,max:()=>Yn,maxPool:()=>Ec,maxPool3d:()=>gA,maxPoolWithArgmax:()=>Rb,maximum:()=>ar,mean:()=>Dt,memory:()=>oh,meshgrid:()=>lE,metrics:()=>Hv,min:()=>Rc,minimum:()=>Kl,mirrorPad:()=>AA,mod:()=>yA,model:()=>lM,models:()=>Gv,moments:()=>vh,movingAverage:()=>UR,mul:()=>z,multiRNNCell:()=>gE,multinomial:()=>Db,neg:()=>St,nextFrame:()=>qh,norm:()=>Oh,notEqual:()=>Go,oneHot:()=>zl,ones:()=>Jn,onesLike:()=>Qn,op:()=>W,outerProduct:()=>vE,pad:()=>Cr,pad1d:()=>IE,pad2d:()=>CE,pad3d:()=>NE,pad4d:()=>RE,pool:()=>_b,pow:()=>Tr,prelu:()=>_c,print:()=>$5,prod:()=>wh,profile:()=>Y9,rand:()=>LE,randomGamma:()=>UE,randomNormal:()=>Fb,randomUniform:()=>Zl,range:()=>Yl,ready:()=>ih,real:()=>Fc,reciprocal:()=>vA,registerBackend:()=>Wl,registerCallbackConstructor:()=>dM,registerGradient:()=>l5,registerKernel:()=>Do,registerOp:()=>tL,regularizers:()=>jv,relu:()=>zs,relu6:()=>kh,removeBackend:()=>Q9,reshape:()=>V,reverse:()=>es,reverse1d:()=>JE,reverse2d:()=>eR,reverse3d:()=>nR,reverse4d:()=>rR,rfft:()=>Mc,round:()=>Ih,rsqrt:()=>Sh,scalar:()=>Ce,scatterND:()=>zb,scatter_util:()=>Og,selu:()=>Ch,separableConv2d:()=>wA,sequential:()=>uM,serialization:()=>ie,setBackend:()=>Vg,setPlatform:()=>tT,setWasmPath:()=>$ie,setWasmPaths:()=>Jk,setWebGLContext:()=>Mf,setdiff1dAsync:()=>$b,sigmoid:()=>On,sign:()=>kA,signal:()=>__,sin:()=>Th,sinh:()=>Nh,slice:()=>_e,slice1d:()=>Eh,slice2d:()=>IA,slice3d:()=>Rh,slice4d:()=>$c,slice_util:()=>kn,softmax:()=>Oc,softplus:()=>Uo,spaceToBatchND:()=>Dc,sparse:()=>zc,sparseToDense:()=>RA,spectral:()=>D_,split:()=>Wt,sqrt:()=>dn,square:()=>pt,squaredDifference:()=>_h,squeeze:()=>lt,stack:()=>pn,step:()=>Ql,stridedSlice:()=>SA,string:()=>Bh,sub:()=>Ae,sum:()=>we,sumOutType:()=>eh,tan:()=>CA,tanh:()=>Bo,tensor:()=>nn,tensor1d:()=>Vt,tensor2d:()=>Ls,tensor3d:()=>sh,tensor4d:()=>RR,tensor5d:()=>DR,tensor6d:()=>_R,tensor_util:()=>$s,test_util:()=>nb,tidy:()=>H,tile:()=>ms,time:()=>J9,topk:()=>TA,train:()=>qo,transpose:()=>Ye,truncatedNormal:()=>Fh,unique:()=>$h,unregisterGradient:()=>nC,unregisterKernel:()=>tC,unsortedSegmentSum:()=>NA,unstack:()=>ts,upcastType:()=>Ts,util:()=>w,valueAndGrad:()=>WN,valueAndGrads:()=>VN,variable:()=>Ob,variableGrads:()=>Ib,version:()=>Gie,version_converter:()=>aB,version_core:()=>ah,version_layers:()=>p1,version_wasm:()=>Oie,version_webgl:()=>AK,webgl:()=>yK,webgl_util:()=>Qw,where:()=>yn,whereAsync:()=>EA,zeros:()=>Ot,zerosLike:()=>Je});var aS=Object.create,op=Object.defineProperty,oS=Object.getOwnPropertyDescriptor,iS=Object.getOwnPropertyNames,lS=Object.getPrototypeOf,uS=Object.prototype.hasOwnProperty,Vx=e=>op(e,"__esModule",{value:!0}),Ei=typeof ng!="undefined"?ng:e=>{throw new Error('Dynamic require of "'+e+'" is not supported')},It=(e,t)=>function(){return t||(0,e[Object.keys(e)[0]])((t={exports:{}}).exports,t),t.exports},Le=(e,t)=>{Vx(e);for(var n in t)op(e,n,{get:t[n],enumerable:!0})},cS=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let s of iS(t))!uS.call(e,s)&&s!=="default"&&op(e,s,{get:()=>t[s],enumerable:!(n=oS(t,s))||n.enumerable});return e},Na=e=>cS(Vx(op(e!=null?aS(lS(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),dS=It({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(R){}function s(R,T,P){this.low=R|0,this.high=T|0,this.unsigned=!!P}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(R){return(R&&R.__isLong__)===!0}s.isLong=r;var a={},o={};function i(R,T){var P,U,j;return T?(R>>>=0,(j=0<=R&&R<256)&&(U=o[R],U)?U:(P=u(R,(R|0)<0?-1:0,!0),j&&(o[R]=P),P)):(R|=0,(j=-128<=R&&R<128)&&(U=a[R],U)?U:(P=u(R,R<0?-1:0,!1),j&&(a[R]=P),P))}s.fromInt=i;function l(R,T){if(isNaN(R))return T?b:x;if(T){if(R<0)return b;if(R>=g)return D}else{if(R<=-A)return O;if(R+1>=A)return C}return R<0?l(-R,T).neg():u(R%m|0,R/m|0,T)}s.fromNumber=l;function u(R,T,P){return new s(R,T,P)}s.fromBits=u;var c=Math.pow;function d(R,T,P){if(R.length===0)throw Error("empty string");if(R==="NaN"||R==="Infinity"||R==="+Infinity"||R==="-Infinity")return x;if(typeof T=="number"?(P=T,T=!1):T=!!T,P=P||10,P<2||36<P)throw RangeError("radix");var U;if((U=R.indexOf("-"))>0)throw Error("interior hyphen");if(U===0)return d(R.substring(1),T,P).neg();for(var j=l(c(P,8)),q=x,X=0;X<R.length;X+=8){var te=Math.min(8,R.length-X),ne=parseInt(R.substring(X,X+te),P);if(te<8){var se=l(c(P,te));q=q.mul(se).add(l(ne))}else q=q.mul(j),q=q.add(l(ne))}return q.unsigned=T,q}s.fromString=d;function p(R,T){return typeof R=="number"?l(R,T):typeof R=="string"?d(R,T):u(R.low,R.high,typeof T=="boolean"?T:R.unsigned)}s.fromValue=p;var h=1<<16,f=1<<24,m=h*h,g=m*m,A=g/2,y=i(f),x=i(0);s.ZERO=x;var b=i(0,!0);s.UZERO=b;var v=i(1);s.ONE=v;var k=i(1,!0);s.UONE=k;var S=i(-1);s.NEG_ONE=S;var C=u(4294967295|0,2147483647|0,!1);s.MAX_VALUE=C;var D=u(4294967295|0,4294967295|0,!0);s.MAX_UNSIGNED_VALUE=D;var O=u(0,2147483648|0,!1);s.MIN_VALUE=O;var E=s.prototype;E.toInt=function(){return this.unsigned?this.low>>>0:this.low},E.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},E.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(O)){var P=l(T),U=this.div(P),j=U.mul(P).sub(this);return U.toString(T)+j.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var q=l(c(T,6),this.unsigned),X=this,te="";;){var ne=X.div(q),se=X.sub(ne.mul(q)).toInt()>>>0,re=se.toString(T);if(X=ne,X.isZero())return re+te;for(;re.length<6;)re="0"+re;te=""+re+te}},E.getHighBits=function(){return this.high},E.getHighBitsUnsigned=function(){return this.high>>>0},E.getLowBits=function(){return this.low},E.getLowBitsUnsigned=function(){return this.low>>>0},E.getNumBitsAbs=function(){if(this.isNegative())return this.eq(O)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,P=31;P>0&&(T&1<<P)==0;P--);return this.high!=0?P+33:P+1},E.isZero=function(){return this.high===0&&this.low===0},E.eqz=E.isZero,E.isNegative=function(){return!this.unsigned&&this.high<0},E.isPositive=function(){return this.unsigned||this.high>=0},E.isOdd=function(){return(this.low&1)==1},E.isEven=function(){return(this.low&1)==0},E.equals=function(T){return r(T)||(T=p(T)),this.unsigned!==T.unsigned&&this.high>>>31==1&&T.high>>>31==1?!1:this.high===T.high&&this.low===T.low},E.eq=E.equals,E.notEquals=function(T){return!this.eq(T)},E.neq=E.notEquals,E.ne=E.notEquals,E.lessThan=function(T){return this.comp(T)<0},E.lt=E.lessThan,E.lessThanOrEqual=function(T){return this.comp(T)<=0},E.lte=E.lessThanOrEqual,E.le=E.lessThanOrEqual,E.greaterThan=function(T){return this.comp(T)>0},E.gt=E.greaterThan,E.greaterThanOrEqual=function(T){return this.comp(T)>=0},E.gte=E.greaterThanOrEqual,E.ge=E.greaterThanOrEqual,E.compare=function(T){if(r(T)||(T=p(T)),this.eq(T))return 0;var P=this.isNegative(),U=T.isNegative();return P&&!U?-1:!P&&U?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},E.comp=E.compare,E.negate=function(){return!this.unsigned&&this.eq(O)?O:this.not().add(v)},E.neg=E.negate,E.add=function(T){r(T)||(T=p(T));var P=this.high>>>16,U=this.high&65535,j=this.low>>>16,q=this.low&65535,X=T.high>>>16,te=T.high&65535,ne=T.low>>>16,se=T.low&65535,re=0,Q=0,le=0,ue=0;return ue+=q+se,le+=ue>>>16,ue&=65535,le+=j+ne,Q+=le>>>16,le&=65535,Q+=U+te,re+=Q>>>16,Q&=65535,re+=P+X,re&=65535,u(le<<16|ue,re<<16|Q,this.unsigned)},E.subtract=function(T){return r(T)||(T=p(T)),this.add(T.neg())},E.sub=E.subtract,E.multiply=function(T){if(this.isZero())return x;if(r(T)||(T=p(T)),n){var P=n.mul(this.low,this.high,T.low,T.high);return u(P,n.get_high(),this.unsigned)}if(T.isZero())return x;if(this.eq(O))return T.isOdd()?O:x;if(T.eq(O))return this.isOdd()?O:x;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(y)&&T.lt(y))return l(this.toNumber()*T.toNumber(),this.unsigned);var U=this.high>>>16,j=this.high&65535,q=this.low>>>16,X=this.low&65535,te=T.high>>>16,ne=T.high&65535,se=T.low>>>16,re=T.low&65535,Q=0,le=0,ue=0,he=0;return he+=X*re,ue+=he>>>16,he&=65535,ue+=q*re,le+=ue>>>16,ue&=65535,ue+=X*se,le+=ue>>>16,ue&=65535,le+=j*re,Q+=le>>>16,le&=65535,le+=q*se,Q+=le>>>16,le&=65535,le+=X*ne,Q+=le>>>16,le&=65535,Q+=U*re+j*se+q*ne+X*te,Q&=65535,u(ue<<16|he,Q<<16|le,this.unsigned)},E.mul=E.multiply,E.divide=function(T){if(r(T)||(T=p(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var P=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return u(P,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:x;var U,j,q;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return k;q=b}else{if(this.eq(O)){if(T.eq(v)||T.eq(S))return O;if(T.eq(O))return v;var X=this.shr(1);return U=X.div(T).shl(1),U.eq(x)?T.isNegative()?v:S:(j=this.sub(T.mul(U)),q=U.add(j.div(T)),q)}else if(T.eq(O))return this.unsigned?b:x;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();q=x}for(j=this;j.gte(T);){U=Math.max(1,Math.floor(j.toNumber()/T.toNumber()));for(var te=Math.ceil(Math.log(U)/Math.LN2),ne=te<=48?1:c(2,te-48),se=l(U),re=se.mul(T);re.isNegative()||re.gt(j);)U-=ne,se=l(U,this.unsigned),re=se.mul(T);se.isZero()&&(se=v),q=q.add(se),j=j.sub(re)}return q},E.div=E.divide,E.modulo=function(T){if(r(T)||(T=p(T)),n){var P=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return u(P,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},E.mod=E.modulo,E.rem=E.modulo,E.not=function(){return u(~this.low,~this.high,this.unsigned)},E.and=function(T){return r(T)||(T=p(T)),u(this.low&T.low,this.high&T.high,this.unsigned)},E.or=function(T){return r(T)||(T=p(T)),u(this.low|T.low,this.high|T.high,this.unsigned)},E.xor=function(T){return r(T)||(T=p(T)),u(this.low^T.low,this.high^T.high,this.unsigned)},E.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):u(0,this.low<<T-32,this.unsigned)},E.shl=E.shiftLeft,E.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):u(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},E.shr=E.shiftRight,E.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var P=this.high;if(T<32){var U=this.low;return u(U>>>T|P<<32-T,P>>>T,this.unsigned)}else return T===32?u(P,0,this.unsigned):u(P>>>T-32,0,this.unsigned)},E.shru=E.shiftRightUnsigned,E.shr_u=E.shiftRightUnsigned,E.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},E.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},E.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},E.toBytesLE=function(){var T=this.high,P=this.low;return[P&255,P>>>8&255,P>>>16&255,P>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},E.toBytesBE=function(){var T=this.high,P=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,P>>>24,P>>>16&255,P>>>8&255,P&255]},s.fromBytes=function(T,P,U){return U?s.fromBytesLE(T,P):s.fromBytesBE(T,P)},s.fromBytesLE=function(T,P){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,P)},s.fromBytesBE=function(T,P){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],P)}}}),pS=It({"(disabled):node_modules/.pnpm/node-fetch@2.6.2/node_modules/node-fetch/browser.js"(){}}),hS=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,d=l();c.next=function(){var p=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=p-(c.c=p|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(u),c.s0<0&&(c.s0+=1),c.s1-=d(u),c.s1<0&&(c.s1+=1),c.s2-=d(u),c.s2<0&&(c.s2+=1),d=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var d=new a(u),p=c&&c.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var u=4022871197,c=function(d){d=d.toString();for(var p=0;p<d.length;p++){u+=d.charCodeAt(p);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),fS=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var p=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^p^p>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),mS=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var p=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(p^p<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,d==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),gS=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.x,p=u.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,u.i=p+1&7,f};function c(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(d.x&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),AS=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.w,p=u.X,h=u.i,f,m;return u.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,u.i=h,m+(d^d>>>16)|0};function c(d,p){var h,f,m,g,A,y=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g<x;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=y[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(y[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;d.w=A,d.X=y,d.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(d.X&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),yS=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var p=u.b,h=u.c,f=u.d,m=u.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,u.b=p=p<<20^p>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-p|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d<c.length+20;d++)u.b^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),Ux=It({"(disabled):crypto"(){}}),xS=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s){var r=this,a=256,o=6,i=52,l="random",u=s.pow(a,o),c=s.pow(2,i),d=c*2,p=a-1,h;function f(v,k,S){var C=[];k=k==!0?{entropy:!0}:k||{};var D=y(A(k.entropy?[v,b(n)]:v==null?x():v,3),C),O=new m(C),E=function(){for(var R=O.g(o),T=u,P=0;R<c;)R=(R+P)*a,T*=a,P=O.g(1);for(;R>=d;)R/=2,T/=2,P>>>=1;return(R+P)/T};return E.int32=function(){return O.g(4)|0},E.quick=function(){return O.g(4)/4294967296},E.double=E,y(b(O.S),n),(k.pass||S||function(R,T,P,U){return U&&(U.S&&g(U,O),R.state=function(){return g(O,{})}),P?(s[l]=R,T):R})(E,D,"global"in k?k.global:this==s,k.state)}s["seed"+l]=f;function m(v){var k,S=v.length,C=this,D=0,O=C.i=C.j=0,E=C.S=[];for(S||(v=[S++]);D<a;)E[D]=D++;for(D=0;D<a;D++)E[D]=E[O=p&O+v[D%S]+(k=E[D])],E[O]=k;(C.g=function(R){for(var T,P=0,U=C.i,j=C.j,q=C.S;R--;)T=q[U=p&U+1],P=P*a+q[p&(q[U]=q[j=p&j+T])+(q[j]=T)];return C.i=U,C.j=j,P})(a)}function g(v,k){return k.i=v.i,k.j=v.j,k.S=v.S.slice(),k}function A(v,k){var S=[],C=typeof v,D;if(k&&C=="object")for(D in v)try{S.push(A(v[D],k-1))}catch(O){}return S.length?S:C=="string"?v:v+"\0"}function y(v,k){for(var S=v+"",C,D=0;D<S.length;)k[p&D]=p&(C^=k[p&D]*19)+S.charCodeAt(D++);return b(k)}function x(){try{var v;return h&&(v=h.randomBytes)?v=v(a):(v=new Uint8Array(a),(r.crypto||r.msCrypto).getRandomValues(v)),b(v)}catch(C){var k=r.navigator,S=k&&k.plugins;return[+new Date,r,S,r.screen,b(n)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(s.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{h=Ux()}catch(v){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}}),Hx=It({"node_modules/.pnpm/seedrandom@2.4.3/node_modules/seedrandom/index.js"(e,t){var n=hS(),s=fS(),r=mS(),a=gS(),o=AS(),i=yS(),l=xS();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),bS=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,d=l();c.next=function(){var p=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=p-(c.c=p|0)},c.c=1,c.s0=d(" "),c.s1=d(" "),c.s2=d(" "),c.s0-=d(u),c.s0<0&&(c.s0+=1),c.s1-=d(u),c.s1<0&&(c.s1+=1),c.s2-=d(u),c.s2<0&&(c.s2+=1),d=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var d=new a(u),p=c&&c.state,h=d.next;return h.int32=function(){return d.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,p&&(typeof p=="object"&&o(p,d),h.state=function(){return o(d,{})}),h}function l(){var u=4022871197,c=function(d){d=String(d);for(var p=0;p<d.length;p++){u+=d.charCodeAt(p);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),vS=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var p=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^p^p>>>8},l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),wS=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var p=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(p^p<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var d=0;d<c.length+64;d++)u.x^=c.charCodeAt(d)|0,d==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),kS=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.x,p=u.i,h,f,m;return h=d[p],h^=h>>>7,f=h^h<<24,h=d[p+1&7],f^=h^h>>>10,h=d[p+3&7],f^=h^h>>>3,h=d[p+4&7],f^=h^h<<7,h=d[p+7&7],h=h^h<<13,f^=h^h<<9,d[p]=f,u.i=p+1&7,f};function c(d,p){var h,f,m=[];if(p===(p|0))f=m[0]=p;else for(p=""+p,h=0;h<p.length;++h)m[h&7]=m[h&7]<<15^p.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],d.x=m,d.i=0,h=256;h>0;--h)d.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(d.x&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),IS=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var d=u.w,p=u.X,h=u.i,f,m;return u.w=d=d+1640531527|0,m=p[h+34&127],f=p[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=p[h]=m^f,u.i=h,m+(d^d>>>16)|0};function c(d,p){var h,f,m,g,A,y=[],x=128;for(p===(p|0)?(f=p,p=null):(p=p+"\0",f=0,x=Math.max(x,p.length)),m=0,g=-32;g<x;++g)p&&(f^=p.charCodeAt((g+32)%p.length)),g===0&&(A=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(A=A+1640531527|0,h=y[g&127]^=f+A,m=h==0?m+1:0);for(m>=128&&(y[(p&&p.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;d.w=A,d.X=y,d.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(d.X&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),SS=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var p=u.b,h=u.c,f=u.d,m=u.a;return p=p<<25^p>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-p|0,u.b=p=p<<20^p>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-p|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var d=0;d<c.length+20;d++)u.b^=c.charCodeAt(d)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),d=u&&u.state,p=function(){return(c.next()>>>0)/4294967296};return p.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},p.int32=c.next,p.quick=p,d&&(typeof d=="object"&&o(d,c),p.state=function(){return o(c,{})}),p}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),CS=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),d=c*2,p=a-1,h;function f(v,k,S){var C=[];k=k==!0?{entropy:!0}:k||{};var D=y(A(k.entropy?[v,b(s)]:v==null?x():v,3),C),O=new m(C),E=function(){for(var R=O.g(o),T=u,P=0;R<c;)R=(R+P)*a,T*=a,P=O.g(1);for(;R>=d;)R/=2,T/=2,P>>>=1;return(R+P)/T};return E.int32=function(){return O.g(4)|0},E.quick=function(){return O.g(4)/4294967296},E.double=E,y(b(O.S),s),(k.pass||S||function(R,T,P,U){return U&&(U.S&&g(U,O),R.state=function(){return g(O,{})}),P?(r[l]=R,T):R})(E,D,"global"in k?k.global:this==r,k.state)}function m(v){var k,S=v.length,C=this,D=0,O=C.i=C.j=0,E=C.S=[];for(S||(v=[S++]);D<a;)E[D]=D++;for(D=0;D<a;D++)E[D]=E[O=p&O+v[D%S]+(k=E[D])],E[O]=k;(C.g=function(R){for(var T,P=0,U=C.i,j=C.j,q=C.S;R--;)T=q[U=p&U+1],P=P*a+q[p&(q[U]=q[j=p&j+T])+(q[j]=T)];return C.i=U,C.j=j,P})(a)}function g(v,k){return k.i=v.i,k.j=v.j,k.S=v.S.slice(),k}function A(v,k){var S=[],C=typeof v,D;if(k&&C=="object")for(D in v)try{S.push(A(v[D],k-1))}catch(O){}return S.length?S:C=="string"?v:v+"\0"}function y(v,k){for(var S=v+"",C,D=0;D<S.length;)k[p&D]=p&(C^=k[p&D]*19)+S.charCodeAt(D++);return b(k)}function x(){try{var v;return h&&(v=h.randomBytes)?v=v(a):(v=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(v)),b(v)}catch(C){var k=n.navigator,S=k&&k.plugins;return[+new Date,n,S,n.screen,b(s)]}}function b(v){return String.fromCharCode.apply(0,v)}if(y(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=Ux()}catch(v){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),Gx=It({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=bS(),s=vS(),r=wS(),a=kS(),o=IS(),i=SS(),l=CS();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),jx=It({"(disabled):node_modules/.pnpm/string_decoder@1.1.1/node_modules/string_decoder/lib/string_decoder.js"(){}}),Gu=It({"(disabled):path"(){}}),TS=It({"(disabled):worker_threads"(){}}),NS=It({"(disabled):perf_hooks"(){}}),ES=It({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.9.0_@tensorflow+tfjs-core@3.9.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return Q.buffer!=Xe&&un(Q.buffer),Dn}function o(){return Q.buffer!=Xe&&un(Q.buffer),Et}function i(){return Q.buffer!=Xe&&un(Q.buffer),Is}function l(){return Q.buffer!=Xe&&un(Q.buffer),xn}function u(){return Q.buffer!=Xe&&un(Q.buffer),cs}var c=typeof r!="undefined"?r:{},d,p;c.ready=new Promise(function(N,$){d=N,p=$});var h={},f;for(f in c)c.hasOwnProperty(f)&&(h[f]=c[f]);var m=[],g="./this.program",A=function(N,$){throw $},y=!1,x=!1,b=!1,v=!1;y=typeof window=="object",x=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",v=!y&&!b&&!x;var k=c.ENVIRONMENT_IS_PTHREAD||!1;k&&(Xe=c.buffer);var S="";function C(N){return c.locateFile?c.locateFile(N,S):S+N}var D,O,E,R,T,P;if(b){x?S=Gu().dirname(S)+"/":S=__dirname+"/",D=function($,B){return T||(T=Ei("fs")),P||(P=Gu()),$=P.normalize($),T.readFileSync($,B?null:"utf8")},E=function($){var B=D($,!0);return B.buffer||(B=new Uint8Array(B)),ye(B.buffer),B},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(N){if(!(N instanceof Wu))throw N}),process.on("unhandledRejection",br),A=function(N){process.exit(N)},c.inspect=function(){return"[Emscripten Module object]"};var U;try{U=TS()}catch(N){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),N}global.Worker=U.Worker}else v?(typeof read!="undefined"&&(D=function($){return read($)}),E=function($){var B;return typeof readbuffer=="function"?new Uint8Array(readbuffer($)):(B=read($,"binary"),ye(typeof B=="object"),B)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(A=function(N){quit(N)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||x)&&(x?S=self.location.href:typeof document!="undefined"&&document.currentScript&&(S=document.currentScript.src),typeof s!="undefined"&&s&&(S=s),S.indexOf("blob:")!==0?S=S.substr(0,S.lastIndexOf("/")+1):S="",b?(D=function($,B){return T||(T=Ei("fs")),P||(P=Gu()),$=P.normalize($),T.readFileSync($,B?null:"utf8")},E=function($){var B=D($,!0);return B.buffer||(B=new Uint8Array(B)),ye(B.buffer),B}):(D=function(N){var $=new XMLHttpRequest;return $.open("GET",N,!1),$.send(null),$.responseText},x&&(E=function(N){var $=new XMLHttpRequest;return $.open("GET",N,!1),$.responseType="arraybuffer",$.send(null),new Uint8Array($.response)}),O=function(N,$,B){var K=new XMLHttpRequest;K.open("GET",N,!0),K.responseType="arraybuffer",K.onload=function(){if(K.status==200||K.status==0&&K.response){$(K.response);return}B()},K.onerror=B,K.send(null)}),R=function(N){document.title=N});b&&typeof performance=="undefined"&&(global.performance=NS().performance);var j=c.print||console.log.bind(console),q=c.printErr||console.warn.bind(console);for(f in h)h.hasOwnProperty(f)&&(c[f]=h[f]);h=null,c.arguments&&(m=c.arguments),c.thisProgram&&(g=c.thisProgram),c.quit&&(A=c.quit);var X=Atomics.load,te=Atomics.store,ne=Atomics.compareExchange,se;c.wasmBinary&&(se=c.wasmBinary);var re=c.noExitRuntime||!0;typeof WebAssembly!="object"&&br("no native wasm support detected");var Q,le,ue=!1,he;function ye(N,$){N||br("Assertion failed: "+$)}function Ne(N){var $=c["_"+N];return ye($,"Cannot call unknown function "+N+", make sure it is exported"),$}function Ee(N,$,B,K,ge){var fe={string:function(bn){var Ti=0;if(bn!=null&&bn!==0){var Bx=(bn.length<<2)+1;Ti=Ii(Bx),at(bn,Ti,Bx)}return Ti},array:function(bn){var Ti=Ii(bn.length);return st(bn,Ti),Ti}};function me(bn){return $==="string"?Me(bn):$==="boolean"?Boolean(bn):bn}var Ie=Ne(N),it=[],Qt=0;if(K)for(var qt=0;qt<K.length;qt++){var Ur=fe[B[qt]];Ur?(Qt===0&&(Qt=Bu()),it[qt]=Ur(K[qt])):it[qt]=K[qt]}var Ci=Ie.apply(null,it);return Ci=me(Ci),Qt!==0&&ki(Qt),Ci}function $e(N,$,B,K){B=B||[];var ge=B.every(function(me){return me==="number"}),fe=$!=="string";return fe&&ge&&!K?Ne(N):function(){return Ee(N,$,B,arguments,K)}}function Be(N,$,B){for(var K=$+B,ge="";!($>=K);){var fe=N[$++];if(!fe)return ge;if(!(fe&128)){ge+=String.fromCharCode(fe);continue}var me=N[$++]&63;if((fe&224)==192){ge+=String.fromCharCode((fe&31)<<6|me);continue}var Ie=N[$++]&63;if((fe&240)==224?fe=(fe&15)<<12|me<<6|Ie:fe=(fe&7)<<18|me<<12|Ie<<6|N[$++]&63,fe<65536)ge+=String.fromCharCode(fe);else{var it=fe-65536;ge+=String.fromCharCode(55296|it>>10,56320|it&1023)}}return ge}function Me(N,$){return N?Be(o(),N,$):""}function ht(N,$,B,K){if(!(K>0))return 0;for(var ge=B,fe=B+K-1,me=0;me<N.length;++me){var Ie=N.charCodeAt(me);if(Ie>=55296&&Ie<=57343){var it=N.charCodeAt(++me);Ie=65536+((Ie&1023)<<10)|it&1023}if(Ie<=127){if(B>=fe)break;$[B++]=Ie}else if(Ie<=2047){if(B+1>=fe)break;$[B++]=192|Ie>>6,$[B++]=128|Ie&63}else if(Ie<=65535){if(B+2>=fe)break;$[B++]=224|Ie>>12,$[B++]=128|Ie>>6&63,$[B++]=128|Ie&63}else{if(B+3>=fe)break;$[B++]=240|Ie>>18,$[B++]=128|Ie>>12&63,$[B++]=128|Ie>>6&63,$[B++]=128|Ie&63}}return $[B]=0,B-ge}function at(N,$,B){return ht(N,o(),$,B)}function ot(N){for(var $=0,B=0;B<N.length;++B){var K=N.charCodeAt(B);K>=55296&&K<=57343&&(K=65536+((K&1023)<<10)|N.charCodeAt(++B)&1023),K<=127?++$:K<=2047?$+=2:K<=65535?$+=3:$+=4}return $}function st(N,$){a().set(N,$)}function dt(N,$){return N%$>0&&(N+=$-N%$),N}var Xe,Dn,Et,Gn,ln,Is,xn,us,cs;function un(N){Xe=N,c.HEAP8=Dn=new Int8Array(N),c.HEAP16=Gn=new Int16Array(N),c.HEAP32=Is=new Int32Array(N),c.HEAPU8=Et=new Uint8Array(N),c.HEAPU16=ln=new Uint16Array(N),c.HEAPU32=xn=new Uint32Array(N),c.HEAPF32=us=new Float32Array(N),c.HEAPF64=cs=new Float64Array(N)}var ds=c.INITIAL_MEMORY||16777216;if(k)Q=c.wasmMemory,Xe=c.buffer;else if(c.wasmMemory)Q=c.wasmMemory;else if(Q=new WebAssembly.Memory({initial:ds/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(Xe=Q.buffer),ds=Xe.byteLength,un(Xe);var ps,jn=[],Ys=[],yr=[],zr=[],Ai=[],Js=!1,zd=!1;k||Ys.push({func:function(){Qd()}});function E0(){if(!k){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)Bd(c.preRun.shift());xi(jn)}}function Du(){Js=!0,!k&&xi(Ys)}function R0(){k||xi(yr)}function Ld(){k||(zd=!0)}function _n(){if(!k){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)D0(c.postRun.shift());xi(Ai)}}function Bd(N){jn.unshift(N)}function D0(N){Ai.unshift(N)}var xr=0,Lr=null,Sa=null;function _0(N){ye(!k,"addRunDependency cannot be used in a pthread worker"),xr++,c.monitorRunDependencies&&c.monitorRunDependencies(xr)}function F0(N){if(xr--,c.monitorRunDependencies&&c.monitorRunDependencies(xr),xr==0&&(Lr!==null&&(clearInterval(Lr),Lr=null),Sa)){var $=Sa;Sa=null,$()}}c.preloadedImages={},c.preloadedAudios={};function br(N){c.onAbort&&c.onAbort(N),k&&console.error("Pthread aborting at "+new Error().stack),N+="",q(N),ue=!0,he=1,N="abort("+N+"). Build with -s ASSERTIONS=1 for more info.";var $=new WebAssembly.RuntimeError(N);throw p($),$}function Wd(N,$){return String.prototype.startsWith?N.startsWith($):N.indexOf($)===0}var yi="data:application/octet-stream;base64,";function Vd(N){return Wd(N,yi)}var $0="file://";function Ud(N){return Wd(N,$0)}var Fn="tfjs-backend-wasm-threaded-simd.wasm";Vd(Fn)||(Fn=C(Fn));function Hd(N){try{if(N==Fn&&se)return new Uint8Array(se);if(E)return E(N);throw"both async and sync fetching of the wasm failed"}catch($){br($)}}function O0(){if(!se&&(y||x)){if(typeof fetch=="function"&&!Ud(Fn))return fetch(Fn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+Fn+"'";return N.arrayBuffer()}).catch(function(){return Hd(Fn)});if(O)return new Promise(function(N,$){O(Fn,function(B){N(new Uint8Array(B))},$)})}return Promise.resolve().then(function(){return Hd(Fn)})}function P0(){var N={a:Cm};function $(me,Ie){var it=me.exports;if(c.asm=it,ps=c.asm.F,le=Ie,!k){var Qt=Te.unusedWorkers.length;Te.unusedWorkers.forEach(function(qt){Te.loadWasmModuleToWorker(qt,function(){--Qt||F0("wasm-instantiate")})})}}k||_0("wasm-instantiate");function B(me){$(me.instance,me.module)}function K(me){return O0().then(function(Ie){return WebAssembly.instantiate(Ie,N)}).then(me,function(Ie){q("failed to asynchronously prepare wasm: "+Ie),br(Ie)})}function ge(){return!se&&typeof WebAssembly.instantiateStreaming=="function"&&!Vd(Fn)&&!Ud(Fn)&&typeof fetch=="function"?fetch(Fn,{credentials:"same-origin"}).then(function(me){var Ie=WebAssembly.instantiateStreaming(me,N);return Ie.then(B,function(it){return q("wasm streaming compile failed: "+it),q("falling back to ArrayBuffer instantiation"),K(B)})}):K(B)}if(c.instantiateWasm)try{var fe=c.instantiateWasm(N,$);return fe}catch(me){return q("Module.instantiateWasm callback failed with error: "+me),!1}return ge().catch(p),{}}var M0={10024:function(){throw"Canceled!"},10042:function(N,$){setTimeout(function(){$x(N,$)},0)}};function Gd(){Te.initRuntime()}function xi(N){for(;N.length>0;){var $=N.shift();if(typeof $=="function"){$(c);continue}var B=$.func;typeof B=="number"?$.arg===void 0?ps.get(B)():ps.get(B)($.arg):B($.arg===void 0?null:$.arg)}}function _u(N,$){if(N<=0||N>a().length||N&!0||$<0)return-28;if($==0)return 0;$>=2147483647&&($=1/0);var B=Atomics.load(i(),Si>>2),K=0;if(B==N){var ge=Atomics.compareExchange(i(),Si>>2,B,0);if(ge==B&&(--$,K=1,$<=0))return 1}var fe=Atomics.notify(i(),N>>2,$);if(fe>=0)return fe+K;throw"Atomics.notify returned an unexpected value "+fe}c._emscripten_futex_wake=_u;function z0(N){if(k)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in killThread!";i()[N+12>>2]=0;var $=Te.pthreads[N];$.worker.terminate(),Te.freeThreadData($),Te.runningWorkers.splice(Te.runningWorkers.indexOf($.worker),1),$.worker.pthread=void 0}function L0(N){if(k)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cancelThread!";var $=Te.pthreads[N];$.worker.postMessage({cmd:"cancel"})}function B0(N){if(k)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!N)throw"Internal Error! Null pthread_ptr in cleanupThread!";var $=Te.pthreads[N];if($){i()[N+12>>2]=0;var B=$.worker;Te.returnWorkerToPool(B)}}var Te={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var N=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),$=0;$<N;++$)Te.allocateUnusedWorker()},initRuntime:function(){for(var N=Ta(228),$=0;$<228/4;++$)l()[N/4+$]=0;i()[N+12>>2]=N;var B=N+152;i()[B>>2]=B;for(var K=Ta(512),$=0;$<128;++$)l()[K/4+$]=0;Atomics.store(l(),N+100>>2,K),Atomics.store(l(),N+40>>2,N),Qm(N,!x,1),Fx(N)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Te.threadExitHandlers.length>0;)Te.threadExitHandlers.pop()();k&&wi()&&_x()},runExitHandlersAndDeinitThread:function(N,$){Atomics.store(l(),N+56>>2,1),Atomics.store(l(),N+60>>2,0),Te.runExitHandlers(),Atomics.store(l(),N+4>>2,$),Atomics.store(l(),N+0>>2,1),_u(N+0,2147483647),Qm(0,0,0)},threadExit:function(N){var $=wi();$&&(Te.runExitHandlersAndDeinitThread($,N),k&&postMessage({cmd:"exit"}))},threadCancel:function(){Te.runExitHandlersAndDeinitThread(wi(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var N in Te.pthreads){var $=Te.pthreads[N];$&&$.worker&&Te.returnWorkerToPool($.worker)}Te.pthreads={};for(var B=0;B<Te.unusedWorkers.length;++B){var K=Te.unusedWorkers[B];K.terminate()}Te.unusedWorkers=[];for(var B=0;B<Te.runningWorkers.length;++B){var K=Te.runningWorkers[B],$=K.pthread;Te.freeThreadData($),K.terminate()}Te.runningWorkers=[]},freeThreadData:function(N){if(!!N){if(N.threadInfoStruct){var $=i()[N.threadInfoStruct+100>>2];i()[N.threadInfoStruct+100>>2]=0,Lu($),Lu(N.threadInfoStruct)}N.threadInfoStruct=0,N.allocatedOwnStack&&N.stackBase&&Lu(N.stackBase),N.stackBase=0,N.worker&&(N.worker.pthread=null)}},returnWorkerToPool:function(N){Te.runWithoutMainThreadQueuedCalls(function(){delete Te.pthreads[N.pthread.threadInfoStruct],Te.unusedWorkers.push(N),Te.runningWorkers.splice(Te.runningWorkers.indexOf(N),1),Te.freeThreadData(N.pthread),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){i()[Lx>>2]=0;try{N()}finally{i()[Lx>>2]=1}},receiveObjectTransfer:function(N){},loadWasmModuleToWorker:function(N,$){N.onmessage=function(B){var K=B.data,ge=K.cmd;if(N.pthread&&(Te.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),K.targetThread&&K.targetThread!=wi()){var fe=Te.pthreads[K.targetThread];fe?fe.worker.postMessage(B.data,K.transferList):console.error('Internal error! Worker sent a message "'+ge+'" to target pthread '+K.targetThread+", but that thread no longer exists!"),Te.currentProxiedOperationCallerThread=void 0;return}if(ge==="processQueuedMainThreadWork")Ym();else if(ge==="spawnThread")Yd(B.data);else if(ge==="cleanupThread")B0(K.thread);else if(ge==="killThread")z0(K.thread);else if(ge==="cancelThread")L0(K.thread);else if(ge==="loaded")N.loaded=!0,$&&$(N),N.runPthread&&(N.runPthread(),delete N.runPthread);else if(ge==="print")j("Thread "+K.threadId+": "+K.text);else if(ge==="printErr")q("Thread "+K.threadId+": "+K.text);else if(ge==="alert")alert("Thread "+K.threadId+": "+K.text);else if(ge==="exit"){var me=N.pthread&&Atomics.load(l(),N.pthread.threadInfoStruct+64>>2);me&&Te.returnWorkerToPool(N)}else if(ge==="exitProcess")try{nS(K.returnCode)}catch(Ie){if(Ie instanceof Wu)return;throw Ie}else ge==="cancelDone"?Te.returnWorkerToPool(N):ge==="objectTransfer"?Te.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?N.postMessage(B.data):q("worker sent an unknown command "+ge);Te.currentProxiedOperationCallerThread=void 0},N.onerror=function(B){q("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},b&&(N.on("message",function(B){N.onmessage({data:B})}),N.on("error",function(B){N.onerror(B)}),N.on("exit",function(B){})),N.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||s,wasmMemory:Q,wasmModule:le})},allocateUnusedWorker:function(){var N=C("tfjs-backend-wasm-threaded-simd.worker.js");Te.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return Te.unusedWorkers.length==0&&(Te.allocateUnusedWorker(),Te.loadWasmModuleToWorker(Te.unusedWorkers[0])),Te.unusedWorkers.length>0?Te.unusedWorkers.pop():null},busySpinWait:function(N){for(var $=performance.now()+N;performance.now()<$;);}};function W0(N,$){Mx(N,$),ki(N)}c.establishStackSpace=W0;function V0(){return re}c.getNoExitRuntime=V0;function U0(N,$){return ps.get(N)($)}c.invokeEntryPoint=U0;function H0(N,$,B,K){br("Assertion failed: "+Me(N)+", at: "+[$?Me($):"unknown filename",B,K?Me(K):"unknown function"])}function G0(N,$){var B=_main(N,$)}var Ca;b?Ca=function(){var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:k?Ca=function(){return performance.now()-c.__performance_now_clock_drift}:typeof dateNow!="undefined"?Ca=dateNow:Ca=function(){return performance.now()};function j0(N){return i()[Rx()>>2]=N,N}function q0(N,$){if(k)return Br(1,1,N,$)}function X0(N,$){if(N==$)postMessage({cmd:"processQueuedMainThreadWork"});else if(k)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var B=Te.pthreads[N],K=B&&B.worker;if(!K)return;K.postMessage({cmd:"processThreadQueue"})}return 1}function K0(){br()}function Z0(N,$,B){var K=tm($,B);return M0[N].apply(null,K)}function Y0(N,$){}function J0(N,$,B){if(N<=0||N>a().length||N&!0)return-28;if(y){if(Atomics.load(i(),N>>2)!=$)return-6;for(var ge=performance.now(),fe=ge+B,me=Atomics.exchange(i(),Si>>2,N);;){if(ge=performance.now(),ge>fe)return me=Atomics.exchange(i(),Si>>2,0),-73;if(me=Atomics.exchange(i(),Si>>2,0),me==0)break;if(Ym(),Atomics.load(i(),N>>2)!=$)return-6;me=Atomics.exchange(i(),Si>>2,N)}return 0}else{var K=Atomics.wait(i(),N>>2,$,B);if(K==="timed-out")return-73;if(K==="not-equal")return-6;if(K==="ok")return 0;throw"Atomics.wait returned an unexpected value "+K}}function Q0(N,$,B){o().copyWithin(N,$,$+B)}function em(){return b?Ei("os").cpus().length:navigator.hardwareConcurrency}function Br(N,$){for(var B=arguments.length-2,K=Bu(),ge=B,fe=Ii(ge*8),me=fe>>3,Ie=0;Ie<B;Ie++){var it=arguments[2+Ie];u()[me+Ie]=it}var Qt=Px(N,ge,fe,$);return ki(K),Qt}var Fu=[],$u=[];function tm(N,$){$u.length=0;var B;for($>>=2;B=o()[N++];){var K=B<105;K&&$&1&&$++,$u.push(K?u()[$++>>1]:i()[$]),++$}return $u}function nm(N,$,B){Fu.length=$;for(var K=B>>3,ge=0;ge<$;ge++)Fu[ge]=u()[K+ge];var fe=N<0,me=fe?M0[-N-1]:Sm[N];return me.apply(null,Fu)}function sm(){return o().length}function rm(N){try{return Q.grow(N-Xe.byteLength+65535>>>16),un(Q.buffer),1}catch($){}}function am(N){var $=sm();if(N<=$)return!1;var B=2147483648;if(N>B)return!1;for(var K=1;K<=4;K*=2){var ge=$*(1+.2/K);ge=Math.min(ge,N+100663296);var fe=Math.min(B,dt(Math.max(N,ge),65536)),me=rm(fe);if(me)return!0}return!1}var Ve={inEventHandler:0,removeAllEventListeners:function(){for(var N=Ve.eventHandlers.length-1;N>=0;--N)Ve._removeHandler(N);Ve.eventHandlers=[],Ve.deferredCalls=[]},registerRemoveEventListeners:function(){Ve.removeEventListenersRegistered||(zr.push(Ve.removeAllEventListeners),Ve.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,$,B){function K(me,Ie){if(me.length!=Ie.length)return!1;for(var it in me)if(me[it]!=Ie[it])return!1;return!0}for(var ge in Ve.deferredCalls){var fe=Ve.deferredCalls[ge];if(fe.targetFunction==N&&K(fe.argsList,B))return}Ve.deferredCalls.push({targetFunction:N,precedence:$,argsList:B}),Ve.deferredCalls.sort(function(me,Ie){return me.precedence<Ie.precedence})},removeDeferredCalls:function(N){for(var $=0;$<Ve.deferredCalls.length;++$)Ve.deferredCalls[$].targetFunction==N&&(Ve.deferredCalls.splice($,1),--$)},canPerformEventHandlerRequests:function(){return Ve.inEventHandler&&Ve.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Ve.canPerformEventHandlerRequests())for(var N=0;N<Ve.deferredCalls.length;++N){var $=Ve.deferredCalls[N];Ve.deferredCalls.splice(N,1),--N,$.targetFunction.apply(null,$.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,$){for(var B=0;B<Ve.eventHandlers.length;++B)Ve.eventHandlers[B].target==N&&(!$||$==Ve.eventHandlers[B].eventTypeString)&&Ve._removeHandler(B--)},_removeHandler:function(N){var $=Ve.eventHandlers[N];$.target.removeEventListener($.eventTypeString,$.eventListenerFunc,$.useCapture),Ve.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var $=function(ge){++Ve.inEventHandler,Ve.currentEventHandler=N,Ve.runDeferredCalls(),N.handlerFunc(ge),Ve.runDeferredCalls(),--Ve.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=$,N.target.addEventListener(N.eventTypeString,$,N.useCapture),Ve.eventHandlers.push(N),Ve.registerRemoveEventListeners();else for(var B=0;B<Ve.eventHandlers.length;++B)Ve.eventHandlers[B].target==N.target&&Ve.eventHandlers[B].eventTypeString==N.eventTypeString&&Ve._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(N,$,B,K,ge){var fe=Bu(),me=Ii(12);i()[me>>2]=B,i()[me+4>>2]=K,i()[me+8>>2]=ge,Jm(0,N,637534208,$,K,me),ki(fe)},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return Te.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function om(N){var $=ot(N)+1,B=Ta($);return at(N,B,$),B}function im(N,$,B,K){var ge=Bu(),fe=Ii(12),me=0;$&&(me=om($)),i()[fe>>2]=me,i()[fe+4>>2]=B,i()[fe+8>>2]=K,Jm(0,N,657457152,0,me,fe),ki(ge)}function lm(N,$,B,K){$=$?Me($):"",im(N,$,B,K)}function um(N){return N>2?Me(N):N}var cm=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function dm(N){N=um(N);var $=cm[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return $}function Ou(N){return dm(N)}function jd(N,$,B){var K=Ou(N);if(!K)return-4;if(K.canvasSharedPtr&&(i()[K.canvasSharedPtr>>2]=$,i()[K.canvasSharedPtr+4>>2]=B),K.offscreenCanvas||!K.controlTransferredOffscreen){K.offscreenCanvas&&(K=K.offscreenCanvas);var ge=!1;if(K.GLctxObject&&K.GLctxObject.GLctx){var fe=K.GLctxObject.GLctx.getParameter(2978);ge=fe[0]===0&&fe[1]===0&&fe[2]===K.width&&fe[3]===K.height}K.width=$,K.height=B,ge&&K.GLctxObject.GLctx.viewport(0,0,$,B)}else if(K.canvasSharedPtr){var me=i()[K.canvasSharedPtr+8>>2];return lm(me,N,$,B),1}else return-4;return 0}function qd(N,$,B){return k?Br(2,1,N,$,B):jd(N,$,B)}function pm(N,$,B){var K=Ou(N);return K?jd(N,$,B):qd(N,$,B)}function hm(N){}function fm(N,$){}function mm(N){var $=N.getExtension("ANGLE_instanced_arrays");if($)return N.vertexAttribDivisor=function(B,K){$.vertexAttribDivisorANGLE(B,K)},N.drawArraysInstanced=function(B,K,ge,fe){$.drawArraysInstancedANGLE(B,K,ge,fe)},N.drawElementsInstanced=function(B,K,ge,fe,me){$.drawElementsInstancedANGLE(B,K,ge,fe,me)},1}function gm(N){var $=N.getExtension("OES_vertex_array_object");if($)return N.createVertexArray=function(){return $.createVertexArrayOES()},N.deleteVertexArray=function(B){$.deleteVertexArrayOES(B)},N.bindVertexArray=function(B){$.bindVertexArrayOES(B)},N.isVertexArray=function(B){return $.isVertexArrayOES(B)},1}function Am(N){var $=N.getExtension("WEBGL_draw_buffers");if($)return N.drawBuffers=function(B,K){$.drawBuffersWEBGL(B,K)},1}function ym(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var rt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function($){rt.lastError||(rt.lastError=$)},getNewId:function(N){for(var $=rt.counter++,B=N.length;B<$;B++)N[B]=null;return $},getSource:function(N,$,B,K){for(var ge="",fe=0;fe<$;++fe){var me=K?i()[K+fe*4>>2]:-1;ge+=Me(i()[B+fe*4>>2],me<0?void 0:me)}return ge},createContext:function(N,$){var B=N.getContext("webgl",$);if(!B)return 0;var K=rt.registerContext(B,$);return K},registerContext:function(N,$){var B=Ta(8);i()[B+4>>2]=wi();var K={handle:B,attributes:$,version:$.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=K),rt.contexts[B]=K,(typeof $.enableExtensionsByDefault=="undefined"||$.enableExtensionsByDefault)&&rt.initExtensions(K),B},makeContextCurrent:function(N){return rt.currentContext=rt.contexts[N],c.ctx=Wr=rt.currentContext&&rt.currentContext.GLctx,!(N&&!Wr)},getContext:function(N){return rt.contexts[N]},deleteContext:function(N){rt.currentContext===rt.contexts[N]&&(rt.currentContext=null),typeof Ve=="object"&&Ve.removeAllHandlersOnTarget(rt.contexts[N].GLctx.canvas),rt.contexts[N]&&rt.contexts[N].GLctx.canvas&&(rt.contexts[N].GLctx.canvas.GLctxObject=void 0),Lu(rt.contexts[N].handle),rt.contexts[N]=null},initExtensions:function(N){if(N||(N=rt.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var $=N.GLctx;mm($),gm($),Am($),$.disjointTimerQueryExt=$.getExtension("EXT_disjoint_timer_query"),ym($);var B=$.getSupportedExtensions()||[];B.forEach(function(K){K.indexOf("lose_context")<0&&K.indexOf("debug")<0&&$.getExtension(K)})}},populateUniformTable:function(N){for(var $=rt.programs[N],B=rt.programInfos[N]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},K=B.uniforms,ge=Wr.getProgramParameter($,35718),fe=0;fe<ge;++fe){var me=Wr.getActiveUniform($,fe),Ie=me.name;B.maxUniformLength=Math.max(B.maxUniformLength,Ie.length+1),Ie.slice(-1)=="]"&&(Ie=Ie.slice(0,Ie.lastIndexOf("[")));var it=Wr.getUniformLocation($,Ie);if(it){var Qt=rt.getNewId(rt.uniforms);K[Ie]=[me.size,Qt],rt.uniforms[Qt]=it;for(var qt=1;qt<me.size;++qt){var Ur=Ie+"["+qt+"]";it=Wr.getUniformLocation($,Ur),Qt=rt.getNewId(rt.uniforms),rt.uniforms[Qt]=it}}}}},xm=["default","low-power","high-performance"];function bm(N,$){var B=$>>2,K=i()[B+(24>>2)],ge={alpha:!!i()[B+(0>>2)],depth:!!i()[B+(4>>2)],stencil:!!i()[B+(8>>2)],antialias:!!i()[B+(12>>2)],premultipliedAlpha:!!i()[B+(16>>2)],preserveDrawingBuffer:!!i()[B+(20>>2)],powerPreference:xm[K],failIfMajorPerformanceCaveat:!!i()[B+(28>>2)],majorVersion:i()[B+(32>>2)],minorVersion:i()[B+(36>>2)],enableExtensionsByDefault:i()[B+(40>>2)],explicitSwapControl:i()[B+(44>>2)],proxyContextToMainThread:i()[B+(48>>2)],renderViaOffscreenBackBuffer:i()[B+(52>>2)]},fe=Ou(N);if(!fe||ge.explicitSwapControl)return 0;var me=rt.createContext(fe,ge);return me}function vm(N,$){return bm(N,$)}var bi={mappings:{},buffers:[null,[],[]],printChar:function(N,$){var B=bi.buffers[N];$===0||$===10?((N===1?j:q)(Be(B,0)),B.length=0):B.push($)},varargs:void 0,get:function(){bi.varargs+=4;var N=i()[bi.varargs-4>>2];return N},getStr:function(N){var $=Me(N);return $},get64:function(N,$){return N}};function Xd(N){return k?Br(3,1,N):0}function Kd(N,$,B,K,ge){if(k)return Br(4,1,N,$,B,K,ge)}function Zd(N,$,B,K){if(k)return Br(5,1,N,$,B,K);for(var ge=0,fe=0;fe<B;fe++){for(var me=i()[$+fe*8>>2],Ie=i()[$+(fe*8+4)>>2],it=0;it<Ie;it++)bi.printChar(N,o()[me+it]);ge+=Ie}return i()[K>>2]=ge,0}function wm(N){var $=Te.threadExitHandlers.pop();N&&$()}function km(N,$){Te.threadExitHandlers.push(function(){ps.get(N)($)})}function Yd(N){if(k)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var $=Te.getNewWorker();if($.pthread!==void 0)throw"Internal error!";if(!N.pthread_ptr)throw"Internal error, no pthread ptr!";Te.runningWorkers.push($);for(var B=Ta(128*4),K=0;K<128;++K)i()[B+K*4>>2]=0;var ge=N.stackBase+N.stackSize,fe=Te.pthreads[N.pthread_ptr]={worker:$,stackBase:N.stackBase,stackSize:N.stackSize,allocatedOwnStack:N.allocatedOwnStack,threadInfoStruct:N.pthread_ptr},me=fe.threadInfoStruct>>2;Atomics.store(l(),me+(64>>2),N.detached),Atomics.store(l(),me+(100>>2),B),Atomics.store(l(),me+(40>>2),fe.threadInfoStruct),Atomics.store(l(),me+(80>>2),N.stackSize),Atomics.store(l(),me+(76>>2),ge),Atomics.store(l(),me+(104>>2),N.stackSize),Atomics.store(l(),me+(104+8>>2),ge),Atomics.store(l(),me+(104+12>>2),N.detached);var Ie=Dx(),it=Ie+40;Atomics.store(l(),me+(172>>2),it),$.pthread=fe;var Qt={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr,stackBase:N.stackBase,stackSize:N.stackSize};$.runPthread=function(){Qt.time=performance.now(),$.postMessage(Qt,N.transferList)},$.loaded&&($.runPthread(),delete $.runPthread)}function Im(N,$,B,K){if(typeof SharedArrayBuffer=="undefined")return q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!N)return q("pthread_create called with a null thread pointer!"),28;var ge=[],fe=0;if(k&&(ge.length===0||fe))return Ox(687865856,N,$,B,K);if(fe)return fe;var me=0,Ie=0,it=0;$&&$!=-1?(me=i()[$>>2],me+=81920,Ie=i()[$+8>>2],it=i()[$+12>>2]!==0):me=2097152;var Qt=Ie==0;Qt?Ie=zx(16,me):(Ie-=me,ye(Ie>0));for(var qt=Ta(228),Ur=0;Ur<228>>2;++Ur)l()[(qt>>2)+Ur]=0;i()[N>>2]=qt,i()[qt+12>>2]=qt;var Ci=qt+152;i()[Ci>>2]=Ci;var bn={stackBase:Ie,stackSize:me,allocatedOwnStack:Qt,detached:it,startRoutine:B,pthread_ptr:qt,arg:K,transferList:ge};return k?(bn.cmd="spawnThread",postMessage(bn,ge)):Yd(bn),0}function Jd(N){if(k)return Br(6,1,N);switch(N){case 30:return 16384;case 85:var $=2147483648;return $/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return j0(28),-1}k||Te.initMainThreadBlock();var Wr,Sm=[null,q0,qd,Xd,Kd,Zd,Jd],Cm={e:H0,r:G0,x:X0,b:K0,y:Z0,j:Y0,c:J0,d:_u,f:Ca,p:Q0,z:em,u:nm,q:am,v:pm,i:hm,t:fm,w:vm,m:Xd,n:Kd,g:Zd,o:Gd,a:Q||c.wasmMemory,k:wm,l:km,h:Im,s:Jd},Ex=P0(),Qd=c.___wasm_call_ctors=function(){return(Qd=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},Tm=c._init=function(){return(Tm=c._init=c.asm.B).apply(null,arguments)},Nm=c._register_tensor=function(){return(Nm=c._register_tensor=c.asm.C).apply(null,arguments)},Em=c._dispose_data=function(){return(Em=c._dispose_data=c.asm.D).apply(null,arguments)},Rm=c._dispose=function(){return(Rm=c._dispose=c.asm.E).apply(null,arguments)},Dm=c._Abs=function(){return(Dm=c._Abs=c.asm.G).apply(null,arguments)},_m=c._Add=function(){return(_m=c._Add=c.asm.H).apply(null,arguments)},Fm=c._AddN=function(){return(Fm=c._AddN=c.asm.I).apply(null,arguments)},$m=c._All=function(){return($m=c._All=c.asm.J).apply(null,arguments)},Om=c._Any=function(){return(Om=c._Any=c.asm.K).apply(null,arguments)},Pm=c._ArgMax=function(){return(Pm=c._ArgMax=c.asm.L).apply(null,arguments)},Mm=c._AvgPool=function(){return(Mm=c._AvgPool=c.asm.M).apply(null,arguments)},zm=c._BatchMatMul=function(){return(zm=c._BatchMatMul=c.asm.N).apply(null,arguments)},Lm=c._Ceil=function(){return(Lm=c._Ceil=c.asm.O).apply(null,arguments)},Bm=c._ClipByValue=function(){return(Bm=c._ClipByValue=c.asm.P).apply(null,arguments)},Wm=c._Conv2D=function(){return(Wm=c._Conv2D=c.asm.Q).apply(null,arguments)},Vm=c._Conv2DBackpropInput=function(){return(Vm=c._Conv2DBackpropInput=c.asm.R).apply(null,arguments)},Um=c._Cos=function(){return(Um=c._Cos=c.asm.S).apply(null,arguments)},Hm=c._Cosh=function(){return(Hm=c._Cosh=c.asm.T).apply(null,arguments)},Gm=c._CropAndResize=function(){return(Gm=c._CropAndResize=c.asm.U).apply(null,arguments)},jm=c._Cumsum=function(){return(jm=c._Cumsum=c.asm.V).apply(null,arguments)},qm=c._DepthToSpace=function(){return(qm=c._DepthToSpace=c.asm.W).apply(null,arguments)},Xm=c._DepthwiseConv2dNative=function(){return(Xm=c._DepthwiseConv2dNative=c.asm.X).apply(null,arguments)},Km=c._Elu=function(){return(Km=c._Elu=c.asm.Y).apply(null,arguments)},ep=c._Equal=function(){return(ep=c._Equal=c.asm.Z).apply(null,arguments)},tp=c._Exp=function(){return(tp=c._Exp=c.asm._).apply(null,arguments)},np=c._FlipLeftRight=function(){return(np=c._FlipLeftRight=c.asm.$).apply(null,arguments)},Pu=c._Floor=function(){return(Pu=c._Floor=c.asm.aa).apply(null,arguments)},vi=c._FloorDiv=function(){return(vi=c._FloorDiv=c.asm.ba).apply(null,arguments)},Zm=c._FusedBatchNorm=function(){return(Zm=c._FusedBatchNorm=c.asm.ca).apply(null,arguments)},Mu=c._FusedConv2D=function(){return(Mu=c._FusedConv2D=c.asm.da).apply(null,arguments)},J=c._FusedDepthwiseConv2D=function(){return(J=c._FusedDepthwiseConv2D=c.asm.ea).apply(null,arguments)},ae=c._Gather=function(){return(ae=c._Gather=c.asm.fa).apply(null,arguments)},ve=c._GatherNd=function(){return(ve=c._GatherNd=c.asm.ga).apply(null,arguments)},nt=c._Greater=function(){return(nt=c._Greater=c.asm.ha).apply(null,arguments)},Ft=c._GreaterEqual=function(){return(Ft=c._GreaterEqual=c.asm.ia).apply(null,arguments)},kt=c._LeakyRelu=function(){return(kt=c._LeakyRelu=c.asm.ja).apply(null,arguments)},Ke=c._Less=function(){return(Ke=c._Less=c.asm.ka).apply(null,arguments)},Qe=c._LessEqual=function(){return(Qe=c._LessEqual=c.asm.la).apply(null,arguments)},cn=c._Log=function(){return(cn=c._Log=c.asm.ma).apply(null,arguments)},vr=c._LogicalAnd=function(){return(vr=c._LogicalAnd=c.asm.na).apply(null,arguments)},wr=c._Max=function(){return(wr=c._Max=c.asm.oa).apply(null,arguments)},sp=c._MaxPool=function(){return(sp=c._MaxPool=c.asm.pa).apply(null,arguments)},zu=c._Maximum=function(){return(zu=c._Maximum=c.asm.qa).apply(null,arguments)},qn=c._Mean=function(){return(qn=c._Mean=c.asm.ra).apply(null,arguments)},Vr=c._Min=function(){return(Vr=c._Min=c.asm.sa).apply(null,arguments)},rp=c._Minimum=function(){return(rp=c._Minimum=c.asm.ta).apply(null,arguments)},mI=c._MirrorPad=function(){return(mI=c._MirrorPad=c.asm.ua).apply(null,arguments)},gI=c._Multiply=function(){return(gI=c._Multiply=c.asm.va).apply(null,arguments)},AI=c._Neg=function(){return(AI=c._Neg=c.asm.wa).apply(null,arguments)},yI=c._NonMaxSuppressionV3=function(){return(yI=c._NonMaxSuppressionV3=c.asm.xa).apply(null,arguments)},xI=c._NonMaxSuppressionV4=function(){return(xI=c._NonMaxSuppressionV4=c.asm.ya).apply(null,arguments)},bI=c._NonMaxSuppressionV5=function(){return(bI=c._NonMaxSuppressionV5=c.asm.za).apply(null,arguments)},vI=c._NotEqual=function(){return(vI=c._NotEqual=c.asm.Aa).apply(null,arguments)},wI=c._OneHot=function(){return(wI=c._OneHot=c.asm.Ba).apply(null,arguments)},kI=c._PadV2=function(){return(kI=c._PadV2=c.asm.Ca).apply(null,arguments)},II=c._Pow=function(){return(II=c._Pow=c.asm.Da).apply(null,arguments)},SI=c._Prelu=function(){return(SI=c._Prelu=c.asm.Ea).apply(null,arguments)},CI=c._Prod=function(){return(CI=c._Prod=c.asm.Fa).apply(null,arguments)},TI=c._RealDiv=function(){return(TI=c._RealDiv=c.asm.Ga).apply(null,arguments)},NI=c._Relu=function(){return(NI=c._Relu=c.asm.Ha).apply(null,arguments)},EI=c._Relu6=function(){return(EI=c._Relu6=c.asm.Ia).apply(null,arguments)},RI=c._ResizeBilinear=function(){return(RI=c._ResizeBilinear=c.asm.Ja).apply(null,arguments)},DI=c._Reverse=function(){return(DI=c._Reverse=c.asm.Ka).apply(null,arguments)},_I=c._RotateWithOffset=function(){return(_I=c._RotateWithOffset=c.asm.La).apply(null,arguments)},FI=c._Round=function(){return(FI=c._Round=c.asm.Ma).apply(null,arguments)},$I=c._Rsqrt=function(){return($I=c._Rsqrt=c.asm.Na).apply(null,arguments)},OI=c._ScatterNd=function(){return(OI=c._ScatterNd=c.asm.Oa).apply(null,arguments)},PI=c._SelectV2=function(){return(PI=c._SelectV2=c.asm.Pa).apply(null,arguments)},MI=c._Sigmoid=function(){return(MI=c._Sigmoid=c.asm.Qa).apply(null,arguments)},zI=c._Sin=function(){return(zI=c._Sin=c.asm.Ra).apply(null,arguments)},LI=c._Softmax=function(){return(LI=c._Softmax=c.asm.Sa).apply(null,arguments)},BI=c._Sqrt=function(){return(BI=c._Sqrt=c.asm.Ta).apply(null,arguments)},WI=c._Square=function(){return(WI=c._Square=c.asm.Ua).apply(null,arguments)},VI=c._SquaredDifference=function(){return(VI=c._SquaredDifference=c.asm.Va).apply(null,arguments)},UI=c._Step=function(){return(UI=c._Step=c.asm.Wa).apply(null,arguments)},HI=c._StridedSlice=function(){return(HI=c._StridedSlice=c.asm.Xa).apply(null,arguments)},GI=c._Sub=function(){return(GI=c._Sub=c.asm.Ya).apply(null,arguments)},jI=c._Sum=function(){return(jI=c._Sum=c.asm.Za).apply(null,arguments)},qI=c._Tan=function(){return(qI=c._Tan=c.asm._a).apply(null,arguments)},XI=c._Tanh=function(){return(XI=c._Tanh=c.asm.$a).apply(null,arguments)},KI=c._Tile=function(){return(KI=c._Tile=c.asm.ab).apply(null,arguments)},ZI=c._TopK=function(){return(ZI=c._TopK=c.asm.bb).apply(null,arguments)},YI=c._Transform=function(){return(YI=c._Transform=c.asm.cb).apply(null,arguments)},JI=c._Transpose=function(){return(JI=c._Transpose=c.asm.db).apply(null,arguments)},QI=c.__FusedMatMul=function(){return(QI=c.__FusedMatMul=c.asm.eb).apply(null,arguments)},Ta=c._malloc=function(){return(Ta=c._malloc=c.asm.fb).apply(null,arguments)},Lu=c._free=function(){return(Lu=c._free=c.asm.gb).apply(null,arguments)},Rx=c.___errno_location=function(){return(Rx=c.___errno_location=c.asm.hb).apply(null,arguments)},Dx=c._emscripten_get_global_libc=function(){return(Dx=c._emscripten_get_global_libc=c.asm.ib).apply(null,arguments)},wi=c._pthread_self=function(){return(wi=c._pthread_self=c.asm.jb).apply(null,arguments)},_x=c.___pthread_tsd_run_dtors=function(){return(_x=c.___pthread_tsd_run_dtors=c.asm.kb).apply(null,arguments)},Ym=c._emscripten_main_thread_process_queued_calls=function(){return(Ym=c._emscripten_main_thread_process_queued_calls=c.asm.lb).apply(null,arguments)},eS=c._emscripten_current_thread_process_queued_calls=function(){return(eS=c._emscripten_current_thread_process_queued_calls=c.asm.mb).apply(null,arguments)},Fx=c._emscripten_register_main_browser_thread_id=function(){return(Fx=c._emscripten_register_main_browser_thread_id=c.asm.nb).apply(null,arguments)},$x=c.__emscripten_do_dispatch_to_thread=function(){return($x=c.__emscripten_do_dispatch_to_thread=c.asm.ob).apply(null,arguments)},Ox=c._emscripten_sync_run_in_main_thread_4=function(){return(Ox=c._emscripten_sync_run_in_main_thread_4=c.asm.pb).apply(null,arguments)},Px=c._emscripten_run_in_main_runtime_thread_js=function(){return(Px=c._emscripten_run_in_main_runtime_thread_js=c.asm.qb).apply(null,arguments)},Jm=c.__emscripten_call_on_thread=function(){return(Jm=c.__emscripten_call_on_thread=c.asm.rb).apply(null,arguments)},tS=c._emscripten_tls_init=function(){return(tS=c._emscripten_tls_init=c.asm.sb).apply(null,arguments)},Qm=c.__emscripten_thread_init=function(){return(Qm=c.__emscripten_thread_init=c.asm.tb).apply(null,arguments)},Bu=c.stackSave=function(){return(Bu=c.stackSave=c.asm.ub).apply(null,arguments)},ki=c.stackRestore=function(){return(ki=c.stackRestore=c.asm.vb).apply(null,arguments)},Ii=c.stackAlloc=function(){return(Ii=c.stackAlloc=c.asm.wb).apply(null,arguments)},Mx=c._emscripten_stack_set_limits=function(){return(Mx=c._emscripten_stack_set_limits=c.asm.xb).apply(null,arguments)},zx=c._memalign=function(){return(zx=c._memalign=c.asm.yb).apply(null,arguments)},Lx=c.__emscripten_allow_main_runtime_queued_calls=10016,Si=c.__emscripten_main_thread_futex=11652;c.cwrap=$e,c.PThread=Te,c.PThread=Te,c.wasmMemory=Q,c.ExitStatus=Wu;var ap;function Wu(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}Sa=function N(){ap||eg(),ap||(Sa=N)};function eg(N){if(N=N||m,xr>0)return;if(k){d(c),Du(),postMessage({cmd:"loaded"});return}if(E0(),xr>0)return;function $(){ap||(ap=!0,c.calledRun=!0,!ue&&(Du(),R0(),d(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),_n()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),$()},1)):$()}c.run=eg;function nS(N,$){if(!($&&re&&N===0)){if(!$&&k)throw postMessage({cmd:"exitProcess",returnCode:N}),new Wu(N);re||(Te.terminateAllThreads(),he=N,Ld(),c.onExit&&c.onExit(N),ue=!0),A(N,new Wu(N))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return k&&(re=!1,Te.initWorker()),eg(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),RS=It({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.9.0_@tensorflow+tfjs-core@3.9.0/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=function(){var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(J,ae){o=J,i=ae});var l={},u;for(u in a)a.hasOwnProperty(u)&&(l[u]=a[u]);var c=[],d="./this.program",p=function(J,ae){throw ae},h=!1,f=!1,m=!1,g=!1;h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!m&&!f;var A="";function y(J){return a.locateFile?a.locateFile(J,A):A+J}var x,b,v,k,S,C;m?(f?A=Gu().dirname(A)+"/":A=__dirname+"/",x=function(ae,ve){return S||(S=Ei("fs")),C||(C=Gu()),ae=C.normalize(ae),S.readFileSync(ae,ve?null:"utf8")},v=function(ae){var ve=x(ae,!0);return ve.buffer||(ve=new Uint8Array(ve)),j(ve.buffer),ve},process.argv.length>1&&(d=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(J){if(!(J instanceof Zm))throw J}),process.on("unhandledRejection",Js),p=function(J){process.exit(J)},a.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(ae){return read(ae)}),v=function(ae){var ve;return typeof readbuffer=="function"?new Uint8Array(readbuffer(ae)):(ve=read(ae,"binary"),j(typeof ve=="object"),ve)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(p=function(J){quit(J)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||f)&&(f?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),s&&(A=s),A.indexOf("blob:")!==0?A=A.substr(0,A.lastIndexOf("/")+1):A="",x=function(J){var ae=new XMLHttpRequest;return ae.open("GET",J,!1),ae.send(null),ae.responseText},f&&(v=function(J){var ae=new XMLHttpRequest;return ae.open("GET",J,!1),ae.responseType="arraybuffer",ae.send(null),new Uint8Array(ae.response)}),b=function(J,ae,ve){var nt=new XMLHttpRequest;nt.open("GET",J,!0),nt.responseType="arraybuffer",nt.onload=function(){if(nt.status==200||nt.status==0&&nt.response){ae(nt.response);return}ve()},nt.onerror=ve,nt.send(null)},k=function(J){document.title=J});var D=a.print||console.log.bind(console),O=a.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(a[u]=l[u]);l=null,a.arguments&&(c=a.arguments),a.thisProgram&&(d=a.thisProgram),a.quit&&(p=a.quit);var E;a.wasmBinary&&(E=a.wasmBinary);var R=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Js("no native wasm support detected");var T,P=!1,U;function j(J,ae){J||Js("Assertion failed: "+ae)}function q(J){var ae=a["_"+J];return j(ae,"Cannot call unknown function "+J+", make sure it is exported"),ae}function X(J,ae,ve,nt,Ft){var kt={string:function(qn){var Vr=0;if(qn!=null&&qn!==0){var rp=(qn.length<<2)+1;Vr=Pu(rp),le(qn,Vr,rp)}return Vr},array:function(qn){var Vr=Pu(qn.length);return ue(qn,Vr),Vr}};function Ke(qn){return ae==="string"?re(qn):ae==="boolean"?Boolean(qn):qn}var Qe=q(J),cn=[],vr=0;if(nt)for(var wr=0;wr<nt.length;wr++){var sp=kt[ve[wr]];sp?(vr===0&&(vr=tp()),cn[wr]=sp(nt[wr])):cn[wr]=nt[wr]}var zu=Qe.apply(null,cn);return zu=Ke(zu),vr!==0&&np(vr),zu}function te(J,ae,ve,nt){ve=ve||[];var Ft=ve.every(function(Ke){return Ke==="number"}),kt=ae!=="string";return kt&&Ft&&!nt?q(J):function(){return X(J,ae,ve,arguments,nt)}}var ne=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function se(J,ae,ve){for(var nt=ae+ve,Ft=ae;J[Ft]&&!(Ft>=nt);)++Ft;if(Ft-ae>16&&J.subarray&&ne)return ne.decode(J.subarray(ae,Ft));for(var kt="";ae<Ft;){var Ke=J[ae++];if(!(Ke&128)){kt+=String.fromCharCode(Ke);continue}var Qe=J[ae++]&63;if((Ke&224)==192){kt+=String.fromCharCode((Ke&31)<<6|Qe);continue}var cn=J[ae++]&63;if((Ke&240)==224?Ke=(Ke&15)<<12|Qe<<6|cn:Ke=(Ke&7)<<18|Qe<<12|cn<<6|J[ae++]&63,Ke<65536)kt+=String.fromCharCode(Ke);else{var vr=Ke-65536;kt+=String.fromCharCode(55296|vr>>10,56320|vr&1023)}}return kt}function re(J,ae){return J?se(Ee,J,ae):""}function Q(J,ae,ve,nt){if(!(nt>0))return 0;for(var Ft=ve,kt=ve+nt-1,Ke=0;Ke<J.length;++Ke){var Qe=J.charCodeAt(Ke);if(Qe>=55296&&Qe<=57343){var cn=J.charCodeAt(++Ke);Qe=65536+((Qe&1023)<<10)|cn&1023}if(Qe<=127){if(ve>=kt)break;ae[ve++]=Qe}else if(Qe<=2047){if(ve+1>=kt)break;ae[ve++]=192|Qe>>6,ae[ve++]=128|Qe&63}else if(Qe<=65535){if(ve+2>=kt)break;ae[ve++]=224|Qe>>12,ae[ve++]=128|Qe>>6&63,ae[ve++]=128|Qe&63}else{if(ve+3>=kt)break;ae[ve++]=240|Qe>>18,ae[ve++]=128|Qe>>12&63,ae[ve++]=128|Qe>>6&63,ae[ve++]=128|Qe&63}}return ae[ve]=0,ve-Ft}function le(J,ae,ve){return Q(J,Ee,ae,ve)}function ue(J,ae){Ne.set(J,ae)}function he(J,ae){return J%ae>0&&(J+=ae-J%ae),J}var ye,Ne,Ee,$e,Be,Me,ht,at,ot;function st(J){ye=J,a.HEAP8=Ne=new Int8Array(J),a.HEAP16=$e=new Int16Array(J),a.HEAP32=Me=new Int32Array(J),a.HEAPU8=Ee=new Uint8Array(J),a.HEAPU16=Be=new Uint16Array(J),a.HEAPU32=ht=new Uint32Array(J),a.HEAPF32=at=new Float32Array(J),a.HEAPF64=ot=new Float64Array(J)}var dt=a.INITIAL_MEMORY||16777216,Xe,Dn=[],Et=[],Gn=[],ln=[],Is=!1;Et.push({func:function(){Gd()}});function xn(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)ds(a.preRun.shift());Lr(Dn)}function us(){Is=!0,Lr(Et)}function cs(){Lr(Gn)}function un(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)ps(a.postRun.shift());Lr(ln)}function ds(J){Dn.unshift(J)}function ps(J){ln.unshift(J)}var jn=0,Ys=null,yr=null;function zr(J){jn++,a.monitorRunDependencies&&a.monitorRunDependencies(jn)}function Ai(J){if(jn--,a.monitorRunDependencies&&a.monitorRunDependencies(jn),jn==0&&(Ys!==null&&(clearInterval(Ys),Ys=null),yr)){var ae=yr;yr=null,ae()}}a.preloadedImages={},a.preloadedAudios={};function Js(J){a.onAbort&&a.onAbort(J),J+="",O(J),P=!0,U=1,J="abort("+J+"). Build with -s ASSERTIONS=1 for more info.";var ae=new WebAssembly.RuntimeError(J);throw i(ae),ae}function zd(J,ae){return String.prototype.startsWith?J.startsWith(ae):J.indexOf(ae)===0}var E0="data:application/octet-stream;base64,";function Du(J){return zd(J,E0)}var R0="file://";function Ld(J){return zd(J,R0)}var _n="tfjs-backend-wasm.wasm";Du(_n)||(_n=y(_n));function Bd(J){try{if(J==_n&&E)return new Uint8Array(E);if(v)return v(J);throw"both async and sync fetching of the wasm failed"}catch(ae){Js(ae)}}function D0(){if(!E&&(h||f)){if(typeof fetch=="function"&&!Ld(_n))return fetch(_n,{credentials:"same-origin"}).then(function(J){if(!J.ok)throw"failed to load wasm binary file at '"+_n+"'";return J.arrayBuffer()}).catch(function(){return Bd(_n)});if(b)return new Promise(function(J,ae){b(_n,function(ve){J(new Uint8Array(ve))},ae)})}return Promise.resolve().then(function(){return Bd(_n)})}function xr(){var J={a:P0};function ae(Ke,Qe){var cn=Ke.exports;a.asm=cn,T=a.asm.i,st(T.buffer),Xe=a.asm.o,Ai("wasm-instantiate")}zr("wasm-instantiate");function ve(Ke){ae(Ke.instance)}function nt(Ke){return D0().then(function(Qe){return WebAssembly.instantiate(Qe,J)}).then(Ke,function(Qe){O("failed to asynchronously prepare wasm: "+Qe),Js(Qe)})}function Ft(){return!E&&typeof WebAssembly.instantiateStreaming=="function"&&!Du(_n)&&!Ld(_n)&&typeof fetch=="function"?fetch(_n,{credentials:"same-origin"}).then(function(Ke){var Qe=WebAssembly.instantiateStreaming(Ke,J);return Qe.then(ve,function(cn){return O("wasm streaming compile failed: "+cn),O("falling back to ArrayBuffer instantiation"),nt(ve)})}):nt(ve)}if(a.instantiateWasm)try{var kt=a.instantiateWasm(J,ae);return kt}catch(Ke){return O("Module.instantiateWasm callback failed with error: "+Ke),!1}return Ft().catch(i),{}}function Lr(J){for(;J.length>0;){var ae=J.shift();if(typeof ae=="function"){ae(a);continue}var ve=ae.func;typeof ve=="number"?ae.arg===void 0?Xe.get(ve)():Xe.get(ve)(ae.arg):ve(ae.arg===void 0?null:ae.arg)}}function Sa(){Js()}function _0(J,ae,ve){Ee.copyWithin(J,ae,ae+ve)}function F0(){return Ee.length}function br(J){try{return T.grow(J-ye.byteLength+65535>>>16),st(T.buffer),1}catch(ae){}}function Wd(J){var ae=F0(),ve=2147483648;if(J>ve)return!1;for(var nt=1;nt<=4;nt*=2){var Ft=ae*(1+.2/nt);Ft=Math.min(Ft,J+100663296);var kt=Math.min(ve,he(Math.max(J,Ft),65536)),Ke=br(kt);if(Ke)return!0}return!1}var yi={mappings:{},buffers:[null,[],[]],printChar:function(J,ae){var ve=yi.buffers[J];ae===0||ae===10?((J===1?D:O)(se(ve,0)),ve.length=0):ve.push(ae)},varargs:void 0,get:function(){yi.varargs+=4;var J=Me[yi.varargs-4>>2];return J},getStr:function(J){var ae=re(J);return ae},get64:function(J,ae){return J}};function Vd(J){return 0}function $0(J,ae,ve,nt,Ft){}function Ud(J,ae,ve,nt){for(var Ft=0,kt=0;kt<ve;kt++){for(var Ke=Me[ae+kt*8>>2],Qe=Me[ae+(kt*8+4)>>2],cn=0;cn<Qe;cn++)yi.printChar(J,Ee[Ke+cn]);Ft+=Qe}return Me[nt>>2]=Ft,0}function Fn(){return 6}function Hd(J){return Me[ep()>>2]=J,J}function O0(J){switch(J){case 30:return 16384;case 85:var ae=2147483648;return ae/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Hd(28),-1}var P0={a:Sa,d:_0,e:Wd,f:Vd,c:$0,b:Ud,g:Fn,h:O0},M0=xr(),Gd=a.___wasm_call_ctors=function(){return(Gd=a.___wasm_call_ctors=a.asm.j).apply(null,arguments)},xi=a._init=function(){return(xi=a._init=a.asm.k).apply(null,arguments)},_u=a._register_tensor=function(){return(_u=a._register_tensor=a.asm.l).apply(null,arguments)},z0=a._dispose_data=function(){return(z0=a._dispose_data=a.asm.m).apply(null,arguments)},L0=a._dispose=function(){return(L0=a._dispose=a.asm.n).apply(null,arguments)},B0=a._Abs=function(){return(B0=a._Abs=a.asm.p).apply(null,arguments)},Te=a._Add=function(){return(Te=a._Add=a.asm.q).apply(null,arguments)},W0=a._AddN=function(){return(W0=a._AddN=a.asm.r).apply(null,arguments)},V0=a._All=function(){return(V0=a._All=a.asm.s).apply(null,arguments)},U0=a._Any=function(){return(U0=a._Any=a.asm.t).apply(null,arguments)},H0=a._ArgMax=function(){return(H0=a._ArgMax=a.asm.u).apply(null,arguments)},G0=a._AvgPool=function(){return(G0=a._AvgPool=a.asm.v).apply(null,arguments)},Ca=a._BatchMatMul=function(){return(Ca=a._BatchMatMul=a.asm.w).apply(null,arguments)},j0=a._Ceil=function(){return(j0=a._Ceil=a.asm.x).apply(null,arguments)},q0=a._ClipByValue=function(){return(q0=a._ClipByValue=a.asm.y).apply(null,arguments)},X0=a._Conv2D=function(){return(X0=a._Conv2D=a.asm.z).apply(null,arguments)},K0=a._Conv2DBackpropInput=function(){return(K0=a._Conv2DBackpropInput=a.asm.A).apply(null,arguments)},Z0=a._Cos=function(){return(Z0=a._Cos=a.asm.B).apply(null,arguments)},Y0=a._Cosh=function(){return(Y0=a._Cosh=a.asm.C).apply(null,arguments)},J0=a._CropAndResize=function(){return(J0=a._CropAndResize=a.asm.D).apply(null,arguments)},Q0=a._Cumsum=function(){return(Q0=a._Cumsum=a.asm.E).apply(null,arguments)},em=a._DepthToSpace=function(){return(em=a._DepthToSpace=a.asm.F).apply(null,arguments)},Br=a._DepthwiseConv2dNative=function(){return(Br=a._DepthwiseConv2dNative=a.asm.G).apply(null,arguments)},Fu=a._Elu=function(){return(Fu=a._Elu=a.asm.H).apply(null,arguments)},$u=a._Equal=function(){return($u=a._Equal=a.asm.I).apply(null,arguments)},tm=a._Exp=function(){return(tm=a._Exp=a.asm.J).apply(null,arguments)},nm=a._FlipLeftRight=function(){return(nm=a._FlipLeftRight=a.asm.K).apply(null,arguments)},sm=a._Floor=function(){return(sm=a._Floor=a.asm.L).apply(null,arguments)},rm=a._FloorDiv=function(){return(rm=a._FloorDiv=a.asm.M).apply(null,arguments)},am=a._FusedBatchNorm=function(){return(am=a._FusedBatchNorm=a.asm.N).apply(null,arguments)},Ve=a._FusedConv2D=function(){return(Ve=a._FusedConv2D=a.asm.O).apply(null,arguments)},om=a._FusedDepthwiseConv2D=function(){return(om=a._FusedDepthwiseConv2D=a.asm.P).apply(null,arguments)},im=a._Gather=function(){return(im=a._Gather=a.asm.Q).apply(null,arguments)},lm=a._GatherNd=function(){return(lm=a._GatherNd=a.asm.R).apply(null,arguments)},um=a._Greater=function(){return(um=a._Greater=a.asm.S).apply(null,arguments)},cm=a._GreaterEqual=function(){return(cm=a._GreaterEqual=a.asm.T).apply(null,arguments)},dm=a._LeakyRelu=function(){return(dm=a._LeakyRelu=a.asm.U).apply(null,arguments)},Ou=a._Less=function(){return(Ou=a._Less=a.asm.V).apply(null,arguments)},jd=a._LessEqual=function(){return(jd=a._LessEqual=a.asm.W).apply(null,arguments)},qd=a._Log=function(){return(qd=a._Log=a.asm.X).apply(null,arguments)},pm=a._LogicalAnd=function(){return(pm=a._LogicalAnd=a.asm.Y).apply(null,arguments)},hm=a._Max=function(){return(hm=a._Max=a.asm.Z).apply(null,arguments)},fm=a._MaxPool=function(){return(fm=a._MaxPool=a.asm._).apply(null,arguments)},mm=a._Maximum=function(){return(mm=a._Maximum=a.asm.$).apply(null,arguments)},gm=a._Mean=function(){return(gm=a._Mean=a.asm.aa).apply(null,arguments)},Am=a._Min=function(){return(Am=a._Min=a.asm.ba).apply(null,arguments)},ym=a._Minimum=function(){return(ym=a._Minimum=a.asm.ca).apply(null,arguments)},rt=a._MirrorPad=function(){return(rt=a._MirrorPad=a.asm.da).apply(null,arguments)},xm=a._Multiply=function(){return(xm=a._Multiply=a.asm.ea).apply(null,arguments)},bm=a._Neg=function(){return(bm=a._Neg=a.asm.fa).apply(null,arguments)},vm=a._NonMaxSuppressionV3=function(){return(vm=a._NonMaxSuppressionV3=a.asm.ga).apply(null,arguments)},bi=a._NonMaxSuppressionV4=function(){return(bi=a._NonMaxSuppressionV4=a.asm.ha).apply(null,arguments)},Xd=a._NonMaxSuppressionV5=function(){return(Xd=a._NonMaxSuppressionV5=a.asm.ia).apply(null,arguments)},Kd=a._NotEqual=function(){return(Kd=a._NotEqual=a.asm.ja).apply(null,arguments)},Zd=a._OneHot=function(){return(Zd=a._OneHot=a.asm.ka).apply(null,arguments)},wm=a._PadV2=function(){return(wm=a._PadV2=a.asm.la).apply(null,arguments)},km=a._Pow=function(){return(km=a._Pow=a.asm.ma).apply(null,arguments)},Yd=a._Prelu=function(){return(Yd=a._Prelu=a.asm.na).apply(null,arguments)},Im=a._Prod=function(){return(Im=a._Prod=a.asm.oa).apply(null,arguments)},Jd=a._RealDiv=function(){return(Jd=a._RealDiv=a.asm.pa).apply(null,arguments)},Wr=a._Relu=function(){return(Wr=a._Relu=a.asm.qa).apply(null,arguments)},Sm=a._Relu6=function(){return(Sm=a._Relu6=a.asm.ra).apply(null,arguments)},Cm=a._ResizeBilinear=function(){return(Cm=a._ResizeBilinear=a.asm.sa).apply(null,arguments)},Ex=a._Reverse=function(){return(Ex=a._Reverse=a.asm.ta).apply(null,arguments)},Qd=a._RotateWithOffset=function(){return(Qd=a._RotateWithOffset=a.asm.ua).apply(null,arguments)},Tm=a._Round=function(){return(Tm=a._Round=a.asm.va).apply(null,arguments)},Nm=a._Rsqrt=function(){return(Nm=a._Rsqrt=a.asm.wa).apply(null,arguments)},Em=a._ScatterNd=function(){return(Em=a._ScatterNd=a.asm.xa).apply(null,arguments)},Rm=a._SelectV2=function(){return(Rm=a._SelectV2=a.asm.ya).apply(null,arguments)},Dm=a._Sigmoid=function(){return(Dm=a._Sigmoid=a.asm.za).apply(null,arguments)},_m=a._Sin=function(){return(_m=a._Sin=a.asm.Aa).apply(null,arguments)},Fm=a._Softmax=function(){return(Fm=a._Softmax=a.asm.Ba).apply(null,arguments)},$m=a._Sqrt=function(){return($m=a._Sqrt=a.asm.Ca).apply(null,arguments)},Om=a._Square=function(){return(Om=a._Square=a.asm.Da).apply(null,arguments)},Pm=a._SquaredDifference=function(){return(Pm=a._SquaredDifference=a.asm.Ea).apply(null,arguments)},Mm=a._Step=function(){return(Mm=a._Step=a.asm.Fa).apply(null,arguments)},zm=a._StridedSlice=function(){return(zm=a._StridedSlice=a.asm.Ga).apply(null,arguments)},Lm=a._Sub=function(){return(Lm=a._Sub=a.asm.Ha).apply(null,arguments)},Bm=a._Sum=function(){return(Bm=a._Sum=a.asm.Ia).apply(null,arguments)},Wm=a._Tan=function(){return(Wm=a._Tan=a.asm.Ja).apply(null,arguments)},Vm=a._Tanh=function(){return(Vm=a._Tanh=a.asm.Ka).apply(null,arguments)},Um=a._Tile=function(){return(Um=a._Tile=a.asm.La).apply(null,arguments)},Hm=a._TopK=function(){return(Hm=a._TopK=a.asm.Ma).apply(null,arguments)},Gm=a._Transform=function(){return(Gm=a._Transform=a.asm.Na).apply(null,arguments)},jm=a._Transpose=function(){return(jm=a._Transpose=a.asm.Oa).apply(null,arguments)},qm=a.__FusedMatMul=function(){return(qm=a.__FusedMatMul=a.asm.Pa).apply(null,arguments)},Xm=a._malloc=function(){return(Xm=a._malloc=a.asm.Qa).apply(null,arguments)},Km=a._free=function(){return(Km=a._free=a.asm.Ra).apply(null,arguments)},ep=a.___errno_location=function(){return(ep=a.___errno_location=a.asm.Sa).apply(null,arguments)},tp=a.stackSave=function(){return(tp=a.stackSave=a.asm.Ta).apply(null,arguments)},np=a.stackRestore=function(){return(np=a.stackRestore=a.asm.Ua).apply(null,arguments)},Pu=a.stackAlloc=function(){return(Pu=a.stackAlloc=a.asm.Va).apply(null,arguments)};a.cwrap=te;var vi;function Zm(J){this.name="ExitStatus",this.message="Program terminated with exit("+J+")",this.status=J}yr=function J(){vi||Mu(),vi||(yr=J)};function Mu(J){if(J=J||c,jn>0||(xn(),jn>0))return;function ae(){vi||(vi=!0,a.calledRun=!0,!P&&(us(),cs(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),un()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),ae()},1)):ae()}if(a.run=Mu,a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();return Mu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),DS=1e-7,_S=1e-4,ip=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},ju=class{refCount(e){return Ss("refCount")}incRef(e){return Ss("incRef")}timerAvailable(){return!0}time(e){return Ss("time")}read(e){return Ss("read")}readSync(e){return Ss("readSync")}numDataIds(){return Ss("numDataIds")}disposeData(e,t){return Ss("disposeData")}write(e,t,n){return Ss("write")}move(e,t,n,s,r){return Ss("move")}memory(){return Ss("memory")}floatPrecision(){return Ss("floatPrecision")}epsilon(){return this.floatPrecision()===32?DS:_S}dispose(){return Ss("dispose")}};function Ss(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function qx(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,lp(e,t,n)}function FS(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,lp(e,n,s),lp(t,n,s)}function qu(e,t,n){return Math.max(e,Math.min(t,n))}function $S(e){return e%2==0?e:e+1}function lp(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function OS(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function PS(e,t){let n=Math.random();return t*n+(1-n)*e}function MS(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function M(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function vn(e,t,n=""){M(kr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function Ea(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Ra(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||An(e)&&!n)for(let s=0;s<e.length;++s)Ra(e[s],t,n);else t.push(e);return t}function Mt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function zS(e){return e.length===0}function kr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function en(e){return e%1==0}function LS(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function BS(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function WS(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return qx(t),t}function Xu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function VS(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function US(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function Cs(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),M(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(s=>en(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function Xx(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:Cs(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function Kx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Zx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Yx(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function Jx(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function HS(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function An(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function rg(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function Qx(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Hr(e){return typeof e=="string"||e instanceof String}function e5(e){return typeof e=="boolean"}function t5(e){return typeof e=="number"}function up(e){return Array.isArray(e)?up(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":t5(e)?"float32":Hr(e)?"string":e5(e)?"bool":"float32"}function Gr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function cp(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Ri(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function n5(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,u)=>l*u)*(s?2:1);for(let l=0;l<a;l++)r[l]=n5(e+l*i,o,n,s)}return r}function Di(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return n5(0,e,t,n)}function ag(e,t){let n=dp(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function dp(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function GS(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return Di(e,new Float32Array(n));if(t==="int32")return Di(e,new Int32Array(n));if(t==="bool")return Di(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function og(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function jS(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function qS(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function ig(e){return e&&e.then&&typeof e.then=="function"}function Qs(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.warn(...e)}function XS(...e){Y().getBool("IS_TEST")||Y().getBool("PROD")||console.log(...e)}var s5="tfjsflags",r5=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=KS,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&Qs(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];Qs(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(ig(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);s5 in e&&e[s5].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=YS(s,r)})}};function KS(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(ZS(t,s[0],s[1]),s.join("="))),t}function ZS(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function YS(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Y(){return er}var er=null;function JS(e){er=e}var lg;function a5(){if(lg==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");lg=e}return lg}function QS(){let e=a5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function ug(e,t){let n=QS();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var _i="Abs",Fi="Acos",$i="Acosh",jr="Add",Da="AddN",Oi="All",Pi="Any",_a="ArgMax",Ku="ArgMin",Mi="Asin",zi="Asinh",Li="Atan",Bi="Atanh",Wi="Atan2",Fa="AvgPool",pp="AvgPoolGrad",Zu="AvgPool3D",hp="AvgPool3DGrad",$a="BatchMatMul",Vi="BatchToSpaceND",fp="Bincount",o5="BroadcastTo",cg="BroadcastArgs",Oa="Cast",Pa="Ceil",qr="ClipByValue",mp="Complex",Yu="ComplexAbs",Ui="Concat",Ma="Conv2D",gp="Conv2DBackpropFilter",za="Conv2DBackpropInput",Ju="Conv3D",Ap="Conv3DBackpropFilterV2",yp="Conv3DBackpropInputV2",La="Cos",Ba="Cosh",Wa="Cumsum",Hi="CropAndResize",xp="DenseBincount",Gi="DepthToSpace",Va="DepthwiseConv2dNative",bp="DepthwiseConv2dNativeBackpropFilter",vp="DepthwiseConv2dNativeBackpropInput",wp="Diag",Qu="Dilation2D",kp="Dilation2DBackpropInput",Ip="Dilation2DBackpropFilter",Ua="RealDiv",Sp="Einsum",Ha="Elu",Cp="EluGrad",ji="Erf",qi="Equal",Ga="Exp",Xi="ExpandDims",Ki="Expm1",Tp="FFT",ec="Fill",Zi="FlipLeftRight",ja="Floor",qa="FloorDiv",Xa="FusedBatchNorm",Yi="GatherV2",Ji="GatherNd",Qi="Greater",Ka="GreaterEqual",Za="Identity",Np="IFFT",Ep="Imag",el="IsFinite",tl="IsInf",nl="IsNan",Ya="LeakyRelu",sl="Less",rl="LessEqual",Rp="LinSpace",Ja="Log",al="Log1p",ol="LogicalAnd",tc="LogicalNot",nc="LogicalOr",i5="LogSoftmax",sc="LRN",Dp="LRNGrad",Qa="Max",eo="Maximum",to="MaxPool",_p="MaxPoolGrad",rc="MaxPool3D",Fp="MaxPool3DGrad",$p="MaxPoolWithArgmax",no="Mean",so="Min",ro="Minimum",ao="MirrorPad",il="Mod",Op="Multinomial",oo="Multiply",ll="Neg",ul="NotEqual",cl="NonMaxSuppressionV3",dl="NonMaxSuppressionV4",pl="NonMaxSuppressionV5",hl="OnesLike",io="OneHot",fl="Pack",lo="PadV2",eC="Pool",uo="Pow",co="Prelu",ml="Prod",ac="Range",Pp="Real",gl="Reciprocal",po="Relu",Al="Reshape",oc="ResizeNearestNeighbor",Mp="ResizeNearestNeighborGrad",ho="ResizeBilinear",zp="ResizeBilinearGrad",fo="Relu6",mo="Reverse",go="Round",Ao="Rsqrt",yl="ScatterNd",xl="Select",bl="Selu",vl="Slice",yo="Sin",wl="Sinh",kl="Sign",xo="Sigmoid",Il="Softplus",bo="Sqrt",vo="Sum",Sl="SpaceToBatchND",Cl="SplitV",wo="Softmax",Lp="SparseFillEmptyRows",Bp="SparseReshape",Wp="SparseSegmentMean",Vp="SparseSegmentSum",Up="SparseToDense",ko="SquaredDifference",ic="Square",Tl="StridedSlice",Hp="StringNGrams",Gp="StringSplit",jp="StringToHashBucketFast",Io="Sub",So="Tan",Co="Tanh",Xr="Tile",Nl="TopK",El="Transform",To="Transpose",qp="Unique",Rl="Unpack",lc="UnsortedSegmentSum",Dl="ZerosLike",Kr="Step",Xp="FromPixels",_l="RotateWithOffset",No="_FusedMatMul",Eo="FusedConv2D",Ro="FusedDepthwiseConv2D",Fl=ug("kernelRegistry",()=>new Map),uc=ug("gradRegistry",()=>new Map);function Kp(e,t){let n=pg(e,t);return Fl.get(n)}function dg(e){return uc.get(e)}function Zr(e){let t=Fl.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function Do(e){let{kernelName:t,backendName:n}=e,s=pg(t,n);Fl.has(s)&&Qs(`The kernel '${t}' for backend '${n}' is already registered`),Fl.set(s,e)}function l5(e){let{kernelName:t}=e;uc.has(t)&&Y().getBool("DEBUG")&&Qs(`Overriding the gradient for '${t}'`),uc.set(t,e)}function tC(e,t){let n=pg(e,t);if(!Fl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Fl.delete(n)}function nC(e){if(!uc.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);uc.delete(e)}function sC(e,t){Zr(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});Do(r)})}function pg(e,t){return`${t}_${e}`}var w={};Le(w,{arraysEqual:()=>kr,assert:()=>M,assertNonNegativeIntegerDimensions:()=>og,assertNonNull:()=>Ea,assertShapesMatch:()=>vn,bytesFromStringArray:()=>Qx,bytesPerElement:()=>rg,checkConversionForErrors:()=>Yx,clamp:()=>qu,computeStrides:()=>Ri,createScalarValue:()=>uC,createShuffledIndices:()=>WS,decodeString:()=>Jp,distSquared:()=>MS,encodeString:()=>pc,fetch:()=>dC,fingerPrint64:()=>lC,flatten:()=>Ra,getArrayFromDType:()=>Zx,getTypedArrayFromDType:()=>Kx,hasEncodingLoss:()=>HS,hexToLong:()=>cc,indexToLoc:()=>qS,inferDtype:()=>up,inferFromImplicitShape:()=>US,isBoolean:()=>e5,isFunction:()=>Gr,isInt:()=>en,isNumber:()=>t5,isPromise:()=>ig,isScalarShape:()=>zS,isString:()=>Hr,isTypedArray:()=>An,isValidDtype:()=>Jx,locToIndex:()=>jS,makeOnesTypedArray:()=>ag,makeZerosNestedTypedArray:()=>GS,makeZerosTypedArray:()=>dp,nearestDivisor:()=>cp,nearestLargerEven:()=>$S,now:()=>dc,parseAxisParam:()=>Cs,randUniform:()=>PS,repeatedTry:()=>VS,rightPad:()=>Xu,shuffle:()=>qx,shuffleCombo:()=>FS,sizeFromShape:()=>Mt,sizeToSquarishShape:()=>BS,squeezeShape:()=>Xx,sum:()=>OS,swap:()=>lp,tanh:()=>LS,toNestedArray:()=>Di,toTypedArray:()=>Yp});var u5=Na(dS()),_o=u5.default||u5;function cc(e){return _o.fromString(e,!0,16)}var c5=cc("c3a5c85c97cb3127"),Fo=cc("b492b66fbe98f273"),wn=cc("9ae16a3b2f90404f");function hg(e){return e.xor(e.shru(47))}function d5(e,t,n){let s=e.slice(t,t+n);return _o.fromBytes(Array.from(s),!0,!0)}function At(e,t){return d5(e,t,8)}function p5(e,t){return d5(e,t,4)}function tn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Yr(e,t,n=cc("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function rC(e,t,n,s,r,a){r=r.add(e),a=tn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(tn(r,44)),[r.add(s),a.add(o)]}function Zp(e,t,n,s){return rC(At(e,t),At(e,t+8),At(e,t+16),At(e,t+24),n,s)}function aC(e,t=e.length){if(t>=8){let n=wn.add(t*2),s=At(e,0).add(wn),r=At(e,t-8),a=tn(r,37).mul(n).add(s),o=tn(s,25).add(r).mul(n);return Yr(a,o,n)}if(t>=4){let n=wn.add(t*2),s=p5(e,0);return Yr(s.shl(3).add(t),p5(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return hg(wn.mul(a).xor(c5.mul(o))).mul(wn)}return wn}function oC(e,t=e.length){let n=wn.add(t*2),s=At(e,0).mul(Fo),r=At(e,8),a=At(e,t-8).mul(n),o=At(e,t-16).mul(wn);return Yr(tn(s.add(r),43).add(tn(a,30)).add(o),s.add(tn(r.add(wn),18)).add(a),n)}function iC(e,t=e.length){let n=wn.add(t*2),s=At(e,0).mul(wn),r=At(e,8),a=At(e,t-8).mul(n),o=At(e,t-16).mul(wn),i=tn(s.add(r),43).add(tn(a,30)).add(o),l=Yr(i,s.add(tn(r.add(wn),18)).add(a),n),u=At(e,16).mul(n),c=At(e,24),d=i.add(At(e,t-32)).mul(n),p=l.add(At(e,t-24)).mul(n);return Yr(tn(u.add(c),43).add(tn(d,30)).add(p),u.add(tn(c.add(s),18)).add(d),n)}function lC(e,t=e.length){let n=_o.fromNumber(81,!0);if(t<=32)return t<=16?aC(e,t):oC(e,t);if(t<=64)return iC(e,t);let s=n,r=n.mul(Fo).add(113),a=hg(r.mul(wn).add(113)).mul(wn),o=[_o.UZERO,_o.UZERO],i=[_o.UZERO,_o.UZERO];s=s.mul(wn).add(At(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do s=tn(s.add(r).add(o[0]).add(At(e,l+8)),37).mul(Fo),r=tn(r.add(o[1]).add(At(e,l+48)),42).mul(Fo),s=s.xor(i[1]),r=r.add(o[0]).add(At(e,l+40)),a=tn(a.add(i[0]),33).mul(Fo),o=Zp(e,l,o[1].mul(Fo),s.add(i[0])),i=Zp(e,l+32,a.add(i[1]),r.add(At(e,l+16))),[a,s]=[s,a],l+=64;while(l!==u);let d=Fo.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=tn(s.add(r).add(o[0]).add(At(e,l+8)),37).mul(d),r=tn(r.add(o[1]).add(At(e,l+48)),42).mul(d),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(At(e,l+40))),a=tn(a.add(i[0]),33).mul(d),o=Zp(e,l,o[1].mul(d),s.add(i[0])),i=Zp(e,l+32,a.add(i[1]),r.add(At(e,l+16))),[a,s]=[s,a],Yr(Yr(o[0],i[0],d).add(hg(r).mul(c5)).add(a),Yr(o[1],i[1],d).add(s),d)}function uC(e,t){return t==="string"?pc(e):Yp([e],t)}function cC(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Yp(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Ra(e)),Y().getBool("DEBUG")&&Yx(e,t),cC(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function dc(){return Y().platform.now()}function dC(e,t){return Y().platform.fetch(e,t)}function pc(e,t="utf-8"){return t=t||"utf-8",Y().platform.encode(e,t)}function Jp(e,t="utf-8"){return t=t||"utf-8",Y().platform.decode(e,t)}var pC=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new fC)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=dc();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:dc()-o})}if(Y().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let u=s[l];u.data().then(c=>{hC(c,u.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function hC(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var fC=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?Xu(`${s}ms`,9):s.error,i=Xu(e,25),l=t.rank,u=t.size,c=Xu(t.shape.toString(),14),d="";for(let p in r){let h=r[p];if(h!=null){let f=h.shape||t.shape,m=f.length;d+=`${p}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${d} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function mC(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let d in c){let p=c[d],h=!1;for(let f=0;f<t.length;f++)if(s[p.id]){u.outputs.forEach(m=>s[m.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let d=0;d<u.outputs.length;d++)if(a[u.outputs[d].id]){for(let p in c)a[c[p].id]=!0,o[u.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&o[u.id]){let c={};for(let p in u.inputs){let h=u.inputs[p];s[h.id]&&(c[p]=h)}let d=Object.assign({},u);d.inputs=c,d.outputs=u.outputs,i.push(d)}}return i}function gC(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!kr(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let d=e[c.id];e[c.id]=s(d,u),d.dispose()}}}}var h5=20,hc=3,fg=7;function AC(e,t,n,s){let r=Ri(t),a=yC(e,t,n,r),o=t.length,i=Qp(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function yC(e,t,n,s){let r=Mt(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?mc(e):e;if(i>1)for(let u=0;u<r/a;u++){let c=u*a;for(let d=0;d<a;d++)o[d]=Math.max(o[d],fc(l[c+d],0,n).length)}return o}function fc(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(fg))} + ${parseFloat(e[1].toFixed(fg))}j`:Hr(e)?s=`'${e}'`:n==="bool"?s=f5(e):s=parseFloat(e.toFixed(fg)).toString(),Xu(s,t)}function f5(e){return e===0?"false":"true"}function Qp(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=mc(e);return[fc(m[0],0,n)]}return n==="bool"?[f5(e[0])]:[e[0].toString()]}if(l===1){if(i>h5){let g=hc*o,A=Array.from(e.slice(0,g)),y=Array.from(e.slice((i-hc)*o,i*o));return n==="complex64"&&(A=mc(A),y=mc(y)),["["+A.map((x,b)=>fc(x,r[b],n)).join(", ")+", ..., "+y.map((x,b)=>fc(x,r[i-hc+b],n)).join(", ")+"]"]}let m=n==="complex64"?mc(e):Array.from(e);return["["+m.map((g,A)=>fc(g,r[A],n)).join(", ")+"]"]}let u=t.slice(1),c=s.slice(1),d=s[0]*o,p=[];if(i>h5){for(let m=0;m<hc;m++){let g=m*d,A=g+d;p.push(...Qp(e.slice(g,A),u,n,c,r,!1))}p.push("...");for(let m=i-hc;m<i;m++){let g=m*d,A=g+d;p.push(...Qp(e.slice(g,A),u,n,c,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*d,A=g+d;p.push(...Qp(e.slice(g,A),u,n,c,r,m===i-1))}let h=l===2?",":"";p[0]="["+p[0]+h;for(let m=1;m<p.length-1;m++)p[m]=" "+p[m]+h;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return p[p.length-1]=" "+p[p.length-1]+"]"+(a?"":f),p}function mc(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Xt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Mt(e),n!=null){let s=n.length;M(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Zx(t,this.size),this.strides=Ri(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return tr().makeTensor(this.values,this.shape,this.dtype)}},tr=null,$l=null,xC=null;function bC(e){tr=e}function vC(e){$l=e}function wC(e){xC=e}var Ge=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Mt(e),this.strides=Ri(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return $l.buffer(this.shape,this.dtype,e)}bufferSync(){return $l.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Di(this.shape,e,this.dtype==="complex64")}arraySync(){return Di(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=tr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Jp(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=tr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Jp(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await tr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(tr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return $l.print(this,e)}clone(){return this.throwIfDisposed(),$l.clone(this)}toString(e=!1){let t=this.dataSync();return AC(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),$l.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),tr().makeVariable(this,e,t,n)}};Object.defineProperty(Ge,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function ee(){return ug("Tensor",()=>Ge)}ee();var gc=class extends Ge{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!kr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);tr().disposeTensor(this),this.dataId=e.dataId,tr().incRef(this,null)}dispose(){tr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(gc,Symbol.hasInstance,{value:e=>e instanceof Ge&&e.assign!=null&&e.assign instanceof Function});var $s={};Le($s,{assertTypesMatch:()=>m5,getTensorsInContainer:()=>bg,isTensorInList:()=>IC,makeTypesMatch:()=>Rt});var mg;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(mg||(mg={}));var gg;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(gg||(gg={}));var Ag;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Ag||(Ag={}));var yg;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(yg||(yg={}));var xg;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(xg||(xg={}));var kC={float32:yg,int32:gg,bool:Ag,complex64:xg};function Ts(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return kC[e][t]}function eh(e){return Ts(e,"int32")}function Rt(e,t){if(e.dtype===t.dtype)return[e,t];let n=Ts(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function m5(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function IC(e,t){return t.some(n=>n.id===e.id)}function bg(e){let t=[],n=new Set;return g5(e,t,n),t}function g5(e,t,n){if(e==null)return;if(e instanceof Ge){t.push(e);return}if(!SC(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),g5(a,t,n))}}function SC(e){return Array.isArray(e)||typeof e=="object"}function vg(e){return e.kernelName!=null}var A5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Ac=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new A5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(Qs(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new pC(this.backendInstance),!0}setupRegisteredKernels(){Zr(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){Zr(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof ju)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,Qs(`Initialization of backend ${e} failed`),Qs(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return Qs(`Initialization of backend ${e} failed`),Qs(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return Ac.nextTensorId++}nextVariableId(){return Ac.nextVariableId++}clone(e){let t=L.runKernel(Za,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return L.runKernel(Oa,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Kp(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=vg(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(vg(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Kp(h,this.backendName);M(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let A=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,A,y);let x=y.map(b=>{if(b.rank!=null)return b;let{dataId:v,shape:k,dtype:S}=b;return this.makeTensorFromDataId(v,k,S)});if(s){let b=this.getTensorsForGradient(h,f,x);n=this.saveTensorsForBackwardMode(b)}return x}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:c}=e,d=vg(e)?null:e.backwardsFunc,p;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(p=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(p),t=p.outputs)}),s&&this.addTapeNode(l,u,t,d,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:p.timeMs,extraInfo:p.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=dg(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&Hr(e[0])&&(r=e.map(i=>pc(i)));let a=s.write(r,t,n),o=new Ge(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=Qx(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r=new Ge(t,n,e,this.nextTensorId());return this.trackTensor(r,s),r}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new gc(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*rg(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof gc||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*rg(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=dg(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let d=n[c],p=dp(d.size,d.dtype);return this.makeTensor(p,d.shape,d.dtype)}return u}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=bg(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(r instanceof Ge,()=>"The result y returned by f() must be a tensor.");let a=mC(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?CC(r.shape):n,gC(o,a,l=>this.tidy(l),TC);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return M(Gr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(o=>o instanceof Ge),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),M(n.value instanceof Ge,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Gr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];M(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(u.every(d=>d instanceof Ge),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((d,p)=>{c[p]=()=>d}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=dc(),n=await this.backend.time(e);return n.wallMs=dc()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new A5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Ac.nextTensorId=0;Ac.nextVariableId=0;function CC(e){let t=ag(Mt(e),"float32");return L.makeTensor(t,e,"float32")}function y5(){let e=a5();if(e._tfengine==null){let t=new r5(e);e._tfengine=new Ac(t)}return JS(e._tfengine.ENV),bC(()=>e._tfengine),e._tfengine}var L=y5();function TC(e,t){let n={a:e,b:t};return L.runKernel(jr,n)}var yc={};Le(yc,{isBrowser:()=>x5,isMobile:()=>EC});function NC(){return typeof navigator!="undefined"&&navigator!=null}function EC(e){if(e||NC()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function x5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Os=Y();Os.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Os.registerFlag("IS_BROWSER",()=>x5());Os.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Os.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Os.registerFlag("PROD",()=>!1);Os.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Os.getBool("DEBUG"));Os.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Os.registerFlag("IS_TEST",()=>!1);Os.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Os.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function nr(e,t){let n=e;if(An(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||An(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&Y().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&b5(e,s,[]),s}function b5(e,t,n){if(n=n||[],!Array.isArray(e)&&!An(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)b5(e[r],s,n.concat(r))}function v5(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function F(e,t,n,s="numeric"){if(e instanceof Ge)return v5(s,e.dtype,t,n),e;let r=up(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),v5(s,r,t,n),e==null||!An(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=nr(e,r);!An(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?Yp(e,r):Ra(e,[],!0);return L.makeTensor(i,a,r)}function xc(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>F(a,`${t}[${o}]`,n,s))}var w5="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+w5;let r=(...a)=>{L.startScope(n);try{let o=s(...a);return ig(o)&&console.error("Cannot return a Promise inside of tidy."),L.endScope(o),o}catch(o){throw L.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function RC(e,t){let n=F(e,"real","complex"),s=F(t,"imag","complex");vn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return L.runKernel(mp,r)}var Jr=W({complex_:RC});function Qr(e,t,n,s){if(s==null&&(s=up(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!An(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){og(t);let r=Mt(t),a=Mt(n);M(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==Mt(t.slice(o)):!0;M(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!An(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?Yp(e,s):Ra(e,[],!0),L.makeTensor(e,t,s)}function nn(e,t,n){let s=nr(e,n);return Qr(e,t,s,n)}var wg={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},th=4;async function DC(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async d=>{let p=await l.bytes(),h=p.reduce((g,A)=>g+A.length,0)+th*p.length,f=new Uint8Array(h),m=0;for(let g=0;g<p.length;g++){let A=p[g],y=new Uint8Array(new Uint32Array([A.length]).buffer);f.set(y,m),m+=th,f.set(A,m),m+=A.length}d(f)});s.push(c)}else s.push(l.data());t!=null&&(u.group=t),n.push(u)}let a=await Promise.all(s);return{data:_C(a),specs:n}}function k5(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,u=Mt(l),c;if("quantization"in a){let d=a.quantization;if(d.dtype==="uint8"||d.dtype==="uint16"){if(!("min"in d&&"scale"in d))throw new Error(`Weight ${a.name} with quantization ${d.dtype} doesn't have corresponding metadata min and scale.`)}else if(d.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${d.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${d.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let p=wg[d.dtype],h=e.slice(r,r+u*p),f=d.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(d.dtype==="uint8"||d.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=g*d.scale+d.min}}else if(d.dtype==="float16")s===void 0&&(s=zC()),c=s(f);else throw new Error(`Unsupported quantization type ${d.dtype} for weight type float32.`);else if(i==="int32"){if(d.dtype!=="uint8"&&d.dtype!=="uint16")throw new Error(`Unsupported quantization type ${d.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=Math.round(g*d.scale+d.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*p}else if(i==="string"){let d=Mt(a.shape);c=[];for(let p=0;p<d;p++){let h=new Uint32Array(e.slice(r,r+th))[0];r+=th;let f=new Uint8Array(e.slice(r,r+h));c.push(f),r+=h}}else{let d=wg[i],p=e.slice(r,r+u*d);if(i==="float32")c=new Float32Array(p);else if(i==="int32")c=new Int32Array(p);else if(i==="bool")c=new Uint8Array(p);else if(i==="complex64"){c=new Float32Array(p);let h=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let A=0;A<h.length;A++)h[A]=c[A*2],f[A]=c[A*2+1];let m=nn(h,l,"float32"),g=nn(f,l,"float32");n[o]=Jr(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*d}i!=="complex64"&&(n[o]=nn(c,l,i))}return n}function _C(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var kg=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function I5(e){return kg?Buffer.byteLength(e):new Blob([e]).size}function FC(e){if(kg)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function $C(e){if(kg){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function Ig(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function S5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function C5(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Sg(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function bc(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:I5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:I5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function OC(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)==0;)r-=8388608,s<<=1;return s&=~8388608,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function PC(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function MC(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function zC(){let e=OC(),t=PC(),n=MC();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var $t=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return $t.instance==null&&($t.instance=new $t),$t.instance}static registerSaveRouter(e){$t.getInstance().saveRouters.push(e)}static registerLoadRouter(e){$t.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return $t.getHandlers(e,"save")}static getLoadHandlers(e,t){return $t.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?$t.getInstance().loadRouters:$t.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},LC=e=>$t.registerSaveRouter(e),BC=e=>$t.registerLoadRouter(e),WC=e=>$t.getSaveHandlers(e),VC=(e,t)=>$t.getLoadHandlers(e,t),Cg="tensorflowjs",Tg=1,$o="models_store",ea="model_info_store";function T5(){if(!Y().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Ng(e){let t=e.result;t.createObjectStore($o,{keyPath:"modelPath"}),t.createObjectStore(ea,{keyPath:"modelPath"})}var Oo=class{constructor(e){if(this.indexedDB=T5(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(Cg,Tg);r.onupgradeneeded=()=>Ng(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction($o,"readonly"),l=o.objectStore($o).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=bc(t),i=a.transaction(ea,"readwrite"),l=i.objectStore(ea),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction($o,"readwrite");let p=c.objectStore($o).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});p.onsuccess=()=>n({modelArtifactsInfo:o}),p.onerror=h=>{l=i.objectStore(ea);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(p.error)),f.onerror=m=>(a.close(),s(p.error))}},u.onerror=d=>(a.close(),s(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};Oo.URL_SCHEME="indexeddb://";var N5=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Oo.URL_SCHEME)?UC(e.slice(Oo.URL_SCHEME.length)):null;$t.registerSaveRouter(N5);$t.registerLoadRouter(N5);function UC(e){return new Oo(e)}function HC(e){return e.startsWith(Oo.URL_SCHEME)?e.slice(Oo.URL_SCHEME.length):e}var GC=class{constructor(){this.indexedDB=T5()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Cg,Tg);n.onupgradeneeded=()=>Ng(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(ea,"readonly"),o=r.objectStore(ea).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=HC(e),new Promise((t,n)=>{let s=this.indexedDB.open(Cg,Tg);s.onupgradeneeded=()=>Ng(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(ea,"readwrite"),o=a.objectStore(ea),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=r.transaction($o,"readwrite");let p=l.objectStore($o).delete(e);p.onsuccess=()=>t(i.result.modelArtifactsInfo),p.onerror=h=>n(i.error)};u.onsuccess=c,u.onerror=d=>(c(),r.close(),n(i.error))}},i.onerror=u=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Ir="/",Ol="tensorflowjs_models",E5="info",jC="model_topology",qC="weight_specs",XC="weight_data",KC="model_metadata";function R5(e){return{info:[Ol,e,E5].join(Ir),topology:[Ol,e,jC].join(Ir),weightSpecs:[Ol,e,qC].join(Ir),weightData:[Ol,e,XC].join(Ir),modelMetadata:[Ol,e,KC].join(Ir)}}function D5(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function ZC(e){let t=e.split(Ir);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Ir)}function YC(e){return e.startsWith(Po.URL_SCHEME)?e.slice(Po.URL_SCHEME.length):e}var Po=class{constructor(e){if(!Y().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=R5(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=bc(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,FC(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw D5(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=$C(a),t}};Po.URL_SCHEME="localstorage://";var _5=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Po.URL_SCHEME)?JC(e.slice(Po.URL_SCHEME.length)):null;$t.registerSaveRouter(_5);$t.registerLoadRouter(_5);function JC(e){return new Po(e)}var QC=class{constructor(){M(Y().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Ol+Ir,n=Ir+E5;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=ZC(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=YC(e);let t=R5(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return D5(t),n}},Pl="://",hs=class{constructor(){this.managers={}}static getInstance(){return hs.instance==null&&(hs.instance=new hs),hs.instance}static registerManager(e,t){M(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Pl)&&(e=e.slice(0,e.indexOf(Pl))),M(e.length>0,()=>"scheme must not be an empty string.");let n=hs.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function nh(e){if(e.indexOf(Pl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${hs.getSchemes().join(",")}`);return{scheme:e.split(Pl)[0],path:e.split(Pl)[1]}}async function F5(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=$t.getLoadHandlers(e);M(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=$t.getSaveHandlers(t);M(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=nh(e).scheme,l=nh(e).path,u=i===nh(e).scheme,c=await r.load();n&&u&&await hs.getManager(i).removeModel(l);let d=await o.save(c);return n&&!u&&await hs.getManager(i).removeModel(l),d.modelArtifactsInfo}async function e9(){let e=hs.getSchemes(),t={};for(let n of e){let s=await hs.getManager(n).listModels();for(let r in s){let a=n+Pl+r;t[a]=s[r]}}return t}async function t9(e){let t=nh(e);return hs.getManager(t.scheme).removeModel(t.path)}async function n9(e,t){return F5(e,t,!1)}async function s9(e,t){return F5(e,t,!0)}var r9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Y().get("IS_BROWSER")){Y().setPlatform("browser",new r9);try{hs.registerManager(Po.URL_SCHEME,new QC)}catch(e){}try{hs.registerManager(Oo.URL_SCHEME,new GC)}catch(e){}}var a9={importFetch:()=>pS()},Eg,o9=class{constructor(){this.util=Ei("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Y().global.fetch!=null?Y().global.fetch(e,t):(Eg==null&&(Eg=a9.importFetch()),Eg(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Y().get("IS_NODE")&&Y().setPlatform("node",new o9);function je(e,t="float32",n){return t=t||"float32",og(e),new Xt(e,t,n)}function i9(e,t){let n=F(e,"x","cast");if(!Jx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return L.runKernel(Oa,s,r)}var de=W({cast_:i9});function l9(e){let n={x:F(e,"x","clone","string_or_numeric")};return L.runKernel(Za,n)}var Ps=W({clone_:l9});function $5(e,t=!1){console.log(e.toString(t))}y5();var u9={buffer:je,cast:de,clone:Ps,print:$5};vC(u9);var $n={};Le($n,{browserFiles:()=>g9,browserHTTPRequest:()=>v9,concatenateArrayBuffers:()=>Ig,copyModel:()=>n9,decodeWeights:()=>k5,encodeWeights:()=>DC,fromMemory:()=>k9,getLoadHandlers:()=>VC,getModelArtifactsForJSON:()=>Sg,getModelArtifactsInfoForJSON:()=>bc,getSaveHandlers:()=>WC,http:()=>_g,isHTTPScheme:()=>Dg,listModels:()=>e9,loadWeights:()=>A9,moveModel:()=>s9,registerLoadRouter:()=>BC,registerSaveRouter:()=>LC,removeModel:()=>t9,weightsLoaderFactory:()=>z5,withSaveHandler:()=>I9});var c9="model",d9=".json",p9=".weights.bin";function O5(e){return new Promise(t=>setTimeout(t)).then(e)}var Ml=class{constructor(e){if(!Y().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Ml.URL_SCHEME)&&(e=e.slice(Ml.URL_SCHEME.length)),(e==null||e.length===0)&&(e=c9),this.modelJsonFileName=e+d9,this.weightDataFileName=e+p9}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=C5(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await O5(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await O5(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:bc(e)}}}};Ml.URL_SCHEME="downloads://";var h9=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=Sg(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Ig(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>S5(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=S5(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},f9=e=>Y().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ml.URL_SCHEME)?m9(e.slice(Ml.URL_SCHEME.length)):null;$t.registerSaveRouter(f9);function m9(e="model"){return new Ml(e)}function g9(e){return new h9(e)}function P5(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(u=>{let c=n+ ++r/e.length*(s-n);return t(c),u}),l);function o(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),M(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function M5(e,t){t==null&&(t={});let n=t.fetchFunc==null?Y().platform.fetch:t.fetchFunc,s=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await P5(s,t.onProgress,r,a)).map(d=>d.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await P5(i,t.onProgress,l,u)}async function A9(e,t="",n,s){return z5(o=>M5(o,{requestInit:s}))(e,t,n)}function z5(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let A="quantization"in g?g.quantization.dtype:g.dtype,y=wg[A]*Mt(g.shape),x=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:y})};s!=null?s.forEach((b,v)=>{b===g.name&&(x(),o[v]=!0)}):x(),i.push(g.name),m+=y})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),d={},p=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=c[p+b].byteLength;let g=new ArrayBuffer(m),A=new Uint8Array(g),y=0;for(let b=0;b<f;b++){let v=new Uint8Array(c[p+b]);A.set(v,y),y+=v.byteLength}a[h].forEach(b=>{let v=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=k5(v,[b.manifestEntry]);for(let S in k)d[S]=k[S]}),p+=f}),d}}var y9="application/octet-stream",x9="application/json",Rg=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Y().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=C5(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:x9}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:y9}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:bc(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Sg(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=b9(t),r=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(r+c+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await M5(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Ig(l)]}};Rg.URL_SCHEME_REGEX=/^https?:\/\//;function b9(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function Dg(e){return e.match(Rg.URL_SCHEME_REGEX)!=null}var L5=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>Dg(s)):n=Dg(e),n)return _g(e,t)}return null};$t.registerSaveRouter(L5);$t.registerLoadRouter(L5);function _g(e,t){return new Rg(e,t)}function v9(e,t){return _g(e,t)}var Fg=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},w9=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function k9(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Fg(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Fg({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Fg({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function I9(e){return new w9(e)}var B5={};Le(B5,{confusionMatrix:()=>E9});function S9(e,t,n=!1,s=!1){let r=F(e,"a","matMul"),a=F(t,"b","matMul");[r,a]=Rt(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return L.runKernel($a,o,i)}var Ue=W({matMul_:S9});function C9(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:F(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return L.runKernel(io,a,o)}var zl=W({oneHot_:C9});function T9(e,t){let n=F(e,"x","transpose");if(t==null&&(t=n.shape.map((a,o)=>o).reverse()),M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(a=>{M(a>=0&&a<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let s={x:n},r={perm:t};return L.runKernel(To,s,r)}var Ye=W({transpose_:T9});function N9(e,t,n){let s=F(e,"labels","confusionMatrix"),r=F(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),M(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),M(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=zl(de(s,"int32"),n),o=zl(de(r,"int32"),n),i=Ye(a),l=Ue(i,o);return de(l,"int32")}var E9=W({confusionMatrix_:N9}),fs={};Le(fs,{fromPixels:()=>P9,fromPixelsAsync:()=>$9,toPixels:()=>O9});function sh(e,t,n){if(Ea(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=nr(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Qr(e,t,s,n)}var Ll;function W5(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let f=2;if(r&&e.readyState<f)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Kp(Xp,L.backendName)!=null){let f={pixels:e},m={numChannels:t};return L.runKernel(Xp,f,m)}let[u,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;o?d=e.getContext("2d").getImageData(0,0,u,c).data:s||n?d=e.data:(a||r||i)&&(Ll==null&&(Ll=document.createElement("canvas").getContext("2d")),Ll.canvas.width=u,Ll.canvas.height=c,Ll.drawImage(e,0,0,u,c),d=Ll.getImageData(0,0,u,c).data);let p;if(t===4)p=new Int32Array(d);else{let f=u*c;p=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)p[m*t+g]=d[m*4+g]}return sh(p,[c,u,t],"int32")}function R9(e){return e!=null&&e.data instanceof Uint8Array}function D9(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function _9(e){return e!=null&&e.width!==0&&e.height!==0}function F9(e){return D9()&&!(e instanceof ImageBitmap)&&_9(e)&&!R9(e)}async function $9(e,t=3){let n=null;if(Y().getBool("WRAP_TO_IMAGEBITMAP")&&F9(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return W5(n,t)}async function O9(e,t){let n=F(e,"img","toPixels");if(!(e instanceof Ge)){let u=n;n=de(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let u=0;u<s*r;++u){let c=[0,0,0,255];for(let p=0;p<a;p++){let h=o[u*a+p];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(c[0]=h*i,c[1]=h*i,c[2]=h*i):c[p]=h*i}let d=u*4;l[d+0]=Math.round(c[0]),l[d+1]=Math.round(c[1]),l[d+2]=Math.round(c[2]),l[d+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let u=t.getContext("2d"),c=new ImageData(l,r,s);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var P9=W({fromPixels_:W5}),$g={};Le($g,{prepareAndValidate:()=>V5});function V5(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Mt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let d=0;d<r.length-1;++d)o*=r[d];let i=e.shape,l=r.slice();l.pop();let u=1;for(let d=a;d<n;++d)u*=i[d],l.push(i[d]);let c=[...Ri(e.shape).map(d=>d/u),1].slice(0,a);return[l,o,u,c]}var Og={};Le(Og,{calculateShapes:()=>U5,validateInput:()=>Mg,validateUpdateShape:()=>Pg});function Pg(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function Mg(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Pg(n,t,e)}function U5(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let d=r;d<a;++d)o*=n[d];let i=r<1?1:r,l=Mt(t.shape)/i,u=[...Ri(n.slice(0,r)),1],c=Mt(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:u,outputSize:c}}var kn={};Le(kn,{assertParamsValid:()=>M9,computeFlatOffset:()=>L9,computeOutShape:()=>H5,getNormalizedAxes:()=>X5,isSliceContinous:()=>z9,maskToAxes:()=>rh,parseSliceParams:()=>eb,sliceInfo:()=>B9,startForAxis:()=>J5,startIndicesWithElidedDims:()=>K5,stopForAxis:()=>Q5,stopIndicesWithElidedDims:()=>Z5,stridesForAxis:()=>Y5,stridesWithElidedDims:()=>G5});function M9(e,t,n){let s=e.shape.length;M(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),M(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)M(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function rh(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function H5(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function G5(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function j5(e,t,n){return n<=e?n:n-(t-1)}function q5(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function X5(e,t,n,s,r,a,o,i,l){let u=e.length,c=new Array(u),d=new Array(u),p=new Array(u);if(t.length&&n>0){let h=t[0],f=n+1;c=K5(o,h,f,s,e),d=Z5(i,h,f,r,e),p=G5(a,h,f,e)}else for(let h=0;h<u;h++)c[h]=J5(o,s,a,e,h,l),d[h]=Q5(i,r,a,e,h,l),p[h]=Y5(a,h,l);return{begin:c,end:d,strides:p}}function K5(e,t,n,s,r){let a=[...r],o=q5(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=j5(t,n,i),u=s[l];e&1<<l&&(u=0),a[i]=u}return a}function Z5(e,t,n,s,r){let a=[...r],o=q5(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=j5(t,n,i),u=s[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),a[i]=u}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=qu(0,a[i],r[i])}return a}function Y5(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function J5(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=qu(0,o,l-1),o}function Q5(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=qu(0,o,l):o=qu(-1,o,l-1),o}function z9(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function L9(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function eb(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{M(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(M(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function B9(e,t,n,s,r,a,o,i,l){let u=t.slice(),c=n.slice(),d=s;s==null&&(d=new Array(u.length));let p=rh(o);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(o!==0&&i!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(o!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-u.length,f=rh(i),m=e.slice();f.forEach(S=>{u[S]=0,c[S]=1,m.splice(S,0,1)});let{begin:g,end:A,strides:y}=X5(m,p,h,u,c,d,r,a,o);u=g,c=A,d=y;let x=rh(l);x.forEach(S=>{c[S]=u[S]+1,d[S]=1});let b=H5(u,c,d),v=b.filter((S,C)=>x.indexOf(C)===-1);return{nonStrided:d.every(S=>S===1),$begin:u,$end:c,$strides:d,size:b,newShape:m,outShape:v}}var ie={};Le(ie,{Serializable:()=>tb,SerializationMap:()=>Mo,registerClass:()=>ta});var tb=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Mo=class{constructor(){this.classNameMap={}}static getMap(){return Mo.instance==null&&(Mo.instance=new Mo),Mo.instance}static register(e){Mo.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ta(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Mo.register(e)}var nb={};Le(nb,{TEST_EPSILON_FLOAT16:()=>sb,encodeStrings:()=>rb,expectArrayBuffersEqual:()=>q9,expectArraysClose:()=>V9,expectArraysEqual:()=>H9,expectNumbersClose:()=>G9,expectPromiseToFail:()=>U9,expectValuesInRange:()=>j9,testEpsilon:()=>zg});var W9=.001,sb=.1;function V9(e,t,n){return n==null&&(n=zg()),Lg(e,t,(s,r)=>Bg(s,r,n))}function zg(){return L.backend.floatPrecision()===32?W9:sb}function Lg(e,t,n){let s=!0;if((An(e)||An(t))&&(s=!1),An(e)&&An(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=nr(e),i=nr(t);if(!kr(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=An(e)?e:Ra(e),a=An(t)?t:Ra(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function U9(e,t){e().then(()=>t.fail(),()=>t())}function H9(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Hr(e)||Hr(e[0])||Hr(t)||Hr(t[0])?Lg(e,n,(s,r)=>s==r):Lg(e,t,(s,r)=>Bg(s,r,0))}function G9(e,t,n){if(n==null&&(n=zg()),!Bg(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Bg(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function j9(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function q9(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function rb(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?rb(n):e[t]=pc(n)}return e}var ah="3.9.0";function ab(){Y().set("PROD",!0)}function X9(){Y().set("DEBUG",!0)}function K9(){Y().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Wg(e){Y().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}wC(Wg);function Z9(){L.disposeVariables()}function Ns(){return L}function oh(){return L.memory()}function Y9(e){return L.profile(e)}function H(e,t){return L.tidy(e,t)}function Z(e){bg(e).forEach(n=>n.dispose())}function sn(e){return L.keep(e)}function J9(e){return L.time(e)}function Vg(e){return L.setBackend(e)}function ih(){return L.ready()}function Bl(){return L.backendName}function Q9(e){L.removeBackend(e)}function Ug(e){return L.findBackend(e)}function eT(e){return L.findBackendFactory(e)}function Wl(e,t,n=1){return L.registerBackend(e,t,n)}function zo(){return L.backend}function tT(e,t){Y().setPlatform(e,t)}function nT(e,t){let n=F(e,"a","add"),s=F(t,"b","add");[n,s]=Rt(n,s);let r={a:n,b:s};return L.runKernel(jr,r)}var oe=W({add_:nT});function sT(e,t){let n=F(e,"a","floorDiv"),s=F(t,"b","floorDiv");[n,s]=Rt(n,s);let r={a:n,b:s};return L.runKernel(qa,r)}var lh=W({floorDiv_:sT});function rT(e,t){let n=F(e,"a","div"),s=F(t,"b","div");if([n,s]=Rt(n,s),n.dtype==="int32"&&s.dtype==="int32")return lh(n,s);let r={a:n,b:s},a={};return L.runKernel(Ua,r,a)}var pe=W({div_:rT});function aT(e,t){let n=F(e,"a","mul"),s=F(t,"b","mul");[n,s]=Rt(n,s);let r={a:n,b:s};return L.runKernel(oo,r)}var z=W({mul_:aT});function oT(e){let t=F(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return L.runKernel(Yu,n)}else{let n={x:t};return L.runKernel(_i,n)}}var Bt=W({abs_:oT});function iT(e){let n={x:F(e,"x","acos")};return L.runKernel(Fi,n)}var Hg=W({acos_:iT});function lT(e){let n={x:F(e,"x","acosh")};return L.runKernel($i,n)}var Gg=W({acosh_:lT});function uT(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>F(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!kr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return L.runKernel(Da,s)}var uh=W({addN_:uT});function cT(e,t=null,n=!1){let r={x:F(e,"x","all","bool")},a={axis:t,keepDims:n};return L.runKernel(Oi,r,a)}var ch=W({all_:cT});function dT(e,t=null,n=!1){let r={x:F(e,"x","any","bool")},a={axis:t,keepDims:n};return L.runKernel(Pi,r,a)}var vc=W({any_:dT});function pT(e,t=0){let s={x:F(e,"x","argMax")},r={axis:t};return L.runKernel(_a,s,r)}var Ms=W({argMax_:pT});function hT(e,t=0){let s={x:F(e,"x","argMin")},r={axis:t};return L.runKernel(Ku,s,r)}var jg=W({argMin_:hT});function fT(e){let n={x:F(e,"x","asin")};return L.runKernel(Mi,n)}var qg=W({asin_:fT});function mT(e){let n={x:F(e,"x","asinh")};return L.runKernel(zi,n)}var Xg=W({asinh_:mT});function gT(e){let n={x:F(e,"x","atan")};return L.runKernel(Li,n)}var Kg=W({atan_:gT});function AT(e,t){let n=F(e,"a","atan2"),s=F(t,"b","atan2");[n,s]=Rt(n,s);let r={a:n,b:s};return L.runKernel(Wi,r)}var Zg=W({atan2_:AT});function yT(e){let n={x:F(e,"x","atanh")};return L.runKernel(Bi,n)}var Yg=W({atanh_:yT});function xT(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=lb(r);return wc(e,i,n,a,s,null,null,l)}function ob(e,t,n,s,r,a,o="channelsLast"){let[i,l]=dh(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return wc(e,u,n,s,r,a,!1,o)}function bT(e,t,n,s,r,a,o="NDHWC"){let[i,l,u]=Qg(t),c,d;if(o==="NDHWC")d="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")d="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return ib(e,c,n,s,r,!1,d,a)}function wc(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,u,c,d]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,d]=e;else if(i==="channelsFirst")[l,d,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,h,,f]=t,[m,g]=dh(n),[A,y]=dh(s),x=Vl(p,A),b=Vl(h,y),{padInfo:v,outHeight:k,outWidth:S}=kT(r,u,c,m,g,x,b,a,i),C=o?f*d:f,D;return i==="channelsFirst"?D=[l,C,k,S]:i==="channelsLast"&&(D=[l,k,S,C]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:d,outHeight:k,outWidth:S,outChannels:C,padInfo:v,strideHeight:m,strideWidth:g,filterHeight:p,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:b,dilationHeight:A,dilationWidth:y,inShape:e,outShape:D,filterShape:t}}function ib(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,u,c,d,p]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,d,p]=e;else if(o==="channelsFirst")[l,p,u,c,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[A,y,x]=Qg(n),[b,v,k]=Qg(s),S=Vl(h,b),C=Vl(f,v),D=Vl(m,k),{padInfo:O,outDepth:E,outHeight:R,outWidth:T}=IT(r,u,c,d,A,y,x,S,C,D,i),P=a?g*p:g,U;return o==="channelsFirst"?U=[l,P,E,R,T]:o==="channelsLast"&&(U=[l,E,R,T,P]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:d,inChannels:p,outDepth:E,outHeight:R,outWidth:T,outChannels:P,padInfo:O,strideDepth:A,strideHeight:y,strideWidth:x,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:S,effectiveFilterHeight:C,effectiveFilterWidth:D,dilationDepth:b,dilationHeight:v,dilationWidth:k,inShape:e,outShape:U,filterShape:t}}function vT(e,t,n,s,r){s==null&&(s=Jg(e,t,n));let a=e[0],o=e[1],i=Lo((a-t+2*s)/n+1,r),l=Lo((o-t+2*s)/n+1,r);return[i,l]}function wT(e,t,n,s,r,a){r==null&&(r=Jg(e,t,s));let o=e[0],i=e[1],l=e[2],u=Lo((o-t+2*r)/s+1,a),c=Lo((i-t+2*r)/s+1,a),d=Lo((l-t+2*r)/s+1,a);return[u,c,d,n]}function Jg(e,t,n,s=1){let r=Vl(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function dh(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function Qg(e){return typeof e=="number"?[e,e,e]:e}function Vl(e,t){return t<=1?e:e+(e-1)*(t-1)}function kT(e,t,n,s,r,a,o,i,l){let u,c,d;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=vT([t,n],a,s,e,i);c=h[0],d=h[1]}else if(e==="same"){c=Math.ceil(t/s),d=Math.ceil(n/r);let p=Math.max(0,(c-1)*s+a-t),h=Math.max(0,(d-1)*r+o-n),f=Math.floor(p/2),m=p-f,g=Math.floor(h/2),A=h-g;u={top:f,bottom:m,left:g,right:A,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),d=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let p=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:p,bottom:h,left:f,right:m,type:p===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=Lo((t-a+p+h)/s+1,i),d=Lo((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:d}}function IT(e,t,n,s,r,a,o,i,l,u,c){let d,p,h,f;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=wT([t,n,s,1],i,1,r,e,c);p=g[0],h=g[1],f=g[2]}else if(e==="same"){p=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(p-1)*r+i-t,g=(h-1)*a+l-n,A=(f-1)*o+u-s,y=Math.floor(m/2),x=m-y,b=Math.floor(g/2),v=g-b,k=Math.floor(A/2),S=A-k;d={top:b,bottom:v,left:k,right:S,front:y,back:x,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},p=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outDepth:p,outHeight:h,outWidth:f}}function Lo(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function na(e){let[t,n,s]=dh(e);return t===1&&n===1&&s===1}function sr(e,t){return na(e)||na(t)}function lb(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function ST(e,t){let s={x:F(e,"x","reshape","string_or_numeric")},r={shape:t};return L.runKernel(Al,s,r)}var V=W({reshape_:ST});function CT(e,t,n,s,r){let a=F(e,"x","avgPool","float32"),o=1;M(sr(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),r!=null&&M(en(s),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=L.runKernel(Fa,u,c);return d=de(d,a.dtype),l?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var kc=W({avgPool_:CT});function TT(e,t,n,s,r,a="NDHWC"){let o=F(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(en(s),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=L.runKernel(Zu,u,c);return d=de(d,i.dtype),l?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var eA=W({avgPool3d_:TT});function NT(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=xc(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return Ps(n[0]);let s=n,r={axis:t};return L.runKernel(Ui,s,r)}var ft=W({concat_:NT});function ET(e){let n={x:F(e,"x","sigmoid")};return L.runKernel(xo,n)}var On=W({sigmoid_:ET});function RT(e,t,n){let s=F(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return L.runKernel(vl,r,a)}var _e=W({slice_:RT});function DT(e){let n={x:F(e,"x","tanh")};return L.runKernel(Co,n)}var Bo=W({tanh_:DT});function _T(e,t,n,s,r,a){let o=F(e,"forgetBias","basicLSTMCell"),i=F(t,"lstmKernel","basicLSTMCell"),l=F(n,"lstmBias","basicLSTMCell"),u=F(s,"data","basicLSTMCell"),c=F(r,"c","basicLSTMCell"),d=F(a,"h","basicLSTMCell"),p=ft([u,d],1),h=Ue(p,i),f=oe(h,l),m=f.shape[0],g=f.shape[1]/4,A=[m,g],y=_e(f,[0,0],A),x=_e(f,[0,g],A),b=_e(f,[0,g*2],A),v=_e(f,[0,g*3],A),k=oe(z(On(y),Bo(x)),z(c,On(oe(o,b)))),S=z(Bo(k),On(v));return[k,S]}var FT=W({basicLSTMCell_:_T});function $T(e,t,n){let s=F(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);M(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(s.shape[0]%r==0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return L.runKernel(Vi,a,o)}var Ic=W({batchToSpaceND_:$T});function OT(e){let t;return e.rank===0||e.rank===1?t=V(e,[1,1,1,e.size]):e.rank===2?t=V(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function PT(e,t,n,s,r,a){a==null&&(a=.001);let o=F(e,"x","batchNorm"),i=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let c;s!=null&&(c=F(s,"offset","batchNorm")),M(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:OT(o),scale:u,offset:c,mean:i,variance:l},h={varianceEpsilon:a},f=L.runKernel(Xa,p,h);return V(f,o.shape)}var Wo=W({batchNorm_:PT});function MT(e,t,n,s,r,a){let o=F(e,"x","batchNorm"),i=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let c;return s!=null&&(c=F(s,"offset","batchNorm")),M(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),M(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Wo(o,i,l,c,u,a)}var ub=W({batchNorm2d_:MT});function zT(e,t,n,s,r,a){let o=F(e,"x","batchNorm"),i=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let c;return s!=null&&(c=F(s,"offset","batchNorm")),M(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),M(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Wo(o,i,l,c,u,a)}var cb=W({batchNorm3d_:zT});function LT(e,t,n,s,r,a){let o=F(e,"x","batchNorm"),i=F(t,"mean","batchNorm"),l=F(n,"variance","batchNorm"),u;r!=null&&(u=F(r,"scale","batchNorm"));let c;return s!=null&&(c=F(s,"offset","batchNorm")),M(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),M(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Wo(o,i,l,c,u,a)}var db=W({batchNorm4d_:LT});function BT(e,t,n){let s=F(e,"x","bincount"),r=F(t,"weights","bincount");M(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return L.runKernel(fp,a,o)}var tA=W({bincount_:BT});function WT(e,t){let n=F(e,"s0","broadcastArgs","int32"),s=F(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return L.runKernel(cg,r)}var pb=W({broadcastArgs_:WT});function VT(e,t){let n=F(e,"broadcastTo","x"),s=n.shape;if(t.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let u=n.shape.slice();for(;u.length<t.length;)u.unshift(1);n=V(n,u)}let r=n.shape,a=Array.from(t);for(let u=t.length-1;u>=0;u--)if(r[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Ps(n);let i={x:n},l={reps:a};return L.runKernel(Xr,i,l)}var Ul=W({broadcastTo_:VT});function UT(e){let n={x:F(e,"x","ceil")};return L.runKernel(Pa,n)}var nA=W({ceil_:UT});function HT(e,t,n){let s=F(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return L.runKernel(qr,r,a)}var Pn=W({clipByValue_:HT});function GT(e){return ft(e,0)}var hb=W({concat1d_:GT});function jT(e,t){return ft(e,t)}var Hl=W({concat2d_:jT});function qT(e,t){return ft(e,t)}var fb=W({concat3d_:qT});function XT(e,t){return ft(e,t)}var mb=W({concat4d_:XT});function KT(e,t,n,s,r="NHWC",a=[1,1],o){let i=F(e,"x","conv2d"),l=F(t,"filter","conv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),o!=null&&M(en(s),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d=r==="NHWC"?u.shape[3]:u.shape[1];M(d===l.shape[2],()=>`Error in conv2d: depth of input (${d}) must match input depth for filter ${l.shape[2]}.`),M(sr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let p={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=L.runKernel(Ma,p,h);return c?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Sr=W({conv2d_:KT});function ZT(e,t,n,s,r="NWC",a=1,o){let i=F(e,"x","conv1d"),l=F(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1]])),M(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),o!=null&&M(en(s),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(sr(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),M(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let d=V(l,[1,l.shape[0],l.shape[1],l.shape[2]]),p=V(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Sr(p,d,[1,n],s,"NHWC",[1,a],o);return c?V(g,[g.shape[2],g.shape[3]]):V(g,[g.shape[0],g.shape[2],g.shape[3]])}var ph=W({conv1d_:ZT});function YT(e,t,n,s,r,a="NHWC",o){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),M(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],d=a==="NHWC"?l.shape[3]:l.shape[1];M(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),M(d===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[3]}.`),o!=null&&M(en(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let p={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=L.runKernel(za,p,h);return u?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var sA=W({conv2DBackpropInput_:YT});function JT(e,t,n,s,r,a){let o=F(e,"x","conv2dTranspose"),i=F(t,"filter","conv2dTranspose");return sA(n,o,i,s,r,"NHWC",a)}var hh=W({conv2dTranspose_:JT});function QT(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=F(e,"x","conv3d"),i=F(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),M(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),M(sr(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:i},d={strides:n,pad:s,dataFormat:r,dilations:a},p=L.runKernel(Ju,c,d);return u?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var rA=W({conv3d_:QT});function eN(e,t,n,s,r){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];M(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),M(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},d={pad:r,strides:s,inputShape:a},p=L.runKernel(yp,c,d);return i?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var gb=W({conv3DBackpropInput_:eN});function tN(e,t,n,s,r){let a=F(e,"x","conv3dTranspose"),o=F(t,"filter","conv3dTranspose");return gb(n,a,o,s,r)}var Ab=W({conv3dTranspose_:tN});function nN(e){let n={x:F(e,"x","cos")};return L.runKernel(La,n)}var Sc=W({cos_:nN});function sN(e){let n={x:F(e,"x","cosh")};return L.runKernel(Ba,n)}var fh=W({cosh_:sN});function rN(e,t=0,n=!1,s=!1){let a={x:F(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return L.runKernel(Wa,a,o)}var mh=W({cumsum_:rN});function aN(e,t,n,s=!1){let r=F(e,"x","denseBincount"),a=F(t,"weights","denseBincount");M(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),M(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return L.runKernel(xp,o,i)}var yb=W({denseBincount_:aN});function oN(e,t,n="NHWC"){let s=F(e,"x","depthToSpace"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];M(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),M(o%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return L.runKernel(Gi,i,l)}var aA=W({depthToSpace_:oN});function iN(e,t,n,s,r="NHWC",a=[1,1],o){let i=F(e,"x","depthwiseConv2d"),l=F(t,"filter","depthwiseConv2d"),u=i,c=!1;i.rank===3&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),o!=null&&M(en(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`);let d={x:u,filter:l},p={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},h=L.runKernel(Va,d,p);return c?V(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Gl=W({depthwiseConv2d_:iN});function lN(e){let n={x:F(e,"x","diag")};return L.runKernel(wp,n)}var uN=W({diag_:lN});function cN(e,t,n,s,r=[1,1],a="NHWC"){let o=F(e,"x","dilation2d"),i=F(t,"filter","dilation2d");M(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),M(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),M(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},d={strides:n,pad:s,dilations:r},p=L.runKernel(Qu,c,d);return u?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var oA=W({dilation2d_:cN});function dN(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function Kt(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function bt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}function pN(e,t){let n=F(e,"a","equal","string_or_numeric"),s=F(t,"b","equal","string_or_numeric");[n,s]=Rt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(qi,r)}var Xn=W({equal_:pN});function hN(e,t,n){let s=F(t,"a","where"),r=F(n,"b","where"),a=F(e,"condition","where","bool"),o=bt(bt(a.shape,s.shape),r.shape),i=Ul(a,o),l=Ul(s,o),u=Ul(r,o),c={condition:i,t:l,e:u};return L.runKernel(xl,c)}var yn=W({where_:hN});function fN(e){let n={x:F(e,"x","zerosLike")};return L.runKernel(Dl,n)}var Je=W({zerosLike_:fN});function mN(e,t){let n=F(e,"a","div"),s=F(t,"b","div");[n,s]=Rt(n,s);let r=pe(n,s),a=Je(r),o=Xn(s,a);return yn(o,a,r)}var iA=W({divNoNan_:mN});function gN(e,t){let n=F(e,"t1","dot"),s=F(t,"t2","dot");M((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(M(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=V(n,[1,-1]),i=V(s,[-1,1]),l=Ue(o,i);return V(l,[])}else if(n.rank===1&&s.rank===2){let o=V(n,[1,-1]),i=V(s,[s.shape[0],s.shape[1]]),l=Ue(o,i);return V(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=V(s,[-1,1]),i=Ue(n,o);return V(i,[i.size])}else{let o=V(s,[s.shape[0],s.shape[1]]);return Ue(n,o)}}var xb=W({dot_:gN});function AN(e,...t){let n=t.map((r,a)=>F(r,`tensors${a}`,"einsum")),s={equation:e};return L.runKernel(Sp,n,s)}var bb=W({einsum_:AN});function yN(e){let n={x:F(e,"x","elu")};return L.runKernel(Ha,n)}var jl=W({elu_:yN});function xN(e){let t=F(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=de(t,"float32"));let n={x:t};return L.runKernel(ji,n)}var lA=W({erf_:xN});function bN(e){let n={x:F(e,"x","exp")};return L.runKernel(Ga,n)}var Kn=W({exp_:bN});function vN(e,t=0){let n=F(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return L.runKernel(Xi,s,r)}var zt=W({expandDims_:vN});function wN(e){let n={x:F(e,"x","expm1")};return L.runKernel(Ki,n)}var uA=W({expm1_:wN});function kN(e,t){let n=F(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return L.runKernel(Xr,s,r)}var ms=W({tile_:kN});function IN(e,t,n,s="float32"){t==null&&(t=e);let r=je([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=V(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return ms(zt(o,0),[n[0],1,1]);if(n.length===2)return ms(zt(zt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return ms(zt(zt(zt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var cA=W({eye_:IN});function ql(e,t,n){let s={shape:e,value:t,dtype:n};return L.runKernel(ec,{},s)}function SN(e){let n={x:F(e,"x","floor")};return L.runKernel(ja,n)}var Xl=W({floor_:SN});function CN(e,t,n=0,s=0){let r=F(e,"x","gather"),a=F(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return L.runKernel(Yi,o,i)}var Vo=W({gather_:CN});function TN(e,t){let n=F(e,"a","greater","string_or_numeric"),s=F(t,"b","greater","string_or_numeric");[n,s]=Rt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Qi,r)}var Mn=W({greater_:TN});function NN(e,t){let n=F(e,"a","greaterEqual","string_or_numeric"),s=F(t,"b","greaterEqual","string_or_numeric");[n,s]=Rt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(Ka,r)}var sa=W({greaterEqual_:NN});function EN(e){let n={input:F(e,"input","imag")};return L.runKernel(Ep,n)}var gh=W({imag_:EN});function RN(e){let n={x:F(e,"x","isFinite")};return L.runKernel(el,n)}var vb=W({isFinite_:RN});function DN(e){let n={x:F(e,"x","isInf")};return L.runKernel(tl,n)}var wb=W({isInf_:DN});function _N(e){let n={x:F(e,"x","isNaN")};return L.runKernel(nl,n)}var dA=W({isNaN_:_N});function FN(e,t=.2){let s={x:F(e,"x","leakyRelu")},r={alpha:t};return L.runKernel(Ya,s,r)}var Cc=W({leakyRelu_:FN});function $N(e,t){let n=F(e,"a","less","string_or_numeric"),s=F(t,"b","less","string_or_numeric");[n,s]=Rt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(sl,r)}var Ah=W({less_:$N});function ON(e,t){let n=F(e,"a","lessEqual","string_or_numeric"),s=F(t,"b","lessEqual","string_or_numeric");[n,s]=Rt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(rl,r)}var ra=W({lessEqual_:ON});function kb(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return L.runKernel(Rp,{},s)}function PN(e,t=5,n=1,s=1,r=.5){let a=F(e,"x","localResponseNormalization");M(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),M(en(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=V(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:s,beta:r},c=L.runKernel(sc,l,u);return i?V(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var pA=W({localResponseNormalization_:PN});function MN(e){let n={x:F(e,"x","log")};return L.runKernel(Ja,n)}var Zn=W({log_:MN});function zN(e){let n={x:F(e,"x","log1p")};return L.runKernel(al,n)}var Tc=W({log1p_:zN});function LN(e){return M(Gr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=F(t,"x","tf.grad","string_or_numeric"),r=n!=null?F(n,"dy","tf.grad"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(s),[s],r);return r!=null&&vn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),yh(o),o[0]})}}function BN(e){return M(Gr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=xc(t,"args","tf.grads","string_or_numeric"),r=n!=null?F(n,"dy","tf.grads"):null;return L.tidy(()=>{let{value:a,grads:o}=L.gradients(()=>e(...s),s,r);return r!=null&&vn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),yh(o),o})}}function WN(e){return M(Gr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof Ge,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof Ge,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=L.gradients(()=>e(t),[t],n);return yh(s),{grad:s[0],value:r}}}function VN(e){return M(Gr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(r=>r instanceof Ge),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof Ge,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=L.gradients(()=>e(...t),t,n);return n!=null&&vn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),yh(s.grads),s}}function Ib(e,t){M(Gr(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(u=>u instanceof gc),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in L.registeredVariables)t.push(L.registeredVariables[u])}let s=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=L.gradients(e,t,null,a);M(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),s!=null&&s.forEach(u=>l[u.name]=null),{value:o,grads:l}}function rr(e){return L.customGrad(e)}function yh(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function UN(e){let n={x:F(e,"x","neg")};return L.runKernel(ll,n)}var St=W({neg_:UN});function HN(e){let n={x:F(e,"x","softplus")};return L.runKernel(Il,n)}var Uo=W({softplus_:HN});function GN(e){let t=F(e,"x","logSigmoid");return rr(s=>({value:St(Uo(St(s))),gradFunc:o=>z(o,On(St(s)))}))(t)}var Sb=W({logSigmoid_:GN});function jN(e,t=null,n=!1){let r={x:F(e,"x","max")},a={reductionIndices:t,keepDims:n};return L.runKernel(Qa,r,a)}var Yn=W({max_:jN});function qN(e,t){let n=F(e,"a","sub"),s=F(t,"b","sub");[n,s]=Rt(n,s);let r={a:n,b:s};return L.runKernel(Io,r)}var Ae=W({sub_:qN});function XN(e,t=null,n=!1){let s=F(e,"x","sum");s.dtype==="bool"&&(s=de(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(vo,r,a)}var we=W({sum_:XN});function KN(e,t=-1){let n=F(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return rr((r,a)=>{let o=!0,i=Yn(r,t,!0),l=Ae(r,i),u=Ae(de(l,"float32"),Zn(we(Kn(l),t,o)));return a([u]),{value:u,gradFunc:(d,p)=>{let[h]=p,f=!0,m=Kn(h);return Ae(d,z(we(d,t,f),m))}}})(n)}var xh=W({logSoftmax_:KN});function hA(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function Cb(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function Tb(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function Ho(e,t){let n=t.map(s=>1);return Cb(e,n,t)}function ZN(e,t,n){M(hA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Nb(e,t){if(hA(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function fA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function YN(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function JN(e,t=null,n=!1){let s=F(e,"x","logSumExp"),r=Cs(t,s.shape),a=Yn(s,r,!0),o=Ae(s,a),i=Kn(o),l=we(i,r),u=Zn(l),c=oe(V(a,u.shape),u);if(n){let d=Ho(c.shape,r);return V(c,d)}return c}var mA=W({logSumExp_:JN});function QN(e,t){let n=F(e,"a","logicalAnd","bool"),s=F(t,"b","logicalAnd","bool");bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(ol,r)}var Es=W({logicalAnd_:QN});function eE(e){let n={x:F(e,"x","logicalNot","bool")};return L.runKernel(tc,n)}var Nc=W({logicalNot_:eE});function tE(e,t){let n=F(e,"a","logicalOr","bool"),s=F(t,"b","logicalOr","bool");bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(nc,r)}var bh=W({logicalOr_:tE});function nE(e,t){let n=F(e,"a","logicalXor","bool"),s=F(t,"b","logicalXor","bool");return bt(n.shape,s.shape),Es(bh(e,t),Nc(Es(e,t)))}var Eb=W({logicalXor_:nE});function sE(e,t,n,s,r){let a=F(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),M(sr(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),r!=null&&M(en(s),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},d=L.runKernel(to,u,c);return l?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Ec=W({maxPool_:sE});function rE(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=F(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),r!=null&&M(en(s),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${s}.`);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},d=L.runKernel(rc,u,c);return l?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var gA=W({maxPool3d_:rE});function aE(e,t,n,s,r=!1){let o={x:F(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=L.runKernel($p,o,i);return{result:l[0],indexes:l[1]}}var Rb=W({maxPoolWithArgmax_:aE});function oE(e,t){let n=F(e,"a","maximum"),s=F(t,"b","maximum");[n,s]=Rt(n,s),n.dtype==="bool"&&(n=de(n,"int32"),s=de(s,"int32")),bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(eo,r)}var ar=W({maximum_:oE});function iE(e,t=null,n=!1){let r={x:F(e,"x","mean")},a={axis:t,keepDims:n};return L.runKernel(no,r,a)}var Dt=W({mean_:iE});function Ot(e,t="float32"){if(t==="complex64"){let s=Ot(e,"float32"),r=Ot(e,"float32");return Jr(s,r)}let n=dp(Mt(e),t);return L.makeTensor(n,e,t)}function Jn(e,t="float32"){if(t==="complex64"){let s=Jn(e,"float32"),r=Ot(e,"float32");return Jr(s,r)}let n=ag(Mt(e),t);return L.makeTensor(n,e,t)}function lE(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=F(e,"x","meshgrid",e instanceof Ge?e.dtype:"float32");if(t===void 0)return[s];let r=F(t,"y","meshgrid",t instanceof Ge?t.dtype:"float32"),a=Mt(s.shape),o=Mt(r.shape);return n==="xy"?(s=V(s,[1,-1]),r=V(r,[-1,1]),[Ue(Jn([o,1],s.dtype),s),Ue(r,Jn([1,a],r.dtype))]):(s=V(s,[-1,1]),r=V(r,[1,-1]),[Ue(s,Jn([1,o],s.dtype)),Ue(Jn([a,1],r.dtype),r)])}function uE(e,t=null,n=!1){let r={x:F(e,"x","min")},a={axis:t,keepDims:n};return L.runKernel(so,r,a)}var Rc=W({min_:uE});function cE(e,t){let n=F(e,"a","minimum"),s=F(t,"b","minimum");[n,s]=Rt(n,s),n.dtype==="bool"&&(n=de(n,"int32"),s=de(s,"int32")),bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(ro,r)}var Kl=W({minimum_:cE});function dE(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=F(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)M(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),M(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return L.runKernel(ao,o,a)}var AA=W({mirrorPad_:dE});function pE(e,t){let n=F(e,"a","mod"),s=F(t,"b","mod");[n,s]=Rt(n,s);let r={a:n,b:s};return L.runKernel(il,r)}var yA=W({mod_:pE});function hE(e){let t=F(e,"x","square"),n={};return L.runKernel("Square",{x:t},n)}var pt=W({square_:hE});function fE(e,t=null,n=!1){e=F(e,"x","moments");let s=Cs(t,e.shape),r=Dt(e,s,n),a=r.shape;n||(a=Ho(r.shape,s));let o=pt(Ae(de(e,"float32"),V(r,a))),i=Dt(o,s,n);return{mean:r,variance:i}}var vh=W({moments_:fE});function mE(e,t,n,s){let r=F(t,"data","multiRNNCell"),a=xc(n,"c","multiRNNCell"),o=xc(s,"h","multiRNNCell"),i=r,l=[];for(let d=0;d<e.length;d++){let p=e[d](i,a[d],o[d]);l.push(p[0]),l.push(p[1]),i=p[1]}let u=[],c=[];for(let d=0;d<l.length;d+=2)u.push(l[d]),c.push(l[d+1]);return[u,c]}var gE=W({multiRNNCell_:mE});function AE(e,t,n,s=!1){let r=F(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?V(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:s},c=L.runKernel(Op,l,u);return o===1?V(c,[c.size]):c}var Db=W({multinomial_:AE});function yE(e,t){let n=F(e,"a","notEqual","string_or_numeric"),s=F(t,"b","notEqual","string_or_numeric");[n,s]=Rt(n,s),bt(n.shape,s.shape);let r={a:n,b:s};return L.runKernel(ul,r)}var Go=W({notEqual_:yE});function xE(e){let n={x:F(e,"x","onesLike")};return L.runKernel(hl,n)}var Qn=W({onesLike_:xE});function bE(e,t){let n=F(e,"v1","outerProduct"),s=F(t,"v2","outerProduct");M(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=V(n,[-1,1]),a=V(s,[1,-1]);return Ue(r,a)}var vE=W({outerProduct_:bE});function wE(e,t,n=0){let s=F(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return L.runKernel(lo,a,r)}var Cr=W({pad_:wE});function kE(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Cr(e,[t],n)}var IE=W({pad1d_:kE});function SE(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Cr(e,t,n)}var CE=W({pad2d_:SE});function TE(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Cr(e,t,n)}var NE=W({pad3d_:TE});function EE(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Cr(e,t,n)}var RE=W({pad4d_:EE});function DE(e,t,n){let s=F(e,"x","spaceToBatchND");M(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]==0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return L.runKernel(Sl,r,a)}var Dc=W({spaceToBatchND_:DE});function _E(e,t,n,s,r,a){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=F(e,"x","maxPool"),i=o,l=!1;o.rank===3&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2]])),M(sr(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let u=ob(i.shape,t,a,r,s),c=[u.dilationHeight,u.dilationWidth],d;s==="same"?d=$E([u.filterHeight,u.filterWidth],c):d=[[0,0],[0,0]];let p=c[0]===1&&c[1]===1,[h,f]=FE([u.inHeight,u.inWidth],c,d),m=p?s:"valid",g=p?i:Dc(i,c,h),y=(n==="avg"?()=>kc(g,t,a,m):()=>Ec(g,t,a,m))(),x=p?y:Ic(y,c,f);return l?V(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function FE(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),o=t.map((c,d)=>(c-a[d]%c)%c),i=r.map((c,d)=>c+o[d]),l=t.map((c,d)=>[s[d],i[d]]),u=t.map((c,d)=>[0,o[d]]);return[l,u]}function $E(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var _b=W({pool_:_E});function OE(e,t){let n=F(e,"base","pow"),s=F(t,"exp","pow");[n,s]=Rt(n,s);let r={a:n,b:s};return L.runKernel(uo,r)}var Tr=W({pow_:OE});function PE(e,t){let n=F(e,"x","prelu"),s=F(t,"alpha","prelu"),r={x:n,alpha:s};return L.runKernel(co,r)}var _c=W({prelu_:PE});function ME(e,t=null,n=!1){let s=F(e,"x","prod");s.dtype==="bool"&&(s=de(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return L.runKernel(ml,r,a)}var wh=W({prod_:ME});function zE(e,t,n){let s=Mt(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return L.makeTensor(r,e,n)}var LE=W({rand_:zE}),xA=Na(Hx()),bA=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=xA.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},BE=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=xA.alea(r.toString()),this.randn=new bA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},WE=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=xA.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function VE(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new BE(t,n,s,r),o=je(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var UE=W({randomGamma_:VE});function HE(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new bA(t,n,s,!1,r),o=je(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var Fb=W({randomNormal_:HE});function GE(e,t=0,n=1,s="float32",r){let a=je(e,s),o=new WE(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var Zl=W({randomUniform_:GE});function Yl(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return L.runKernel(ac,{},r)}function jE(e){let n={input:F(e,"input","real")};return L.runKernel(Pp,n)}var Fc=W({real_:jE});function qE(e){let n={x:F(e,"x","reciprocal")};return L.runKernel(gl,n)}var vA=W({reciprocal_:qE});function XE(e){let n={x:F(e,"x","relu")};return L.runKernel(po,n)}var zs=W({relu_:XE});function KE(e){let n={x:F(e,"x","relu6")};return L.runKernel(fo,n)}var kh=W({relu6_:KE});function ZE(e,t){let s={x:F(e,"x","reverse")},r={dims:t};return L.runKernel(mo,s,r)}var es=W({reverse_:ZE});function YE(e){let t=F(e,"x","reverse");return M(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),es(t,0)}var JE=W({reverse1d_:YE});function QE(e,t){let n=F(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),es(n,t)}var eR=W({reverse2d_:QE});function tR(e,t){let n=F(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),es(n,t)}var nR=W({reverse3d_:tR});function sR(e,t){let n=F(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),es(n,t)}var rR=W({reverse4d_:sR});function aR(e){let n={x:F(e,"x","round")};return L.runKernel(go,n)}var Ih=W({round_:aR});function oR(e){let n={x:F(e,"x","rsqrt")};return L.runKernel(Ao,n)}var Sh=W({rsqrt_:oR});function Ce(e,t){if((An(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&An(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Qr(e,[],[],t)}function iR(e){let n={x:F(e,"x","selu")};return L.runKernel(bl,n)}var Ch=W({selu_:iR});function lR(e,t,n,s,r,a=[1,1],o="NHWC"){let i=F(e,"x","separableConv2d"),l=F(t,"depthwiseFilter","separableConv2d"),u=F(n,"pointwiseFilter","separableConv2d"),c=i,d=!1;if(i.rank===3&&(d=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),M(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let p=l.shape[2],h=l.shape[3];M(u.shape[2]===p*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${p*h}, but got ${u.shape[2]}.`);let f=Gl(c,l,s,r,o,a),g=Sr(f,u,1,"valid",o);return d?V(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var wA=W({separableConv2d_:lR});async function uR(e,t){let n=F(e,"x","setdiff1d"),s=F(t,"y","setdiff1d");M(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let c=0;c<r.length;c++)o.has(r[c])||i++;let l=new Xt([i],n.dtype),u=new Xt([i],"int32");for(let c=0,d=0;c<r.length;c++)o.has(r[c])||(l.values[d]=r[c],u.values[d]=c,d++);return[l.toTensor(),u.toTensor()]}var $b=uR;function cR(e){let n={x:F(e,"x","sign")};return L.runKernel(kl,n)}var kA=W({sign_:cR});function dR(e){let n={x:F(e,"x","sin")};return L.runKernel(yo,n)}var Th=W({sin_:dR});function pR(e){let n={x:F(e,"x","sinh")};return L.runKernel(wl,n)}var Nh=W({sinh_:pR});function hR(e,t,n){let s=F(e,"x","slice1d");return M(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),_e(s,[t],[n])}var Eh=W({slice1d_:hR});function fR(e,t,n){let s=F(e,"x","slice2d");return M(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var IA=W({slice2d_:fR});function mR(e,t,n){let s=F(e,"x","slice3d");return M(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var Rh=W({slice3d_:mR});function gR(e,t,n){let s=F(e,"x","slice4d");return M(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),_e(s,t,n)}var $c=W({slice4d_:gR});function AR(e,t=-1){let n=F(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return L.runKernel(wo,s,r)}var Oc=W({softmax_:AR});function yR(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(Tp,t)}var Pc=W({fft_:yR});function xR(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return L.runKernel(Np,t)}var Jl=W({ifft_:xR});function bR(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=V(e,[n,t]);s=Jl(r)}else{let r=[n,2*(t-1)],a=V(Fc(e),[n,t]),o=V(gh(e),[n,t]),i=es(_e(a,[0,1],[n,t-2]),1),l=z(es(_e(o,[0,1],[n,t-2]),1),Ce(-1)),u=ft([a,i],1),c=ft([o,l],1),d=V(Jr(u,c),[r[0],r[1]]);s=Jl(d)}if(s=Fc(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=V(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var Dh=W({irfft_:bR});function vR(e,t,n=0){let r={x:F(e,"x","split")},a={numOrSizeSplits:t,axis:n};return L.runKernel(Cl,r,a)}var Wt=W({split_:vR});function wR(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=_e(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=ft([e,Ot(f)],e.shape.length-1),n=t}else r=e;let a=Je(r),o=V(Jr(r,a),[s,n]),i=Pc(o),l=Math.floor(n/2)+1,u=Fc(i),c=gh(i),d=Wt(u,[l,n-l],u.shape.length-1),p=Wt(c,[l,n-l],c.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,V(Jr(d[0],p[0]),h)}var Mc=W({rfft_:wR});function kR(e){let n={x:F(e,"x","sqrt")};return L.runKernel(bo,n)}var dn=W({sqrt_:kR});function IR(e,t){let n=F(e,"a","squaredDifference"),s=F(t,"b","squaredDifference");[n,s]=Rt(n,s),bt(n.shape,s.shape);let r={a:n,b:s},a={};return L.runKernel(ko,r,a)}var _h=W({squaredDifference_:IR});function SR(e,t){let n=F(e,"x","squeeze");return V(n,Xx(n.shape,t).newShape)}var lt=W({squeeze_:SR});function CR(e,t=0){let n=xc(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return L.runKernel(fl,s,r)}var pn=W({stack_:CR});function TR(e,t=0){let s={x:F(e,"x","step")},r={alpha:t};return L.runKernel(Kr,s,r)}var Ql=W({step_:TR});function NR(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let c={x:F(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return L.runKernel(Tl,c,d)}var SA=W({stridedSlice_:NR});function ER(e){let n={x:F(e,"x","tan")};return L.runKernel(So,n)}var CA=W({tan_:ER});function Vt(e,t){Ea(e);let n=nr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Qr(e,null,n,t)}function Ls(e,t,n){if(Ea(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=nr(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Qr(e,t,s,n)}function RR(e,t,n){if(Ea(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=nr(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Qr(e,t,s,n)}function DR(e,t,n){if(Ea(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=nr(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Qr(e,t,s,n)}function _R(e,t,n){if(Ea(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=nr(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,Qr(e,t,s,n)}function FR(e,t=1,n=!0){let s=F(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=L.runKernel(Nl,a,o);return{values:i,indices:l}}var TA=W({topk_:FR});function $R(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new bA(t,n,s,!0,r),o=je(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var Fh=W({truncatedNormal_:$R});function OR(e,t=0){let n=F(e,"x","unique","string_or_numeric");M(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=L.runKernel(qp,s,r);return{values:a,indices:o}}var $h=W({unique_:OR});function PR(e,t,n){let s=F(e,"x","unsortedSegmentSum"),r=F(t,"segmentIds","unsortedSegmentSum","int32");M(en(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return L.runKernel(lc,a,o)}var NA=W({unsortedSegmentSum_:PR});function MR(e,t=0){let n=F(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return L.runKernel(Rl,s,r)}var ts=W({unstack_:MR});function Ob(e,t=!0,n,s){return L.makeVariable(e,t,n,s)}function Pb(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=je(e,"int32"),r=je([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function zR(e){let t=F(e,"condition","whereAsync","bool"),n=await t.data(),s=Pb(t.shape,n);return e!==t&&t.dispose(),s}var EA=zR;async function LR(e,t,n){let s=F(e,"tensor","boolMask"),r=F(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;M(o>0,()=>"mask cannot be scalar"),vn(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let u=i.slice(0,a).concat([l],i.slice(a+o)),c=V(s,u),d=V(r,[-1]),p=await EA(d),h=lt(p,[1]),f=Vo(c,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),c.dispose(),d.dispose(),p.dispose(),f}var BR=LR;function WR(e,t="euclidean",n=null,s=!1){e=F(e,"x","norm");let r=Mb(e,t,n),a=r.shape;if(s){let o=Cs(n,e.shape);a=Ho(r.shape,o)}return V(r,a)}function Mb(e,t,n=null){if(e.rank===0)return Bt(e);if(e.rank!==1&&n===null)return Mb(V(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return we(Bt(e),n);if(t===1/0)return Yn(Bt(e),n);if(t===-1/0)return Rc(Bt(e),n);if(t==="euclidean"||t===2)return dn(we(Tr(Bt(e),Ce(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Yn(we(Bt(e),n[0]),n[1]-1);if(t===1/0)return Yn(we(Bt(e),n[1]),n[0]);if(t===-1/0)return Rc(we(Bt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return dn(we(pt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Oh=W({norm_:WR});function VR(e,t,n,s,r=!0){let a=F(e,"v","movingAverage"),o=F(t,"x","movingAverage"),i=F(n,"decay","movingAverage");m5(a,o),M(kr(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Ce(1),u=Ae(l,i),c=z(Ae(o,a),u);if(r){M(s!=null,()=>"When using zeroDebias: true, step is required.");let d=F(s,"step","movingAverage");c=pe(c,Ae(l,Tr(i,d)))}return oe(a,c)}var UR=W({movingAverage_:VR});function HR(e,t,n){let s=F(e,"indices","scatterND","int32"),r=F(t,"updates","scatterND");Mg(r,s,n);let a={indices:s,updates:r},o={shape:n};return L.runKernel(yl,a,o)}var zb=W({scatterND_:HR});function GR(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function jR(e,t,n,s=0){let r=F(e,"sparseIndices","sparseToDense","int32"),a=F(t,"sparseValues","sparseToDense"),o=F(s,"defaultValue","sparseToDense",a.dtype);GR(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return L.runKernel(Up,i,l)}var RA=W({sparseToDense_:jR});function qR(e,t){let n=F(t,"indices","gatherND","int32"),r={params:F(e,"x","gatherND","string_or_numeric"),indices:n};return L.runKernel(Ji,r)}var Lb=W({gatherND_:qR});function XR(e,t){if(t==null)return e.shape.slice();if(kr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function KR(e,t,n,s){let r=F(e,"x","dropout");if(M(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Ge?r.clone():r;let a=XR(r,n),o=1-t,i=pe(Xl(oe(Zl(a,0,1,"float32",s),o)),o);return z(r,i)}var Bb=W({dropout_:KR});function Wb(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function DA(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return Vt(r,"float32")}async function ZR(e,t,n=1){let s=F(e,"predictions","inTopK"),r=F(t,"targets","inTopK");M(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),M(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),vn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];M(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,u]=[o.length/a,a],c=Kx("bool",l);for(let d=0;d<l;d++){let p=d*u,h=o.subarray(p,p+u),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),c[d]=0;for(let m=0;m<n;m++)if(f[m].index===i[d]){c[d]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),nn(c,r.shape,"bool")}var YR=ZR,aa={};Le(aa,{conv2d:()=>eD,depthwiseConv2d:()=>rD,matMul:()=>oD});function JR(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];M(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),M(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),o!=null&&M(en(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${o} but got pad ${r}.`);let d={x:i,dy:l},p={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return L.runKernel(gp,d,p)}var _A=W({conv2DBackpropFilter_:JR});function Ph(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,Ql(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Mh(e,t){let n=t,s=Kt(e.shape,t.shape);return s.length>0&&(n=we(n,s)),V(n,e.shape)}function zh(e,t,n,s){if(t==="linear")return e;if(t==="relu")return zs(e);if(t==="elu")return jl(e);if(t==="relu6")return kh(e);if(t==="prelu")return _c(e,n);if(t==="leakyrelu")return Cc(e,s);if(t==="sigmoid")return On(e);throw new Error(`Unknown fused activation ${t}.`)}var Lh=(e,t)=>!(e>0)||t==="linear";function QR({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",Lh(L.state.gradientDepth,l)===!1){let v=Sr(e,t,n,s,r,a,o);return i!=null&&(v=oe(v,i)),zh(v,l,u,c)}let d=F(e,"x","conv2d"),p=F(t,"filter","conv2d"),h=d,f=!1;d.rank===3&&(f=!0,h=V(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),M(p.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${p.rank}.`),o!=null&&M(en(s),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${s}.`),M(h.shape[3]===p.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${p.shape[2]}.`),M(sr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let m=wc(h.shape,p.shape,n,a,s,o),g;i!=null&&(g=F(i,"bias","fused conv2d"),[g]=Rt(g,d),bt(m.outShape,g.shape));let A;u!=null&&(A=F(u,"prelu weights","fused conv2d"));let y=(v,k)=>{let[S,C,D,O]=k,E=Ph(v,D,l);M(na(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let R=sA(C.shape,E,S,n,s),T=_A(C,E,S.shape,n,s),P=[R,T];if(O!=null){let U=Mh(O,E);P.push(U)}return P},x={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?rr((k,S,C)=>{let D=L.runKernel(Eo,x,b);return C([S,k,D]),f&&(D=V(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:y}})(h,p):rr((k,S,C,D)=>{let O=L.runKernel(Eo,x,b);return D([S,k,O,C]),f&&(O=V(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:y}})(h,p,g)}var eD=W({fusedConv2d_:QR});function tD(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return L.runKernel(bp,u,c)}var Vb=W({depthwiseConv2dNativeBackpropFilter_:tD});function nD(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},d=L.runKernel(vp,u,c);return l?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Ub=W({depthwiseConv2dNativeBackpropInput_:nD});function sD({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(Lh(L.state.gradientDepth,l)===!1){let v=Gl(e,t,n,s,r,a,o);return i!=null&&(v=oe(v,i)),zh(v,l,u,c)}let d=F(e,"x","depthwiseConv2d"),p=F(t,"filter","depthwiseConv2d"),h=d,f=!1;d.rank===3&&(f=!0,h=V(d,[1,d.shape[0],d.shape[1],d.shape[2]])),M(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),M(p.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${p.rank}.`),M(h.shape[3]===p.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${p.shape[2]}.`),a==null&&(a=[1,1]),M(sr(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),o!=null&&M(en(s),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${o} but got pad ${s}.`);let m=wc(h.shape,p.shape,n,a,s,o,!0),g;i!=null&&(g=F(i,"bias","fused conv2d"),[g]=Rt(g,d),bt(m.outShape,g.shape));let A;u!=null&&(A=F(u,"prelu weights","fused depthwiseConv2d"));let y=(v,k)=>{M(na(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[S,C,D,O]=k,E=Ph(v,D,l),R=Ub(C.shape,E,S,n,s,a,o),T=Vb(C,E,S.shape,n,s,a,o);if(O!=null){let P=Mh(g,E);return[R,T,P]}return[R,T]},x={x:h,filter:p,bias:g,preluActivationWeights:A},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?rr((k,S,C)=>{let D=L.runKernel(Ro,x,b);return C([S,k,D]),f&&(D=V(D,[D.shape[1],D.shape[2],D.shape[3]])),{value:D,gradFunc:y}})(h,p):rr((k,S,C,D)=>{let O=L.runKernel(Ro,x,b);return D([S,k,O,C]),f&&(O=V(O,[O.shape[1],O.shape[2],O.shape[3]])),{value:O,gradFunc:y}})(h,p,g)}var rD=W({fusedDepthwiseConv2d_:sD});function aD({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i}){if(Lh(L.state.gradientDepth,a)===!1){let O=Ue(e,t,n,s);return r!=null&&(O=oe(O,r)),zh(O,a,o,i)}let l=F(e,"a","fused matMul"),u=F(t,"b","fused matMul");[l,u]=Rt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],d=s?u.shape[u.rank-1]:u.shape[u.rank-2],p=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=Mt(f),A=Mt(m);M(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),M(kr(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),M(c===d,()=>`Error in fused matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${s} must match.`);let y=l.shape.slice(0,-2).concat([p,h]),x=n?V(l,[g,c,p]):V(l,[g,p,c]),b=s?V(u,[A,h,d]):V(u,[A,d,h]),v;r!=null&&(v=F(r,"bias","fused matMul"),[v]=Rt(v,l),bt(y,v.shape));let k;o!=null&&(k=F(o,"prelu weights","fused matMul"));let S=(O,E)=>{let[R,T,P,U]=E,j=Ph(V(O,P.shape),P,a),q,X;if(!n&&!s?(q=Ue(j,T,!1,!0),X=Ue(R,j,!0,!1)):!n&&s?(q=Ue(j,T,!1,!1),X=Ue(j,R,!0,!1)):n&&!s?(q=Ue(T,j,!1,!0),X=Ue(R,j,!1,!1)):(q=Ue(T,j,!0,!0),X=Ue(j,R,!0,!0)),r!=null){let te=Mh(U,j);return[q,X,te]}else return[q,X]},C={a:x,b,bias:v,preluActivationWeights:k},D={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?rr((E,R,T)=>{let P=L.runKernel(No,C,D);return T([E,R,P]),{value:V(P,y),gradFunc:S}})(x,b):rr((E,R,T,P)=>{let U=L.runKernel(No,C,D);return P([E,R,U,T]),{value:V(U,y),gradFunc:S}})(x,b,v)}var oD=W({fusedMatMul_:aD});function iD(e){return DA(e,.54,.46)}var lD=W({hammingWindow_:iD});function uD(e){return DA(e,.5,.5)}var Hb=W({hannWindow_:uD});function cD(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(_e(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=ft([_e(e,a,t-i),ql([i],r)]);o.push(l),a+=n}return o.length===0?Ls([],[0,t]):V(ft(o),[o.length,t])}var Gb=W({frame_:cD});function dD(e,t,n,s,r=Hb){s==null&&(s=Wb(t));let a=Gb(e,t,n),o=z(a,r(t));return Mc(o,s)}var pD=W({stft_:dD});function hD(e,t,n,s,r="bilinear",a=0){let o=F(e,"image","cropAndResize"),i=F(t,"boxes","cropAndResize","float32"),l=F(n,"boxInd","cropAndResize","int32"),u=i.shape[0];M(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),M(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),M(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),M(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),M(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:o,boxes:i,boxInd:l},d={method:r,extrapolationValue:a,cropSize:s};return L.runKernel(Hi,c,d)}var fD=W({cropAndResize_:hD});function mD(e){let t=F(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return L.runKernel(Zi,n,{})}var gD=W({flipLeftRight_:mD});function AD(e){let t=F(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];M(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),M(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,ms(t,r)}var yD=W({grayscaleToRGB_:AD});function xD(e,t,n=0,s=.5){let r=F(e,"image","rotateWithOffset","float32");M(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return L.runKernel(_l,a,o)}var bD=W({rotateWithOffset_:xD});function eu(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),M(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),M(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function vD(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=F(e,"boxes","nonMaxSuppression"),o=F(t,"scores","nonMaxSuppression"),i=eu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return L.runKernel(cl,{boxes:a,scores:o},l)}var wD=W({nonMaxSuppression_:vD});function kD(e,t,n){let s=ID(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function ID(e,t,n){return CD(e,t,n||SD)}function SD(e,t){return e>t?1:e<t?-1:0}function CD(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function jb(e,t,n,s,r){return FA(e,t,n,s,r,0)}function qb(e,t,n,s,r,a){return FA(e,t,n,s,r,0,!1,a,!0)}function Xb(e,t,n,s,r,a){return FA(e,t,n,s,r,a,!0)}function FA(e,t,n,s,r,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(Kb);let c=a>0?-.5/a:0,d=[],p=[];for(;d.length<n&&u.length>0;){let g=u.pop(),{score:A,boxIndex:y,suppressBeginIndex:x}=g;if(A<r)break;let b=!1;for(let v=d.length-1;v>=x;--v){let k=TD(e,y,d[v]);if(k>=s){b=!0;break}if(g.score=g.score*ND(s,c,k),g.score<=r)break}g.suppressBeginIndex=d.length,b||(g.score===A?(d.push(y),p.push(g.score)):g.score>r&&kD(u,g,Kb))}let h=d.length,f=n-h;i&&f>0&&(d.push(...new Array(f).fill(0)),p.push(...new Array(f).fill(0)));let m={selectedIndices:d};return o&&(m.selectedScores=p),l&&(m.validOutputs=h),m}function TD(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),d=Math.max(r[0],r[2]),p=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(d-u)*(p-c);if(h<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,c),A=Math.min(i,d),y=Math.min(l,p),x=Math.max(A-m,0)*Math.max(y-g,0);return x/(h+f-x)}function ND(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function Kb(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function ED(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=F(e,"boxes","nonMaxSuppressionAsync"),o=F(t,"scores","nonMaxSuppressionAsync"),i=eu(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:d}=jb(u,c,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Vt(d,"int32")}var RD=ED;function DD(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=F(e,"boxes","nonMaxSuppression"),i=F(t,"scores","nonMaxSuppression"),l=eu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},d=L.runKernel(pl,u,c);return{selectedIndices:d[0],selectedScores:d[1]}}var _D=W({nonMaxSuppressionWithScore_:DD});async function FD(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=F(e,"boxes","nonMaxSuppressionAsync"),i=F(t,"scores","nonMaxSuppressionAsync"),l=eu(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],d=u[1],{selectedIndices:p,selectedScores:h}=Xb(c,d,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Vt(p,"int32"),selectedScores:Vt(h)}}var $D=FD;function OD(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=F(e,"boxes","nonMaxSuppression"),i=F(t,"scores","nonMaxSuppression"),l=eu(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,p={boxes:o,scores:i},h={maxOutputSize:u,iouThreshold:c,scoreThreshold:d,padToMaxOutputSize:a},f=L.runKernel(dl,p,h);return{selectedIndices:f[0],validOutputs:f[1]}}var PD=W({nonMaxSuppressionPadded_:OD});async function MD(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=F(e,"boxes","nonMaxSuppressionAsync"),i=F(t,"scores","nonMaxSuppressionAsync"),l=eu(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,d=l.scoreThreshold,[p,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=qb(p,h,u,c,d,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Vt(f,"int32"),validOutputs:Ce(m,"int32")}}var zD=MD;function LD(e,t,n=!1,s=!1){let r=F(e,"images","resizeBilinear");M(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=L.runKernel(ho,i,l);return o?V(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Zb=W({resizeBilinear_:LD});function BD(e,t,n=!1,s=!1){let r=F(e,"images","resizeNearestNeighbor");M(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=L.runKernel(oc,i,l);return o?V(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Yb=W({resizeNearestNeighbor_:BD});function WD(e,t="binary",n=!1,s=.5){let r=F(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],u=z(Vt([s]),255),c,d,p,h;if(M(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),M(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),M(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),M(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,d,p]=Wt(r,[1,1,1],-1);let g=z(c,a),A=z(d,o),y=z(p,i);h=oe(oe(g,A),y)}else h=e;if(t==="otsu"){let g=tA(de(Ih(h),"int32"),nn([]),256);u=VD(g,l)}let f=n?ra(h,u):Mn(h,u);return de(z(f,255),"int32")}function VD(e,t){let n=Vt([-1]),s=Vt([0]),r=Vt([0]),a,o,i,l,u,c;for(let d=0;d<e.size-1;d++){a=_e(e,0,d+1),o=_e(e,d+1),u=pe(we(a),t),c=pe(we(o),t);let p=we(z(a,Yl(0,a.size)));i=pe(p,we(a));let h=ql(o.shape,a.size),f=oe(Yl(0,o.size),h),m=z(o,f);l=pe(we(m),we(o));let g=Ae(i,l),A=Ae(i,l),y=z(u,c);r=z(z(y,g),A);let x=Mn(r,s);s=yn(x,r,s),n=yn(x,Vt([d]),n)}return n}var UD=W({threshold_:WD});function HD(e,t,n="nearest",s="constant",r=0,a){let o=F(e,"image","transform","float32"),i=F(t,"transforms","transform","float32");M(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return L.runKernel(El,l,u)}var GD=W({transform_:HD});function jD(e,t,n){M(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=F(e,"a","bandPart");M(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=V(Yl(0,a,1,"int32"),[-1,1]),l=Yl(0,o,1,"int32"),u=Ae(i,l),c=Es(ra(u,Ce(+t,"int32")),sa(u,Ce(-n,"int32"))),d=Ot([a,o],s.dtype);return V(pn(ts(V(s,[-1,a,o])).map(p=>yn(c,p,d))),r)}var qD=W({bandPart_:jD});function XD(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)M(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=Wt(e,e.shape[0],0).map(r=>lt(r,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(L.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=z(we(z(n[o],a)),n[o]);a=Ae(a,i)}return pe(a,Oh(a,"euclidean"))}));return t?pn(n,0):n}var KD=W({gramSchmidt_:XD});function ZD(e,t=!1){if(M(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Jb(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),s=ts(V(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[u,c]=Jb(l,t);r.push(u),a.push(c)});let o=V(pn(r,0),e.shape),i=V(pn(a,0),e.shape);return[o,i]}}function Jb(e,t=!1){return L.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=cA(n),a=Ps(e),o=Ls([[1]],[1,1]),i=Ps(o),l=n>=s?s:n;for(let u=0;u<l;++u){let c=a,d=i,p=r;[i,a,r]=L.tidy(()=>{let h=_e(a,[u,u],[n-u,1]),f=Oh(h),m=_e(a,[u,u],[1,1]),g=yn(Mn(m,0),Ls([[-1]]),Ls([[1]])),A=Ae(m,z(g,f)),y=pe(h,A);y.shape[0]===1?i=Ps(o):i=ft([o,_e(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let x=St(pe(Ue(g,A),f)),b=_e(a,[u,0],[n-u,s]),v=z(x,i),k=Ye(i);if(u===0)a=Ae(b,Ue(v,Ue(k,b)));else{let D=Ae(b,Ue(v,Ue(k,b)));a=ft([_e(a,[0,0],[u,s]),D],0)}let S=Ye(v),C=_e(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=Ae(C,Ue(Ue(C,i),S));else{let D=Ae(C,Ue(Ue(C,i),S));r=ft([_e(r,[0,0],[n,u]),D],1)}return[i,a,r]}),Z([c,d,p])}return!t&&n>s&&(r=_e(r,[0,0],[n,s]),a=_e(a,[0,0],[s,s])),[r,a]})}var YD=W({qr_:ZD}),In;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(In||(In={}));function JD(e,t,n=In.SUM_BY_NONZERO_WEIGHTS){let s=F(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=F(t,"weights","computeWeightedLoss"));let a=r==null?s:z(s,r);if(n===In.NONE)return a;if(n===In.SUM)return we(a);if(n===In.MEAN){if(r==null)return Dt(a);{let o=s.size/r.size,i=pe(we(a),we(r));return o>1?pe(i,Ce(o)):i}}if(n===In.SUM_BY_NONZERO_WEIGHTS){if(r==null)return pe(we(a),Ce(s.size));{let o=z(r,Jn(s.shape)),i=de(we(Go(o,Ce(0))),"float32");return pe(we(a),i)}}throw Error(`Unknown reduction: ${n}`)}var Nr=W({computeWeightedLoss_:JD});function QD(e,t,n,s=In.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","absoluteDifference"),a=F(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=F(n,"weights","absoluteDifference")),vn(r.shape,a.shape,"Error in absoluteDifference: ");let i=Bt(Ae(r,a));return Nr(i,o,s)}var e_=W({absoluteDifference_:QD});function t_(e,t,n,s,r=In.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","cosineDistance"),o=F(t,"predictions","cosineDistance"),i=null;s!=null&&(i=F(s,"weights","cosineDistance")),vn(a.shape,o.shape,"Error in cosineDistance: ");let l=Ce(1),u=Ae(l,we(z(a,o),n,!0));return Nr(u,i,r)}var n_=W({cosineDistance_:t_});function s_(e,t,n,s=In.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","hingeLoss"),a=F(t,"predictions","hingeLoss"),o=null;n!=null&&(o=F(n,"weights","hingeLoss")),vn(r.shape,a.shape,"Error in hingeLoss: ");let i=Ce(1);r=Ae(z(Ce(2),r),i);let l=zs(Ae(i,z(r,a)));return Nr(l,o,s)}var r_=W({hingeLoss_:s_});function a_(e,t,n,s=1,r=In.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","huberLoss"),o=F(t,"predictions","huberLoss"),i=null;n!=null&&(i=F(n,"weights","huberLoss")),vn(a.shape,o.shape,"Error in huberLoss: ");let l=Ce(s),u=Bt(Ae(o,a)),c=Kl(u,l),d=Ae(u,c),p=oe(z(Ce(.5),pt(c)),z(l,d));return Nr(p,i,r)}var o_=W({huberLoss_:a_});function i_(e,t,n,s=1e-7,r=In.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"labels","logLoss"),o=F(t,"predictions","logLoss"),i=null;n!=null&&(i=F(n,"weights","logLoss")),vn(a.shape,o.shape,"Error in logLoss: ");let l=Ce(1),u=Ce(s),c=St(z(a,Zn(oe(o,u)))),d=z(Ae(l,a),Zn(oe(Ae(l,o),u))),p=Ae(c,d);return Nr(p,i,r)}var l_=W({logLoss_:i_});function u_(e,t,n,s=In.SUM_BY_NONZERO_WEIGHTS){let r=F(e,"labels","meanSquaredError"),a=F(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=F(n,"weights","meanSquaredError")),vn(r.shape,a.shape,"Error in meanSquaredError: ");let i=_h(r,a);return Nr(i,o,s)}var c_=W({meanSquaredError_:u_});function d_(e,t){let n=F(e,"labels","sigmoidCrossEntropyWithLogits"),s=F(t,"logits","sigmoidCrossEntropyWithLogits");vn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=zs(s),a=z(s,n),o=Tc(Kn(St(Bt(s))));return oe(Ae(r,a),o)}function p_(e,t,n,s=0,r=In.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"multiClassLabels","sigmoidCrossEntropy"),o=F(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=F(n,"weights","sigmoidCrossEntropy")),vn(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let u=Ce(s),c=Ce(1),d=Ce(.5);a=oe(z(a,Ae(c,u)),z(d,u))}let l=d_(a,o);return Nr(l,i,r)}var h_=W({sigmoidCrossEntropy_:p_});function f_(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return rr((r,a,o)=>{let l=mA(a,[n],!0),u=Ae(de(a,"float32"),l);o([r,u]);let c=St(z(u,r));return{value:we(c,[n]),gradFunc:(h,f)=>{let[m,g]=f,A=Ho(h.shape,[n]);return[z(V(h,A),Ae(de(m,"float32"),Kn(g))),z(V(h,A),Ae(Kn(g),de(m,"float32")))]}}})(e,t)}function m_(e,t,n,s=0,r=In.SUM_BY_NONZERO_WEIGHTS){let a=F(e,"onehotLabels","softmaxCrossEntropy"),o=F(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=F(n,"weights","softmaxCrossEntropy")),vn(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let u=Ce(s),c=Ce(1),d=Ce(a.shape[1]);a=oe(z(a,Ae(c,u)),pe(u,d))}let l=f_(a,o);return Nr(l,i,r)}var g_=W({softmaxCrossEntropy_:m_});function A_(e,t,n,s){let r=F(e,"indices","sparseFillEmptyRows"),a=F(t,"values","sparseFillEmptyRows"),o=F(n,"denseShape","sparseFillEmptyRows"),i=F(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},u=L.runKernel(Lp,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var y_=W({sparseFillEmptyRows_:A_});function x_(e,t,n){let s=F(e,"inputIndices","sparseReshape"),r=F(t,"inputShape","sparseReshape"),a=F(n,"newShape","sparseReshape");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=L.runKernel(Bp,o);return{outputIndices:i[0],outputShape:i[1]}}var b_=W({sparseReshape_:x_});function v_(e,t,n){let s=F(e,"data","sparseSegmentMean"),r=F(t,"indices","sparseSegmentMean"),a=F(n,"segmentIds","sparseSegmentMean");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(Wp,o)}var w_=W({sparseSegmentMean_:v_});function k_(e,t,n){let s=F(e,"data","sparseSegmentSum"),r=F(t,"indices","sparseSegmentSum"),a=F(n,"segmentIds","sparseSegmentSum");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return L.runKernel(Vp,o)}var I_=W({sparseSegmentSum_:k_});function S_(e,t,n,s,r,a,o,i){let l=F(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=F(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},d={data:l,dataSplits:u},p=L.runKernel(Hp,d,c);return{nGrams:p[0],nGramsSplits:p[1]}}var C_=W({stringNGrams_:S_});function T_(e,t,n=!0){let s=F(e,"input","stringSplit","string"),r=F(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=L.runKernel(Gp,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var N_=W({stringSplit_:T_});function E_(e,t){let n=F(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return L.runKernel(jp,r,s)}var R_=W({stringToHashBucketFast_:E_}),D_={fft:Pc,ifft:Jl,rfft:Mc,irfft:Dh},__={hammingWindow:lD,hannWindow:Hb,frame:Gb,stft:pD},Fe={flipLeftRight:gD,grayscaleToRGB:yD,resizeNearestNeighbor:Yb,resizeBilinear:Zb,rotateWithOffset:bD,cropAndResize:fD,nonMaxSuppression:wD,nonMaxSuppressionAsync:RD,nonMaxSuppressionWithScore:_D,nonMaxSuppressionWithScoreAsync:$D,nonMaxSuppressionPadded:PD,nonMaxSuppressionPaddedAsync:zD,threshold:UD,transform:GD},Qb={bandPart:qD,gramSchmidt:KD,qr:YD},F_={absoluteDifference:e_,computeWeightedLoss:Nr,cosineDistance:n_,hingeLoss:r_,huberLoss:o_,logLoss:l_,meanSquaredError:c_,sigmoidCrossEntropy:h_,softmaxCrossEntropy:g_},zc={sparseFillEmptyRows:y_,sparseReshape:b_,sparseSegmentMean:w_,sparseSegmentSum:I_},Bh={stringNGrams:C_,stringSplit:N_,stringToHashBucketFast:R_},Er=class extends tb{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return Z(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Ib(e,t)}dispose(){this.iterations_!=null&&Z(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ce(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Er,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Wh=class extends Er{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:H(()=>Je(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:H(()=>Je(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;H(()=>{let u=oe(z(i,this.rho),z(pt(o),1-this.rho)),c=z(pe(dn(oe(l,this.epsilon)),dn(oe(i,this.epsilon))),o),d=oe(z(l,this.rho),z(pt(c),1-this.rho));i.assign(u),l.assign(d);let p=oe(z(c,-this.learningRate),r);r.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Z(this.accumulatedGrads.map(e=>e.variable)),Z(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Wh.className="Adadelta";ta(Wh);var Vh=class extends Er{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];if(this.accumulatedGrads[s]==null){let i=!1;this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:H(()=>ql(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;H(()=>{let i=oe(o,pt(a));o.assign(i);let l=oe(z(pe(a,dn(oe(i,L.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Z(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Vh.className="Adagrad";ta(Vh);var Uh=class extends Er{constructor(e,t,n,s=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],H(()=>{this.accBeta1=Ce(t).variable(),this.accBeta2=Ce(n).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=Ae(1,this.accBeta1),s=Ae(1,this.accBeta2);t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:H(()=>Je(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:H(()=>Je(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,d=oe(z(u,this.beta1),z(l,1-this.beta1)),p=oe(z(c,this.beta2),z(pt(l),1-this.beta2)),h=pe(d,n),f=pe(p,s);u.assign(d),c.assign(p);let m=oe(z(pe(h,oe(dn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Z(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Z(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),H(()=>{this.accBeta1.assign(Tr(this.beta1,this.iterations_+1)),this.accBeta2.assign(Tr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Uh.className="Adam";ta(Uh);var Hh=class extends Er{constructor(e,t,n,s=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],H(()=>{this.iteration=Ce(0).variable(),this.accBeta1=Ce(t).variable()}),s==null&&(this.epsilon=L.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);H(()=>{let n=Ae(1,this.accBeta1),s=pe(-this.learningRate,oe(z(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=L.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:Je(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:Je(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,d=oe(z(u,this.beta1),z(l,1-this.beta1)),p=z(c,this.beta2),h=Bt(l),f=ar(p,h);u.assign(d),c.assign(f);let m=oe(z(pe(s,n),pe(d,oe(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(oe(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Z(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Z(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Hh.className="Adamax";ta(Hh);var Lc=class extends Er{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=L.registeredVariables[n];H(()=>{let o=oe(z(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=sn(Ce(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Lc.className="SGD";ta(Lc);var Gh=class extends Lc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ce(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n];if(this.accumulations[s]==null){let i=!1;this.accumulations[s]={originalName:`${n}/momentum`,variable:H(()=>Je(r).variable(i))}}let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&H(()=>{let i,l=oe(z(this.m,a),o);this.useNesterov?i=oe(z(this.c,oe(o,z(l,this.m))),r):i=oe(z(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Z(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Gh.className="Momentum";ta(Gh);var jh=class extends Er{constructor(e,t=.9,n=0,s=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=L.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=L.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:H(()=>Je(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:H(()=>Je(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:H(()=>Je(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;H(()=>{let u=oe(z(i,this.decay),z(pt(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,d=oe(z(c,this.decay),z(o,1-this.decay)),p=pe(z(o,this.learningRate),dn(Ae(u,oe(pt(d),this.epsilon)))),h=oe(z(l,this.momentum),p);i.assign(u),c.assign(d),l.assign(h);let f=Ae(r,h);r.assign(f)}else{let c=oe(z(i,this.decay),z(pt(o),1-this.decay)),d=oe(z(l,this.momentum),pe(z(o,this.learningRate),dn(oe(c,this.epsilon))));i.assign(c),l.assign(d);let p=Ae(r,d);r.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Z(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Z(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Z(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};jh.className="RMSProp";ta(jh);var jo=class{static sgd(e){return new Lc(e)}static momentum(e,t,n=!1){return new Gh(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new jh(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new Uh(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new Wh(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new Hh(e,t,n,s,r)}static adagrad(e,t=.1){return new Vh(e,t)}},qo={sgd:jo.sgd,momentum:jo.momentum,adadelta:jo.adadelta,adagrad:jo.adagrad,rmsprop:jo.rmsprop,adamax:jo.adamax,adam:jo.adam},$_=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function qh(){return new Promise(e=>$_(()=>e()))}var _={};Le(_,{ERF_A1:()=>G_,ERF_A2:()=>j_,ERF_A3:()=>q_,ERF_A4:()=>X_,ERF_A5:()=>K_,ERF_P:()=>H_,PARALLELIZE_THRESHOLD:()=>$A,SELU_SCALE:()=>t3,SELU_SCALEALPHA:()=>e3,applyActivation:()=>zh,assertAndGetBroadcastShape:()=>bt,assertAxesAreInnerMostDims:()=>ZN,assertParamsConsistent:()=>O_,assignToTypedArray:()=>tF,axesAreInnerMostDims:()=>hA,calculateShapes:()=>U5,checkEinsumDimSizes:()=>iF,combineLocations:()=>Cb,complexWithEvenIndex:()=>J_,complexWithOddIndex:()=>Q_,computeConv2DInfo:()=>wc,computeConv3DInfo:()=>ib,computeDefaultPad:()=>Jg,computeDilation2DInfo:()=>xT,computeOptimalWindowSize:()=>M_,computeOutAndReduceShapes:()=>Tb,computeOutShape:()=>P_,computePool2DInfo:()=>ob,computePool3DInfo:()=>bT,convertConv2DDataFormat:()=>lb,decodeEinsumEquation:()=>aF,eitherStridesOrDilationsAreOne:()=>sr,expandShapeToKeepDim:()=>Ho,exponent:()=>sF,exponents:()=>nF,fromStringArrayToUint8:()=>gF,fromUint8ToStringArray:()=>mF,getAxesPermutation:()=>Nb,getBroadcastDims:()=>dN,getComplexWithIndex:()=>eF,getEinsumComputePath:()=>lF,getEinsumPermutation:()=>oF,getFusedBiasGradient:()=>Mh,getFusedDyActivation:()=>Ph,getImageCenter:()=>z_,getInnerMostAxes:()=>YN,getPermuted:()=>B_,getReductionAxes:()=>Kt,getReshaped:()=>L_,getReshapedPermuted:()=>W_,getSliceBeginCoords:()=>V_,getSliceSize:()=>U_,getUndoAxesPermutation:()=>fA,isIdentityPermutation:()=>uF,log:()=>XS,mergeRealAndImagArrays:()=>Z_,prepareAndValidate:()=>V5,prepareSplitSize:()=>dF,segment_util:()=>r3,shouldFuse:()=>Lh,slice_util:()=>kn,splitRealAndImagArrays:()=>Y_,tupleValuesAreOne:()=>na,upcastType:()=>Ts,validateInput:()=>Mg,validateUpdateShape:()=>Pg,warn:()=>Qs});function O_(e,t){let n=e[0].length;e.forEach((r,a)=>{M(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)M(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function P_(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var $A=30;function M_(e){return e<=$A?e:cp(e,Math.floor(Math.sqrt(e)))}function z_(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function L_(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function B_(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2==1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function W_(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function V_(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function U_(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var e3=1.7580993408473768,t3=1.0507009873554805,H_=.3275911,G_=.254829592,j_=-.284496736,q_=1.421413741,X_=-1.453152027,K_=1.061405429;function Z_(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function Y_(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function J_(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function Q_(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function eF(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function tF(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function nF(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function sF(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var OA="->",rF=/->/g,n3=",",s3="...";function aF(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(rF,"").length)/OA.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${OA}").`);let[s,r]=e.split(OA);M(s.indexOf(s3)===-1,()=>`The ellipsis notation ("${s3}") is not supported yet.`);let a=s.split(n3),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let p=0;p<r.length;++p){let h=r[p];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let p=0;p<s.length;++p){let h=s[p];i.indexOf(h)===-1&&h!==n3&&i.push(h)}let l=new Array(a.length);for(let p=0;p<o;++p){if(new Set(a[p].split("")).size!==a[p].length)throw new Error(`Found duplicate axes in input component ${a[p]}. Support for duplicate axes in input is not implemented yet.`);l[p]=[];for(let h=0;h<a[p].length;++h)l[p].push(i.indexOf(a[p][h]))}let u=i.length,c=r.length,d=[];for(let p=c;p<u;++p)d.push(p);return{allDims:i,summedDims:d,idDims:l}}function oF(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function iF(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:M(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function lF(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=cF(t,i);for(let u of l)a.indexOf(u)===-1&&(s[o].push(u),a.push(u))}return{path:n,steps:s}}function uF(e){return e.every((t,n)=>t===n)}function cF(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function dF(e,t,n=0){let s=[];if(typeof t=="number")M(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);M(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}M(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}var r3={};Le(r3,{collectGatherOpShapeInfo:()=>fF,computeOutShape:()=>hF,segOpComputeOptimalWindowSize:()=>pF});function pF(e,t){let n=!1,s;for(e<=$A?(s=e,n=!0):s=cp(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=cp(e,s+1);return s}function hF(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function fF(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let d=0;d<s;++d)if(e.shape[d]!==t.shape[d])throw new Error(`x.shape[${d}]: ${e.shape[d]} should be equal to indices.shape[${d}]: ${t.shape[d]}.`);let o=e.shape[n],i=[],l=1,u=1,c=1;for(let d=0;d<s;++d)i.push(e.shape[d]),l*=e.shape[d];for(let d=s;d<n;d++)i.push(e.shape[d]),u*=e.shape[d];for(let d=s;d<r;d++)i.push(t.shape[d]);for(let d=n+1;d<a;d++)i.push(e.shape[d]),c*=e.shape[d];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:o,outputShape:i}}function mF(e){try{return e.map(t=>Jp(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function gF(e){return e.map(t=>pc(t))}var or={};Le(or,{nonMaxSuppressionV3Impl:()=>jb,nonMaxSuppressionV4Impl:()=>qb,nonMaxSuppressionV5Impl:()=>Xb,whereImpl:()=>Pb});var a3={kernelName:_i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Ql(de(n,"float32"),-1))}}},AF={kernelName:Fi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=pt(de(n,"float32")),r=dn(Ae(Ce(1),s));return St(pe(e,r))}}}},yF={kernelName:$i,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=dn(Ae(pt(de(n,"float32")),1));return pe(e,s)}}}},xF={kernelName:jr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=e,l=Kt(n.shape,r);return l.length>0&&(i=we(i,l)),V(i,n.shape)},b:()=>{let i=e,l=Kt(s.shape,r);return l.length>0&&(i=we(i,l)),V(i,s.shape)}}}},bF={kernelName:Da,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},vF={kernelName:_a,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Je(n)}}},wF={kernelName:Ku,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Je(n)}}},kF={kernelName:Mi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,dn(Ae(Ce(1),pt(de(n,"float32")))))}}},IF={kernelName:zi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=dn(oe(Ce(1),pt(de(n,"float32"))));return pe(e,s)}}}},SF={kernelName:Wi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=oe(pt(n),pt(s)),l=z(e,pe(s,i)),u=Kt(n.shape,r);return u.length>0&&(l=we(l,u)),V(l,n.shape)},b:()=>{let i=oe(pt(n),pt(s)),l=St(z(e,pe(n,i))),u=Kt(s.shape,r);return u.length>0&&(l=we(l,u)),V(l,s.shape)}}}},CF={kernelName:Li,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,oe(pt(de(n,"float32")),1))}}},TF={kernelName:Bi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,Ae(Ce(1),pt(de(n,"float32"))))}}};function NF(e,t,n,s,r,a){let o=F(e,"dy","avgPool3dGrad"),i=F(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),a!=null&&M(en(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let d={dy:l,input:u},p={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=L.runKernel(hp,d,p);return c?V(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var EF=W({avgPool3dGrad_:NF}),RF={kernelName:Zu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>EF(e,s,r,a,o,i)}}};function DF(e,t,n,s,r){let a=F(e,"dy","avgPoolGrad"),o=F(t,"input","avgPoolGrad");M(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},d={filterSize:n,strides:s,pad:r},p=L.runKernel(pp,c,d);return u?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var _F=W({avgPoolGrad_:DF}),FF={kernelName:Fa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>_F(e,s,r,a,o)}}},$F={kernelName:$a,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Ue(e,r,!1,!0),b:()=>Ue(s,e,!0,!1)}:!a&&o?{a:()=>Ue(e,r,!1,!1),b:()=>Ue(e,s,!0,!1)}:a&&!o?{a:()=>Ue(r,e,!1,!0),b:()=>Ue(s,e,!1,!1)}:{a:()=>Ue(r,e,!0,!0),b:()=>Ue(e,s,!0,!0)}}},OF={kernelName:Vi,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>Dc(e,s,r)}}},PF={kernelName:o5,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>we(e,i,!0)}}},MF={kernelName:Oa,gradFunc:e=>({x:()=>e.clone()})},zF={kernelName:Pa,gradFunc:e=>({x:()=>Je(e)})},LF={kernelName:qr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>yn(Es(sa(s,r),ra(s,a)),e,Je(e))}}},BF={kernelName:Yu,inputsToSave:["x"],gradFunc:a3.gradFunc},WF={kernelName:Ui,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=Cs(r,t[0].shape)[0],o=s.map(l=>l[a]);return Wt(e,o,a).map(l=>()=>l)}},VF={kernelName:Ma,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return M(na(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>sA(s.shape,e,r,o,i,l),filter:()=>_A(s,e,r.shape,o,i,l)}}},UF={kernelName:za,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Sr(e,r,a,o,i,1,l),filter:()=>_A(e,s,r.shape,a,o,i,l)}}};function HF(e,t,n,s,r){let a=e;e.rank===4&&(a=V(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),M(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),M(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return L.runKernel(Ap,i,l)}var GF=W({conv3DBackpropFilter_:HF}),jF={kernelName:Ju,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;M(na(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>gb(o.shape,e,i,r,a),filter:()=>GF(o,e,i.shape,r,a)}}},qF={kernelName:La,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(St(Th(de(n,"float32"))),e)}}},XF={kernelName:Ba,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Nh(de(n,"float32")),e)}}},KF={kernelName:Wa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=Nb([r],s.rank),l=mh(e,r,a,!o);return i!=null&&(l=Ye(l,i)),l}}}},ZF={kernelName:Va,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;M(na(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),M(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),M(sr(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),o!=null&&M(en(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`),{x:()=>Ub(l.shape,e,u,r,a,i,o),filter:()=>Vb(l,e,u.shape,r,a,i,o)}}},YF={kernelName:Qu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>L.runKernel(kp,a,n),filter:()=>L.runKernel(Ip,o,n)}}},JF={kernelName:Ha,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>L.runKernel(Cp,s)}}},QF={kernelName:ji,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(Kn(St(pt(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,s)}}},e$={kernelName:Ga,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},t$={kernelName:Xi,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>V(e,n.shape)}}},n$={kernelName:Ki,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Kn(n))}}},s$={kernelName:ja,gradFunc:e=>({x:()=>Je(e)})},r$={kernelName:qa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=pe(e,de(s,"float32")),l=Kt(n.shape,r);return l.length>0?V(we(i,l),n.shape):i},b:()=>{let i=z(e,de(n,"float32")),l=Kt(s.shape,r);l.length>0&&(i=V(we(i,l),s.shape));let u=pt(s);return St(pe(i,de(u,"float32")))}}}},a$={kernelName:Xa,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ce(1):i,u=Kt(a.shape,r.shape),c=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)c.push(r.shape[b]);c.push(1)}let d=Ae(r,a),p=z(e,l),h=Sh(oe(o,Ce(s))),f=z(z(z(h,h),h),Ce(-.5));return{x:()=>a.rank===1?V(z(z(e,ms(V(h,[1,1,1,a.shape[0]]),c)),l),r.shape):V(z(z(e,h),l),r.shape),mean:()=>{let b=z(z(h,Ce(-1)),p);return a.rank===1&&(b=we(b,u)),V(b,a.shape)},variance:()=>{let b=z(z(f,d),p);return a.rank===1&&(b=we(b,u)),V(b,a.shape)},scale:()=>{let b=z(d,h),v=z(e,b);return a.rank===1&&(v=we(v,u)),V(v,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=we(b,u)),V(b,a.shape)}}}},o$={kernelName:Yi,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=Cs(a,s.shape)[0];return{x:()=>{let l=s.shape,u=r.size,c=l.slice(0,o),d=c.length,p=l.slice(a,l.length).slice(1),h=p.length,f=o3(0,d),m=o3(d+1,d+1+h),g=i3([c,[u],p]),A=V(e,g),y=V(r,[u]),x=i3([[d],f,m]),b=Ye(A,x),v=NA(b,y,s.shape[o]),k=fA(x);return v=Ye(v,k),v},indices:()=>r}}};function o3(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function i3(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var i$={kernelName:Ka,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>Je(n),b:()=>Je(s)}}},l$={kernelName:Za,gradFunc:e=>({x:()=>de(e,"float32")})},u$={kernelName:el,gradFunc:e=>({x:()=>Je(e)})},c$={kernelName:tl,gradFunc:e=>({x:()=>Je(e)})},d$={kernelName:nl,gradFunc:e=>({x:()=>Je(e)})},p$={kernelName:Ya,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=Mn(s,0);return{x:()=>yn(a,e,z(e,r))}}},h$={kernelName:al,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,oe(n,1))}}},f$={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,de(n,"float32"))}}},m$={kernelName:i5,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let a=!0,o=Kn(s);return Ae(e,z(we(e,r,a),o))}}}};function g$(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return L.runKernel(Dp,i,l)}var A$=W({localResponseNormalizationBackprop_:g$}),y$={kernelName:sc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>A$(s,r,e,a,o,i,l)}}};function l3(e,t,n,s){return t.rank<n.rank&&(t=V(t,Ho(t.shape,s))),e.rank<n.rank&&(e=V(e,Ho(e.shape,s))),{x:()=>z(e,de(Xn(n,t),e.dtype))}}var u3={kernelName:Qa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=Cs(r,a.shape),l=l3(e,o,a,i);return{x:()=>l.x()}}},x$={kernelName:eo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,de(sa(n,s),"float32")),b:()=>z(e,de(Ah(n,s),"float32"))}}};function b$(e,t,n,s,r,a,o){let i=F(e,"dy","maxPool3dGrad"),l=F(t,"input","maxPool3dGrad"),u=F(n,"output","maxPool3dGrad"),c=i,d=l,p=u,h=!1;l.rank===4&&(h=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=V(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),p=V(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),M(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),M(p.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${p.rank}.`),o!=null&&M(en(a),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let f={dy:c,input:d,output:p},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=L.runKernel(Fp,f,m);return h?V(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var v$=W({maxPool3dGrad_:b$}),w$={kernelName:rc,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>v$(e,s,r,a,o,i,l)}}};function k$(e,t,n,s,r,a,o){let i=F(e,"dy","maxPoolGrad"),l=F(t,"input","maxPoolGrad"),u=F(n,"output","maxPoolGrad");M(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),M(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),o!=null&&M(en(a),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${o} but got pad ${a}.`);let c={dy:i,input:l,output:u},d={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return L.runKernel(_p,c,d)}var I$=W({maxPoolGrad_:k$}),S$={kernelName:to,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>I$(e,s,r,a,o,i)}}},C$={kernelName:no,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=Cs(r,s.shape),i=Tb(s.shape,a)[1],l=Mt(i);return{x:()=>{let c=s.shape.slice();a.forEach(h=>{c[h]=1});let d=V(e,c);return pe(z(d,Jn(s.shape,"float32")),l)}}}},T$={kernelName:so,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=Cs(r,a.shape),l=l3(e,o,a,i);return{x:()=>l.x()}}},N$={kernelName:ro,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,de(ra(n,s),"float32")),b:()=>z(e,de(Mn(n,s),"float32"))}}},E$={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},R$={kernelName:il,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=Kt(n.shape,r);return i.length>0?V(we(e,i),n.shape):e},b:()=>{let i=z(e,St(Xl(pe(n,s)))),l=Kt(s.shape,r);return l.length>0?V(we(i,l),s.shape):i}}}},D$={kernelName:oo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=z(e,de(s,"float32")),l=Kt(n.shape,r);return l.length>0?V(we(i,l),n.shape):i},b:()=>{let i=z(e,de(n,"float32")),l=Kt(s.shape,r);return l.length>0?V(we(i,l),s.shape):i}}}},_$={kernelName:ll,gradFunc:e=>({x:()=>St(e)})},F$={kernelName:io,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ot(n.shape,"float32")}}},$$={kernelName:hl,gradFunc:e=>({x:()=>Je(e)})},O$={kernelName:fl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return ts(e,s).map(a=>()=>a)}},c3={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>_e(e,a,s.shape)}}},P$={kernelName:uo,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=bt(a.shape,o.shape);return{a:()=>{let c=de(o,"float32"),d=z(e,z(c,Tr(a,Ae(c,Ce(1))))),p=Kt(a.shape,i);return p.length>0&&(d=we(d,p)),V(d,a.shape)},b:()=>{let c=Mn(a,0),d=yn(c,Zn(a),Je(a)),p=z(e,z(r,d)),h=Kt(o.shape,i);return h.length>0&&(p=we(p,h)),V(p,o.shape)}}}},M$={kernelName:co,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=Mn(n,0);return{x:()=>yn(r,e,z(e,s)),alpha:()=>{let a=yn(r,Je(e),z(e,n)),o=Kt(s.shape,e.shape);return o.length>0&&(a=we(a,o)),V(a,s.shape)}}}},z$={kernelName:Ua,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=pe(e,de(s,"float32")),l=Kt(n.shape,r);return l.length>0?V(we(i,l),n.shape):i},b:()=>{let i=z(e,de(n,"float32")),l=Kt(s.shape,r);l.length>0&&(i=V(we(i,l),s.shape));let u=pt(s);return St(pe(i,de(u,"float32")))}}}},L$={kernelName:gl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,St(pt(n)))}}},B$={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(ra(n,6),Ql(n));return{x:()=>z(e,de(s,"float32"))}}},W$={kernelName:po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,de(Ql(n),"float32"))}}},V$={kernelName:Al,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,n.shape)}}},U$={kernelName:ho,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(zp,r,n)}}},H$={kernelName:oc,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>L.runKernel(Mp,r,n)}}},G$={kernelName:mo,gradFunc:(e,t,n)=>{let{dims:s}=n,r=Cs(s,e.shape);return{x:()=>es(e,r)}}},j$={kernelName:go,gradFunc:e=>({x:()=>Je(e)})},q$={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>St(pe(e,z(Tr(n,1.5),2)))}}},X$={kernelName:xl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>de(Je(n),"float32"),t:()=>z(e,de(n,e.dtype)),e:()=>z(e,de(Nc(n),e.dtype))}}},K$={kernelName:bl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Mn(n,Ce(0)),r=Ce(e3),a=Ce(t3),o=z(e,a),i=z(z(e,r),Kn(de(n,"float32")));return yn(s,o,i)}}}},Z$={kernelName:xo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,Ae(Ce(1),n)))}}},Y$={kernelName:kl,gradFunc:e=>({x:()=>Je(e)})},J$={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Sc(de(n,"float32")),e)}}},Q$={kernelName:wl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(fh(de(n,"float32")),e)}}},eO={kernelName:vl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=eb(s,r,a),u=[];for(let c=0;c<e.rank;c++)u.push([i[c],o[c]-i[c]-l[c]]);return{x:()=>Cr(e,u)}}},tO={kernelName:wo,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=z(e,s);return{logits:()=>Ae(o,z(we(o,[r],a),s))}}},nO={kernelName:Il,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,On(n))}}},d3={kernelName:Sl,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>Ic(e,s,r)}}},p3={kernelName:Cl,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>ft(e,s)}}},sO={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,z(dn(de(n,"float32")),2))}}},rO={kernelName:ic,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(de(n,"float32"),2))}}},aO={kernelName:ko,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ce(2);return{a:()=>z(e,z(r,Ae(n,s))),b:()=>z(e,z(r,Ae(s,n)))}}},oO={kernelName:Kr,gradFunc:e=>({x:()=>Je(e)})},iO={kernelName:Io,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=bt(n.shape,s.shape);return{a:()=>{let i=e,l=Kt(n.shape,r);return l.length>0&&(i=we(i,l)),V(i,n.shape)},b:()=>{let i=e,l=Kt(s.shape,r);return l.length>0&&(i=we(i,l)),V(St(i),s.shape)}}}},lO={kernelName:vo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;Cs(a,s.shape).forEach(u=>{r[u]=1});let i=V(e,r),l=z(i,Jn(s.shape,"float32"));return{x:()=>l}}},uO={kernelName:So,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,pt(Sc(n)))}}},cO={kernelName:Co,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Ae(Ce(1),pt(n)),e)}}},dO={kernelName:Xr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=Je(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=oe(o,_e(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=oe(o,_e(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)o=oe(o,_e(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)for(let c=0;c<r[3];++c)o=oe(o,_e(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2],c*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},pO={kernelName:To,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=fA(r);return{x:()=>Ye(e,a)}}},hO={kernelName:Rl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>pn(e,r)}}},fO={kernelName:lc,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>mO(e,n)}}};function mO(e,t){let n=ar(t,Je(t)),s=Vo(e,n),r=sa(t,Ce(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=zt(r,i+1);r=Es(r,Jn(s.shape,"bool"));let o=Je(s);return yn(r,s,o)}var gO={kernelName:Dl,gradFunc:e=>({x:()=>Je(e)})},AO=[a3,AF,yF,xF,bF,vF,wF,kF,IF,SF,CF,TF,RF,FF,$F,OF,PF,MF,zF,LF,BF,WF,UF,VF,jF,qF,XF,KF,ZF,YF,z$,JF,QF,e$,t$,n$,r$,s$,a$,o$,i$,l$,u$,c$,d$,p$,h$,f$,m$,y$,u3,u3,x$,w$,S$,C$,T$,N$,E$,R$,D$,_$,F$,$$,O$,c3,c3,P$,M$,L$,B$,W$,V$,U$,H$,G$,j$,q$,X$,K$,Z$,Y$,J$,Q$,eO,tO,nO,d3,d3,p3,p3,sO,aO,rO,oO,iO,lO,uO,cO,dO,pO,hO,fO,gO];for(let e of AO)l5(e);ee().prototype.abs=function(){return this.throwIfDisposed(),Bt(this)};ee().prototype.acos=function(){return this.throwIfDisposed(),Hg(this)};ee().prototype.acosh=function(){return this.throwIfDisposed(),Gg(this)};ee().prototype.add=function(e){return this.throwIfDisposed(),oe(this,e)};ee().prototype.all=function(e,t){return this.throwIfDisposed(),ch(this,e,t)};ee().prototype.any=function(e,t){return this.throwIfDisposed(),vc(this,e,t)};ee().prototype.argMax=function(e){return this.throwIfDisposed(),Ms(this,e)};ee().prototype.argMin=function(e){return this.throwIfDisposed(),jg(this,e)};ee().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),V(this,[])};ee().prototype.asType=function(e){return this.throwIfDisposed(),de(this,e)};ee().prototype.as1D=function(){return this.throwIfDisposed(),V(this,[this.size])};ee().prototype.as2D=function(e,t){return this.throwIfDisposed(),V(this,[e,t])};ee().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),V(this,[e,t,n])};ee().prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),V(this,[e,t,n,s])};ee().prototype.as5D=function(e,t,n,s,r){return this.throwIfDisposed(),V(this,[e,t,n,s,r])};ee().prototype.asin=function(){return this.throwIfDisposed(),qg(this)};ee().prototype.asinh=function(){return this.throwIfDisposed(),Xg(this)};ee().prototype.atan=function(){return this.throwIfDisposed(),Kg(this)};ee().prototype.atan2=function(e){return this.throwIfDisposed(),Zg(this,e)};ee().prototype.atanh=function(){return this.throwIfDisposed(),Yg(this)};ee().prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),kc(this,e,t,n,s)};ee().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Ic(this,e,t)};ee().prototype.batchNorm=function(e,t,n,s,r){return this.throwIfDisposed(),Wo(this,e,t,n,s,r)};ee().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Ul(this,e)};ee().prototype.cast=function(e){return this.throwIfDisposed(),de(this,e)};ee().prototype.ceil=function(){return this.throwIfDisposed(),nA(this)};ee().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Pn(this,e,t)};ee().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Ge&&(e=[e]),ft([this,...e],t)};ee().prototype.conv1d=function(e,t,n,s,r,a){return this.throwIfDisposed(),ph(this,e,t,n,s,r,a)};ee().prototype.conv2dTranspose=function(e,t,n,s,r){return this.throwIfDisposed(),hh(this,e,t,n,s,r)};ee().prototype.conv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Sr(this,e,t,n,s,r,a)};ee().prototype.cos=function(){return this.throwIfDisposed(),Sc(this)};ee().prototype.cosh=function(){return this.throwIfDisposed(),fh(this)};ee().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),mh(this,e,t,n)};ee().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),aA(this,e,t)};ee().prototype.depthwiseConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Gl(this,e,t,n,s,r,a)};ee().prototype.dilation2d=function(e,t,n,s,r){return this.throwIfDisposed(),oA(this,e,t,n,s,r)};ee().prototype.divNoNan=function(e){return this.throwIfDisposed(),iA(this,e)};ee().prototype.div=function(e){return this.throwIfDisposed(),pe(this,e)};ee().prototype.dot=function(e){return this.throwIfDisposed(),xb(this,e)};ee().prototype.elu=function(){return this.throwIfDisposed(),jl(this)};ee().prototype.equal=function(e){return this.throwIfDisposed(),Xn(this,e)};ee().prototype.erf=function(){return this.throwIfDisposed(),lA(this)};ee().prototype.exp=function(){return this.throwIfDisposed(),Kn(this)};ee().prototype.expandDims=function(e){return this.throwIfDisposed(),zt(this,e)};ee().prototype.expm1=function(){return this.throwIfDisposed(),uA(this)};ee().prototype.fft=function(){return this.throwIfDisposed(),Pc(this)};ee().prototype.flatten=function(){return this.throwIfDisposed(),V(this,[this.size])};ee().prototype.floor=function(){return this.throwIfDisposed(),Xl(this)};ee().prototype.floorDiv=function(e){return this.throwIfDisposed(),lh(this,e)};ee().prototype.gather=function(e,t){return this.throwIfDisposed(),Vo(this,e,t)};ee().prototype.greaterEqual=function(e){return this.throwIfDisposed(),sa(this,e)};ee().prototype.greater=function(e){return this.throwIfDisposed(),Mn(this,e)};ee().prototype.ifft=function(){return this.throwIfDisposed(),Jl(this)};ee().prototype.irfft=function(){return this.throwIfDisposed(),Dh(this)};ee().prototype.isFinite=function(){return this.throwIfDisposed(),vb(this)};ee().prototype.isInf=function(){return this.throwIfDisposed(),wb(this)};ee().prototype.isNaN=function(){return this.throwIfDisposed(),dA(this)};ee().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Cc(this,e)};ee().prototype.lessEqual=function(e){return this.throwIfDisposed(),ra(this,e)};ee().prototype.less=function(e){return this.throwIfDisposed(),Ah(this,e)};ee().prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),pA(this,e,t,n,s)};ee().prototype.logSigmoid=function(){return this.throwIfDisposed(),Sb(this)};ee().prototype.logSoftmax=function(e){return this.throwIfDisposed(),xh(this,e)};ee().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),mA(this,e,t)};ee().prototype.log=function(){return this.throwIfDisposed(),Zn(this)};ee().prototype.log1p=function(){return this.throwIfDisposed(),Tc(this)};ee().prototype.logicalAnd=function(e){return this.throwIfDisposed(),Es(this,e)};ee().prototype.logicalNot=function(){return this.throwIfDisposed(),Nc(this)};ee().prototype.logicalOr=function(e){return this.throwIfDisposed(),bh(this,e)};ee().prototype.logicalXor=function(e){return this.throwIfDisposed(),Eb(this,e)};ee().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ue(this,e,t,n)};ee().prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),Ec(this,e,t,n,s)};ee().prototype.max=function(e,t){return this.throwIfDisposed(),Yn(this,e,t)};ee().prototype.maximum=function(e){return this.throwIfDisposed(),ar(this,e)};ee().prototype.mean=function(e,t){return this.throwIfDisposed(),Dt(this,e,t)};ee().prototype.min=function(e,t){return this.throwIfDisposed(),Rc(this,e,t)};ee().prototype.minimum=function(e){return this.throwIfDisposed(),Kl(this,e)};ee().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),AA(this,e,t)};ee().prototype.mod=function(e){return this.throwIfDisposed(),yA(this,e)};ee().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};ee().prototype.neg=function(){return this.throwIfDisposed(),St(this)};ee().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Oh(this,e,t,n)};ee().prototype.notEqual=function(e){return this.throwIfDisposed(),Go(this,e)};ee().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),zl(this,e,t,n)};ee().prototype.onesLike=function(){return this.throwIfDisposed(),Qn(this)};ee().prototype.pad=function(e,t){return this.throwIfDisposed(),Cr(this,e,t)};ee().prototype.pool=function(e,t,n,s,r){return this.throwIfDisposed(),_b(this,e,t,n,s,r)};ee().prototype.pow=function(e){return this.throwIfDisposed(),Tr(this,e)};ee().prototype.prelu=function(e){return this.throwIfDisposed(),_c(this,e)};ee().prototype.prod=function(e,t){return this.throwIfDisposed(),wh(this,e,t)};ee().prototype.reciprocal=function(){return this.throwIfDisposed(),vA(this)};ee().prototype.relu=function(){return this.throwIfDisposed(),zs(this)};ee().prototype.relu6=function(){return this.throwIfDisposed(),kh(this)};ee().prototype.reshapeAs=function(e){return this.throwIfDisposed(),V(this,e.shape)};ee().prototype.reshape=function(e){return this.throwIfDisposed(),V(this,e)};ee().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Zb(this,e,t,n)};ee().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),Yb(this,e,t,n)};ee().prototype.reverse=function(e){return this.throwIfDisposed(),es(this,e)};ee().prototype.rfft=function(){return this.throwIfDisposed(),Mc(this)};ee().prototype.round=function(){return this.throwIfDisposed(),Ih(this)};ee().prototype.rsqrt=function(){return this.throwIfDisposed(),Sh(this)};ee().prototype.selu=function(){return this.throwIfDisposed(),Ch(this)};ee().prototype.separableConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),wA(this,e,t,n,s,r,a)};ee().prototype.sigmoid=function(){return this.throwIfDisposed(),On(this)};ee().prototype.sign=function(){return this.throwIfDisposed(),kA(this)};ee().prototype.sin=function(){return this.throwIfDisposed(),Th(this)};ee().prototype.sinh=function(){return this.throwIfDisposed(),Nh(this)};ee().prototype.slice=function(e,t){return this.throwIfDisposed(),_e(this,e,t)};ee().prototype.softmax=function(e){return this.throwIfDisposed(),Oc(this,e)};ee().prototype.softplus=function(){return this.throwIfDisposed(),Uo(this)};ee().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Dc(this,e,t)};ee().prototype.split=function(e,t){return this.throwIfDisposed(),Wt(this,e,t)};ee().prototype.sqrt=function(){return this.throwIfDisposed(),dn(this)};ee().prototype.square=function(){return this.throwIfDisposed(),pt(this)};ee().prototype.squaredDifference=function(e){return this.throwIfDisposed(),_h(this,e)};ee().prototype.squeeze=function(e){return this.throwIfDisposed(),lt(this,e)};ee().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Ge?[this,e]:[this,...e];return pn(n,t)};ee().prototype.step=function(e){return this.throwIfDisposed(),Ql(this,e)};ee().prototype.stridedSlice=function(e,t,n,s,r,a,o,i){return this.throwIfDisposed(),SA(this,e,t,n,s,r,a,o,i)};ee().prototype.sub=function(e){return this.throwIfDisposed(),Ae(this,e)};ee().prototype.sum=function(e,t){return this.throwIfDisposed(),we(this,e,t)};ee().prototype.tan=function(){return this.throwIfDisposed(),CA(this)};ee().prototype.tanh=function(){return this.throwIfDisposed(),Bo(this)};ee().prototype.tile=function(e){return this.throwIfDisposed(),ms(this,e)};ee().prototype.toBool=function(){return this.throwIfDisposed(),de(this,"bool")};ee().prototype.toFloat=function(){return this.throwIfDisposed(),de(this,"float32")};ee().prototype.toInt=function(){return this.throwIfDisposed(),de(this,"int32")};ee().prototype.topk=function(e,t){return this.throwIfDisposed(),TA(this,e,t)};ee().prototype.transpose=function(e){return this.throwIfDisposed(),Ye(this,e)};ee().prototype.unique=function(e){return this.throwIfDisposed(),$h(this,e)};ee().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),NA(this,e,t)};ee().prototype.unstack=function(e){return this.throwIfDisposed(),ts(this,e)};ee().prototype.where=function(e,t){return this.throwIfDisposed(),yn(e,this,t)};ee().prototype.zerosLike=function(){return this.throwIfDisposed(),Je(this)};var h3={};Le(h3,{maxNorm:()=>vO,minMaxNorm:()=>IO,nonNeg:()=>kO,unitNorm:()=>wO});var PA;function Zt(){return PA==null&&(PA=zo().epsilon()),PA}function Bs(){return"channelsLast"}var Rr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Rr.prototype)}},Ws=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ws.prototype)}},G=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,G.prototype)}},ze=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ze.prototype)}},f3=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,f3.prototype)}};function Xo(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function ir(e,t){if(!e)throw new f3(t)}function m3(e,t){let n=0;for(let s of e)s===t&&n++;return n}function zn(e){return e.length===1?e[0]:e}function vt(e){return Array.isArray(e)?e:[e]}function Dr(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function Ko(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Rs={};function MA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function zA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>zA(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:zA(s))}}}function Bc(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in Rs)o=Rs[a];else if(o=t[a],o==null)throw new G(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new G(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in Rs?[i,l]=Rs.className:o in t&&([i,l]=t[o]),i==null)throw new G(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(Rs))u[h]=Rs[h];for(let h of Object.keys(n))u[h]=n[h];let c=a.config;c.customObjects=u;let d=Object.assign({},Rs);for(let h of Object.keys(n))Rs[h]=n[h];zA(a.config);let p=l(i,a.config,n,r);return Rs=Object.assign({},d),p}else{let u=Object.assign({},Rs);for(let d of Object.keys(n))Rs[d]=n[d];let c=new i(a.config);return Rs=Object.assign({},u),c}}}function yO(e,t){return e<t?-1:e>t?1:0}function Xh(e,t){return-1*yO(e,t)}function oa(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function xO(e){if(e==null)throw new G(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Zo(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new G(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function LA(e,t,n=0,s=1/0){return ir(n>=0),ir(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function rn(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>rn(n,`element ${s+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${g3(e)}.`)}function g3(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>g3(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function bO(e,t){let n=w.now(),s;return(...a)=>{let o=w.now();return o-n<t||(n=o,s=e(...a)),s}}function A3(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function BA(e,t){return H(()=>dn(we(z(e,e),t,!0)))}var Wc=class extends ie.Serializable{getConfig(){return{}}},WA=class extends Wc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=BA(e,this.axis),n=Pn(t,0,this.maxValue);return z(e,pe(n,oe(Zt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};WA.className="MaxNorm";ie.registerClass(WA);var VA=class extends Wc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>pe(e,oe(Zt(),BA(e,this.axis))))}getConfig(){return{axis:this.axis}}};VA.className="UnitNorm";ie.registerClass(VA);var UA=class extends Wc{apply(e){return zs(e)}};UA.className="NonNeg";ie.registerClass(UA);var HA=class extends Wc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return H(()=>{let t=BA(e,this.axis),n=oe(z(this.rate,Pn(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,pe(n,oe(Zt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};HA.className="MinMaxNorm";ie.registerClass(HA);var y3={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Yt(e){return MA(e)}function x3(e,t={}){return Bc(e,ie.SerializationMap.getMap().classNameMap,t,"constraint")}function Jt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in y3?y3[e]:e,config:{}};return x3(n)}else return e instanceof Wc?e:x3(e)}function vO(e){return new WA(e)}function wO(e){return new VA(e)}function kO(){return new UA}function IO(e){return new HA(e)}var b3={};Le(b3,{constant:()=>qO,glorotNormal:()=>eP,glorotUniform:()=>QO,heNormal:()=>tP,heUniform:()=>nP,identity:()=>YO,leCunNormal:()=>sP,leCunUniform:()=>rP,ones:()=>jO,orthogonal:()=>aP,randomNormal:()=>KO,randomUniform:()=>XO,truncatedNormal:()=>ZO,varianceScaling:()=>JO,zeros:()=>GO});var SO=["channelsFirst","channelsLast"],CO=["nearest","bilinear"],TO=["valid","same","causal"],NO=["max","avg"],EO=["sum","mul","concat","ave"],tu=new Map;function Lt(e){Zo(SO,"DataFormat",e)}function RO(e){Zo(CO,"InterpolationFormat",e)}function gs(e){Zo(TO,"PaddingMode",e)}function v3(e){Zo(NO,"PoolMode",e)}var Vc=[],w3="/";function Yo(e,t){Vc.push(e);try{let n=t();return Vc.pop(),n}catch(n){throw Vc.pop(),n}}function DO(){return Vc.length===0?"":Vc.join(w3)+w3}function k3(e){if(!S3(e))throw new Error("Not a valid tensor name: '"+e+"'");return DO()+e}function I3(e){if(!S3(e))throw new Error("Not a valid tensor name: '"+e+"'");tu.has(e)||tu.set(e,0);let t=tu.get(e);if(tu.set(e,tu.get(e)+1),t>0){let n=`${e}_${t}`;return tu.set(n,1),n}else return e}var _O=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function S3(e){return!!e.match(_O)}function FO(e){return e===parseInt(e.toString(),10)}function ia(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function nu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function la(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function Vs(e,t){if(t<e)throw new G(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Kh(e,t){return de(e,t)}function Uc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),V(e,n)}function $O(e,t){return H(()=>{if(e.shape.length!==2)throw new G(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Uc(e,1);return qA(n,[1,t,1])})}function OO(e){let t=[ia(e.shape)];return V(e,t)}function PO(e){if(e.rank<=1)throw new G(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ia(e.shape,1)];return V(e,t)}function Jo(e,t,n){return H(()=>{switch(e.rank){case 1:return Eh(e,t,n);case 2:return IA(e,[t,0],[n,e.shape[1]]);case 3:return Rh(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return $c(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return _e(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return _e(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new G(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function GA(e,t,n){return H(()=>{switch(e.rank){case 1:return Eh(e,t,n);case 2:return IA(e,[0,t],[e.shape[0],n]);case 3:return Rh(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return $c(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Zh(e,t,n,s){return H(()=>{switch(e.rank){case 1:return Eh(e,t,n);case 2:switch(s){case 1:return Jo(e,t,n);case 2:return GA(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return Jo(e,t,n);case 2:return Rh(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return GA(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return Jo(e,t,n);case 2:return $c(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return $c(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return GA(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function jA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ft(e,t)}function C3(e,t){switch(e.rank){case 1:return hb([e,t]);case 2:return Hl([e,t],0);case 3:return fb([e,t],0);case 4:return mb([e,t],0);default:throw new G(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function qA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new G(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return ms(e,t)}function Yh(e,t=0,n=1,s,r){return Fb(e,t,n,s,r)}function lr(e,t,n,s){if(e.rank<2||t.rank<2)throw new ze(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new ze(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,a=!1;return aa.matMul({a:e,b:t,transposeA:r,transposeB:a,bias:s?XA(e.rank,s,Bs()):null,activation:n})}else{let r=e.shape.slice(),a=r.pop();e=V(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=V(Ye(t,c),[l,-1]);let d=[...r,...u],p=!1,h=!1;return V(aa.matMul({a:e,b:t,transposeA:p,transposeB:h,bias:s?XA(e.rank,s,Bs()):null,activation:n}),d)}}function T3(e,t,n){return H(()=>(Array.isArray(t)?t=Vt(t,"int32"):t=de(t,"int32"),Vo(e,t,n)))}function Hc(e){return z(e,e)}function XA(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new G(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1,1]):V(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1]):V(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1]):V(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,s[0]]):V(t,[1].concat(s))}else if(e<3)return t;throw new G(`Unsupported input rank by biasAdd: ${t.rank}`)}function Us(e,t,n){return H(()=>(n==null&&(n=Bs()),Lt(n),oe(e,XA(e.rank,t,n))))}function MO(e,t=1){if(t!==1)throw new ze(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return jl(e)}function zO(e){return H(()=>pe(e,oe(Bt(e),1)))}function N3(e,t,n,s){return H(()=>Bb(e,t,n,s))}function LO(e){return H(()=>{let t=oe(.5,z(.2,e));return Pn(t,0,1)})}function Gc(e,t,n=!1){return n?e():t()}var BO=["fanIn","fanOut","fanAvg"],WO=["normal","uniform","truncatedNormal"];function VO(e){Zo(BO,"FanMode",e)}function UO(e){Zo(WO,"Distribution",e)}var Ds=class extends ie.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},KA=class extends Ds{apply(e,t){return Ot(e,t)}};KA.className="Zeros";ie.registerClass(KA);var Jh=class extends Ds{apply(e,t){return Jn(e,t)}};Jh.className="Ones";ie.registerClass(Jh);var ZA=class extends Ds{constructor(e){super();if(typeof e!="object")throw new G(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new G(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return H(()=>z(Ce(this.value),Jn(e,t)))}getConfig(){return{value:this.value}}};ZA.className="Constant";ie.registerClass(ZA);var YA=class extends Ds{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Zl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};YA.className="RandomUniform";ie.registerClass(YA);var JA=class extends Ds{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`randomNormal does not support dType ${t}.`);return Yh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};JA.className="RandomNormal";ie.registerClass(JA);var QA=class extends Ds{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`truncatedNormal does not support dType ${t}.`);return Fh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};QA.className="TruncatedNormal";ie.registerClass(QA);var e1=class extends Ds{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return H(()=>{if(e.length!==2||e[0]!==e[1])throw new G("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,cA(e[0]))})}getConfig(){return{gain:this.gain}}};e1.className="Identity";ie.registerClass(e1);function HO(e,t="channelsLast"){let n,s;if(Lt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=ia(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=ia(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=ia(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var Ln=class extends Ds{constructor(e){super();if(e.scale<0)throw new G(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,VO(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,UO(this.distribution),this.seed=e.seed}apply(e,t){let n=HO(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new ze(`${this.getClassName()} does not support dType ${t}.`);return Fh(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return Zl(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Ln.className="VarianceScaling";ie.registerClass(Ln);var Qh=class extends Ln{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Ln.className}};Qh.className="GlorotUniform";ie.registerClass(Qh);var ef=class extends Ln{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Ln.className}};ef.className="GlorotNormal";ie.registerClass(ef);var tf=class extends Ln{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Ln.className}};tf.className="HeNormal";ie.registerClass(tf);var nf=class extends Ln{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Ln.className}};nf.className="HeUniform";ie.registerClass(nf);var sf=class extends Ln{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Ln.className}};sf.className="LeCunNormal";ie.registerClass(sf);var rf=class extends Ln{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Ln.className}};rf.className="LeCunNormal";ie.registerClass(rf);var t1=class extends Ds{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new ze("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return H(()=>{if(e.length<2)throw new ze("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=Yh(n,0,1,"float32"),r=Qb.gramSchmidt(s);return e[0]>e[1]&&(r=Ye(r)),z(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};t1.className="Orthogonal";ie.registerClass(t1);var E3={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function R3(e,t={}){return Bc(e,ie.SerializationMap.getMap().classNameMap,t,"initializer")}function _t(e){return MA(e)}function Ct(e){if(typeof e=="string"){let t=e in E3?E3[e]:e;if(t==="GlorotNormal")return new ef;if(t==="GlorotUniform")return new Qh;if(t==="HeNormal")return new tf;if(t==="HeUniform")return new nf;if(t==="LeCunNormal")return new sf;if(t==="LeCunUniform")return new rf;{let n={};return n.className=t,n.config={},R3(n)}}else return e instanceof Ds?e:R3(e)}function GO(){return new KA}function jO(){return new Jh}function qO(e){return new ZA(e)}function XO(e){return new YA(e)}function KO(e){return new JA(e)}function ZO(e){return new QA(e)}function YO(e){return new e1(e)}function JO(e){return new Ln(e)}function QO(e){return new Qh(e)}function eP(e){return new ef(e)}function tP(e){return new tf(e)}function nP(e){return new nf(e)}function sP(e){return new sf(e)}function rP(e){return new rf(e)}function aP(e){return new t1(e)}var D3={};Le(D3,{Layer:()=>et,RNN:()=>dr,RNNCell:()=>ed,activation:()=>WM,add:()=>ZM,alphaDropout:()=>Fz,average:()=>YM,averagePooling1d:()=>x2,averagePooling2d:()=>b2,averagePooling3d:()=>v2,avgPool1d:()=>oz,avgPool2d:()=>lz,avgPool3d:()=>cz,avgPooling1d:()=>iz,avgPooling2d:()=>uz,avgPooling3d:()=>dz,batchNormalization:()=>sz,bidirectional:()=>Sz,concatenate:()=>JM,conv1d:()=>_M,conv2d:()=>FM,conv2dTranspose:()=>$M,conv3d:()=>OM,conv3dTranspose:()=>PM,convLstm2d:()=>vz,convLstm2dCell:()=>wz,cropping2D:()=>zM,dense:()=>VM,depthwiseConv2d:()=>BM,dot:()=>nz,dropout:()=>UM,elu:()=>CM,embedding:()=>KM,flatten:()=>GM,gaussianDropout:()=>_z,gaussianNoise:()=>Dz,globalAveragePooling1d:()=>pz,globalAveragePooling2d:()=>hz,globalMaxPool1d:()=>Tz,globalMaxPool2d:()=>Nz,globalMaxPooling1d:()=>Bv,globalMaxPooling2d:()=>Wv,gru:()=>mz,gruCell:()=>gz,input:()=>cv,inputLayer:()=>SM,layerNormalization:()=>rz,leakyReLU:()=>NM,lstm:()=>Az,lstmCell:()=>yz,masking:()=>$z,maxPool1d:()=>Ez,maxPool2d:()=>Rz,maxPooling1d:()=>Vv,maxPooling2d:()=>Uv,maxPooling3d:()=>fz,maximum:()=>QM,minimum:()=>ez,multiply:()=>tz,permute:()=>XM,prelu:()=>EM,reLU:()=>TM,repeatVector:()=>jM,reshape:()=>qM,rnn:()=>kz,separableConv2d:()=>MM,simpleRNN:()=>xz,simpleRNNCell:()=>bz,softmax:()=>RM,spatialDropout1d:()=>HM,stackedRNNCells:()=>Iz,thresholdedReLU:()=>DM,timeDistributed:()=>Cz,upSampling2d:()=>LM,zeroPadding2d:()=>az});var oP=0;function _3(){return oP++}var af={};function of(e=""){return e in af||(af[e]=0),af[e]+=1,e+af[e].toString()}function n1(e){return Array.isArray(e)&&Array.isArray(e[0])}function lf(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function We(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new G(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function ut(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new G(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function uf(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var F3="Variable",$3=class{constructor(e,t="float32",n=F3,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=_3(),n=n==null?F3:n,this.originalName=k3(n),this.name=I3(this.originalName),this.trainable_=s,this.constraint=r,this.val=Ob(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),iP(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function iP(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function s1(e){return e.map(t=>t.read())}function r1(e){e.forEach(t=>{t[0].write(t[1])})}var Ut=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Hs=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=_3(),a!=null&&(this.originalName=k3(a),this.name=I3(this.originalName)),this.rank=t.length}},lP=0,cf=class{constructor(e,t){this.callArgs=t,this.id=lP++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},uP=0,et=class extends ie.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=uP++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Dr(n)+"_"+of(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ws(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new G(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return zn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return zn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Rr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Rr(`Layer ${this.name} is not connected, no input to return.`);return zn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Rr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Rr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return zn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=vt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=vt(this.inputSpec);if(e.length!==t.length)throw new G(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new G(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),u=r.axes[i],c=l>=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=vt(e),s=!0;for(let a of n)if(!(a instanceof Hs)){s=!1;break}let r=!0;for(let a of n)if(a instanceof Hs){r=!1;break}if(s===r)throw new G("Arguments to apply() must be all SymbolicTensors or all Tensors");return Yo(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of vt(e))a.push(o.shape);this.build(zn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=vt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=zn(i),this.activityRegularizer!=null)throw new ze("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=cP(e),o=this.computeOutputShape(a),i,l=dP(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new Hs(l,u,this,vt(e),t,this.name,c)):i=new Hs(l,o,this,vt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new ze("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Rr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Rr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ws(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return uf(this.weights)}build(e){this.built=!0}getWeights(e=!1){return s1(e?this.trainableWeights:this.weights)}setWeights(e){H(()=>{let t=this.weights;if(t.length!==e.length)throw new G(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=s1(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!w.arraysEqual(a.shape,i.shape))throw new G(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}r1(n)})}addWeight(e,t,n,s,r,a,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new G(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=Ct("zeros"));let i=s.apply(t,n),l=new $3(i,n,e,a,o);return i.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=vt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=vt(e);t=vt(t),n=vt(n),s=vt(s),r=lf(r),a=lf(a);let l=[],u=[],c=[];for(let d of i)l.push(d.sourceLayer),u.push(d.nodeIndex),c.push(d.tensorIndex);new cf({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let d=0;d<t.length;d++)t[d].sourceLayer=this,t[d].nodeIndex=this.inboundNodes.length-1,t[d].tensorIndex=d}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function cP(e){e=vt(e);let t=[];for(let n of e)t.push(n.shape);return zn(t)}function dP(e){return"float32"}function O3(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],u=O3(o,i,l);for(let c of u)r.indexOf(c)===-1&&r.push(c)}return r}}}var su=class extends et{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:of("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new G("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new G("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new G("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new Hs(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new cf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new G(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};su.className="InputLayer";ie.registerClass(su);function P3(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new G("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new su({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function ua(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];Z(s)}}function M3(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var z3;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(z3||(z3={}));var pP=125,ru=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},L3=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},hP=class extends ru{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=H(()=>oe(this.totals[s],z(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:H(()=>{let s=z(pe(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),sn(t[n])}))}},B3=class extends ru{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},W3=class extends ru{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=pP),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=bO(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await ua(n),s.push(this.yield(e,t,n))),s.push(qh()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await ua(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await ua(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(qh()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await ua(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await ua(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(qh()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await ua(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await ua(e),await this.trainEnd(e))}};function V3(e,t){return e==null&&(e={}),e instanceof ru?[e]:Array.isArray(e)&&e[0]instanceof ru?e:vt(e).map(s=>new W3(s,t))}var _s=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),_s.checkForDuplicate(t),_s.constructors[e]==null&&(_s.constructors[e]=[]),_s.constructors[e].push(t)}static checkForDuplicate(e){for(let t in _s.constructors)_s.constructors[+t].forEach(s=>{if(s===e)throw new G("Duplicate callback constructor.")})}static clear(){_s.constructors={}}static createCallbacks(e){let t=[];for(let n in _s.constructors){let s=+n;e>=s&&t.push(..._s.constructors[s])}return t.map(n=>new n)}};_s.constructors={};function U3(e,t,n,s,r,a,o,i,l){let u=new B3,c=[new hP,..._s.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let d=new L3(c);return d.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:d,history:u}}function Gs(e,t={},n=!1){return Bc(e,ie.SerializationMap.getMap().classNameMap,t,"layer",n)}function df(e,t){return H(()=>{e.dtype!=="float32"&&(e=de(e,"float32"));let n=we(Hc(e),t,!0),s=ql(n.shape,Zt()),r=dn(ar(n,s));return pe(e,r)})}function Qo(e,t){return H(()=>Dt(Hc(Ae(t,e)),-1))}function pf(e,t){return H(()=>Dt(Bt(Ae(t,e)),-1))}function au(e,t){return H(()=>{let n=Ae(e,t),s=Pn(Bt(e),Zt(),Number.MAX_VALUE),r=Bt(pe(n,s));return z(100,Dt(r,-1))})}function fP(e,t){return H(()=>{let n=Pn(t,Zt(),Number.MAX_VALUE),s=Zn(oe(1,n)),r=Pn(e,Zt(),Number.MAX_VALUE),a=Zn(oe(1,r));return Dt(Hc(Ae(s,a)),-1)})}function mP(e,t){return H(()=>{let n=ar(0,Ae(1,z(e,t)));return Dt(Hc(n),-1)})}function gP(e,t){return H(()=>{let n=ar(0,Ae(1,z(e,t)));return Dt(n,-1)})}function AP(e,t){return H(()=>{let n=we(z(e,t),-1),s=Yn(z(Ae(1,e),t),-1);return ar(0,oe(1,Ae(s,n)))})}function yP(e,t){return H(()=>{let n=Math.log(2),s=Ae(t,e),r=Ae(oe(s,Uo(z(-2,s))),n);return Dt(r,-1)})}function jc(e,t,n=!1){return H(()=>{if(n)t=Oc(t);else{let s=we(t,t.shape.length-1,!0);t=pe(t,s)}return t=Pn(t,Zt(),1-Zt()),St(we(z(de(e,"float32"),Zn(t)),t.shape.length-1))})}function hf(e,t,n=!1){return H(()=>{let s=de(Xl(OO(e)),"int32");t=Pn(t,Zt(),1-Zt());let r=t.shape,a=V(zl(s,r[r.length-1]),r);return jc(a,t,n)})}function xP(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new G(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return H(()=>{let n=zs(t),s=St(Bt(t));return oe(Ae(n,z(t,e)),Tc(Kn(s)))})}function ff(e,t){return H(()=>{let n;return n=Pn(t,Zt(),1-Zt()),n=Zn(pe(n,Ae(1,n))),Dt(xP(e,n),-1)})}function bP(e,t){return H(()=>{let n=Pn(e,Zt(),1),s=Pn(t,Zt(),1);return we(z(e,Zn(pe(n,s))),-1)})}function vP(e,t){return H(()=>{let n=Zn(oe(Zt(),t));return Dt(Ae(t,z(e,n)),-1)})}function a1(e,t){return H(()=>{let n=df(e,-1),s=df(t,-1),r=z(n,s);return St(we(r,-1))})}var mf={meanSquaredError:Qo,meanAbsoluteError:pf,meanAbsolutePercentageError:au,meanSquaredLogarithmicError:fP,squaredHinge:mP,hinge:gP,categoricalHinge:AP,logcosh:yP,categoricalCrossentropy:jc,sparseCategoricalCrossentropy:hf,binaryCrossentropy:ff,kullbackLeiblerDivergence:bP,poisson:vP,cosineProximity:a1};function o1(e){if(typeof e=="string"){if(e in mf)return mf[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new G(t)}else return e}function i1(e,t){return H(()=>{let n=z(.5,Qn(t)),s=Kh(Mn(t,n),e.dtype);return Dt(Xn(e,s),-1)})}function l1(e,t){return H(()=>Kh(Xn(Ms(e,-1),Ms(t,-1)),"float32"))}function H3(e,t){return H(()=>de(we(Es(Xn(e,1),Xn(t,1))),"float32"))}function wP(e,t){return H(()=>de(we(Es(Xn(e,1),Xn(t,0))),"float32"))}function kP(e,t){return H(()=>de(we(Es(Xn(e,0),Xn(t,1))),"float32"))}function G3(e,t){return H(()=>{let n=H3(e,t),s=kP(e,t),r=oe(n,s);return de(yn(Mn(r,0),pe(n,r),0),"float32")})}function IP(e,t){return H(()=>{let n=H3(e,t),s=wP(e,t),r=oe(n,s);return de(yn(Mn(r,0),pe(n,r),0),"float32")})}function j3(e,t){return ff(e,t)}function q3(e,t){return e.rank===t.rank&&(e=lt(e,[e.rank-1])),t=Ms(t,-1),t.dtype!==e.dtype&&(t=de(t,e.dtype)),de(Xn(e,t),"float32")}var SP=Qo,CP=Qo,TP=pf,NP=pf,EP=au,RP=au,u1=jc,DP=a1,X3=hf,gf={binaryAccuracy:i1,categoricalAccuracy:l1,precision:G3,categoricalCrossentropy:u1,sparseCategoricalCrossentropy:X3,mse:SP,MSE:CP,mae:TP,MAE:NP,mape:EP,MAPE:RP,cosine:DP};function _P(e){if(typeof e=="string"&&e in gf)return gf[e];if(typeof e!="string"&&e!=null)return e;throw new G(`Unknown metric ${e}`)}function Af(e){if(ir(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(mf))if(mf[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(gf))if(gf[n]===e){t=n;break}return t!==void 0?t:e.name}}function FP(e){let t={Adagrad:()=>qo.adagrad(.01),Adadelta:()=>qo.adadelta(1,.95,Zt()),Adam:()=>qo.adam(.001,.9,.999,Zt()),Adamax:()=>qo.adamax(.002,.9,.999,Zt(),0),RMSProp:()=>qo.rmsprop(.001,.9,0,Zt()),SGD:()=>qo.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new G(`Unknown Optimizer ${e}`)}var K3=1*1024*1024;function Z3(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!c1(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>K3&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${K3}.`)}}function c1(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!c1(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!c1(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function $P(e,t,n,s=console.log){let r=PP(e),a=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!r){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}s("_".repeat(t)),yf(a,n,s),s("=".repeat(t));let i=e.layers;for(let c=0;c<i.length;++c)r?MP(i[c],n,s):zP(i[c],n,o,s),s((c===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=OP(e),u=uf(e.nonTrainableWeights);s(`Total params: ${l+u}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${u}`),s("_".repeat(t))}function OP(e){let t;return e.collectedTrainableWeights!=null?t=uf(e.collectedTrainableWeights):t=uf(e.trainableWeights),t}function PP(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function yf(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function MP(e,t,n){let s;try{s=JSON.stringify(e.outputShape)}catch(i){s="multiple"}let r=e.name,a=e.getClassName(),o=[`${r} (${a})`,s,e.countParams().toString()];yf(o,t,n)}function zP(e,t,n,s){let r;try{r=JSON.stringify(e.outputShape)}catch(c){r="multiple"}let a=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let d=0;d<c.inboundLayers.length;++d){let p=c.inboundLayers[d].name,h=c.nodeIndices[d],f=c.tensorIndices[d];a.push(`${p}[${h}][${f}]`)}let o=e.name,i=e.getClassName(),l=a.length===0?"":a[0],u=[`${o} (${i})`,r,e.countParams().toString(),l];yf(u,t,s);for(let c=1;c<a.length;++c)yf(["","","",a[c]],t,s)}function Y3(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function qc(e,t){if(e===null)return null;if(typeof e=="string")return Ko(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Y3(t,r,a)?n.push(a):n.push(qc(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=Ko(s);n[a]=qc(r,a)}}return n}}function d1(e,t){if(e==null)return null;if(typeof e=="string")return Dr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];Y3(t,r,a)?n.push(a):n.push(d1(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=Dr(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=d1(r,s)}return n}}var p1="3.9.0";function LP(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return de(t,e.dtype)}catch(n){throw new G(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var ei=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof ei)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=LP(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new G(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Hs){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Hs){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Z(this.id2Mask)}},h1={},J3={};function Xc(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().join(","),d,p;if(h1[c]==null){let f=BP(o,t);d=f.sorted,p=f.recipientCounts,h1[c]=d,J3[c]=p}d=h1[c],p={},r||Object.assign(p,J3[c]);let h=new ei(t);for(let f=0;f<d.length;++f){if(s!=null){let D=oh().numTensors;D>s.maxNumTensors&&(s.maxNumTensors=D),D<s.minNumTensors&&(s.minNumTensors=D)}let m=d[f],g=m.sourceLayer;if(g instanceof su)continue;let A=[],y=[],x=[],b=!1;for(let D of m.inputs){let O=h.getValue(D),E=h.getMask(D);A.push(O),y.push(E),E!=null&&(b=!0),r||(p[D.name]--,p[D.name]===0&&!t.hasKey(D)&&i.indexOf(D.name)===-1&&!O.isDisposed&&D.sourceLayer.stateful!==!0&&x.push(O))}b&&(n=n||{},n.mask=y[0]);let v=vt(g.apply(A,n)),k=null;g.supportsMasking&&(k=g.computeMask(A,y));let S=VP(m),C=Array.isArray(S)?S:[S];for(let D=0;D<C.length;++D){h.hasKey(C[D])||h.add(C[D],v[D],Array.isArray(k)?k[0]:k);let O=i.indexOf(C[D].name);O!==-1&&(l[O]=v[D])}r||Z(x)}return h.disposeMasks(),a?l:l[0]}function BP(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Q3(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=Q3(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(u=>s[l].add(u))}}return{sorted:n,recipientCounts:WP(s)}}function WP(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Q3(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:s,recipientMap:r}}function VP(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var ur=class extends et{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let A=this.getClassName().toLowerCase();this.name=of(A)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],oa(this.inputs).length!==this.inputs.length)throw new G(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(A=>A.name)}`);oa(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(b)}for(let A of this.inputs){let y=A.sourceLayer,x=A.nodeIndex,b=A.tensorIndex;ir(x===0,"input layer has >1 nodes"),ir(b===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;A<this.inputLayers.length;A++){let y=this.inputLayers[A];if(!(y instanceof su))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${A} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let A of this.outputLayers)this.outputNames.push(A.name);this.internalInputShapes=this.inputs.map(A=>A.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},s={},r={},a={},o=[],i=(A,y,x,b,v,k)=>{(b==null||v==null||k==null)&&(b=A.sourceLayer,v=A.nodeIndex,k=A.tensorIndex);let S=b.inboundNodes[v];if(x.indexOf(S)!==-1)throw new Ws(`The tensor ${A.name} at layer "${b.name}" is part of a cycle.`);if(y.indexOf(S)!==-1)return;this.containerNodes.add(ur.nodeKey(b,v)),b.id in a||(a[b.id]=Object.keys(a).length),x.indexOf(S)===-1&&x.push(S);let C=S.inboundLayers.length;for(let D=0;D<C;D++){let O=S.inputTensors[D],E=S.inboundLayers[D],R=S.nodeIndices[D],T=S.tensorIndices[D];i(O,y,x,E,R,T)}for(y.push(S);x.indexOf(S)>=0;)x.splice(x.indexOf(S),1);o.push(S)},l=[],u=[];for(let A of this.outputs)i(A,l,u);let c=o.slice().reverse();for(let A of c){n[A.id]=A,A.id in t||(t[A.id]=0);let y=t[A.id],x=s[A.outboundLayer.id]==null?0:s[A.outboundLayer.id];y=Math.max(y,x),s[A.outboundLayer.id]=y,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=y;for(let b=0;b<A.inboundLayers.length;b++){let v=A.inboundLayers[b],k=A.nodeIndices[b],S=v.inboundNodes[k],C=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(y+1,C),n[S.id]=S}}let d={};for(let A in t){let y=t[A];y in d||(d[y]=[]),d[y].push(n[A])}let p={};for(let A in s){let y=s[A];y in p||(p[y]=[]),p[y].push(r[A])}let h=Object.keys(p).map(A=>parseInt(A,10)).sort(Xh);this.layers=[];for(let A of h){let y=p[A];y.sort((x,b)=>{let v=a[x.id],k=a[b.id];return v<k?-1:v>k?1:0});for(let x of y)x instanceof ur&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=p,h=Object.keys(d).map(A=>parseInt(A,10)).sort(Xh);let f=this.inputs.slice(),m=[];for(let A of h)for(let y of d[A]){let x=y.outboundLayer;if(x!=null){for(let b of y.inputTensors)if(f.indexOf(b)===-1)throw new Ws(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${x.name}". The following previous layers were accessed without issue: ${m}`);for(let b of y.outputTensors)f.push(b);m.push(x.name)}}this.nodesByDepth=d;let g=this.layers.map(A=>A.name);for(let A of g){let y=g.filter(x=>x===A).length;if(y!==1)throw new Ws(`The name "${A}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new cf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new G("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new G(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new G(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new G(`${a.length} of ${s} weights are not set: ${a}`)}r1(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${p1}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=d1(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return H(()=>{e=vt(e);let n=new ei;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return Xc(this.outputs,n,t)})}computeMask(e,t){return H(()=>{e=vt(e);let n;return t==null?n=Xo(null,e.length):n=vt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=lf(e);if(t.length!==this.inputLayers.length)throw new G(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],u=i.name+"_0_0";n[u]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Xh);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],A=l.tensorIndices[f],y=`${m.name}_${g}_${A}`,x=n[y];c.push(x)}let d=u.computeOutputShape(zn(c)),p=lf(d),h=u.inboundNodes.indexOf(l);for(let f=0;f<p.length;f++){let m=`${u.name}_${h}_${f}`;n[m]=p[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],u=this.outputLayersTensorIndices[o],c=`${i.name}_${l}_${u}`;a.push(c)}for(let o=0;o<a.length;o++){let i=a[o];ir(i in n),r.push(n[i])}return zn(r)}runInternalGraph(e,t){t==null&&(t=Xo(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],u=e[i],c=t[i];n[l.id]=[u,c]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Xh);for(let i of s){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,d=u.inputTensors,p=u.outputTensors,h=new Array;for(let f of d)f.id in n&&h.push(n[f.id]);if(h.length===d.length){let f={},m,g,A,y;if(u.callArgs!=null&&(f=u.callArgs),h.length===1){let[x,b]=h[0];f.mask==null&&(f.mask=b),A=vt(c.call(x,f)),y=vt(c.computeMask(x,b)),m=[x],g=[b]}else m=h.map(x=>x[0]),g=h.map(x=>x[1]),f.mask==null&&(f.mask=g),A=vt(c.call(m,f)),y=vt(c.computeMask(m,g));if(c.activityRegularizer)throw new ze("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<p.length;++x){let b=p[x],v=A[x],k=y[x];n[b.id]=[v,k]}}}}let r=[],a=[],o=[];for(let i of this.outputs){ir(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,u]=n[i.id];o.push(l.shape),r.push(l),a.push(u)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof ur?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=ur.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new G(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new G("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new G(`No such layer: ${e}`)}calculateLosses(){return H(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=ur.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let c=0;c<a.inboundNodes.length;c++){let d=a.inboundNodes[c],p=ur.nodeKey(a,c),h={};if(this.containerNodes.has(p)){if(d.callArgs)try{JSON.stringify(d.callArgs),h=d.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${d.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(d.inboundLayers.length>0){let f=[];for(let m=0;m<d.inboundLayers.length;m++){let g=d.inboundLayers[m],A=d.nodeIndices[m],y=d.tensorIndices[m],x=ur.nodeKey(g,A),b=t[x];b==null&&(b=0),f.push([g.name,b,y,h])}l.push(f)}}}let u={};u.name=a.name,u.className=o,u.config=i,u.inboundNodes=l,n.push(u)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=ur.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[a];s.push([o.name,u,c])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=ur.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[a];r.push([o.name,u,c])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let A=[],y;for(let x of g){let b=x[0],v=x[1],k=x[2];if(y=x[3]==null?{}:x[3],!(b in r)){o(m,g);return}let S=r[b];if(S.inboundNodes.length<=v){o(m,g);return}let C=S.inboundNodes[v];A.push(C.outputTensors[k])}A.length>0&&m.apply(zn(A),y)}function l(m){let g=m.name,A=Gs(m,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(s),r[g]=A,m.inboundNodes.forEach(x=>{if(!(x instanceof Array))throw new G(`Corrupted configuration, expected array for nodeData: ${x}`);o(A,x)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!xO(a);)for(let m of c){let g=r[m.name];if(g.name in a){let A=a[g.name];delete a[g.name];for(let y of A)i(g,y)}}let d=[],p=[],h=t.inputLayers;for(let m of h){let g=m[0],A=m[1],y=m[2];ir(g in r);let b=r[g].inboundNodes[A].outputTensors;d.push(b[y])}let f=t.outputLayers;for(let m of f){let g=m[0],A=m[1],y=m[2];ir(g in r);let b=r[g].inboundNodes[A].outputTensors;p.push(b[y])}return new e({inputs:d,outputs:p,name:u})}get stateful(){if(this._stateful)throw new G("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){H(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function UP(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function ev(e,t){return UP(e,t,"classWeight")}async function tv(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=H(()=>{if(e.shape.length===1)return Ps(e);if(e.shape.length===2){if(e.shape[1]>1)return Ms(e,1);if(e.shape[1]===1)return V(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());Z(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Vt(o,"float32")}else return null}function HP(e,t){return z(e,t)}var GP=32;function nv(e,t){let n,s,r=t;n=r.xs,s=r.ys,w.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=sv("input",e.inputNames,n),o=sv("output",e.outputNames,s),i=a[0].shape[0];w.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)w.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)w.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function sv(e,t,n){if(n instanceof Ge)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new G(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function jP(e){if(e.length===3)throw new ze("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function qP(e,t,n){let s=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(rv(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=jP(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=V3(n.callbacks,n.yieldEvery),d=n.verbose==null?1:n.verbose,{callbackList:p,history:h}=U3(c,d,n.epochs,null,null,XP(t,n),null,r,u);p.setModel(e),e.history=h,await p.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await p.onEpochBegin(f);let A=0,y=0;for(s||(m=await t.iterator());s?A<n.batchesPerEpoch:!0;){let x=await m.next();if(s&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${A} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:b,ys:v}=nv(e,x.value),k={};k.batch=y,k.size=b[0].shape[0],await p.onBatchBegin(y,k);let S=[];if(n.classWeight!=null){let O=ev(n.classWeight,e.outputNames);for(let E=0;E<O.length;++E)S.push(await tv(v[E],null,O[E]))}let C=b.concat(v).concat(S),D=i(C);Z(C);for(let O=0;O<l.length;++O){let E=l[O],R=D[O];k[E]=R,sn(R)}await p.onBatchEnd(y,k),M3(k),y++,A++}if(s?A>=n.batchesPerEpoch:x.done){if(r){let b;rv(n.validationData)?b=vt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=vt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?GP:n.validationBatchSize,verbose:0}));for(let v=0;v<e.metricsNames.length;++v)g[`val_${e.metricsNames[v]}`]=b[v]}break}if(e.stopTraining_)break}if(await p.onEpochEnd(f,g),f++,e.stopTraining_)break}return await p.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function XP(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function rv(e){return typeof e.iterator=="function"}function KP(e){return typeof e.next=="function"}async function ZP(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new ze("Verbose mode is not implemented yet.");w.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=KP(t)?t:await t.iterator(),i=0,l=0;for(;s?l<n.batches:!0;){let u=await o.next();if(a=H(()=>{if(u.value){let{xs:c,ys:d}=nv(e,u.value),p=c.concat(d),h=H(()=>r(p));if(Z(p),l===0)for(let m=0;m<h.length;++m)a.push(Ce(0));let f=p[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],A=a[m];a[m]=H(()=>oe(a[m],z(f,g))),l>0&&Z(A)}Z(h),i+=f,++l}return a}),u.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<a.length;++u){let c=a[u];a[u]=pe(a[u],i),Z(c)}return zn(a)}function f1(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Kc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>Jo(s,t,n-t)):Jo(e,t,n-t)}function m1(e,t){return H(()=>e==null?null:Array.isArray(e)?e.map(n=>m1(n,t)):T3(e,t.dtype==="int32"?t:de(t,"int32")))}function g1(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function YP(e,t,n,s,r,a,o,i,l,u,c,d,p,h,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),p==null&&(p=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new G("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),A;g!=null&&(A=Vs(0,g)),o==null&&(o=1);let{callbackList:y,history:x}=U3(i,o,a,p,g,h,r,m,d);y.setModel(e),e.history=x,await y.onTrainBegin(),e.stopTraining_=!1;for(let b=p;b<a;++b){await y.onEpochBegin(b);let v={};if(h!=null)throw new ze("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new ze("batch shuffling is not implemneted yet");c&&w.shuffle(A);let k=Vt(A),S=g1(g,r);for(let C=0;C<S.length;++C){let D={};if(await y.onBatchBegin(C,D),H(()=>{let O=S[C][0],E=S[C][1],R=Jo(k,O,E-O);D.batch=C,D.size=E-O;let T=m1(n,R),P=t(T);for(let U=0;U<s.length;++U){let j=s[U],q=P[U];D[j]=q,sn(q)}if(C===S.length-1&&m){let U=e.testLoop(l,u,r);for(let j=0;j<s.length;++j){let q=s[j],X=U[j];sn(X),v["val_"+q]=X}}}),await y.onBatchEnd(C,D),M3(D),e.stopTraining_)break}k.dispose()}if(await y.onEpochEnd(b,v),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function JP(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,u,c;try{let d=s.batchSize==null?32:s.batchSize;f1(d);let p=!1,h=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,p,d);r=h[0],a=h[1],c=h[2];let f=!1,m;if(s.validationData!=null&&s.validationData.length>0){if(f=!0,s.validationData.length===2)o=s.validationData[0],i=s.validationData[1];else throw s.validationData.length===3?new ze("validationData including sample weights is not supported yet."):new G(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let S=!0,C=await e.standardizeUserData(o,i,null,null,S,d);l=C[0],u=C[1],m=l.concat(u)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){f=!0;let S=Math.floor(r[0].shape[0]*(1-s.validationSplit)),C=r[0].shape[0];l=Kc(r,S,C),r=Kc(r,0,S),u=Kc(a,S,C),a=Kc(a,0,S),m=l.concat(u)}else s.validationSteps!=null&&(f=!0);let g=r.concat(a).concat(c);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),x,b;f?(e.makeTestFunction(),x=e.testFunction,b=y.slice().concat(y.map(S=>"val_"+S))):(x=null,m=[],b=y.slice());let v=V3(s.callbacks,s.yieldEvery);return await YP(e,A,g,y,d,s.epochs,s.verbose,v,x,m,s.shuffle,b,s.initialEpoch,null,null)}finally{e.isTraining=!1,ti(r,t),ti(a,n),ti(l,o),ti(u,i),c!=null&&Z(c)}}function av(e){let t=[];e instanceof Ge&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(Uc(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function ti(e,t){if(e==null)return;let n=[];if(t instanceof Ge)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof Ge)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function QP(e){return e instanceof Ge}function A1(e){return Array.isArray(e)}function ov(e){return!QP(e)&&!A1(e)}function iv(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(A1(e)&&e.length>0)o=!0;else if(ov(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new G(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(ov(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new G(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(A1(e)){if(e=e,e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new G(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=av(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new G(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c>=0&&u!==c)throw new G(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function eM(e,t,n){let s=oa(e.map(a=>a.shape[0]));s.sort();let r=oa(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new G(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new G(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!w.arraysEqual(s,r))throw new G(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function tM(e,t,n){let s=[Qo,ff,jc];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===jc&&a.shape[a.shape.length-1]===1)throw new G(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let d=l[c],p=u[c];if(p!=null&&d!==p)throw new G(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function lv(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new G(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new G(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c!==u)throw new G(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function nM(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var sM="layers-model",_r=class extends ur{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new G("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");$P(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=FP(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Er))throw new G("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new G(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(o1(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new G(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>o1(o))}else{let a=o1(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Yo("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=nM(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};Yo("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let u="",c,d,p;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===ff?["accuracy","acc"].indexOf(h)!==-1?d=i1:["crossentropy","ce"].indexOf(h)!==-1&&(d=j3):this.lossFunctions[a]===hf?["accuracy","acc"].indexOf(h)!==-1?d=q3:["crossentropy","ce"].indexOf(h)!==-1&&(d=X3):["accuracy","acc"].indexOf(h)!==-1?d=l1:["crossentropy","ce"].indexOf(h)!==-1&&(d=u1);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),p=d,c=u+g}else p=_P(h),c=u+Af(h);let f;Yo(c,()=>{f=p}),r(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;f1(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return zn(l)}finally{ti(a[0],e),ti(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),ZP(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new G(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new G(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new G("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new ei;if(e instanceof Ge&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new G(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new G(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=Xc(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=Xo(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new G(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return H(()=>{let s=this.checkNumSamples(e);if(n)throw new ze("Verbose predictLoop() is not implemented yet.");let r=g1(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)H(()=>{let l=r[o][0],u=r[o][1],c=Kc(e,l,u),d=[];if(Array.isArray(c))for(let h=0;h<c.length;++h)d.push({key:this.inputs[h],value:c[h]});else d.push({key:this.inputs[0],value:c});let p=new ei(d);return Xc(this.outputs,p)}).forEach((l,u)=>a[u].push(l));return zn(a.map(o=>ft(o,0)))})}predict(e,t={}){let n=av(e);lv(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return f1(s),this.predictLoop(n,s)}finally{ti(n,e)}}predictOnBatch(e){lv(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new Ws("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===hf?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=iv(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=iv(t,this.feedOutputNames,r,!1,"target"),eM(e,t,null),tM(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!=0)throw new G(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let u=ev(s,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await tv(i[c],null,u[c]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return H(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new ze("Verbose mode is not implemented yet.");if(r!=null)throw new ze("steps mode in testLoop() is not implemented yet");{let i=g1(a,n),l=Vt(Vs(0,a));for(let u=0;u<i.length;++u){let c=i[u][0],d=i[u][1],p=Jo(l,c,d-c),h=m1(t,p),f=e(h);if(u===0)for(let m=0;m<f.length;++m)o.push(Ce(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=oe(o[m],z(d-c,g))}}for(let u=0;u<o.length;++u)o[u]=pe(o[u],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;m3(e,s)>1&&(r+=`_${m3(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f<this.inputs.length;++f)c.push({key:this.inputs[f],value:n[f]});let d=new ei(c),p=Xc(this.outputs,d,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],p[f]);r[f]!=null&&(g=HP(g,r[f]));let A=Dt(g);t.push(A),f===0?h=g:h=oe(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],A=this.metricsTensors[f][1];m=Dt(g(s[A],p[A]))}sn(m),a.push(m)}return h=Dt(h),this.calculateLosses().forEach(f=>{h=oe(h,f)}),h},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>H(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new ei(a),i=Xc(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=Dt(u(r[l],i[l]));l===0?n=c:n=oe(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],d=Dt(u(r[c],i[c]));t.push(d)}return t})}async fit(e,t,n={}){return JP(this,e,t,n)}async fitDataset(e,t){return qP(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let u=await l.data();i.push(u[0])}return Z(o),zn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=oh().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-oh().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Dr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Dr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=Dr(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Dr(Af(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Dr(Af(e)));{let e={};for(let t in this.metrics)e[t]=Dr(Af(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=qc(e.optimizer_config),n=Gs(t),s;if(typeof e.loss=="string")s=Ko(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>Ko(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=Ko(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>Ko(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=Ko(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=$n.getSaveHandlers(e);if(l.length===0)throw new G(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new G(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new G("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await $n.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:sM,generatedBy:`TensorFlow.js tfjs-layers v${p1}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await $n.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=$n.concatenateArrayBuffers([n.data,u])}if(this.userDefinedMetadata!=null){let l=!0;Z3(this.userDefinedMetadata,this.name,l),o.userDefinedMetadata=this.userDefinedMetadata}return o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){Z3(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};_r.className="Model";ie.registerClass(_r);var uv=class extends _r{};uv.className="Functional";ie.registerClass(uv);async function rM(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=qc(n),r=Gs(s,t);if(e.weightsManifest!=null){let a=await $n.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),Z(a)}return r}async function aM(e,t){if(t==null&&(t={}),typeof e=="string"){let n=$n.getLoadHandlers(e,t);if(n.length===0)n.push($n.browserHTTPRequest(e,t));else if(n.length>1)throw new G(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return oM(e,void 0,t)}async function oM(e,t,n){if(n==null&&(n={}),e.load==null)throw new G("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=Gs(qc(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new G("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=iM(s.weightData,s.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),Z(u),Z(c.map(d=>d.tensor))}return i}function iM(e,t){let n=$n.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var ou=class extends _r{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:of("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new G(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof ou||e instanceof _r,n;if(t){if(n=e,n.outputs.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new G("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new G("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=P3({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new G(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=O3(this.outputs[0])}this.inboundNodes=[],new cf({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Xo(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(ut(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new _r({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ws("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ws("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ws("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ws("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new G("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof ou))throw new ze(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let u=Gs(i,void 0,s);s&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new G("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new G("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};ou.className="Sequential";ie.registerClass(ou);function lM(e){return new _r(e)}function uM(e){return new ou(e)}function cM(e,t){return t==null&&(t={}),aM(e,t)}function cv(e){return P3(e)}function dM(e,t){_s.registerCallbackConstructor(e,t)}var Bn=class extends ie.Serializable{getConfig(){return{}}},dv=class extends Bn{apply(e,t=1){return MO(e,t)}};dv.className="elu";ie.registerClass(dv);var pv=class extends Bn{apply(e){return Ch(e)}};pv.className="selu";ie.registerClass(pv);var hv=class extends Bn{apply(e){return zs(e)}};hv.className="relu";ie.registerClass(hv);var fv=class extends Bn{apply(e){return H(()=>Kl(6,zs(e)))}};fv.className="relu6";ie.registerClass(fv);var mv=class extends Bn{apply(e){return e}};mv.className="linear";ie.registerClass(mv);var gv=class extends Bn{apply(e){return On(e)}};gv.className="sigmoid";ie.registerClass(gv);var Av=class extends Bn{apply(e){return LO(e)}};Av.className="hardSigmoid";ie.registerClass(Av);var yv=class extends Bn{apply(e){return Uo(e)}};yv.className="softplus";ie.registerClass(yv);var xv=class extends Bn{apply(e){return zO(e)}};xv.className="softsign";ie.registerClass(xv);var bv=class extends Bn{apply(e){return Bo(e)}};bv.className="tanh";ie.registerClass(bv);var y1=class extends Bn{apply(e,t=-1){return Oc(e,t)}};y1.className="softmax";ie.registerClass(y1);var vv=class extends Bn{apply(e,t=-1){return xh(e,t)}};vv.className="logSoftmax";ie.registerClass(vv);var wv=class extends Bn{apply(e,t=1){return H(()=>z(On(z(e,t)),e))}};wv.className="swish";ie.registerClass(wv);var kv=class extends Bn{apply(e){return H(()=>z(e,Bo(Uo(e))))}};kv.className="mish";ie.registerClass(kv);function ca(e){return e.getClassName()}function x1(e,t={}){return Bc(e,ie.SerializationMap.getMap().classNameMap,t,"activation")}function da(e){if(e==null){let t={};return t.className="linear",t.config={},x1(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},x1(t)}else return e instanceof Bn?e:x1(e)}function b1(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var Iv=class extends ie.Serializable{},Zc=class extends Iv{constructor(e){super();b1(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return H(()=>{let t=Ot([1]);return this.hasL1&&(t=oe(t,we(z(this.l1,Bt(e))))),this.hasL2&&(t=oe(t,we(z(this.l2,Hc(e))))),V(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Zc.className="L1L2";ie.registerClass(Zc);function pM(e){return b1(e),new Zc({l1:e!=null?e.l1:null,l2:0})}function hM(e){return b1(e),new Zc({l2:e!=null?e.l2:null,l1:0})}var Sv={l1l2:"L1L2"};function mt(e){return MA(e)}function Cv(e,t={}){return Bc(e,ie.SerializationMap.getMap().classNameMap,t,"regularizer")}function Tt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Sv?Sv[e]:e,config:{}};return Cv(n)}else return e instanceof Iv?e:Cv(e)}var v1=class extends et{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=We(e);let n=zs(e);return this.maxValue!=null&&(n=Pn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};v1.className="ReLU";ie.registerClass(v1);var w1=class extends et{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=We(e);return Cc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};w1.className="LeakyReLU";ie.registerClass(w1);var k1=class extends et{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Ct(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Tt(e.alphaRegularizer),this.alphaConstraint=Jt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new G(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=ut(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Ut({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=We(e),_c(e,this.alpha.read())}getConfig(){let e={alphaInitializer:_t(this.alphaInitializer),alphaRegularizer:mt(this.alphaRegularizer),alphaConstraint:Yt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};k1.className="PReLU";ie.registerClass(k1);var I1=class extends et{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new ze(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=We(e);return jl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};I1.className="ELU";ie.registerClass(I1);var S1=class extends et{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=We(e);return z(n,de(Mn(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};S1.className="ThresholdedReLU";ie.registerClass(S1);var C1=class extends et{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new y1().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=We(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};C1.className="Softmax";ie.registerClass(C1);function iu(e,t,n){if(typeof e=="number")return Xo(e,t);if(e.length!==t)throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!FO(r))throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function js(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function cr(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+la([n-t,0]);else if(s==="same")e=e*t;else throw new G(`Unsupport padding mode: ${s}.`);return e}function T1(e,t){return H(()=>(Lt(t),t==="channelsFirst"?Ye(e,[0,2,3,1]):e))}function Tv(e,t){return H(()=>(Lt(t),t==="channelsFirst"?Ye(e,[0,2,3,4,1]):e))}function fM(e,t,n,s=1,r="valid",a,o=1){return H(()=>{if(a==null&&(a=Bs()),Lt(a),e.shape.length!==3)throw new G(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new G(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new G(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Ye(e,[0,2,1])),r==="causal")throw new ze("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=ph(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=Us(i,n)),i})}function Nv(e,t,n,s=[1,1],r="valid",a,o,i=null){return H(()=>{if(a==null&&(a=Bs()),Lt(a),e.rank!==3&&e.rank!==4)throw new G(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new G(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=T1(e,a);if(r==="causal")throw new ze("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=aa.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=Ye(l,[0,3,1,2])),l})}function mM(e,t,n,s=[1,1,1],r="valid",a,o){return H(()=>{if(a==null&&(a=Bs()),Lt(a),e.rank!==4&&e.rank!==5)throw new G(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new G(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=Tv(e,a);if(r==="causal")throw new ze("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=rA(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Us(i,n)),a==="channelsFirst"&&(i=Ye(i,[0,4,1,2,3])),i})}var N1=class extends et{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",N1.verifyArgs(t),this.rank=e,rn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new ze(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=iu(t.kernelSize,e,"kernelSize"),this.strides=iu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,gs(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Lt(this.dataFormat),this.activation=da(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Ct(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Jt(t.biasConstraint),this.biasRegularizer=Tt(t.biasRegularizer),this.activityRegularizer=Tt(t.activityRegularizer),this.dilationRate=iu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new G(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new G(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new G(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(ir("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!LA(e.kernelSize,"number",1,3))throw new G(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:ca(this.activation),useBias:this.useBias,biasInitializer:_t(this.biasInitializer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),biasConstraint:Yt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Yc=class extends N1{constructor(e,t){super(e,t);this.kernel=null,Yc.verifyArgs(t),this.filters=t.filters,rn(this.filters,"filters"),this.kernelInitializer=Ct(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Jt(t.kernelConstraint),this.kernelRegularizer=Tt(t.kernelRegularizer)}build(e){e=ut(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return H(()=>{e=We(e);let n,s=this.bias==null?null:this.bias.read(),r=A3(this.activation.getClassName());if(r!=null&&this.rank===2)n=Nv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=fM(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Nv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=mM(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new ze("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=ut(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=js(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:_t(this.kernelInitializer),kernelRegularizer:mt(this.kernelRegularizer),kernelConstraint:Yt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new G(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Jc=class extends Yc{constructor(e){super(2,e);Jc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!LA(e.kernelSize,"number",1,2))throw new G(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Jc.className="Conv2D";ie.registerClass(Jc);var Qc=class extends Yc{constructor(e){super(3,e);Qc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new G(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Qc.className="Conv3D";ie.registerClass(Qc);var E1=class extends Jc{constructor(e){super(e);if(this.inputSpec=[new Ut({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ut(e),e.length!==4)throw new G("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ut({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=We(e);if(n.shape.length!==4)throw new G(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],u=this.kernelSize[0],c=this.kernelSize[1],d=this.strides[0],p=this.strides[1],h=cr(i,d,u,this.padding),f=cr(l,p,c,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Ye(n,[0,2,3,1]));let g=hh(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ye(g,[0,3,1,2])),this.bias!=null&&(g=Us(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=ut(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=cr(t[s],i,a,this.padding),t[r]=cr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};E1.className="Conv2DTranspose";ie.registerClass(E1);var R1=class extends Qc{constructor(e){super(e);if(this.inputSpec=[new Ut({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=ut(e),e.length!==5)throw new G("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Ut({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{let n=We(e);if(n.shape.length!==5)throw new G(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],u=s[a],c=s[o],d=this.kernelSize[0],p=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],A=cr(l,f,d,this.padding),y=cr(u,m,p,this.padding),x=cr(c,g,h,this.padding),b=[r,A,y,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ye(n,[0,2,3,4,1]));let v=Ab(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(v=Ye(v,[0,4,1,2,3])),this.bias!==null&&(v=Us(v,this.bias.read(),this.dataFormat)),this.activation!==null&&(v=this.activation.apply(v)),v})}computeOutputShape(e){e=ut(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],d=this.strides[2];return t[n]=this.filters,t[s]=cr(t[s],u,o,this.padding),t[r]=cr(t[r],c,i,this.padding),t[a]=cr(t[a],d,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};R1.className="Conv3DTranspose";ie.registerClass(R1);var Ev=class extends Yc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new G("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new G("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new G(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Ct(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Tt(t.depthwiseRegularizer),this.depthwiseConstraint=Jt(t.depthwiseConstraint),this.pointwiseInitializer=Ct(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Tt(t.pointwiseRegularizer),this.pointwiseConstraint=Jt(t.pointwiseConstraint)}build(e){if(e=ut(e),e.length<this.rank+2)throw new G(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Ut({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return H(()=>{e=We(e);let n;if(this.rank===1)throw new ze("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ye(e,[0,2,3,1])),n=wA(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Us(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ye(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=_t(this.depthwiseInitializer),e.pointwiseInitializer=_t(this.pointwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.pointwiseRegularizer=mt(this.pointwiseRegularizer),e.depthwiseConstraint=Yt(this.depthwiseConstraint),e.pointwiseConstraint=Yt(this.pointwiseConstraint),e}};Ev.className="SeparableConv";var D1=class extends Ev{constructor(e){super(2,e)}};D1.className="SeparableConv2D";ie.registerClass(D1);var xf=class extends Yc{constructor(e){super(1,e);xf.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!LA(e.kernelSize,"number",1,1))throw new G(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};xf.className="Conv1D";ie.registerClass(xf);var _1=class extends et{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return H(()=>{if(e=We(e),this.dataFormat==="channelsLast"){let n=Zh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Zh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Zh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Zh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};_1.className="Cropping2D";ie.registerClass(_1);var F1=class extends et{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Lt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,RO(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return H(()=>{let n=We(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=Ye(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?Fe.resizeNearestNeighbor(n,[r,a]):Fe.resizeBilinear(n,[r,a]);return Ye(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?Fe.resizeNearestNeighbor(n,[r,a]):Fe.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};F1.className="UpSampling2D";ie.registerClass(F1);function gM(e,t,n=[1,1],s="valid",r,a){return H(()=>{r==null&&(r=Bs()),Lt(r);let o=T1(e,r);if(e.rank!==4)throw new G(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new G(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=Gl(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=Ye(o,[0,3,1,2])),o})}var $1=class extends N1{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Ct(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Jt(e.depthwiseConstraint),this.depthwiseRegularizer=Tt(e.depthwiseRegularizer)}build(e){if(e=ut(e),e.length<4)throw new G(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{e=We(e);let n=gM(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Us(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=ut(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=js(t,this.kernelSize[0],this.padding,this.strides[0]),a=js(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=_t(this.depthwiseInitializer),e.depthwiseRegularizer=mt(this.depthwiseRegularizer),e.depthwiseConstraint=Yt(this.depthwiseRegularizer),e}};$1.className="DepthwiseConv2D";ie.registerClass($1);function Rv(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new G("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function Dv(e,t,n,s=!1,r,a,o=!1,i=!1){return H(()=>{let l=t.shape.length;if(l<3)throw new G(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Vs(2,l));if(t=Ye(t,u),a!=null)throw new ze("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=de(de(r,"bool"),"float32"),r.rank===l-1&&(r=zt(r,-1)),r=Ye(r,u)),s&&(t=es(t,0),r!=null&&(r=es(r,0)));let c=[],d,p=n,h=t.shape[0],f=ts(t),m;r!=null&&(m=ts(r));for(let A=0;A<h;++A){let y=f[A],x=H(()=>e(y,p));if(r==null)d=x[0],p=x[1];else{let b=H(()=>{let v=m[A],k=Ae(Qn(v),v),S=oe(z(x[0],v),z(p[0],k)),C=p.map((D,O)=>oe(z(x[1][O],v),z(D,k)));return{output:S,newStates:C}});d=b.output,p=b.newStates}i&&c.push(d)}let g;return i&&(g=pn(c,1)),[d,g,p]})}var dr=class extends et{constructor(e){super(e);let t;if(e.cell==null)throw new G("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new wf({cells:e.cell}):t=e.cell,t.stateSize==null)throw new G("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Ut({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Vs(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){n1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return H(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new ze("Constants support is not implemented in RNN yet.");n1(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Ut({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new ze("Constants support is not implemented in RNN yet.");this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new G(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new Ut({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new Rr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ot([n,s])):this.states_=[Ot([n,this.cell.stateSize])];else if(e==null)Z(this.states_),this.keptStates!=null&&(Z(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Ot([n,s])):this.states_[0]=Ot([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Z(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!w.arraysEqual(r.shape,o))throw new G(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>sn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Rv(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new Ut({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof Hs){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=We(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new G(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=Dv((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],d=l[2];this.stateful&&this.resetStates(d,s);let p=this.returnSequences?c:u;return this.returnState?[p].concat(d):p})}getInitialState(e){return H(()=>{let t=Ot(e.shape);return t=we(t,[1,2]),t=Uc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?qA(t,[1,n]):t):this.cell.stateSize>1?[qA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===dr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=Gs(s,n);return new e(Object.assign(t,{cell:r}))}};dr.className="RNN";ie.registerClass(dr);var ed=class extends et{},bf=class extends ed{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,rn(this.units,"units"),this.activation=da(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ct(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ct(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ct(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Jt(e.kernelConstraint),this.recurrentConstraint=Jt(e.recurrentConstraint),this.biasConstraint=Jt(e.biasConstraint),this.dropout=nu([1,la([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=nu([1,la([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ut(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new G(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=pa({ones:()=>Qn(e),rate:this.dropout,training:s})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=pa({ones:()=>Qn(n),rate:this.recurrentDropout,training:s}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=lr(z(e,a),this.kernel.read()):r=lr(e,this.kernel.read()),this.bias!=null&&(r=Us(r,this.bias.read())),o!=null&&(n=z(n,o));let i=oe(r,lr(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ca(this.activation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Yt(this.kernelConstraint),recurrentConstraint:Yt(this.recurrentConstraint),biasConstraint:Yt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};bf.className="SimpleRNNCell";ie.registerClass(bf);var O1=class extends dr{constructor(e){e.cell=new bf(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};O1.className="SimpleRNN";ie.registerClass(O1);var vf=class extends ed{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new G("GRUCell does not support reset_after parameter set to true.");this.units=e.units,rn(this.units,"units"),this.activation=da(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=da(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ct(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ct(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ct(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Jt(e.kernelConstraint),this.recurrentConstraint=Jt(e.recurrentConstraint),this.biasConstraint=Jt(e.biasConstraint),this.dropout=nu([1,la([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=nu([1,la([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=ut(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return H(()=>{if(e=e,e.length!==2)throw new G(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=pa({ones:()=>Qn(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=pa({ones:()=>Qn(s),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=z(e,r[0]));let u=lr(e,this.kernel.read());this.useBias&&(u=Us(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=z(s,a[0]));let c=this.recurrentKernel.read(),[d,p]=Wt(c,[2*this.units,this.units],c.rank-1),h=lr(s,d),[f,m,g]=Wt(u,3,u.rank-1),[A,y]=Wt(h,2,h.rank-1);o=this.recurrentActivation.apply(oe(f,A)),i=this.recurrentActivation.apply(oe(m,y));let x=lr(z(i,s),p);l=this.activation.apply(oe(g,x));let b=oe(z(o,s),z(oe(1,St(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ca(this.activation),recurrentActivation:ca(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Yt(this.kernelConstraint),recurrentConstraint:Yt(this.recurrentConstraint),biasConstraint:Yt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};vf.className="GRUCell";ie.registerClass(vf);var P1=class extends dr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new vf(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};P1.className="GRU";ie.registerClass(P1);var td=class extends ed{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,rn(this.units,"units"),this.activation=da(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=da(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ct(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ct(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ct(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Tt(e.kernelRegularizer),this.recurrentRegularizer=Tt(e.recurrentRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.kernelConstraint=Jt(e.kernelConstraint),this.recurrentConstraint=Jt(e.recurrentConstraint),this.biasConstraint=Jt(e.biasConstraint),this.dropout=nu([1,la([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=nu([1,la([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=ut(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Ds{apply(i,l){let u=r.apply([a]),c=new Jh().apply([a]),d=r.apply([a*2]);return C3(C3(u,c),d)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new G(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=pa({ones:()=>Qn(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=pa({ones:()=>Qn(s),rate:this.recurrentDropout,training:n,count:4}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0<this.dropout&&this.dropout<1&&(e=z(e,a[0]));let d=lr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=z(s,o[0])),d=oe(d,lr(s,this.recurrentKernel.read())),this.useBias&&(d=Us(d,this.bias.read()));let[p,h,f,m]=Wt(d,4,d.rank-1);i=this.recurrentActivation.apply(p),l=this.recurrentActivation.apply(h),u=oe(z(l,r),z(i,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let g=z(c,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ca(this.activation),recurrentActivation:ca(this.recurrentActivation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),recurrentInitializer:_t(this.recurrentInitializer),biasInitializer:_t(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:mt(this.kernelRegularizer),recurrentRegularizer:mt(this.recurrentRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Yt(this.kernelConstraint),recurrentConstraint:Yt(this.recurrentConstraint),biasConstraint:Yt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};td.className="LSTMCell";ie.registerClass(td);var M1=class extends dr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new td(e);super(e)}call(e,t){return H(()=>{this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};M1.className="LSTM";ie.registerClass(M1);var wf=class extends ed{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return H(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){n1(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{Yo(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(Gs(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return s1(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}r1(t)}};wf.className="StackedRNNCells";ie.registerClass(wf);function pa(e){let{ones:t,rate:n,training:s=!1,count:r=1}=e,a=()=>N3(t(),n),o=()=>Gc(a,t,s);return!r||r<=1?sn(o().clone()):Array(r).fill(void 0).map(o).map(l=>sn(l.clone()))}var AM=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r<s.length;r++)t.indexOf(s[r])<0&&Object.prototype.propertyIsEnumerable.call(e,s[r])&&(n[s[r]]=e[s[r]]);return n},_v=class extends dr{constructor(e){if(e.unroll)throw new ze("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new ze("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Ut({ndim:5})]}call(e,t){return H(()=>{if(this.cell.dropoutMask!=null&&(Z(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Z(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new G("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return H(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Ot(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){H(()=>{if(!this.stateful)throw new Rr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ot(r)):this.states_=[Ot(r)];else if(e==null)Z(this.states_),this.keptStates!=null&&(Z(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ot(r)):this.states_[0]=Ot(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Z(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!w.arraysEqual(i.shape,l))throw new G(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>sn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=js(l,s[0],r,a[0],o[0]),d=js(u,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,d]:[c,d,n]]}};_v.className="ConvRNN2D";var kf=class extends td{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t}));this.filters=t,rn(this.filters,"filters"),this.kernelSize=iu(n,2,"kernelSize"),this.kernelSize.forEach(i=>rn(i,"kernelSize")),this.strides=iu(s||1,2,"strides"),this.strides.forEach(i=>rn(i,"strides")),this.padding=r||"valid",gs(this.padding),this.dataFormat=a||"channelsLast",Lt(this.dataFormat),this.dilationRate=iu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>rn(i,"dilationRate"))}build(e){var t;e=ut(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends Ds{apply(d,p){let h=l.apply([u]),f=Jn([u]),m=l.apply([u*2]);return jA([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return H(()=>{if(e.length!==3)throw new G(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=pa({ones:()=>Qn(s),rate:this.dropout,training:n,count:o}));let i=this.dropoutMask,l=(te,ne,se)=>!ne||!ne[se]?te:z(ne[se],te),u=l(s,i,0),c=l(s,i,1),d=l(s,i,2),p=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=pa({ones:()=>Qn(r),rate:this.recurrentDropout,training:n,count:o}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),A=l(r,h,3),y=3,[x,b,v,k]=Wt(this.kernel.read(),o,y),[S,C,D,O]=this.useBias?Wt(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,x,S,this.padding),c=this.inputConv(c,b,C,this.padding),d=this.inputConv(d,v,D,this.padding),p=this.inputConv(p,k,O,this.padding);let[E,R,T,P]=Wt(this.recurrentKernel.read(),o,y);f=this.recurrentConv(f,E),m=this.recurrentConv(m,R),g=this.recurrentConv(g,T),A=this.recurrentConv(A,P);let U=this.recurrentActivation.apply(oe(u,f)),j=this.recurrentActivation.apply(oe(c,m)),q=oe(z(j,a),z(U,this.activation.apply(oe(d,g)))),X=z(this.recurrentActivation.apply(oe(p,A)),this.activation.apply(q));return[X,X,q]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=AM(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=Sr(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Us(r,n,this.dataFormat):r}recurrentConv(e,t){return Sr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};kf.className="ConvLSTM2DCell";ie.registerClass(kf);var z1=class extends _v{constructor(e){let t=new kf(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};z1.className="ConvLSTM2D";ie.registerClass(z1);var If=class extends et{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Gc(()=>N3(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};If.className="Dropout";ie.registerClass(If);var L1=class extends If{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};L1.className="SpatialDropout1D";ie.registerClass(L1);var B1=class extends et{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,rn(this.units,"units"),this.activation=da(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Ct(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Ct(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Jt(e.kernelConstraint),this.biasConstraint=Jt(e.biasConstraint),this.kernelRegularizer=Tt(e.kernelRegularizer),this.biasRegularizer=Tt(e.biasRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=ut(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=ut(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e),s=A3(this.activation.getClassName()),r;return s!=null?r=lr(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=lr(n,this.kernel.read()),this.bias!=null&&(r=Us(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:ca(this.activation),useBias:this.useBias,kernelInitializer:_t(this.kernelInitializer),biasInitializer:_t(this.biasInitializer),kernelRegularizer:mt(this.kernelRegularizer),biasRegularizer:mt(this.biasRegularizer),activityRegularizer:mt(this.activityRegularizer),kernelConstraint:Yt(this.kernelConstraint),biasConstraint:Yt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};B1.className="Dense";ie.registerClass(B1);var W1=class extends et{constructor(e){e=e||{};super(e);this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=ut(e);for(let t of e.slice(1))if(t==null)throw new G(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ia(e,1)]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=Ye(n,s)}return PO(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};W1.className="Flatten";ie.registerClass(W1);var V1=class extends et{constructor(e){super(e);this.supportsMasking=!0,this.activation=da(e.activation)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e);return this.activation.apply(n)})}getConfig(){let e={activation:ca(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};V1.className="Activation";ie.registerClass(V1);var U1=class extends et{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return H(()=>(e=We(e),$O(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};U1.className="RepeatVector";ie.registerClass(U1);var H1=class extends et{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new G("Can only specifiy one unknown dimension.");else r*=l}let o=ia(e);if(a!==null){if(r===0||o%r!=0)throw new G(n);s[a]=o/r}else if(o!==r)throw new G(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return V(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};H1.className="Reshape";ie.registerClass(H1);var G1=class extends et{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Vs(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Ut({ndim:this.dims.length+1})]}computeOutputShape(e){e=ut(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return Ye(We(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};G1.className="Permute";ie.registerClass(G1);var j1=class extends et{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=We(e),s=-1;return vc(Go(n,this.maskValue),s)}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e),s=-1,r=!0,a=vc(Go(n,this.maskValue),s,r);return z(n,de(a,n.dtype))})}};j1.className="Masking";ie.registerClass(j1);var q1=class extends et{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(vt(e.inputLength))}this.inputDim=e.inputDim,rn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,rn(this.outputDim,"outputDim"),this.embeddingsInitializer=Ct(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Tt(e.embeddingsRegularizer),this.activityRegularizer=Tt(e.activityRegularizer),this.embeddingsConstraint=Jt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return H(()=>this.maskZero?(e=We(e),Go(e,Je(e))):null)}computeOutputShape(e){if(e=ut(e),this.inputLength==null)return[...e,this.outputDim];let t=vt(this.inputLength);if(t.length!==e.length-1)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e);n.dtype!=="int32"&&(n=Kh(n,"int32"));let s=T3(this.embeddings.read(),V(n,[n.size]));return V(s,ut(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:_t(this.embeddingsInitializer),embeddingsRegularizer:mt(this.embeddingsRegularizer),activityRegularizer:mt(this.activityRegularizer),embeddingsConstraint:Yt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};q1.className="Embedding";ie.registerClass(q1);var ni=class extends et{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new ze}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new G("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[ut(e)]),e=e,e.length<2)throw new G(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=oa(t),t.length>1)throw new G(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&oa(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return H(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=la(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=Uc(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let u=i.shape,c=u[0],d=u.slice(1).concat([c]),p=V(i,[c].concat(ia(u.slice(1))));p=Ye(p,[1,0]),p=V(p,d),n.push(p),r=!0}else if(l>1){let u=Vs(1,l).concat([0]);n.push(Ye(i,u)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=V(Ye(V(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(Vs(0,o-1));a=Ye(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=oa(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return H(()=>{if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an Array");if(!Array.isArray(e))throw new G("`inputs` should be an Array");if(t.length!==e.length)throw new G(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:zt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=Es(n,t[s]);return n})}},X1=class extends ni{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=oe(t,e[n]);return t})}};X1.className="Add";ie.registerClass(X1);var K1=class extends ni{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=z(t,e[n]);return t})}};K1.className="Multiply";ie.registerClass(K1);var Z1=class extends ni{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=oe(t,e[n]);return z(1/e.length,t)})}};Z1.className="Average";ie.registerClass(Z1);var Y1=class extends ni{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=ar(t,e[n]);return t})}};Y1.className="Maximum";ie.registerClass(Y1);var J1=class extends ni{constructor(e){super(e)}mergeFunction(e){return H(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Kl(t,e[n]);return t})}};J1.className="Minimum";ie.registerClass(J1);var Q1=class extends ni{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new G("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(w.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new G("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return H(()=>jA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new G("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new G("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new G(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return H(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(de(Qn(e[a]),"bool")):t[a].rank<e[a].rank?s.push(zt(t[a],-1)):s.push(t[a]);let r=ft(s,this.axis);return ch(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Q1.className="Concatenate";ie.registerClass(Q1);function nd(e,t){for(;e<0;)e+=t;return e}function yM(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new ze("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new ze("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return H(()=>{let o;if(s>r){o=s-r;let l=[];for(let u=0;u<o;++u)l.push(1);t=V(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let u=0;u<o;++u)l.push(1);e=V(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=we(z(e,t),a[0]):i=we(z(Ye(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,u=a[1]===t.shape.length-1;i=Ue(e,t,l,u)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let u=[];for(let c=l;c<l+o;++c)u.push(c);i=lt(i,u)}return i.shape.length===1&&(i=zt(i,1)),i})}var e2=class extends ni{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new ze("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new G(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new G(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>nd(r,e[a].shape.length)):s=[nd(this.axes,t.shape.length),nd(this.axes,n.shape.length)],this.normalize&&(t=df(t,s[0]),n=df(n,s[1])),yM(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[nd(this.axes,e.length),nd(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new ze("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};e2.className="Dot";ie.registerClass(e2);var t2=class extends et{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e);return Gc(()=>oe(Yh(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};t2.className="GaussianNoise";ie.registerClass(t2);var n2=class extends et{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{this.invokeCallHook(e,t);let n=We(e);return this.rate>0&&this.rate<1?Gc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return z(n,Yh(n.shape,1,r))},()=>n,t.training||!1):n})}};n2.className="GaussianDropout";ie.registerClass(n2);var s2=class extends et{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||We(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return H(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Gc(()=>{let r=We(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=sa(Zl(n),this.rate);l=Kh(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,d=oe(z(r,l),z(oe(l,-1),i));return oe(z(d,u),c)},()=>We(e),t.training||!1)}return e})}};s2.className="AlphaDropout";ie.registerClass(s2);function sd(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=ub(e,t,n,s,r,a);else if(e.rank===3)o=cb(e,t,n,s,r,a);else if(e.rank===4)o=db(e,t,n,s,r,a);else throw new ze(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function xM(e,t,n,s,r=.001){return H(()=>{let a=vh(e,s),o=a.mean,i=a.variance;return[sd(e,o,i,n,t,r),o,i]})}function bM(e,t,n,s,r=.001){return H(()=>{let a=vh(e,s),o=a.mean,i=a.variance,l=[];for(let f of Vs(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let u=V(o,l),c=V(i,l),d=t==null?null:V(t,l),p=n==null?null:V(n,l);return[sd(e,u,c,p,d,r),o,i]})}function vM(e,t,n,s,r=.001){return w.arraysEqual(s.slice().sort(),Vs(0,e.rank-1))?xM(e,t,n,s,r):bM(e,t,n,s,r)}var r2=class extends et{constructor(e){e==null&&(e={});super(e);this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ct(e.betaInitializer||"zeros"),this.gammaInitializer=Ct(e.gammaInitializer||"ones"),this.movingMeanInitializer=Ct(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Ct(e.movingVarianceInitializer||"ones"),this.betaConstraint=Jt(e.betaConstraint),this.gammaConstraint=Jt(e.gammaConstraint),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer)}build(e){e=ut(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new G(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Ut({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return H(()=>{let n=t.training==null?!1:t.training,s=We(e),r=s.shape,a=r.length,o=Vs(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=Xo(1,a);l[i]=r[i];let u=o.slice();u.sort();let c=!w.arraysEqual(u,Vs(0,a).slice(0,a-1)),d=()=>{if(c){let A=V(this.movingMean.read(),l),y=V(this.movingVariance.read(),l),x=this.center?V(this.beta.read(),l):null,b=this.scale?V(this.gamma.read(),l):null;return sd(s,A,y,x,b,this.epsilon)}else return sd(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return d();let[p,h,f]=vM(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(A,y,x)=>{H(()=>{let b=1-x,v=A.read(),k=z(Ae(v,y),b);A.write(Ae(v,k))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),p})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_t(this.betaInitializer),gammaInitializer:_t(this.gammaInitializer),movingMeanInitializer:_t(this.movingMeanInitializer),movingVarianceInitializer:_t(this.movingVarianceInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer),betaConstraint:Yt(this.betaConstraint),gammaConstraint:Yt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};r2.className="BatchNormalization";ie.registerClass(r2);var a2=class extends et{constructor(e){e==null&&(e={});super(e);if(this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ct(e.betaInitializer||"zeros"),this.gammaInitializer=Ct(e.gammaInitializer||"ones"),this.betaRegularizer=Tt(e.betaRegularizer),this.gammaRegularizer=Tt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=ut(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==oa(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=We(e),s=n.shape,r=s.length;return H(()=>{let a=!0,{mean:o,variance:i}=vh(n,this.axis,a),l=Xo(1,r);for(let f of this.axis)l[f]=s[f];let u=f=>f!=null&&f.shape.length!==r&&this.axis!==[r-1]?V(f,l):f,c=u(this.gamma.read()),d=u(this.beta.read()),p=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(p.push(s[f]),h.push(1)):(p.push(1),h.push(s[f]));return o=ms(o,p),i=ms(i,p),c=ms(c,h),d=ms(d,h),sd(n,o,i,d,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:_t(this.betaInitializer),gammaInitializer:_t(this.gammaInitializer),betaRegularizer:mt(this.betaRegularizer),gammaRegularizer:mt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};a2.className="LayerNormalization";ie.registerClass(a2);function wM(e,t,n){return H(()=>{if(e.rank!==4)throw new G(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new G("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Bs()),n!=="channelsLast"&&n!=="channelsFirst")throw new G(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Cr(e,s)})}var o2=class extends et{constructor(e){e==null&&(e={});super(e);if(this.dataFormat=e.dataFormat==null?Bs():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new G(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new G(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new G(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Ut({ndim:4})]}computeOutputShape(e){e=ut(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return H(()=>wM(We(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};o2.className="ZeroPadding2D";ie.registerClass(o2);function Sf(e,t,n,s,r,a){return H(()=>{Lt(r),v3(a),gs(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=Bs()),a==null&&(a="max"),e=T1(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=Ec(e,t,n,i):o=kc(e,t,n,i),r==="channelsFirst"&&(o=Ye(o,[0,3,1,2])),o})}function Fv(e,t,n,s,r,a){return H(()=>{Lt(r),v3(a),gs(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=Bs()),a==null&&(a="max"),e=Tv(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=gA(e,t,n,i):o=eA(e,t,n,i),r==="channelsFirst"&&(o=Ye(o,[0,4,1,2,3])),o})}var $v=class extends et{constructor(e){e.poolSize==null&&(e.poolSize=2);super(e);if(typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new G(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(rn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new G(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);rn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,gs(this.padding),this.inputSpec=[new Ut({ndim:3})]}computeOutputShape(e){e=ut(e);let t=js(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return H(()=>{this.invokeCallHook(e,t),e=Uc(We(e),2);let n=this.poolingFunction(We(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return lt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},i2=class extends $v{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Lt(r),gs(s),Sf(e,t,n,s,r,"max")}};i2.className="MaxPooling1D";ie.registerClass(i2);var l2=class extends $v{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Lt(r),gs(s),Sf(e,t,n,s,r,"avg")}};l2.className="AveragePooling1D";ie.registerClass(l2);var Ov=class extends et{constructor(e){e.poolSize==null&&(e.poolSize=[2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new G(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];rn(this.poolSize,"poolSize"),rn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Lt(this.dataFormat),gs(this.padding),this.inputSpec=[new Ut({ndim:4})]}computeOutputShape(e){e=ut(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=js(t,this.poolSize[0],this.padding,this.strides[0]),n=js(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(We(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},u2=class extends Ov{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Lt(r),gs(s),Sf(e,t,n,s,r,"max")}};u2.className="MaxPooling2D";ie.registerClass(u2);var c2=class extends Ov{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Lt(r),gs(s),Sf(e,t,n,s,r,"avg")}};c2.className="AveragePooling2D";ie.registerClass(c2);var Pv=class extends et{constructor(e){e.poolSize==null&&(e.poolSize=[2,2,2]);super(e);if(this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new G(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];rn(this.poolSize,"poolSize"),rn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Lt(this.dataFormat),gs(this.padding),this.inputSpec=[new Ut({ndim:5})]}computeOutputShape(e){e=ut(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=js(t,this.poolSize[0],this.padding,this.strides[0]),n=js(n,this.poolSize[1],this.padding,this.strides[1]),s=js(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return H(()=>(this.invokeCallHook(e,t),this.poolingFunction(We(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},d2=class extends Pv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Lt(r),gs(s),Fv(e,t,n,s,r,"max")}};d2.className="MaxPooling3D";ie.registerClass(d2);var p2=class extends Pv{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Lt(r),gs(s),Fv(e,t,n,s,r,"avg")}};p2.className="AveragePooling3D";ie.registerClass(p2);var Mv=class extends et{constructor(e){super(e);this.inputSpec=[new Ut({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new ze}},h2=class extends Mv{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=We(e);return Dt(n,1)})}};h2.className="GlobalAveragePooling1D";ie.registerClass(h2);var f2=class extends Mv{constructor(e){super(e||{})}call(e,t){return H(()=>{let n=We(e);return Yn(n,1)})}};f2.className="GlobalMaxPooling1D";ie.registerClass(f2);var zv=class extends et{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Lt(this.dataFormat),this.inputSpec=[new Ut({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new ze}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},m2=class extends zv{call(e,t){return H(()=>{let n=We(e);return this.dataFormat==="channelsLast"?Dt(n,[1,2]):Dt(n,[2,3])})}};m2.className="GlobalAveragePooling2D";ie.registerClass(m2);var g2=class extends zv{call(e,t){return H(()=>{let n=We(e);return this.dataFormat==="channelsLast"?Yn(n,[1,2]):Yn(n,[2,3])})}};g2.className="GlobalMaxPooling2D";ie.registerClass(g2);var Lv=class extends et{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=Gs(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},A2=class extends Lv{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=ut(e),e.length<3)throw new G(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=ut(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return H(()=>(e=We(e),Dv((a,o)=>[We(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};A2.className="TimeDistributed";ie.registerClass(A2);function kM(e){Zo(EO,"BidirectionalMergeMode",e)}var IM="concat",y2=class extends Lv{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Gs(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=Gs(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?IM:e.mergeMode,kM(this.mergeMode),e.weights)throw new ze("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):zn(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=Rv(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new G("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new Ut({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(s!=null)throw new ze("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof Hs;for(let l of a)if(l instanceof Hs!==i)throw new G("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let d=super.apply(l,t);return this.inputSpec=c,d}else return super.apply(e,t)}call(e,t){return H(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=es(r,1));let o;return this.mergeMode==="concat"?o=jA([s,r]):this.mergeMode==="sum"?o=oe(s,r):this.mergeMode==="ave"?o=z(.5,oe(s,r)):this.mergeMode==="mul"?o=z(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Yo(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Yo(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Gs(t.layer);if(delete t.layer,t.numConstants!=null)throw new ze("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};y2.className="Bidirectional";ie.registerClass(y2);function SM(e){return new su(e)}function CM(e){return new I1(e)}function TM(e){return new v1(e)}function NM(e){return new w1(e)}function EM(e){return new k1(e)}function RM(e){return new C1(e)}function DM(e){return new S1(e)}function _M(e){return new xf(e)}function FM(e){return new Jc(e)}function $M(e){return new E1(e)}function OM(e){return new Qc(e)}function PM(e){return new R1(e)}function MM(e){return new D1(e)}function zM(e){return new _1(e)}function LM(e){return new F1(e)}function BM(e){return new $1(e)}function WM(e){return new V1(e)}function VM(e){return new B1(e)}function UM(e){return new If(e)}function HM(e){return new L1(e)}function GM(e){return new W1(e)}function jM(e){return new U1(e)}function qM(e){return new H1(e)}function XM(e){return new G1(e)}function KM(e){return new q1(e)}function ZM(e){return new X1(e)}function YM(e){return new Z1(e)}function JM(e){return new Q1(e)}function QM(e){return new Y1(e)}function ez(e){return new J1(e)}function tz(e){return new K1(e)}function nz(e){return new e2(e)}function sz(e){return new r2(e)}function rz(e){return new a2(e)}function az(e){return new o2(e)}function x2(e){return new l2(e)}function oz(e){return x2(e)}function iz(e){return x2(e)}function b2(e){return new c2(e)}function lz(e){return b2(e)}function uz(e){return b2(e)}function v2(e){return new p2(e)}function cz(e){return v2(e)}function dz(e){return v2(e)}function pz(e){return new h2(e)}function hz(e){return new m2(e)}function Bv(e){return new f2(e)}function Wv(e){return new g2(e)}function Vv(e){return new i2(e)}function Uv(e){return new u2(e)}function fz(e){return new d2(e)}function mz(e){return new P1(e)}function gz(e){return new vf(e)}function Az(e){return new M1(e)}function yz(e){return new td(e)}function xz(e){return new O1(e)}function bz(e){return new bf(e)}function vz(e){return new z1(e)}function wz(e){return new kf(e)}function kz(e){return new dr(e)}function Iz(e){return new wf(e)}function Sz(e){return new y2(e)}function Cz(e){return new A2(e)}var Tz=Bv,Nz=Wv,Ez=Vv,Rz=Uv;function Dz(e){return new t2(e)}function _z(e){return new n2(e)}function Fz(e){return new s2(e)}function $z(e){return new j1(e)}var Hv={};Le(Hv,{MAPE:()=>Gz,MSE:()=>Xz,binaryAccuracy:()=>Oz,binaryCrossentropy:()=>Pz,categoricalAccuracy:()=>zz,categoricalCrossentropy:()=>Lz,cosineProximity:()=>Vz,mape:()=>jz,meanAbsoluteError:()=>Uz,meanAbsolutePercentageError:()=>Hz,meanSquaredError:()=>qz,mse:()=>Kz,precision:()=>Bz,recall:()=>Wz,sparseCategoricalAccuracy:()=>Mz});function Oz(e,t){return i1(e,t)}function Pz(e,t){return j3(e,t)}function Mz(e,t){return q3(e,t)}function zz(e,t){return l1(e,t)}function Lz(e,t){return u1(e,t)}function Bz(e,t){return G3(e,t)}function Wz(e,t){return IP(e,t)}function Vz(e,t){return a1(e,t)}function Uz(e,t){return pf(e,t)}function Hz(e,t){return au(e,t)}function Gz(e,t){return au(e,t)}function jz(e,t){return au(e,t)}function qz(e,t){return Qo(e,t)}function Xz(e,t){return Qo(e,t)}function Kz(e,t){return Qo(e,t)}var Gv={};Le(Gv,{modelFromJSON:()=>rM});var jv={};Le(jv,{l1:()=>Yz,l1l2:()=>Zz,l2:()=>Jz});function Zz(e){return new Zc(e)}function Yz(e){return pM(e)}function Jz(e){return hM(e)}var qv=class extends ru{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof _r))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Cf(e,t){return e<t}function Xv(e,t){return e>t}var Kv=class extends qv{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new ze("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Cf:this.mode==="max"?this.monitorFunc=Xv:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Xv:this.monitorFunc=Cf,this.monitorFunc===Cf&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Cf?1/0:-1/0}async onEpochEnd(e,t){await ua(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Qz(e){return new Kv(e)}var eL={earlyStopping:Qz},qs;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(qs||(qs={}));var Zv;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Zv||(Zv={}));var w2={};function tL(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};w2[e]=n}function Yv(e){return w2[e]}function nL(e){delete w2[e]}function I(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Sn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(p=>Sn(p,n,s,r));let u=Sn(t.inputNames.slice(i)[0],n,s,r),c=u.dataSync();return a.type==="number"?c[0]:w.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function Sn(e,t,n,s){let[r,a]=ns(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Tf(r,i)]);return o!==void 0?t[Tf(r,o)][a]:void 0}function sL(e,t,n){return t[Tf(e,n.currentContextId)]}function Fr(e,t){let[n,s,r]=ns(e);return[Tf(n,t&&t.currentContextId),s,r]}function Tf(e,t){return t?`${e}-${t}`:e}function ns(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function Nf(e,t,n){let s=I("pad",e,t,n);if(s==="explicit"){s=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function $r(e){return e.kept?e:Ps(e)}var Jv={};Le(Jv,{json:()=>rL});var rL=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Qv={};Le(Qv,{json:()=>aL});var aL=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],e7={};Le(e7,{json:()=>oL});var oL=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],t7={};Le(t7,{json:()=>iL});var iL=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],n7={};Le(n7,{json:()=>lL});var lL=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],s7={};Le(s7,{json:()=>uL});var uL=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],r7={};Le(r7,{json:()=>cL});var cL=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],a7={};Le(a7,{json:()=>dL});var dL=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],o7={};Le(o7,{json:()=>pL});var pL=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],i7={};Le(i7,{json:()=>hL});var hL=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],l7={};Le(l7,{json:()=>fL});var fL=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],u7={};Le(u7,{json:()=>mL});var mL=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],c7={};Le(c7,{json:()=>gL});var gL=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],d7={};Le(d7,{json:()=>AL});var AL=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],p7={};Le(p7,{json:()=>yL});var yL=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],h7={};Le(h7,{json:()=>xL});var xL=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],f7={};Le(f7,{json:()=>bL});var bL=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],m7={};Le(m7,{json:()=>vL});var vL=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],g7={};Le(g7,{json:()=>wL});var wL=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],A7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Jv,Qv,e7,t7,n7,s7,r7,a7,o7,i7,l7,u7,c7,d7,p7,h7,f7,m7,g7],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let d=Object.keys(o);d.forEach(f=>{let m=o[f];m.inputNames.forEach((g,A)=>{let[y,,x]=Fr(g),b=o[y];if(b.outputs!=null){let v=b.outputs.indexOf(x);if(v!==-1){let k=`${y}:${v}`;m.inputNames[A]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(c).length===0?d.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=Fr(f),g=o[m];g!=null&&(g.signatureKey=c[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=Fr(f),g=o[m];g&&(g.signatureKey=u[f],i.push(g))}):i=s;let p={};e.library!=null&&e.library.function!=null&&(p=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:p};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Yv(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.substr(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=k2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=k2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=D2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=D2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=S2(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=S2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=R2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=R2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=I2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=I2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=F2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=F2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=E2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=E2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=_2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=_2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=T2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=T2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=N2(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=N2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=x7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=x7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,d)=>(c[d.name]=this.mapNode(d),d.op==="Const"&&s.push(c[d.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[d]=Fr(c.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:C2(c.type),type:"dtype"}},children:[]};p.signatureKey=c.name,a.push(p),r[d]=p}),Object.keys(r).forEach(c=>{let d=r[c];d.inputNames.forEach((p,h)=>{let[f,,m]=Fr(p),g=r[f];if(g.outputs!=null){let A=g.outputs.indexOf(m);if(A!==-1){let y=`${f}:${A}`;d.inputNames[h]=y}}d.inputs.push(g),g.children.push(d)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[d,p]=Fr(l[c.name]),h=r[d];h!=null&&(h.defaultOutput=p,o.push(h))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function kL(e){let t=Y().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function y7(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):kL(e);return t?n:n.toLowerCase()}function k2(e,t,n,s=!1){let r=e[t];return r!=null?y7(r.s,s):n}function I2(e,t,n){let s=e[t];return s?s.b:n}function S2(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function C2(e){switch(typeof e=="string"&&(e=qs[e]),e){case qs.DT_FLOAT:return"float32";case qs.DT_INT32:case qs.DT_INT64:case qs.DT_INT8:case qs.DT_UINT8:return"int32";case qs.DT_BOOL:return"bool";case qs.DT_DOUBLE:return"float32";case qs.DT_STRING:return"string";default:return null}}function x7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function T2(e,t,n){let s=e[t];return s&&s.type?C2(s.type):n}function N2(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>C2(r)):n}function b7(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function E2(e,t,n){let s=e[t];return s&&s.shape?b7(s.shape):n}function R2(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function D2(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>y7(a,s)):n}function _2(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>b7(r)):n}function F2(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var IL=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return Sn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Sn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return S2(this.node.rawAttrs,e,t);if(n.s!=null)return k2(this.node.rawAttrs,e,t);if(n.b!=null)return I2(this.node.rawAttrs,e,t);if(n.shape!=null)return E2(this.node.rawAttrs,e,t);if(n.type!=null)return T2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return R2(this.node.rawAttrs,e,t);if(n.list.s!=null)return D2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return _2(this.node.rawAttrs,e,t);if(n.list.b!=null)return F2(this.node.rawAttrs,e,t);if(n.list.type!=null)return N2(this.node.rawAttrs,e,t)}return t}},SL=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[oe(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[uh(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[yA(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[z(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[pe(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[iA(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[lh(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[Ae(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Kl(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[ar(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[Tr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[_h(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},CL=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Bt(I("x",e,t,n))];case"Acos":return[Hg(I("x",e,t,n))];case"Acosh":return[Gg(I("x",e,t,n))];case"Asin":return[qg(I("x",e,t,n))];case"Asinh":return[Xg(I("x",e,t,n))];case"Atan":return[Kg(I("x",e,t,n))];case"Atan2":return[Zg(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[Yg(I("x",e,t,n))];case"Ceil":return[nA(I("x",e,t,n))];case"Complex":return[Jr(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Sc(I("x",e,t,n))];case"Cosh":return[fh(I("x",e,t,n))];case"Elu":return[jl(I("x",e,t,n))];case"Erf":return[lA(I("x",e,t,n))];case"Exp":return[Kn(I("x",e,t,n))];case"Expm1":return[uA(I("x",e,t,n))];case"Floor":return[Xl(I("x",e,t,n))];case"Log":return[Zn(I("x",e,t,n))];case"Log1p":return[Tc(I("x",e,t,n))];case"Imag":return[gh(I("x",e,t,n))];case"Neg":return[St(I("x",e,t,n))];case"Reciprocal":return[vA(I("x",e,t,n))];case"Real":return[Fc(I("x",e,t,n))];case"Relu":return[zs(I("x",e,t,n))];case"Round":return[Ih(I("x",e,t,n))];case"Selu":return[Ch(I("x",e,t,n))];case"Sigmoid":return[On(I("x",e,t,n))];case"Sin":return[Th(I("x",e,t,n))];case"Sign":return[kA(I("x",e,t,n))];case"Sinh":return[Nh(I("x",e,t,n))];case"Softplus":return[Uo(I("x",e,t,n))];case"Sqrt":return[dn(I("x",e,t,n))];case"Square":return[pt(I("x",e,t,n))];case"Tanh":return[Bo(I("x",e,t,n))];case"Tan":return[CA(I("x",e,t,n))];case"ClipByValue":return[Pn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[kh(I("x",e,t,n))];case"Rsqrt":return[Sh(Sn(e.inputNames[0],t,n))];case"Prod":return[wh(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Cc(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[_c(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[dA(Sn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Fs(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];w.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function v7(e){return!(typeof e=="number"||e.some(t=>t<0))}function rd(e,t,n){let s=$2(e,n),r=!v7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=$2(a.shape,s)}),!v7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function $2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var TL=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ce(0),sn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),Fs(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,sn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return nn([],[0].concat(this.elementShape));let n=this.readMany(e);return Fs(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),pn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return nn([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return Fs(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),ft(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,ts(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];H(()=>{t=V(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],u=[0,l,0],c=[1,e[i],r];a[i]=V(_e(t,u,c),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},ad=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);Fs(t,r.shape,"TensorList shape mismatch: "),sn(r)}),this.idTensor=Ce(0),this.maxNumElements=s,sn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new ad([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);Fs(e,this.elementShape,"TensorList shape mismatch: ");let s=rd(this.elementShape,this.tensors,e);return H(()=>{let r=this.tensors.map(a=>V(a,s));return pn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=rd(this.elementShape,this.tensors,e),s=this.tensors.pop();return Fs(s.shape,e,"TensorList shape mismatch: "),V(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(Fs(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");sn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);Fs(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=rd(this.elementShape,this.tensors,t);return V(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);Fs(this.elementShape,t.shape,"TensorList shape mismatch: "),sn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);Fs(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=rd(this.elementShape,this.tensors,n);return e.length===0?nn([],[0].concat(s)):H(()=>{let r=e.map(a=>V(this.tensors[a],s));return pn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);Fs(this.elementShape,t,"TensorList shape mismatch: ");let n=rd(this.elementShape,this.tensors,t);return this.size()===0?nn([],[0].concat(n)):H(()=>{let s=this.tensors.map(r=>V(r,n));return ft(s,0)})}};function NL(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);Fs(r,t,"TensorList shape mismatch: ");let a=ts(e);return new ad(a,t,s)}function EL(e,t,n){return new ad([],e,t,n)}function RL(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new ad([],n,e.dtype,s),o=ts(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function DL(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=$2(a,n),i=s===0?0:e.size/s,l=H(()=>{let c=[];e=V(e,[1,s,i]);for(let d=0;d<t.length;++d){let p=d===0?0:r[d-1],h=[0,p,0],f=[1,t[d],i];c[d]=V(_e(e,h,f),o)}return e.dispose(),c}),u=new ad([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var _L=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=I("body",e,t,n),r=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let d=u.map(h=>h.id);c.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()});let p=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await p[0].data(),p.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&d.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let s=I("pred",e,t,n);return[$r(s)]}case"Switch":{let s=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=$r(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>Sn(r,t,n)!==void 0);if(s){let r=Sn(s,t,n);return[$r(r)]}return}case"Enter":{let s=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(s),[$r(r)]}case"Exit":{let s=I("tensor",e,t,n);return n.exitFrame(),[$r(s)]}case"NextIteration":{let s=I("tensor",e,t,n);return n.nextIteration(),[$r(s)]}case"TensorArrayV3":{let s=I("size",e,t,n),r=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),c=new TL(u,r,s,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Ce(1)]}case"TensorArrayWriteV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=I("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ce(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=I("indices",e,t,n),r=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=RL(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=I("elementShape",e,t,n),r=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=EL(s,r,o);return n.addTensorList(i),[i.idTensor]}case"TensorListGather":{let s=I("tensorListId",e,t,n),r=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=NL(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=I("tensorListId",e,t,n),r=I("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=DL(s,a,r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function w7(e,t,n){let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",u=I("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),d=Nf(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:c,pad:d,dataFormat:p,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var FL=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=I("stride",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilation",e,t,n);return[ph(I("x",e,t,n),I("filter",e,t,n),s,r,a,o)]}case"Conv2D":{let s=I("strides",e,t,n),r=Nf(e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[Sr(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,a,[o[1],o[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=w7(e,t,n);return[aa.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:o,biasArg:i,preluArg:l,activationFunc:u,leakyreluAlpha:c}=w7(e,t,n);return[aa.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[o[1],o[2]],bias:i,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=I("outputShape",e,t,n),r=I("strides",e,t,n),a=Nf(e,t,n);return[hh(I("x",e,t,n),I("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=I("strides",e,t,n),r=Nf(e,t,n),a=I("dilations",e,t,n),o=I("dataFormat",e,t,n).toUpperCase();return[Gl(I("input",e,t,n),I("filter",e,t,n),[s[1],s[2]],r,o,[a[1],a[2]])]}case"Conv3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dataFormat",e,t,n).toUpperCase(),o=I("dilations",e,t,n);return[rA(I("x",e,t,n),I("filter",e,t,n),[s[1],s[2],s[3]],r,a,[o[1],o[2],o[3]])]}case"AvgPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[kc(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[Ec(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n),o=I("includeBatchInIndex",e,t,n),{result:i,indexes:l}=Rb(I("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,o);return[i,l]}case"AvgPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[eA(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("kernelSize",e,t,n);return[gA(I("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=I("strides",e,t,n),r=I("pad",e,t,n),a=I("dilations",e,t,n),o=s[1],i=s[2],l=a[1],u=a[2];return[oA(I("x",e,t,n),I("filter",e,t,n),[o,i],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},$L=(e,t,n)=>{switch(e.op){case"Fill":{let s=I("shape",e,t,n),r=I("dtype",e,t,n),a=I("value",e,t,n);return[ql(s,a,r)]}case"LinSpace":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("num",e,t,n);return[kb(s,r,a)]}case"Multinomial":{let s=I("logits",e,t,n),r=I("numSamples",e,t,n),a=I("seed",e,t,n);return[Db(s,r,a)]}case"OneHot":{let s=I("indices",e,t,n),r=I("depth",e,t,n),a=I("onValue",e,t,n),o=I("offValue",e,t,n);return[zl(s,r,a,o)]}case"Ones":return[Jn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Qn(I("x",e,t,n))];case"RandomUniform":return[Zl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let s=I("start",e,t,n),r=I("stop",e,t,n),a=I("step",e,t,n);return[Yl(s,r,a,I("dtype",e,t,n))]}case"TruncatedNormal":{let s=I("shape",e,t,n),r=I("mean",e,t,n),a=I("stdDev",e,t,n),o=I("seed",e,t,n);return[Fh(s,r,a,I("dtype",e,t,n),o)]}case"Zeros":return[Ot(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Je(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function O2(e,t,n){let s=I("boxes",e,t,n),r=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var OL=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}=O2(e,t,n),u=await Fe.nonMaxSuppressionWithScoreAsync(s,r,a,o,i,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=O2(e,t,n),l=I("padToMaxOutputSize",e,t,n),u=await Fe.nonMaxSuppressionPaddedAsync(s,r,a,o,i,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i}=O2(e,t,n);return[await Fe.nonMaxSuppressionAsync(s,r,a,o,i)]}case"Where":{let s=de(I("condition",e,t,n),"bool"),r=[await EA(s)];return s.dispose(),r}case"ListDiff":return $b(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},PL=(e,t,n)=>{switch(e.op){case"TopKV2":{let s=I("x",e,t,n),r=I("k",e,t,n),a=I("sorted",e,t,n),o=TA(s,r,a);return[o.values,o.indices]}case"Unique":{let s=I("x",e,t,n),r=$h(s);return[r.values,r.indices]}case"UniqueV2":{let s=I("x",e,t,n),r=I("axis",e,t,n),a=$h(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},ML=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=I("default",e,t,n);return[Sn(e.name,t,n)||s];case"Placeholder":return[Sn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=I("x",e,t,n);return[$r(u)]}case"IdentityN":return I("x",e,t,n).map(u=>$r(u));case"Snapshot":let r=I("x",e,t,n);return[$r(r)];case"Shape":return[Vt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(u=>Vt(u.shape));case"Size":return[Ce(I("x",e,t,n).size,"int32")];case"Rank":return[Ce(I("x",e,t,n).rank,"int32")];case"NoOp":return[Ce(1)];case"Print":let a=I("x",e,t,n),o=I("data",e,t,n),i=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(i);for(let u=0;u<o.length;u++)console.log(Array.prototype.slice.call(o[u].dataSync()).slice(0,l));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},zL=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ce(0),this.tensorMap=new Map,sn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ce(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),H(()=>{let s=ts(t),r=n.length,a=s.length;w.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];sn(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return H(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return pn(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},LL=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new zL(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},BL=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[Fe.resizeBilinear(s,[r[0],r[1]],a,o)]}case"ResizeNearestNeighbor":{let s=I("images",e,t,n),r=I("size",e,t,n),a=I("alignCorners",e,t,n),o=I("halfPixelCenters",e,t,n);return[Fe.resizeNearestNeighbor(s,[r[0],r[1]],a,o)]}case"CropAndResize":{let s=I("image",e,t,n),r=I("boxes",e,t,n),a=I("boxInd",e,t,n),o=I("cropSize",e,t,n),i=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Fe.cropAndResize(s,r,a,o,i,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},WL=(e,t,n)=>{switch(e.op){case"Equal":return[Xn(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Go(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Mn(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[sa(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Ah(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[ra(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[Es(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Nc(I("a",e,t,n))];case"LogicalOr":return[bh(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[yn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},VL=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ue(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[bb(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Ye(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=r==="prelu",i=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(a){if(o&&i!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&i!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=I("args",e,t,n);return[aa.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},UL=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Wo(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Wo(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[pA(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[Oc(I("x",e,t,n))];case"LogSoftmax":return[xh(I("x",e,t,n))];case"SparseToDense":return[RA(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},HL=(e,t,n)=>{switch(e.op){case"Max":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Yn(I("x",e,t,n),o,i)]}case"Mean":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Dt(I("x",e,t,n),o,i)]}case"Min":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[Rc(I("x",e,t,n),o,i)]}case"Sum":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[we(I("x",e,t,n),o,i)]}case"All":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[ch(I("x",e,t,n),o,i)]}case"Any":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[vc(I("x",e,t,n),o,i)]}case"ArgMax":{let o=I("axis",e,t,n);return[Ms(I("x",e,t,n),o)]}case"ArgMin":{let o=I("axis",e,t,n);return[jg(I("x",e,t,n),o)]}case"Prod":{let o=I("axis",e,t,n),i=I("keepDims",e,t,n);return[wh(I("x",e,t,n),o,i)]}case"Cumsum":{let o=I("axis",e,t,n),i=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[mh(I("x",e,t,n),o,i,l)]}case"Bincount":let s=I("x",e,t,n),r=I("weights",e,t,n),a=I("size",e,t,n);return[tA(s,r,a)];case"DenseBincount":{let o=I("x",e,t,n),i=I("weights",e,t,n),l=I("size",e,t,n),u=I("binaryOutput",e,t,n);return[yb(o,i,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},GL=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=I("n",e,t,n),r=I("axis",e,t,n),a=I("tensors",e,t,n);return a=a.slice(0,s),[ft(a,r)]}case"Gather":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[Vo(s,de(r,"int32"),0)]}case"GatherV2":{let s=I("axis",e,t,n),r=I("batchDims",e,t,n),a=I("x",e,t,n),o=I("indices",e,t,n);return[Vo(a,de(o,"int32"),s,r)]}case"Reverse":{let s=I("dims",e,t,n),r=[];for(let o=0;o<s.length;o++)s[o]&&r.push(o);let a=I("x",e,t,n);return[es(a,r)]}case"ReverseV2":{let s=I("axis",e,t,n),r=I("x",e,t,n);return[es(r,s)]}case"Slice":{let s=I("begin",e,t,n),r=I("size",e,t,n);return[_e(I("x",e,t,n),s,r)]}case"StridedSlice":{let s=I("begin",e,t,n),r=I("end",e,t,n),a=I("strides",e,t,n),o=I("beginMask",e,t,n),i=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),u=I("newAxisMask",e,t,n),c=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[SA(d,s,r,a,o,i,l,u,c)]}case"Pack":return H(()=>{let s=I("axis",e,t,n),r=I("tensors",e,t,n),a=r[0].shape,o=lt(r[0]).shape,i=r.map(l=>{let u=w.arraysEqual(l.shape,a);if(!u&&!w.arraysEqual(lt(l).shape,o))throw new Error("the input tensors shape does not match");return u?l:V(l,a)});return[pn(i,s)]});case"Unpack":{let s=I("axis",e,t,n),r=I("tensor",e,t,n);return ts(r,s)}case"Tile":{let s=I("reps",e,t,n);return[ms(I("x",e,t,n),s)]}case"Split":case"SplitV":{let s=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),a=I("x",e,t,n);return Wt(a,r,s)}case"ScatterNd":{let s=I("indices",e,t,n),r=I("values",e,t,n),a=I("shape",e,t,n);return[zb(s,r,a)]}case"GatherNd":{let s=I("x",e,t,n),r=I("indices",e,t,n);return[Lb(s,r)]}case"SparseToDense":{let s=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),a=I("sparseValues",e,t,n),o=I("defaultValue",e,t,n);return[RA(s,a,r,a.dtype===o.dtype?o:de(o,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},jL=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:o}=zc.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[s,r,a,o]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=zc.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[zc.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[zc.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},qL=(e,t,n)=>{switch(e.op){case"FFT":return[Pc(I("x",e,t,n))];case"IFFT":return[Jl(I("x",e,t,n))];case"RFFT":return[Mc(I("x",e,t,n))];case"IRFFT":return[Dh(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},XL=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=Bh.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=Bh.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[Bh.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},KL=(e,t,n)=>{switch(e.op){case"Cast":return[de(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let s=I("axis",e,t,n);return[zt(I("x",e,t,n),s)]}case"Squeeze":{let s=I("axis",e,t,n);return[lt(I("x",e,t,n),s)]}case"Reshape":return[V(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[AA(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[Cr(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let s=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[Dc(I("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=I("blockShape",e,t,n),r=I("crops",e,t,n);return[Ic(I("x",e,t,n),s,r)]}case"DepthToSpace":{let s=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[aA(I("x",e,t,n),s,r)]}case"BroadcastTo":return[Ul(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[pb(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function k7(e,t,n,s){let r=((a,o,i)=>{switch(a.category){case"arithmetic":return H(()=>SL(a,o,i));case"basic_math":return H(()=>CL(a,o,i));case"control":return _L(a,o,i);case"convolution":return H(()=>FL(a,o,i));case"creation":return H(()=>$L(a,o,i));case"dynamic":return OL(a,o,i);case"evaluation":return H(()=>PL(a,o,i));case"image":return H(()=>BL(a,o,i));case"graph":return H(()=>ML(a,o,i));case"logical":return H(()=>WL(a,o,i));case"matrices":return H(()=>VL(a,o,i));case"normalization":return H(()=>UL(a,o,i));case"reduction":return H(()=>HL(a,o,i));case"slice_join":return H(()=>GL(a,o,i));case"sparse":return H(()=>jL(a,o,i));case"spectral":return H(()=>qL(a,o,i));case"string":return H(()=>XL(a,o,i));case"transformation":return H(()=>KL(a,o,i));case"hash_table":return LL(a,o,i,s);case"custom":let l=Yv(a.op);if(l&&l.customExecutor)return l.customExecutor(new IL(a,o,i));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var I7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function S7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(p=>ns(p)[0]),c=[];s!=null&&(c=s.map(p=>ns(p.name)[0]));let d=[...t];for(;d.length>0;){let p=d.pop();if((C7(p)||eB(p)||tB(p))&&o==null&&(o=p,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(p.name),n[p.name]==null&&u.indexOf(p.name)===-1&&c.indexOf(p.name)===-1){if(p.inputs.length===0){a.push(p.name);continue}p.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),d.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function ZL(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(c=>ns(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{s.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(d=>{!l.has(d.name)&&s.has(d.name)&&d.inputs.every(p=>l.has(p.name))&&a.push(d)})}return u}var YL=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],JL=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],QL=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function C7(e){return YL.indexOf(e.op)>=0}function eB(e){return JL.indexOf(e.op)>=0}function tB(e){return QL.indexOf(e.op)>=0}var P2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new P2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=S7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return ZL(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[ns(c)[0]]),r=t.map(c=>ns(c)[0]),a=r.map(c=>this.graph.nodes[c]);a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return H(()=>{let c=new I7(this.weightMap,l,u,this.functionExecutorMap),d=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=ns(f),A=[];A[g]=e[f],d[m]=A});let p=this.getFrozenTensorIds(d),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!d[m.name]){let g=k7(m,d,c,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);d[m.name]=g,this.checkTensorForDisposal(m.name,m,d,c,p,r,h)}}return this.parent==null&&c.dispose(p),t.map(f=>Sn(f,d,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=sL(i.name,n,s);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let c=o[u.id];c===1?(u.dispose(),delete o[u.id]):c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let a=new I7(this.weightMap,s,r,this.functionExecutorMap),o=await this.executeWithControlFlow(e,a,t,n),i=t.map(d=>Sn(d,o,a)),l=i.map(d=>d.id),u=Object.keys(e).map(d=>e[d].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(o).forEach(d=>{o[d].forEach(h=>{h&&!h.kept&&!h.isDisposed&&!c.has(h.id)&&h.dispose()})}),this.parent==null&&a.dispose(c),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(y=>this.graph.nodes[ns(y)[0]]),o=n.map(y=>ns(y)[0]),i=o.map(y=>this.graph.nodes[y]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:d}=S7(e,i,this.weightMap,this._initNodes),p=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[x,b]=ns(y),v=[];v[b]=e[y],h[x]=v});let f={},m=this.getFrozenTensorIds(h),g={};for(;p.length>0;){let y=this.processStack(a,p,t,h,g,m,o,f,l);await Promise.all(y)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=i.filter(y=>!C7(y)&&!Sn(y.name,h,t)).map(y=>y.name);if(A.length>0){let y="";throw c!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${d}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${y}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let d="";if(c.node.op==="Enter"&&I("isConstant",c.node,s,n)&&([d]=Fr(c.node.name,n)),s[c.node.name]==null){let p=k7(c.node,s,n,this._resourceManager);d||([d]=Fr(c.node.name,n));let h=n.currentContext;w.isPromise(p)?u.push(p.then(f=>(s[d]=f,n.currentContext=h,this.checkTensorForDisposal(d,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l),f))):(s[d]=p,this.checkTensorForDisposal(d,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l))}else this.processChildNodes(c.node,t,n,s,r,l)}return u}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Fr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Sn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Sn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=ns(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);w.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=ns(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=ns(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},nB=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},sB="?tfjs-format=file",rB="model.json",T7=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new nB}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=$n.browserHTTPRequest(e,this.loadOptions);else{let t=$n.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push($n.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=$n.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new P2(A7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=A7.Instance.transformGraph(e.modelInitializer);this.initializer=new P2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=$n.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Ge)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function yt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${rB}${sB}`);let n=new T7(e,t);return await n.load(),n}var aB="3.9.0",N7={};Le(N7,{CSVDataset:()=>B7,Dataset:()=>uu,FileDataSource:()=>q7,TextLineDataset:()=>M7,URLDataSource:()=>X7,array:()=>NB,csv:()=>LB,func:()=>BB,generator:()=>WB,microphone:()=>UB,version_data:()=>HB,webcam:()=>VB,zip:()=>EB});var oB=Na(Gx()),iB=Na(Gx());function lB(e,t){return Ef(e,t)}function Ef(e,t,n=new Map,s=new Set){if(e==null)return null;if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(lu(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=Ef(i,t,n,s);a[o]=l}return s.delete(e),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function uB(e,t=R7){return E7(e,t)}function E7(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(lu(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(u=>u[o]),l=E7(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function R7(e){return e===null?null:lu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function D7(e,t){let n=new Map;Ef(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(w.isPromise(a)){let o=await a;n.set(r,o)}}return Ef(e,t,n)}function lu(e){let t=!1;if(Y().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=jx();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Ge)&&!(e instanceof Promise)&&!t)}function cB(e){return e==null||dB(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Ge||w.isTypedArray(e)}function dB(e){return e===null||typeof e!="object"&&typeof e!="function"}function pB(e){return lB(e,hB)}function hB(e){return e instanceof Ge?{value:e.clone(),recurse:!1}:lu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var _7=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},M2=class extends _7{constructor(){super(M2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};M2.INITIAL_CAPACITY=32;function F7(e){return new gB(e)}function z2(e){return new AB(e)}function fB(e,t){return new O7(e,t)}function mB(e,t=ha.FAIL){return new CB(e,t)}var an=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new IB(this,e)}filter(e){return new wB(this,e)}map(e){return new kB(this,e)}mapAsync(e){return new $7(this,e)}serialMapAsync(e){return new $7(this,e).serial()}flatmap(e){return new SB(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new vB(this,e,t)}columnMajorBatch(e,t=!0,n=R7){return this.rowMajorBatch(e,t).map(r=>uB(r,n))}concatenate(e,t){return new O7(F7([this,e]),t)}take(e){return e<0||e==null?this:new bB(this,e)}skip(e){return e<0||e==null?this:new xB(this,e)}prefetch(e){return new P7(this,e)}shuffle(e,t){return new TB(this,e,t)}serial(){return new yB(this)}},gB=class extends an{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:pB(e),done:!1}}},AB=class extends an{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},yB=class extends an{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},xB=class extends an{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Z(e.value)}return this.upstream.next()}},bB=class extends an{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},vB=class extends an{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},wB=class extends an{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Z(e.value)}}},kB=class extends an{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=$s.getTensorsInContainer(e.value),n=this.transform(e.value),s=$s.getTensorsInContainer(n);for(let r of t)$s.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},IB=class extends an{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},$7=class extends an{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=$s.getTensorsInContainer(e.value),n=await this.transform(e.value),s=$s.getTensorsInContainer(n);for(let r of t)$s.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},L2=class extends an{constructor(){super();this.outputQueue=new M2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},SB=class extends L2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=$s.getTensorsInContainer(e.value),n=this.transform(e.value),s=$s.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)$s.isTensorInList(r,s)||r.dispose();return!0}},O7=class extends an{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ha;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ha||(ha={}));var CB=class extends an{constructor(e,t=ha.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof an?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await D7(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ha.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ha.SHORTEST:return{value:null,done:!0};case ha.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},P7=class extends an{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new _7(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},TB=class extends P7{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=iB.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},uu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),ss(async()=>(await n.iterator()).columnMajorBatch(e,t,RB),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,ss(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,ss(async()=>(await t.iterator()).filter(s=>H(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return ss(async()=>(await t.iterator()).map(n=>H(()=>e(n))),this.size)}mapAsync(e){let t=this;return ss(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return ss(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,ss(async()=>{let s=z2(async()=>({value:await t.iterator(),done:!1}));return fB(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,ss(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=oB.alea(t||w.now().toString());return ss(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,ss(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};uu.MAX_BUFFER_SIZE=1e4;function ss(e,t=null){return new class extends uu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function NB(e){return ss(async()=>F7(e),e.length)}function EB(e){if(!lu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return ss(async()=>{let n=await D7(e,s=>{if(s instanceof uu)return{value:s.iterator(),recurse:!1};if(lu(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return mB(n,ha.SHORTEST)},t)}function RB(e){if(e===null)return null;let t=e[0];return cB(t)?{value:DB(e),recurse:!1}:{value:null,recurse:!0}}function DB(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Ge?pn(e):nn(e)}var M7=class extends uu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},Rf='"',od=Symbol("out"),z7=Symbol("field"),Df=Symbol("quote"),B2=Symbol("quoteafterquote"),L7=Symbol("quoteinquote"),B7=class extends uu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new M7(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let u=Number(i);if(isNaN(u))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=u;else switch(o.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(i);break;default:l=u}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=od;for(let o=0;o<r;o++)switch(a){case od:switch(e.charAt(o)){case Rf:s=o+1,a=Df;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=od;break;default:a=z7,s=o;break}break;case z7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=od,s=o+1;break;default:}break;case Df:switch(e.charAt(o)){case Rf:a=B2;break;default:}break;case B2:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=od,s=o+1;break;case Rf:a=Df;break;default:a=L7;break}break;case L7:switch(e.charAt(o)){case Rf:a=Df;break;default:}break;default:}if(a===B2?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},W7=class extends an{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(Y().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new W7(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),nn(n,t)}},V7=class extends an{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Vt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=Ls([a,r,i,o],[1,4])}else this.cropBox=Ls([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(Y().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new V7(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=fs.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return H(()=>{let t=zt(de(e,"float32"),0),n;n=Fe.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return V(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},U7=class{},H7=class extends an{split(e){return new _B(this,e)}},_B=class extends H7{constructor(e,t){super();this.upstream=e,this.impl=new FB(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},FB=class extends L2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},$B=class extends an{decodeUTF8(){return new OB(this)}},OB=class extends H7{constructor(e){super();this.upstream=e,this.impl=new PB(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},PB=class extends L2{constructor(e){super();if(this.upstream=e,Y().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=jx();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Y().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},G7=class extends $B{constructor(e,t={}){super();this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(Y().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function MB(e,t={}){let n,s;typeof e=="string"?n=e:(n=e.url,s=zB(e));let r=await w.fetch(n,s);if(r.ok){let a=new Uint8Array(await r.arrayBuffer());return new G7(a,t)}else throw new Error(r.statusText)}var zB=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function j7(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var q7=class extends U7{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(j7(this.input)&&Y().get("IS_NODE")){let e=Ei("fs");this.input=e.readFileSync(this.input.substr(7))}return new G7(this.input,this.options)}},X7=class extends U7{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return j7(this.url)?new q7(this.url,this.fileOptions).iterator():MB(this.url,this.fileOptions)}};function LB(e,t={}){return new B7(new X7(e),t)}function BB(e){let t=z2(e);return ss(async()=>t)}function WB(e){return ss(async()=>{let t=await e();return z2(()=>t.next())})}async function VB(e,t){return V7.create(e,t)}async function UB(e){return W7.create(e)}var HB="3.9.0";function Se(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var GB=or.whereImpl,W2=class extends ju{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new ip(this,Ns())}nextDataId(){return W2.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Y().get("IS_NODE")&&_.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return _.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return je(e.shape,e.dtype,n)}makeOutput(e,t,n){let s=this.write(e,t,n);return Ns().makeTensorFromDataId(s,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Se([e],"where");let t=this.readSync(e.dataId);return GB(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};W2.nextDataId=0;var K7={};Le(K7,{addImpl:()=>Y7,bincountImpl:()=>U2,bincountReduceImpl:()=>J7,ceilImpl:()=>Q7,concatImpl:()=>H2,equalImpl:()=>ew,expImpl:()=>nw,expm1Impl:()=>rw,floorImpl:()=>aw,gatherNdImpl:()=>ow,gatherV2Impl:()=>iw,greaterEqualImpl:()=>uw,greaterImpl:()=>lw,lessEqualImpl:()=>dw,lessImpl:()=>cw,linSpaceImpl:()=>pw,logImpl:()=>hw,maxImpl:()=>fw,maximumImpl:()=>mw,minimumImpl:()=>gw,multiplyImpl:()=>G2,negImpl:()=>Aw,notEqualImpl:()=>yw,prodImpl:()=>xw,rangeImpl:()=>q2,rsqrtImpl:()=>bw,sigmoidImpl:()=>FW,simpleAbsImpl:()=>Z7,sliceImpl:()=>$f,sparseFillEmptyRowsImpl:()=>ww,sparseReshapeImpl:()=>kw,sparseSegmentReductionImpl:()=>X2,sqrtImpl:()=>PW,squaredDifferenceImpl:()=>Iw,stridedSliceImpl:()=>Sw,stringNGramsImpl:()=>Cw,stringSplitImpl:()=>Tw,stringToHashBucketFastImpl:()=>Nw,subImpl:()=>Ew,tileImpl:()=>Rw,topKImpl:()=>_w,transposeImpl:()=>j2,uniqueImpl:()=>Fw});function Z7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var jB=e=>{let{x:t}=e.inputs,n=e.backend;Se(t,"abs");let s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=Z7(r),n.makeOutput(s,t.shape,"float32")},qB={kernelName:_i,backendName:"cpu",kernelFunc:jB};function Ht(e){return(t,n,s,r,a)=>{let o=_.assertAndGetBroadcastShape(t,n),i=o.length,l=w.computeStrides(o),u=w.sizeFromShape(o),c=w.getTypedArrayFromDType(a,u),d=t.length,p=n.length,h=w.computeStrides(t),f=w.computeStrides(n),m=_.getBroadcastDims(t,o),g=_.getBroadcastDims(n,o);if(m.length+g.length===0)for(let A=0;A<c.length;++A)c[A]=e(s[A%s.length],r[A%r.length]);else for(let A=0;A<c.length;++A){let y=w.indexToLoc(A,i,l),x=y.slice(-d);m.forEach(S=>x[S]=0);let b=w.locToIndex(x,d,h),v=y.slice(-p);g.forEach(S=>v[S]=0);let k=w.locToIndex(v,p,f);c[A]=e(s[b],r[k])}return[c,o]}}function rs(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var XB={kernelName:mp,backendName:"cpu",kernelFunc:rs};function _f(e,t,n="float32"){if(n==="complex64"){let r=_f(e,t,"float32"),a=_f(e,t,"float32");return rs({inputs:{real:r,imag:a},backend:e})}let s=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function pr(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var KB={kernelName:Za,backendName:"cpu",kernelFunc:pr};function si(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var ZB={kernelName:Pp,backendName:"cpu",kernelFunc:si};function fa(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return pr({inputs:{x:r},backend:n});let o=_f(n,r.shape,r.dtype),i=fa({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=rs({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=si({inputs:{input:r},backend:n}),i=fa({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(r.dtype,a)){let o=pr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=w.toTypedArray([0],r.dtype),[l,u]=Ht((c,d)=>c!==d?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var YB={kernelName:Oa,backendName:"cpu",kernelFunc:fa};function on(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Se([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=o.dtype==="string"?_.fromUint8ToStringArray(u):u,p=o.dtype==="string"?_.fromUint8ToStringArray(c):c,h=s||o.dtype,[f,m]=t(o.shape,i.shape,d,p,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=fa({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),d=c.complexTensorInfos.real,p=c.complexTensorInfos.imag,h=l.data.get(d.dataId).values,f=l.data.get(p.dataId).values,m=fa({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),A=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,x=l.data.get(A.dataId).values,b=l.data.get(y.dataId).values,[v,k,S]=n(o.shape,i.shape,h,f,x,b),C=l.makeTensorInfo(S,"float32",v),D=l.makeTensorInfo(S,"float32",k),O=rs({inputs:{real:C,imag:D},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(C),l.disposeIntermediateTensorInfo(D),O}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,d=s||o.dtype,[p,h]=t(o.shape,i.shape,u,c,d);return l.makeTensorInfo(h,d,p)}}}function V2(e){return(t,n,s,r,a,o)=>{let i=_.assertAndGetBroadcastShape(t,n),l=w.sizeFromShape(i),u=i.length,c=w.computeStrides(i),d=w.getTypedArrayFromDType("float32",l),p=w.getTypedArrayFromDType("float32",l),h=_.getBroadcastDims(t,i),f=_.getBroadcastDims(n,i),m=_.mergeRealAndImagArrays(s,r),g=_.mergeRealAndImagArrays(a,o),A=t.length,y=w.computeStrides(t),x=n.length,b=w.computeStrides(n);if(h.length+f.length===0)for(let v=0;v<d.length;v++){let k=v%m.length,S=v%g.length,C=e(m[k*2],m[k*2+1],g[S*2],g[S*2+1]);d[v]=C.real,p[v]=C.imag}else for(let v=0;v<d.length;v++){let k=w.indexToLoc(v,u,c),S=k.slice(-A);h.forEach(R=>S[R]=0);let C=w.locToIndex(S,A,y),D=k.slice(-x);f.forEach(R=>D[R]=0);let O=w.locToIndex(D,x,b),E=e(m[C*2],m[C*2+1],g[O*2],g[O*2+1]);d[v]=E.real,p[v]=E.imag}return[d,p,i]}}var Y7=Ht((e,t)=>e+t),JB=V2((e,t,n,s)=>({real:e+n,imag:t+s})),id=on(jr,Y7,JB),QB={kernelName:jr,backendName:"cpu",kernelFunc:id};function U2(e,t,n,s,r){let a=w.sizeFromShape(s),o=w.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function J7(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=je([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let u=e.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function ma(e){return(t,n,s)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function ct(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Se(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=w.sizeFromShape(o.shape),c=n||o.dtype,d=w.getArrayFromDType(c,u);for(let p=0;p<u;++p)d[p]=t(l[p],r);return i.makeTensorInfo(o.shape,c,d)}}function cu(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Se(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var Q7=ma(e=>Math.ceil(e)),eW=cu(Pa,Q7),tW={kernelName:Pa,backendName:"cpu",kernelFunc:eW};function H2(e,t,n,s){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=w.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?_.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;u<o.shape[0];++u){let c=u*t[1]+a;for(let d=0;d<o.shape[1];++d)r[c+d]=i[l++]}a+=o.shape[1]})}return r}var ew=Ht((e,t)=>e===t?1:0),tw=on(qi,ew,null,"bool"),nW={kernelName:qi,backendName:"cpu",kernelFunc:tw},nw=ma(e=>Math.exp(e)),sw=cu(Ga,nw),sW={kernelName:Ga,backendName:"cpu",kernelFunc:sw},rw=ma(e=>Math.expm1(e)),rW=cu(Ki,rw),aW={kernelName:Ki,backendName:"cpu",kernelFunc:rW},aw=ma(e=>Math.floor(e)),oW=cu(ja,aw),iW={kernelName:ja,backendName:"cpu",kernelFunc:oW};function ow(e,t,n,s,r,a,o,i,l){let u=je([s,a],n);for(let c=0;c<s;c++){let d=[],p=0;for(let h=0;h<r;h++){let f=e[c*r+h];p+=f*o[h],d.push(f)}if(p<0||p>=l/a)throw new Error(`Invalid indices: ${d} does not index into ${i}`);for(let h=0;h<a;h++)u.values[c*a+h]=t.get(...t.indexToLoc(p*a+h))}return u}function iw(e,t,n){let s=je(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],u=t.locToIndex([i,l]);o[2]=t.values[u];let c=e.locToIndex(o);s.values[r]=e.values[c]}return s}var lw=Ht((e,t)=>e>t?1:0),lW=on(Qi,lw,null,"bool"),uW={kernelName:Qi,backendName:"cpu",kernelFunc:lW},uw=Ht((e,t)=>e>=t?1:0),cW=on(Ka,uw,null,"bool"),dW={kernelName:Ka,backendName:"cpu",kernelFunc:cW},cw=Ht((e,t)=>e<t?1:0),pW=on(sl,cw,null,"bool"),hW={kernelName:sl,backendName:"cpu",kernelFunc:pW},dw=Ht((e,t)=>e<=t?1:0),fW=on(rl,dw,null,"bool"),mW={kernelName:rl,backendName:"cpu",kernelFunc:fW};function pw(e,t,n){let s=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var hw=ma(e=>Math.log(e)),gW=cu(Ja,hw),AW={kernelName:Ja,backendName:"cpu",kernelFunc:gW};function fw(e,t,n,s){let r=w.getTypedArrayFromDType(s,w.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let u=e[o+l];(Number.isNaN(u)||u>i)&&(i=u)}r[a]=i}return r}var mw=Ht((e,t)=>Math.max(e,t)),yW=on(eo,mw),xW={kernelName:eo,backendName:"cpu",kernelFunc:yW},gw=Ht((e,t)=>Math.min(e,t)),bW=on(ro,gw),vW={kernelName:ro,backendName:"cpu",kernelFunc:bW},G2=Ht((e,t)=>e*t),wW=V2((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),Ff=on(oo,G2,wW),kW={kernelName:oo,backendName:"cpu",kernelFunc:Ff};function Aw(e,t,n){let s=w.createScalarValue(-1,n);return G2([],t,s,e,n)}function IW(e){let{inputs:t,backend:n}=e,{x:s}=t;Se(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=Aw(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var SW={kernelName:ll,backendName:"cpu",kernelFunc:IW},yw=Ht((e,t)=>e!==t?1:0),CW=on(ul,yw,null,"bool"),TW={kernelName:ul,backendName:"cpu",kernelFunc:CW};function j2(e,t,n,s,r){let a=t.length,o=w.sizeFromShape(t),i=w.computeStrides(t),l=w.computeStrides(r),u=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let c=0;c<o;++c){let d=w.indexToLoc(c,a,i),p=new Array(d.length);for(let f=0;f<p.length;f++)p[f]=d[s[f]];let h=w.locToIndex(p,a,l);u[h]=e[c]}return u}function As(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Se(r,"transpose");let o=r.shape.length,i=new Array(o);for(let d=0;d<i.length;d++)i[d]=r.shape[a[d]];let l=s.data.get(r.dataId).values,u=j2(l,r.shape,r.dtype,a,i);return{dataId:s.write(u,i,r.dtype),shape:i,dtype:r.dtype}}var NW={kernelName:To,backendName:"cpu",kernelFunc:As};function xw(e,t,n,s){let[r,a]=_.computeOutAndReduceShapes(e,s),o=Ts(t,"int32"),i=w.makeZerosTypedArray(w.sizeFromShape(r),o),l=w.sizeFromShape(a);for(let u=0;u<i.length;++u){let c=u*l,d=1;for(let p=0;p<l;++p)d*=n[c+p];i[u]=d}return{outVals:i,outShape:r,outDtype:o}}function EW(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Se(r,"prod");let i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=_.getAxesPermutation(l,i),c=l,d=r,p=[];u!=null&&(d=As({inputs:{x:r},backend:n,attrs:{perm:u}}),p.push(d),c=_.getInnerMostAxes(c.length,i));let h=n.data.get(d.dataId).values,{outVals:f,outShape:m,outDtype:g}=xw(d.shape,d.dtype,h,c),A=m;return o&&(A=_.expandShapeToKeepDim(m,l)),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(A,g,f)}var RW={kernelName:ml,backendName:"cpu",kernelFunc:EW};function q2(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return w.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=w.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var bw=ma(e=>1/Math.sqrt(e)),DW=cu(Ao,bw),_W={kernelName:Ao,backendName:"cpu",kernelFunc:DW},FW=ma(e=>1/(1+Math.exp(-e))),vw=ct(xo,e=>1/(1+Math.exp(-e))),$W={kernelName:xo,backendName:"cpu",kernelFunc:vw};function $f(e,t,n,s,r){let a=kn.isSliceContinous(s,t,n),o=w.sizeFromShape(n),i=w.computeStrides(s);if(a){let d=kn.computeFlatOffset(t,i);return r==="string"?e.slice(d,d+o):e.subarray(d,d+o)}let l=r==="string"?_.fromUint8ToStringArray(e):e,u=je(s,r,l),c=je(n,r);for(let d=0;d<c.size;++d){let p=c.indexToLoc(d),h=p.map((f,m)=>f+t[m]);c.set(u.get(...h),...p)}return r==="string"?_.fromStringArrayToUint8(c.values):c.values}function ri(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Se(r,"slice");let[i,l]=kn.parseSliceParams(r,a,o);kn.assertParamsValid(r,i,l);let u=n.data.get(r.dataId).values,c=$f(u,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var OW={kernelName:vl,backendName:"cpu",kernelFunc:ri};function ww(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),d=t[1];if(l===0){if(i!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${i}`);let g=w.getArrayFromDType(n,0),A=w.getArrayFromDType(r,0);return[g,[0,d],A,u,c]}let p=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let A=e[g*d];if(A<0)throw new Error(`indices(${g}, 0) is invalid: ${A} < 0`);if(A>=l)throw new Error(`indices(${g}, 0) is invalid: ${A} >= ${l}`);++f[A],p=p&&A>=h,h=A}let m=!0;for(let g=0;g<l;++g){let A=f[g]===0;u[g]=A,m=m&&!A,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&p){let g=e,A=s;for(let y=0;y<i;++y)c[y]=y;return[g,[i,d],A,u,c]}else{let g=f[l-1],A=w.getArrayFromDType(n,g*d),y=w.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let b=0;b<i;++b){let v=e[b*d],k=x[v],S=(v===0?0:f[v-1])+k;x[v]++;for(let C=0;C<d;++C)A[S*d+C]=e[b*d+C];y[S]=s[b],c[b]=S}for(let b=0;b<l;++b)if(x[b]===0){let k=b===0?0:f[b-1];A[k*d+0]=b;for(let S=1;S<d;++S)A[k*d+S]=0;y[k]=o}return[A,[g,d],y,u,c]}}function kw(e,t,n,s,r){let a=w.sizeFromShape(s),o=t[0],i=r.length,l=[],u=1,c=-1;for(let g=0;g<i;++g){let A=r[g];if(A===-1){if(c!==-1)throw new Error(`only one output dimension may be -1, not both ${c} and ${g}`);c=g,l.push(1)}else{if(A<0)throw new Error(`size ${g} must be non-negative, not ${A}`);u*=A,l.push(A)}}if(c!==-1){if(u<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(a/u);if(u*g!==a)throw new Error(`Input to reshape is a SparseTensor with ${a}
|
|
dense values, but the requested shape requires a multiple of ${u}. inputShape=${s} outputShape= ${l}`);l[c]=g}let d=w.sizeFromShape(l);if(d!==a)throw new Error(`Input to reshape is a tensor with ${a} dense values, but the requested shape has ${d}. inputShape=${s} outputShape=${l}`);let p=s.length,h=[];if(p>0){h[p-1]=1;for(let g=p-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=w.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let A=0;for(let y=0;y<p;++y)A+=e[g*p+y]*h[y];for(let y=0;y<i;++y)m[g*i+y]=Math.trunc(A/f[y]),A%=f[y]}return[m,[o,i],l]}function X2(e,t,n,s,r,a=!1,o=0){let i=s.length;if(i!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],u=l[1],d=i>0?r[i-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let h=p.reduce((x,b)=>x*b,1),f=w.getArrayFromDType(n,h);if(i===0)return d>0&&f.fill(o),[f,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,g=1,A=0,y=r[m];for(;;){let x=0;if(g<i){if(x=r[g],y===x){++g;continue}if(y>=x)throw new Error("segment ids are not increasing")}if(y<0||y>=d)throw new Error(`Segment id ${y} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);y>A&&f.fill(o,A*u,y*u);for(let b=m;b<g;++b){let v=s[b];if(v<0||v>=l[0])throw new Error(`Bad: indices[${b}] == ${s[b]} out of range [0, ${l[0]})`);for(let k=0;k<u;k++)f[y*u+k]+=e[v*u+k]}if(a)for(let b=0;b<u;b++)f[y*u+b]/=g-m;if(m=g,++g,A=y+1,y=x,g>i)break}return A<d&&f.fill(o,A*u,d*u),[f,p]}var PW=ma(e=>Math.sqrt(e)),MW=ct(bo,e=>Math.sqrt(e)),zW={kernelName:bo,backendName:"cpu",kernelFunc:MW},Iw=Ht((e,t)=>{let n=e-t;return n*n}),LW=on(ko,Iw),BW={kernelName:ko,backendName:"cpu",kernelFunc:LW};function Sw(e,t,n,s){let r=je(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var WW=class{constructor(e,t,n,s,r,a){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),u=Math.max(0,i-(r-(o+1))),c=a-(l+u),d=t+(l>0?0:o-i),p=0;p+=l*this.leftPad.length;for(let A=0;A<c;++A)p+=e[d+A].length;p+=u*this.rightPad.length,p+=(l+u+c-1)*this.separator.length,n[s+o]=new Uint8Array(p);let f=n[s+o],m=0,g=A=>A.forEach(y=>f[m++]=y);for(let A=0;A<l;++A)g(this.leftPad),g(this.separator);for(let A=0;A<c-1;++A)g(e[d+A]),g(this.separator);if(c>0){g(e[d+c-1]);for(let A=0;A<u;++A)g(this.separator),g(this.rightPad)}else{for(let A=0;A<u-1;++A)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let u=t[l]>=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=w.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],u=a[i];if(this.nGramWidths.forEach(c=>{let d=t[i+1]-t[i],p=this.getNumNGrams(d,c);this.createNGrams(e,l,o,u,p,c),u+=p}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let d=c+2*this.padWidth,p=1;this.createNGrams(e,l,o,u,p,d)}}return[o,a]}};function Cw(e,t,n,s,r,a,o,i){return new WW(n,s,r,a,o,i).compute(e,t)}function VW(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function Tw(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let p=0;p<s;++p){let h=r.length;VW(e[p],t,n,r);let f=r.length-h;i[p]=f,a+=f,o=Math.max(o,f)}let l=w.getArrayFromDType("int32",a*2),u=new Array(a),c=[s,o],d=0;for(let p=0;p<s;++p)for(let h=0;h<i[p];++h)l[d*2]=p,l[d*2+1]=h,u[d]=r[d],++d;return[l,u,c]}function Nw(e,t){let n=w.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=w.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var Ew=Ht((e,t)=>e-t),UW=V2((e,t,n,s)=>({real:e-n,imag:t-s})),K2=on(Io,Ew,UW),HW={kernelName:Io,backendName:"cpu",kernelFunc:K2};function Rw(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=je(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var ld=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function Dw(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),d=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),p=Math.max(n,Math.floor(t-l*c/i+d)),h=Math.min(s,Math.floor(t+(i-l)*c/i+d));Dw(e,t,p,h)}let r=e[t],a=n,o=s;for(w.swap(e,n,t),ld(e[s],r)>0&&w.swap(e,n,s);a<o;){for(w.swap(e,a,o),a++,o--;ld(e[a],r)<0;)a=a+1;for(;ld(e[o],r)>0;)o=o-1}ld(e[n],r)===0?w.swap(e,n,o):(o=o+1,w.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function _w(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=w.getTypedArrayFromDType(n,o*s),u=w.getTypedArrayFromDType("int32",o*s);for(let d=0;d<o;d++){let p=d*i,h=e.subarray(p,p+i),f=new Array(h.length);h.forEach((y,x)=>f[x]={value:y,index:x}),s<f.length&&(Dw(f,s),f=f.slice(0,s)),r&&f.sort(ld);let m=d*s,g=l.subarray(m,m+s),A=u.subarray(m,m+s);for(let y=0;y<s;y++)g[y]=f[y].value,A[y]=f[y].index}let c=t.slice();return c[c.length-1]=s,[je(c,n,l),je(c,"int32",u)]}function Fw(e,t,n,s){let r=w.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new Xt(a,s,e),u=[],c=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(c)m=e[f].toString();else{let g=[];for(let A=0;A<a[0];A++)for(let y=0;y<a[2];y++)g.push(l.get(A,f,y));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,u.push(f)}}let d=a.slice();d[1]=Object.keys(o).length;let p=new Xt(d,s);u.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let A=0;A<a[2];A++)p.set(l.get(g,f,A),g,m,A)});let h=n.slice();return h[r]=d[1],{outputValues:p.values,outputShape:h,indices:i}}Wl("cpu",()=>new W2,1);var $w=ct(Ha,e=>e>=0?e:Math.exp(e)-1),GW={kernelName:Ha,backendName:"cpu",kernelFunc:$w};function Ow(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Se([r],"leakyRelu");let o=w.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=w.getTypedArrayFromDType("float32",o);for(let u=0;u<i.length;u++)l[u]=i[u]<0?a*i[u]:i[u];return n.makeTensorInfo(r.shape,"float32",l)}var jW={kernelName:Ya,backendName:"cpu",kernelFunc:Ow},qW=Ht((e,t)=>e<0?t*e:e);function Pw(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Se([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=qW(s.shape,r.shape,a,o,s.dtype);return n.makeTensorInfo(l,s.dtype,i)}var XW={kernelName:co,backendName:"cpu",kernelFunc:Pw},Mw=ct(po,e=>Math.max(0,e)),KW={kernelName:po,backendName:"cpu",kernelFunc:Mw},zw=ct(fo,e=>Math.min(Math.max(0,e),6)),ZW={kernelName:fo,backendName:"cpu",kernelFunc:zw};function Z2(e,t,n,s,r){if(n==="linear")return pr({inputs:{x:t},backend:e});if(n==="relu")return Mw({inputs:{x:t},backend:e});if(n==="elu")return $w({inputs:{x:t},backend:e});if(n==="relu6")return zw({inputs:{x:t},backend:e});if(n==="prelu")return Pw({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return Ow({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return vw({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function wt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=w.sizeFromShape(r.shape),i=w.inferFromImplicitShape(a,o),l=w.sizeFromShape(i);w.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,d=u.complexTensorInfos.imag;c.shape=i,d.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var YW={kernelName:Al,backendName:"cpu",kernelFunc:wt};function Lw(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Se([r,a],"matMul");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),A=w.sizeFromShape(m),y=g===A||g===1||A===1;w.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,c,p]:[g,p,c],k=i?[A,h,d]:[A,d,h],S=wt({inputs:{x:r},backend:n,attrs:{shape:v}}),C=wt({inputs:{x:a},backend:n,attrs:{shape:k}}),D=o?S.shape[1]:S.shape[2],O=o?S.shape[2]:S.shape[1],E=i?C.shape[1]:C.shape[2],R=Math.max(g,A),T=n.data.get(S.dataId).values,P=n.data.get(C.dataId).values,U=w.computeStrides(S.shape),j=w.computeStrides(C.shape),[q,X,te]=o?[U[0],1,U[1]]:[U[0],U[1],1],[ne,se,re]=i?[1,j[1],j[0]]:[j[1],1,j[0]],Q=O*E,le=je([R,O,E],S.dtype),ue=le.values,he=n.blockSize;for(let ye=0;ye<R;ye++)for(let Ne=0;Ne<O;Ne+=he)for(let Ee=0;Ee<E;Ee+=he)for(let $e=0;$e<D;$e+=he){let Be=Math.min(Ne+he,O),Me=Math.min(Ee+he,E),ht=Math.min($e+he,D);for(let at=Ne;at<Be;at++)for(let ot=Ee;ot<Me;ot++){let st=0;for(let dt=$e;dt<ht;dt++){let Xe=Math.min(ye,g-1)*q,Dn=Math.min(ye,A-1)*re,Et=T[Xe+at*X+dt*te],Gn=P[dt*ne+ot*se+Dn];st+=Et*Gn}ue[ye*Q+(at*E+ot)]+=st}}return n.disposeIntermediateTensorInfo(S),n.disposeIntermediateTensorInfo(C),n.makeTensorInfo(b,le.dtype,le.values)}var JW={kernelName:$a,backendName:"cpu",kernelFunc:Lw};function QW(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s,p,h,f,m=[];p=Lw({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:u},backend:n}),o&&(h=id({inputs:{a:p,b:o},backend:n}),m.push(p),p=h),c&&(f=Z2(n,p,c,i,d),m.push(p),p=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return p}var eV={kernelName:No,backendName:"cpu",kernelFunc:QW},tV=ct(Fi,e=>Math.acos(e)),nV={kernelName:Fi,backendName:"cpu",kernelFunc:tV},sV=ct($i,e=>Math.acosh(e)),rV={kernelName:$i,backendName:"cpu",kernelFunc:sV};function aV(e){let{inputs:t,backend:n}=e,s=t;Se(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=je(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let u=0;u<o.length;u++)o[u]+=l[u]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var oV={kernelName:Da,backendName:"cpu",kernelFunc:aV};function iV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Se(r,"all");let i=w.parseAxisParam(a,r.shape),l=i,u=_.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=As({inputs:{x:r},backend:n,attrs:{perm:u}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("all",l,c.shape.length);let[d,p]=_.computeOutAndReduceShapes(c.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let v=m[y+b];x=x&&v}f[A]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(d,c.dtype,f);if(o){let A=_.expandShapeToKeepDim(d,i),y=wt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var lV={kernelName:Oi,backendName:"cpu",kernelFunc:iV};function uV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Se(r,"any");let i=w.parseAxisParam(a,r.shape),l=i,u=_.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=As({inputs:{x:r},backend:n,attrs:{perm:u}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("any",l,c.shape.length);let[d,p]=_.computeOutAndReduceShapes(c.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let v=m[y+b];x=x||v}f[A]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(d,c.dtype,f);if(o){let A=_.expandShapeToKeepDim(d,i),y=wt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var cV={kernelName:Pi,backendName:"cpu",kernelFunc:uV};function dV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Se(r,"argMax");let o=w.parseAxisParam(a,r.shape),i=_.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=As({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=_.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],_.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[c,d]=_.computeOutAndReduceShapes(l.shape,o),p=w.sizeFromShape(c),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,y=m[A],x=0;for(let b=0;b<f;++b){let v=m[A+b];v>y&&(y=v,x=b)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var pV={kernelName:_a,backendName:"cpu",kernelFunc:dV};function hV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Se(r,"argMin");let o=w.parseAxisParam(a,r.shape),i=_.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=As({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=_.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],_.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,d]=_.computeOutAndReduceShapes(l.shape,o),p=w.sizeFromShape(c),h=w.makeZerosTypedArray(p,"int32"),f=w.sizeFromShape(d),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let A=g*f,y=m[A],x=0;for(let b=0;b<f;++b){let v=m[A+b];v<y&&(y=v,x=b)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var fV={kernelName:Ku,backendName:"cpu",kernelFunc:hV},mV=ct(Mi,e=>Math.asin(e)),gV={kernelName:Mi,backendName:"cpu",kernelFunc:mV},AV=ct(zi,e=>Math.asinh(e)),yV={kernelName:zi,backendName:"cpu",kernelFunc:AV},xV=ct(Li,e=>Math.atan(e)),bV={kernelName:Li,backendName:"cpu",kernelFunc:xV},vV=Ht((e,t)=>Math.atan2(e,t)),wV=on(Wi,vV),kV={kernelName:Wi,backendName:"cpu",kernelFunc:wV},IV=ct(Bi,e=>Math.atanh(e)),SV={kernelName:Bi,backendName:"cpu",kernelFunc:IV};function Y2(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=je(r.outShape,n),g=m.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let b=0;b<r.batchSize;++b){let v=b*A,k=b*s[0];for(let S=0;S<r.inChannels;++S)for(let C=0;C<r.outHeight;++C){let D=C*o-p,O=Math.max(0,D),E=Math.min(r.inHeight,c+D),R=v+C*y;for(let T=0;T<r.outWidth;++T){let P=T*i-h,U=Math.max(0,P),j=Math.min(r.inWidth,d+P),q=f,X=0,te=0;for(let se=O;se<E;se+=l){let re=k+se*s[1];for(let Q=U;Q<j;Q+=u){let le=re+Q*s[2],ue=e[le+S];a==="max"&&ue>q?q=ue:a==="avg"&&(X+=ue,te++)}if(isNaN(q))break}let ne=R+T*x+S;g[ne]=a==="avg"?X/te:q}}}return m}function Bw(e,t,n,s,r=!1,a=!1){let o=je(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,u=s.dilationHeight,c=s.dilationWidth,d=s.effectiveFilterHeight,p=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=je(t,n,e);for(let g=0;g<s.batchSize;++g)for(let A=0;A<s.inChannels;++A)for(let y=0;y<s.outHeight;++y){let x=y*i-h,b=x;for(;b<0;)b+=u;let v=Math.min(s.inHeight,d+x);for(let k=0;k<s.outWidth;++k){let S=k*l-f,C=S;for(;C<0;)C+=c;let D=Math.min(s.inWidth,p+S),O=Number.NEGATIVE_INFINITY,E=-1;for(let R=b;R<v;R+=u){let T=R-x;for(let P=C;P<D;P+=c){let U=P-S,j=m.get(g,R,P,A);j>O&&(O=j,r?E=a?((g*s.inHeight+R)*s.inWidth+P)*s.inChannels+A:(R*s.inWidth+P)*s.inChannels+A:E=T*p+U)}}o.set(E,g,y,k,A)}}return o}function Ww(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,d=r.dilationWidth,p=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,A=r.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=je(r.outShape,n),b=x.values,v=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[3]*r.outShape[4],C=r.outShape[4];for(let D=0;D<r.batchSize;++D){let O=D*v,E=D*s[0];for(let R=0;R<r.inChannels;++R)for(let T=0;T<r.outDepth;++T){let P=T*o-m,U=P;for(;U<0;)U+=u;let j=Math.min(r.inDepth,p+P),q=O+T*k;for(let X=0;X<r.outHeight;++X){let te=X*i-g,ne=te;for(;ne<0;)ne+=c;let se=Math.min(r.inHeight,h+te),re=q+X*S;for(let Q=0;Q<r.outWidth;++Q){let le=Q*l-A,ue=le;for(;ue<0;)ue+=d;let he=Math.min(r.inWidth,f+le),ye=re+Q*C,Ne=y,Ee=0,$e=0;for(let Me=U;Me<j;Me+=u){let ht=E+Me*s[1];for(let at=ne;at<se;at+=c){let ot=ht+at*s[2];for(let st=ue;st<he;st+=d){let dt=ot+st*s[3],Xe=e[dt+R];if(a==="max"&&Xe>Ne?Ne=Xe:a==="avg"&&(Ee+=Xe,$e++),isNaN(Ne))break}if(isNaN(Ne))break}if(isNaN(Ne))break}let Be=ye+R;b[Be]=a==="avg"?Ee/$e:Ne}}}}return x}function CV(e,t){let n=je(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,d=t.effectiveFilterWidth,p=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let A=0;A<t.outDepth;++A){let y=A*s-p,x=y;for(;x<0;)x+=o;let b=Math.min(t.inDepth,u+y);for(let v=0;v<t.outHeight;++v){let k=v*r-h,S=k;for(;S<0;)S+=i;let C=Math.min(t.inHeight,c+k);for(let D=0;D<t.outWidth;++D){let O=D*a-f,E=O;for(;E<0;)E+=l;let R=Math.min(t.inWidth,d+O),T=Number.NEGATIVE_INFINITY,P=-1;for(let U=x;U<b;U+=o){let j=U-y;for(let q=S;q<C;q+=i){let X=q-k;for(let te=E;te<R;te+=l){let ne=te-O,se=e.get(m,U,q,te,g);se>=T&&(T=se,P=j*c*d+X*c+ne)}}}n.set(P,m,A,v,D,g)}}}return n}function TV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Se(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;w.assert(_.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=_.computePool2DInfo(r.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))d=pr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=Y2(p,r.shape,r.dtype,h,c,"avg");d=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return d}var NV={kernelName:Fa,backendName:"cpu",kernelFunc:TV};function EV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Se(r,"avgPool3d");let c=_.computePool3DInfo(r.shape,a,o,1,i,l,u),d=n.data.get(r.dataId).values,p=Ww(d,r.shape,r.dtype,w.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(p.shape,"float32",p.values)}var RV={kernelName:Zu,backendName:"cpu",kernelFunc:EV};function DV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Se([r,a],"avgPool3DGrad");let c=_.computePool3DInfo(a.shape,o,i,1,l,u),d=c.strideDepth,p=c.strideHeight,h=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,A=c.dilationDepth,y=c.dilationHeight,x=c.dilationWidth,b=c.effectiveFilterDepth,v=c.effectiveFilterHeight,k=c.effectiveFilterWidth,S=b-1-c.padInfo.front,C=k-1-c.padInfo.left,D=v-1-c.padInfo.top,O=je(a.shape,"float32"),E=1/(f*m*g),R=n.bufferSync(r);for(let T=0;T<c.batchSize;++T)for(let P=0;P<c.inChannels;++P)for(let U=0;U<c.inDepth;++U)for(let j=0;j<c.inHeight;++j)for(let q=0;q<c.inWidth;++q){let X=U-S,te=j-D,ne=q-C,se=0;for(let re=0;re<b;re+=A){let Q=(X+re)/d;if(!(Q<0||Q>=c.outDepth||Math.floor(Q)!==Q))for(let le=0;le<v;le+=y){let ue=(te+le)/p;if(!(ue<0||ue>=c.outHeight||Math.floor(ue)!==ue))for(let he=0;he<k;he+=x){let ye=(ne+he)/h;if(ye<0||ye>=c.outWidth||Math.floor(ye)!==ye)continue;se+=R.get(T,Q,ue,ye,P)}}}O.set(se*E,T,U,j,q,P)}return n.makeTensorInfo(O.shape,O.dtype,O.values)}var _V={kernelName:hp,backendName:"cpu",kernelFunc:DV};function FV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Se([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=_.computePool2DInfo(o.shape,i,l,1,u),d=c.strideHeight,p=c.strideWidth,h=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,A=c.effectiveFilterHeight,y=c.effectiveFilterWidth,x=y-1-c.padInfo.left,b=A-1-c.padInfo.top,v=je(o.shape,"float32"),k=1/(h*f),S=n.data.get(r.dataId).values,C=je(r.shape,"float32",S);for(let D=0;D<c.batchSize;++D)for(let O=0;O<c.inChannels;++O)for(let E=0;E<c.inHeight;++E)for(let R=0;R<c.inWidth;++R){let T=E-b,P=R-x,U=0;for(let j=0;j<A;j+=m){let q=(T+j)/d;if(!(q<0||q>=c.outHeight||Math.floor(q)!==q))for(let X=0;X<y;X+=g){let te=(P+X)/p;if(te<0||te>=c.outWidth||Math.floor(te)!==te)continue;U+=C.get(D,q,te,O)}}v.set(U*k,D,E,R,O)}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var $V={kernelName:pp,backendName:"cpu",kernelFunc:FV};function OV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;w.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Se([r,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=s;u==null&&(u=.001);let c=n.data.get(r.dataId).values,d=n.data.get(i.dataId).values,p=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,A=h.length,y=p.length,x=d.length,b=0,v=0,k=0,S=0;for(let C=0;C<c.length;++C)m[C]=f[b++]+(c[C]-d[v++])*h[k++]/Math.sqrt(p[S++]+u),b>=g&&(b=0),v>=x&&(v=0),k>=A&&(k=0),S>=y&&(S=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var PV={kernelName:Xa,backendName:"cpu",kernelFunc:OV};function MV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Se([r],"batchToSpaceND");let i=a.reduce((A,y)=>A*y),l=_.getReshaped(r.shape,a,i),u=_.getPermuted(l.length,a.length),c=_.getReshapedPermuted(r.shape,a,i),d=_.getSliceBeginCoords(o,a.length),p=_.getSliceSize(c,o,a.length),h=wt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=As({inputs:{x:h},backend:n,attrs:{perm:u}}),m=wt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=ri({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var zV={kernelName:Vi,backendName:"cpu",kernelFunc:MV};function LV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=U2(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var BV={kernelName:fp,backendName:"cpu",kernelFunc:LV};function WV(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=_.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var VV={kernelName:cg,backendName:"cpu",kernelFunc:WV},UV=ct(qr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),HV={kernelName:qr,backendName:"cpu",kernelFunc:UV},GV=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],d=l[u];s[u]=Math.hypot(c,d)}return n.makeOutput(s,t.shape,"float32")},jV={kernelName:Yu,backendName:"cpu",kernelFunc:GV};function du(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var qV={kernelName:Ep,backendName:"cpu",kernelFunc:du};function pu(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],o=_.computeOutShape(t.map(m=>m.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>w.sizeFromShape(m.shape)>0);if(i.length===1)return pr({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(_.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>si({inputs:{input:b},backend:n})),g=i.map(b=>du({inputs:{input:b},backend:n})),A=pu({inputs:m,backend:n,attrs:{axis:a}}),y=pu({inputs:g,backend:n,attrs:{axis:a}}),x=rs({inputs:{real:A,imag:y},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),x}let u=i.map(m=>{let g=w.sizeFromShape(m.shape.slice(a));return wt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=_.computeOutShape(u.map(m=>m.shape),1);let d=u[0].shape[0]===1,p=H2(c,o,t[0].dtype,d),h=_.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,p);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var XV={kernelName:Ui,backendName:"cpu",kernelFunc:pu};function Vw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s;Se([r,a],"conv2d");let d=_.convertConv2DDataFormat(l),p=_.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,d),h=p.filterHeight,f=p.filterWidth,m=p.dilationHeight,g=p.dilationWidth,A=p.padInfo.left,y=p.padInfo.top,x=p.dataFormat==="channelsLast",b=new Xt(p.outShape,r.dtype),v=w.computeStrides(r.shape),k=w.computeStrides(a.shape),S=v[0],C=x?v[1]:v[2],D=x?v[2]:1,O=x?1:v[1],E=b.strides[0],R=x?b.strides[1]:b.strides[2],T=x?b.strides[2]:1,P=x?1:b.strides[1],U=n.data.get(r.dataId).values,j=n.data.get(a.dataId).values,q=b.values;for(let X=0;X<p.batchSize;++X){let te=X*S,ne=X*E;for(let se=0;se<p.outHeight;++se){let re=ne+se*R,Q=se*p.strideHeight-y;for(let le=0;le<h;++le){let ue=Q+le*m;if(ue<0||ue>=p.inHeight)continue;let he=le*k[0],ye=te+ue*C;for(let Ne=0;Ne<p.outWidth;++Ne){let Ee=re+Ne*T,$e=Ne*p.strideWidth-A;for(let Be=0;Be<f;++Be){let Me=$e+Be*g;if(Me<0||Me>=p.inWidth)continue;let ht=he+Be*k[1],at=ye+Me*D,ot=ht;for(let st=0;st<p.inChannels;++st){let dt=U[at+st*O];for(let Xe=0;Xe<p.outChannels;++Xe)q[Ee+Xe*P]+=dt*j[ot+Xe];ot+=p.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,q)}var KV={kernelName:Ma,backendName:"cpu",kernelFunc:Vw};function ZV(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s;Se([r,a],"conv2dBackpropFilter");let d=_.convertConv2DDataFormat(l),p=_.computeConv2DInfo(r.shape,c,o,1,i,u,!1,d),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=p,A=p.dataFormat==="channelsLast",y=new Xt(p.filterShape,"float32"),x=p.padInfo.left,b=p.padInfo.top,v=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=new Xt(r.shape,r.dtype,v),C=new Xt(a.shape,a.dtype,k);for(let D=0;D<m;++D){let O=Math.max(0,Math.ceil((b-D)/h)),E=Math.min(p.outHeight,(p.inHeight+b-D)/h);for(let R=0;R<g;++R){let T=Math.max(0,Math.ceil((x-R)/f)),P=Math.min(p.outWidth,(p.inWidth+x-R)/f);for(let U=0;U<p.inChannels;++U)for(let j=0;j<p.outChannels;++j){let q=0;for(let X=0;X<p.batchSize;++X)for(let te=O;te<E;++te){let ne=D+te*h-b;for(let se=T;se<P;++se){let re=R+se*f-x;A?q+=S.get(X,ne,re,U)*C.get(X,te,se,j):q+=S.get(X,U,ne,re)*C.get(X,j,te,se)}}y.set(q,D,R,U,j)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var YV={kernelName:gp,backendName:"cpu",kernelFunc:ZV};function JV(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s;Se([r,a],"conv2dBackpropInput");let d=w.computeStrides(a.shape),p=w.computeStrides(r.shape),h=_.convertConv2DDataFormat(u),f=_.computeConv2DInfo(o,a.shape,i,1,l,c,!1,h),m=new Xt(f.inShape,"float32"),g=m.values,A=n.data.get(r.dataId).values,y=n.data.get(a.dataId).values,[x,b,v]=d,{batchSize:k,filterHeight:S,filterWidth:C,inChannels:D,inHeight:O,inWidth:E,outChannels:R,outHeight:T,outWidth:P,strideHeight:U,strideWidth:j}=f;h=f.dataFormat;let q=S-1-f.padInfo.top,X=C-1-f.padInfo.left,te=h==="channelsLast",ne=m.strides[0],se=te?m.strides[1]:m.strides[2],re=te?m.strides[2]:1,Q=te?1:m.strides[1],le=p[0],ue=te?p[1]:p[2],he=te?p[2]:1,ye=te?1:p[1];for(let Ne=0;Ne<k;++Ne)for(let Ee=0;Ee<D;++Ee)for(let $e=0;$e<O;++$e){let Be=$e-q,Me=Math.max(0,Math.ceil(Be/U)),ht=Math.min(T,(S+Be)/U);for(let at=0;at<E;++at){let ot=at-X,st=Math.max(0,Math.ceil(ot/j)),dt=Math.min(P,(C+ot)/j),Xe=0;for(let Et=Me;Et<ht;++Et){let Gn=Et*U-Be;for(let ln=st;ln<dt;++ln){let Is=ln*j-ot,xn=le*Ne+ue*Et+he*ln,us=x*(S-1-Gn)+b*(C-1-Is)+v*Ee;for(let cs=0;cs<R;++cs){let un=A[xn+ye*cs],ds=y[us+cs];Xe+=un*ds}}}let Dn=ne*Ne+se*$e+re*at+Q*Ee;g[Dn]=Xe}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var QV={kernelName:za,backendName:"cpu",kernelFunc:JV};function eU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Se([r,a],"conv3d");let u=_.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:c,filterHeight:d,filterWidth:p,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=u,A=g.front,y=g.left,x=g.top,b=new Xt(u.outShape,r.dtype),v=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=b.values,C=w.computeStrides(r.shape),D=w.computeStrides(a.shape);for(let O=0;O<u.batchSize;++O){let E=O*C[0],R=O*b.strides[0];for(let T=0;T<u.outDepth;++T){let P=R+T*b.strides[1],U=T*u.strideDepth-A;for(let j=0;j<c;++j){let q=U+j*h;if(q<0||q>=u.inDepth)continue;let X=j*D[0],te=E+q*C[1];for(let ne=0;ne<u.outHeight;++ne){let se=P+ne*b.strides[2],re=ne*u.strideHeight-x;for(let Q=0;Q<d;++Q){let le=re+Q*f;if(le<0||le>=u.inHeight)continue;let ue=X+Q*D[1],he=te+le*C[2];for(let ye=0;ye<u.outWidth;++ye){let Ne=se+ye*u.outChannels,Ee=ye*u.strideWidth-y;for(let $e=0;$e<p;++$e){let Be=Ee+$e*m;if(Be<0||Be>=u.inWidth)continue;let Me=ue+$e*D[2],ht=he+Be*u.inChannels,at=Me;for(let ot=0;ot<u.inChannels;++ot){let st=v[ht+ot];for(let dt=0;dt<u.outChannels;++dt)S[Ne+dt]+=st*k[at+dt];at+=u.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var tU={kernelName:Ju,backendName:"cpu",kernelFunc:eU};function nU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Se([r,a],"conv3dBackpropFilterV2");let u=w.computeStrides(r.shape),c=w.computeStrides(a.shape),d=_.computeConv3DInfo(r.shape,l,o,1,i),p=d.strideDepth,h=d.strideHeight,f=d.strideWidth,m=d.filterDepth,g=d.filterHeight,A=d.filterWidth,y=new Xt(d.filterShape,"float32"),x=y.values,[b,v,k,S]=y.strides,C=n.data.get(a.dataId).values,[D,O,E,R]=c,T=n.data.get(r.dataId).values,[P,U,j,q]=u,X=d.padInfo.front,te=d.padInfo.left,ne=d.padInfo.top;for(let se=0;se<m;++se){let re=Math.max(0,Math.ceil((X-se)/p)),Q=Math.min(d.outDepth,(d.inDepth+X-se)/p),le=se*b;for(let ue=0;ue<g;++ue){let he=Math.max(0,Math.ceil((ne-ue)/h)),ye=Math.min(d.outHeight,(d.inHeight+ne-ue)/h),Ne=ue*v+le;for(let Ee=0;Ee<A;++Ee){let $e=Math.max(0,Math.ceil((te-Ee)/f)),Be=Math.min(d.outWidth,(d.inWidth+te-Ee)/f),Me=Ee*k+Ne;for(let ht=0;ht<d.inChannels;++ht){let at=ht*S+Me;for(let ot=0;ot<d.outChannels;++ot){let st=0;for(let dt=0;dt<d.batchSize;++dt){let Xe=dt*P,Dn=dt*D;for(let Et=re;Et<Q;++Et){let ln=(se+Et*p-X)*U+Xe,Is=Et*O+Dn;for(let xn=he;xn<ye;++xn){let cs=(ue+xn*h-ne)*j+ln,un=xn*E+Is;for(let ds=$e;ds<Be;++ds){let jn=(Ee+ds*f-te)*q+cs,Ys=ds*R+un;st+=T[jn+ht]*C[Ys+ot]}}}}x[at+ot]=st}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var sU={kernelName:Ap,backendName:"cpu",kernelFunc:nU};function rU(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Se([r],"conv3dBackpropInputV2");let u=w.computeStrides(r.shape),c=w.computeStrides(a.shape),d=_.computeConv3DInfo(l,a.shape,i,1,o),p=new Xt(d.inShape,"float32"),h=p.values,[f,m,g,A]=p.strides,y=n.data.get(r.dataId).values,[x,b,v,k]=u,S=n.data.get(a.dataId).values,[C,D,O,E]=c,{batchSize:R,filterDepth:T,filterHeight:P,filterWidth:U,inChannels:j,inDepth:q,inHeight:X,inWidth:te,outChannels:ne,outDepth:se,outHeight:re,outWidth:Q,strideDepth:le,strideHeight:ue,strideWidth:he}=d,ye=T-1-d.padInfo.front,Ne=P-1-d.padInfo.top,Ee=U-1-d.padInfo.left;for(let $e=0;$e<R;++$e)for(let Be=0;Be<j;++Be)for(let Me=0;Me<q;++Me){let ht=Me-ye,at=Math.max(0,Math.ceil(ht/le)),ot=Math.min(se,(T+ht)/le);for(let st=0;st<X;++st){let dt=st-Ne,Xe=Math.max(0,Math.ceil(dt/ue)),Dn=Math.min(re,(P+dt)/ue);for(let Et=0;Et<te;++Et){let Gn=Et-Ee,ln=Math.max(0,Math.ceil(Gn/he)),Is=Math.min(Q,(U+Gn)/he),xn=0;for(let us=at;us<ot;++us){let cs=us*le-ht;for(let un=Xe;un<Dn;++un){let ds=un*ue-dt;for(let ps=ln;ps<Is;++ps){let jn=ps*he-Gn,Ys=x*$e+b*us+v*un+k*ps,yr=C*(T-1-cs)+D*(P-1-ds)+O*(U-1-jn)+E*Be;for(let zr=0;zr<ne;++zr){let Ai=y[Ys+zr],Js=S[yr+zr];xn+=Ai*Js}}}}h[f*$e+m*Me+g*st+A*Et+Be]=xn}}}return n.makeTensorInfo(p.shape,p.dtype,p.values)}var aU={kernelName:yp,backendName:"cpu",kernelFunc:rU},oU=ct(La,e=>Math.cos(e)),iU={kernelName:La,backendName:"cpu",kernelFunc:oU},lU=ct(Ba,e=>Math.cosh(e)),uU={kernelName:Ba,backendName:"cpu",kernelFunc:lU};function cU(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,[c,d,p,h]=r.shape,f=a.shape[0],[m,g]=i,A=je([f,m,g,h],"float32"),y=n.data.get(a.dataId).values,x=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,v=w.computeStrides(r.shape),k=w.computeStrides(A.shape);for(let S=0;S<f;S++){let C=S*4,D=y[C],O=y[C+1],E=y[C+2],R=y[C+3],T=x[S];if(T>=c)continue;let P=m>1?(E-D)*(d-1)/(m-1):0,U=g>1?(R-O)*(p-1)/(g-1):0;for(let j=0;j<m;j++){let q=m>1?D*(d-1)+j*P:.5*(D+E)*(d-1);if(q<0||q>d-1){for(let X=0;X<g;X++)for(let te=0;te<h;te++){let ne=te+X*k[2]+j*k[1]+S*k[0];A.values[ne]=u}continue}if(l==="bilinear"){let X=Math.floor(q),te=Math.ceil(q),ne=q-X;for(let se=0;se<g;se++){let re=g>1?O*(p-1)+se*U:.5*(O+R)*(p-1);if(re<0||re>p-1){for(let he=0;he<h;he++){let ye=he+se*k[2]+j*k[1]+S*k[0];A.values[ye]=u}continue}let Q=Math.floor(re),le=Math.ceil(re),ue=re-Q;for(let he=0;he<h;he++){let ye=he+Q*v[2]+X*v[1]+T*v[0],Ne=b[ye];ye=he+le*v[2]+X*v[1]+T*v[0];let Ee=b[ye];ye=he+Q*v[2]+te*v[1]+T*v[0];let $e=b[ye];ye=he+le*v[2]+te*v[1]+T*v[0];let Be=b[ye],Me=Ne+(Ee-Ne)*ue,ht=$e+(Be-$e)*ue;ye=he+se*k[2]+j*k[1]+S*k[0],A.values[ye]=Me+(ht-Me)*ne}}}else for(let X=0;X<g;++X){let te=g>1?O*(p-1)+X*U:.5*(O+R)*(p-1);if(te<0||te>p-1){for(let re=0;re<h;re++){let Q=re+X*k[2]+j*k[1]+S*k[0];A.values[Q]=u}continue}let ne=Math.round(te),se=Math.round(q);for(let re=0;re<h;re++){let Q=re+ne*v[2]+se*v[1]+T*v[0],le=re+X*k[2]+j*k[1]+S*k[0];A.values[le]=b[Q]}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var dU={kernelName:Hi,backendName:"cpu",kernelFunc:cU};function pU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Se(r,"cumsum");let l=_.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=As({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=_.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let d=Ts(u.dtype,"int32"),p=w.makeZerosTypedArray(w.sizeFromShape(u.shape),d),h=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(A,y)=>A+f-y-1:(A,y)=>A+y;for(let A=0;A<h.length;A+=f)for(let y=0;y<f;y++){let x=m(A,y);if(y===0)p[x]=o?0:h[x];else{let b=m(A,y-1);p[x]=o?h[b]+p[b]:h[x]+p[b]}}let g=n.makeTensorInfo(u.shape,d,p);if(l!=null){let A=_.getUndoAxesPermutation(l),y=As({inputs:{x:g},backend:n,attrs:{perm:A}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),y}return g}var hU={kernelName:Wa,backendName:"cpu",kernelFunc:pU};function fU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=U2(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=J7(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var mU={kernelName:xp,backendName:"cpu",kernelFunc:fU};function gU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;w.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`),w.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],d=l*a,p=u*a,h=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*d*p*h),g=0;for(let A=0;A<i;++A)for(let y=0;y<d;++y){let x=Math.floor(y/a),b=y%a;for(let v=0;v<p;++v){let k=Math.floor(v/a),S=v%a,C=(b*a+S)*h;for(let D=0;D<h;++D){let E=D+C+c*(k+u*(x+l*A));m[g++]=f[E]}}}return n.makeTensorInfo([i,d,p,h],r.dtype,m)}var AU={kernelName:Gi,backendName:"cpu",kernelFunc:gU};function Uw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s;Se([r,a],"depthwiseConv2DNative");let c=w.computeStrides(r.shape),d=w.computeStrides(a.shape),p=l;p==null&&(p=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(o,p),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${p}'`);let h=_.computeConv2DInfo(r.shape,a.shape,o,p,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:A,padInfo:y}=h,x=y.left,b=y.top,v=h.outChannels/h.inChannels,k=new Xt(h.outShape,r.dtype),S=n.data.get(r.dataId).values,C=n.data.get(a.dataId).values,D=k.values;for(let O=0;O<h.batchSize;++O){let E=O*c[0],R=O*k.strides[0];for(let T=0;T<h.outHeight;++T){let P=R+T*k.strides[1],U=T*h.strideHeight-b;for(let j=0;j<f;++j){let q=U+j*g;if(q<0||q>=h.inHeight)continue;let X=j*d[0],te=E+q*c[1];for(let ne=0;ne<h.outWidth;++ne){let se=P+ne*k.strides[2],re=ne*h.strideWidth-x;for(let Q=0;Q<m;++Q){let le=re+Q*A;if(le<0||le>=h.inWidth)continue;let ue=X+Q*d[1],he=te+le*h.inChannels,ye=se,Ne=ue;for(let Ee=0;Ee<h.inChannels;++Ee){let $e=S[he+Ee];for(let Be=0;Be<v;++Be)D[ye+Be]+=$e*C[Ne+Be];ye+=v,Ne+=v}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var yU={kernelName:Va,backendName:"cpu",kernelFunc:Uw};function xU(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s;Se([r,a],"depthwiseConv2dNativeBackpropFilter");let d=_.computeConv2DInfo(r.shape,c,o,i,l,u,!0),{strideHeight:p,strideWidth:h,filterHeight:f,filterWidth:m}=d,g=new Xt(d.filterShape,"float32"),A=d.padInfo.left,y=d.padInfo.top,x=d.outChannels/d.inChannels,b=n.data.get(r.dataId).values,v=new Xt(r.shape,r.dtype,b),k=n.data.get(a.dataId).values,S=new Xt(a.shape,a.dtype,k);for(let C=0;C<f;++C){let D=Math.max(0,Math.ceil((y-C)/p)),O=Math.min(d.outHeight,(d.inHeight+y-C)/p);for(let E=0;E<m;++E){let R=Math.max(0,Math.ceil((A-E)/h)),T=Math.min(d.outWidth,(d.inWidth+A-E)/h);for(let P=0;P<d.outChannels;++P){let U=Math.trunc(P/x),j=P%x,q=0;for(let X=0;X<d.batchSize;++X)for(let te=D;te<O;++te){let ne=C+te*p-y;for(let se=R;se<T;++se){let re=E+se*h-A;q+=v.get(X,ne,re,U)*S.get(X,te,se,P)}}g.set(q,C,E,U,j)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var bU={kernelName:bp,backendName:"cpu",kernelFunc:xU};function vU(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s;Se([r,a],"depthwiseConv2DNativeBackpropInput");let d=w.computeStrides(r.shape),p=w.computeStrides(a.shape),h=_.computeConv2DInfo(c,a.shape,o,i,l,u,!0),f=new Xt(h.inShape,"float32"),m=f.values,[g,A,y]=f.strides,x=n.data.get(r.dataId).values,[b,v,k]=d,S=n.data.get(a.dataId).values,[C,D,O]=p,{batchSize:E,filterHeight:R,filterWidth:T,inChannels:P,inHeight:U,inWidth:j,outChannels:q,outHeight:X,outWidth:te,strideHeight:ne,strideWidth:se}=h,re=R-1-h.padInfo.top,Q=T-1-h.padInfo.left,le=q/P;for(let ue=0;ue<E;++ue)for(let he=0;he<P;++he)for(let ye=0;ye<U;++ye){let Ne=ye-re,Ee=Math.max(0,Math.ceil(Ne/ne)),$e=Math.min(X,(R+Ne)/ne);for(let Be=0;Be<j;++Be){let Me=Be-Q,ht=Math.max(0,Math.ceil(Me/se)),at=Math.min(te,(T+Me)/se),ot=0;for(let st=Ee;st<$e;++st){let dt=st*ne-Ne;for(let Xe=ht;Xe<at;++Xe){let Dn=Xe*se-Me,Et=b*ue+v*st+k*Xe,Gn=C*(R-1-dt)+D*(T-1-Dn)+O*he;for(let ln=0;ln<le;++ln){let Is=he*le+ln,xn=x[Et+Is],us=S[Gn+ln];ot+=xn*us}}}m[g*ue+A*ye+y*Be+he]=ot}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var wU={kernelName:vp,backendName:"cpu",kernelFunc:vU};function kU(e){let{inputs:t,backend:n}=e,{x:s}=t,r=w.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=je([r,r],s.dtype),i=o.values;for(let u=0;u<a.length;u++)i[u*r+u]=a[u];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var IU={kernelName:wp,backendName:"cpu",kernelFunc:kU},SU={kernelName:Qu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(s.dataId).values,c=s.shape.length,d=l.data.get(r.dataId).values,p=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:A,outWidth:y,padInfo:x,strideHeight:b,strideWidth:v,filterHeight:k,filterWidth:S,dilationHeight:C,dilationWidth:D,outShape:O}=_.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),E=w.sizeFromShape(O),R=O.length,T=w.getArrayFromDType(s.dtype,E);for(let U=0;U<h;++U)for(let j=0;j<A;++j){let q=j*b-x.top;for(let X=0;X<y;++X){let te=X*v-x.left;for(let ne=0;ne<g;++ne){let se=Number.MIN_SAFE_INTEGER;for(let Q=0;Q<k;++Q){let le=q+Q*C;if(le>=0&&le<f)for(let ue=0;ue<S;++ue){let he=te+ue*D;if(he>=0&&he<m){let ye=w.locToIndex([U,le,he,ne],c,w.computeStrides(s.shape)),Ne=w.locToIndex([Q,ue,ne],p,w.computeStrides(r.shape)),Ee=u[ye]+d[Ne];Ee>se&&(se=Ee)}}}let re=w.locToIndex([U,j,X,ne],R,w.computeStrides(O));T[re]=se}}}return{dataId:l.write(w.toTypedArray(T,s.dtype),O,s.dtype),shape:O,dtype:s.dtype}}},CU={kernelName:Ip,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=w.toNestedArray(s.shape,u.data.get(s.dataId).values),d=w.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:S,dilationWidth:C,outShape:D}=_.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);w.assert(a.rank===D.length,()=>`Error in ${Ip}, dy must have the same rank as output ${D.length}, but got ${a.rank}`);let O=w.toNestedArray(D,u.data.get(a.dataId).values),E=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<p;++T)for(let P=0;P<g;++P){let U=P*x-y.top;for(let j=0;j<A;++j){let q=j*b-y.left;for(let X=0;X<m;++X){let te=Number.MIN_SAFE_INTEGER,ne=0,se=0;for(let re=0;re<v;++re){let Q=U+re*S;if(Q>=0&&Q<h)for(let le=0;le<k;++le){let ue=q+le*C;if(ue>=0&&ue<f){let he=c[T][Q][ue][X]+d[re][le][X];he>te&&(te=he,ne=re,se=le)}}}E[ne][se][X]+=O[T][P][j][X]}}}return{dataId:u.write(w.toTypedArray(E,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},TU={kernelName:kp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=w.toNestedArray(s.shape,u.data.get(s.dataId).values),d=w.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:p,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:A,padInfo:y,strideHeight:x,strideWidth:b,filterHeight:v,filterWidth:k,dilationHeight:S,dilationWidth:C,outShape:D}=_.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);w.assert(a.rank===D.length,()=>`Error in ${kp}, dy must have the same rank as output ${D.length}, but got ${a.rank}`);let O=w.toNestedArray(D,u.data.get(a.dataId).values),E=w.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<p;++T)for(let P=0;P<g;++P){let U=P*x-y.top;for(let j=0;j<A;++j){let q=j*b-y.left;for(let X=0;X<m;++X){let te=Number.MIN_SAFE_INTEGER,ne=U<0?0:U,se=q<0?0:q;for(let re=0;re<v;++re){let Q=U+re*S;if(Q>=0&&Q<h)for(let le=0;le<k;++le){let ue=q+le*C;if(ue>=0&&ue<f){let he=c[T][Q][ue][X]+d[re][le][X];he>te&&(te=he,ne=Q,se=ue)}}}E[T][ne][se][X]+=O[T][P][j][X]}}}return{dataId:u.write(w.toTypedArray(E,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function ud(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Se(r,"sum");let i;r.dtype==="bool"?i=fa({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=pr({inputs:{x:r},backend:n});let l=i.shape.length,u=w.parseAxisParam(a,i.shape),c=_.getAxesPermutation(u,l),d=u,p=i;c!=null&&(p=As({inputs:{x:i},backend:n,attrs:{perm:c}}),d=_.getInnerMostAxes(d.length,l)),_.assertAxesAreInnerMostDims("sum",d,p.shape.length);let[h,f]=_.computeOutAndReduceShapes(p.shape,d),m=_.upcastType(p.dtype,"int32"),g=_f(n,h,m),A=w.sizeFromShape(f),y=n.data.get(g.dataId).values,x=n.data.get(p.dataId).values;for(let b=0;b<y.length;++b){let v=b*A,k=0;for(let S=0;S<A;++S)k+=x[v+S];y[b]=k}if(o){let b=_.expandShapeToKeepDim(g.shape,u),v=g;g=wt({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(v)}return n.disposeIntermediateTensorInfo(i),c!=null&&n.disposeIntermediateTensorInfo(p),g}var NU={kernelName:vo,backendName:"cpu",kernelFunc:ud};function EU(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=_.decodeEinsumEquation(r,a.length);_.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=_.getEinsumComputePath(i,l),d=c.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of c[m]){let{permutationIndices:A,expandDims:y}=_.getEinsumPermutation(h,l[g]),x;_.isIdentityPermutation(A)?x=a[g]:(x=As({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);w.arraysEqual(x.shape,b)||(x=wt({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=Ff({inputs:{a:x,b:p},backend:n}),f.push(p))}m<d-1&&(u[m]>=0&&(p=ud({inputs:{x:p},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var RU={kernelName:Sp,backendName:"cpu",kernelFunc:EU};function DU(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Se([s,r],"eluGrad");let a=new Float32Array(w.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let u=o[l];u>=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",a)}var _U={kernelName:Cp,backendName:"cpu",kernelFunc:DU},FU=_.ERF_P,$U=_.ERF_A1,OU=_.ERF_A2,PU=_.ERF_A3,MU=_.ERF_A4,zU=_.ERF_A5,LU=ct(ji,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+FU*n);return t*(1-((((zU*s+MU)*s+PU)*s+OU)*s+$U)*s*Math.exp(-n*n))}),BU={kernelName:ji,backendName:"cpu",kernelFunc:LU};function Of(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),wt({inputs:{x:r},backend:n,attrs:{shape:i}})}var WU={kernelName:Xi,backendName:"cpu",kernelFunc:Of},VU=Ht((e,t)=>e/t),J2=on(Ua,VU),Q2={kernelName:Ua,backendName:"cpu",kernelFunc:J2};function Hw(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[r,a],c=w.sizeFromShape(u),d=w.getTypedArrayFromDType("float32",c),p=w.getTypedArrayFromDType("float32",c);for(let g=0;g<r;g++){let A=ri({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=ri({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=rs({inputs:{real:A,imag:y},backend:n}),{real:b,imag:v}=UU(x,t,n),k=_.mergeRealAndImagArrays(b,v);for(let S=0;S<a;S++){let C=_.getComplexWithIndex(k,S);d[g*a+S]=C.real,p[g*a+S]=C.imag}n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",d),f=n.makeTensorInfo(u,"float32",p),m=rs({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function UU(e,t,n){let s=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(HU(s)){let i=ey(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",i.real),c=n.makeTensorInfo(l,"float32",i.imag),d=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),p=pr({inputs:{x:d},backend:n}),h=Q2.kernelFunc({inputs:{a:u,b:d},backend:n}),f=Q2.kernelFunc({inputs:{a:c,b:p},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=_.mergeRealAndImagArrays(a,o),l=GU(i,s,t);return _.splitRealAndImagArrays(l)}}function HU(e){return(e&e-1)==0}function ey(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=_.mergeRealAndImagArrays(e,t),o=n/2,i=_.complexWithEvenIndex(a),l=i.real,u=i.imag,c=[l.length],d=r.makeTensorInfo(c,"float32",l),p=r.makeTensorInfo(c,"float32",u),h=rs({inputs:{real:d,imag:p},backend:r}),f=_.complexWithOddIndex(a),m=f.real,g=f.imag,A=[m.length],y=r.makeTensorInfo(A,"float32",m),x=r.makeTensorInfo(A,"float32",g),b=rs({inputs:{real:y,imag:x},backend:r}),v=ey(l,u,o,s,r),k=v.real,S=v.imag,C=[k.length],D=r.makeTensorInfo(C,"float32",k),O=r.makeTensorInfo(C,"float32",S),E=rs({inputs:{real:D,imag:O},backend:r}),R=ey(m,g,o,s,r),T=R.real,P=R.imag,U=[T.length],j=r.makeTensorInfo(U,"float32",T),q=r.makeTensorInfo(U,"float32",P),X=rs({inputs:{real:j,imag:q},backend:r}),te=_.exponents(n,s),ne=[te.real.length],se=r.makeTensorInfo(ne,"float32",te.real),re=r.makeTensorInfo(ne,"float32",te.imag),Q=rs({inputs:{real:se,imag:re},backend:r}),le=Ff({inputs:{a:Q,b:X},backend:r}),ue=id({inputs:{a:E,b:le},backend:r}),he=K2({inputs:{a:E,b:le},backend:r}),ye=si({inputs:{input:ue},backend:r}),Ne=si({inputs:{input:he},backend:r}),Ee=du({inputs:{input:ue},backend:r}),$e=du({inputs:{input:he},backend:r}),Be=pu({inputs:[ye,Ne],backend:r,attrs:{axis:0}}),Me=pu({inputs:[Ee,$e],backend:r,attrs:{axis:0}}),ht=r.data.get(Be.dataId).values,at=r.data.get(Me.dataId).values;return r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(D),r.disposeIntermediateTensorInfo(O),r.disposeIntermediateTensorInfo(E),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(re),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(le),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(he),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(Ee),r.disposeIntermediateTensorInfo(Ne),r.disposeIntermediateTensorInfo($e),r.disposeIntermediateTensorInfo(Be),r.disposeIntermediateTensorInfo(Me),{real:ht,imag:at}}function GU(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=_.exponent(r*i,t,n),u=_.getComplexWithIndex(e,i);a+=u.real*l.real-u.imag*l.imag,o+=u.real*l.imag+u.imag*l.real}n&&(a/=t,o/=t),_.assignToTypedArray(s,a,o,r)}return s}function jU(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=wt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=Hw(i,!1,n),u=wt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var qU={kernelName:Tp,backendName:"cpu",kernelFunc:jU};function ty(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||w.inferDtype(r),i=w.getArrayFromDType(o,w.sizeFromShape(s));return KU(i,r,o),t.makeTensorInfo(s,o,i)}var XU={kernelName:ec,backendName:"cpu",kernelFunc:ty};function KU(e,t,n){e.fill(t)}var ZU={kernelName:Zi,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[o,i,l,u]=s.shape,c=r.data.get(s.dataId).values;for(let p=0;p<o;p++){let h=p*l*i*u;for(let f=0;f<i;f++){let m=f*(l*u);for(let g=0;g<l;g++){let A=g*u;for(let y=0;y<u;y++){let x=Math.round(l-g-1),b=h+m+A+y,v=c[b];if(x>=0&&x<l){let k=x*u,S=h+m+k+y;v=c[S]}a[b]=v}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},YU=Ht((e,t)=>Math.floor(e/t)),JU=on(qa,YU,null,"int32"),QU={kernelName:qa,backendName:"cpu",kernelFunc:JU};function eH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=Vw({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=id({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Z2(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var tH={kernelName:Eo,backendName:"cpu",kernelFunc:eH};function nH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=Uw({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:p}});if(o){let g=m;m=id({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Z2(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var sH={kernelName:Ro,backendName:"cpu",kernelFunc:nH};function rH(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=w.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,u,c,d]=_.prepareAndValidate(s,r);if(u===0)return n.makeTensorInfo(l,s.dtype,[]);let p=n.data.get(r.dataId).values,h=n.bufferSync(s),f=ow(p,h,s.dtype,u,i,c,d,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var aH={kernelName:Ji,backendName:"cpu",kernelFunc:rH};function oH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Se([r,a],"gatherV2");let l=i;i==null&&(l=0);let u=w.sizeFromShape(a.shape),c=w.parseAxisParam(o,r.shape)[0],d=_.segment_util.collectGatherOpShapeInfo(r,a,c,l),p=wt({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),h=wt({inputs:{x:a},backend:n,attrs:{shape:[d.batchSize,u/d.batchSize]}}),f=[d.batchSize,d.outerSize,u/d.batchSize,d.sliceSize],m=n.bufferSync(h),g=n.bufferSync(p),A=iw(g,m,f);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(d.outputShape,A.dtype,A.values)}var iH={kernelName:Yi,backendName:"cpu",kernelFunc:oH};function lH(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=wt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=Hw(i,!0,n),u=wt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var uH={kernelName:Np,backendName:"cpu",kernelFunc:lH},cH=ct(el,e=>Number.isFinite(e)?1:0,"bool"),dH={kernelName:el,backendName:"cpu",kernelFunc:cH},pH=ct(tl,e=>Math.abs(e)===1/0?1:0,"bool"),hH={kernelName:tl,backendName:"cpu",kernelFunc:pH},fH=ct(nl,e=>Number.isNaN(e)?1:0,"bool"),mH={kernelName:nl,backendName:"cpu",kernelFunc:fH};function gH(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=pw(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var AH={kernelName:Rp,backendName:"cpu",kernelFunc:gH},yH=ct(al,e=>Math.log1p(e)),xH={kernelName:al,backendName:"cpu",kernelFunc:yH},bH=Ht((e,t)=>e&&t),vH=on(ol,bH,null,"bool"),wH={kernelName:ol,backendName:"cpu",kernelFunc:vH},kH=ct(tc,e=>e?0:1,"bool"),IH={kernelName:tc,backendName:"cpu",kernelFunc:kH},SH=Ht((e,t)=>e||t),CH=on(nc,SH,null,"bool"),TH={kernelName:nc,backendName:"cpu",kernelFunc:CH};function NH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Se(r,"LRN");let u=r.shape[3],c=u-1,d=n.data.get(r.dataId).values,p=w.sizeFromShape(r.shape),h=new Float32Array(p);function f(m){let g=m%u,A=m-g+Math.max(0,g-a),y=m-g+Math.min(g+a,c),x=0;for(;A<=y;A++){let b=d[A];x+=b*b}return x}for(let m=0;m<p;m++){let g=f(m),A=d[m]*Math.pow(o+i*g,-l);h[m]=A}return n.makeTensorInfo(r.shape,r.dtype,h)}var EH={kernelName:sc,backendName:"cpu",kernelFunc:NH};function RH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s;Se(o,"LRNGrad");let d=w.sizeFromShape(o.shape),p=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(d),A=d;for(let y=0;y<A;y++){let x=y%p,b=y-x+Math.max(0,x-i),v=y-x+Math.min(p,x+i+1),k=0;for(let S=b;S<v;S++)k+=Math.pow(f[S],2);k=u*k+l;for(let S=b;S<v;S++){let C=-2*u*c*f[S]*m[y]/k;y===S&&(C+=Math.pow(k,-c)),C*=h[y],g[S]+=C}}return n.makeTensorInfo(o.shape,r.dtype,g)}var DH={kernelName:Dp,backendName:"cpu",kernelFunc:RH};function Gw(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,u=l.length,c=w.parseAxisParam(a,l),d=c,p=_.getAxesPermutation(d,u),h=i.data.get(r.dataId).values;if(p!=null){let b=new Array(u);for(let v=0;v<b.length;v++)b[v]=l[p[v]];h=j2(h,l,r.dtype,p,b),d=_.getInnerMostAxes(d.length,u),l=b}Se(r,"max"),_.assertAxesAreInnerMostDims("max",d,u);let[f,m]=_.computeOutAndReduceShapes(l,d),g=w.sizeFromShape(m),A=fw(h,g,f,r.dtype),y=i.write(A,f,r.dtype),x=f;return o&&(x=_.expandShapeToKeepDim(f,c)),{dataId:y,shape:x,dtype:r.dtype}}var _H={kernelName:Qa,backendName:"cpu",kernelFunc:Gw};function FH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Se(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;w.assert(_.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=_.computePool2DInfo(r.shape,a,o,u,i,l),d;if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))d=pr({inputs:{x:r},backend:n});else{let p=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=Y2(p,r.shape,r.dtype,h,c,"max");d=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return d}var $H={kernelName:to,backendName:"cpu",kernelFunc:FH};function OH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Se(r,"maxPool3d");let c=_.computePool3DInfo(r.shape,a,o,1,i,l,u),d=n.data.get(r.dataId).values,p=Ww(d,r.shape,r.dtype,w.computeStrides(r.shape),c,"max");return n.makeTensorInfo(p.shape,"float32",p.values)}var PH={kernelName:rc,backendName:"cpu",kernelFunc:OH};function MH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Se([r,a],"maxPool3DGrad");let c=_.computePool3DInfo(a.shape,o,i,1,l,u),d=n.bufferSync(a),p=CV(d,c),h=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,A=c.dilationHeight,y=c.dilationWidth,x=c.effectiveFilterDepth,b=c.effectiveFilterHeight,v=c.effectiveFilterWidth,k=x-1-c.padInfo.front,S=v-1-c.padInfo.left,C=b-1-c.padInfo.top,D=je(a.shape,"float32"),O=n.bufferSync(r);for(let E=0;E<c.batchSize;++E)for(let R=0;R<c.inChannels;++R)for(let T=0;T<c.inDepth;++T)for(let P=0;P<c.inHeight;++P)for(let U=0;U<c.inWidth;++U){let j=T-k,q=P-C,X=U-S,te=0;for(let ne=0;ne<x;ne+=g){let se=(j+ne)/h;if(!(se<0||se>=c.outDepth||Math.floor(se)!==se))for(let re=0;re<b;re+=A){let Q=(q+re)/f;if(!(Q<0||Q>=c.outHeight||Math.floor(Q)!==Q))for(let le=0;le<v;le+=y){let ue=(X+le)/m;if(ue<0||ue>=c.outWidth||Math.floor(ue)!==ue)continue;let he=x*b*v-1-p.get(E,se,Q,ue,R),ye=ne*b*v+re*v+le,Ne=he===ye?1:0;if(Ne===0)continue;te+=O.get(E,se,Q,ue,R)*Ne}}}D.set(te,E,T,P,U,R)}return n.makeTensorInfo(D.shape,D.dtype,D.values)}var zH={kernelName:Fp,backendName:"cpu",kernelFunc:MH};function LH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Se([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=s,p=_.computePool2DInfo(i.shape,l,u,1,c,d),h=n.data.get(i.dataId).values,f=je(p.outShape,i.dtype,Bw(h,i.shape,i.dtype,p).values),m=p.strideHeight,g=p.strideWidth,A=p.dilationHeight,y=p.dilationWidth,x=p.effectiveFilterHeight,b=p.effectiveFilterWidth,v=b-1-p.padInfo.left,k=x-1-p.padInfo.top,S=je(i.shape,"float32"),C=n.data.get(r.dataId).values,D=je(r.shape,"float32",C);for(let O=0;O<p.batchSize;++O)for(let E=0;E<p.inChannels;++E)for(let R=0;R<p.inHeight;++R)for(let T=0;T<p.inWidth;++T){let P=R-k,U=T-v,j=0;for(let q=0;q<x;q+=A){let X=(P+q)/m;if(!(X<0||X>=p.outHeight||Math.floor(X)!==X))for(let te=0;te<b;te+=y){let ne=(U+te)/g;if(ne<0||ne>=p.outWidth||Math.floor(ne)!==ne)continue;let se=x*b-1-f.get(O,X,ne,E),re=q*b+te,Q=se===re?1:0;if(Q===0)continue;j+=D.get(O,X,ne,E)*Q}}S.set(j,O,R,T,E)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var BH={kernelName:_p,backendName:"cpu",kernelFunc:LH};function WH(e,t,n,s,r){let a=w.computeStrides(t),o=Y2(e,t,n,a,r,"max"),i=Bw(e,t,n,r,!0,s);return[o.values,i.values]}var VH={kernelName:$p,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Se(s,"MaxPoolWithArgmax");let u=l.data.get(s.dataId).values,c=_.computePool2DInfo(s.shape,r,a,[1,1],o),[d,p]=WH(u,s.shape,s.dtype,i,c),h=l.write(d,c.outShape,s.dtype),f=l.write(p,c.outShape,s.dtype);return[{dataId:h,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function UH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=w.parseAxisParam(a,r.shape),u=_.computeOutAndReduceShapes(r.shape,i)[1],c=w.sizeFromShape(u),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([c]));d.push(p);let h=fa({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(h);let f=J2({inputs:{a:h,b:p},backend:n});d.push(f);let m=ud({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return d.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var HH={kernelName:no,backendName:"cpu",kernelFunc:UH};function GH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Se(r,"min");let i=w.parseAxisParam(a,r.shape),l=i,u=_.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=As({inputs:{x:r},backend:n,attrs:{perm:u}}),l=_.getInnerMostAxes(l.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",l,c.shape.length);let[d,p]=_.computeOutAndReduceShapes(c.shape,l),h=w.sizeFromShape(p),f=w.makeZerosTypedArray(w.sizeFromShape(d),c.dtype),m=n.data.get(c.dataId).values;for(let A=0;A<f.length;++A){let y=A*h,x=m[y];for(let b=0;b<h;++b){let v=m[y+b];(Number.isNaN(v)||v<x)&&(x=v)}f[A]=x}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(d,c.dtype,f);if(o){let A=_.expandShapeToKeepDim(d,i),y=wt({inputs:{x:g},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(g),y}return g}var jH={kernelName:so,backendName:"cpu",kernelFunc:GH};function qH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Se(r,"mirrorPad");let i=a.map((x,b)=>x[0]+r.shape[b]+x[1]),l=a.map(x=>x[0]),u=a.map((x,b)=>x[0]+r.shape[b]),c=o==="reflect"?0:1,d=n.data.get(r.dataId).values,p=r.shape.length,h=w.computeStrides(r.shape),f=w.sizeFromShape(i),m=i.length,g=w.computeStrides(i),A=w.getTypedArrayFromDType(r.dtype,f);for(let x=0;x<f;x++){let b=w.indexToLoc(x,m,g);for(let k=0;k<m;k++)b[k]<l[k]?b[k]=l[k]*2-b[k]-c:b[k]>=u[k]&&(b[k]=(u[k]-1)*2-b[k]+c);b=b.map((k,S)=>k-l[S]);let v=w.locToIndex(b,p,h);A[x]=d[v]}return{dataId:n.write(A,i,r.dtype),shape:i,dtype:r.dtype}}var XH={kernelName:ao,backendName:"cpu",kernelFunc:qH},KH=Ht((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),ZH=on(il,KH),YH={kernelName:il,backendName:"cpu",kernelFunc:ZH},JH=Na(Hx());function jw(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=w.parseAxisParam([i],r.shape),u=Gw({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=_.expandShapeToKeepDim(u.shape,l),d=wt({inputs:{x:u},backend:n,attrs:{shape:c}}),p=K2({inputs:{a:r,b:d},backend:n}),h=sw({inputs:{x:p},backend:n}),f=ud({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=wt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=J2({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var QH={kernelName:wo,backendName:"cpu",kernelFunc:jw};function eG(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Se(r,"multinomial");let l=i?r:jw({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],d=n.data.get(l.dataId).values,p=[u,a],h=w.makeZerosTypedArray(w.sizeFromShape(p),"int32");for(let f=0;f<u;++f){let m=f*c,g=new Float32Array(c-1);g[0]=d[m];for(let x=1;x<g.length;++x)g[x]=g[x-1]+d[m+x];let A=JH.alea(o.toString()),y=f*a;for(let x=0;x<a;++x){let b=A();h[y+x]=g.length;for(let v=0;v<g.length;v++)if(b<g[v]){h[y+x]=v;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(p,"int32",h)}var tG={kernelName:Op,backendName:"cpu",kernelFunc:eG},nG=or.nonMaxSuppressionV3Impl;function sG(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Se(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,{selectedIndices:d}=nG(u,c,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var rG={kernelName:cl,backendName:"cpu",kernelFunc:sG},aG=or.nonMaxSuppressionV4Impl;function oG(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s;Se(r,"NonMaxSuppressionPadded");let c=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,{selectedIndices:p,validOutputs:h}=aG(c,d,o,i,l,u);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var iG={kernelName:dl,backendName:"cpu",kernelFunc:oG},lG=or.nonMaxSuppressionV5Impl;function uG(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s;Se(r,"NonMaxSuppressionWithScore");let c=n.data.get(r.dataId).values,d=n.data.get(a.dataId).values,p=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:A}=lG(c,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var cG={kernelName:pl,backendName:"cpu",kernelFunc:uG};function dG(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;Se(r,"oneHot");let l=w.sizeFromShape(r.shape),u=new Float32Array(l*a);u.fill(i);let c=n.data.get(r.dataId).values;for(let d=0;d<l;++d)c[d]>=0&&c[d]<a&&(u[d*a+c[d]]=o);return n.makeTensorInfo([...r.shape,a],"int32",u)}var pG={kernelName:io,backendName:"cpu",kernelFunc:dG};function Pf(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=si({inputs:{input:s},backend:n}),a=Pf({inputs:{x:r},backend:n}),o=du({inputs:{input:s},backend:n}),i=Pf({inputs:{x:o},backend:n}),l=rs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return ty({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var hG={kernelName:Dl,backendName:"cpu",kernelFunc:Pf};function qw(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=si({inputs:{input:s},backend:n}),a=qw({inputs:{x:r},backend:n}),o=du({inputs:{input:s},backend:n}),i=Pf({inputs:{x:o},backend:n}),l=rs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return ty({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var fG={kernelName:hl,backendName:"cpu",kernelFunc:qw};function Xw(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Of({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=Of({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=pu({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var mG={kernelName:fl,backendName:"cpu",kernelFunc:Xw};function gG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Se(r,"pad");let i=a.map((y,x)=>y[0]+r.shape[x]+y[1]),l=a.map(y=>y[0]),u=n.data.get(r.dataId).values,c=w.sizeFromShape(r.shape),d=r.shape.length,p=w.computeStrides(r.shape),h=w.sizeFromShape(i),f=i.length,m=w.computeStrides(i),g=w.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let y=0;y<c;y++){let b=w.indexToLoc(y,d,p).map((k,S)=>k+l[S]),v=w.locToIndex(b,f,m);g[v]=u[y]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var Kw={kernelName:lo,backendName:"cpu",kernelFunc:gG},AG=Ht((e,t)=>Math.pow(e,t)),yG=on(uo,AG),xG={kernelName:uo,backendName:"cpu",kernelFunc:yG};function bG(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=q2(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var vG={kernelName:ac,backendName:"cpu",kernelFunc:bG},wG=ct(gl,e=>1/e),kG={kernelName:gl,backendName:"cpu",kernelFunc:wG};function IG(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Se(r,"resizeBilinear");let l=w.computeStrides(r.shape),[u,c]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([d,u,c,f])),A=[a&&u>1?p-1:p,a&&c>1?h-1:h],y=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=0,b=A[0]/y[0],v=A[1]/y[1];for(let k=0;k<d;k++)for(let S=0;S<u;S++){let C;o?C=b*(S+.5)-.5:C=b*S;let D=Math.max(0,Math.floor(C)),O=C-D,E=Math.min(p-1,Math.ceil(C)),R=k*l[0]+D*l[1],T=k*l[0]+E*l[1];for(let P=0;P<c;P++){let U;o?U=v*(P+.5)-.5:U=v*P;let j=Math.max(0,Math.floor(U)),q=U-j,X=Math.min(h-1,Math.ceil(U)),te=R+j*l[2],ne=T+j*l[2],se=R+X*l[2],re=T+X*l[2];for(let Q=0;Q<f;Q++){let le=m[te+Q],ue=m[ne+Q],he=m[se+Q],ye=m[re+Q],Ne=le+(he-le)*q,Ee=ue+(ye-ue)*q,$e=Ne+(Ee-Ne)*O;g[x++]=$e}}}return n.makeTensorInfo([d,u,c,f],"float32",g)}var SG={kernelName:ho,backendName:"cpu",kernelFunc:IG};function CG(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Se([a,r],"resizeBilinearGrad");let i=w.computeStrides(r.shape),[l,u,c,d]=r.shape,[,p,h]=a.shape,f=new Float32Array(l*u*c*d),m=[o&&p>1?u-1:u,o&&h>1?c-1:c],g=[o&&p>1?p-1:p,o&&h>1?h-1:h],A=m[0]/g[0],y=m[1]/g[1],x=n.data.get(a.dataId).values,b=0;for(let v=0;v<l;v++){let k=v*i[0];for(let S=0;S<p;S++){let C=S*A,D=Math.floor(C),O=Math.min(Math.ceil(C),u-1),E=k+D*i[1],R=k+O*i[1],T=C-D,P=1-T;for(let U=0;U<h;U++){let j=U*y,q=Math.floor(j),X=Math.min(Math.ceil(j),c-1),te=j-q,ne=1-te,se=E+q*i[2],re=E+X*i[2],Q=R+q*i[2],le=R+X*i[2],ue=P*ne,he=P*te,ye=T*ne,Ne=T*te;for(let Ee=0;Ee<d;Ee++){let $e=x[b++];f[se+Ee]+=$e*ue,f[re+Ee]+=$e*he,f[Q+Ee]+=$e*ye,f[le+Ee]+=$e*Ne}}}}return n.makeTensorInfo([l,c,u,d],"float32",f)}var TG={kernelName:zp,backendName:"cpu",kernelFunc:CG};function NG(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Se(r,"resizeNearestNeighbor");let l=w.computeStrides(r.shape),[u,c]=i,[d,p,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(d*u*c*f),A=[a&&u>1?p-1:p,a&&c>1?h-1:h],y=[a&&u>1?u-1:u,a&&c>1?c-1:c],x=A[0]/y[0],b=A[1]/y[1],v=0;for(let k=0;k<d;k++){let S=k*l[0];for(let C=0;C<u;C++){let D=o?x*(C+.5):x*C,O=Math.min(p-1,a?Math.round(D):Math.floor(D));o&&(O=Math.max(0,O));let E=S+O*l[1];for(let R=0;R<c;R++){let T=o?b*(R+.5):b*R,P=Math.min(h-1,a?Math.round(T):Math.floor(T));o&&(P=Math.max(0,P));let U=E+P*l[2];for(let j=0;j<f;j++){let q=m[U+j];g[v++]=q}}}}return n.makeTensorInfo([d,u,c,f],r.dtype,g)}var EG={kernelName:oc,backendName:"cpu",kernelFunc:NG};function RG(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Se([a,r],"resizeNearestNeighborGrad");let i=w.computeStrides(r.shape),l=w.computeStrides(a.shape),[u,c,d,p]=r.shape,[,h,f]=a.shape,m=new Float32Array(u*c*d*p),g=n.data.get(a.dataId).values,A=[o&&h>1?c-1:c,o&&f>1?d-1:d],y=[o&&h>1?h-1:h,o&&f>1?f-1:f],x=A[0]/y[0],b=A[1]/y[1],v=1/x,k=1/b,S=Math.ceil(v)*2+2,C=Math.ceil(k)*2+2;for(let D=0;D<u;D++){let O=D*i[0];for(let E=0;E<c;E++){let R=O+E*i[1],T=Math.floor(E*v),P=Math.floor(T-S/2);for(let U=0;U<d;U++){let j=R+U*i[2],q=Math.floor(U*k),X=Math.floor(q-C/2);for(let te=0;te<p;te++){let ne=0;for(let se=0;se<S;se++){let re=se+P;if(re<0||re>=h)continue;let Q=O+re*l[1],le=re*x,ue=Math.min(c-1,o?Math.round(le):Math.floor(le));if(E===ue)for(let he=0;he<C;he++){let ye=he+X;if(ye<0||ye>=f)continue;let Ne=Q+ye*l[2],Ee=ye*b,$e=Math.min(d-1,o?Math.round(Ee):Math.floor(Ee));U===$e&&(ne+=g[Ne+te])}}m[j+te]=ne}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var DG={kernelName:Mp,backendName:"cpu",kernelFunc:RG};function _G(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Se(r,"reverse");let o=r.shape.length,i=w.parseAxisParam(a,r.shape);if(o===0)return pr({inputs:{x:r},backend:n});let l=new Xt(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;c<l.size;c++){let d=l.indexToLoc(c),p=d.slice();i.forEach(h=>p[h]=r.shape[h]-1-p[h]),l.set(u.get(...p),...d)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var FG={kernelName:mo,backendName:"cpu",kernelFunc:_G},$G={kernelName:_l,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[u,c,d,p]=s.shape,[h,f]=_.getImageCenter(o,c,d),m=255,g=Math.sin(r),A=Math.cos(r),y=i.data.get(s.dataId).values;for(let b=0;b<u;b++){let v=b*d*c*p;for(let k=0;k<c;k++){let S=k*(d*p);for(let C=0;C<d;C++){let D=C*p;for(let O=0;O<p;O++){let E=[u,k,C,O],R=E[2],T=E[1],P=(R-h)*A-(T-f)*g,U=(R-h)*g+(T-f)*A;P=Math.round(P+h),U=Math.round(U+f);let j=a;if(typeof a!="number"&&(O===3?j=m:j=a[O]),P>=0&&P<d&&U>=0&&U<c){let X=U*(d*p),te=P*p,ne=v+X+te+O;j=y[ne]}let q=v+S+D+O;l[q]=j}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},OG=ct(go,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),PG={kernelName:go,backendName:"cpu",kernelFunc:OG};function Zw(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],d=e.values,p=t.values;if(s===0)return je(n,t.dtype);let h=je(c,t.dtype);h.values.fill(l);for(let f=0;f<a;f++){let m=[],g=0;for(let A=0;A<o;A++){let y=d[f*o+A];m.push(y),g+=y*i[A]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let A=0;A<r;A++)u?h.values[g*r+A]+=p[f*r+A]:h.values[g*r+A]=t.rank===0?p[0]:p[f*r+A]}return h}function MG(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:d}=_.calculateShapes(a,r,o),p=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=Zw(h,f,o,d,u,l,i,c,0,p);return n.makeTensorInfo(o,m.dtype,m.values)}var zG={kernelName:yl,backendName:"cpu",kernelFunc:MG};function LG(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Se([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=Ts(r.dtype,a.dtype),d=w.makeZerosTypedArray(w.sizeFromShape(r.shape),c),p=0,h=o===0||o>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?d[p++]=l[f]:d[p++]=u[f];return n.makeTensorInfo(r.shape,c,d)}var BG={kernelName:xl,backendName:"cpu",kernelFunc:LG},WG=_.SELU_SCALEALPHA,VG=_.SELU_SCALE,UG=ct(bl,e=>e>=0?VG*e:WG*(Math.exp(e)-1)),HG={kernelName:bl,backendName:"cpu",kernelFunc:UG},GG=ct(kl,e=>e<0?-1:e>0?1:0),jG={kernelName:kl,backendName:"cpu",kernelFunc:GG},qG=ct(yo,e=>Math.sin(e)),XG={kernelName:yo,backendName:"cpu",kernelFunc:qG},KG=ct(wl,e=>Math.sinh(e)),ZG={kernelName:wl,backendName:"cpu",kernelFunc:KG},YG=11920928955078125e-23,Yw=Math.log(YG)+2,JG=ct(Il,e=>{let t=e>-Yw,n=e<Yw,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),QG={kernelName:Il,backendName:"cpu",kernelFunc:JG};function ej(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Se([r],"spaceToBatchND");let i=w.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=Kw.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=_.getReshaped(u.shape,a,i,!1),d=_.getPermuted(c.length,a.length,!1),p=_.getReshapedPermuted(u.shape,a,i,!1),m=wt({inputs:{x:u},backend:n,attrs:{shape:c}}),y=As({inputs:{x:m},backend:n,attrs:{perm:d}}),v=wt({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),v}var tj={kernelName:Sl,backendName:"cpu",kernelFunc:ej};function nj(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[d,p,h,f,m]=ww(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var sj={kernelName:Lp,backendName:"cpu",kernelFunc:nj};function rj(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,d]=kw(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var aj={kernelName:Bp,backendName:"cpu",kernelFunc:rj};function oj(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=X2(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var ij={kernelName:Wp,backendName:"cpu",kernelFunc:oj};function lj(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=X2(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var uj={kernelName:Vp,backendName:"cpu",kernelFunc:lj};function cj(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:p}=_.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m=n.bufferSync(a),g=n.data.get(o.dataId).values[0],A=Zw(f,m,i,p,c,u,l,d,g,h);return n.makeTensorInfo(i,A.dtype,A.values)}var dj={kernelName:Up,backendName:"cpu",kernelFunc:cj};function pj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=w.parseAxisParam(o,r.shape)[0],l=_.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(d=>{let p=[...c];p[i]=d;let h=ri({inputs:{x:r},backend:n,attrs:{begin:u,size:p}});return u[i]+=d,h})}var hj={kernelName:Cl,backendName:"cpu",kernelFunc:pj},fj={kernelName:ic,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Se(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},mj=ct(Kr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),gj={kernelName:Kr,backendName:"cpu",kernelFunc:mj};function Aj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:p}=s;Se(r,"stridedSlice");let{nonStrided:h,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=kn.sliceInfo(r.shape,a,o,i,l,u,c,d,p),x=wt({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(h){let k=ri({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=wt({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else{let k=n.bufferSync(x),S=Sw(y,k,m,f);b=n.makeTensorInfo(S.shape,S.dtype,S.values)}let v=wt({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var yj={kernelName:Tl,backendName:"cpu",kernelFunc:Aj};function xj(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:d}=t,p=n.data.get(c.dataId).values,h=n.data.get(d.dataId).values,[f,m]=Cw(p,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var bj={kernelName:Hp,backendName:"cpu",kernelFunc:xj};function vj(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,d]=Tw(i,l,r),p=c.length;return[n.makeTensorInfo([p,2],"int32",u),n.makeTensorInfo([p],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var wj={kernelName:Gp,backendName:"cpu",kernelFunc:vj};function kj(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=Nw(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Ij={kernelName:jp,backendName:"cpu",kernelFunc:kj},Sj=ct(So,e=>Math.tan(e)),Cj={kernelName:So,backendName:"cpu",kernelFunc:Sj},Tj=ct(Co,e=>Math.tanh(e)),Nj={kernelName:Co,backendName:"cpu",kernelFunc:Tj};function Ej(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Se(r,"tile");let o=Rw(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var Rj={kernelName:Xr,backendName:"cpu",kernelFunc:Ej};function Dj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Se(r,"topk");let i=n.data.get(r.dataId).values,[l,u]=_w(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var _j={kernelName:Nl,backendName:"cpu",kernelFunc:Dj};function Fj(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,d,p,h]=r.shape,[f,m]=u!=null?u:[d,p],g=[c,f,m,h],A=w.computeStrides(r.shape),y=A[0],x=A[1],b=A[2],v=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));v.fill(l);let k=s.data.get(r.dataId).values,S=s.data.get(a.dataId).values;for(let D=0;D<c;++D){let O=a.shape[0]===1?S:S.subarray(D*8,D*8+8);for(let E=0;E<f;++E)for(let R=0;R<m;++R)for(let T=0;T<h;++T){let P,U=O[6]*R+O[7]*E+1;if(U===0)continue;let j=(O[0]*R+O[1]*E+O[2])/U,q=(O[3]*R+O[4]*E+O[5])/U,X=Jw(j,p,i),te=Jw(q,d,i);switch(o){case"nearest":P=Lj(k,d,p,y,x,b,D,te,X,T,l);break;case"bilinear":P=Bj(k,d,p,y,x,b,D,te,X,T,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let ne=D*y+E*x+R*b+T;v[ne]=P}return s.makeTensorInfo(g,r.dtype,v)}return{dataId:s.write(v,g,r.dtype),shape:r.shape,dtype:r.dtype}}var $j={kernelName:El,backendName:"cpu",kernelFunc:Fj};function Jw(e,t,n){switch(n){case"reflect":return Oj(e,t);case"wrap":return Pj(e,t);case"nearest":return zj(e,t);case"constant":default:return Mj(e,t)}}function Oj(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return w.clamp(0,n,t-1)}function Pj(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return w.clamp(0,n,t-1)}function Mj(e,t){return e}function zj(e,t){return w.clamp(0,e,t-1)}function cd(e,t,n,s,r,a,o,i,l,u,c){let d=o*s+i*r+l*a+u;return 0<=i&&i<t&&0<=l&&l<n?e[d]:c}function Lj(e,t,n,s,r,a,o,i,l,u,c){let d=Math.round(i),p=Math.round(l);return cd(e,t,n,s,r,a,o,d,p,u,c)}function Bj(e,t,n,s,r,a,o,i,l,u,c){let d=Math.floor(i),p=Math.floor(l),h=d+1,f=p+1,m=(f-l)*cd(e,t,n,s,r,a,o,d,p,u,c)+(l-p)*cd(e,t,n,s,r,a,o,d,f,u,c),g=(f-l)*cd(e,t,n,s,r,a,o,h,p,u,c)+(l-p)*cd(e,t,n,s,r,a,o,h,f,u,c);return(h-i)*m+(i-d)*g}function Wj(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Se(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:u}=Fw(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var Vj={kernelName:qp,backendName:"cpu",kernelFunc:Wj};function Uj(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o).fill(0),d=r.shape.slice();d[a]=1;let p=new Array(i);for(let h=0;h<p.length;h++){c[a]=h;let f=ri({inputs:{x:r},backend:n,attrs:{begin:c,size:d}});p[h]=wt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return p}var Hj={kernelName:Rl,backendName:"cpu",kernelFunc:Uj};function Gj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Se(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,u=[],c=[],d=i-l,p=a;for(let f=0;f<d;++f){let m=Of({inputs:{input:p},backend:n,attrs:{dim:f+1}});p=m,c.push(m)}for(let f=0;f<o;++f){let m=w.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),A=tw({inputs:{a:g,b:p},backend:n}),y=fa({inputs:{x:A},backend:n,attrs:{dtype:"float32"}}),x=Ff({inputs:{a:y,b:r},backend:n}),b=ud({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(b),c.push(g),c.push(A),c.push(y),c.push(x),c.push(b)}let h=Xw({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var jj={kernelName:lc,backendName:"cpu",kernelFunc:Gj},qj=[eV,qB,nV,rV,QB,oV,lV,cV,pV,fV,gV,yV,bV,kV,SV,NV,RV,_V,$V,JW,PV,zV,BV,VV,YB,tW,HV,XB,jV,XV,YV,QV,KV,sU,aU,tU,iU,uU,dU,hU,mU,AU,yU,bU,wU,IU,SU,TU,CU,Q2,RU,GW,_U,nW,BU,sW,WU,aW,qU,XU,ZU,iW,QU,tH,sH,aH,iH,uW,dW,KB,uH,qV,dH,hH,mH,jW,hW,mW,AH,AW,xH,wH,IH,TH,EH,DH,xW,$H,PH,zH,BH,VH,_H,HH,jH,vW,XH,YH,tG,kW,SW,rG,iG,cG,TW,pG,fG,mG,Kw,xG,XW,RW,vG,ZB,kG,KW,ZW,YW,SG,TG,EG,DG,FG,$G,PG,_W,zG,BG,HG,$W,jG,XG,ZG,OW,QH,QG,tj,sj,aj,ij,uj,dj,hj,zW,fj,BW,gj,yj,bj,wj,Ij,HW,NU,Cj,Nj,Rj,_j,NW,$j,Vj,Hj,jj,hG];for(let e of qj)Do(e);var Qw={};Le(Qw,{assertNotComplex:()=>fu,bindCanvasToFramebuffer:()=>aq,bindColorTextureToFramebuffer:()=>Bf,bindTextureToProgramUniformSampler:()=>f6,bindTextureUnit:()=>d6,bindVertexBufferToProgramAttribute:()=>ry,callAndCheck:()=>ke,canBeRepresented:()=>e6,createFragmentShader:()=>s6,createFramebuffer:()=>c6,createProgram:()=>r6,createStaticIndexBuffer:()=>i6,createStaticVertexBuffer:()=>o6,createTexture:()=>l6,createVertexShader:()=>n6,getBatchDim:()=>oi,getExtensionOrThrow:()=>hd,getFramebufferErrorMessage:()=>m6,getMaxTexturesInShader:()=>x6,getNumChannels:()=>sq,getProgramUniformLocation:()=>h6,getProgramUniformLocationOrThrow:()=>p6,getRowsCols:()=>ii,getShapeAs3D:()=>Wf,getTextureShapeFromLogicalShape:()=>A6,getWebGLDisjointQueryTimerVersion:()=>b6,getWebGLErrorMessage:()=>t6,getWebGLMaxTextureSize:()=>y6,hasExtension:()=>xs,isCapableOfRenderingToFloatTexture:()=>v6,isDownloadFloatTextureEnabled:()=>w6,isReshapeFree:()=>md,isWebGLFenceEnabled:()=>k6,isWebGLVersionEnabled:()=>oy,linkProgram:()=>a6,resetMaxTextureSize:()=>oq,resetMaxTexturesInShader:()=>iq,unbindColorTextureFromFramebuffer:()=>ay,unbindTextureUnit:()=>rq,validateFramebuffer:()=>fd,validateProgram:()=>Lf,validateTextureSize:()=>u6});var ai={},ny={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Mf(e,t){ai[e]=t}function hr(e){if(!(e in ai)){let n=Kj(e);if(n!==null)ai[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=ai[e];return t.isContextLost()?(delete ai[e],hr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),ai[e])}function Xj(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function Kj(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=Xj(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete ai[e]},!1),e===1?t.getContext("webgl",ny)||t.getContext("experimental-webgl",ny):t.getContext("webgl2",ny)}var dd;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(dd||(dd={}));var ys;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(ys||(ys={}));var hn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(hn||(hn={}));function pd(e,t){return[t,e]}function Zj(e,t){return e*t}function zf(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function hu(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function Yj(e,t){let[n,s]=hu(e,t);return n*s*4}function sy(e,t){let n=e,s,r,a,o,i,l,u,c,d,p;return Y().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,d=n.HALF_FLOAT,p=n.FLOAT):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,d=t!=null?t.HALF_FLOAT_OES:null,p=e.FLOAT),l=e.RGBA,{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:d,textureTypeFloat:p}}function ke(e,t){let n=t();return Y().getBool("DEBUG")&&Jj(e),n}function Jj(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+t6(e,t))}var Qj=596e-10,eq=65504;function e6(e){return!!(Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||Qj<Math.abs(e)&&Math.abs(e)<eq)}function t6(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function hd(e,t){return Or(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function n6(e,t){let n=Or(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ke(e,()=>e.shaderSource(n,t)),ke(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function s6(e,t){let n=Or(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ke(e,()=>e.shaderSource(n,t)),ke(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw nq(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var tq=/ERROR: [0-9]+:([0-9]+):/g;function nq(e,t){let n=tq.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,o=r.map((d,p)=>w.rightPad((p+1).toString(),a)+d),i=0;for(let d=0;d<o.length;d++)i=Math.max(o[d].length,i);let l=o.slice(0,s-1),u=o.slice(s-1,s),c=o.slice(s);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${w.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function r6(e){return Or(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function a6(e,t){if(ke(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Lf(e,t){if(ke(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function o6(e,t){let n=Or(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ke(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ke(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function i6(e,t){let n=Or(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ke(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ke(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function sq(){return Y().getNumber("WEBGL_VERSION")===2?1:4}function l6(e){return Or(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function u6(e,t){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function c6(e){return Or(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function ry(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(ke(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),ke(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),ke(e,()=>e.enableVertexAttribArray(i)),!0)}function d6(e,t,n){g6(e,n),ke(e,()=>e.activeTexture(e.TEXTURE0+n)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function rq(e,t){g6(e,t),ke(e,()=>e.activeTexture(e.TEXTURE0+t)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function p6(e,t,n){return Or(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function h6(e,t,n){return e.getUniformLocation(t,n)}function f6(e,t,n,s){ke(e,()=>d6(e,t,s)),ke(e,()=>e.uniform1i(n,s))}function aq(e){ke(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ke(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ke(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function Bf(e,t,n){ke(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ke(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function ay(e,t){ke(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ke(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function fd(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+m6(e,t))}function m6(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Or(e,t,n){let s=ke(e,()=>t());if(s==null)throw new Error(n);return s}function g6(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function oi(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function ii(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Wf(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[oi(e),...ii(e)]),t}function A6(e,t=!1){let n=Y().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?w.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let s=w.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=oi(e),a=2,o=2;return e.length&&([a,o]=ii(e)),s=r*(a/2)*(o/2),w.sizeToSquarishShape(s).map(i=>i*2)}return w.sizeToSquarishShape(s)}function Vf(e){return e%2==0}function md(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||Vf(n)&&Vf(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Vf(e[0])&&Vf(t[0])}var Uf,Hf;function y6(e){if(Uf==null){let t=hr(e);Uf=t.getParameter(t.MAX_TEXTURE_SIZE)}return Uf}function oq(){Uf=null}function iq(){Hf=null}function x6(e){if(Hf==null){let t=hr(e);Hf=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Hf)}function b6(e){if(e===0)return 0;let t,n=hr(e);return xs(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:xs(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function xs(e,t){return e.getExtension(t)!=null}function oy(e){try{if(hr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function v6(e){if(e===0)return!1;let t=hr(e);if(e===1){if(!xs(t,"OES_texture_float"))return!1}else if(!xs(t,"EXT_color_buffer_float"))return!1;return iy(t)}function w6(e){if(e===0)return!1;let t=hr(e);if(e===1){if(!xs(t,"OES_texture_float")||!xs(t,"WEBGL_color_buffer_float"))return!1}else{if(xs(t,"EXT_color_buffer_float"))return iy(t);let s="EXT_color_buffer_half_float";if(xs(t,s)){let r=t.getExtension(s);return lq(t,r)}return!1}return iy(t)}function iy(e){let t=sy(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function lq(e,t){let n=sy(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function k6(e){return e!==2?!1:hr(e).fenceSync!=null}function fu(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var De=Y();De.registerFlag("HAS_WEBGL",()=>De.getNumber("WEBGL_VERSION")>0);De.registerFlag("WEBGL_VERSION",()=>oy(2)?2:oy(1)?1:0);De.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);De.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>De.get("WEBGL_VERSION")===2);De.registerFlag("WEBGL_CPU_FORWARD",()=>!0);De.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);De.registerFlag("WEBGL_PACK",()=>De.getBool("HAS_WEBGL"));De.registerFlag("WEBGL_PACK_NORMALIZATION",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_CLIP",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_REDUCE",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_LAZILY_UNPACK",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_CONV_IM2COL",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>y6(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>x6(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=De.getNumber("WEBGL_VERSION");return e===0?0:b6(e)});De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>De.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!yc.isMobile());De.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>v6(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>De.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:De.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));De.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>w6(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_FENCE_API_ENABLED",()=>k6(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>De.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);De.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});De.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>yc.isMobile()&&De.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});De.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);De.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);De.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);De.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function Cn(){let e,t,n,s,r,a,o,i,l,u;return Y().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function li(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function Gf(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function uq(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function cq(e,t,n="index"){let s=e.map((a,o)=>o),r=uq(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function ly(e){let t=w.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function uy(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var I6=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:S6}=_;function dq(e,t,n){let s=[];if(e.forEach(h=>{let f=w.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=cy(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(h=>pq(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),o=t.texShape,i=Cn(),l=mq(i),u,c,d=yq(i);return t.isPacked?(u=hq(t.logicalShape,o,n.enableShapeUniforms),c=Aq(i)):(u=fq(t.logicalShape,o,n.enableShapeUniforms),c=gq(i)),n.packedInputs&&(d+=wq),[d,l,c,r,u,a,n.userCode].join(`
|
|
`)}function mu(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return $q(e,t);case 1:return Pq(e,t);case 2:return zq(e,t);case 3:return Bq(e,t);case 4:return Vq(e,t);case 5:return Uq(e);case 6:return Hq(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function C6(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return Fq(e);case 1:return Oq(e,t);case 2:return Mq(e,t);case 3:return Lq(e,t);default:return Wq(e,t)}}function pq(e,t,n=!1,s){let r="";n?r+=C6(e,s):r+=mu(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=Gq(e,t):r+=jq(e,t)),r}function hq(e,t,n){switch(e.length){case 0:return T6();case 1:return kq(e,t,n);case 2:return Dq(e,t,n);case 3:return Sq(e,t,n);default:return Tq(e,t,n)}}function fq(e,t,n){switch(e.length){case 0:return T6();case 1:return Iq(e,t,n);case 2:return _q(e,t,n);case 3:return Cq(e,t,n);case 4:return Nq(e,t,n);case 5:return Eq(e,t);case 6:return Rq(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function mq(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function gq(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function Aq(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function yq(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${xq}
|
|
${bq}
|
|
${vq}
|
|
`}var xq=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,bq=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,vq=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,wq=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function T6(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function kq(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function Iq(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function Sq(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function Cq(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Gf(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=li(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function Tq(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let u=2;u<e.length-1;u++)o*=e[e.length-u-1],i=`
|
|
int b${u} = index / ${o};
|
|
index -= b${u} * ${o};
|
|
`+i,l=`b${u}, `+l;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${l});
|
|
}
|
|
`}function Nq(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${Gf(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=li(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function Eq(e,t){let n=li(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function Rq(e,t){let n=li(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function Dq(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function _q(e,t,n){return w.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function ui(e){return`offset${e}`}function Fq(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=Cn();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function $q(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=ui(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[i,l]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Oq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=Cn();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${o[0]}, ${o[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function Pq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${gu(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=ui(n);return o===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Mq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=Cn();if(a!=null&&w.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
|
|
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`;let u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${c}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${l.texture2D}(${s}, uv);
|
|
}
|
|
`}function zq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&w.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let p=a[0],h=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:o,keptDims:i}=w.squeezeShape(n),l=o;if(l.length<n.length){let p=Au(e,l),h=["row","col"];return`
|
|
${mu(p,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${yu(h,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${gu(e)}
|
|
}
|
|
`;let u=a[0],c=a[1],d=ui(s);return c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:u===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${d};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${u}, ${c}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function Lq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let p=n.slice(1),h=[1,2],f=Au(e,p),m=["b","row","col"];return`
|
|
${C6(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${yu(m,h)});
|
|
}
|
|
`}let i=Cn();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=o[0],u=o[1],c=Math.ceil(n[2]/2),d=c*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${l}, ${u}, ${d}, ${c}, b, row, col);
|
|
return ${i.texture2D}(${s}, uv);
|
|
}
|
|
`}function Bq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=w.squeezeShape(n),u=i;if(u.length<n.length){let m=Au(e,u),g=["row","col","depth"];return`
|
|
${mu(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${yu(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${o}, 1)));
|
|
${gu(e)}
|
|
}
|
|
`;let c=e.shapeInfo.texShape,d=c[0],p=c[1],h=e.shapeInfo.flatOffset;if(p===a&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${o}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(p===o&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=ui(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${o} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function Wq(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=Cn();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],u=l[0],c=l[1],d=Math.ceil(a[o-1]/2),p=d*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${p} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,p*=a[o-m-1],f=`b${m} * ${p} + `+f;return`
|
|
vec4 ${s}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${c};
|
|
int texC = index - texR * ${c};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${u});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function Vq(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:u}=w.squeezeShape(n);if(l.length<n.length){let y=Au(e,l),x=["row","col","depth","depth2"];return`
|
|
${mu(y,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${yu(x,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, 1)));
|
|
${gu(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${o}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===a&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let A=ui(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index + ${A});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function Uq(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:u}=w.squeezeShape(t);if(l.length<t.length){let m=Au(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${mu(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${yu(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${o}, ${a}, ${r})) +
|
|
depth3;
|
|
${gu(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],h=d[1];if(h===i&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${o}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=ui(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${o} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Hq(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=w.squeezeShape(t);if(r.length<t.length){let g=Au(e,r),A=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${mu(g)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${yu(A,a)});
|
|
}
|
|
`}let o=t[5],i=t[4]*o,l=t[3]*i,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${i})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${o}, 1)));
|
|
${gu(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,h=p[0],f=p[1];if(f===c&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${i}, ${o})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===o&&d==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=ui(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function gu(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function Gq(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=S6(e.shapeInfo.logicalShape,t.logicalShape),l=gt(o),u=o-a,c,d=["x","y","z","w","u","v"];a===0?c="":o<2&&i.length>=1?c="coords = 0;":c=i.map(y=>`coords.${d[y+u]} = 0;`).join(`
|
|
`);let p="";o<2&&a>0?p="coords":p=e.shapeInfo.logicalShape.map((y,x)=>`coords.${d[x+u]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,A=w.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!A)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!A)o===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(i.length){let y=a-2,x=a-1;i.indexOf(y)>-1&&i.indexOf(x)>-1?h="return vec4(outputValue.x);":i.indexOf(y)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(x)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${s}(${p});
|
|
${h}
|
|
}
|
|
`}function jq(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&w.arraysEqual(o,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=gt(l),c=S6(e.shapeInfo.logicalShape,t.logicalShape),d=l-i,p,h=["x","y","z","w","u","v"];i===0?p="":l<2&&c.length>=1?p="coords = 0;":p=c.map(m=>`coords.${h[m+d]} = 0;`).join(`
|
|
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+d]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${p}
|
|
return get${s}(${f});
|
|
}
|
|
`}function gt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function cy(e,t,n){let{newShape:s,keptDims:r}=w.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!w.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function Au(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function yu(e,t){return t.map(n=>e[n]).join(", ")}function qq(e,t,n,s){let r=n.map((x,b)=>{let v={logicalShape:x.shape,texShape:x.isUniform?null:x.texData.texShape,isUniform:x.isUniform,isPacked:x.isUniform?!1:x.texData.isPacked,flatOffset:null};return x.texData!=null&&x.texData.slice!=null&&x.texData.slice.flatOffset>0&&(v.flatOffset=x.texData.slice.flatOffset),{name:t.variableNames[b],shapeInfo:v}}),a=r.map(x=>x.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=dq(r,o,t),l=e.createProgram(i),u=null,c=e.getUniformLocation(l,"NAN",!1);Y().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(l,"INFINITY",!1));let d=!1,p={},h={},f={};for(let x=0;x<t.variableNames.length;x++){let b=t.variableNames[x];p[b]=e.getUniformLocation(l,b,d),p[`offset${b}`]=e.getUniformLocation(l,`offset${b}`,d),t.enableShapeUniforms&&(h[`${b}Shape`]=e.getUniformLocation(l,`${b}Shape`,d),f[`${b}TexShape`]=e.getUniformLocation(l,`${b}TexShape`,d))}let m,g,A;t.enableShapeUniforms&&(m=e.getUniformLocation(l,"outShape",d),A=e.getUniformLocation(l,"outShapeStrides",d),g=e.getUniformLocation(l,"outTexShape",d));let y=[];return t.customUniforms&&t.customUniforms.forEach((x,b)=>{y[b]=e.getUniformLocation(l,x.name,d)}),{program:t,source:i,webGLProgram:l,uniformLocations:p,customUniformLocations:y,inShapeInfos:a,outShapeInfo:o,infLoc:u,nanLoc:c,inShapesLocations:h,inTexShapesLocations:f,outShapeLocation:m,outShapeStridesLocation:A,outTexShapeLocation:g}}function N6(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!w.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!w.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function Xq(e,t,n,s,r){t.program.enableShapeUniforms||(N6(t.inShapeInfos,n),N6([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a,o[0],o[1]):e.setOutputMatrixTexture(a,o[0],o[1]),e.setProgram(t.webGLProgram),Y().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],d=t.uniformLocations[c],p=t.uniformLocations[`offset${c}`],h=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(h){let{uniformShape:m}=cy(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),d!=null){if(l.isUniform){if(w.sizeFromShape(l.shape)<2)e.gl.uniform1f(d,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(d,m)}return}l.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture,d,u)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=w.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],d=r[u];if(l.type==="float")e.gl.uniform1fv(c,d);else if(l.type==="vec2")e.gl.uniform2fv(c,d);else if(l.type==="vec3")e.gl.uniform3fv(c,d);else if(l.type==="vec4")e.gl.uniform4fv(c,d);else if(l.type==="int")e.gl.uniform1iv(c,d);else if(l.type==="ivec2")e.gl.uniform2iv(c,d);else if(l.type==="ivec3")e.gl.uniform3iv(c,d);else if(l.type==="ivec4")e.gl.uniform4iv(c,d);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function Kq(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c,keptDims:d}=cy(e.packedInputs,o.shape,l),p="",h="",f="";if(c.length===1&&e.packedInputs){let v=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];p=`${v[0]>1}_${v[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let v=w.computeStrides(c);f=`${v[0]===l[1]}_${v[v.length-1]===l[1]}`}let m=o.shape.length,g=c.length===2&&w.arraysEqual(o.shape,l),A=w.sizeFromShape(o.shape)===1,y=_.getBroadcastDims(o.shape,n.shape),x=!e.packedInputs&&m===n.shape.length&&w.arraysEqual(l,n.texData.texShape),b=e.packedInputs||c.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${x}_${u?d:""}_${c.length}_${A}_${y}_${g}_${p}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${Y().getNumber("WEBGL_VERSION")}`,a}function bs(e){return Y().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var Zq=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=dd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Cn();this.outputShape=e,this.enableShapeUniforms=bs(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?Gf(["r","c","d"],e):li(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},Yq=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=dd.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=Cn();this.outputShape=e,this.enableShapeUniforms=bs(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?Gf(["r","c","d"],e):li(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},Jq=class{constructor(e){this.variableNames=["A"],this.outTexUsage=ys.DOWNLOAD;let t=Cn();this.outputShape=e,this.userCode=`
|
|
${I6}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},Qq=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=ys.DOWNLOAD;let t=Cn();this.outputShape=e,this.userCode=`
|
|
${I6}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},eX=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Cn();this.outputShape=e,this.enableShapeUniforms=bs(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?uy():ly(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}},tX=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=Cn();this.outputShape=e,this.enableShapeUniforms=bs(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${o};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${i}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${i}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${i}] = values[2];
|
|
} else {
|
|
result[${i}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?uy():ly(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${s}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},E6={};Le(E6,{bindVertexProgramAttributeStreams:()=>z6,createBufferFromOutputTexture:()=>W6,createFloat16MatrixTexture:()=>$6,createFloat16PackedMatrixTexture:()=>M6,createFloat32MatrixTexture:()=>F6,createIndexBuffer:()=>_6,createPackedMatrixTexture:()=>P6,createUnsignedBytesMatrixTexture:()=>O6,createVertexBuffer:()=>D6,createVertexShader:()=>R6,downloadByteEncodedFloatMatrixFromOutputTexture:()=>U6,downloadFloat32MatrixFromBuffer:()=>V6,downloadMatrixFromPackedOutputTexture:()=>G6,downloadPackedMatrixFromBuffer:()=>H6,getInternalFormatForFloat16MatrixTexture:()=>py,getInternalFormatForFloat16PackedMatrixTexture:()=>my,getInternalFormatForFloat32MatrixTexture:()=>dy,getInternalFormatForPackedMatrixTexture:()=>fy,getInternalFormatForUnsignedBytesMatrixTexture:()=>hy,uploadDenseMatrixToTexture:()=>L6,uploadPixelDataToTexture:()=>B6});function R6(e){let t=Cn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return n6(e,n)}function D6(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return o6(e,t)}function _6(e){let t=new Uint16Array([0,1,2,2,1,3]);return i6(e,t)}function gd(e,t,n,s,r,a){u6(t,n);let o=l6(e),i=e.TEXTURE_2D;return ke(e,()=>e.bindTexture(i,o)),ke(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ke(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ke(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),ke(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),ke(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,null)),o}function dy(e){return e.internalFormatFloat}function F6(e,t,n,s){let[r,a]=pd(t,n);return gd(e,r,a,dy(s),s.textureFormatFloat,e.FLOAT)}function py(e){return e.internalFormatHalfFloat}function $6(e,t,n,s){let[r,a]=pd(t,n);return gd(e,r,a,py(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function hy(e){return e.downloadTextureFormat}function O6(e,t,n,s){let[r,a]=pd(t,n);return gd(e,r,a,hy(s),e.RGBA,e.UNSIGNED_BYTE)}function fy(e){return e.internalFormatPackedFloat}function P6(e,t,n,s){let[r,a]=hu(t,n);return gd(e,r,a,fy(s),e.RGBA,e.FLOAT)}function my(e){return e.internalFormatPackedHalfFloat}function M6(e,t,n,s){let[r,a]=hu(t,n);return gd(e,r,a,my(s),e.RGBA,s.textureTypeHalfFloat)}function z6(e,t,n){let s=0,r=3*4,a=3*4+2*4;return ke(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ry(e,t,"clipSpacePos",n,3,a,s)&&ry(e,t,"uv",n,2,a,r)}function L6(e,t,n,s,r,a){ke(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),ke(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function B6(e,t,n){ke(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?ke(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):ke(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ke(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function W6(e,t,n,s){let r=e.createBuffer();ke(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return ke(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),ke(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ke(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function V6(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function U6(e,t,n,s){let[r,a]=pd(t,n),o=4,i=new Uint8Array(Zj(t*n,o));return ke(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function H6(e,t,n,s,r,a,o,i){let l=e,u=new Float32Array(Yj(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function G6(e,t,n){let s=new Float32Array(t*n*4);return ke(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var jf=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Y().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Mf(t,e)):this.gl=hr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(Y().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=hd(this.gl,r),xs(this.gl,a))this.textureHalfFloatExtension=hd(this.gl,a);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),xs(this.gl,s))this.colorBufferHalfFloatExtension=hd(this.gl,s);else if(Y().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",xs(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(xs(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=D6(this.gl),this.indexBuffer=_6(this.gl),this.framebuffer=c6(this.gl),this.textureConfig=sy(this.gl,this.textureHalfFloatExtension)}get debug(){return Y().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ke(e,()=>e.finish()),ke(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ke(e,()=>e.deleteFramebuffer(this.framebuffer)),ke(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ke(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ke(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),F6(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),$6(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),O6(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),B6(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),L6(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),M6(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),P6(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(ay(this.gl,this.framebuffer),this.outputTexture=null),ke(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>U6(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return H6(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return V6(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=W6(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Y().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>G6(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=s6(t,e);this.vertexShader==null&&(this.vertexShader=R6(t));let s=r6(t);return ke(t,()=>t.attachShader(s,this.vertexShader)),ke(t,()=>t.attachShader(s,n)),a6(t,s),this.debug&&Lf(t,s),this.vertexAttrsAreBound||(this.setProgram(s),this.vertexAttrsAreBound=z6(t,this.program,this.vertexBuffer)),s}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ke(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Lf(this.gl,this.program),ke(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?p6(this.gl,e,t):h6(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ke(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),f6(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=hu(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Lf(this.gl,this.program),fd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ke(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ke(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=hd(this.gl,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=nX(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),Bf(this.gl,e,this.framebuffer),this.debug&&fd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(Bf(this.gl,this.outputTexture,this.framebuffer),this.debug&&fd(this.gl)):ay(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;Bf(s,e,this.framebuffer),this.debug&&fd(s),this.outputTexture=e,ke(s,()=>s.viewport(0,0,t,n)),ke(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),ke(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function nX(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:sX,bincountImpl:j6,bincountReduceImpl:rX,ceilImpl:aX,concatImpl:oX,equalImpl:iX,expImpl:lX,expm1Impl:uX,floorImpl:cX,gatherNdImpl:dX,gatherV2Impl:pX,greaterImpl:hX,greaterEqualImpl:fX,lessImpl:mX,lessEqualImpl:gX,linSpaceImpl:AX,logImpl:yX,maxImpl:xX,maximumImpl:bX,minimumImpl:vX,multiplyImpl:wX,negImpl:kX,notEqualImpl:IX,prodImpl:SX,rangeImpl:CX,rsqrtImpl:TX,sigmoidImpl:NX,simpleAbsImpl:q6,sliceImpl:EX,sparseFillEmptyRowsImpl:RX,sparseReshapeImpl:DX,sparseSegmentReductionImpl:X6,sqrtImpl:_X,stridedSliceImpl:FX,stringNGramsImpl:$X,stringSplitImpl:OX,stringToHashBucketFastImpl:PX,subImpl:MX,tileImpl:zX,topKImpl:LX,transposeImpl:gy,uniqueImpl:BX}=K7;function K6(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Tn(e,t){return t===1?[e]:K6(e,t)}function WX(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var VX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=Tn("rc",t),s=gt(t),r=HX(t,e,n),a=GX(t,e[e.length-1],e[e.length-2],n),o=jX(e,n);this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${a}
|
|
|
|
setOutput(vec4(${o}));
|
|
}
|
|
}
|
|
`}}};function UX(e,t){let n=[];for(let s=0;s<=1;s++)for(let r=0;r<=1;r++){let a=`${s===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let o=2;o<e;o++)a=`${t[t.length-1-o]},`+a;n.push(a)}return n}function HX(e,t,n){if(e===1)return`rc > ${t[0]}`;let s="";for(let r=e-2;r<e;r++)s+=`${n[r]} >= ${t[r]}`,r<e-1&&(s+="||");return s}function GX(e,t,n,s){if(e===1)return"";let r=s.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function jX(e,t){let n=e.length,s=UX(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${s[0]}),
|
|
cEdge ? 0. : getA(${s[1]}),
|
|
rEdge ? 0. : getA(${s[2]}),
|
|
rEdge || cEdge ? 0. : getA(${s[3]})`}var Z6=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=bs(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2==1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${qX(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?uy():ly(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function qX(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?cq(["r","c","d"],"inputShape"):li(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var XX=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=J6(t,n),r=Q6(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=Y6(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===hn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===hn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===hn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===hn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===hn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=J6(n,s),a=Q6(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=Y6(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=Y().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function KX(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function Y6(e,t,n,s,r){let a=ZX(t,s),o;if(r){let[l,u]=hu(e[0],e[1]);o=l*u}else{let[l,u]=pd(e[0],e[1]);o=l*u}let i=KX(n,a);return o*i}function ZX(e,t){switch(e){case hn.PACKED_2X2_FLOAT32:return fy(t);case hn.PACKED_2X2_FLOAT16:return my(t);case hn.UNPACKED_FLOAT32:return dy(t);case hn.UNPACKED_FLOAT16:return py(t);case hn.PACKED_4X1_UNSIGNED_BYTE:return hy(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function YX(e){return Y().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?hn.PACKED_2X2_FLOAT32:hn.UNPACKED_FLOAT32:e?hn.PACKED_2X2_FLOAT16:hn.UNPACKED_FLOAT16}function J6(e,t){if(e===ys.UPLOAD)return hn.PACKED_2X2_FLOAT32;if(e===ys.RENDER||e==null)return YX(t);if(e===ys.DOWNLOAD||e===ys.PIXELS)return hn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Q6(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var ga=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=bs(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Xs="if (isnan(x)) return x;",JX="return x;",e4="return abs(x);",QX="return (x >= 0.0) ? x : (exp(x) - 1.0);",eK=Xs+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,tK=Xs+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,qf="return x;",nK="return 1.0 / (1.0 + exp(-1.0 * x));",sK="return x;",rK=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,aK=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,oK=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,iK="return 1.0 / (1.0 + exp(-1.0 * x));",xu=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=bs(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},lK=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=Tn("rc",t),s=gt(t),r=WX(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${o}));
|
|
}
|
|
`}},uK=or.whereImpl,cK=1e-7,dK=1e-4,Xf={};function pK(e){return e in Xf||(Xf[e]={}),Xf[e]}var hK=Y().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),fK=600;function mK(){return Y().global.screen==null?1024:Y().global.screen.height*Y().global.screen.width*window.devicePixelRatio*fK/1024/1024}var bu=class extends ju{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Y().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=hr(Y().getNumber("WEBGL_VERSION"));this.binaryCache=pK(Y().getNumber("WEBGL_VERSION")),this.gpgpu=new jf(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new XX(this.gpgpu),this.numMBBeforeWarning=mK(),this.texData=new ip(this,Ns())}nextDataId(){return bu.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((Y().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Y().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:ys.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(Y().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:ys.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let d;i?d=new xu(o,qf):d=new ga(o,qf);let p=this.runWebGLProgram(d,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(p.dataId);return this.disposeIntermediateTensorInfo(p),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,u;l&&(u=w.now());let c;if(s==="complex64"){let d=this.readSync(r.real.dataId),p=this.readSync(r.imag.dataId);c=_.mergeRealAndImagArrays(d,p)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=w.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new xu(s,qf):h=new ga(s,qf);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Y().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&Y().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...zf(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];c=_.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;ke(h,()=>h.deleteBuffer(l))}let d=this.convertAndCacheOnCPU(e,c),p=this.pendingRead.get(e);return this.pendingRead.delete(e),p.forEach(h=>h(d)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Ns().removeDataId(e,this),this.pendingDeletes--),d}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(s=>w.decodeString(s))}catch(s){throw new Error("Failed to decode encoded string bytes into utf-8")}return je(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!e6(n))throw Y().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=w.sizeFromShape(t);if(Y().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let d=this.decode(e),p=this.texData.get(d.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(p.texture,...zf(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(d),h}let a=Y().getBool("WEBGL_PACK")&&s===!0,o=a?Wf(t):t,i=a?new Qq(o):new Jq(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=w.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=w.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(Y().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=hK){return Y().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){_.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return uK(e.shape,t)}packedUnaryOp(e,t,n){let s=new xu(e.shape,t),r=this.compileAndRun(s,[e],n);return Ns().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=q6(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(Y().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,e4,e.dtype);let t=new ga(e.shape,e4),n=this.compileAndRun(t,[e]);return Ns().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:s}=this.makeTensorInfo(e,t,n);return Ns().makeTensorFromDataId(s,e,t,this)}unpackTensor(e){let t=new lK(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new VX(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[oi(e.shape),...ii(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[oi(t),...ii(t)],a=new Z6(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:s,dtype:r}=t,a=Wf(s),o,i=zf(a);n?o=new Yq(a):o=new Zq(a);let l=!0,u=[i],c=this.runWebGLProgram(o,[{shape:a,dtype:r,dataId:e}],r,u,l);return{dtype:r,shape:s,dataId:c.dataId}}runWebGLProgram(e,t,n,s,r=!1){let a=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(a.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===dd.DENSE){let m=zf(e.outputShape);o.texShape=m.map(g=>g*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(a.shape)===0)return o.values=w.getTypedArrayFromDType(a.dtype,0),a;let i=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(m.dataId);if(g.texture==null){if(!e.packedInputs&&w.sizeFromShape(m.shape)<=Y().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=m.shape)}else if(!!g.isPacked!=!!e.packedInputs)m=g.isPacked?this.unpackTensor(m):this.packTensor(m),i.push(m),g=this.texData.get(m.dataId);else if(g.isPacked&&!md(g.shape,m.shape)){let A=m,y=m.shape;m.shape=g.shape,m=this.packedReshape(m,y),i.push(m),g=this.texData.get(m.dataId),A.shape=y}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:g,isUniform:!1}});this.uploadToGPU(a.dataId);let u={shape:a.shape,texData:o,isUniform:!1},c=Kq(e,l,u),d=this.getAndSaveBinary(c,()=>qq(this.gpgpu,e,l,u)),p=this.activeTimers!=null,h;p&&(h=this.startTimer()),Xq(this.gpgpu,d,l,u,s),i.forEach(m=>this.disposeIntermediateTensorInfo(m)),p&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let f=Y().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=w.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!Y().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let m=this.unpackTensor(a);return this.disposeIntermediateTensorInfo(a),m}return a}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Y().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=H(()=>{if(!Y().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Y().getBool("DEBUG");Y().set("DEBUG",!1);let t=this.abs(Ce(1e-8)).dataSync()[0];if(Y().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?cK:dK}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=w.now());let c=t.texShape;if(c==null&&(c=A6(n,i),t.texShape=c),r!=null){let d=Wf(n),p,h=c[1],f=c[0],m=r instanceof Uint8Array;i?([h,f]=hu(c[0],c[1]),p=new tX(d,m)):p=new eX(d,m);let g=this.makeTensorInfo([f,h],s);m?this.texData.get(g.dataId).usage=ys.PIXELS:this.texData.get(g.dataId).usage=ys.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,f,r);let A=[[f,h]],y=!0,x=this.runWebGLProgram(p,[g],s,A,y),b=this.texData.get(x.dataId);t.texture=b.texture,t.texShape=b.texShape,t.isPacked=b.isPacked,t.usage=b.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(x.dataId),t.values=null,l&&(this.uploadWaitMs+=w.now()-u)}else{let d=this.acquireTexture(c,o,s,i);t.texture=d}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=gK(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}};bu.nextDataId=0;function gK(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var AK="3.9.0";function t4(){Y().set("WEBGL_FORCE_F16_TEXTURES",!0)}yc.isBrowser()&&Wl("webgl",()=>new bu,2);var yK={forceHalfFloat:t4},n4=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,vu=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=bs(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Kf=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Ad=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=_.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=bs(r);let a="";if(s)if(r===0||w.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${gt(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=Tn("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function as(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var xK={kernelName:Za,backendName:"webgl",kernelFunc:as};function Aa(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=as({inputs:{x:s},backend:n}),l=as({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var bK={kernelName:mp,backendName:"webgl",kernelFunc:Aa},s4="return (a < 0.) ? b * a : a;",r4=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function vK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),i=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ad(r4,r.shape,o.shape):new vu(s4,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],r.dtype);return n.disposeIntermediateTensorInfo(o),l}var wK={kernelName:Ya,backendName:"webgl",kernelFunc:vK},a4="return (a < 0.) ? b * a : a;",o4=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function kK(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ad(o4,s.shape,r.shape):new vu(a4,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)}var IK={kernelName:co,backendName:"webgl",kernelFunc:kK},i4="if (isnan(x)) return x;",SK=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,CK=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function tt({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let d=i.texData.get(o.dataId),p=n(d.values,l);return i.makeTensorInfo(o.shape,l,p)}let u=Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new xu(o.shape,t):c=new ga(o.shape,e),i.runWebGLProgram(c,[o],l)}}function fn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(s&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[g,A]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(x=>{let[b,v]=x,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},S={dataId:v.dataId,dtype:v.dtype,shape:u.shape},C=new vu(e,l.shape,u.shape);return c.runWebGLProgram(C,[k,S],Ts(b.dtype,v.dtype))}),y=Aa({inputs:{real:g,imag:A},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(A),y}let d=a||Ts(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&r!=null){let f=c.texData.get(l.dataId).values,m=c.texData.get(u.dataId).values,g=l.dtype==="string"?_.fromUint8ToStringArray(f):f,A=l.dtype==="string"?_.fromUint8ToStringArray(m):m,[y,x]=r(l.shape,u.shape,g,A,d),b=c.makeTensorInfo(x,d),v=c.texData.get(b.dataId);return v.values=y,b}let p=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return p?h=new Ad(t,l.shape,u.shape,n):h=new vu(e,l.shape,u.shape),c.runWebGLProgram(h,[l,u],d)}}function Zf(e,t=!1){if(e==="linear")return t?sK:JX;if(e==="relu")return t?aK:eK;if(e==="elu")return t?rK:QX;if(e==="relu6")return t?oK:tK;if(e==="prelu")return t?o4:a4;if(e==="leakyrelu")return t?r4:s4;if(e==="sigmoid")return t?iK:nK;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var l4=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=bs(this.outputShape.length);let u=s?e[1]:e[2],c=Math.ceil(u/2),d=s?"i * 2, rc.y":"rc.y, i * 2",p=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${o}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${o}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${o}
|
|
}`,g="result = activation(result);");let A=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",x="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${d});
|
|
vec4 b = getMatrixB(batchB, ${p});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${A}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},u4={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},c4=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=_.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},d4="return a * b;";function Ay(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=_.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),u=new c4(u4.REAL,s.shape,r.shape),c=new c4(u4.IMAG,s.shape,r.shape),d=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],p=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(c,d,"float32"),f=Aa({inputs:{real:p,imag:h},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[u,c]=wX(s.shape,r.shape,i.values,l.values,a),d=n.makeTensorInfo(c,a),p=n.texData.get(d.dataId);return p.values=u,d}let o;return Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Ad(d4,s.shape,r.shape):o=new vu(d4,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var TK={kernelName:oo,backendName:"webgl",kernelFunc:Ay};function NK(e,t,n){let s=[oi(e.shape),...ii(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[oi(t),...ii(t)],o=new Z6(a,s),i=!0,l=[s],u=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function be(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=w.sizeFromShape(r.shape),l=w.inferFromImplicitShape(a,i),u=w.sizeFromShape(l);w.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(r.dataId);return c.isPacked&&!md(r.shape,l)&&!(c.texture!==null&&md(c.shape,l))?NK(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var EK={kernelName:Al,backendName:"webgl",kernelFunc:be},p4=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${w.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${o}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${o};
|
|
if (${i===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${i===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},RK=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,d=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${i}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,p="vec4";t==="all"?(o="1.0",d=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,p="bvec4"):t==="any"&&(o="0.0",d=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,p="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${o});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===2}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===3}) {
|
|
${p} values = ${p}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function DK(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=_.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function ci(e,t,n,s){let r=DK(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:u}=r[o],c,d;n==="mean"?c=o===0?new p4({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},i):new p4({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u}):c=new RK({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},n),d=a,a=s.runWebGLProgram(c,[a],t),d.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(d)}return a}var _K=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=gt(this.rank),r=FK(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function FK(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var $K=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=gt(this.rank),r=K6("rc",this.rank),a=new Array(this.rank);for(let u=0;u<t.length;u++)a[t[u]]=r[u];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${i}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${i}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Yf(e,t,n){let s=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new $K(e.shape,t):new _K(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function OK(e,t,n,s){let r=t,a=e.shape.length,o=w.parseAxisParam(r,e.shape),i=o,l=_.getAxesPermutation(i,a),u=l!=null,c=e;u&&(c=Yf(e,l,s),i=_.getInnerMostAxes(i.length,a)),_.assertAxesAreInnerMostDims("sum",i,a);let[d,p]=_.computeOutAndReduceShapes(c.shape,i),h=d;n&&(h=_.expandShapeToKeepDim(d,o));let f=w.sizeFromShape(p),g=w.sizeFromShape(e.shape)/f,A=be({inputs:{x:c},attrs:{shape:[g,f]},backend:s}),y=eh(e.dtype),x=ci(A,y,"sum",s),b=be({inputs:{x},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(A),s.disposeIntermediateTensorInfo(x),u&&s.disposeIntermediateTensorInfo(c),b}function Jf(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return OK(r,a,o,n)}var PK={kernelName:vo,backendName:"webgl",kernelFunc:Jf};function Nn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];let u;if(o.shouldExecuteOnCPU([r])){let d=o.texData.get(r.dataId).values,p=gy(d,r.shape,r.dtype,a,l);u=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(u.dataId);h.values=p}else u=Yf(r,a,o);return u}var MK={kernelName:To,backendName:"webgl",kernelFunc:Nn},h4=1e3;function Qf({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,d=n?e.shape[u-2]:e.shape[u-1],p=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),A=w.sizeFromShape(m),y=w.sizeFromShape(g),x=A===y||A===1||y===1;w.assert(u>=2&&c>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${g}).`);let v=(A>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,f]);w.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[A,d,h]:[A,h,d],S=s?[y,f,p]:[y,p,f],C=be({inputs:{x:e},backend:r,attrs:{shape:k}}),D=be({inputs:{x:t},backend:r,attrs:{shape:S}}),O=[C,D],E=Math.max(A,y),R=n?C.shape[1]:C.shape[2],T=a!=null,P=o!=null,U=l==="leakyrelu",j=l!=null?Zf(l,!0):null,q=T||P||U||j!=null,X;if((h===1||f===1)&&R>h4&&q===!1){let ne=C,se=D;n&&(ne=Nn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),O.push(ne)),s&&(se=Nn({inputs:{x:D},backend:r,attrs:{perm:[0,2,1]}}),O.push(se));let re=f!==1,Q=f===1,le=ne;re&&(le=be({inputs:{x:ne},backend:r,attrs:{shape:[E,R,1]}}),O.push(le));let ue=f===1?2:1,he=se;Q&&(he=be({inputs:{x:se},backend:r,attrs:{shape:[E,1,R]}}),O.push(he));let ye=Ay({inputs:{a:le,b:he},backend:r});X=Jf({inputs:{x:ye},backend:r,attrs:{axis:ue,keepDims:!0}}),O.push(ye)}else{let ne=Ts(e.dtype,t.dtype),se=new l4(k,S,[E,h,f],n,s,T,j,P,U),re=[C,D];if(a!=null&&re.push(a),P&&re.push(o),U){let Q=r.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));re.push(Q),O.push(Q)}X=r.runWebGLProgram(se,re,ne)}let te=be({inputs:{x:X},backend:r,attrs:{shape:v}});O.push(X);for(let ne of O)r.disposeIntermediateTensorInfo(ne);return te}function zK(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s;return Qf({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:d,activation:c})}var LK={kernelName:No,backendName:"webgl",kernelFunc:zK},f4="return abs(x);";function BK(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=q6(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new xu(s.shape,f4):r=new ga(s.shape,f4),n.runWebGLProgram(r,[s],s.dtype)}var WK={kernelName:_i,backendName:"webgl",kernelFunc:BK},VK=Xs+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,UK=tt({opSnippet:VK}),HK={kernelName:Fi,backendName:"webgl",kernelFunc:UK},GK=Xs+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,jK=tt({opSnippet:GK}),qK={kernelName:$i,backendName:"webgl",kernelFunc:jK},m4="return a + b;",XK=fn({opSnippet:m4,packedOpSnippet:m4,supportsComplex:!0,cpuKernelImpl:sX}),KK={kernelName:jr,backendName:"webgl",kernelFunc:XK},ZK=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},YK=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function e0(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return as({inputs:{x:s[0]},backend:n});if(s.length>Y().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),u=e0({inputs:s.slice(0,l),backend:n}),c=e0({inputs:s.slice(l),backend:n});return e0({inputs:[u,c],backend:n})}let r=s.map(l=>l.dtype).reduce((l,u)=>Ts(l,u)),a=s.map(l=>l.shape),i=Y().getBool("WEBGL_PACK")?new YK(s[0].shape,a):new ZK(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var JK={kernelName:Da,backendName:"webgl",kernelFunc:e0};function QK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=l,c=_.getAxesPermutation(u,i),d=r;c!=null&&(d=Nn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=_.getInnerMostAxes(u.length,i)),_.assertAxesAreInnerMostDims("all",u,i);let[p,h]=_.computeOutAndReduceShapes(d.shape,u),f=w.sizeFromShape(h),m=be({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=ci(m,m.dtype,"all",n),A;if(o){let y=_.expandShapeToKeepDim(p,l);A=be({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),A}var eZ={kernelName:Oi,backendName:"webgl",kernelFunc:QK};function tZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=l,c=_.getAxesPermutation(u,i),d=r;c!=null&&(d=Nn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=_.getInnerMostAxes(u.length,i)),_.assertAxesAreInnerMostDims("any",u,i);let[p,h]=_.computeOutAndReduceShapes(d.shape,u),f=w.sizeFromShape(h),m=be({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=ci(m,m.dtype,"any",n),A;if(o){let y=_.expandShapeToKeepDim(p,l);A=be({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),A}var nZ={kernelName:Pi,backendName:"webgl",kernelFunc:tZ},sZ=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${i};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${o} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},rZ=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=gt(i),u=Tn("coords",i),c,d;if(a===1){d=i+1;let S=gt(d);c=`
|
|
${S} sourceLocR = ${S}(${u.join()}, 0);
|
|
++${u[i-1]};
|
|
${S} sourceLocG = ${S}(${u.join()}, 0);
|
|
++${u[i-2]};
|
|
${S} sourceLocA = ${S}(${u.join()}, 0);
|
|
--${u[i-1]};
|
|
${S} sourceLocB = ${S}(${u.join()}, 0);
|
|
--${u[i-2]};`}else d=i,c=`
|
|
${l} sourceLocR = coords;
|
|
++${u[i-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[i-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[i-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[i-2]};`;let p=["x","y","z","w","u","v"].slice(0,d),h="."+p[d-1],f=p.map(S=>"int "+S),m=Tn("sourceLocR",d-1).concat("inIdx.r"),g=Tn("sourceLocG",d-1).concat("inIdx.g"),A=Tn("sourceLocB",d-1).concat("inIdx.b"),y=Tn("sourceLocA",d-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",b=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,v=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,k=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${p.join()}),
|
|
vec2(${p.slice(-2).join()}));
|
|
}
|
|
${k}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[i-1]} < ${o[i-1]-1};
|
|
bool hasNextRow = ${u[i-2]} < ${o[i-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${v};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${v};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function g4(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=_.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new sZ(i,n,s==null),u=[t];s!=null&&u.push(s);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let d=g4(e,t,n,c);return e.disposeIntermediateTensorInfo(c),d}function A4(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=_.computeOptimalWindowSize(a),i=new rZ(r,o,n,s==null),l=s==null?[t]:[t,s],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=A4(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function y4(e,t,n,s){let r=[n];if(_.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!Y().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[u,c]=_.computeOutAndReduceShapes(l.shape,r),d=w.sizeFromShape(c),p=be({inputs:{x:l},backend:e,attrs:{shape:[-1,d]}});a.push(p);let h=g4(e,p,s);a.push(h);let f=be({inputs:{x:h},backend:e,attrs:{shape:u}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return A4(e,t,s)}function aZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=w.parseAxisParam(a,r.shape),i=_.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Nn({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=_.getInnerMostAxes(o.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=y4(n,l,o[0],"max");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var oZ={kernelName:_a,backendName:"webgl",kernelFunc:aZ};function iZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=w.parseAxisParam(a,r.shape),i=_.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Nn({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=_.getInnerMostAxes(o.length,l.shape.length)),_.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=y4(n,l,o[0],"min");return u.forEach(d=>n.disposeIntermediateTensorInfo(d)),c}var lZ={kernelName:Ku,backendName:"webgl",kernelFunc:iZ},uZ=Xs+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,cZ=tt({opSnippet:uZ}),dZ={kernelName:Mi,backendName:"webgl",kernelFunc:cZ},pZ=Xs+"return log(x + sqrt(x * x + 1.0));",hZ=tt({opSnippet:pZ}),fZ={kernelName:zi,backendName:"webgl",kernelFunc:hZ},mZ=Xs+`
|
|
return atan(x);
|
|
`,gZ=tt({opSnippet:mZ}),AZ={kernelName:Li,backendName:"webgl",kernelFunc:gZ},yZ=SK+`
|
|
return atan(a, b);
|
|
`,xZ=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+CK+`
|
|
return result;
|
|
`,bZ=fn({opSnippet:yZ,packedOpSnippet:xZ}),vZ={kernelName:Wi,backendName:"webgl",kernelFunc:bZ},wZ=Xs+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,kZ=tt({opSnippet:wZ}),IZ={kernelName:Bi,backendName:"webgl",kernelFunc:kZ},yd=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(f||(A="-1.0 / 1e-20"),n){let S=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${S} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:g:`wR * ${d} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let b=Math.floor(a/4)*4,v=a%4,k=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${o}, ${i});
|
|
const ivec2 pads = ivec2(${p}, ${h});
|
|
const float initializationValue = ${A};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${A});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${k}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${v===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${v===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
} else if (${v===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${k}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},yy=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,d=e.dilationWidth,p=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",x="0.0";if(y||(x="-1.0 / 1e-20"),n){let D=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${d}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${D} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let k=Math.floor(a/4)*4,S=a%4,C=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${o}, ${i}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${A});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${p};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${k}; wC += 4) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${d}, ch)
|
|
);
|
|
|
|
${C}
|
|
}
|
|
|
|
int xC = xCCorner + ${k};
|
|
if (${S===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
} else if (${S===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
} else if (${S===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${d}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${d}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
}
|
|
}
|
|
setOutput(${v});
|
|
}
|
|
}
|
|
`}};function SZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;fu(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;w.assert(_.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=_.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return as({inputs:{x:r},backend:n});let d=new yd(c,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var CZ={kernelName:Fa,backendName:"webgl",kernelFunc:SZ};function TZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s,c=[1,1,1],d=_.computePool3DInfo(r.shape,a,o,c,i,l,u),p=new yy(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var NZ={kernelName:Zu,backendName:"webgl",kernelFunc:TZ},EZ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,d=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${c});
|
|
const float avgMultiplier = float(${d});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${i};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},RZ=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,h=c-1-e.padInfo.front,f=d-1-e.padInfo.top,m=p-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${i}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function DZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,d=[1,1,1],p=_.computePool3DInfo(o.shape,i,l,d,u,c),h=new RZ(p);return n.runWebGLProgram(h,[r],o.dtype)}var _Z={kernelName:hp,backendName:"webgl",kernelFunc:DZ};function FZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;fu([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=_.computePool2DInfo(o.shape,i,l,1,u),d=new EZ(c);return n.runWebGLProgram(d,[r],o.dtype)}var $Z={kernelName:pp,backendName:"webgl",kernelFunc:FZ};function OZ(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Qf({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var PZ={kernelName:$a,backendName:"webgl",kernelFunc:OZ},MZ=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(_.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${o};
|
|
float scale = ${i};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},zZ=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],_.assertAndGetBroadcastShape(e,t),_.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(_.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(_.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${o};
|
|
vec4 scale = ${i};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},LZ=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;w.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[s,r,a],c=null;o!=null&&(c=o.shape,u.push(o));let d=null;i!=null&&(d=i.shape,u.push(i));let p=Y().getBool("WEBGL_PACK_NORMALIZATION")?new zZ(s.shape,r.shape,a.shape,c,d,l):new MZ(s.shape,r.shape,a.shape,c,d,l);return t.runWebGLProgram(p,u,u[0].dtype)},BZ={kernelName:Xa,backendName:"webgl",kernelFunc:LZ},WZ=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=gt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=VZ(this.rank),s,r=e.map((a,o)=>`sourceLoc.${xy[o]} = start[${o}] + coords.${xy[o]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},xy=["x","y","z","w","u","v"];function VZ(e){if(e===1)return"sourceLoc";if(e<=6)return xy.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var UZ=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=gt(this.rank),n=Tn("coords",this.rank),s=Tn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,i=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${s[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${o}
|
|
${i}
|
|
setOutput(result);
|
|
}
|
|
`}};function HZ(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=kn.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function wu(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=kn.parseSliceParams(r,a,o);if(kn.assertParamsValid(r,i,l),w.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let d=n.texData.get(r.dataId),p=EX(d.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,p)}let{isPacked:u}=n.texData.get(r.dataId),c=kn.isSliceContinous(r.shape,i,l);if(u||!c){let d=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new UZ(l):new WZ(l),p=[i];return n.runWebGLProgram(d,[r],r.dtype,p)}return n.uploadToGPU(r.dataId),HZ(r,i,l,n)}var GZ={kernelName:vl,backendName:"webgl",kernelFunc:wu},jZ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=_.getReshaped(r.shape,a,i),u=_.getPermuted(l.length,a.length),c=_.getReshapedPermuted(r.shape,a,i),d=_.getSliceBeginCoords(o,a.length),p=_.getSliceSize(c,o,a.length),h=[],f=be({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Nn({inputs:{x:f},backend:n,attrs:{perm:u}}),g=be({inputs:{x:m},backend:n,attrs:{shape:c}}),A=wu({inputs:{x:g},backend:n,attrs:{begin:d,size:p}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},qZ={kernelName:Vi,backendName:"webgl",kernelFunc:jZ};function XZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),u=j6(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var KZ={kernelName:fp,backendName:"webgl",kernelFunc:XZ},ZZ="return float(a != b);",x4=fn({opSnippet:ZZ,cpuKernelImpl:IX,dtype:"bool"}),YZ={kernelName:ul,backendName:"webgl",kernelFunc:x4};function xd(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return as({inputs:{x:r.complexTensorInfos.real},backend:n})}var JZ={kernelName:Pp,backendName:"webgl",kernelFunc:xd},QZ="return float(int(x));";function eY(e,t){let n=new ga(e.shape,QZ),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function by(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return as({inputs:{x:r},backend:n});let o=Ot(r.shape),i=by({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Aa({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=xd({inputs:{input:r},backend:n}),i=by({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!w.hasEncodingLoss(r.dtype,a)){let o=as({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return eY(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),l=x4({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var tY={kernelName:Oa,backendName:"webgl",kernelFunc:by},b4="return ceil(x);",nY=tt({opSnippet:b4,packedOpSnippet:b4,cpuKernelImpl:aX}),sY={kernelName:Pa,backendName:"webgl",kernelFunc:nY},rY=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},aY=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function oY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;Y().getBool("WEBGL_PACK_CLIP")?i=new aY(r.shape):i=new rY(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var iY={kernelName:qr,backendName:"webgl",kernelFunc:oY},lY=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function v4(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function uY(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new lY(s.shape),o=[v4(s,r.complexTensorInfos.real),v4(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var cY={kernelName:Yu,backendName:"webgl",kernelFunc:uY},dY=class{constructor(e){this.outputShape=[],this.outputShape=_.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},pY=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=_.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=gt(s),a=Tn("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],u=o.slice(-2),c=o.join(),d=`if (${l} < ${i[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${u.join()}));
|
|
}`;for(let f=1;f<i.length;f++){let m=i[f-1];d+=`
|
|
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${t0(o,l,m)}),
|
|
vec2(${t0(u,l,m)}));
|
|
}`}let p=i.length,h=i[i.length-1];d+=`
|
|
return getChannel(
|
|
getT${p}(${t0(o,l,h)}),
|
|
vec2(${t0(u,l,h)}));`,this.userCode=`
|
|
float getValue(${o.map(f=>"int "+f)}) {
|
|
${d}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function t0(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function n0(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return as({inputs:{x:r.complexTensorInfos.imag},backend:n})}var hY={kernelName:Ep,backendName:"webgl",kernelFunc:n0};function ku(e,t,n){let s=e[0].dtype;if(s==="complex64"){let c=e.map(m=>xd({inputs:{input:m},backend:n})),d=e.map(m=>n0({inputs:{input:m},backend:n})),p=ku(c,t,n),h=ku(d,t,n),f=Aa({inputs:{real:p,imag:h},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),d.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let c=e.map(A=>{let y=w.sizeFromShape(A.shape.slice(t));return be({inputs:{x:A},backend:n,attrs:{shape:[-1,y]}})}),d=c.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),p=_.computeOutShape(c.map(A=>A.shape),1),h=c[0].shape[0]===1,f=oX(d,p,s,h),m=_.computeOutShape(e.map(A=>A.shape),t),g=n.makeTensorInfo(m,s,f);return c.forEach(A=>n.disposeIntermediateTensorInfo(A)),g}if(e.length>Y().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),d=ku(e.slice(0,c),t,n),p=ku(e.slice(c),t,n),h=ku([d,p],t,n);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),h}if(Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new pY(e.map(d=>d.shape),t);return n.runWebGLProgram(c,e,s)}let{tensors2D:a,outShape:o}=fY(e,t,n),i=new dY(a.map(c=>c.shape)),l=n.runWebGLProgram(i,a,s);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let u=be({inputs:{x:l},attrs:{shape:o},backend:n});return n.disposeIntermediateTensorInfo(l),u}function fY(e,t,n){let s=_.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>be({inputs:{x:a},attrs:{shape:[-1,w.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function w4(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],o=_.computeOutShape(t.map(u=>u.shape),a);if(w.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>w.sizeFromShape(u.shape)>0);if(i.length===1)return as({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return _.assertParamsConsistent(l,a),ku(i,a,n)}var mY={kernelName:Ui,backendName:"webgl",kernelFunc:w4},k4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,A=m?2:3,y=m?3:1,x="",b="";n&&(s?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let v=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${i}, ${l});
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${A}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${v}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},gY=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,d=e.filterHeight,p=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${o});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${i};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${d}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},AY=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=bs(this.outputShape.length);let{dataFormat:n}=t,s=Cn(),r=n==="channelsLast",a=r?0:1,o=r?1:2,i=this.enableShapeUniforms?"if(blockIndex < outShape[1] && pos < outShape[0]) {":`if(blockIndex < ${e[1]} && pos < ${e[0]}) {`,l="";for(let u=0;u<=1;u++)for(let c=0;c<=1;c++)l+=`
|
|
blockIndex = rc.y + ${c};
|
|
pos = rc.x + ${u};
|
|
|
|
${i}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${o}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${u*2+c}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${u*2+c}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${l}
|
|
|
|
${s.output} = result;
|
|
}
|
|
`}};function I4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=s.texData.get(e.dataId),c=n.inChannels,d=l[0]*l[1]*l[2],p=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,A=[];if(!((d===1||p===1)&&c>h4)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!=0&&w.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),v={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,w.assert(md(u.shape,v.shape),()=>`packed reshape ${u.shape} to ${v.shape} isn't free`);let S=be({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(S);let C=Qf({a:v,b:S,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),D=s.texData.get(C.dataId);w.assert(D.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=k,D.shape=n.outShape,g=as({inputs:{x:C},backend:s}),g.shape=n.outShape,A.push(C)}else{let b=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],v=be({inputs:{x:e},backend:s,attrs:{shape:[1,b,n.inChannels]}}),k=be({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=Qf({a:v,b:k,transposeA:f,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=be({inputs:{x:S},backend:s,attrs:{shape:n.outShape}}),A.push(v),A.push(k),A.push(S)}for(let b of A)s.disposeIntermediateTensorInfo(b);return g}function S4({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:d,outHeight:p,dataFormat:h}=n,f=h==="channelsLast",m=l*u*c,g=p*d,A=[m,g],y=!0,x=!1,b=[],v=be({inputs:{x:e},backend:s,attrs:{shape:e.shape.slice(1)}}),k=be({inputs:{x:t},backend:s,attrs:{shape:[1,m,w.sizeFromShape(t.shape)/m]}});b.push(v),b.push(k);let S=new AY(A,n),C=[v.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],D=s.runWebGLProgram(S,[v],"float32",C),O=be({inputs:{x:D},backend:s,attrs:{shape:[1,A[0],A[1]]}});b.push(D),b.push(O);let E=r!=null,R=a!=null,T=i==="leakyrelu",P=i?Zf(i,!0):null,U=new l4(O.shape,k.shape,[1,g,n.outChannels],y,x,E,P,R,T),j=[O,k];if(r&&j.push(r),R&&j.push(a),T){let ne=s.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));j.push(ne),b.push(ne)}let q=s.runWebGLProgram(U,j,"float32"),X=f?[1,p,d,n.outChannels]:[1,n.outChannels,p,d],te=be({inputs:{x:q},backend:s,attrs:{shape:X}});b.push(q);for(let ne of b)s.disposeIntermediateTensorInfo(ne);return te}function yY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,d=_.convertConv2DDataFormat(l),p=_.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,d),h;if(p.filterHeight===1&&p.filterWidth===1&&p.dilationHeight===1&&p.dilationWidth===1&&p.strideHeight===1&&p.strideWidth===1&&(p.padInfo.type==="SAME"||p.padInfo.type==="VALID"))h=I4({x:r,filter:a,convInfo:p,backend:n});else if(Y().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=S4({x:r,filter:a,convInfo:p,backend:n});else{let m=new k4(p);h=n.runWebGLProgram(m,[r,a],"float32")}let f=be({inputs:{x:h},backend:n,attrs:{shape:p.outShape}});return n.disposeIntermediateTensorInfo(h),f}var xY={kernelName:Ma,backendName:"webgl",kernelFunc:yY},bY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},vY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},wY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${o};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},kY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${i}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${o}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function IY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s,d=_.convertConv2DDataFormat(l),p=_.computeConv2DInfo(r.shape,c,o,1,i,u,!1,d),h=new bY(p);return n.runWebGLProgram(h,[r,a],"float32")}var SY={kernelName:gp,backendName:"webgl",kernelFunc:IY};function CY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,d=_.convertConv2DDataFormat(u),p=_.computeConv2DInfo(o,a.shape,i,1,l,c,!1,d),h=new vY(p);return n.runWebGLProgram(h,[r,a],"float32")}var TY={kernelName:za,backendName:"webgl",kernelFunc:CY};function NY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=_.computeConv3DInfo(r.shape,a.shape,o,l,i),c=new gY(u);return n.runWebGLProgram(c,[r,a],"float32")}var EY={kernelName:Ju,backendName:"webgl",kernelFunc:NY};function RY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,u=_.computeConv3DInfo(r.shape,l,o,1,i),c=new wY(u);return n.runWebGLProgram(c,[r,a],"float32")}var DY={kernelName:Ap,backendName:"webgl",kernelFunc:RY};function _Y(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,u=_.computeConv3DInfo(l,a.shape,i,1,o),c=new kY(u);return n.runWebGLProgram(c,[r,a],"float32")}var FY={kernelName:yp,backendName:"webgl",kernelFunc:_Y},$Y=i4+`
|
|
return cos(x);
|
|
`,OY=tt({opSnippet:$Y}),PY={kernelName:La,backendName:"webgl",kernelFunc:OY},MY=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,zY=tt({opSnippet:MY}),LY={kernelName:Ba,backendName:"webgl",kernelFunc:zY},BY=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,d]=n;this.outputShape=[u,c,d,l];let p=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,A]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,x,b]=d>1?[`${(i-1)/(d-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${A};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${p} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},WY=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new BY(r.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[r,a,o],"float32")},VY={kernelName:Hi,backendName:"webgl",kernelFunc:WY},C4=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}],this.outputShape=e;let s=e.length,r=t?"0.0":`getX(${T4(s,"coords")})`,a=e[e.length-1],o="",i="";t?(o=n?`end != ${a-1}`:"end != 0",i=n?"end + 1":"end - 1"):(o=n?`end + pow2 < ${a}`:"end >= pow2",i=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${gt(s)} coords = getOutputCoords();
|
|
int end = ${N4(s,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${o}) {
|
|
int idx = ${i};
|
|
${N4(s,"coords")} = idx;
|
|
val += getX(${T4(s,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function T4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function N4(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function UY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length,u=_.getAxesPermutation([a],l),c=r;u!=null&&(c=Nn({inputs:{x:r},backend:n,attrs:{perm:u}}));let d=_.getInnerMostAxes(1,l)[0];if(d!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${a}`);let p=c.shape[d],h=as({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(p))-1;f++){let m=new C4(c.shape,!1,i),g=[[f]],A=h;h=n.runWebGLProgram(m,[h],h.dtype,g),n.disposeIntermediateTensorInfo(A)}if(o){let f=new C4(c.shape,o,i),m=h;h=n.runWebGLProgram(f,[h],h.dtype),n.disposeIntermediateTensorInfo(m)}if(u!=null){let f=_.getUndoAxesPermutation(u),m=Nn({inputs:{x:h},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(c),m}return h}var HY={kernelName:Wa,backendName:"webgl",kernelFunc:UY};function GY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=j6(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=rX(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var jY={kernelName:xp,backendName:"webgl",kernelFunc:GY},qY=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function XY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;w.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=u*a,h=c/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=new qY(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var KY={kernelName:Gi,backendName:"webgl",kernelFunc:XY},E4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=bs(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",u="";n&&(s?l=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?l=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:l=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,u="result = activation(result);");let c=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${l}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${i};
|
|
int q = d2 - d1 * ${i};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${o}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${c}
|
|
${u}
|
|
setOutput(result);
|
|
}
|
|
`}},R4=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=bs(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,c=e.filterWidth,d=c,p=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)p+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;for(let g=0;g<u;g++){for(let A=0;A<c;A++)p+=`
|
|
xTexelC${A*2} = vec4(0.0);
|
|
xTexelC${A*2}Ready = 0;
|
|
xTexelC${A*2+1} = vec4(0.0);
|
|
xTexelC${A*2+1}Ready = 0;
|
|
xC${A} = vec4(0.0);`;p+=`
|
|
xR = xRCorner + ${g} * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let A=0;A<(d+1)/2;A++){let y=A*2;if(p+=`
|
|
xC = xCCorner + ${y*l};
|
|
`,i===1){if(y<c&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`,l===1&&y>0?p+=`
|
|
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
|
|
`:p+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
|
|
} else {
|
|
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
|
|
}
|
|
`):p+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xC${y} = xTexelC${y};
|
|
`,y+1<c)){let x=o%2==0?w.nearestLargerEven(l):l;l%2==0&&o%2==1||l%2!=0&&o%2!=1?(p+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
`,l>1&&(p+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
`),p+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
|
|
`):x===1?p+=`
|
|
xC${y+1} = xTexelC${y};
|
|
`:p+=`
|
|
xCOffset = xC + ${x};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y+1} = xTexelC${y+1};
|
|
`}}else y<c&&(o%2==1?(p+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`,y+1<c&&(p+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
|
|
`)):(p+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
|
|
xTexelC${y} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${y}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${y}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
|
|
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${y+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${y+1}Ready = 1;
|
|
}
|
|
|
|
xC${y} = vec4(
|
|
xTexelC${y}.xy, xTexelC${y+1}.xy);
|
|
`,y+1<c&&(p+=`
|
|
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
|
|
`)));y<c&&(p+=`
|
|
wTexel = getW(${g}, ${y}, d1, q);
|
|
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
|
|
`,y+1<c&&(p+=`
|
|
wTexel = getW(${g}, ${y+1}, d1, q);
|
|
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}p+=`
|
|
}
|
|
`}let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${p}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function ZY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s,c=l;c==null&&(c=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(o,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let d=_.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),p;Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&d.strideWidth<=2&&d.outChannels/d.inChannels==1?p=new R4(d):p=new E4(d);let h=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];return n.runWebGLProgram(p,[r,a],"float32",h)}var YY={kernelName:Va,backendName:"webgl",kernelFunc:ZY},JY=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},QY=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${i}; dm++) {
|
|
int d2 = d1 * ${i} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function eJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s,d=_.computeConv2DInfo(r.shape,c,o,i,l,u,!0),p=new JY(d);return n.runWebGLProgram(p,[r,a],"float32")}var tJ={kernelName:bp,backendName:"webgl",kernelFunc:eJ};function nJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s,d=_.computeConv2DInfo(c,a.shape,o,i,l,u,!0),p=new QY(d);return n.runWebGLProgram(p,[r,a],"float32")}var sJ={kernelName:vp,backendName:"webgl",kernelFunc:nJ},rJ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function aJ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=w.sizeFromShape(s.shape),o=be({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new rJ(a),l=n.runWebGLProgram(i,[o],o.dtype),u=be({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var oJ={kernelName:wp,backendName:"webgl",kernelFunc:aJ},iJ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:d}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${c}, ${d});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${o}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${i}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function lJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=_.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),c,d=new iJ(u);c=n.runWebGLProgram(d,[r,a],"float32");let p=be({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),p}var uJ={kernelName:Qu,backendName:"webgl",kernelFunc:lJ};function cJ(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=_.decodeEinsumEquation(r,a.length);_.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=_.getEinsumComputePath(i,l),d=c.length,p=null,h=o.length,f=[];for(let m=0;m<d;++m){for(let g of c[m]){let{permutationIndices:A,expandDims:y}=_.getEinsumPermutation(h,l[g]),x;_.isIdentityPermutation(A)?x=a[g]:(x=Nn({inputs:{x:a[g]},backend:n,attrs:{perm:A}}),f.push(x));let b=x.shape.slice();for(let v=0;v<y.length;++v)b.splice(y[v],0,1);w.arraysEqual(x.shape,b)||(x=be({inputs:{x},backend:n,attrs:{shape:b}}),f.push(x)),p===null?p=x:(p=Ay({inputs:{a:x,b:p},backend:n}),f.push(p))}m<d-1&&(u[m]>=0&&(p=Jf({inputs:{x:p},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(p)),h--)}for(let m of f)m!==p&&n.disposeIntermediateTensorInfo(m);return p}var dJ={kernelName:Sp,backendName:"webgl",kernelFunc:cJ},pJ="return (x >= 0.0) ? x : (exp(x) - 1.0);",hJ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,fJ=tt({opSnippet:pJ,packedOpSnippet:hJ}),mJ={kernelName:Ha,backendName:"webgl",kernelFunc:fJ},gJ="return (b >= 1.0) ? a : a * (b + 1.0);",AJ=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,yJ=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=Y().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Ad(AJ,s.shape,r.shape):new vu(gJ,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},xJ={kernelName:Cp,backendName:"webgl",kernelFunc:yJ},bJ=`
|
|
return vec4(equal(a, b));
|
|
`,vJ="return float(a == b);",wJ=fn({opSnippet:vJ,packedOpSnippet:bJ,dtype:"bool",cpuKernelImpl:iX}),kJ={kernelName:qi,backendName:"webgl",kernelFunc:wJ},IJ=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${_.ERF_P};
|
|
float a1 = ${_.ERF_A1};
|
|
float a2 = ${_.ERF_A2};
|
|
float a3 = ${_.ERF_A3};
|
|
float a4 = ${_.ERF_A4};
|
|
float a5 = ${_.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,SJ=tt({opSnippet:IJ}),CJ={kernelName:ji,backendName:"webgl",kernelFunc:SJ},D4="return exp(x);",_4=tt({opSnippet:D4,packedOpSnippet:D4,cpuKernelImpl:lX}),TJ={kernelName:Ga,backendName:"webgl",kernelFunc:_4};function vy(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(w.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),be({inputs:{x:a},backend:s,attrs:{shape:i}})}var NJ={kernelName:Xi,backendName:"webgl",kernelFunc:vy},F4="return exp(x) - 1.0;",EJ=tt({opSnippet:F4,packedOpSnippet:F4,cpuKernelImpl:uX}),RJ={kernelName:Ki,backendName:"webgl",kernelFunc:EJ},$4=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${o}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function O4(e,t,n){let s=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=be({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new $4("real",l,t),c=new $4("imag",l,t),d=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],p=n.runWebGLProgram(u,d,"float32"),h=n.runWebGLProgram(c,d,"float32"),f=Aa({inputs:{real:p,imag:h},backend:n});n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h);let m=be({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function DJ(e){let{inputs:t,backend:n}=e,{input:s}=t;return O4(s,!1,n)}var _J={kernelName:Tp,backendName:"webgl",kernelFunc:DJ},FJ=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function bd(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||w.inferDtype(r),a==="string"){let o=w.getArrayFromDType(a,w.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new FJ(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var $J={kernelName:ec,backendName:"webgl",kernelFunc:bd},OJ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},PJ={kernelName:Zi,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new OJ(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},P4="return floor(x);",MJ=tt({opSnippet:P4,packedOpSnippet:P4,cpuKernelImpl:cX}),zJ={kernelName:ja,backendName:"webgl",kernelFunc:MJ},LJ=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,BJ=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,WJ=fn({opSnippet:LJ,packedOpSnippet:BJ,dtype:"int32"}),VJ={kernelName:qa,backendName:"webgl",kernelFunc:WJ},UJ=class{constructor(e){this.variableNames=["A"];let t=Cn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},HJ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=Cn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},GJ={kernelName:Xp,backendName:"webgl",kernelFunc:jJ},Iu;function jJ(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],d=[u,l,a];(i||o)&&(Iu==null&&(Iu=document.createElement("canvas").getContext("2d")),Iu.canvas.width=l,Iu.canvas.height=u,Iu.drawImage(r,0,0,l,u),r=Iu.canvas);let p=n.makeTensorInfo(c,"int32");n.texData.get(p.dataId).usage=ys.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(p.dataId),r);let h=Y().getBool("WEBGL_PACK")?new HJ(d):new UJ(d),f=n.runWebGLProgram(h,[p],"int32");return n.disposeData(p.dataId),f}function qJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=s,m=_.convertConv2DDataFormat(c),g=_.computeConv2DInfo(r.shape,a.shape,l,d,u,p,!1,m),A,y=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))A=I4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(Y().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=S4({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,v=i!=null,k=h==="leakyrelu",S=h?Zf(h,!1):null,C=new k4(g,b,S,v,k),D=[r,a];if(o&&D.push(o),i&&D.push(i),k){let O=n.makeTensorInfo([],"float32",w.createScalarValue(f,"float32"));D.push(O),y.push(O)}A=n.runWebGLProgram(C,D,"float32")}let x=be({inputs:{x:A},backend:n,attrs:{shape:g.outShape}});return y.push(A),y.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var XJ={kernelName:Eo,backendName:"webgl",kernelFunc:qJ};function KJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:d,activation:p,leakyreluAlpha:h}=s,f=[],m=c;m==null&&(m=[1,1]),w.assert(_.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=_.computeConv2DInfo(r.shape,a.shape,l,m,u,d,!0),A=Y().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,y=p?Zf(p,A):null,x=[r,a],b=o!=null,v=i!=null,k=p==="leakyrelu";if(b&&x.push(o),v&&x.push(i),k){let O=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));x.push(O),f.push(O)}let S;A?S=new R4(g,b,y,v,k):S=new E4(g,b,y,v,k);let C=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],D=n.runWebGLProgram(S,x,"float32",C);return f.forEach(O=>n.disposeIntermediateTensorInfo(O)),D}var ZJ={kernelName:Ro,backendName:"webgl",kernelFunc:KJ},YJ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=gt(t.length),r=gt(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function JJ(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=w.sizeFromShape(s.shape),[l,u,c,d]=_.prepareAndValidate(s,r),p=be({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=be({inputs:{x:s},backend:n,attrs:{shape:[w.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let A=n.readSync(r.dataId),y=n.bufferSync(s),x=dX(A,y,s.dtype,u,o,c,d,s.shape,i);return n.makeTensorInfo(l,s.dtype,x.values)}let f=new YJ(o,d,[u,c]),m=n.runWebGLProgram(f,[h,p],h.dtype),g=be({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var QJ={kernelName:Ji,backendName:"webgl",kernelFunc:JJ},eQ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=gt(this.rank),s=tQ(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${s}));
|
|
}
|
|
`}};function tQ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("int(getIndices(resRC.x, resRC.z))"):s.push(`${n[r]}`);return s.join()}function M4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=w.parseAxisParam(o,r.shape)[0],u=_.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=w.sizeFromShape(a.shape),d=[],p=be({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=be({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});d.push(p),d.push(h);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let y=n.bufferSync(h),x=n.bufferSync(p),b=pX(x,y,f);return d.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new eQ(p.shape,f),g=n.runWebGLProgram(m,[p,h],p.dtype);d.push(g);let A=be({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}var nQ={kernelName:Yi,backendName:"webgl",kernelFunc:M4},sQ="return float(a > b);",rQ=`
|
|
return vec4(greaterThan(a, b));
|
|
`,aQ=fn({opSnippet:sQ,packedOpSnippet:rQ,cpuKernelImpl:hX,dtype:"bool"}),oQ={kernelName:Qi,backendName:"webgl",kernelFunc:aQ},iQ="return float(a >= b);",lQ=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,uQ=fn({opSnippet:iQ,packedOpSnippet:lQ,dtype:"bool",cpuKernelImpl:fX}),cQ={kernelName:Ka,backendName:"webgl",kernelFunc:uQ};function dQ(e){let{inputs:t,backend:n}=e,{input:s}=t;return O4(s,!0,n)}var pQ={kernelName:Np,backendName:"webgl",kernelFunc:dQ},hQ="return float(!isnan(x) && !isinf(x));",fQ=tt({opSnippet:hQ,dtype:"bool"}),mQ={kernelName:el,backendName:"webgl",kernelFunc:fQ},gQ="return float(isinf(x));",AQ=tt({opSnippet:gQ,dtype:"bool"}),yQ={kernelName:tl,backendName:"webgl",kernelFunc:AQ},xQ="return float(isnan(x));",bQ=tt({opSnippet:xQ,dtype:"bool"}),vQ={kernelName:nl,backendName:"webgl",kernelFunc:bQ},wQ="return float(a < b);",kQ=`
|
|
return vec4(lessThan(a, b));
|
|
`,IQ=fn({opSnippet:wQ,packedOpSnippet:kQ,cpuKernelImpl:mX,dtype:"bool"}),SQ={kernelName:sl,backendName:"webgl",kernelFunc:IQ},CQ="return float(a <= b);",TQ=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,NQ=fn({opSnippet:CQ,packedOpSnippet:TQ,cpuKernelImpl:gX,dtype:"bool"}),EQ={kernelName:rl,backendName:"webgl",kernelFunc:NQ};function RQ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=AX(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var DQ={kernelName:Rp,backendName:"webgl",kernelFunc:RQ},_Q=`if (x < 0.0) return NAN;
|
|
return log(x);`,FQ=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,$Q=tt({opSnippet:_Q,packedOpSnippet:FQ,cpuKernelImpl:yX}),OQ={kernelName:Ja,backendName:"webgl",kernelFunc:$Q},PQ="return log(1.0 + x);",MQ=tt({opSnippet:PQ}),zQ={kernelName:al,backendName:"webgl",kernelFunc:MQ},LQ="return float(a >= 1.0 && b >= 1.0);",BQ=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,WQ=fn({opSnippet:LQ,packedOpSnippet:BQ,dtype:"bool"}),VQ={kernelName:ol,backendName:"webgl",kernelFunc:WQ},UQ="return float(!(x >= 1.0));",HQ=tt({opSnippet:UQ}),GQ={kernelName:tc,backendName:"webgl",kernelFunc:HQ},jQ="return float(a >= 1.0 || b >= 1.0);",qQ=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,XQ=fn({opSnippet:jQ,packedOpSnippet:qQ,dtype:"bool"}),KQ={kernelName:nc,backendName:"webgl",kernelFunc:XQ},ZQ=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${o}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${i};
|
|
setOutput(val);
|
|
}
|
|
`}},YQ=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${i};
|
|
setOutput(result);
|
|
}
|
|
`}},JQ=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,u=Y().getBool("WEBGL_PACK_NORMALIZATION")?new YQ(r.shape,a,o,i,l):new ZQ(r.shape,a,o,i,l);return n.runWebGLProgram(u,[r],r.dtype)},QQ={kernelName:sc,backendName:"webgl",kernelFunc:JQ},eee=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},tee=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s,d=new eee(r.shape,i,l,u,c);return n.runWebGLProgram(d,[r,a,o],r.dtype)},nee={kernelName:Dp,backendName:"webgl",kernelFunc:tee};function see(e,t,n,s){let r=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=ci(i,e.dtype,"max",s),u=be({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}function z4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=l,c=_.getAxesPermutation(u,i),d=c!=null,p=n.shouldExecuteOnCPU([r]),h=r;if(d){if(p){let x=n.texData.get(h.dataId).values,b=new Array(i);for(let S=0;S<b.length;S++)b[S]=r.shape[c[S]];let v=gy(x,r.shape,r.dtype,c,b);h=n.makeTensorInfo(b,r.dtype);let k=n.texData.get(h.dataId);k.values=v}else h=Yf(r,c,n);u=_.getInnerMostAxes(u.length,i)}_.assertAxesAreInnerMostDims("max",u,i);let[f,m]=_.computeOutAndReduceShapes(h.shape,u),g=f;o&&(g=_.expandShapeToKeepDim(f,l));let A;if(p){let x=n.texData.get(h.dataId).values,b=xX(x,w.sizeFromShape(m),g,r.dtype);A=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(A.dataId);v.values=b}else A=see(h,m,g,n);return d&&n.disposeIntermediateTensorInfo(h),A}var ree={kernelName:Qa,backendName:"webgl",kernelFunc:z4},aee=n4+`
|
|
return max(a, b);
|
|
`,oee=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Kf+`
|
|
return result;
|
|
`,iee=fn({opSnippet:aee,packedOpSnippet:oee,cpuKernelImpl:bX}),lee={kernelName:eo,backendName:"webgl",kernelFunc:iee};function uee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;fu(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;w.assert(_.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=_.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return as({inputs:{x:r},backend:n});let d=new yd(c,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var cee={kernelName:to,backendName:"webgl",kernelFunc:uee};function dee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=s,c=[1,1,1],d=_.computePool3DInfo(r.shape,a,o,c,i,u,l),p=new yy(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var pee={kernelName:rc,backendName:"webgl",kernelFunc:dee},hee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${o}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},fee=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,d=l-1-e.padInfo.top,p=u-1-e.padInfo.left,h=i*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${d}, ${p});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${i};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${o}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function mee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,d=[1,1,1],p=_.computePool3DInfo(o.shape,i,l,d,u,c),h=new yy(p,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new fee(p),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var gee={kernelName:Fp,backendName:"webgl",kernelFunc:mee};function Aee(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;fu([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:d}=s,p=_.computePool2DInfo(i.shape,l,u,1,c,d),h=!0,f=new yd(p,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new hee(p),A=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var yee={kernelName:_p,backendName:"webgl",kernelFunc:Aee};function xee(e,t,n,s){let r=new yd(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new yd(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var bee={kernelName:$p,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;w.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let u=[1,1];w.assert(_.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=_.computePool2DInfo(s.shape,r,a,u,o),[d,p]=xee(s,i,c,l);return[d,p]}};function vee(e,t,n,s){let r=w.sizeFromShape(t),o=w.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=ci(i,"float32","mean",s),u=be({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}var wee={kernelName:no,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=w.parseAxisParam(a,s.shape),u=l,c=_.getAxesPermutation(u,i),d=c!=null,p=o.shouldExecuteOnCPU([s]),h=[],f=s;if(d){if(p){let b=o.texData.get(f.dataId).values,v=new Array(i);for(let C=0;C<v.length;C++)v[C]=s.shape[c[C]];let k=gy(b,s.shape,s.dtype,c,v);f=o.makeTensorInfo(v,s.dtype);let S=o.texData.get(f.dataId);S.values=k}else f=Yf(s,c,o);h.push(f),u=_.getInnerMostAxes(u.length,i)}_.assertAxesAreInnerMostDims("sum",u,i);let[m,g]=_.computeOutAndReduceShapes(f.shape,u),A=m;r&&(A=_.expandShapeToKeepDim(m,l));let y=vee(f,g,A,o);for(let x of h)o.disposeIntermediateTensorInfo(x);return y}};function kee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=w.parseAxisParam(a,r.shape),u=l,c=_.getAxesPermutation(u,i),d=r;c!=null&&(d=Nn({inputs:{x:r},backend:n,attrs:{perm:c}}),u=_.getInnerMostAxes(u.length,r.shape.length)),_.assertAxesAreInnerMostDims("min",u,i);let[p,h]=_.computeOutAndReduceShapes(d.shape,u),f=w.sizeFromShape(h),m=be({inputs:{x:d},backend:n,attrs:{shape:[-1,f]}}),g=ci(m,m.dtype,"min",n),A;if(o){let y=_.expandShapeToKeepDim(p,l);A=be({inputs:{x:g},backend:n,attrs:{shape:y}})}else A=be({inputs:{x:g},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(d),A}var Iee={kernelName:so,backendName:"webgl",kernelFunc:kee},See=n4+`
|
|
return min(a, b);
|
|
`,Cee=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Kf+`
|
|
return result;
|
|
`,Tee=fn({opSnippet:See,packedOpSnippet:Cee,cpuKernelImpl:vX}),Nee={kernelName:ro,backendName:"webgl",kernelFunc:Tee},Eee=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let s=e.length,r=gt(s),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}},Ree=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=gt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=Tn("rc",s),l=Tn("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,d=n==="reflect"?0:1,p="";if(s===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${d};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${d};
|
|
}
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${d}) +
|
|
gte * ((end - 1) * 2 - source + ${d});
|
|
source -= start;
|
|
`;p=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${c});
|
|
${i[s-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}},Dee=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Ree(s.shape,r,a):new Eee(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},_ee={kernelName:ao,backendName:"webgl",kernelFunc:Dee},Fee=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,$ee=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Kf+`
|
|
return result;
|
|
`,Oee=fn({opSnippet:Fee,packedOpSnippet:$ee}),Pee={kernelName:il,backendName:"webgl",kernelFunc:Oee},Mee=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},zee=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,Lee=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,L4=fn({opSnippet:zee,packedOpSnippet:Lee,checkOutOfBounds:!0}),Bee={kernelName:Ua,backendName:"webgl",kernelFunc:L4},B4="return a - b;",W4=fn({opSnippet:B4,packedOpSnippet:B4,supportsComplex:!0,cpuKernelImpl:MX}),Wee={kernelName:Io,backendName:"webgl",kernelFunc:W4};function V4(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=w.parseAxisParam([a],r.shape),i=z4({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=_.expandShapeToKeepDim(i.shape,o),u=be({inputs:{x:i},backend:n,attrs:{shape:l}}),c=W4({inputs:{a:r,b:u},backend:n}),d=_4({inputs:{x:c},backend:n}),p=Jf({inputs:{x:d},backend:n,attrs:{axis:o,keepDims:!1}}),h=be({inputs:{x:p},backend:n,attrs:{shape:l}}),f=L4({inputs:{a:d,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(h),f}var Vee={kernelName:wo,backendName:"webgl",kernelFunc:V4};function Uee(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:V4({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],d=new Mee(u,c,a),p=[[o]],h=n.runWebGLProgram(d,[l],"int32",p);return i||n.disposeIntermediateTensorInfo(l),h}var Hee={kernelName:Op,backendName:"webgl",kernelFunc:Uee},U4="return -x;";function Gee(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=kX(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return Y().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new xu(s.shape,U4):r=new ga(s.shape,U4),n.runWebGLProgram(r,[s],s.dtype)}var jee={kernelName:ll,backendName:"webgl",kernelFunc:Gee},qee=or.nonMaxSuppressionV3Impl;function Xee(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:d}=qee(u,c,o,i,l);return n.makeTensorInfo([d.length],"int32",new Int32Array(d))}var Kee={kernelName:cl,backendName:"webgl",kernelFunc:Xee},Zee=or.nonMaxSuppressionV4Impl;function Yee(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s,c=n.readSync(r.dataId),d=n.readSync(a.dataId),{selectedIndices:p,validOutputs:h}=Zee(c,d,o,i,l,u);return[n.makeTensorInfo([p.length],"int32",new Int32Array(p)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Jee={kernelName:dl,backendName:"webgl",kernelFunc:Yee},Qee=or.nonMaxSuppressionV5Impl;function ete(e){_.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),d=n.readSync(a.dataId),p=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:A}=Qee(c,d,p,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var tte={kernelName:pl,backendName:"webgl",kernelFunc:ete},nte=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},ste=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=w.sizeFromShape(r.shape),u=new nte(l,a,o,i),c=be({inputs:{x:r},backend:n,attrs:{shape:[l]}}),d=n.runWebGLProgram(u,[c],r.dtype);n.disposeIntermediateTensorInfo(c);let p=[...r.shape,a],h=be({inputs:{x:d},backend:n,attrs:{shape:p}});return n.disposeIntermediateTensorInfo(d),h},rte={kernelName:io,backendName:"webgl",kernelFunc:ste};function s0(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=xd({inputs:{input:s},backend:n}),a=s0({inputs:{x:r},backend:n}),o=n0({inputs:{input:s},backend:n}),i=s0({inputs:{x:o},backend:n}),l=Aa({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return bd({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var ate={kernelName:Dl,backendName:"webgl",kernelFunc:s0};function H4(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=xd({inputs:{input:s},backend:n}),a=H4({inputs:{x:r},backend:n}),o=n0({inputs:{input:s},backend:n}),i=s0({inputs:{x:o},backend:n}),l=Aa({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return bd({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var ote={kernelName:hl,backendName:"webgl",kernelFunc:H4};function ite(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return vy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=vy({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=w4({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var lte={kernelName:fl,backendName:"webgl",kernelFunc:ite},ute=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let s=e.length,r=gt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${o};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${i}));
|
|
}
|
|
}
|
|
`}},cte=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=gt(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Tn("rc",s),l=Tn("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,d=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
|
|
if(${u}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${i[s-2]} += 1;
|
|
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
|
|
if(${u}) {`],p=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
|
|
${d[f]}
|
|
if (${p}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`;h+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${o});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},G4=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(w.sizeFromShape(r.shape)===0){let u=a.map((c,d)=>c[0]+r.shape[d]+c[1]);return bd({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new cte(r.shape,a,o):new ute(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},dte={kernelName:lo,backendName:"webgl",kernelFunc:G4},pte=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,hte=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Kf+`
|
|
return result;
|
|
`,fte=fn({opSnippet:pte,packedOpSnippet:hte}),mte={kernelName:uo,backendName:"webgl",kernelFunc:fte};function gte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],u=w.parseAxisParam(a,r.shape),c=u,d=_.getAxesPermutation(c,i),p=r;d!=null&&(p=Nn({inputs:{x:r},backend:n,attrs:{perm:d}}),c=_.getInnerMostAxes(c.length,i),l.push(p)),_.assertAxesAreInnerMostDims("prod",c,i);let h;if(n.shouldExecuteOnCPU([p])){let f=n.texData.get(p.dataId).values,{outVals:m,outShape:g,outDtype:A}=SX(p.shape,p.dtype,f,c);h=n.makeTensorInfo(g,A,m)}else{let[f,m]=_.computeOutAndReduceShapes(p.shape,c),g=w.sizeFromShape(m),A=be({inputs:{x:p},backend:n,attrs:{shape:[-1,g]}}),y=eh(r.dtype),x=ci(A,y,"prod",n);h=be({inputs:{x},backend:n,attrs:{shape:f}}),l.push(A),l.push(x)}if(o){l.push(h);let f=_.expandShapeToKeepDim(h.shape,u);h=be({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var Ate={kernelName:ml,backendName:"webgl",kernelFunc:gte},j4=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=CX(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},yte={kernelName:ac,backendName:"webgl",kernelFunc:j4},xte="return 1.0 / x;",bte=tt({opSnippet:xte}),vte={kernelName:gl,backendName:"webgl",kernelFunc:bte},wte=Xs+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,kte=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Ite=tt({opSnippet:wte,packedOpSnippet:kte}),Ste={kernelName:po,backendName:"webgl",kernelFunc:Ite},Cte=Xs+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Tte=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Nte=tt({opSnippet:Cte,packedOpSnippet:Tte}),Ete={kernelName:fo,backendName:"webgl",kernelFunc:Nte},Rte=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Dte=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d;r?d="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function _te(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Dte(r.shape,l,u,a,o):new Rte(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],"float32")}var Fte={kernelName:ho,backendName:"webgl",kernelFunc:_te},$te=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,p=1/c,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Ote(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new $te(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Pte={kernelName:zp,backendName:"webgl",kernelFunc:Ote},Mte=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},zte=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],d=s?"0.5":"0.0",p;r?p="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
|
|
${i}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${d})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Lte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=Y().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new zte(r.shape,l,u,a,o):new Mte(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],r.dtype)}var Bte={kernelName:oc,backendName:"webgl",kernelFunc:Lte},Wte=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],d=1/u,p=1/c,h=Math.ceil(d)*2+2,f=Math.ceil(p)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${d});
|
|
const float invWidthScale = float(${p});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${o}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${i[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${i[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Vte(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Wte(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Ute={kernelName:Mp,backendName:"webgl",kernelFunc:Vte},Hte=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=gt(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},Gte=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=Tn("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=gt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${o} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${i(s.slice())};
|
|
if(${r}){
|
|
result.g = ${l(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${u(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${c(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function i(h){return d(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",d(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",d(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",d(h)}function d(h){let f=e.map((A,y)=>p(y,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function p(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function jte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=w.parseAxisParam(a,r.shape);if(o===0)return as({inputs:{x:r},backend:n});let l=Y().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Gte(r.shape,i):new Hte(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var qte={kernelName:mo,backendName:"webgl",kernelFunc:jte},Xte=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},Kte={kernelName:_l,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Xte(s.shape,a),[u,c]=_.getImageCenter(o,s.shape[1],s.shape[2]),d=[[u,c,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,d)}},Zte=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,Yte=tt({opSnippet:Zte}),Jte={kernelName:go,backendName:"webgl",kernelFunc:Yte},Qte="return inversesqrt(x);",ene=tt({opSnippet:Qte,cpuKernelImpl:TX}),tne={kernelName:Ao,backendName:"webgl",kernelFunc:ene},q4=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=gt(r.length),l=gt(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,d="";s===1?d="i":s===2&&(d="i, coords[1]");let p=`getUpdates(${d})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${i} strides = ${i}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${p};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function nne(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:d}=_.calculateShapes(a,r,o),p=[d/u,u];if(d===0)return n.makeTensorInfo(o,r.dtype);let h=be({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=be({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new q4(l,i,h.shape.length,f.shape.length,c,p),A=n.runWebGLProgram(g,[f,h,m],f.dtype),y=be({inputs:{x:A},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(m),y}var sne={kernelName:yl,backendName:"webgl",kernelFunc:nne},rne=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u<t.length;u++)l.push(`${o[u]}`),u<e&&i.push(`${o[u]}`);s=i.join(),r=l.join()}let a=gt(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function ane(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new rne(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Ts(r.dtype,a.dtype))}var one={kernelName:xl,backendName:"webgl",kernelFunc:ane},ine=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${_.SELU_SCALEALPHA};
|
|
float scale = ${_.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,lne=tt({opSnippet:ine}),une={kernelName:bl,backendName:"webgl",kernelFunc:lne},X4="return 1.0 / (1.0 + exp(-1.0 * x));",cne=tt({opSnippet:X4,packedOpSnippet:X4,cpuKernelImpl:NX}),dne={kernelName:xo,backendName:"webgl",kernelFunc:cne},pne=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,hne=tt({opSnippet:pne}),fne={kernelName:kl,backendName:"webgl",kernelFunc:hne},mne=i4+`
|
|
return sin(x);
|
|
`,gne=tt({opSnippet:mne}),Ane={kernelName:yo,backendName:"webgl",kernelFunc:gne},yne=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,xne=tt({opSnippet:yne}),bne={kernelName:wl,backendName:"webgl",kernelFunc:xne},vne=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,wne=tt({opSnippet:vne}),kne={kernelName:Il,backendName:"webgl",kernelFunc:wne},Ine=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((A,y)=>A*y),l=[[0,0]];l.push(...o);for(let A=1+a.length;A<r.shape.length;++A)l.push([0,0]);let u=[],c=G4({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=_.getReshaped(c.shape,a,i,!1),p=_.getPermuted(d.length,a.length,!1),h=_.getReshapedPermuted(c.shape,a,i,!1),f=be({inputs:{x:c},backend:n,attrs:{shape:d}}),m=Nn({inputs:{x:f},backend:n,attrs:{perm:p}}),g=be({inputs:{x:m},backend:n,attrs:{shape:h}});return u.push(c),u.push(f),u.push(m),u.forEach(A=>n.disposeIntermediateTensorInfo(A)),g},Sne={kernelName:Sl,backendName:"webgl",kernelFunc:Ine};function Cne(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[d,p,h,f,m]=RX(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(p,s.dtype,d),n.makeTensorInfo([p[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Tne={kernelName:Lp,backendName:"webgl",kernelFunc:Cne};function Nne(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,d]=DX(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([d.length],a.dtype,new Int32Array(d))]}var Ene={kernelName:Bp,backendName:"webgl",kernelFunc:Nne};function Rne(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=X6(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var Dne={kernelName:Wp,backendName:"webgl",kernelFunc:Rne};function _ne(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=X6(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var Fne={kernelName:Vp,backendName:"webgl",kernelFunc:_ne};function $ne(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,strides:c,outputSize:d}=_.calculateShapes(a,r,i),p=!1,h=new q4(u,l,r.shape.length,a.shape.length,c,[d,1],p),f=n.runWebGLProgram(h,[a,r,o],a.dtype),m=be({inputs:{x:f},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(f),m}var One={kernelName:Up,backendName:"webgl",kernelFunc:$ne};function Pne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=w.parseAxisParam(o,r.shape)[0],l=_.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),d=r.shape.slice();return l.map(p=>{let h=[...d];h[i]=p;let f=wu({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=p,f})}var Mne={kernelName:Cl,backendName:"webgl",kernelFunc:Pne},K4="return sqrt(x);",zne=tt({opSnippet:K4,packedOpSnippet:K4,cpuKernelImpl:_X}),Lne={kernelName:bo,backendName:"webgl",kernelFunc:zne},Bne="return x * x;",Wne=tt({opSnippet:Bne}),Vne={kernelName:ic,backendName:"webgl",kernelFunc:Wne},Z4="return (a - b) * (a - b);",Une=fn({opSnippet:Z4,packedOpSnippet:Z4}),Hne={kernelName:ko,backendName:"webgl",kernelFunc:Une};function Gne({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=Xs+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new ga(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var jne={kernelName:Kr,backendName:"webgl",kernelFunc:Gne},qne=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=gt(n.length),a=gt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}};function Xne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:p}=s,{nonStrided:h,$begin:f,$strides:m,size:g,newShape:A,outShape:y}=kn.sliceInfo(r.shape,a,o,i,l,u,c,d,p),x=be({inputs:{x:r},backend:n,attrs:{shape:A}}),b;if(h){let k=wu({inputs:{x},backend:n,attrs:{begin:f,size:g}});b=be({inputs:{x:k},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(k)}else if(y.some(k=>k===0))b=n.makeTensorInfo(y,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let C=n.texData.get(x.dataId).values,D=je(x.shape,x.dtype,C),O=FX(y,D,m,f);b=n.makeTensorInfo(y,x.dtype,O.values)}else{let S=new qne(f,m,y);b=n.runWebGLProgram(S,[x],x.dtype)}let v=be({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(b),v}var Kne={kernelName:Tl,backendName:"webgl",kernelFunc:Xne};function Zne(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:d}=t,p=n.readSync(c.dataId),h=n.readSync(d.dataId),[f,m]=$X(p,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(d.shape,"int32",m)]}var Yne={kernelName:Hp,backendName:"webgl",kernelFunc:Zne};function Jne(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,d]=OX(i,l,r),p=c.length;return[n.makeTensorInfo([p,2],"int32",u),n.makeTensorInfo([p],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(d))]}var Qne={kernelName:Gp,backendName:"webgl",kernelFunc:Jne};function ese(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=PX(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var tse={kernelName:jp,backendName:"webgl",kernelFunc:ese},nse="return tan(x);",sse=tt({opSnippet:nse}),rse={kernelName:So,backendName:"webgl",kernelFunc:sse},ase=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,ose=tt({opSnippet:ase}),ise={kernelName:Co,backendName:"webgl",kernelFunc:ose},lse=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=gt(this.rank),r=use(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function use(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function Y4(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(p=>w.decodeString(p)):l,c=je(r.shape,r.dtype,u),d=zX(c,a);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let o=new lse(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var cse={kernelName:Xr,backendName:"webgl",kernelFunc:Y4},dse=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},pse=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function di(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function J4(e){let t=1;for(;t<e;)t*=2;return t}function hse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=Y().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=Y().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,c=u[u.length-1];if(n.shouldExecuteOnCPU([r])||c<i||a>l){let O=n.readSync(r.dataId),[E,R]=LX(O,u,r.dtype,a,o);return[n.makeTensorInfo(E.shape,E.dtype,E.values),n.makeTensorInfo(R.shape,R.dtype,R.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[r,bd({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let d=n.texData.get(r.dataId),p=d!==null&&d.isPacked,h=p?n.unpackTensor(r):r,m=w.sizeFromShape(u)/c,g=be({inputs:{x:h},attrs:{shape:[m,c]},backend:n});p&&di(n,h);let A=J4(a),y=J4(c),x=null,b=()=>x===null?[g,g]:[g,x],v=(O,E,R)=>{let T=b(),P=new dse(R),j=[[c],[x===null?1:0],[Number.NEGATIVE_INFINITY],[O],[E]],q=x;x=n.runWebGLProgram(P,T,"int32",j),di(n,q)};for(let O=1;O<A;O*=2){let E=O*2;for(let R=O;R>=1;R/=2)v(E,R,[m,y])}for(let O=y;O>A;O/=2){let E=b(),R=new pse([m,O/2]),P=[[c],[x===null?1:0],[A]],U=x;x=n.runWebGLProgram(R,E,"int32",P),di(n,U);let j=A/2,q=j*2;for(let X=j;X>=1;X/=2)v(q,X,x.shape)}let k=x;x=wu({inputs:{x},backend:n,attrs:{begin:0,size:[m,a]}}),di(n,k);let S=M4({inputs:{x:g,indices:x},backend:n,attrs:{axis:1,batchDims:1}});di(n,g);let C=u.slice(0,-1);C.push(a),k=x,x=be({inputs:{x},attrs:{shape:C},backend:n}),di(n,k);let D=S;return S=be({inputs:{x:S},attrs:{shape:C},backend:n}),di(n,D),[S,x]}var fse={kernelName:Nl,backendName:"webgl",kernelFunc:hse},mse=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${i} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${i} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${o} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function gse(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,d,p,h]=r.shape,[f,m]=u!=null?u:[d,p],g=[c,f,m,h],A=new mse(d,p,o,i,l,g);return n.runWebGLProgram(A,[r,a],"float32")}var Ase={kernelName:El,backendName:"webgl",kernelFunc:gse};function yse(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;fu(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=BX(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var xse={kernelName:qp,backendName:"webgl",kernelFunc:yse};function bse(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(u[c++]=o.shape[m]);let d=[],p=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){p[a]=m;let g=wu({inputs:{x:o},backend:n,attrs:{begin:p,size:h}}),A=be({inputs:{x:g},backend:n,attrs:{shape:u}});f[m]=A,d.push(g)}return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var vse={kernelName:Rl,backendName:"webgl",kernelFunc:bse},wse=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,d=`
|
|
sumValue += dot(values, segFilter);
|
|
`,p="";r%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${d}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function kse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],u=0,c=_.getAxesPermutation([u],i),d=r;c!=null&&(d=Nn({inputs:{x:r},backend:n,attrs:{perm:c}}),l.push(d),u=_.getInnerMostAxes(1,i)[0]);let p=_.segment_util.computeOutShape(d.shape,u,o),h=w.sizeFromShape([d.shape[u]]),f=be({inputs:{x:d},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=eh(r.dtype),g=(b,v,k,S,C)=>{let D=b.shape[0],O=b.shape[1],E=_.segment_util.segOpComputeOptimalWindowSize(O,C),R={windowSize:E,inSize:O,batchSize:D,numSegments:C},T=new wse(R,v),P=n.compileAndRun(T,[b,k],S);if(l.push(P),P.shape[1]===C)return P;let U=j4({backend:n,attrs:{start:0,stop:C,step:1,dtype:"float32"}}),j=Y4({inputs:{x:U},backend:n,attrs:{reps:[O/E]}});return l.push(U),l.push(j),g(P,v,j,S,C)},A=g(f,"unsortedSegmentSum",a,m,o),y=be({inputs:{x:A},backend:n,attrs:{shape:p}}),x=y;if(c!=null){l.push(y);let b=_.getUndoAxesPermutation(c);x=Nn({inputs:{x},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),x}var Ise={kernelName:lc,backendName:"webgl",kernelFunc:kse},Sse=[QQ,nee,LK,WK,HK,qK,KK,JK,eZ,nZ,oZ,lZ,dZ,fZ,vZ,AZ,IZ,NZ,CZ,_Z,$Z,PZ,BZ,qZ,KZ,tY,sY,iY,cY,bK,mY,SY,TY,xY,DY,FY,EY,PY,LY,VY,HY,jY,KY,tJ,sJ,YY,oJ,uJ,dJ,mJ,xJ,kJ,CJ,TJ,NJ,RJ,_J,$J,PJ,zJ,VJ,GJ,XJ,ZJ,QJ,nQ,oQ,cQ,xK,pQ,hY,mQ,yQ,vQ,wK,SQ,EQ,DQ,zQ,OQ,VQ,GQ,KQ,ree,pee,cee,gee,yee,bee,lee,wee,Iee,Nee,_ee,Pee,Hee,TK,jee,Kee,Jee,tte,YZ,rte,ote,lte,dte,mte,IK,Ate,yte,JZ,Bee,vte,Ete,Ste,EK,Fte,Pte,Bte,Ute,qte,Kte,Jte,tne,sne,one,une,dne,fne,Ane,bne,GZ,Vee,kne,Sne,Tne,Ene,Dne,Fne,One,Mne,Lne,Vne,Hne,jne,Kne,Yne,Qne,tse,Wee,PK,rse,ise,cse,fse,Ase,MK,xse,vse,Ise,ate];for(let e of Sse)Do(e);var Wn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Wn||(Wn={}));var vd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(vd||(vd={}));var Q4;function Cse(e){Q4=e.wasm.cwrap(No,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Tse(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:d}=s,p=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let C=n.dataIdMap.get(o.dataId);if(C.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${C.shape.length}.`);f=C.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=vd[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let A=l?r.shape[2]:r.shape[1],y=u?a.shape[1]:a.shape[2],x=r.shape[0],b=n.makeOutput([x,A,y],r.dtype),v=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),S=new Uint8Array(new Int32Array(a.shape).buffer);return Q4(p,k,r.shape.length,h,S,a.shape.length,l,u,g,f,m,d||0,v),b}var Nse={kernelName:No,backendName:"wasm",setupFunc:Cse,kernelFunc:Tse};function mn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function s(r){let{backend:a,inputs:{x:o}}=r,i=a.dataIdMap.get(o.dataId).id,l=a.makeOutput(o.shape,o.dtype),u=a.dataIdMap.get(l.dataId).id;return w.sizeFromShape(l.shape)===0||t(i,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:s}}var Ese=mn(_i);function En(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,d=i.dataIdMap.get(u.dataId).id,p=i.dataIdMap.get(c.dataId).id,h=n!=null?n:u.dtype,f=_.assertAndGetBroadcastShape(u.shape,c.shape),m=i.makeOutput(f,h);if(w.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),A=new Uint8Array(new Int32Array(c.shape).buffer),y=i.dataIdMap.get(m.dataId).id,x=()=>s(d,g,u.shape.length,p,A,c.shape.length,Wn[u.dtype],y);if(t&&u.dtype==="float32")return x(),m;let b=_.getBroadcastDims(u.shape,f),v=_.getBroadcastDims(c.shape,f),k=b.every((C,D)=>C===D),S=v.every((C,D)=>C===D);if(k&&S)return x(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var Rse=!0,Dse=En(jr,Rse),ek;function _se(e){ek=e.wasm.cwrap(Da,null,["array","number","number","number"])}function Fse(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return ek(a,r.length,Wn[s.dtype],o),s}var $se={kernelName:Da,backendName:"wasm",setupFunc:_se,kernelFunc:Fse};function r0(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var Ose={kernelName:Za,backendName:"wasm",kernelFunc:r0},tk;function Pse(e){tk=e.wasm.cwrap(To,null,["number","array","number","number","number","array","number"])}function Su(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=zse(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=Mse(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=r0({inputs:t,backend:n});return f.shape=i,f}let u=n.makeOutput(i,l.dtype),c=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(u.dataId).id,p=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return tk(c,h,l.shape.length,Wn[l.dtype],d,p,a.length),u}function Mse(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function zse(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var Lse={kernelName:To,backendName:"wasm",kernelFunc:Su,setupFunc:Pse};function ya(e,t,n){let s=e.shape,r=e.shape.length,a=w.parseAxisParam(t,s),o=a,i=_.getAxesPermutation(o,r),l=null,u=!1;if(i!=null){let c=new Array(r);for(let h=0;h<c.length;h++)c[h]=s[i[h]];o=_.getInnerMostAxes(o.length,r),l=Su({inputs:{x:e},attrs:{perm:i},backend:n});let d=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==d&&(u=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:u}}var nk;function Bse(e){nk=e.wasm.cwrap(Oi,null,["number, number, number"])}function Wse(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=ya(o,r,t);if(h){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let f=u.shape.length;_.assertAxesAreInnerMostDims("all",d,f);let[m,g]=_.computeOutAndReduceShapes(u.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;nk(l,A,x)}if(h&&t.disposeData(c.dataId),a){let x=_.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Vse={kernelName:Oi,backendName:"wasm",setupFunc:Bse,kernelFunc:Wse},sk;function Use(e){sk=e.wasm.cwrap(Pi,null,["number, number, number"])}function Hse(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=ya(o,r,t);if(h){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let f=u.shape.length;_.assertAxesAreInnerMostDims("any",d,f);let[m,g]=_.computeOutAndReduceShapes(u.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;sk(l,A,x)}if(h&&t.disposeData(c.dataId),a){let x=_.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var Gse={kernelName:Pi,backendName:"wasm",setupFunc:Use,kernelFunc:Hse},rk;function jse(e){rk=e.wasm.cwrap(_a,null,["number","number","number","number","number"])}function qse(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:u,axes:c,inputWasTransposed:d}=ya(a,r,t);if(d){let A=t.dataIdMap.get(u.dataId).id;A!==o&&(l=u,i=A)}let p=l.shape.slice(0,-1),h=t.makeOutput(p,"int32"),f=t.dataIdMap.get(h.dataId).id,m=w.sizeFromShape(h.shape),g=l.shape[c[0]];return rk(i,Wn[l.dtype],m,g,f),d&&t.disposeData(u.dataId),h}var Xse={kernelName:_a,backendName:"wasm",kernelFunc:qse,setupFunc:jse},ak;function Kse(e){ak=e.wasm.cwrap(Fa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Zse(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=_.computePool2DInfo(r.shape,o,i,1,l,u),d=c.filterHeight,p=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,A=c.strideHeight,y=c.strideWidth,x=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let b=s.makeOutput(c.outShape,"float32"),v=s.dataIdMap.get(b.dataId).id;return ak(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,y,x,v),b}var Yse={kernelName:Fa,backendName:"wasm",setupFunc:Kse,kernelFunc:Zse};function Vn(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=w.sizeFromShape(s.shape),o=w.inferFromImplicitShape(r,a);return w.assert(a===w.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Jse={kernelName:Al,backendName:"wasm",kernelFunc:Vn},ok;function Qse(e){ok=e.wasm.cwrap($a,null,["number","array","number","number","array","number","number","number","number"])}function ere(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],d=i?a.shape[u-1]:a.shape[u-2],p=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),A=w.sizeFromShape(m),y=g===A||g===1||A===1;w.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let b=(g>A?r.shape.slice(0,-2):a.shape.slice(0,-2)).concat([p,h]);w.assert(c===d,()=>`Error in matMul: inner shapes (${c}) and (${d}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let v=o?[g,c,p]:[g,p,c],k=i?[A,h,d]:[A,d,h],S=Vn({inputs:{x:r},backend:n,attrs:{shape:v}}),C=Vn({inputs:{x:a},backend:n,attrs:{shape:k}}),D=n.dataIdMap.get(S.dataId).id,O=n.dataIdMap.get(C.dataId).id,E=o?S.shape[2]:S.shape[1],R=i?C.shape[1]:C.shape[2],T=Math.max(g,A),P=n.makeOutput([T,E,R],S.dtype),U=n.dataIdMap.get(P.dataId).id,j=new Uint8Array(new Int32Array(S.shape).buffer),q=new Uint8Array(new Int32Array(C.shape).buffer);return ok(D,j,S.shape.length,O,q,C.shape.length,o,i,U),n.disposeData(S.dataId),n.disposeData(C.dataId),P.shape=b,P}var tre={kernelName:$a,backendName:"wasm",setupFunc:Qse,kernelFunc:ere};function wd(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=kn.parseSliceParams(t,n,s),i=kn.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),u=r.makeOutput(o,t.dtype),c=w.computeStrides(t.shape),d=r.dataIdMap.get(u.dataId);if(i){let f=kn.computeFlatOffset(a,c);return t.dtype==="string"?d.stringBytes=l.slice(f,f+w.sizeFromShape(o)):r.typedArrayFromHeap(u).set(l.subarray(f,f+w.sizeFromShape(o))),u}if(t.dtype==="string"){let f=$f(l,a,o,t.shape,t.dtype);return d.stringBytes=f,u}let p=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)nre(l,c[0],p,a,o);else if(h===3)sre(l,c[0],c[1],p,a,o);else if(h===4)rre(l,c[0],c[1],c[2],p,a,o);else{let f=$f(l,a,o,t.shape,t.dtype);p.set(f)}return u}function nre(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let u=o;u<l;u++){let c=u*t+i;n.set(e.subarray(c,c+r[1]),a),a+=r[1]}}function sre(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],u=r[2],c=i+a[0],d=l+a[1];for(let p=i;p<c;p++)for(let h=l;h<d;h++){let f=p*t+h*n+u;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function rre(e,t,n,s,r,a,o){let i=0,l=a[0],u=a[1],c=a[2],d=l+o[0],p=u+o[1],h=c+o[2],f=a[3];for(let m=l;m<d;m++)for(let g=u;g<p;g++)for(let A=c;A<h;A++){let y=m*t+g*n+A*s+f;r.set(e.subarray(y,y+o[3]),i),i+=o[3]}}var are={kernelName:vl,backendName:"wasm",kernelFunc:wd};function ore(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((A,y)=>A*y),l=_.getReshaped(r.shape,a,i),u=_.getPermuted(l.length,a.length),c=_.getReshapedPermuted(r.shape,a,i),d=_.getSliceBeginCoords(o,a.length),p=_.getSliceSize(c,o,a.length),h=Vn({inputs:{x:r},backend:n,attrs:{shape:l}}),f=Su({inputs:{x:h},backend:n,attrs:{perm:u}}),m=Vn({inputs:{x:f},backend:n,attrs:{shape:c}}),g=wd({inputs:{x:m},backend:n,attrs:{begin:d,size:p}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var ire={kernelName:Vi,backendName:"wasm",kernelFunc:ore};function a0(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var lre={kernelName:Oa,backendName:"wasm",kernelFunc:a0},ure=mn(Pa),ik;function cre(e){ik=e.wasm.cwrap(qr,null,["number","number","number","number"])}function dre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return ik(i,a,o,u),l}var pre={kernelName:qr,backendName:"wasm",setupFunc:cre,kernelFunc:dre};function lk(e){let{inputs:t,backend:n}=e,s=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=_.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>w.sizeFromShape(h.shape)>0);if(a.length===1)return r0({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(_.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(x=>{let b=w.sizeFromShape(x.shape.slice(s));return Vn({inputs:{x},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=_.computeOutShape(h.map(x=>x.shape),1);let m=h[0].shape[0]===1,g=H2(f,r,t[0].dtype,m),A=_.computeOutShape(a.map(x=>x.shape),s);o.shape=A;let y=n.dataIdMap.get(o.dataId);return y.stringBytes=_.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),o}let l=w.sizeFromShape(a[0].shape.slice(0,s)),u=0,c=a.map(h=>{let f=w.sizeFromShape(h.shape.slice(s));return u+=f,f}),d=a.map(h=>n.typedArrayFromHeap(h)),p=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*u;for(let m=0;m<d.length;m++){let g=c[m],A=h*g,y=d[m].subarray(A,A+g);p.set(y,f),f+=g}}return o}var hre={kernelName:Ui,backendName:"wasm",kernelFunc:lk},uk;function fre(e){uk=e.wasm.cwrap(Ma,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function mre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:d,dataFormat:p}=n,h=_.convertConv2DDataFormat(p),f=_.computeConv2DInfo(r.shape,a.shape,l,u,c,d,!1,h),m=f.filterHeight,g=f.filterWidth,A=f.padInfo.top,y=f.padInfo.right,x=f.padInfo.bottom,b=f.padInfo.left,v=f.dilationHeight,k=f.dilationWidth,S=f.strideHeight,C=f.strideWidth,D=f.inChannels,O=f.outChannels,E=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get(R.dataId).id;return uk(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,A,y,x,b,E,v,k,S,C,D,O,T),R}var gre={kernelName:Ma,backendName:"wasm",setupFunc:fre,kernelFunc:mre},ck;function Are(e){ck=e.wasm.cwrap(za,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function yre(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=s,d=1,p=_.convertConv2DDataFormat(l),h=_.computeConv2DInfo(c,a.shape,o,d,i,u,!1,p),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:A,inHeight:y,inWidth:x,outChannels:b,outHeight:v,outWidth:k,strideHeight:S,strideWidth:C}=h,D=m-1-h.padInfo.top,O=g-1-h.padInfo.left,E=h.dataFormat==="channelsLast",R=w.computeStrides(h.inShape),T=w.computeStrides(r.shape),[P,U,j]=w.computeStrides(a.shape),q=R[0],X=E?R[1]:R[2],te=E?R[2]:1,ne=E?1:R[1],se=T[0],re=E?T[1]:T[2],Q=E?T[2]:1,le=E?1:T[1],ue=t.makeOutput(h.inShape,"float32"),he=t.dataIdMap.get(ue.dataId).id,ye=t.dataIdMap.get(r.dataId).id,Ne=t.dataIdMap.get(a.dataId).id;return ck(ye,Ne,f,m,g,y,x,A,v,k,b,S,C,D,O,P,U,j,q,X,te,ne,se,re,Q,le,he),ue}var xre={kernelName:za,backendName:"wasm",setupFunc:Are,kernelFunc:yre},bre=mn(La),vre=mn(Ba),wy;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(wy||(wy={}));var dk;function wre(e){dk=e.wasm.cwrap(Hi,null,["number","number","number","number","array","number","number","number","number","number"])}function kre(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:u}=n,c=l.shape[0],[d,p]=o,h=[c,d,p,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=a0({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,A=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),b=t.dataIdMap.get(x.dataId).id,v=new Uint8Array(new Int32Array(i.shape).buffer);return dk(g,A,y,c,v,d,p,wy[r],a,b),m!=null&&t.disposeData(m.dataId),x}var Ire={kernelName:Hi,backendName:"wasm",setupFunc:wre,kernelFunc:kre},pk;function Sre(e){pk=e.wasm.cwrap(Wa,null,["number","number","number","number","number","number"])}function Cre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=_.getAxesPermutation([a],l),c=r;u!==null&&(c=Su({inputs:{x:r},attrs:{perm:u},backend:n}));let d=_.getInnerMostAxes(1,l)[0];_.assertAxesAreInnerMostDims("cumsum",[d],l);let p=n.makeOutput(c.shape,c.dtype),h=c.shape[d],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(p.dataId).id;pk(f,o?1:0,i?1:0,h,m,Wn[r.dtype]);let g=p;if(u!==null){let A=_.getUndoAxesPermutation(u);g=Su({inputs:{x:p},attrs:{perm:A},backend:n}),n.disposeData(c.dataId),n.disposeData(p.dataId)}return g}var Tre={kernelName:Wa,backendName:"wasm",setupFunc:Sre,kernelFunc:Cre},hk;function Nre(e){hk=e.wasm.cwrap(Gi,null,["number","number","number","array","number","array","array","number","number"])}function Ere(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s;w.assert(a>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${a}`);let i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],d=l*a,p=u*a,h=c/(a*a),f=o==="NHWC"?[i,d,p,h]:[i,h,d,p],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer),v=t.dataIdMap.get(m.dataId).id;return hk(A,a,o==="NHWC"?1:0,y,r.shape.length-1,x,b,f.length,v),m}var Rre={kernelName:Gi,backendName:"wasm",setupFunc:Nre,kernelFunc:Ere},fk;function Dre(e){fk=e.wasm.cwrap(Va,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function _re(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:d}=n,p=u==null?[1,1]:u,h=_.computeConv2DInfo(r.shape,a.shape,l,p,c,d,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,A=h.padInfo.right,y=h.padInfo.bottom,x=h.padInfo.left,b=h.dilationHeight,v=h.dilationWidth,k=h.strideHeight,S=h.strideWidth,C=h.inChannels,D=h.outChannels,O=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let E=s.makeOutput(h.outShape,"float32"),R=s.dataIdMap.get(E.dataId).id;return fk(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,A,y,x,O,b,v,k,S,C,D,R),E}var Fre={kernelName:Va,backendName:"wasm",setupFunc:Dre,kernelFunc:_re},$re=mn(Ha),Ore=!1,Pre=En(qi,Ore,"bool"),Mre=mn(Ga);function ky(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(w.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Vn({inputs:{x:r},backend:s,attrs:{shape:i}})}var zre={kernelName:Xi,backendName:"wasm",kernelFunc:ky};function mk(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var Lre={kernelName:ec,backendName:"wasm",kernelFunc:mk},gk;function Bre(e){gk=e.wasm.cwrap(Zi,null,["number","number","number","number","number","number"])}function Wre(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,u,c]=s.shape;return gk(a,i,l,u,c,o),r}var Vre={kernelName:Zi,backendName:"wasm",kernelFunc:Wre,setupFunc:Bre},Ure=mn(ja),Hre=!1,Gre=En(qa,Hre),Ak;function jre(e){Ak=e.wasm.cwrap(Xa,null,["number","number","number","number","number","number","number"])}function qre(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(w.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return Ak(c,d,p,h,f,r,g),m}var Xre={kernelName:Xa,backendName:"wasm",setupFunc:jre,kernelFunc:qre},yk;function Kre(e){yk=e.wasm.cwrap(Eo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Zre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=_.computeConv2DInfo(r.shape,a.shape,l,c,u,p),g=vd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let Q=s.dataIdMap.get(o.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);b=Q.id}let v=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,C=m.padInfo.right,D=m.padInfo.bottom,O=m.padInfo.left,E=m.dilationHeight,R=m.dilationWidth,T=m.strideHeight,P=m.strideWidth,U=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,X=m.inHeight,te=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ne=s.makeOutput(m.outShape,"float32"),se=s.dataIdMap.get(ne.dataId).id,re=i==null?0:s.dataIdMap.get(i.dataId).id;return yk(A,q,X,te,y,v,k,b,S,C,D,O,j,E,R,T,P,U,x,g,re,f||0,se),ne}var Yre={kernelName:Eo,backendName:"wasm",setupFunc:Kre,kernelFunc:Zre},xk;function Jre(e){xk=e.wasm.cwrap(Ro,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Qre(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:d,dimRoundingMode:p,activation:h,leakyreluAlpha:f}=n,m=_.computeConv2DInfo(r.shape,a.shape,l,c,u,p,!0),g=vd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,x=m.outChannels,b=0;if(o!=null){let Q=s.dataIdMap.get(o.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);b=Q.id}let v=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,C=m.padInfo.right,D=m.padInfo.bottom,O=m.padInfo.left,E=m.dilationHeight,R=m.dilationWidth,T=m.strideHeight,P=m.strideWidth,U=m.inChannels,j=m.padInfo.type==="SAME"?1:0,q=m.batchSize,X=m.inHeight,te=m.inWidth;if(d!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${d}'. Please use 'NHWC'.`);let ne=s.makeOutput(m.outShape,"float32"),se=s.dataIdMap.get(ne.dataId).id,re=i==null?0:s.dataIdMap.get(i.dataId).id;return xk(A,q,X,te,y,v,k,b,S,C,D,O,j,E,R,T,P,U,x,g,re,f||0,se),ne}var eae={kernelName:Ro,backendName:"wasm",setupFunc:Jre,kernelFunc:Qre},bk;function tae(e){bk=e.wasm.cwrap(Ji,null,["number","number","number","number","number","number","array","number"])}function nae(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=$g.prepareAndValidate(s,r),u=t.makeOutput(a,s.dtype);if(o===0)return u;let c=r.shape,d=c[c.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),A=t.dataIdMap.get(u.dataId).id;return bk(h,Wn[s.dtype],m,o,d,i,g,A),u}var sae={kernelName:Ji,backendName:"wasm",setupFunc:tae,kernelFunc:nae},vk;function rae(e){vk=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function aae(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=w.parseAxisParam(o,r.shape)[0],u=_.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=Vn({inputs:{x:r},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),d=w.sizeFromShape(a.shape),p=Vn({inputs:{x:a},attrs:{shape:[u.batchSize,d/u.batchSize]},backend:t}),h=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize],f=t.makeOutput(h,r.dtype);if(w.sizeFromShape(r.shape)===0)return f;let m=c.shape.length-1,A=t.dataIdMap.get(c.dataId).id,x=t.dataIdMap.get(p.dataId).id,b=t.dataIdMap.get(f.dataId).id,v=new Uint8Array(new Int32Array(w.computeStrides(c.shape)).buffer),k=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer);return vk(A,Wn[r.dtype],v,m,x,u.batchSize,k,b),t.disposeData(c.dataId),t.disposeData(p.dataId),f.shape=u.outputShape,f}var oae={kernelName:Yi,backendName:"wasm",setupFunc:rae,kernelFunc:aae},iae=!1,lae=En(Qi,iae,"bool"),uae=!1,cae=En(Ka,uae,"bool"),wk;function dae(e){wk=e.wasm.cwrap(Ya,null,["number","number","number"])}function pae(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,t.dtype);if(w.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;wk(r,n,o)}return a}var hae={kernelName:Ya,backendName:"wasm",setupFunc:dae,kernelFunc:pae},fae=!1,mae=En(sl,fae,"bool"),gae=!1,Aae=En(rl,gae,"bool"),yae=mn(Ja),xae=!1,bae=En(ol,xae,"bool"),kk;function vae(e){kk=e.wasm.cwrap(Qa,null,["number, number, number"])}function wae(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=ya(o,r,t);if(h){let x=t.dataIdMap.get(c.dataId).id;u=c,l=x}let f=u.shape.length;_.assertAxesAreInnerMostDims("max",d,f);let[m,g]=_.computeOutAndReduceShapes(u.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,o.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;kk(l,A,x)}if(h&&t.disposeData(c.dataId),a){let x=_.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var kae={kernelName:Qa,backendName:"wasm",setupFunc:vae,kernelFunc:wae},Iae=!1,Sae=En(eo,Iae),Ik;function Cae(e){Ik=e.wasm.cwrap(to,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Tae(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=_.computePool2DInfo(r.shape,o,i,1,l,u),d=c.filterHeight,p=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,A=c.dilationHeight,y=c.dilationWidth,x=c.strideHeight,b=c.strideWidth,v=c.inChannels,k=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let S=s.makeOutput(c.outShape,"float32"),C=s.dataIdMap.get(S.dataId).id;return Ik(a,r.shape[0],r.shape[1],r.shape[2],d,p,h,f,m,g,A,y,x,b,v,k,C),S}var Nae={kernelName:to,backendName:"wasm",setupFunc:Cae,kernelFunc:Tae},Sk;function Eae(e){Sk=e.wasm.cwrap(no,null,["number, number, number"])}function Rae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=ya(o,r,t),f=d;if(h){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,f=_.getInnerMostAxes(f.length,u.shape.length))}_.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=_.computeOutAndReduceShapes(u.shape,f),A=w.sizeFromShape(g),y=u;u.dtype!=="float32"&&(y=a0({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let x=t.makeOutput(m,"float32");if(w.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(x.dataId).id;Sk(l,A,b)}if(h&&t.disposeData(c.dataId),a){let b=_.expandShapeToKeepDim(x.shape,p);x.shape=b}return u.dtype!=="float32"&&t.disposeData(y.dataId),x}var Dae={kernelName:no,backendName:"wasm",setupFunc:Eae,kernelFunc:Rae},Ck;function _ae(e){Ck=e.wasm.cwrap(so,null,["number, number, number"])}function Fae(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=ya(o,r,t);if(h){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x)}let f=u.shape.length;_.assertAxesAreInnerMostDims("min",d,f);let[m,g]=_.computeOutAndReduceShapes(u.shape,d),A=w.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Ck(l,A,x)}if(h&&t.disposeData(c.dataId),a){let x=_.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var $ae={kernelName:so,backendName:"wasm",setupFunc:_ae,kernelFunc:Fae},Oae=!1,Pae=En(ro,Oae),Iy;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Iy||(Iy={}));var Tk;function Mae(e){Tk=e.wasm.cwrap(ao,null,["number","array","number","number","array","array","number","number"])}function zae(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),d=s.map(f=>f[1]),p=new Uint8Array(new Int32Array(c).buffer),h=new Uint8Array(new Int32Array(d).buffer);return Tk(o,u,t.shape.length,Wn[t.dtype],p,h,Iy[r],l),i}var Lae={kernelName:ao,backendName:"wasm",kernelFunc:zae,setupFunc:Mae},Bae=!0,Wae=En(oo,Bae),Vae=mn(ll);function Sy(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var Nk;function Uae(e){Nk=e.wasm.cwrap(cl,"number",["number","number","number","number","number"])}function Hae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,d=Nk(u,c,a,r,o),{pSelectedIndices:p,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=Sy(t,d);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",p)}var Gae={kernelName:cl,backendName:"wasm",setupFunc:Uae,kernelFunc:Hae},Ek;function jae(e){Ek=e.wasm.cwrap(dl,"number",["number","number","number","number","number","bool"])}function qae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,p=Ek(c,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Sy(t,p);t.wasm._free(m);let A=t.makeOutput([f],"int32",h),y=t.makeOutput([],"int32",g);return[A,y]}var Xae={kernelName:dl,backendName:"wasm",setupFunc:jae,kernelFunc:qae},Rk;function Kae(e){Rk=e.wasm.cwrap(pl,"number",["number","number","number","number","number","number"])}function Zae(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,d=t.dataIdMap.get(u.dataId).id,p=Rk(c,d,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Sy(t,p);t.wasm._free(g);let A=t.makeOutput([f],"int32",h),y=t.makeOutput([f],"float32",m);return[A,y]}var Yae={kernelName:pl,backendName:"wasm",setupFunc:Kae,kernelFunc:Zae},Jae=!1,Qae=En(ul,Jae,"bool"),Dk;function eoe(e){Dk=e.wasm.cwrap(io,null,["number","number","number","number","number"])}function toe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return Dk(d,a,o,i,u),l}var noe={kernelName:io,backendName:"wasm",setupFunc:eoe,kernelFunc:toe};function soe(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var roe={kernelName:hl,backendName:"wasm",kernelFunc:soe};function aoe(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return ky({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let d=ky({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(d),d}),u=lk({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var ooe={kernelName:fl,backendName:"wasm",kernelFunc:aoe},_k;function ioe(e){_k=e.wasm.cwrap(lo,null,["number","array","number","number","array","array","number","number"])}function loe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(w.sizeFromShape(t.shape)===0)return mk({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),d=s.map(m=>m[0]),p=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(d).buffer),f=new Uint8Array(new Int32Array(p).buffer);return _k(o,c,t.shape.length,Wn[t.dtype],h,f,r,u),i}var Fk={kernelName:lo,backendName:"wasm",kernelFunc:loe,setupFunc:ioe},uoe=!1,coe=En(uo,uoe),$k;function doe(e){$k=e.wasm.cwrap(co,null,["number","number","number"])}function poe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=n.makeOutput(s.shape,"float32"),l=n.dataIdMap.get(i.dataId).id;return $k(a,o,l),i}var hoe={kernelName:co,backendName:"wasm",setupFunc:doe,kernelFunc:poe},Ok;function foe(e){Ok=e.wasm.cwrap(ml,null,["number","number","number","number"])}function moe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=ya(o,r,t),f=d;if(h){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,f=_.getInnerMostAxes(f.length,u.shape.length))}_.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=_.computeOutAndReduceShapes(u.shape,f),A=w.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Ok(l,A,Wn[y.dtype],x)}if(h&&t.disposeData(c.dataId),a){let x=_.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var goe={kernelName:ml,backendName:"wasm",setupFunc:foe,kernelFunc:moe},Aoe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=q2(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},yoe={kernelName:ac,backendName:"wasm",kernelFunc:Aoe},xoe=!0,boe=En(Ua,xoe),voe=mn(po),woe=mn(fo),Pk;function koe(e){Pk=e.wasm.cwrap(ho,null,["number","number","number","number","number","number","number","number","number","number"])}function Ioe(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,d,p,h]=r.shape,f=[c,l,u,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=a0({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let A=m.id,y=t.makeOutput(f,"float32");if(w.sizeFromShape(r.shape)===0)return y;let x=t.dataIdMap.get(y.dataId).id;return Pk(A,c,d,p,h,l,u,a?1:0,o?1:0,x),g!=null&&t.disposeData(g.dataId),y}var Soe={kernelName:ho,backendName:"wasm",setupFunc:koe,kernelFunc:Ioe},Mk;function Coe(e){Mk=e.wasm.cwrap(mo,null,["number","array","number","array","number","number"])}function Toe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=w.parseAxisParam(a,r.shape);if(r.shape.length===0)return r0({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),d=new Uint8Array(new Int32Array(r.shape).buffer);Mk(l,c,o.length,d,r.shape.length,u);let p=Vn({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),p}var Noe={kernelName:mo,backendName:"wasm",kernelFunc:Toe,setupFunc:Coe},zk;function Eoe(e){zk=e.wasm.cwrap(_l,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Roe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[d,p,h,f]=r.shape,[m,g]=_.getImageCenter(i,p,h),A=o===0,y=255,x=typeof o=="number"?[o,o,o,A?0:y]:[...o,y],b=new Uint8Array(new Int32Array(x).buffer);return zk(u,d,p,h,f,a,m,g,b,x.length,c),l}var Doe={kernelName:_l,backendName:"wasm",kernelFunc:Roe,setupFunc:Eoe},_oe=mn(go),Foe=mn(Ao),Lk;function $oe(e){Lk=e.wasm.cwrap(yl,null,["number","number","number","number","number","number","array","number","number"])}function Ooe(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(w.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:d,outputSize:p}=Og.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,A=new Uint8Array(new Int32Array(d).buffer),y=t.dataIdMap.get(i.dataId).id;return Lk(f,g,Wn[a.dtype],l,u,c,A,p,y),i}var Poe={kernelName:yl,backendName:"wasm",setupFunc:$oe,kernelFunc:Ooe},Bk;function Moe(e){Bk=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function zoe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,d=s.shape.length,p=r.shape.length,h=d===0||d>1||p===1?1:w.sizeFromShape(r.shape.slice(1));return Bk(o,i,l,h,c),u}var Loe={kernelName:xl,backendName:"wasm",kernelFunc:zoe,setupFunc:Moe},Wk;function Boe(e){Wk=e.wasm.cwrap(xo,null,["number","number"])}function Woe(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||Wk(s,a),r}var Voe={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Boe,kernelFunc:Woe},Uoe=mn(yo),Vk;function Hoe(e){Vk=e.wasm.cwrap(wo,null,["number","number","number","number"])}function Goe(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=w.sizeFromShape(n.shape)/i;return w.sizeFromShape(a.shape)===0||Vk(r,o,i,l),a}var joe={kernelName:wo,backendName:"wasm",setupFunc:Hoe,kernelFunc:Goe};function qoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=w.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=Fk.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=_.getReshaped(u.shape,a,i,!1),d=_.getPermuted(c.length,a.length,!1),p=_.getReshapedPermuted(u.shape,a,i,!1),m=Vn({inputs:{x:u},backend:n,attrs:{shape:c}}),y=Su({inputs:{x:m},backend:n,attrs:{perm:d}}),v=Vn({inputs:{x:y},backend:n,attrs:{shape:p}});return n.disposeData(u.dataId),n.disposeData(m.dataId),n.disposeData(y.dataId),v}var Xoe={kernelName:Sl,backendName:"wasm",kernelFunc:qoe};function Koe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=w.parseAxisParam(o,r.shape)[0],l=_.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(d=>{let p=[...c];p[i]=d;let h=wd({inputs:{x:r},attrs:{begin:u,size:p},backend:s});return u[i]+=d,h})}var Zoe={kernelName:Cl,backendName:"wasm",kernelFunc:Koe},Yoe=mn(bo),Joe=mn(ic),Qoe=!0,eie=En(ko,Qoe),Uk;function tie(e){Uk=e.wasm.cwrap(Kr,null,["number","number","number"])}function nie(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return Uk(o,r,l),i}var sie={kernelName:Kr,backendName:"wasm",setupFunc:tie,kernelFunc:nie},Hk;function rie(e){Hk=e.wasm.cwrap(Tl,null,["number","array","number","array","array","array","array","array","number","number"])}function aie(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i}=s;i==null&&(i=new Array(a.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:d,shrinkAxisMask:p}=s,h=_.slice_util.maskToAxes(c);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&p!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=r.shape.length-a.length,m=_.slice_util.maskToAxes(d),g=r.shape.slice();m.forEach(E=>{a[E]=0,o[E]=1,g.splice(E,0,1)});let A=Vn({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:y,end:x,strides:b}=_.slice_util.getNormalizedAxes(A.shape,h,f,a,o,i,l,u,c);a=y,o=x,i=b;let v=_.slice_util.maskToAxes(p);v.forEach(E=>{o[E]=a[E]+1,i[E]=1});let k=_.slice_util.computeOutShape(a,o,i),S=k.filter((E,R)=>v.indexOf(R)===-1);if(i.every(E=>E===1)){let E=wd({inputs:{x:A},attrs:{begin:a,size:k},backend:t});t.disposeData(A.dataId);let R=Vn({inputs:{x:E},attrs:{shape:S},backend:t});return t.disposeData(E.dataId),R}let D=t.makeOutput(S,"float32");if(!S.some(E=>E===0)){let E=t.dataIdMap.get(A.dataId).id,R=new Uint8Array(new Int32Array(w.computeStrides(A.shape)).buffer),T=new Uint8Array(new Int32Array(a).buffer),P=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(S).buffer),q=new Uint8Array(new Int32Array(w.computeStrides(S)).buffer),X=t.dataIdMap.get(D.dataId).id;Hk(E,R,A.shape.length,T,P,U,j,q,S.length,X)}t.disposeData(A.dataId);let O=Vn({inputs:{x:D},attrs:{shape:S},backend:t});return t.disposeData(D.dataId),O}var oie={kernelName:Tl,backendName:"wasm",setupFunc:rie,kernelFunc:aie},iie=!0,lie=En(Io,iie),Gk;function uie(e){Gk=e.wasm.cwrap(vo,null,["number, number, number"])}function cie(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:d,originalAxes:p,inputWasTransposed:h}=ya(o,r,t),f=d;if(h){let x=t.dataIdMap.get(c.dataId).id;x!==i&&(u=c,l=x,f=_.getInnerMostAxes(f.length,u.shape.length))}_.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=_.computeOutAndReduceShapes(u.shape,f),A=w.sizeFromShape(g),y=t.makeOutput(m,u.dtype);if(w.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(y.dataId).id;Gk(l,A,x)}if(h&&t.disposeData(c.dataId),a){let x=_.expandShapeToKeepDim(y.shape,p);y.shape=x}return y}var die={kernelName:vo,backendName:"wasm",setupFunc:uie,kernelFunc:cie},pie=mn(So),hie=mn(Co),jk;function fie(e){jk=e.wasm.cwrap(Xr,null,["number","array","number","array","number","number"])}function mie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let p=0;p<i.length;p++)i[p]=r.shape[p]*o[p];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=n.makeOutput(i,r.dtype),d=n.dataIdMap.get(c.dataId).id;return jk(a,l,r.shape.length,u,i.length,Wn[c.dtype],d),c}var gie={kernelName:Xr,backendName:"wasm",setupFunc:fie,kernelFunc:mie},qk;function Aie(e){qk=e.wasm.cwrap(Nl,null,["number","array","number","number","number","bool","number","number"])}var yie=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,s.dtype),c=t.dataIdMap.get(u.dataId).id,d=t.makeOutput(l,"int32"),p=t.dataIdMap.get(d.dataId).id;return qk(o,i,s.shape.length,Wn[s.dtype],r,a,c,p),[u,d]},xie={kernelName:Nl,backendName:"wasm",setupFunc:Aie,kernelFunc:yie},Xk;function bie(e){Xk=e.wasm.cwrap(El,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function vie(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,d,p,h]=r.shape,[f,m]=u!=null?u:[d,p],g=[c,f,m,h],A=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(y.dataId).id,v=t.dataIdMap.get(r.dataId).id,S=t.dataIdMap.get(a.dataId).id,C=o==="nearest"?1:2,D;switch(i){case"constant":D=1;break;case"reflect":D=2;break;case"wrap":D=3;break;case"nearest":D=4;break;default:D=1;break}return Xk(v,S,a.shape[0]>1,c,f,m,h,p,d,A,r.shape.length-1,C,D,l,x),y}var wie={kernelName:El,backendName:"wasm",setupFunc:bie,kernelFunc:vie};function kie(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o),d=new Array(i).fill(0),p=r.shape.slice();p[a]=1;for(let h=0;h<c.length;h++)d[a]=h,c[h]=wd({inputs:{x:r},attrs:{begin:d,size:p},backend:n});return c.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var Iie={kernelName:Rl,backendName:"wasm",kernelFunc:kie};function Sie(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var Cie={kernelName:Dl,backendName:"wasm",kernelFunc:Sie},Tie=[Ese,Dse,$se,Vse,Gse,Xse,Yse,tre,ire,lre,ure,pre,hre,gre,xre,bre,vre,Ire,Tre,Rre,Fre,$re,Pre,Mre,zre,Lre,Vre,Ure,Gre,Nse,Xre,Yre,eae,sae,oae,lae,cae,Ose,hae,mae,Aae,yae,bae,kae,Sae,Nae,Dae,$ae,Pae,Lae,Wae,Vae,Gae,Xae,Yae,Qae,noe,roe,ooe,Fk,coe,hoe,goe,yoe,boe,voe,woe,Jse,Soe,Noe,Doe,Foe,_oe,Poe,Loe,Voe,Uoe,are,joe,Xoe,Zoe,Yoe,Joe,eie,sie,oie,lie,die,pie,hie,gie,xie,wie,Lse,Iie,Cie];for(let e of Tie)Do(e);var Cy=Y();Cy.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Cy.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Cy.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Kk=Na(ES()),Nie='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Eie=Na(RS()),Zk=class extends ju{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new ip(this,Ns())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=w.sizeFromShape(n),i=o*w.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:s,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let a=this.wasm.HEAPU8.slice(t,t+w.sizeFromShape(s)*w.bytesPerElement(n));return _ie(a.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function Rie(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function Yk(e,t,n){if(o0!=null)return o0;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Id!=null&&Id[s]!=null?Id[s]:n+s}async function Die(){let[e,t]=await Promise.all([Y().getAsync("WASM_HAS_SIMD_SUPPORT"),Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=Nie,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?Yk(e,t,kd!=null?kd:l):l+i},Ty&&(r.instantiateWasm=Rie(Yk(e,t,kd!=null?kd:"")));let a=!1;r.onAbort=()=>{if(a||Sd)return;Sd=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&o0==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Kk.default.toString()],{type:"text/javascript"}),o=(0,Kk.default)(r)):o=(0,Eie.default)(r),o.then(i=>{a=!0,Sd=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})})})}function _ie(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Fie=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],o0=null,kd=null,Id={},Sd=!1,Ty=!1;function $ie(e,t=!1){if(Wg("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Sd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");o0=e,Ty=t}function Jk(e,t=!1){if(Sd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")kd=e;else{Id=e;let n=Fie.filter(s=>Id[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Ty=t}var Oie="3.9.0",Pie=2;Wl("wasm",async()=>{let{wasm:e}=await Die();return new Zk(e)},Pie);var Mie="3.9.0",zie="3.9.0",Lie="3.9.0",Bie="3.9.0",Wie="3.9.0",Vie="3.9.0",Uie="3.9.0",Hie="3.9.0",Gie={tfjs:Mie,"tfjs-core":zie,"tfjs-data":Lie,"tfjs-layers":Bie,"tfjs-converter":Wie,"tfjs-backend-cpu":Vie,"tfjs-backend-webgl":Uie,"tfjs-backend-wasm":Hie};function Qk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s}}function Cd(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Td(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Nd(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return Fe.cropAndResize(t,a,[0],n)}function i0(e,t=1.5){let n=Td(e),s=Cd(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function l0(e){let t=Td(e),n=Cd(e),r=Math.max(...n)/2,a=[Math.round(t[0]-r),Math.round(t[1]-r)],o=[Math.round(t[0]+r),Math.round(t[1]+r)];return{startPoint:a,endPoint:o,landmarks:e.landmarks}}function Ny(e){let t=e.map(a=>a[0]),n=e.map(a=>a[1]),s=[Math.min(...t),Math.min(...n)],r=[Math.max(...t),Math.max(...n)];return{startPoint:s,endPoint:r,landmarks:e}}var e8=e=>({startPoint:_e(e,[0,0],[-1,2]),endPoint:_e(e,[0,2],[-1,2])});var u0=[[1,0,0],[0,1,0],[0,0,1]];function jie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function t8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return jie(n)}function n8(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function xa(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function qie(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function s8(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(xa(e[r],qie(t,a)))}return n}function Ey(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=n8(t[0],t[1]),o=s8(a,r),i=n8(-t[0],-t[1]);return s8(o,i)}function r8(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-xa(t[0],n),-xa(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function a8(e,t){return[xa(e,t[0]),xa(e,t[1])]}function o8(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let u=r*(l+.5);for(let c=0;c<o;c++){let d=r*(c+.5);for(let p=0;p<i;p++)n.push([d,u])}}}return n}var i8=6;function Xie(e,t,n){let s=_e(e,[0,1],[-1,2]),r=oe(s,t),a=_e(e,[0,3],[-1,2]),o=pe(a,n),i=pe(r,n),l=pe(o,2),u=Ae(i,l),c=oe(i,l),d=z(u,n),p=z(c,n);return Hl([d,p],1)}var l8=class{constructor(t,n){Re(this,"model");Re(this,"anchorsData");Re(this,"anchors");Re(this,"inputSize");Re(this,"config");this.model=t,this.anchorsData=o8(t.inputs[0].shape[1]),this.anchors=Ls(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t,n){var c,d,p,h;if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return{boxes:[]};let[s,r,a]=H(()=>{let f=Fe.resizeBilinear(t,[this.inputSize,this.inputSize]),m=Ae(pe(f,127.5),.5),g=this.model.execute(m),A;if(Array.isArray(g)){let v=g.sort((D,O)=>D.size-O.size),k=ft([v[0],v[2]],2),S=ft([v[1],v[3]],2),C=ft([S,k],1);A=lt(C,0)}else A=lt(g);let y=Xie(A,this.anchors,[this.inputSize,this.inputSize]),x=_e(A,[0,0],[-1,1]),b=lt(On(x));return[A,y,b]});this.config=gn(this.config,n);let o=await Fe.nonMaxSuppressionAsync(r,a,((c=this.config.face.detector)==null?void 0:c.maxDetected)||0,((d=this.config.face.detector)==null?void 0:d.iouThreshold)||0,((p=this.config.face.detector)==null?void 0:p.minConfidence)||0),i=await o.array();Z(o);let l=[],u=await a.data();for(let f=0;f<i.length;f++){let m=u[i[f]];if(m>(((h=this.config.face.detector)==null?void 0:h.minConfidence)||0)){let g=_e(r,[i[f],0],[1,-1]),A=H(()=>V(lt(_e(s,[i[f],i8-1],[1,-1])),[i8,-1]));l.push({box:e8(g),landmarks:A,anchor:this.anchorsData[i[f]],confidence:m}),Z(g)}}return Z(s),Z(r),Z(a),{boxes:l,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function u8(e){var s,r,a;let t=await yt(xt(e.modelBasePath,((s=e.face.detector)==null?void 0:s.modelPath)||""),{fromTFHub:(((r=e.face.detector)==null?void 0:r.modelPath)||"").includes("tfhub.dev")}),n=new l8(t,e);return!t||!t.modelUrl?ce("load model failed:",((a=e.face.detector)==null?void 0:a.modelPath)||""):e.debug&&ce("load model:",t.modelUrl),n}var fr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Ry=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Ed=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],hi=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Kie=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Zie=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Yie=[33,133,362,263,1,78,308],Kle=Kie.map(e=>Ed[e]),Zle=Zie.map(e=>Ed[e]),Yle=Yie.map(e=>Ed[e]);function Jie(e,t,n){let s=function(i,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");i.replace(c,(d,p)=>(u[p]=0,d))},r=function(i,l){let u=e.createShader(l);if(e.shaderSource(u,i),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let a=r(t,e.VERTEX_SHADER),o=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,a),e.attachShader(this.id,o),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),s(t,"attribute",this.attribute);for(let i in this.attribute)this.attribute[i]=e.getAttribLocation(this.id,i);s(t,"uniform",this.uniform),s(n,"uniform",this.uniform);for(let i in this.uniform)this.uniform[i]=e.getUniformLocation(this.id,i)}function c8(e){e||(e={});let t=0,n=null,s=!1,r=-1,a=[null,null],o=[],i=-1,l=-1,u=null,c=null,d={},p=e.canvas||document.createElement("canvas"),h={},f={INTERMEDIATE:1},m=p.getContext("webgl");if(!m)throw new Error("Filter: getContext() failed");this.addFilter=function(v){let k=Array.prototype.slice.call(arguments,1),S=d[v];o.push({func:S,args:k})},this.reset=function(){o=[]};let g=function(v,k){if(!(v===i&&k===l)){if(p.width=v,i=v,p.height=k,l=k,!u){let S=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=m.createBuffer(),m.bindBuffer(m.ARRAY_BUFFER,u),m.bufferData(m.ARRAY_BUFFER,S,m.STATIC_DRAW),m.pixelStorei(m.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}m.viewport(0,0,i,l),a=[null,null]}},A=function(v,k){let S=m.createFramebuffer();m.bindFramebuffer(m.FRAMEBUFFER,S);let C=m.createRenderbuffer();m.bindRenderbuffer(m.RENDERBUFFER,C);let D=m.createTexture();return m.bindTexture(m.TEXTURE_2D,D),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,v,k,0,m.RGBA,m.UNSIGNED_BYTE,null),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.framebufferTexture2D(m.FRAMEBUFFER,m.COLOR_ATTACHMENT0,m.TEXTURE_2D,D,0),m.bindTexture(m.TEXTURE_2D,null),m.bindFramebuffer(m.FRAMEBUFFER,null),{fbo:S,texture:D}},y=function(v){return a[v]=a[v]||A(i,l),a[v]},x=function(v=null){var D,O;let k=null,S=null,C=!1;t===0?k=n:k=(D=y(r))==null?void 0:D.texture,t++,s&&!(v&f.INTERMEDIATE)?(S=null,C=t%2==0):(r=(r+1)%2,S=(O=y(r))==null?void 0:O.fbo),m.bindTexture(m.TEXTURE_2D,k),m.bindFramebuffer(m.FRAMEBUFFER,S),m.uniform1f(c.uniform.flipY,C?-1:1),m.drawArrays(m.TRIANGLES,0,6)};this.apply=function(v){if(g(v.width,v.height),t=0,n||(n=m.createTexture()),m.bindTexture(m.TEXTURE_2D,n),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.NEAREST),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.NEAREST),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,m.RGBA,m.UNSIGNED_BYTE,v),o.length===0)return x(),p;for(let k=0;k<o.length;k++){s=k===o.length-1;let S=o[k];S.func.apply(this,S.args||[])}return p};let b=function(v){if(h[v])return c=h[v],m.useProgram(c.id),c;let k={};k.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),k.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),c=new Jie(m,k.VERTEX_IDENTITY,v);let S=Float32Array.BYTES_PER_ELEMENT,C=4*S;return m.enableVertexAttribArray(c.attribute.pos),m.vertexAttribPointer(c.attribute.pos,2,m.FLOAT,!1,C,0*S),m.enableVertexAttribArray(c.attribute.uv),m.vertexAttribPointer(c.attribute.uv,2,m.FLOAT,!1,C,2*S),h[v]=c,c};d.colorMatrix=function(v){let k=new Float32Array(v);k[4]/=255,k[9]/=255,k[14]/=255,k[19]/=255;let S=k[18]===1&&k[3]===0&&k[8]===0&&k[13]===0&&k[15]===0&&k[16]===0&&k[17]===0&&k[19]===0?d.colorMatrix.SHADER.WITHOUT_ALPHA:d.colorMatrix.SHADER.WITH_ALPHA,C=b(S);m.uniform1fv(C.uniform.m,k),x()},d.colorMatrix.SHADER={},d.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),d.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),d.brightness=function(v){let k=(v||0)+1;d.colorMatrix([k,0,0,0,0,0,k,0,0,0,0,0,k,0,0,0,0,0,1,0])},d.saturation=function(v){let k=(v||0)*2/3+1,S=(k-1)*-.5;d.colorMatrix([k,S,S,0,0,S,k,S,0,0,S,S,k,0,0,0,0,0,1,0])},d.desaturate=function(){d.saturation(-1)},d.contrast=function(v){let k=(v||0)+1,S=-128*(k-1);d.colorMatrix([k,0,0,0,S,0,k,0,0,S,0,0,k,0,S,0,0,0,1,0])},d.negative=function(){d.contrast(-2)},d.hue=function(v){v=(v||0)/180*Math.PI;let k=Math.cos(v),S=Math.sin(v),C=.213,D=.715,O=.072;d.colorMatrix([C+k*(1-C)+S*-C,D+k*-D+S*-D,O+k*-O+S*(1-O),0,0,C+k*-C+S*.143,D+k*(1-D)+S*.14,O+k*-O+S*-.283,0,0,C+k*-C+S*-(1-C),D+k*-D+S*D,O+k*(1-O)+S*O,0,0,0,0,0,1,0])},d.desaturateLuminance=function(){d.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},d.sepia=function(){d.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},d.brownie=function(){d.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},d.vintagePinhole=function(){d.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},d.kodachrome=function(){d.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},d.technicolor=function(){d.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},d.polaroid=function(){d.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},d.shiftToBGR=function(){d.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},d.convolution=function(v){let k=new Float32Array(v),S=1/i,C=1/l,D=b(d.convolution.SHADER);m.uniform1fv(D.uniform.m,k),m.uniform2f(D.uniform.px,S,C),x()},d.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),d.detectEdges=function(){d.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},d.sobelX=function(){d.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},d.sobelY=function(){d.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},d.sharpen=function(v){let k=v||1;d.convolution.call(this,[0,-1*k,0,-1*k,1+4*k,-1*k,0,-1*k,0])},d.emboss=function(v){let k=v||1;d.convolution.call(this,[-2*k,-1*k,0,-1*k,1,1*k,0,1*k,2*k])},d.blur=function(v){let k=v/7/i,S=v/7/l,C=b(d.blur.SHADER);m.uniform2f(C.uniform.px,0,S),x(f.INTERMEDIATE),m.uniform2f(C.uniform.px,k,0),x()},d.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),d.pixelate=function(v){let k=v/i,S=v/l,C=b(d.pixelate.SHADER);m.uniform2f(C.uniform.size,k,S),x()},d.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var c0=2048,Oe,Nt,Gt;function mr(e,t){let n;return xe.browser?typeof OffscreenCanvas!="undefined"?n=new OffscreenCanvas(e,t):(n=document.createElement("canvas"),n.width=e,n.height=t):n=typeof xe.Canvas!="undefined"?new xe.Canvas(e,t):null,n}function fi(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof Ge)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof xe.Canvas!="undefined"&&e instanceof xe.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof Ge)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Ps(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return ce("input stream is not ready"),{tensor:null,canvas:Oe};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return ce("cannot determine input dimensions"),{tensor:null,canvas:Oe};let a=s,o=r;if(a>c0&&(a=c0,o=a*r/s),o>c0&&(o=c0,a=o*s/r),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("Human: Input cannot determine dimension");(!Oe||(Oe==null?void 0:Oe.width)!==a||(Oe==null?void 0:Oe.height)!==o)&&(Oe=mr(a,o));let i=Oe.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,Oe==null?void 0:Oe.width,Oe==null?void 0:Oe.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,Oe==null?void 0:Oe.width,Oe==null?void 0:Oe.height),t.filter.enabled&&xe.webgl.supported){if((!Gt||!Nt||Oe.width!==Nt.width||(Oe==null?void 0:Oe.height)!==(Nt==null?void 0:Nt.height))&&(Nt=mr(Oe==null?void 0:Oe.width,Oe==null?void 0:Oe.height),(Nt==null?void 0:Nt.width)!==(Oe==null?void 0:Oe.width)&&(Nt.width=Oe==null?void 0:Oe.width),(Nt==null?void 0:Nt.height)!==(Oe==null?void 0:Oe.height)&&(Nt.height=Oe==null?void 0:Oe.height),Gt=xe.browser?new c8({canvas:Nt}):null),!Gt)return{tensor:null,canvas:Oe};Gt.reset(),Gt.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Gt.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Gt.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Gt.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Gt.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Gt.addFilter("hue",t.filter.hue),t.filter.negative&&Gt.addFilter("negative"),t.filter.sepia&&Gt.addFilter("sepia"),t.filter.vintage&&Gt.addFilter("brownie"),t.filter.sepia&&Gt.addFilter("sepia"),t.filter.kodachrome&&Gt.addFilter("kodachrome"),t.filter.technicolor&&Gt.addFilter("technicolor"),t.filter.polaroid&&Gt.addFilter("polaroid"),t.filter.pixelate!==0&&Gt.addFilter("pixelate",t.filter.pixelate),Gt.apply(Oe)}else Nt=Oe,Gt&&(Gt=null);if(!n){let l;if(Nt.data){let u=[Nt.height,Nt.width,3];l=sh(Nt.data,u,"int32")}else if(typeof ImageData!="undefined"&&Nt instanceof ImageData)l=fs?fs.fromPixels(Nt):null;else if(t.backend==="webgl"||t.backend==="humangl"){let u=mr(a,o);u.width=a,u.height=o;let c=u.getContext("2d");c==null||c.drawImage(Nt,0,0),l=fs&&xe.browser?fs.fromPixels(u):null}else{let u=mr(a,o);u.width=a,u.height=o;let c=u.getContext("2d");c.drawImage(Nt,0,0);let d=c.getImageData(0,0,a,o);fs&&xe.browser?l=fs.fromPixels(d):l=H(()=>{let p=nn(Array.from(d.data),[a,o,4]),h=Wt(p,4,2),f=pn([h[0],h[1],h[2]],2);return V(f,[p.shape[0],p.shape[1],3])})}if(l){let u=de(l,"float32");n=zt(u,0),Z(l),Z(u)}else throw n=Ot([1,a,o,3]),new Error("Human: Cannot create tensor from input")}}return{tensor:n,canvas:t.filter.return?Nt:null}}var Dy=0,d8=1;async function p8(e,t){if(e.cacheSensitivity===0)return!1;let n=32;if(!t.shape[1]||!t.shape[2])return!1;let s=Fe.resizeBilinear(t,[Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),r=await s.data();Z(s);let a=0;for(let l=0;l<r.length/3;l++)a+=r[3*l+2];let o=100*(Math.max(a,Dy)/Math.min(a,Dy)-1);Dy=a;let i=o<Math.max(e.cacheSensitivity,d8);return d8=o>10*e.cacheSensitivity?0:o,i}var xe={browser:void 0,node:void 0,worker:void 0,platform:void 0,agent:void 0,backends:[],tfjs:{version:void 0},wasm:{supported:void 0,backend:void 0,simd:void 0,multithread:void 0},webgl:{supported:void 0,backend:void 0,version:void 0,renderer:void 0},webgpu:{supported:void 0,backend:void 0,adapter:void 0},kernels:[],Canvas:void 0,Image:void 0};async function Qie(){var n;xe.backends=Object.keys(Ns().registryFactory),xe.wasm.supported=typeof WebAssembly!="undefined",xe.wasm.backend=xe.backends.includes("wasm"),xe.wasm.supported&&xe.wasm.backend&&(xe.wasm.simd=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),xe.wasm.multithread=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let e=mr(100,100),t=e?e.getContext("webgl2"):void 0;if(xe.webgl.supported=typeof t!="undefined",xe.webgl.backend=xe.backends.includes("webgl"),xe.webgl.supported&&xe.webgl.backend){let s=zo().gpgpu!=="undefined"&&zo().getGPGPUContext?await zo().getGPGPUContext().gl:null;s&&(xe.webgl.version=s.getParameter(s.VERSION),xe.webgl.renderer=s.getParameter(s.RENDERER))}xe.webgpu.supported=xe.browser&&typeof navigator.gpu!="undefined",xe.webgpu.backend=xe.backends.includes("webgpu"),xe.webgpu.supported&&(xe.webgpu.adapter=(n=await navigator.gpu.requestAdapter())==null?void 0:n.name),xe.kernels=Zr(Bl()).map(s=>s.kernelName.toLowerCase())}async function d0(){if(xe.browser=typeof navigator!="undefined",xe.node=typeof process!="undefined",xe.worker=xe.browser?typeof WorkerGlobalScope!="undefined":void 0,xe.tfjs.version=ah,typeof navigator!="undefined"){let e=navigator.userAgent.match(/\(([^()]+)\)/g);if(e&&e[0]){let t=e[0].match(/\(([^()]+)\)/g);xe.platform=t&&t[0]?t[0].replace(/\(|\)/g,""):"",xe.agent=navigator.userAgent.replace(e[0],""),xe.platform[1]&&(xe.agent=xe.agent.replace(e[1],"")),xe.agent=xe.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(xe.platform=`${process.platform} ${process.arch}`,xe.agent=`NodeJS ${process.version}`);await Qie()}var _y=fr.leftEyeLower0,Fy=fr.rightEyeLower0,Cu={leftBounds:[_y[0],_y[_y.length-1]],rightBounds:[Fy[0],Fy[Fy.length-1]]},h8={count:468,mouth:13,symmetryLine:[13,fr.midwayBetweenEyes[0]]},ele={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Tu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function p0(e,t,n,s){for(let r=0;r<Ry.length;r++){let{key:a,indices:o}=Ry[r],i=fr[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let u=o[l];e[i[l]]=[t[u][0],t[u][1],(t[u][2]+e[i[l]][2])/2]}}}var $y=class{constructor(t,n,s){Re(this,"storedBoxes");Re(this,"boundingBoxDetector");Re(this,"meshDetector");Re(this,"irisModel");Re(this,"boxSize");Re(this,"meshSize");Re(this,"irisSize");Re(this,"irisEnlarge");Re(this,"skipped");Re(this,"detectedFaces");var r,a;this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=s,this.boxSize=((r=t==null?void 0:t.model)==null?void 0:r.inputs[0].shape[2])||0,this.meshSize=(n==null?void 0:n.inputs[0].shape[2])||((a=t==null?void 0:t.model)==null?void 0:a.inputs[0].shape[2]),this.irisSize=(s==null?void 0:s.inputs[0].shape[1])||0,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,s,r){let a=Cd({startPoint:n.startPoint,endPoint:n.endPoint}),o=t.map(d=>[a[0]/this.meshSize*(d[0]-this.meshSize/2),a[1]/this.meshSize*(d[1]-this.meshSize/2),d[2]]),i=s!==0?Ey(s,[0,0]):u0,l=s!==0?o.map(d=>[...a8(d,i),d[2]]):o,u=s!==0?r8(r):u0,c=[...Td({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(d=>[Math.round(d[0]+xa(c,u[0])),Math.round(d[1]+xa(c,u[1])),Math.round(d[2])])}getLeftToRightEyeDepthDifference(t){let n=t[Cu.leftBounds[0]][2],s=t[Cu.rightBounds[0]][2];return n-s}getEyeBox(t,n,s,r,a=!1){let o=l0(i0(Ny([t[s],t[r]]),this.irisEnlarge)),i=Cd(o),l=Fe.cropAndResize(n,[[o.startPoint[1]/this.meshSize,o.startPoint[0]/this.meshSize,o.endPoint[1]/this.meshSize,o.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);if(a&&xe.kernels.includes("flipleftright")){let u=Fe.flipLeftRight(l);Z(l),l=u}return{box:o,boxSize:i,crop:l}}getEyeCoords(t,n,s,r=!1){let a=[];for(let o=0;o<Tu.numCoordinates;o++){let i=t[o*3],l=t[o*3+1],u=t[o*3+2];a.push([(r?1-i/this.irisSize:i/this.irisSize)*s[0]+n.startPoint[0],l/this.irisSize*s[1]+n.startPoint[1],u])}return{rawCoords:a,iris:a.slice(Tu.index)}}getAdjustedIrisCoords(t,n,s){let r=t[fr[`${s}EyeUpper0`][Tu.upperCenter]][2],a=t[fr[`${s}EyeLower0`][Tu.lowerCenter]][2],o=(r+a)/2;return n.map((i,l)=>{let u=o;return l===2?u=r:l===4&&(u=a),[i[0],i[1],u]})}correctFaceRotation(t,n,s){let[r,a]=n.landmarks.length>=h8.count?h8.symmetryLine:ele.symmetryLine,o=t8(n.landmarks[r],n.landmarks[a]),i=Td({startPoint:n.startPoint,endPoint:n.endPoint}),l=[i[0]/s.shape[2],i[1]/s.shape[1]],u=Fe.rotateWithOffset(s,o,0,l),c=Ey(-o,i),d=t.face.mesh.enabled?Nd({startPoint:n.startPoint,endPoint:n.endPoint},u,[this.meshSize,this.meshSize]):Nd({startPoint:n.startPoint,endPoint:n.endPoint},u,[this.boxSize,this.boxSize]),p=pe(d,255);return Z(d),Z(u),[o,c,p]}async augmentIris(t,n){let{box:s,boxSize:r,crop:a}=this.getEyeBox(t,n,Cu.leftBounds[0],Cu.leftBounds[1],!0),{box:o,boxSize:i,crop:l}=this.getEyeBox(t,n,Cu.rightBounds[0],Cu.rightBounds[1]),u=ft([a,l]);Z(a),Z(l);let c=this.irisModel.predict(u);Z(u);let d=await c.data();Z(c);let p=d.slice(0,Tu.numCoordinates*3),{rawCoords:h,iris:f}=this.getEyeCoords(p,s,r,!0),m=d.slice(Tu.numCoordinates*3),{rawCoords:g,iris:A}=this.getEyeCoords(m,o,i),y=this.getLeftToRightEyeDepthDifference(t);Math.abs(y)<30?(p0(t,h,"left",null),p0(t,g,"right",null)):y<1?p0(t,h,"left",["EyeUpper0","EyeLower0"]):p0(t,g,"right",["EyeUpper0","EyeLower0"]);let x=this.getAdjustedIrisCoords(t,f,"left"),b=this.getAdjustedIrisCoords(t,A,"right");return t.concat(x).concat(b)}async predict(t,n){let s=!1,r;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.skipFrame)&&(r=await this.boundingBoxDetector.getBoundingBoxes(t,n),this.skipped=0),n.skipFrame&&this.skipped++,!n.skipFrame||r&&r.boxes&&(!n.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let i of r.boxes){let l=await i.box.startPoint.data(),u=await i.box.endPoint.data(),c=await i.landmarks.array();this.storedBoxes.push({startPoint:l,endPoint:u,landmarks:c,confidence:i.confidence})}this.storedBoxes.length>0&&(s=!0)}if(s){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let l=Qk({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},r.scaleFactor),u=i0(l),c=l0(u),d=this.storedBoxes[i].landmarks,p=this.storedBoxes[i].confidence;this.storedBoxes[i]={...c,confidence:p,landmarks:d}}}r&&r.boxes&&r.boxes.forEach(i=>{Z(i.box.startPoint),Z(i.box.endPoint),Z(i.landmarks)});let a=[],o=[];for(let i of this.storedBoxes){let l,u=0,c;if(n.face.detector.rotation&&n.face.mesh.enabled&&xe.kernels.includes("rotatewithoffset"))[u,c,l]=this.correctFaceRotation(n,i,t);else{c=u0;let d=t.clone(),p=n.face.mesh.enabled?Nd({startPoint:i.startPoint,endPoint:i.endPoint},d,[this.meshSize,this.meshSize]):Nd({startPoint:i.startPoint,endPoint:i.endPoint},d,[this.boxSize,this.boxSize]);l=pe(p,255),Z(p),Z(d)}if(!n.face.mesh.enabled)a.push({mesh:[],box:i,faceConfidence:null,boxConfidence:i.confidence,confidence:i.confidence,image:l});else{let[d,p,h]=this.meshDetector.execute(l);Z(d);let f=(await p.data())[0];Z(p);let m=V(h,[-1,3]),g=await m.array();if(Z(h),Z(m),f<n.face.detector.minConfidence)i.confidence=f,Z(l);else{n.face.iris.enabled&&(g=await this.augmentIris(g,l));let A=this.transformRawCoords(g,i,u,c);i={...i0(Ny(A),1.5),confidence:i.confidence},n.face.detector.rotation&&n.face.mesh.enabled&&n.face.description.enabled&&xe.kernels.includes("rotatewithoffset")&&(Z(l),[u,c,l]=this.correctFaceRotation(n,i,t)),a.push({mesh:A,box:i,faceConfidence:f,boxConfidence:i.confidence,confidence:f,image:l}),i={...l0(i),confidence:i.confidence,faceConfidence:f}}}o.push(i)}return n.face.mesh.enabled&&(this.storedBoxes=o.filter(i=>i.confidence>n.face.detector.minConfidence)),this.detectedFaces=a.length,a}};var Pt=[null,null,null],Oy;async function f8(e,t){let n=await Oy.predict(e,t),s=[],r=0;for(let a of n||[]){if(!a||a.isDisposedInternal)continue;let o=a.mesh.map(c=>[c[0]/(e.shape[2]||0),c[1]/(e.shape[1]||0),c[2]/Oy.meshSize]),i={};if(a.mesh&&a.mesh.length>0)for(let c of Object.keys(fr))i[c]=fr[c].map(d=>a.mesh[d]);let l=a.box?[Math.trunc(Math.max(0,a.box.startPoint[0])),Math.trunc(Math.max(0,a.box.startPoint[1])),Math.trunc(Math.min(e.shape[2]||0,a.box.endPoint[0])-Math.max(0,a.box.startPoint[0])),Math.trunc(Math.min(e.shape[1]||0,a.box.endPoint[1])-Math.max(0,a.box.startPoint[1]))]:[0,0,0,0],u=a.box?[a.box.startPoint[0]/(e.shape[2]||0),a.box.startPoint[1]/(e.shape[1]||0),(a.box.endPoint[0]-a.box.startPoint[0])/(e.shape[2]||0),(a.box.endPoint[1]-a.box.startPoint[1])/(e.shape[1]||0)]:[0,0,0,0];s.push({id:r++,score:Math.round(100*a.faceConfidence||100*a.boxConfidence||0)/100,boxScore:Math.round(100*a.boxConfidence)/100,faceScore:Math.round(100*a.faceConfidence)/100,box:l,boxRaw:u,mesh:a.mesh,meshRaw:o,annotations:i,tensor:a.image})}return s}async function Py(e){return!Pt[0]&&e.face.enabled||!Pt[1]&&e.face.mesh.enabled||!Pt[2]&&e.face.iris.enabled?(Pt=await Promise.all([!Pt[0]&&e.face.enabled?u8(e):null,!Pt[1]&&e.face.mesh.enabled?yt(xt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Pt[2]&&e.face.iris.enabled?yt(xt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Pt[1]||!Pt[1].modelUrl?ce("load model failed:",e.face.mesh.modelPath):e.debug&&ce("load model:",Pt[1].modelUrl)),e.face.iris.enabled&&(!Pt[2]||!Pt[2].modelUrl?ce("load model failed:",e.face.iris.modelPath):e.debug&&ce("load model:",Pt[2].modelUrl))):e.debug&&(Pt[0]&&ce("cached model:",Pt[0].model.modelUrl),Pt[1]&&ce("cached model:",Pt[1].modelUrl),Pt[2]&&ce("cached model:",Pt[2].modelUrl)),Oy=new $y(Pt[0],Pt[1],Pt[2]),Pt}var m8=hi,g8=Ed;var Ks,h0=[],A8=0,My=Number.MAX_SAFE_INTEGER;async function zy(e){var n,s;let t=xt(e.modelBasePath,((n=e.face.description)==null?void 0:n.modelPath)||"");return Ks?e.debug&&ce("cached model:",t):(Ks=await yt(t),Ks?e.debug&&ce("load model:",t):ce("load model failed:",((s=e.face.description)==null?void 0:s.modelPath)||"")),Ks}function Ly(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let s=5*e.map((a,o)=>Math.abs(e[o]-t[o])**n).reduce((a,o)=>a+o,0)**(1/n);return Math.max(0,100-s)/100}function y8(e,t,n=0){let s={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return s;for(let r of t)if(r.embedding&&r.name){let a=Ly(e,r.embedding);a>n&&a>s.similarity&&(s={...r,similarity:a})}return s}function By(e){return H(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Ge))return null;let s=[[.05,.15,.85,.85]];if(!Ks.inputs[0].shape)return null;let r=n.shape.length===3?Fe.cropAndResize(zt(n,0),s,[0],[Ks.inputs[0].shape[2],Ks.inputs[0].shape[1]]):Fe.cropAndResize(n,s,[0],[Ks.inputs[0].shape[2],Ks.inputs[0].shape[1]]);return z(r,255)})}async function Wy(e,t,n,s){var r,a,o;return Ks?My<(((r=t.face.description)==null?void 0:r.skipFrames)||0)&&t.skipFrame&&A8===s&&((a=h0[n])==null?void 0:a.age)&&((o=h0[n])==null?void 0:o.age)>0?(My++,h0[n]):(My=0,new Promise(async i=>{var d,p;let l=By(e),u,c={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(((d=t.face.description)==null?void 0:d.enabled)&&(u=await Ks.predict(l)),Z(l),u){let h=await u.find(b=>b.shape[1]===1).data(),f=Math.trunc(200*Math.abs(h[0]-.5))/100;f>(((p=t.face.description)==null?void 0:p.minConfidence)||0)&&(c.gender=h[0]<=.5?"female":"male",c.genderScore=Math.min(.99,f));let m=Ms(u.find(b=>b.shape[1]===100),1),g=(await m.data())[0];Z(m);let A=await u.find(b=>b.shape[1]===100).data();c.age=Math.round(A[g-1]>A[g+1]?10*g-100*A[g-1]:10*g+100*A[g+1])/10;let x=await u.find(b=>b.shape[1]===1024).data();c.descriptor=[...x],u.forEach(b=>Z(b))}h0[n]=c,A8=s,i(c)})):null}var tle=["angry","disgust","fear","happy","sad","surprise","neutral"],Zs,f0=[],x8=0,Vy=Number.MAX_SAFE_INTEGER,Uy=[.2989,.587,.114];async function Hy(e){var t,n;return Zs?e.debug&&ce("cached model:",Zs.modelUrl):(Zs=await yt(xt(e.modelBasePath,((t=e.face.emotion)==null?void 0:t.modelPath)||"")),!Zs||!Zs.modelUrl?ce("load model failed:",((n=e.face.emotion)==null?void 0:n.modelPath)||""):e.debug&&ce("load model:",Zs.modelUrl)),Zs}async function Gy(e,t,n,s){var r;return Zs?Vy<(((r=t.face.emotion)==null?void 0:r.skipFrames)||0)&&t.skipFrame&&x8===s&&f0[n]&&f0[n].length>0?(Vy++,f0[n]):(Vy=0,new Promise(async a=>{var g,A;let o=Fe.resizeBilinear(e,[Zs.inputs[0].shape[2],Zs.inputs[0].shape[1]],!1),[i,l,u]=Wt(o,3,3);Z(o);let c=z(i,Uy[0]),d=z(l,Uy[1]),p=z(u,Uy[2]);Z(i),Z(l),Z(u);let h=uh([c,d,p]);Z(c),Z(d),Z(p);let f=H(()=>z(Ae(h,.5),2));Z(h);let m=[];if((g=t.face.emotion)==null?void 0:g.enabled){let y=await Zs.predict(f),x=await y.data();Z(y);for(let b=0;b<x.length;b++)x[b]>(((A=t.face.emotion)==null?void 0:A.minConfidence)||0)&&m.push({score:Math.min(.99,Math.trunc(100*x[b])/100),emotion:tle[b]});m.sort((b,v)=>v.score-b.score)}Z(f),f0[n]=m,x8=s,a(m)})):null}var Rd=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],b8=Rd.length,Dd=Rd.reduce((e,t,n)=>(e[t]=n,e),{}),nle=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],sle=nle.map(([e,t])=>[Dd[e],Dd[t]]),v8=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function w8(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function k8(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/s,u.box[2]/r,u.box[3]/s],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:d,part:p,position:h})=>({score:d,part:p,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]}))});return e.map((u,c)=>i(u,c))}var jy=class{constructor(t,n){Re(this,"priorityQueue");Re(this,"numberOfElements");Re(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function qy(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+b8)}}function Xy(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=qy(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function Ky(e,t,n){return e<t?t:e>n?n:e}function I8(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function Zy(e,t){return{x:e.x+t.x,y:e.y+t.y}}var m0=1,Nu=16,rle=50**2;function S8(e,t,n,s,r,a,o=2){let i=A=>({y:a.get(A.y,A.x,e),x:a.get(A.y,A.x,a.shape[2]/2+e)}),l=(A,y,x)=>({y:Ky(Math.round(A.y/Nu),0,y-1),x:Ky(Math.round(A.x/Nu),0,x-1)}),[u,c]=s.shape,d=l(t.position,u,c),p=i(d),f=Zy(t.position,p);for(let A=0;A<o;A++){let y=l(f,u,c),x=qy(y.y,y.x,n,r);f=Zy({x:y.x*Nu,y:y.y*Nu},{x:x.x,y:x.y})}let m=l(f,u,c),g=s.get(m.y,m.x,n);return{position:f,part:Rd[n],score:g}}function ale(e,t,n,s,r){let a=v8.map(([p,h])=>[Dd[p],Dd[h]]),o=a.map(([,p])=>p),i=a.map(([p])=>p),l=t.shape[2],u=o.length,c=new Array(l),d=Xy(e.part,Nu,n);c[e.part.id]={score:e.score,part:Rd[e.part.id],position:d};for(let p=u-1;p>=0;--p){let h=o[p],f=i[p];c[h]&&!c[f]&&(c[f]=S8(p,c[h],f,t,n,r))}for(let p=0;p<u;++p){let h=i[p],f=o[p];c[h]&&!c[f]&&(c[f]=S8(p,c[h],f,t,n,s))}return c}function ole(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-m0,0),u=Math.min(n+m0+1,a);for(let c=l;c<u;++c){let d=Math.max(s-m0,0),p=Math.min(s+m0+1,o);for(let h=d;h<p;++h)if(r.get(c,h,e)>t){i=!1;break}if(!i)break}return i}function ile(e,t){let[n,s,r]=t.shape,a=new jy(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let u=t.get(o,i,l);u<e||ole(l,u,o,i,t)&&a.enqueue({score:u,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function C8(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?I8(n,t,a.y,a.x)<=rle:!1})}function lle(e,t){return t.reduce((s,{position:r,score:a},o)=>(C8(e,r,o)||(s+=a),s),0)/t.length}function T8(e,t,n,s,r,a){let o=[],i=ile(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),u=Xy(l.part,Nu,e);if(C8(o,u,l.part.id))continue;let c=ale(l,t,e,n,s);c=c.filter(h=>h.score>a);let d=lle(o,c),p=w8(c);d>a&&o.push({keypoints:c,box:p,score:Math.round(100*d)/100})}return o}var os,ule=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function Yy(e,t){let n=H(()=>{if(!os.inputs[0].shape)return[];let o=Fe.resizeBilinear(e,[os.inputs[0].shape[2],os.inputs[0].shape[1]]),i=Ae(pe(de(o,"float32"),127.5),1),u=os.execute(i,ule).map(c=>lt(c,[0]));return u[1]=u[1].sigmoid(),u}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)Z(o);let r=await T8(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return os.inputs[0].shape?k8(r,[e.shape[1],e.shape[2]],[os.inputs[0].shape[2],os.inputs[0].shape[1]]):[]}async function Jy(e){return os?e.debug&&ce("cached model:",os.modelUrl):(os=await yt(xt(e.modelBasePath,e.body.modelPath||"")),!os||!os.modelUrl?ce("load model failed:",e.body.modelPath):e.debug&&ce("load model:",os.modelUrl)),os}function g0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function _d(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function N8(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return Fe.cropAndResize(t,a,[0],n)}function E8(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function A0(e,t=1.5){let n=_d(e),s=g0(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function y0(e){let t=_d(e),n=g0(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}var R8=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var Qy=class{constructor(t){Re(this,"model");Re(this,"anchors");Re(this,"anchorsTensor");Re(this,"inputSize");Re(this,"inputSizeTensor");Re(this,"doubleInputSizeTensor");this.model=t,this.anchors=R8.map(n=>[n.x,n.y]),this.anchorsTensor=Ls(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Vt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Vt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return H(()=>{let n=_e(t,[0,0],[-1,2]),s=_e(t,[0,2],[-1,2]),r=oe(pe(n,this.inputSizeTensor),this.anchorsTensor),a=pe(s,this.doubleInputSizeTensor),o=z(Ae(r,a),this.inputSizeTensor),i=z(oe(r,a),this.inputSizeTensor);return Hl([o,i],1)})}normalizeLandmarks(t,n){return H(()=>{let s=oe(pe(V(t,[-1,7,2]),this.inputSizeTensor),this.anchors[n]);return z(s,this.inputSizeTensor)})}async getBoxes(t,n){let s={};s.batched=this.model.predict(t),s.predictions=lt(s.batched),s.scores=H(()=>lt(On(_e(s.predictions,[0,0],[-1,1]))));let r=await s.scores.data();s.boxes=_e(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await Fe.nonMaxSuppressionAsync(s.norm,s.scores,10*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l=_e(s.norm,[i,0],[1,-1]),u=H(()=>V(this.normalizeLandmarks(_e(s.predictions,[i,5],[1,14]),i),[-1,2]));o.push({box:l,palmLandmarks:u,confidence:r[i]})}for(let i of Object.keys(s))Z(s[i]);return o}async estimateHandBounds(t,n){let s=t.shape[1],r=t.shape[2],a=H(()=>Ae(pe(Fe.resizeBilinear(t,[this.inputSize,this.inputSize]),127.5),1)),o=await this.getBoxes(a,n);Z(a);let i=[];if(!o||o.length===0)return i;for(let l of o){let u=await l.box.data(),c=u.slice(0,2),d=u.slice(2,4),p=await l.palmLandmarks.array();Z(l.box),Z(l.palmLandmarks),i.push(E8({startPoint:c,endPoint:d,palmLandmarks:p,confidence:l.confidence},[r/this.inputSize,s/this.inputSize]))}return i}};function cle(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function D8(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return cle(n)}var _8=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function ba(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function dle(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function F8(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(ba(e[r],dle(t,a)))}return n}function ex(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=_8(t[0],t[1]),o=F8(a,r),i=_8(-t[0],-t[1]);return F8(o,i)}function $8(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-ba(t[0],n),-ba(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function tx(e,t){return[ba(e,t[0]),ba(e,t[1])]}var ple=5,O8=1.65,P8=[0,5,9,13,17,1,2],hle=0,fle=2,nx=class{constructor(t,n){Re(this,"handDetector");Re(this,"handPoseModel");Re(this,"inputSize");Re(this,"storedBoxes");Re(this,"skipped");Re(this,"detectedHands");var s;this.handDetector=t,this.handPoseModel=n,this.inputSize=(s=this.handPoseModel)==null?void 0:s.inputs[0].shape[2],this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>tx([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return A0(y0(r),ple)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=A0(y0(n),O8);s.palmLandmarks=[];for(let r=0;r<P8.length;r++)s.palmLandmarks.push(t[P8[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=g0(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=ex(s,[0,0]),u=i.map(h=>[...tx(h,l),h[2]]),c=$8(r),d=[..._d(n),1],p=[ba(d,c[0]),ba(d,c[1])];return u.map(h=>[Math.trunc(h[0]+p[0]),Math.trunc(h[1]+p[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let a=[];for(let o=0;o<this.storedBoxes.length;o++){let i=this.storedBoxes[o];if(!!i)if(n.hand.landmarks){let l=n.hand.rotation?D8(i.palmLandmarks[hle],i.palmLandmarks[fle]):0,u=_d(i),c=[u[0]/t.shape[2],u[1]/t.shape[1]],d=n.hand.rotation&&xe.kernels.includes("rotatewithoffset")?Fe.rotateWithOffset(t,l,0,c):t.clone(),p=ex(-l,u),h=s?this.getBoxForPalmLandmarks(i.palmLandmarks,p):i,f=N8(h,d,[this.inputSize,this.inputSize]),m=pe(f,255);Z(f),Z(d);let[g,A]=await this.handPoseModel.predict(m);Z(m);let y=(await g.data())[0];if(Z(g),y>=n.hand.minConfidence/4){let x=V(A,[-1,3]),b=await x.array();Z(A),Z(x);let v=this.transformRawCoords(b,h,l,p),k=this.getBoxForHandLandmarks(v);this.storedBoxes[o]={...k,confidence:y};let S={landmarks:v,confidence:y,box:{topLeft:k.startPoint,bottomRight:k.endPoint}};a.push(S)}else this.storedBoxes[o]=null;Z(A)}else{let l=A0(y0(i),O8),u={confidence:i.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};a.push(u)}}return this.storedBoxes=this.storedBoxes.filter(o=>o!==null),this.detectedHands=a.length,a}};var qe={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>qe.nameMapping[e],getPoints:e=>qe.pointsMapping[e]},Rn={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>Rn.nameMapping[e]},He={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>He.nameMapping[e]};var mi={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function M8(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function z8(e,t){let n=M8(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=M8(e[1],e[2],t[1],t[2]);return[n,s]}function L8(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function mle(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],u=e[2]-t[2],c=e[2]-n[2],d=t[2]-n[2],p=Math.sqrt(s*s+o*o+u*u),h=Math.sqrt(r*r+i*i+c*c),f=Math.sqrt(a*a+l*l+d*d),m=(f*f+p*p-h*h)/(2*f*p);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let A;return g>mi.NO_CURL_START_LIMIT?A=Rn.none:g>mi.HALF_CURL_START_LIMIT?A=Rn.half:A=Rn.full,A}function B8(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=He.horizontalLeft:r=He.horizontalRight:s===Math.abs(t)?t>0?r=He.horizontalLeft:r=He.horizontalRight:n>0?r=He.horizontalLeft:r=He.horizontalRight,r}function W8(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=He.verticalDown:r=He.verticalUp:s===Math.abs(t)?t<0?r=He.verticalDown:r=He.verticalUp:n<0?r=He.verticalDown:r=He.verticalUp,r}function gle(e,t,n,s,r,a,o,i){let l,u=W8(e,t,n,s),c=B8(r,a,o,i);return u===He.verticalUp?c===He.horizontalLeft?l=He.diagonalUpLeft:l=He.diagonalUpRight:c===He.horizontalLeft?l=He.diagonalDownLeft:l=He.diagonalDownRight,l}function Ale(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],u=t[1]-n[1],c=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),d=Math.max(Math.abs(i),Math.abs(l),Math.abs(u)),p=0,h=0,f=0,m=d/(c+1e-5);m>1.5?p+=mi.DISTANCE_VOTE_POWER:m>.66?h+=mi.DISTANCE_VOTE_POWER:f+=mi.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),A=Math.sqrt(a*a+l*l),y=Math.sqrt(o*o+u*u),x=Math.max(g,A,y),b=e[0],v=e[1],k=n[0],S=n[1];x===g?(k=n[0],S=n[1]):x===y&&(b=t[0],v=t[1]);let O=z8([b,v],[k,S]),E=L8(O,mi.TOTAL_ANGLE_VOTE_POWER);p+=E[0],h+=E[1],f+=E[2];for(let T of s){let P=L8(T,mi.SINGLE_ANGLE_VOTE_POWER);p+=P[0],h+=P[1],f+=P[2]}let R;return p===Math.max(p,h,f)?R=W8(l,i,u,d):f===Math.max(h,f)?R=B8(a,r,o,c):R=gle(l,i,u,d,a,r,o,c),R}function sx(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of qe.all){let o=qe.getPoints(a),i=[],l=[];for(let u of o){let c=e[u[0]],d=e[u[1]],p=z8(c,d),h=p[0],f=p[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of qe.all){let o=a===qe.thumb?1:0,i=qe.getPoints(a),l=e[i[o][0]],u=e[i[o+1][1]],c=e[i[3][1]],d=mle(l,u,c),p=Ale(l,u,c,t[a].slice(o));s[a]=d,r[a]=p}return{curls:s,directions:r}}var Fd=class{constructor(t){Re(this,"name");Re(this,"curls");Re(this,"directions");Re(this,"weights");Re(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}addCurl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}addDirection(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}setWeight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var va=new Fd("thumbs up");va.addCurl(qe.thumb,Rn.none,1);va.addDirection(qe.thumb,He.verticalUp,1);va.addDirection(qe.thumb,He.diagonalUpLeft,.25);va.addDirection(qe.thumb,He.diagonalUpRight,.25);for(let e of[qe.index,qe.middle,qe.ring,qe.pinky])va.addCurl(e,Rn.full,1),va.addDirection(e,He.horizontalLeft,1),va.addDirection(e,He.horizontalRight,1);var jt=new Fd("victory");jt.addCurl(qe.thumb,Rn.half,.5);jt.addCurl(qe.thumb,Rn.none,.5);jt.addDirection(qe.thumb,He.verticalUp,1);jt.addDirection(qe.thumb,He.diagonalUpLeft,1);jt.addCurl(qe.index,Rn.none,1);jt.addDirection(qe.index,He.verticalUp,.75);jt.addDirection(qe.index,He.diagonalUpLeft,1);jt.addCurl(qe.middle,Rn.none,1);jt.addDirection(qe.middle,He.verticalUp,1);jt.addDirection(qe.middle,He.diagonalUpLeft,.75);jt.addCurl(qe.ring,Rn.full,1);jt.addDirection(qe.ring,He.verticalUp,.2);jt.addDirection(qe.ring,He.diagonalUpLeft,1);jt.addDirection(qe.ring,He.horizontalLeft,.2);jt.addCurl(qe.pinky,Rn.full,1);jt.addDirection(qe.pinky,He.verticalUp,.2);jt.addDirection(qe.pinky,He.diagonalUpLeft,1);jt.addDirection(qe.pinky,He.horizontalLeft,.2);jt.setWeight(qe.index,2);jt.setWeight(qe.middle,2);var V8=[va,jt];var yle=.7;function U8(e){let t=sx(e),n={};for(let s of qe.all)n[qe.getName(s)]={curl:Rn.getName(t.curls[s]),direction:He.getName(t.directions[s])};return n}function H8(e){let t=sx(e),n=[];for(let s of V8){let r=s.matchAgainst(t.curls,t.directions);r>=yle&&n.push({name:s.name,confidence:r})}return n}var G8={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},wa,ka,j8;async function rx(e,t){let n=await j8.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let c of Object.keys(G8))a[c]=G8[c].map(d=>n[r].landmarks[d]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let c of o)c[0]<i[0]&&(i[0]=c[0]),c[1]<i[1]&&(i[1]=c[1]),c[0]>i[2]&&(i[2]=c[0]),c[1]>i[3]&&(i[3]=c[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let u=U8(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:u})}return s}async function ax(e){var n,s,r,a,o,i;!wa||!ka?([wa,ka]=await Promise.all([e.hand.enabled?yt(xt(e.modelBasePath,((n=e.hand.detector)==null?void 0:n.modelPath)||""),{fromTFHub:(((s=e.hand.detector)==null?void 0:s.modelPath)||"").includes("tfhub.dev")}):null,e.hand.landmarks?yt(xt(e.modelBasePath,((r=e.hand.skeleton)==null?void 0:r.modelPath)||""),{fromTFHub:(((a=e.hand.skeleton)==null?void 0:a.modelPath)||"").includes("tfhub.dev")}):null]),e.hand.enabled&&(!wa||!wa.modelUrl?ce("load model failed:",((o=e.hand.detector)==null?void 0:o.modelPath)||""):e.debug&&ce("load model:",wa.modelUrl),!ka||!ka.modelUrl?ce("load model failed:",((i=e.hand.skeleton)==null?void 0:i.modelPath)||""):e.debug&&ce("load model:",ka.modelUrl))):(e.debug&&ce("cached model:",wa.modelUrl),e.debug&&ce("cached model:",ka.modelUrl));let t=new Qy(wa);return j8=new nx(t,ka),[wa,ka]}var q8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],X8=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var Un;async function x0(e){return Un?e.debug&&ce("cached model:",Un.modelUrl):(Un=await yt(xt(e.modelBasePath,e.body.modelPath||"")),Un.width=parseInt(Un.signature.inputs["input_1:0"].tensorShape.dim[2].size),Un.height=parseInt(Un.signature.inputs["input_1:0"].tensorShape.dim[1].size),!Un||!Un.modelUrl?ce("load model failed:",e.body.modelPath):e.debug&&ce("load model:",Un.modelUrl)),Un}async function ox(e,t){if(!Un)return[];if(!t.body.enabled)return[];let n={width:e.shape[2]||0,height:e.shape[1]||0},s=Fe.resizeBilinear(e,[Un.width,Un.height],!1),r=pe(s,[255]);Z(s);let a=await Un.predict(r),o=a.find(g=>g.size===195||g.size===155),i=await(o==null?void 0:o.data())||[];a.forEach(g=>Z(g)),Z(r);let l=[],u=(i==null?void 0:i.length)===195?q8:X8,c=5;for(let g=0;g<i.length/c;g++)l.push({id:g,part:u[g],position:[Math.trunc(n.width*i[c*g+0]/255),Math.trunc(n.height*i[c*g+1]/255),Math.trunc(i[c*g+2])+0],positionRaw:[i[c*g+0]/255,i[c*g+1]/255,i[c*g+2]+0],score:(100-Math.trunc(100/(1+Math.exp(i[c*g+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(i[c*g+4]))))/100});let d=l.map(g=>g.position[0]),p=l.map(g=>g.position[1]),h=[Math.min(...d),Math.min(...p),Math.max(...d)-Math.min(...d),Math.max(...p)-Math.min(...d)],f=[0,0,0,0],m=l.reduce((g,A)=>A.score>g?A.score:g,0);return[{id:0,score:m,box:h,boxRaw:f,keypoints:l}]}var Hn,gr=[],ix=[0,0,0,0],lx=[0,0,0,0],b0=0,ux=Number.MAX_SAFE_INTEGER,xle=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function K8(e){return Hn?e.debug&&ce("cached model:",Hn.modelUrl):(Hn=await yt(xt(e.modelBasePath,e.body.modelPath||"")),!Hn||!Hn.modelUrl?ce("load model failed:",e.body.modelPath):e.debug&&ce("load model:",Hn.modelUrl)),Hn}function ble(e,t){let[n,s]=e.shape;return H(()=>{let r=(i,l)=>Ae(i,z(pe(i,Ce(l,"int32")),Ce(l,"int32"))),a=V(e,[s*n]),o=Yn(a,0).dataSync()[0];if(o>t){let i=Ms(a,0),l=r(i,n).dataSync()[0],u=pe(i,Ce(n,"int32")).dataSync()[0];return[l,u,o]}return[0,0,o]})}async function cx(e,t){var n;return ux<(((n=t.body)==null?void 0:n.skipFrames)||0)&&t.skipFrame&&Object.keys(gr).length>0?(ux++,[{id:0,score:b0,box:ix,boxRaw:lx,keypoints:gr}]):(ux=0,new Promise(async s=>{var c;let r=H(()=>{if(!Hn.inputs[0].shape)return null;let d=Fe.resizeBilinear(e,[Hn.inputs[0].shape[2],Hn.inputs[0].shape[1]],!1);return z(d,2).sub(1)}),a;if(t.body.enabled&&(a=await Hn.predict(r)),Z(r),a){gr.length=0;let d=a.squeeze();Z(a);let p=d.unstack(2);Z(d);for(let h=0;h<p.length;h++){let[f,m,g]=ble(p[h],t.body.minConfidence);b0>(((c=t.body)==null?void 0:c.minConfidence)||0)&&gr.push({score:Math.round(100*g)/100,part:xle[h],positionRaw:[f/Hn.inputs[0].shape[2],m/Hn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/Hn.inputs[0].shape[2]),Math.round(e.shape[1]*m/Hn.inputs[0].shape[1])]})}p.forEach(h=>Z(h))}b0=gr.reduce((d,p)=>p.score>d?p.score:d,0);let o=gr.map(d=>d.position[0]),i=gr.map(d=>d.position[1]);ix=[Math.min(...o),Math.min(...i),Math.max(...o)-Math.min(...o),Math.max(...i)-Math.min(...i)];let l=gr.map(d=>d.positionRaw[0]),u=gr.map(d=>d.positionRaw[1]);lx=[Math.min(...l),Math.min(...u),Math.max(...l)-Math.min(...l),Math.max(...u)-Math.min(...u)],s([{id:0,score:b0,box:ix,boxRaw:lx,keypoints:gr}])}))}var Ar,vs=[],dx=[0,0,0,0],Pr=[0,0,0,0],Mr=0,px=Number.MAX_SAFE_INTEGER,Z8=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function hx(e){return Ar?e.debug&&ce("cached model:",Ar.modelUrl):(Ar=await yt(xt(e.modelBasePath,e.body.modelPath||"")),!Ar||!Ar.modelUrl?ce("load model failed:",e.body.modelPath):e.debug&&ce("load model:",Ar.modelUrl)),Ar}async function vle(e,t,n){vs.length=0;let s=e[0][0];for(let u=0;u<s.length;u++)Mr=s[u][2],Mr>t.body.minConfidence&&vs.push({score:Math.round(100*Mr)/100,part:Z8[u],positionRaw:[s[u][1],s[u][0]],position:[Math.round((n.shape[2]||0)*s[u][1]),Math.round((n.shape[1]||0)*s[u][0])]});Mr=vs.reduce((u,c)=>c.score>u?c.score:u,0);let r=vs.map(u=>u.position[0]),a=vs.map(u=>u.position[1]);dx=[Math.min(...r),Math.min(...a),Math.max(...r)-Math.min(...r),Math.max(...a)-Math.min(...a)];let o=vs.map(u=>u.positionRaw[0]),i=vs.map(u=>u.positionRaw[1]);Pr=[Math.min(...o),Math.min(...i),Math.max(...o)-Math.min(...o),Math.max(...i)-Math.min(...i)];let l=[];return l.push({id:0,score:Mr,box:dx,boxRaw:Pr,keypoints:vs}),l}async function wle(e,t,n){let s=[];for(let r=0;r<e[0].length;r++){let a=e[0][r];if(Mr=Math.round(100*a[51+4])/100,!(Mr<t.body.minConfidence)){vs.length=0;for(let o=0;o<17;o++){let i=Math.round(100*a[3*o+2])/100;i>t.body.minConfidence&&vs.push({part:Z8[o],score:i,positionRaw:[a[3*o+1],a[3*o+0]],position:[Math.trunc(a[3*o+1]*(n.shape[2]||0)),Math.trunc(a[3*o+0]*(n.shape[1]||0))]})}Pr=[a[51+1],a[51+0],a[51+3]-a[51+1],a[51+2]-a[51+0]],s.push({id:r,score:Mr,boxRaw:Pr,box:[Math.trunc(Pr[0]*(n.shape[2]||0)),Math.trunc(Pr[1]*(n.shape[1]||0)),Math.trunc(Pr[2]*(n.shape[2]||0)),Math.trunc(Pr[3]*(n.shape[1]||0))],keypoints:vs})}}return s}async function fx(e,t){return px<(t.body.skipFrames||0)&&t.skipFrame&&Object.keys(vs).length>0?(px++,[{id:0,score:Mr,box:dx,boxRaw:Pr,keypoints:vs}]):(px=0,new Promise(async n=>{let s=H(()=>{if(!Ar.inputs[0].shape)return null;let i=Ar.inputs[0].shape[2];i===-1&&(i=256);let l=Fe.resizeBilinear(e,[i,i],!1);return de(l,"int32")}),r;t.body.enabled&&(r=await Ar.predict(s)),Z(s),r||n([]);let a=await r.array(),o;r.shape[2]===17?o=await vle(a,t,e):r.shape[2]===56&&(o=await wle(a,t,e)),Z(r),n(o)}))}var Eu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var is,v0=[],mx=Number.MAX_SAFE_INTEGER,w0=2.5;async function gx(e){if(is)e.debug&&ce("cached model:",is.modelUrl);else{is=await yt(xt(e.modelBasePath,e.object.modelPath||""));let t=Object.values(is.modelSignature.inputs);if(is.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!is.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!is||!is.modelUrl?ce("load model failed:",e.object.modelPath):e.debug&&ce("load model:",is.modelUrl)}return is}async function kle(e,t,n,s){let r=0,a=[];for(let u of[1,2,4])H(async()=>{var g,A;let c=u*13,d=(g=e.find(y=>y.shape[1]===c**2&&y.shape[2]===Eu.length))==null?void 0:g.squeeze(),p=(A=e.find(y=>y.shape[1]===c**2&&y.shape[2]<Eu.length))==null?void 0:A.squeeze(),f=await p.reshape([-1,4,p.shape[1]/4]).argMax(2).array(),m=await d.array();for(let y=0;y<d.shape[0];y++)for(let x=0;x<d.shape[1];x++){let b=m[y][x];if(b>s.object.minConfidence&&x!==61){let v=(.5+Math.trunc(y%c))/c,k=(.5+Math.trunc(y/c))/c,S=f[y].map(U=>U*(c/u/t)),[C,D]=[v-w0/u*S[0],k-w0/u*S[1]],[O,E]=[v+w0/u*S[2]-C,k+w0/u*S[3]-D],R=[C,D,O,E];R=R.map(U=>Math.max(0,Math.min(U,1)));let T=[R[0]*n[0],R[1]*n[1],R[2]*n[0],R[3]*n[1]],P={id:r++,score:Math.round(100*b)/100,class:x+1,label:Eu[x].label,box:T.map(U=>Math.trunc(U)),boxRaw:R};a.push(P)}}});e.forEach(u=>Z(u));let o=a.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),i=a.map(u=>u.score),l=[];if(o&&o.length>0){let u=await Fe.nonMaxSuppressionAsync(o,i,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);l=await u.data(),Z(u)}return a=a.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),a}async function Ax(e,t){return mx<(t.object.skipFrames||0)&&t.skipFrame&&v0.length>0?(mx++,v0):(mx=0,!xe.kernels.includes("mod")||!xe.kernels.includes("sparsetodense")?v0:new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=Fe.resizeBilinear(e,[is.inputSize,is.inputSize],!1),a=pe(r,255),o=a.transpose([0,3,1,2]);Z(a),Z(r);let i;t.object.enabled&&(i=await is.predict(o)),Z(o);let l=await kle(i,is.inputSize,s,t);v0=l,n(l)}))}var ls,k0=[],yx=Number.MAX_SAFE_INTEGER;async function xx(e){if(ls)e.debug&&ce("cached model:",ls.modelUrl);else{ls=await yt(xt(e.modelBasePath,e.object.modelPath||""));let t=Object.values(ls.modelSignature.inputs);if(ls.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!ls.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!ls||!ls.modelUrl?ce("load model failed:",e.object.modelPath):e.debug&&ce("load model:",ls.modelUrl)}return ls}async function Ile(e,t,n,s){if(!e)return[];let r=[],a=await e.array(),o=lt(e);Z(e);let i=Wt(o,6,1);Z(o);let l=pn([i[1],i[0],i[3],i[2]],1),u=lt(l);Z(l);let c=lt(i[4]),d=lt(i[5]);i.forEach(m=>Z(m));let p=await Fe.nonMaxSuppressionAsync(u,c,s.object.maxDetected,s.object.iouThreshold,s.object.minConfidence);Z(u),Z(c),Z(d);let h=await p.data();Z(p);let f=0;for(let m of h){let g=Math.trunc(100*a[0][m][4])/100,A=a[0][m][5],y=Eu[A].label,[x,b]=[a[0][m][0]/t,a[0][m][1]/t],v=[x,b,a[0][m][2]/t-x,a[0][m][3]/t-b],k=[Math.trunc(v[0]*n[0]),Math.trunc(v[1]*n[1]),Math.trunc(v[2]*n[0]),Math.trunc(v[3]*n[1])];r.push({id:f++,score:g,class:A,label:y,box:k,boxRaw:v})}return r}async function bx(e,t){return yx<(t.object.skipFrames||0)&&t.skipFrame&&k0.length>0?(yx++,k0):(yx=0,!xe.kernels.includes("mod")||!xe.kernels.includes("sparsetodense")?k0:new Promise(async n=>{let s=[e.shape[2],e.shape[1]],r=Fe.resizeBilinear(e,[ls.inputSize,ls.inputSize]),a=t.object.enabled?ls.execute(r,["tower_0/detections"]):null;Z(r);let o=await Ile(a,ls.inputSize,s,t);k0=o,n(o)}))}var ws,vx=!1;async function I0(e){return ws?e.debug&&ce("cached model:",ws.modelUrl):(ws=await yt(xt(e.modelBasePath,e.segmentation.modelPath||"")),!ws||!ws.modelUrl?ce("load model failed:",e.segmentation.modelPath):e.debug&&ce("load model:",ws.modelUrl)),ws}async function wx(e){var f,m;let t=((f=e.tensor)==null?void 0:f.shape[1])||0,n=((m=e.tensor)==null?void 0:m.shape[2])||0;if(!e.tensor||!ws||!ws.inputs[0].shape)return null;let s=Fe.resizeBilinear(e.tensor,[ws.inputs[0].shape[1],ws.inputs[0].shape[2]],!1),r=pe(s,255),a=ws.predict(r);Z(s),Z(r);let o=lt(a,0);Z(a);let i;if(o.shape[2]===2){let g=o.softmax(),[A,y]=ts(g,2),x=zt(y,2),b=zt(x,0);Z(g),Z(A),Z(y);let v=Fe.cropAndResize(b,[[0,0,.5,.5]],[0],[t,n]);i=lt(v,0),Z(v),Z(x),Z(b)}else i=Fe.resizeBilinear(o,[t,n]);if(Z(o),xe.node){let g=await i.data();return Z(i),g}let l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");l.width=t,l.height=n,fs&&await fs.toPixels(i,l),Z(i);let u=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");u.width=t,u.height=n;let c=u.getContext("2d");c.filter="blur(8px",await c.drawImage(l,0,0);let d=c.getImageData(0,0,t,n).data,p=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");p.width=t,p.height=n;let h=p.getContext("2d");return e.canvas&&await h.drawImage(e.canvas,0,0),h.globalCompositeOperation="darken",h.filter="blur(8px)",await h.drawImage(l,0,0),h.globalCompositeOperation="source-over",h.filter="none",e.canvas=p,d}async function Y8(e,t,n){var a;if(vx)return null;vx=!0,ws||await I0(n);let s=fi(e,n),r=await wx(s);if(Z(s.tensor),t&&r){let o=fi(t,n),i=o.canvas;Z(o.tensor);let l=s.canvas,u=(a=l.getContext("2d"))==null?void 0:a.getImageData(0,0,l.width,l.height).data,c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(l.width,l.height):document.createElement("canvas");c.width=l.width,c.height=l.height;let d=c.getContext("2d");d.globalCompositeOperation="copy",d.drawImage(i,0,0,c.width,c.height);let p=d.getImageData(0,0,c.width,c.height);for(let h=0;h<c.width*c.height;h++)p.data[4*h+0]=(255-r[4*h+0])/255*p.data[4*h+0]+r[4*h+0]/255*u[4*h+0],p.data[4*h+1]=(255-r[4*h+1])/255*p.data[4*h+1]+r[4*h+1]/255*u[4*h+1],p.data[4*h+2]=(255-r[4*h+2])/255*p.data[4*h+2]+r[4*h+2]/255*u[4*h+2],p.data[4*h+3]=(255-r[4*h+3])/255*p.data[4*h+3]+r[4*h+3]/255*u[4*h+3];d.putImageData(p,0,0),s.canvas=c}return vx=!1,s.canvas}async function J8(e){e.config.async?[e.models.face,e.models.emotion,e.models.handpose,e.models.posenet,e.models.blazepose,e.models.efficientpose,e.models.movenet,e.models.nanodet,e.models.centernet,e.models.faceres,e.models.segmentation]=await Promise.all([e.models.face||(e.config.face.enabled?Py(e.config):null),e.models.emotion||(e.config.face.enabled&&e.config.face.emotion.enabled?Hy(e.config):null),e.models.handpose||(e.config.hand.enabled?ax(e.config):null),e.models.posenet||(e.config.body.enabled&&e.config.body.modelPath.includes("posenet")?Jy(e.config):null),e.models.blazepose||(e.config.body.enabled&&e.config.body.modelPath.includes("blazepose")?x0(e.config):null),e.models.efficientpose||(e.config.body.enabled&&e.config.body.modelPath.includes("efficientpose")?K8(e.config):null),e.models.movenet||(e.config.body.enabled&&e.config.body.modelPath.includes("movenet")?hx(e.config):null),e.models.nanodet||(e.config.object.enabled&&e.config.object.modelPath.includes("nanodet")?gx(e.config):null),e.models.centernet||(e.config.object.enabled&&e.config.object.modelPath.includes("centernet")?xx(e.config):null),e.models.faceres||(e.config.face.enabled&&e.config.face.description.enabled?zy(e.config):null),e.models.segmentation||(e.config.segmentation.enabled?I0(e.config):null)]):(e.config.face.enabled&&!e.models.face&&(e.models.face=await Py(e.config)),e.config.face.enabled&&e.config.face.emotion.enabled&&!e.models.emotion&&(e.models.emotion=await Hy(e.config)),e.config.hand.enabled&&!e.models.handpose&&(e.models.handpose=await ax(e.config)),e.config.body.enabled&&!e.models.posenet&&e.config.body.modelPath.includes("posenet")&&(e.models.posenet=await Jy(e.config)),e.config.body.enabled&&!e.models.blazepose&&e.config.body.modelPath.includes("blazepose")&&(e.models.blazepose=await x0(e.config)),e.config.body.enabled&&!e.models.efficientpose&&e.config.body.modelPath.includes("efficientpose")&&(e.models.efficientpose=await x0(e.config)),e.config.body.enabled&&!e.models.movenet&&e.config.body.modelPath.includes("movenet")&&(e.models.movenet=await hx(e.config)),e.config.object.enabled&&!e.models.nanodet&&e.config.object.modelPath.includes("nanodet")&&(e.models.nanodet=await gx(e.config)),e.config.object.enabled&&!e.models.centernet&&e.config.object.modelPath.includes("centernet")&&(e.models.centernet=await xx(e.config)),e.config.face.enabled&&e.config.face.description.enabled&&!e.models.faceres&&(e.models.faceres=await zy(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=await I0(e.config)))}async function Q8(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models))if(e.models[n]){let s=[];Array.isArray(e.models[n])?s=e.models[n].map(r=>r.executor?r:r.model):s=[e.models[n]];for(let r of s){let a=[],o=r==null?void 0:r.executor;if(o)for(let l of Object.values(o.graph.nodes)){let u=l.op.toLowerCase();a.includes(u)||a.push(u)}let i=[];for(let l of a)!t.includes(l)&&!e.env.kernels.includes(l)&&!e.env.kernels.includes(l.replace("_",""))&&!e.env.kernels.includes(l.replace("native",""))&&!e.env.kernels.includes(l.replace("v2",""))&&i.push(l);!o&&e.config.debug&&ce("model executor not found:",n),i.length>0&&e.config.debug&&ce("model validation:",n,i)}}}var Sle=e=>{let t=(d,p)=>Math.atan2(d[1]-p[1],d[0]-p[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=e.mesh[33][2]>e.mesh[263][2],a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]**2+l[1]**2);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},Cle=(e,t)=>{let n=g=>{let A=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=A,g[1]/=A,g[2]/=A,g},s=(g,A)=>{let y=g[0]-A[0],x=g[1]-A[1],b=g[2]-A[2];return[y,x,b]},r=(g,A)=>{let y=g[1]*A[2]-g[2]*A[1],x=g[2]*A[0]-g[0]*A[2],b=g[0]*A[1]-g[1]*A[0];return[y,x,b]},a=g=>{let[A,y,x,b,v,k,S,C,D]=g,O,E,R;return b<1?b>-1?(R=Math.asin(b),E=Math.atan2(-S,A),O=Math.atan2(-k,v)):(R=-Math.PI/2,E=-Math.atan2(C,D),O=0):(R=Math.PI/2,E=Math.atan2(C,D),O=0),isNaN(O)&&(O=0),isNaN(E)&&(E=0),isNaN(R)&&(R=0),{pitch:2*-O,yaw:2*-E,roll:2*-R}},o=g=>{let A=(x,b,v,k)=>Math.atan2(k-b,v-x);return{pitch:A(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:A(g[33][0],g[33][2],g[263][0],g[263][2]),roll:A(g[33][0],g[33][1],g[263][0],g[263][1])}},i=e.meshRaw;if(!i||i.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[i[10],i[152],i[234],i[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),c=n(s(u[1],u[0])),d=n(s(u[3],u[2])),p=n(r(d,c));d=r(c,p);let h=[d[0],d[1],d[2],c[0],c[1],c[2],p[0],p[1],p[2]],f=a(h),m=i.length===478?Sle(e):{bearing:0,strength:0};return{angle:f,matrix:h,gaze:m}},kx=async(e,t)=>{var d,p,h,f,m,g;let n,s,r,a,o,i,l,u=[];e.state="run:face",n=Ze();let c=await f8(t,e.config);if(e.performance.face=Math.trunc(Ze()-n),!t.shape||t.shape.length!==4)return[];if(!c)return[];for(let A=0;A<c.length;A++){if(e.analyze("Get Face"),!c[A].tensor||c[A].tensor.isDisposedInternal){ce("Face object is disposed:",c[A].tensor);continue}let y=Cle(c[A],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?o=e.config.face.emotion.enabled?Gy(c[A].tensor||nn([]),e.config,A,c.length):{}:(e.state="run:emotion",n=Ze(),o=e.config.face.emotion.enabled?await Gy(c[A].tensor||nn([]),e.config,A,c.length):{},e.performance.emotion=Math.trunc(Ze()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?l=e.config.face.description.enabled?Wy(c[A].tensor||nn([]),e.config,A,c.length):[]:(e.state="run:description",n=Ze(),l=e.config.face.description.enabled?await Wy(c[A].tensor||nn([]),e.config,A,c.length):[],e.performance.embedding=Math.trunc(Ze()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,l,r]=await Promise.all([s,a,o,i,l,r])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((p=(d=c[A])==null?void 0:d.annotations)==null?void 0:p.leftEyeIris)&&((f=(h=c[A])==null?void 0:h.annotations)==null?void 0:f.rightEyeIris)&&(delete c[A].annotations.leftEyeIris,delete c[A].annotations.rightEyeIris);let x=((m=c[A].annotations)==null?void 0:m.leftEyeIris)&&((g=c[A].annotations)==null?void 0:g.rightEyeIris)?Math.max(Math.abs(c[A].annotations.leftEyeIris[3][0]-c[A].annotations.leftEyeIris[1][0]),Math.abs(c[A].annotations.rightEyeIris[4][1]-c[A].annotations.rightEyeIris[2][1]))/t.shape[2]:0,b=e.config.face.detector.return?lt(c[A].tensor):null;Z(c[A].tensor),c[A].tensor&&delete c[A].tensor,u.push({...c[A],id:A,age:l.age,gender:l.gender,genderScore:l.genderScore,embedding:l.descriptor,emotion:o,iris:x!==0?Math.trunc(500/x/11.7)/100:0,rotation:y,tensor:b}),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),u};var eI=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position.y<a.position.y&&r.position.y<a.position.y?t.push({body:n,gesture:"i give up"}):a&&s&&s.position.y<a.position.y?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position.y<a.position.y&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&t.push({body:n,gesture:`leaning ${o.position.y>i.position.y?"left":"right"}`})}return t},tI=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let s=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(s)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let o=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));o>10&&t.push({face:n,gesture:`mouth ${Math.trunc(o)}% open`});let i=e[n].mesh[152][2];Math.abs(i)>10&&t.push({face:n,gesture:`head ${i<0?"up":"down"}`})}return t},nI=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),u=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(u=!0,t.push({iris:n,gesture:"facing center"}));let d=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],p=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(p>.06||d>.06)&&(u=!1),p>.06&&t.push({iris:n,gesture:"looking right"}),d>.06&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||h<.01||f>.022||h>.022)&&(u=!1),(f<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},sI=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];for(let[a,o]of Object.entries(e[n].annotations))a!=="palmBase"&&Array.isArray(o)&&s.push({name:a.toLowerCase(),position:o[0]});if(s&&s.length>0){let a=s.reduce((i,l)=>i.position[2]<l.position[2]?i:l);t.push({hand:n,gesture:`${a.name} forward`});let o=s.reduce((i,l)=>i.position[1]<l.position[1]?i:l);t.push({hand:n,gesture:`${o.name} up`})}let r=H8(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}return t};var Cx={};sg(Cx,{all:()=>Ele,body:()=>oI,canvas:()=>Nle,face:()=>aI,gesture:()=>rI,hand:()=>iI,object:()=>lI,options:()=>Ia,person:()=>Tle});var Ia={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},gi=e=>{if(e&&e.getContext)return e.getContext("2d");throw new Error("Human: Invalid Canvas")},S0=e=>Math.round(e*180/Math.PI);function Ix(e,t,n,s=0,r){e.fillStyle=r.useDepth&&s?`rgba(${127.5+2*s}, ${127.5-2*s}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function $d(e,t,n,s,r,a){if(e.beginPath(),a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.lineWidth=a.lineWidth,e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function Sx(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t){let r=s[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(s[0],Math.round(s[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function Od(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Sx(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}async function rI(e,t,n){let s=gn(Ia,n);if(!t||!e)return;let r=gi(e);r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(c,6,0+a*s.lineHeight),a+=1}}}async function aI(e,t,n){var a,o,i,l;let s=gn(Ia,n);if(!t||!e)return;let r=gi(e);for(let u of t){r.font=s.font,r.strokeStyle=s.color,r.fillStyle=s.color,s.drawBoxes&&$d(r,u.box[0],u.box[1],u.box[2],u.box[3],s);let c=[];if(c.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&c.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&c.push(`age: ${u.age||""}`),u.iris&&c.push(`distance: ${u.iris}`),u.emotion&&u.emotion.length>0){let d=u.emotion.map(p=>`${Math.trunc(100*p.score)}% ${p.emotion}`);d.length>3&&(d.length=3),c.push(d.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&c.push(`roll: ${S0(u.rotation.angle.roll)}\xB0 yaw:${S0(u.rotation.angle.yaw)}\xB0 pitch:${S0(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&c.push(`gaze: ${S0(u.rotation.gaze.bearing)}\xB0`)),c.length===0&&c.push("face"),r.fillStyle=s.color;for(let d=c.length-1;d>=0;d--){let p=Math.max(u.box[0],0),h=d*s.lineHeight+u.box[1];s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c[d],p+5,h+16)),r.fillStyle=s.labelColor,r.fillText(c[d],p+4,h+15)}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(s.drawPoints)for(let d of u.mesh)Ix(r,d[0],d[1],d[2],s);if(s.drawPolygons){r.lineWidth=1;for(let d=0;d<hi.length/3;d++){let p=[hi[d*3+0],hi[d*3+1],hi[d*3+2]].map(h=>u.mesh[h]);Sx(r,p,s)}if(u.annotations&&u.annotations.leftEyeIris){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,p=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris){r.strokeStyle=s.useDepth?"rgba(255, 200, 255, 0.3)":s.color,r.beginPath();let d=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,p=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],d,p,0,0,2*Math.PI),r.stroke(),s.fillPolygons&&(r.fillStyle=s.useDepth?"rgba(255, 255, 200, 0.3)":s.color,r.fill())}if(s.drawGaze&&((o=(a=u.rotation)==null?void 0:a.gaze)==null?void 0:o.strength)&&((l=(i=u.rotation)==null?void 0:i.gaze)==null?void 0:l.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.beginPath();let d=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]),r.lineTo(d[0],d[1]);let p=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]),r.lineTo(p[0],p[1]),r.stroke()}}}}}async function oI(e,t,n){var a;let s=gn(Ia,n);if(!t||!e)return;let r=gi(e);r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&($d(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints)for(let i=0;i<t[o].keypoints.length;i++)r.fillStyle=s.useDepth&&t[o].keypoints[i].position[2]?`rgba(${127.5+2*(t[o].keypoints[i].position[2]||0)}, ${127.5-2*(t[o].keypoints[i].position[2]||0)}, 255, 0.5)`:s.color,Ix(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s);if(s.drawLabels&&(r.font=s.font,t[o].keypoints))for(let i of t[o].keypoints)r.fillStyle=s.useDepth&&i.position[2]?`rgba(${127.5+2*i.position[2]}, ${127.5-2*i.position[2]}, 255, 0.5)`:s.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4);if(s.drawPolygons&&t[o].keypoints){let i,l=[];l.length=0,i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),Od(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),l.length===4&&Sx(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftFoot"),i&&l.push([i.position[0],i.position[1]]),Od(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightHip"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightKnee"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightAnkle"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightHeel"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightFoot"),i&&l.push([i.position[0],i.position[1]]),Od(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="leftShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="leftPalm"),i&&l.push([i.position[0],i.position[1]]),Od(r,l,s),l.length=0,i=t[o].keypoints.find(u=>u.part==="rightShoulder"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightElbow"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightWrist"),i&&l.push([i.position[0],i.position[1]]),i=t[o].keypoints.find(u=>u.part==="rightPalm"),i&&l.push([i.position[0],i.position[1]]),Od(r,l,s)}}}async function iI(e,t,n){let s=gn(Ia,n);if(!t||!e)return;let r=gi(e);r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,$d(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText("hand",a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText("hand",a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=s.useDepth?`rgba(${127.5+2*o[2]}, ${127.5-2*o[2]}, 255, 0.5)`:s.color,Ix(r,o[0],o[1],0,s);if(s.drawLabels){let o=(i,l)=>{!i||(r.fillStyle=s.useDepth?`rgba(${127.5+2*i[i.length-1][2]}, ${127.5-2*i[i.length-1][2]}, 255, 0.5)`:s.color,r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4))};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons){let o=i=>{if(!!i)for(let l=0;l<i.length;l++)r.beginPath(),r.strokeStyle=s.useDepth?`rgba(${127.5+2*i[l][2]}, ${127.5-2*i[l][2]}, 255, 0.5)`:s.color,r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}async function lI(e,t,n){let s=gn(Ia,n);if(!t||!e)return;let r=gi(e);r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,$d(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}async function Tle(e,t,n){let s=gn(Ia,n);if(!t||!e)return;let r=gi(e);r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,$d(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}async function Nle(e,t){if(!e||!t)return;gi(t).drawImage(e,0,0)}async function Ele(e,t,n){if(!t||!t.performance||!t||!e)return null;let s=Ze(),r=gn(Ia,n),a=Promise.all([aI(e,t.face,r),oI(e,t.body,r),iI(e,t.hand,r),lI(e,t.object,r),rI(e,t.gesture,r)]);return t.performance.draw=Math.trunc(Ze()-s),a}function uI(e,t,n,s,r){var i,l,u,c,d,p,h,f,m,g,A,y,x,b,v,k;let a=0,o=[];for(let S of e){let C={id:a++,face:S,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let P of t)S.box[0]>P.box[0]&&S.box[0]<P.box[0]+P.box[2]&&S.box[1]+S.box[3]>P.box[1]&&S.box[1]+S.box[3]<P.box[1]+P.box[3]&&(C.body=P);if(C.body)for(let P of n)P.box[0]+P.box[2]>C.body.box[0]&&P.box[0]+P.box[2]<C.body.box[0]+C.body.box[2]&&P.box[1]+P.box[3]>C.body.box[1]&&P.box[1]+P.box[3]<C.body.box[1]+C.body.box[3]&&C.hands&&(C.hands.left=P),P.box[0]<C.body.box[0]+C.body.box[2]&&P.box[0]>C.body.box[0]&&P.box[1]+P.box[3]>C.body.box[1]&&P.box[1]+P.box[3]<C.body.box[1]+C.body.box[3]&&C.hands&&(C.hands.right=P);for(let P of s)P.face!==void 0&&P.face===S.id?(i=C.gestures)==null||i.push(P):P.iris!==void 0&&P.iris===S.id?(l=C.gestures)==null||l.push(P):P.body!==void 0&&P.body===((u=C.body)==null?void 0:u.id)?(c=C.gestures)==null||c.push(P):P.hand!==void 0&&P.hand===((p=(d=C.hands)==null?void 0:d.left)==null?void 0:p.id)?(h=C.gestures)==null||h.push(P):P.hand!==void 0&&P.hand===((m=(f=C.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=C.gestures)==null||g.push(P));let D=[],O=[],E=P=>{P&&P.length===4&&(D.push(P[0],P[0]+P[2]),O.push(P[1],P[1]+P[3]))};E((A=C.face)==null?void 0:A.box),E((y=C.body)==null?void 0:y.box),E((b=(x=C.hands)==null?void 0:x.left)==null?void 0:b.box),E((k=(v=C.hands)==null?void 0:v.right)==null?void 0:k.box);let R=Math.min(...D),T=Math.min(...O);C.box=[R,T,Math.max(...D)-R,Math.max(...O)-T],r&&r[1]&&r[2]&&(C.boxRaw=[C.box[0]/r[2],C.box[1]/r[1],C.box[2]/r[2],C.box[3]/r[1]]),o.push(C)}return o}var Pe={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function cI(e){var s,r,a,o,i,l,u,c,d,p,h,f,m,g,A,y,x,b,v,k,S;if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};let t=Date.now()-e.timestamp,n=t<1e3?8-Math.log(t+1):1;if(Pe.canvas=e.canvas,!Pe.body||e.body.length!==Pe.body.length)Pe.body=JSON.parse(JSON.stringify(e.body));else for(let C=0;C<e.body.length;C++){let D=e.body[C].box.map((R,T)=>((n-1)*Pe.body[C].box[T]+R)/n),O=e.body[C].boxRaw.map((R,T)=>((n-1)*Pe.body[C].boxRaw[T]+R)/n),E=e.body[C].keypoints.map((R,T)=>({score:R.score,part:R.part,position:[Pe.body[C].keypoints[T]?((n-1)*Pe.body[C].keypoints[T].position[0]+R.position[0])/n:R.position[0],Pe.body[C].keypoints[T]?((n-1)*Pe.body[C].keypoints[T].position[1]+R.position[1])/n:R.position[1]],positionRaw:[Pe.body[C].keypoints[T]?((n-1)*Pe.body[C].keypoints[T].positionRaw[0]+R.positionRaw[0])/n:R.position[0],Pe.body[C].keypoints[T]?((n-1)*Pe.body[C].keypoints[T].positionRaw[1]+R.positionRaw[1])/n:R.position[1]]}));Pe.body[C]={...e.body[C],box:D,boxRaw:O,keypoints:E}}if(!Pe.hand||e.hand.length!==Pe.hand.length)Pe.hand=JSON.parse(JSON.stringify(e.hand));else for(let C=0;C<e.hand.length;C++){let D=e.hand[C].box.map((P,U)=>((n-1)*Pe.hand[C].box[U]+P)/n),O=e.hand[C].boxRaw.map((P,U)=>((n-1)*Pe.hand[C].boxRaw[U]+P)/n),E=e.hand[C].keypoints?e.hand[C].keypoints.map((P,U)=>P.map((j,q)=>((n-1)*Pe.hand[C].keypoints[U][q]+j)/n)):[],R=Object.keys(e.hand[C].annotations),T={};for(let P of R)T[P]=e.hand[C].annotations[P].map((U,j)=>U.map((q,X)=>((n-1)*Pe.hand[C].annotations[P][j][X]+q)/n));Pe.hand[C]={...e.hand[C],box:D,boxRaw:O,keypoints:E,annotations:T}}if(!Pe.face||e.face.length!==Pe.face.length)Pe.face=JSON.parse(JSON.stringify(e.face));else for(let C=0;C<e.face.length;C++){let D=e.face[C].box.map((R,T)=>((n-1)*Pe.face[C].box[T]+R)/n),O=e.face[C].boxRaw.map((R,T)=>((n-1)*Pe.face[C].boxRaw[T]+R)/n),E={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};E.matrix=(s=e.face[C].rotation)==null?void 0:s.matrix,E.angle={roll:((n-1)*(((a=(r=Pe.face[C].rotation)==null?void 0:r.angle)==null?void 0:a.roll)||0)+(((i=(o=e.face[C].rotation)==null?void 0:o.angle)==null?void 0:i.roll)||0))/n,yaw:((n-1)*(((u=(l=Pe.face[C].rotation)==null?void 0:l.angle)==null?void 0:u.yaw)||0)+(((d=(c=e.face[C].rotation)==null?void 0:c.angle)==null?void 0:d.yaw)||0))/n,pitch:((n-1)*(((h=(p=Pe.face[C].rotation)==null?void 0:p.angle)==null?void 0:h.pitch)||0)+(((m=(f=e.face[C].rotation)==null?void 0:f.angle)==null?void 0:m.pitch)||0))/n},E.gaze={bearing:((n-1)*(((A=(g=Pe.face[C].rotation)==null?void 0:g.gaze)==null?void 0:A.bearing)||0)+(((x=(y=e.face[C].rotation)==null?void 0:y.gaze)==null?void 0:x.bearing)||0))/n,strength:((n-1)*(((v=(b=Pe.face[C].rotation)==null?void 0:b.gaze)==null?void 0:v.strength)||0)+(((S=(k=e.face[C].rotation)==null?void 0:k.gaze)==null?void 0:S.strength)||0))/n},Pe.face[C]={...e.face[C],rotation:E,box:D,boxRaw:O}}if(!Pe.object||e.object.length!==Pe.object.length)Pe.object=JSON.parse(JSON.stringify(e.object));else for(let C=0;C<e.object.length;C++){let D=e.object[C].box.map((E,R)=>((n-1)*Pe.object[C].box[R]+E)/n),O=e.object[C].boxRaw.map((E,R)=>((n-1)*Pe.object[C].boxRaw[R]+E)/n);Pe.object[C]={...e.object[C],box:D,boxRaw:O}}if(e.persons){let C=e.persons;if(!Pe.persons||C.length!==Pe.persons.length)Pe.persons=JSON.parse(JSON.stringify(C));else for(let D=0;D<C.length;D++)Pe.persons[D].box=C[D].box.map((O,E)=>((n-1)*Pe.persons[D].box[E]+O)/n)}return e.gesture&&(Pe.gesture=e.gesture),e.performance&&(Pe.performance=e.performance),Pe}var ks={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Rle(){let e=ks.gl;!e||(ks.extensions=e.getSupportedExtensions())}function dI(){var e;if(!Ug(ks.name)){try{ks.canvas=mr(100,100)}catch(t){ce("error: cannot create canvas:",t);return}try{ks.gl=(e=ks.canvas)==null?void 0:e.getContext("webgl2",ks.webGLattr)}catch(t){ce("error: cannot get WebGL2 context:",t);return}try{Mf(2,ks.gl)}catch(t){ce("error: cannot set WebGL2 context:",t);return}try{let t=new jf(ks.gl);Wl(ks.name,()=>new bu(t),ks.priority)}catch(t){ce("error: cannot register WebGL backend:",t);return}try{Zr("webgl").forEach(n=>{let s={...n,backendName:ks.name};Do(s)})}catch(t){ce("error: cannot update WebGL backend registration:",t);return}try{er.set("WEBGL_VERSION",2)}catch(t){ce("error: cannot set WebGL backend flags:",t);return}Rle(),ce("backend registered:",ks.name)}}async function Tx(e){if(e.initial||e.config.backend&&e.config.backend.length>0&&Bl()!==e.config.backend){let t=Ze();if(e.state="backend",e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&ce("running inside web worker"),xe.browser&&e.config.backend==="tensorflow"&&(ce("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),xe.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(ce(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),xe.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ce("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let s=await navigator.gpu.requestAdapter();e.config.debug&&ce("enumerated webgpu adapter:",s)}e.config.backend==="humangl"&&dI();let n=Object.keys(Ns().registryFactory);if(e.config.debug&&ce("available backends:",n),n.includes(e.config.backend)||(ce(`error: backend ${e.config.backend} not found in registry`),e.config.backend=xe.node?"tensorflow":"humangl",ce(`override: setting backend ${e.config.backend}`)),e.config.debug&&ce("setting backend:",e.config.backend),e.config.backend==="wasm"){if(e.config.debug&&ce("wasm path:",e.config.wasmPath),typeof(pi==null?void 0:pi.setWasmPaths)!="undefined")await Jk(e.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let s=await Y().getAsync("WASM_HAS_SIMD_SUPPORT"),r=await Y().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&ce(`wasm execution: ${s?"SIMD":"no SIMD"} ${r?"multithreaded":"singlethreaded"}`),e.config.debug&&!s&&ce("warning: wasm simd support is not enabled")}await Vg(e.config.backend);try{await Vg(e.config.backend),await ih()}catch(s){ce("error: cannot set backend:",e.config.backend,s)}}if(Bl()==="humangl"){er.set("CHECK_COMPUTATION_FOR_ERRORS",!1),er.set("WEBGL_CPU_FORWARD",!0),er.set("WEBGL_PACK_DEPTHWISECONV",!1),er.set("WEBGL_USE_SHAPES_UNIFORMS",!0),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(ce("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),er.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let n=await zo().getGPGPUContext().gl;e.config.debug&&ce(`gl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`)}ab(),await ih(),e.performance.backend=Math.trunc(Ze()-t),e.config.backend=Bl(),d0(),e.env=xe}}var Nx="2.2.0";var C0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,T0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;async function _le(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(C0);break;case"full":n=await t(T0);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function Fle(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+C0;break;case"full":case"body":n="data:image/jpeg;base64,"+T0;break;default:n=null}let s;typeof Image!="undefined"?s=new Image:xe.Image&&(s=new xe.Image),s.onload=async()=>{let r=mr(s.naturalWidth,s.naturalHeight);if(!r)ce("Warmup: Canvas not found"),t({});else{r.getContext("2d").drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(null)})}async function $le(e){let t=r=>Buffer.from(r,"base64"),n;if(e.config.warmup==="face"&&(n=t(C0)),(e.config.warmup==="body"||e.config.warmup==="full")&&(n=t(T0)),!n)return null;let s;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&ce("Warmup tfjs-node not loaded");return s}async function pI(e,t){let n=Ze();if(t&&(e.config=gn(e.config,t)),!e.config.warmup||e.config.warmup==="none")return{error:"null"};let s;typeof createImageBitmap=="function"?s=await _le(e):typeof Image!="undefined"||xe.Canvas!==void 0?s=await Fle(e):s=await $le(e);let r=Ze();return e.config.debug&&ce("Warmup",e.config.warmup,Math.round(r-n),"ms"),e.emit("warmup"),s}var Ru,Pd,Md,N0,fI=class{constructor(t){Re(this,"version");Re(this,"config");Re(this,"result");Re(this,"state");Re(this,"process");Re(this,"tf");Re(this,"env");Re(this,"draw");Re(this,"models");Re(this,"events");Re(this,"faceTriangulation");Re(this,"faceUVMap");Re(this,"performance");Uu(this,Ru,void 0);Uu(this,Pd,void 0);Uu(this,Md,void 0);Re(this,"initial");Re(this,"analyze",(...t)=>{if(!Vu(this,Pd))return;let n=this.tf.engine().state.numTensors,s=Vu(this,Ru);Hu(this,Ru,n);let r=n-s;r!==0&&ce(...t,r)});Uu(this,N0,t=>{if(!Vu(this,Md))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof Ge))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});Re(this,"image",t=>fi(t,this.config));Re(this,"emit",t=>{var n;return(n=this.events)==null?void 0:n.dispatchEvent(new Event(t))});d0(),this.env=xe,Ni.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${ah}/dist/`,Ni.modelBasePath=this.env.browser?"../models/":"file://models/",Ni.backend=this.env.browser?"humangl":"tensorflow",this.version=Nx,Object.defineProperty(this,"version",{value:Nx}),this.config=gn(Ni,t||{}),this.tf=pi,this.draw=Cx,this.state="idle",Hu(this,Ru,0),Hu(this,Pd,!1),Hu(this,Md,!1),this.initial=!0,this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.events=new EventTarget,this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null,segmentation:null},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[]},this.process={tensor:null,canvas:null},this.faceTriangulation=m8,this.faceUVMap=g8,this.emit("create")}similarity(t,n){return Ly(t,n)}async segmentation(t,n){return t?Y8(t,n,this.config):null}enhance(t){return By(t)}match(t,n,s=0){return y8(t,n,s)}async load(t){this.state="load";let n=Ze(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=gn(this.config,t)),this.initial&&(this.config.debug&&ce(`version: ${this.version}`),this.config.debug&&ce(`tfjs version: ${this.tf.version_core}`),await Tx(this),await ih(),this.env.browser&&(this.config.debug&&ce("configuration:",this.config),this.config.debug&&ce("tf flags:",this.tf.ENV.flags))),await J8(this),this.initial&&this.config.debug&&ce("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await Q8(this),this.emit("load"));let a=Math.trunc(Ze()-n);a>(this.performance.load||0)&&(this.performance.load=a)}next(t=this.result){return cI(t)}async warmup(t){return pI(this,t)}async detect(t,n){return new Promise(async s=>{var m,g,A,y,x,b,v,k,S,C,D,O,E,R;this.state="config";let r,a;this.config=gn(this.config,n),this.state="check";let o=Vu(this,N0).call(this,t);o&&(ce(o,t),s({error:o}));let i=Ze();await Tx(this),await this.load(),r=Ze();let l=fi(t,this.config);if(this.process=l,this.performance.image=Math.trunc(Ze()-r),this.analyze("Get Image:"),this.config.segmentation.enabled&&this.process&&l.tensor&&l.canvas&&(this.analyze("Start Segmentation:"),this.state="run:segmentation",r=Ze(),await wx(l),a=Math.trunc(Ze()-r),a>0&&(this.performance.segmentation=a),l.canvas&&(Z(l.tensor),l=fi(l.canvas,this.config)),this.analyze("End Segmentation:")),!l.tensor){ce("could not convert input to tensor"),s({error:"could not convert input to tensor"});return}this.emit("image"),r=Ze(),this.config.skipFrame=await p8(this.config,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(Ze()-r),this.analyze("Check Changed:");let u=[],c=[],d=[],p=[];this.config.async?(u=this.config.face.enabled?kx(this,l.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",r=Ze(),u=this.config.face.enabled?await kx(this,l.tensor):[],a=Math.trunc(Ze()-r),a>0&&(this.performance.face=a)),this.analyze("Start Body:"),this.config.async?(((m=this.config.body.modelPath)==null?void 0:m.includes("posenet"))?c=this.config.body.enabled?Yy(l.tensor,this.config):[]:((g=this.config.body.modelPath)==null?void 0:g.includes("blazepose"))?c=this.config.body.enabled?ox(l.tensor,this.config):[]:((A=this.config.body.modelPath)==null?void 0:A.includes("efficientpose"))?c=this.config.body.enabled?cx(l.tensor,this.config):[]:((y=this.config.body.modelPath)==null?void 0:y.includes("movenet"))&&(c=this.config.body.enabled?fx(l.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",r=Ze(),((x=this.config.body.modelPath)==null?void 0:x.includes("posenet"))?c=this.config.body.enabled?await Yy(l.tensor,this.config):[]:((b=this.config.body.modelPath)==null?void 0:b.includes("blazepose"))?c=this.config.body.enabled?await ox(l.tensor,this.config):[]:((v=this.config.body.modelPath)==null?void 0:v.includes("efficientpose"))?c=this.config.body.enabled?await cx(l.tensor,this.config):[]:((k=this.config.body.modelPath)==null?void 0:k.includes("movenet"))&&(c=this.config.body.enabled?await fx(l.tensor,this.config):[]),a=Math.trunc(Ze()-r),a>0&&(this.performance.body=a)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(d=this.config.hand.enabled?rx(l.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",r=Ze(),d=this.config.hand.enabled?await rx(l.tensor,this.config):[],a=Math.trunc(Ze()-r),a>0&&(this.performance.hand=a)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(((S=this.config.object.modelPath)==null?void 0:S.includes("nanodet"))?p=this.config.object.enabled?Ax(l.tensor,this.config):[]:((C=this.config.object.modelPath)==null?void 0:C.includes("centernet"))&&(p=this.config.object.enabled?bx(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",r=Ze(),((D=this.config.object.modelPath)==null?void 0:D.includes("nanodet"))?p=this.config.object.enabled?await Ax(l.tensor,this.config):[]:((O=this.config.object.modelPath)==null?void 0:O.includes("centernet"))&&(p=this.config.object.enabled?await bx(l.tensor,this.config):[]),a=Math.trunc(Ze()-r),a>0&&(this.performance.object=a)),this.analyze("End Object:"),this.config.async&&([u,c,d,p]=await Promise.all([u,c,d,p]));let h=[];this.config.gesture.enabled&&(r=Ze(),h=[...tI(u),...eI(c),...sI(d),...nI(u)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(Ze()-r)),this.performance.total=Math.trunc(Ze()-i),this.state="idle";let f=((R=(E=this.process)==null?void 0:E.tensor)==null?void 0:R.shape)||[];this.result={face:u,body:c,hand:d,gesture:h,object:p,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),get persons(){return uI(u,c,d,h,f)}},Z(l.tensor),this.emit("detect"),s(this.result)})}};Ru=new WeakMap,Pd=new WeakMap,Md=new WeakMap,N0=new WeakMap;return Ole;})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|