mirror of https://github.com/vladmandic/human
7209 lines
1.3 MiB
7209 lines
1.3 MiB
/*
|
|
Human
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var ZT=Object.create,Xd=Object.defineProperty,JT=Object.getOwnPropertyDescriptor,Jw=Object.getOwnPropertyNames,e$=Object.getPrototypeOf,t$=Object.prototype.hasOwnProperty,n$=e=>Xd(e,"__esModule",{value:!0}),zt=(e,t)=>function(){return t||(0,e[Jw(e)[0]])((t={exports:{}}).exports,t),t.exports},Ee=(e,t)=>{for(var n in t)Xd(e,n,{get:t[n],enumerable:!0})},s$=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of Jw(t))!t$.call(e,r)&&(n||r!=="default")&&Xd(e,r,{get:()=>t[r],enumerable:!(s=JT(t,r))||s.enumerable});return e},wa=(e,t)=>s$(n$(Xd(e!=null?ZT(e$(e)):{},"default",!t&&e&&e.__esModule?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),r$=zt({"src/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(O){}function s(O,T,M){this.low=O|0,this.high=T|0,this.unsigned=!!M}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(O){return(O&&O.__isLong__)===!0}s.isLong=r;var a={},i={};function o(O,T){var M,W,j;return T?(O>>>=0,(j=0<=O&&O<256)&&(W=i[O],W)?W:(M=l(O,(O|0)<0?-1:0,!0),j&&(i[O]=M),M)):(O|=0,(j=-128<=O&&O<128)&&(W=a[O],W)?W:(M=l(O,O<0?-1:0,!1),j&&(a[O]=M),M))}s.fromInt=o;function u(O,T){if(isNaN(O))return T?x:v;if(T){if(O<0)return x;if(O>=g)return E}else{if(O<=-b)return P;if(O+1>=b)return R}return O<0?u(-O,T).neg():l(O%m|0,O/m|0,T)}s.fromNumber=u;function l(O,T,M){return new s(O,T,M)}s.fromBits=l;var c=Math.pow;function p(O,T,M){if(O.length===0)throw Error("empty string");if(O==="NaN"||O==="Infinity"||O==="+Infinity"||O==="-Infinity")return v;if(typeof T=="number"?(M=T,T=!1):T=!!T,M=M||10,M<2||36<M)throw RangeError("radix");var W;if((W=O.indexOf("-"))>0)throw Error("interior hyphen");if(W===0)return p(O.substring(1),T,M).neg();for(var j=u(c(M,8)),Y=v,X=0;X<O.length;X+=8){var Z=Math.min(8,O.length-X),ne=parseInt(O.substring(X,X+Z),M);if(Z<8){var ee=u(c(M,Z));Y=Y.mul(ee).add(u(ne))}else Y=Y.mul(j),Y=Y.add(u(ne))}return Y.unsigned=T,Y}s.fromString=p;function d(O,T){return typeof O=="number"?u(O,T):typeof O=="string"?p(O,T):l(O.low,O.high,typeof T=="boolean"?T:O.unsigned)}s.fromValue=d;var h=1<<16,f=1<<24,m=h*h,g=m*m,b=g/2,y=o(f),v=o(0);s.ZERO=v;var x=o(0,!0);s.UZERO=x;var k=o(1);s.ONE=k;var I=o(1,!0);s.UONE=I;var $=o(-1);s.NEG_ONE=$;var R=l(-1,2147483647,!1);s.MAX_VALUE=R;var E=l(-1,-1,!0);s.MAX_UNSIGNED_VALUE=E;var P=l(0,-2147483648,!1);s.MIN_VALUE=P;var A=s.prototype;A.toInt=function(){return this.unsigned?this.low>>>0:this.low},A.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},A.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(P)){var M=u(T),W=this.div(M),j=W.mul(M).sub(this);return W.toString(T)+j.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var Y=u(c(T,6),this.unsigned),X=this,Z="";;){var ne=X.div(Y),ee=X.sub(ne.mul(Y)).toInt()>>>0,se=ee.toString(T);if(X=ne,X.isZero())return se+Z;for(;se.length<6;)se="0"+se;Z=""+se+Z}},A.getHighBits=function(){return this.high},A.getHighBitsUnsigned=function(){return this.high>>>0},A.getLowBits=function(){return this.low},A.getLowBitsUnsigned=function(){return this.low>>>0},A.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,M=31;M>0&&(T&1<<M)==0;M--);return this.high!=0?M+33:M+1},A.isZero=function(){return this.high===0&&this.low===0},A.eqz=A.isZero,A.isNegative=function(){return!this.unsigned&&this.high<0},A.isPositive=function(){return this.unsigned||this.high>=0},A.isOdd=function(){return(this.low&1)===1},A.isEven=function(){return(this.low&1)===0},A.equals=function(T){return r(T)||(T=d(T)),this.unsigned!==T.unsigned&&this.high>>>31===1&&T.high>>>31===1?!1:this.high===T.high&&this.low===T.low},A.eq=A.equals,A.notEquals=function(T){return!this.eq(T)},A.neq=A.notEquals,A.ne=A.notEquals,A.lessThan=function(T){return this.comp(T)<0},A.lt=A.lessThan,A.lessThanOrEqual=function(T){return this.comp(T)<=0},A.lte=A.lessThanOrEqual,A.le=A.lessThanOrEqual,A.greaterThan=function(T){return this.comp(T)>0},A.gt=A.greaterThan,A.greaterThanOrEqual=function(T){return this.comp(T)>=0},A.gte=A.greaterThanOrEqual,A.ge=A.greaterThanOrEqual,A.compare=function(T){if(r(T)||(T=d(T)),this.eq(T))return 0;var M=this.isNegative(),W=T.isNegative();return M&&!W?-1:!M&&W?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},A.comp=A.compare,A.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(k)},A.neg=A.negate,A.add=function(T){r(T)||(T=d(T));var M=this.high>>>16,W=this.high&65535,j=this.low>>>16,Y=this.low&65535,X=T.high>>>16,Z=T.high&65535,ne=T.low>>>16,ee=T.low&65535,se=0,te=0,oe=0,ae=0;return ae+=Y+ee,oe+=ae>>>16,ae&=65535,oe+=j+ne,te+=oe>>>16,oe&=65535,te+=W+Z,se+=te>>>16,te&=65535,se+=M+X,se&=65535,l(oe<<16|ae,se<<16|te,this.unsigned)},A.subtract=function(T){return r(T)||(T=d(T)),this.add(T.neg())},A.sub=A.subtract,A.multiply=function(T){if(this.isZero())return v;if(r(T)||(T=d(T)),n){var M=n.mul(this.low,this.high,T.low,T.high);return l(M,n.get_high(),this.unsigned)}if(T.isZero())return v;if(this.eq(P))return T.isOdd()?P:v;if(T.eq(P))return this.isOdd()?P:v;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(y)&&T.lt(y))return u(this.toNumber()*T.toNumber(),this.unsigned);var W=this.high>>>16,j=this.high&65535,Y=this.low>>>16,X=this.low&65535,Z=T.high>>>16,ne=T.high&65535,ee=T.low>>>16,se=T.low&65535,te=0,oe=0,ae=0,de=0;return de+=X*se,ae+=de>>>16,de&=65535,ae+=Y*se,oe+=ae>>>16,ae&=65535,ae+=X*ee,oe+=ae>>>16,ae&=65535,oe+=j*se,te+=oe>>>16,oe&=65535,oe+=Y*ee,te+=oe>>>16,oe&=65535,oe+=X*ne,te+=oe>>>16,oe&=65535,te+=W*se+j*ee+Y*ne+X*Z,te&=65535,l(ae<<16|de,te<<16|oe,this.unsigned)},A.mul=A.multiply,A.divide=function(T){if(r(T)||(T=d(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return l(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?x:v;var W,j,Y;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return x;if(T.gt(this.shru(1)))return I;Y=x}else{if(this.eq(P)){if(T.eq(k)||T.eq($))return P;if(T.eq(P))return k;var X=this.shr(1);return W=X.div(T).shl(1),W.eq(v)?T.isNegative()?k:$:(j=this.sub(T.mul(W)),Y=W.add(j.div(T)),Y)}else if(T.eq(P))return this.unsigned?x:v;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();Y=v}for(j=this;j.gte(T);){W=Math.max(1,Math.floor(j.toNumber()/T.toNumber()));for(var Z=Math.ceil(Math.log(W)/Math.LN2),ne=Z<=48?1:c(2,Z-48),ee=u(W),se=ee.mul(T);se.isNegative()||se.gt(j);)W-=ne,ee=u(W,this.unsigned),se=ee.mul(T);ee.isZero()&&(ee=k),Y=Y.add(ee),j=j.sub(se)}return Y},A.div=A.divide,A.modulo=function(T){if(r(T)||(T=d(T)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return l(M,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},A.mod=A.modulo,A.rem=A.modulo,A.not=function(){return l(~this.low,~this.high,this.unsigned)},A.and=function(T){return r(T)||(T=d(T)),l(this.low&T.low,this.high&T.high,this.unsigned)},A.or=function(T){return r(T)||(T=d(T)),l(this.low|T.low,this.high|T.high,this.unsigned)},A.xor=function(T){return r(T)||(T=d(T)),l(this.low^T.low,this.high^T.high,this.unsigned)},A.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?l(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):l(0,this.low<<T-32,this.unsigned)},A.shl=A.shiftLeft,A.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?l(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):l(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},A.shr=A.shiftRight,A.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var M=this.high;if(T<32){var W=this.low;return l(W>>>T|M<<32-T,M>>>T,this.unsigned)}else return T===32?l(M,0,this.unsigned):l(M>>>T-32,0,this.unsigned)},A.shru=A.shiftRightUnsigned,A.shr_u=A.shiftRightUnsigned,A.toSigned=function(){return this.unsigned?l(this.low,this.high,!1):this},A.toUnsigned=function(){return this.unsigned?this:l(this.low,this.high,!0)},A.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},A.toBytesLE=function(){var T=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},A.toBytesBE=function(){var T=this.high,M=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},s.fromBytes=function(T,M,W){return W?s.fromBytesLE(T,M):s.fromBytesBE(T,M)},s.fromBytesLE=function(T,M){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,M)},s.fromBytesBE=function(T,M){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],M)}}}),a$=zt({"(disabled):src/node_modules/node-fetch/browser.js"(){}}),i$=zt({"(disabled):util"(){}}),o$=zt({"src/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(l){var c=this,p=u();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=p(" "),c.s1=p(" "),c.s2=p(" "),c.s0-=p(l),c.s0<0&&(c.s0+=1),c.s1-=p(l),c.s1<0&&(c.s1+=1),c.s2-=p(l),c.s2<0&&(c.s2+=1),p=null}function i(l,c){return c.c=l.c,c.s0=l.s0,c.s1=l.s1,c.s2=l.s2,c}function o(l,c){var p=new a(l),d=c&&c.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&i(d,p),h.state=function(){return i(p,{})}),h}function u(){var l=4022871197,c=function(p){p=String(p);for(var d=0;d<p.length;d++){l+=p.charCodeAt(d);var h=.02519603282416938*l;l=h>>>0,h-=l,h*=l,l=h>>>0,h-=l,l+=h*4294967296}return(l>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),u$=zt({"src/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(u){var l=this,c="";l.x=0,l.y=0,l.z=0,l.w=0,l.next=function(){var d=l.x^l.x<<11;return l.x=l.y,l.y=l.z,l.z=l.w,l.w^=l.w>>>19^d^d>>>8},u===(u|0)?l.x=u:c+=u;for(var p=0;p<c.length+64;p++)l.x^=c.charCodeAt(p)|0,l.next()}function i(u,l){return l.x=u.x,l.y=u.y,l.z=u.z,l.w=u.w,l}function o(u,l){var c=new a(u),p=l&&l.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),l$=zt({"src/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(u){var l=this,c="";l.next=function(){var d=l.x^l.x>>>2;return l.x=l.y,l.y=l.z,l.z=l.w,l.w=l.v,(l.d=l.d+362437|0)+(l.v=l.v^l.v<<4^(d^d<<1))|0},l.x=0,l.y=0,l.z=0,l.w=0,l.v=0,u===(u|0)?l.x=u:c+=u;for(var p=0;p<c.length+64;p++)l.x^=c.charCodeAt(p)|0,p==c.length&&(l.d=l.x<<10^l.x>>>4),l.next()}function i(u,l){return l.x=u.x,l.y=u.y,l.z=u.z,l.w=u.w,l.v=u.v,l.d=u.d,l}function o(u,l){var c=new a(u),p=l&&l.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),c$=zt({"src/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(u){var l=this;l.next=function(){var p=l.x,d=l.i,h,f,m;return h=p[d],h^=h>>>7,f=h^h<<24,h=p[d+1&7],f^=h^h>>>10,h=p[d+3&7],f^=h^h>>>3,h=p[d+4&7],f^=h^h<<7,h=p[d+7&7],h=h^h<<13,f^=h^h<<9,p[d]=f,l.i=d+1&7,f};function c(p,d){var h,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,h=0;h<d.length;++h)m[h&7]=m[h&7]<<15^d.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],p.x=m,p.i=0,h=256;h>0;--h)p.next()}c(l,u)}function i(u,l){return l.x=u.x.slice(),l.i=u.i,l}function o(u,l){u==null&&(u=+new Date);var c=new a(u),p=l&&l.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.x&&i(p,c),d.state=function(){return i(c,{})}),d}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),d$=zt({"src/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(u){var l=this;l.next=function(){var p=l.w,d=l.X,h=l.i,f,m;return l.w=p=p+1640531527|0,m=d[h+34&127],f=d[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[h]=m^f,l.i=h,m+(p^p>>>16)|0};function c(p,d){var h,f,m,g,b,y=[],v=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,v=Math.max(v,d.length)),m=0,g=-32;g<v;++g)d&&(f^=d.charCodeAt((g+32)%d.length)),g===0&&(b=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(b=b+1640531527|0,h=y[g&127]^=f+b,m=h==0?m+1:0);for(m>=128&&(y[(d&&d.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=y[m+34&127],h=y[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,y[m]=f^h;p.w=b,p.X=y,p.i=m}c(l,u)}function i(u,l){return l.i=u.i,l.w=u.w,l.X=u.X.slice(),l}function o(u,l){u==null&&(u=+new Date);var c=new a(u),p=l&&l.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.X&&i(p,c),d.state=function(){return i(c,{})}),d}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),p$=zt({"src/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(u){var l=this,c="";l.next=function(){var d=l.b,h=l.c,f=l.d,m=l.a;return d=d<<25^d>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-d|0,l.b=d=d<<20^d>>>12^h,l.c=h=h-f|0,l.d=f<<16^h>>>16^m,l.a=m-d|0},l.a=0,l.b=0,l.c=-1640531527,l.d=1367130551,u===Math.floor(u)?(l.a=u/4294967296|0,l.b=u|0):c+=u;for(var p=0;p<c.length+20;p++)l.b^=c.charCodeAt(p)|0,l.next()}function i(u,l){return l.a=u.a,l.b=u.b,l.c=u.c,l.d=u.d,l}function o(u,l){var c=new a(u),p=l&&l.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&i(p,c),d.state=function(){return i(c,{})}),d}s&&s.exports?s.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),h$=zt({"(disabled):crypto"(){}}),f$=zt({"src/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,i=6,o=52,u="random",l=r.pow(a,i),c=r.pow(2,o),p=c*2,d=a-1,h;function f(k,I,$){var R=[];I=I==!0?{entropy:!0}:I||{};var E=y(b(I.entropy?[k,x(s)]:k==null?v():k,3),R),P=new m(R),A=function(){for(var O=P.g(i),T=l,M=0;O<c;)O=(O+M)*a,T*=a,M=P.g(1);for(;O>=p;)O/=2,T/=2,M>>>=1;return(O+M)/T};return A.int32=function(){return P.g(4)|0},A.quick=function(){return P.g(4)/4294967296},A.double=A,y(x(P.S),s),(I.pass||$||function(O,T,M,W){return W&&(W.S&&g(W,P),O.state=function(){return g(P,{})}),M?(r[u]=O,T):O})(A,E,"global"in I?I.global:this==r,I.state)}function m(k){var I,$=k.length,R=this,E=0,P=R.i=R.j=0,A=R.S=[];for($||(k=[$++]);E<a;)A[E]=E++;for(E=0;E<a;E++)A[E]=A[P=d&P+k[E%$]+(I=A[E])],A[P]=I;(R.g=function(O){for(var T,M=0,W=R.i,j=R.j,Y=R.S;O--;)T=Y[W=d&W+1],M=M*a+Y[d&(Y[W]=Y[j=d&j+T])+(Y[j]=T)];return R.i=W,R.j=j,M})(a)}function g(k,I){return I.i=k.i,I.j=k.j,I.S=k.S.slice(),I}function b(k,I){var $=[],R=typeof k,E;if(I&&R=="object")for(E in k)try{$.push(b(k[E],I-1))}catch(P){}return $.length?$:R=="string"?k:k+"\0"}function y(k,I){for(var $=k+"",R,E=0;E<$.length;)I[d&E]=d&(R^=I[d&E]*19)+$.charCodeAt(E++);return x(I)}function v(){try{var k;return h&&(k=h.randomBytes)?k=k(a):(k=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(k)),x(k)}catch(R){var I=n.navigator,$=I&&I.plugins;return[+new Date,n,$,n.screen,x(s)]}}function x(k){return String.fromCharCode.apply(0,k)}if(y(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=h$()}catch(k){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+u]=f})(typeof self!="undefined"?self:e,[],Math)}}),Yd=zt({"src/node_modules/seedrandom/index.js"(e,t){var n=o$(),s=u$(),r=l$(),a=c$(),i=d$(),o=p$(),u=f$();u.alea=n,u.xor128=s,u.xorwow=r,u.xorshift7=a,u.xor4096=i,u.tychei=o,t.exports=u}}),ek=zt({"(disabled):src/node_modules/string_decoder/index.js"(){}}),lg=zt({"(disabled):fs"(){}}),gd=zt({"(disabled):path"(){}}),m$=zt({"(disabled):worker_threads"(){}}),g$=zt({"(disabled):perf_hooks"(){}}),b$=zt({"(disabled):os"(){}}),y$=zt({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return Ce.buffer!=tn&&rs(Ce.buffer),lc}function i(){return Ce.buffer!=tn&&rs(Ce.buffer),cc}function o(){return Ce.buffer!=tn&&rs(Ce.buffer),gu}function u(){return Ce.buffer!=tn&&rs(Ce.buffer),dc}function l(){return Ce.buffer!=tn&&rs(Ce.buffer),pc}function c(){return Ce.buffer!=tn&&rs(Ce.buffer),hc}function p(){return Ce.buffer!=tn&&rs(Ce.buffer),fc}var d=typeof r!="undefined"?r:{},h,f;d.ready=new Promise(function(N,D){h=N,f=D});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},d),b=[],y="./this.program",v=(N,D)=>{throw D},x=typeof window=="object",k=typeof importScripts=="function",I=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",$=d.ENVIRONMENT_IS_PTHREAD||!1,R="";function E(N){return d.locateFile?d.locateFile(N,R):R+N}var P,A,O,T;function M(N){if(N instanceof Cu)return;ee("exiting due to exception: "+N)}var W,j,Y;if(I){k?R=gd().dirname(R)+"/":R=__dirname+"/",Y=()=>{j||(W=lg(),j=gd())},P=function(B,Q){return Y(),B=j.normalize(B),W.readFileSync(B,Q?void 0:"utf8")},O=D=>{var B=P(D,!0);return B.buffer||(B=new Uint8Array(B)),B},A=(D,B,Q)=>{Y(),D=j.normalize(D),W.readFile(D,function(ue,he){ue?Q(ue):B(he.buffer)})},process.argv.length>1&&(y=process.argv[1].replace(/\\/g,"/")),b=process.argv.slice(2),process.on("uncaughtException",function(D){if(!(D instanceof Cu))throw D}),process.on("unhandledRejection",function(D){throw D}),v=(D,B)=>{if(Mr())throw process.exitCode=D,B;M(B),process.exit(D)},d.inspect=function(){return"[Emscripten Module object]"};let N;try{N=m$()}catch(D){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),D}global.Worker=N.Worker}else(x||k)&&(k?R=self.location.href:typeof document!="undefined"&&document.currentScript&&(R=document.currentScript.src),typeof s!="undefined"&&s&&(R=s),R.indexOf("blob:")!==0?R=R.substr(0,R.replace(/[?#].*/,"").lastIndexOf("/")+1):R="",I||(P=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.send(null),D.responseText},k&&(O=N=>{var D=new XMLHttpRequest;return D.open("GET",N,!1),D.responseType="arraybuffer",D.send(null),new Uint8Array(D.response)}),A=(N,D,B)=>{var Q=new XMLHttpRequest;Q.open("GET",N,!0),Q.responseType="arraybuffer",Q.onload=()=>{if(Q.status==200||Q.status==0&&Q.response){D(Q.response);return}B()},Q.onerror=B,Q.send(null)}),T=N=>document.title=N);I&&typeof performance=="undefined"&&(global.performance=g$().performance);var X=console.log.bind(console),Z=console.warn.bind(console);I&&(Y(),X=N=>W.writeSync(1,N+`
|
|
`),Z=N=>W.writeSync(2,N+`
|
|
`));var ne=d.print||X,ee=d.printErr||Z;Object.assign(d,g),g=null,d.arguments&&(b=d.arguments),d.thisProgram&&(y=d.thisProgram),d.quit&&(v=d.quit);var se=4;function te(N){te.shown||(te.shown={}),te.shown[N]||(te.shown[N]=1,ee(N))}function oe(N,D){if(typeof WebAssembly.Function=="function"){for(var B={i:"i32",j:"i64",f:"f32",d:"f64"},Q={parameters:[],results:D[0]=="v"?[]:[B[D[0]]]},ue=1;ue<D.length;++ue)Q.parameters.push(B[D[ue]]);return new WebAssembly.Function(Q,N)}var he=[1,0,1,96],ye=D.slice(0,1),Te=D.slice(1),bt={i:127,j:126,f:125,d:124};he.push(Te.length);for(var ue=0;ue<Te.length;++ue)he.push(bt[Te[ue]]);ye=="v"?he.push(0):he=he.concat([1,bt[ye]]),he[1]=he.length-2;var us=new Uint8Array([0,97,115,109,1,0,0,0].concat(he,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),ls=new WebAssembly.Module(us),Uc=new WebAssembly.Instance(ls,{e:{f:N}}),Nu=Uc.exports.f;return Nu}var ae=[],de;function me(){if(ae.length)return ae.pop();try{Fn.grow(1)}catch(N){throw N instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":N}return Fn.length-1}function ke(N,D){for(var B=N;B<N+D;B++){var Q=_i(B);Q&&de.set(Q,B)}}var Ie=0,Re=N=>{Ie=N},Pe=Atomics.load,Xe=Atomics.store,Je=Atomics.compareExchange,Ye;d.wasmBinary&&(Ye=d.wasmBinary);var tt=d.noExitRuntime||!0;typeof WebAssembly!="object"&&Ni("no native wasm support detected");var Ce,ut,at=!1,Zt;function Nt(N,D){N||Ni(D)}function In(N){var D=d["_"+N];return D}function Et(N,D,B,Q,ue){var he={string:function(Tn){var Pi=0;if(Tn!=null&&Tn!==0){var ux=(Tn.length<<2)+1;Pi=Oi(ux),Ms(Tn,Pi,ux)}return Pi},array:function(Tn){var Pi=Oi(Tn.length);return Ls(Tn,Pi),Pi}};function ye(Tn){return D==="string"?en(Tn):D==="boolean"?Boolean(Tn):Tn}var Te=In(N),bt=[],us=0;if(Q)for(var ls=0;ls<Q.length;ls++){var Uc=he[B[ls]];Uc?(us===0&&(us=Bf()),bt[ls]=Uc(Q[ls])):bt[ls]=Q[ls]}var Nu=Te.apply(null,bt);function QT(Tn){return us!==0&&Lc(us),ye(Tn)}return Nu=QT(Nu),Nu}function Jt(N,D,B,Q){B=B||[];var ue=B.every(function(ye){return ye==="number"}),he=D!=="string";return he&&ue&&!Q?In(N):function(){return Et(N,D,B,arguments,Q)}}var Cn=1;function Nn(N){var D=new TextDecoder(N);this.decode=B=>(B.buffer instanceof SharedArrayBuffer&&(B=new Uint8Array(B)),D.decode.call(D,B))}var Xt=typeof TextDecoder!="undefined"?new Nn("utf8"):void 0;function Dn(N,D,B){for(var Q=D+B,ue=D;N[ue]&&!(ue>=Q);)++ue;if(ue-D>16&&N.subarray&&Xt)return Xt.decode(N.subarray(D,ue));for(var he="";D<ue;){var ye=N[D++];if(!(ye&128)){he+=String.fromCharCode(ye);continue}var Te=N[D++]&63;if((ye&224)==192){he+=String.fromCharCode((ye&31)<<6|Te);continue}var bt=N[D++]&63;if((ye&240)==224?ye=(ye&15)<<12|Te<<6|bt:ye=(ye&7)<<18|Te<<12|bt<<6|N[D++]&63,ye<65536)he+=String.fromCharCode(ye);else{var us=ye-65536;he+=String.fromCharCode(55296|us>>10,56320|us&1023)}}return he}function en(N,D){return N?Dn(i(),N,D):""}function zs(N,D,B,Q){if(!(Q>0))return 0;for(var ue=B,he=B+Q-1,ye=0;ye<N.length;++ye){var Te=N.charCodeAt(ye);if(Te>=55296&&Te<=57343){var bt=N.charCodeAt(++ye);Te=65536+((Te&1023)<<10)|bt&1023}if(Te<=127){if(B>=he)break;D[B++]=Te}else if(Te<=2047){if(B+1>=he)break;D[B++]=192|Te>>6,D[B++]=128|Te&63}else if(Te<=65535){if(B+2>=he)break;D[B++]=224|Te>>12,D[B++]=128|Te>>6&63,D[B++]=128|Te&63}else{if(B+3>=he)break;D[B++]=240|Te>>18,D[B++]=128|Te>>12&63,D[B++]=128|Te>>6&63,D[B++]=128|Te&63}}return D[B]=0,B-ue}function Ms(N,D,B){return zs(N,i(),D,B)}function Si(N){for(var D=0,B=0;B<N.length;++B){var Q=N.charCodeAt(B);Q>=55296&&Q<=57343&&(Q=65536+((Q&1023)<<10)|N.charCodeAt(++B)&1023),Q<=127?++D:Q<=2047?D+=2:Q<=65535?D+=3:D+=4}return D}var Zs=typeof TextDecoder!="undefined"?new Nn("utf-16le"):void 0;function Ls(N,D){a().set(N,D)}function mu(N,D,B){for(var Q=0;Q<N.length;++Q)a()[D++>>0]=N.charCodeAt(Q);B||(a()[D>>0]=0)}function Ii(N,D){return N%D>0&&(N+=D-N%D),N}var tn,lc,cc,gu,dc,pc,Wv,hc,fc;$&&(tn=d.buffer);function rs(N){tn=N,d.HEAP8=lc=new Int8Array(N),d.HEAP16=gu=new Int16Array(N),d.HEAP32=pc=new Int32Array(N),d.HEAPU8=cc=new Uint8Array(N),d.HEAPU16=dc=new Uint16Array(N),d.HEAPU32=Wv=new Uint32Array(N),d.HEAPF32=hc=new Float32Array(N),d.HEAPF64=fc=new Float64Array(N)}var mc=d.INITIAL_MEMORY||16777216;if($)Ce=d.wasmMemory,tn=d.buffer;else if(d.wasmMemory)Ce=d.wasmMemory;else if(Ce=new WebAssembly.Memory({initial:mc/65536,maximum:32768,shared:!0}),!(Ce.buffer instanceof SharedArrayBuffer))throw ee("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),I&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Ce&&(tn=Ce.buffer),mc=tn.byteLength,rs(tn);var Fn,Ci=[],Js=[],ch=[],gc=[],zr=!1,dh=!1,bc=0;function Mr(){return tt||bc>0}function nn(){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)Uv(d.preRun.shift());kc(Ci)}function bu(){zr=!0,!$&&kc(Js)}function ph(){$||($e.terminateAllThreads(),dh=!0)}function hh(){if(!$){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)yu(d.postRun.shift());kc(gc)}}function Uv(N){Ci.unshift(N)}function Gv(N){Js.unshift(N)}function yu(N){gc.unshift(N)}var er=0,yc=null,as=null;function vu(N){er++,d.monitorRunDependencies&&d.monitorRunDependencies(er)}function Hv(N){if(er--,d.monitorRunDependencies&&d.monitorRunDependencies(er),er==0&&(yc!==null&&(clearInterval(yc),yc=null),as)){var D=as;as=null,D()}}d.preloadedImages={},d.preloadedAudios={};function Ni(N){$?postMessage({cmd:"onAbort",arg:N}):d.onAbort&&d.onAbort(N),N="Aborted("+N+")",ee(N),at=!0,Zt=1,N+=". Build with -s ASSERTIONS=1 for more info.";var D=new WebAssembly.RuntimeError(N);throw f(D),D}var fh="data:application/octet-stream;base64,";function vc(N){return N.startsWith(fh)}function xc(N){return N.startsWith("file://")}var sn;sn="tfjs-backend-wasm-threaded-simd.wasm",vc(sn)||(sn=E(sn));function wc(N){try{if(N==sn&&Ye)return new Uint8Array(Ye);if(O)return O(N);throw"both async and sync fetching of the wasm failed"}catch(D){Ni(D)}}function Ti(){if(!Ye&&(x||k)){if(typeof fetch=="function"&&!xc(sn))return fetch(sn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+sn+"'";return N.arrayBuffer()}).catch(function(){return wc(sn)});if(A)return new Promise(function(N,D){A(sn,function(B){N(new Uint8Array(B))},D)})}return Promise.resolve().then(function(){return wc(sn)})}function mh(){var N={env:Fc,wasi_snapshot_preview1:Fc};function D(ye,Te){var bt=ye.exports;if(d.asm=bt,kh(d.asm.emscripten_tls_init),Fn=d.asm.__indirect_function_table,Gv(d.asm.__wasm_call_ctors),ut=Te,!$){var us=$e.unusedWorkers.length;$e.unusedWorkers.forEach(function(ls){$e.loadWasmModuleToWorker(ls,function(){--us||Hv("wasm-instantiate")})})}}$||vu("wasm-instantiate");function B(ye){D(ye.instance,ye.module)}function Q(ye){return Ti().then(function(Te){return WebAssembly.instantiate(Te,N)}).then(function(Te){return Te}).then(ye,function(Te){ee("failed to asynchronously prepare wasm: "+Te),Ni(Te)})}function ue(){return!Ye&&typeof WebAssembly.instantiateStreaming=="function"&&!vc(sn)&&!xc(sn)&&typeof fetch=="function"?fetch(sn,{credentials:"same-origin"}).then(function(ye){var Te=WebAssembly.instantiateStreaming(ye,N);return Te.then(B,function(bt){return ee("wasm streaming compile failed: "+bt),ee("falling back to ArrayBuffer instantiation"),Q(B)})}):Q(B)}if(d.instantiateWasm)try{var he=d.instantiateWasm(N,D);return he}catch(ye){return ee("Module.instantiateWasm callback failed with error: "+ye),!1}return ue().catch(f),{}}var qv,jv,gh={};function kc(N){for(;N.length>0;){var D=N.shift();if(typeof D=="function"){D(d);continue}var B=D.func;typeof B=="number"?D.arg===void 0?_i(B)():_i(B)(D.arg):B(D.arg===void 0?null:D.arg)}}function $i(N){var D=Bf(),B=N();return Lc(D),B}function aT(N){return N}function Kv(N){var D=/\b_Z[\w\d_]+/g;return N.replace(D,function(B){var Q=B;return B===Q?B:Q+" ["+B+"]"})}function bh(N){l()[N>>2]=0;var D=$e.pthreads[N];delete $e.pthreads[N],D.worker.terminate(),Lf(N),$e.runningWorkers.splice($e.runningWorkers.indexOf(D.worker),1),D.worker.pthread=void 0}function yh(N){var D=$e.pthreads[N];D.worker.postMessage({cmd:"cancel"})}function Sc(N){var D=$e.pthreads[N];if(D){l()[N>>2]=0;var B=D.worker;$e.returnWorkerToPool(B)}}function Ic(N){KT(N)}function vh(N){if(N instanceof Cu||N=="unwind")return Zt;v(1,N)}var $e={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){$?$e.initWorker():$e.initMainThread()},initMainThread:function(){for(var N=8,D=0;D<N;++D)$e.allocateUnusedWorker()},initWorker:function(){tt=!1},pthreads:{},setExitStatus:function(N){Zt=N},terminateAllThreads:function(){for(var N in $e.pthreads){var D=$e.pthreads[N];D&&D.worker&&$e.returnWorkerToPool(D.worker)}for(var B=0;B<$e.unusedWorkers.length;++B){var Q=$e.unusedWorkers[B];Q.terminate()}$e.unusedWorkers=[]},returnWorkerToPool:function(N){$e.runWithoutMainThreadQueuedCalls(function(){delete $e.pthreads[N.pthread.threadInfoStruct],$e.unusedWorkers.push(N),$e.runningWorkers.splice($e.runningWorkers.indexOf(N),1),Lf(N.pthread.threadInfoStruct),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){l()[ox>>2]=0;try{N()}finally{l()[ox>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in $e.tlsInitFunctions)$e.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,D){N.onmessage=B=>{var Q=B.data,ue=Q.cmd;if(N.pthread&&($e.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),Q.targetThread&&Q.targetThread!=Mc()){var he=$e.pthreads[Q.targetThread];he?he.worker.postMessage(Q,Q.transferList):ee('Internal error! Worker sent a message "'+ue+'" to target pthread '+Q.targetThread+", but that thread no longer exists!"),$e.currentProxiedOperationCallerThread=void 0;return}ue==="processQueuedMainThreadWork"?nx():ue==="spawnThread"?Nc(Q):ue==="cleanupThread"?Sc(Q.thread):ue==="killThread"?bh(Q.thread):ue==="cancelThread"?yh(Q.thread):ue==="loaded"?(N.loaded=!0,D&&D(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):ue==="print"?ne("Thread "+Q.threadId+": "+Q.text):ue==="printErr"?ee("Thread "+Q.threadId+": "+Q.text):ue==="alert"?alert("Thread "+Q.threadId+": "+Q.text):Q.target==="setimmediate"?N.postMessage(Q):ue==="onAbort"?d.onAbort&&d.onAbort(Q.arg):ee("worker sent an unknown command "+ue),$e.currentProxiedOperationCallerThread=void 0},N.onerror=B=>{var Q="worker sent an error!";throw ee(Q+" "+B.filename+":"+B.lineno+": "+B.message),B},I&&(N.on("message",function(B){N.onmessage({data:B})}),N.on("error",function(B){N.onerror(B)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||s,wasmMemory:Ce,wasmModule:ut})},allocateUnusedWorker:function(){var N=E("tfjs-backend-wasm-threaded-simd.worker.js");$e.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return $e.unusedWorkers.length==0&&($e.allocateUnusedWorker(),$e.loadWasmModuleToWorker($e.unusedWorkers[0])),$e.unusedWorkers.pop()}};function xh(){var N=Mc(),D=l()[N+44>>2],B=l()[N+48>>2],Q=D-B;ix(D,Q),Lc(D)}d.establishStackSpace=xh;function Cc(N){if($)return Vr(1,0,N);try{Ic(N)}catch(D){vh(D)}}var Lr=[];function _i(N){var D=Lr[N];return D||(N>=Lr.length&&(Lr.length=N+1),Lr[N]=D=Fn.get(N)),D}function wh(N,D){return _i(N)(D)}d.invokeEntryPoint=wh;function Xv(){var N=new Error;if(!N.stack){try{throw new Error}catch(D){N=D}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function kh(N,D,B){$e.tlsInitFunctions.push(N)}function Yv(N,D){Fn.set(N,D),Lr[N]=D}var Br;I?Br=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:$?Br=()=>performance.now()-d.__performance_now_clock_drift:Br=()=>performance.now();var Sh=!0;function Ih(N){return l()[tx()>>2]=N,N}function Ch(N,D){var B;if(N===0)B=Date.now();else if((N===1||N===4)&&Sh)B=Br();else return Ih(28),-1;return l()[D>>2]=B/1e3|0,l()[D+4>>2]=B%1e3*1e3*1e3|0,0}function Nh(N,D){return Ch(N,D)}function Th(N){sx(N,!k,1,!x),$e.threadInit()}function $h(N){$?postMessage({cmd:"cleanupThread",thread:N}):Sc(N)}function Nc(N){var D=$e.getNewWorker();if(!D)return 6;$e.runningWorkers.push(D);var B=$e.pthreads[N.pthread_ptr]={worker:D,threadInfoStruct:N.pthread_ptr};D.pthread=B;var Q={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return D.runPthread=()=>{Q.time=performance.now(),D.postMessage(Q,N.transferList)},D.loaded&&(D.runPthread(),delete D.runPthread),0}function _h(N,D,B,Q){if(typeof SharedArrayBuffer=="undefined")return ee("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var ue=[],he=0;if($&&(ue.length===0||he))return rx(687865856,N,D,B,Q);if(he)return he;var ye={startRoutine:B,pthread_ptr:N,arg:Q,transferList:ue};return $?(ye.cmd="spawnThread",postMessage(ye,ue),0):Nc(ye)}function Ah(){return 2097152}function Eh(N,D){if(N==D)postMessage({cmd:"processQueuedMainThreadWork"});else if($)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var B=$e.pthreads[N],Q=B&&B.worker;if(!Q)return;Q.postMessage({cmd:"processThreadQueue"})}return 1}function Rh(){Ni("")}function Dh(){I||k||te("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function Tc(){return 2147483648}function Fh(N,D,B){i().copyWithin(N,D,D+B)}function Oh(){return I?b$().cpus().length:navigator.hardwareConcurrency}function Vr(N,D){var B=arguments.length-2,Q=arguments;return $i(function(){for(var ue=B,he=Oi(ue*8),ye=he>>3,Te=0;Te<B;Te++){var bt=Q[2+Te];p()[ye+Te]=bt}return ax(N,ue,he,D)})}var xu=[];function Ph(N,D,B){xu.length=D;for(var Q=B>>3,ue=0;ue<D;ue++)xu[ue]=p()[Q+ue];var he=N<0,ye=he?gh[-N-1]:tf[N];return ye.apply(null,xu)}function zh(N){try{return Ce.grow(N-tn.byteLength+65535>>>16),rs(Ce.buffer),1}catch(D){}}function Mh(N){var D=i().length;if(N=N>>>0,N<=D)return!1;var B=Tc();if(N>B)return!1;for(var Q=1;Q<=4;Q*=2){var ue=D*(1+.2/Q);ue=Math.min(ue,N+100663296);var he=Math.min(B,Ii(Math.max(N,ue),65536)),ye=zh(he);if(ye)return!0}return!1}var Le={inEventHandler:0,removeAllEventListeners:function(){for(var N=Le.eventHandlers.length-1;N>=0;--N)Le._removeHandler(N);Le.eventHandlers=[],Le.deferredCalls=[]},registerRemoveEventListeners:function(){Le.removeEventListenersRegistered||(ch.push(Le.removeAllEventListeners),Le.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,D,B){function Q(ye,Te){if(ye.length!=Te.length)return!1;for(var bt in ye)if(ye[bt]!=Te[bt])return!1;return!0}for(var ue in Le.deferredCalls){var he=Le.deferredCalls[ue];if(he.targetFunction==N&&Q(he.argsList,B))return}Le.deferredCalls.push({targetFunction:N,precedence:D,argsList:B}),Le.deferredCalls.sort(function(ye,Te){return ye.precedence<Te.precedence})},removeDeferredCalls:function(N){for(var D=0;D<Le.deferredCalls.length;++D)Le.deferredCalls[D].targetFunction==N&&(Le.deferredCalls.splice(D,1),--D)},canPerformEventHandlerRequests:function(){return Le.inEventHandler&&Le.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Le.canPerformEventHandlerRequests())for(var N=0;N<Le.deferredCalls.length;++N){var D=Le.deferredCalls[N];Le.deferredCalls.splice(N,1),--N,D.targetFunction.apply(null,D.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,D){for(var B=0;B<Le.eventHandlers.length;++B)Le.eventHandlers[B].target==N&&(!D||D==Le.eventHandlers[B].eventTypeString)&&Le._removeHandler(B--)},_removeHandler:function(N){var D=Le.eventHandlers[N];D.target.removeEventListener(D.eventTypeString,D.eventListenerFunc,D.useCapture),Le.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var D=function(ue){++Le.inEventHandler,Le.currentEventHandler=N,Le.runDeferredCalls(),N.handlerFunc(ue),Le.runDeferredCalls(),--Le.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=D,N.target.addEventListener(N.eventTypeString,D,N.useCapture),Le.eventHandlers.push(N),Le.registerRemoveEventListeners();else for(var B=0;B<Le.eventHandlers.length;++B)Le.eventHandlers[B].target==N.target&&Le.eventHandlers[B].eventTypeString==N.eventTypeString&&Le._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(N,D,B,Q,ue){$i(function(){var he=Oi(12);l()[he>>2]=B,l()[he+4>>2]=Q,l()[he+8>>2]=ue,Mf(N,637534208,D,Q,he)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return $e.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Lh(N){var D=Si(N)+1,B=zf(D);return Ms(N,B,D),B}function Bh(N,D,B,Q){$i(function(){var ue=Oi(12),he=0;D&&(he=Lh(D)),l()[ue>>2]=he,l()[ue+4>>2]=B,l()[ue+8>>2]=Q,Mf(N,657457152,0,he,ue)})}function Vh(N,D,B,Q){D=D?en(D):"",Bh(N,D,B,Q)}function Wh(N){return N>2?en(N):N}var Uh=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Gh(N){N=Wh(N);var D=Uh[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return D}function wu(N){return Gh(N)}function $c(N,D,B){var Q=wu(N);if(!Q)return-4;if(Q.canvasSharedPtr&&(l()[Q.canvasSharedPtr>>2]=D,l()[Q.canvasSharedPtr+4>>2]=B),Q.offscreenCanvas||!Q.controlTransferredOffscreen){Q.offscreenCanvas&&(Q=Q.offscreenCanvas);var ue=!1;if(Q.GLctxObject&&Q.GLctxObject.GLctx){var he=Q.GLctxObject.GLctx.getParameter(2978);ue=he[0]===0&&he[1]===0&&he[2]===Q.width&&he[3]===Q.height}Q.width=D,Q.height=B,ue&&Q.GLctxObject.GLctx.viewport(0,0,D,B)}else if(Q.canvasSharedPtr){var ye=l()[Q.canvasSharedPtr+8>>2];return Vh(ye,N,D,B),1}else return-4;return 0}function _c(N,D,B){return $?Vr(2,1,N,D,B):$c(N,D,B)}function Hh(N,D,B){var Q=wu(N);return Q?$c(N,D,B):_c(N,D,B)}function qh(){throw"unwind"}function jh(N){var D=N.getExtension("ANGLE_instanced_arrays");if(D)return N.vertexAttribDivisor=function(B,Q){D.vertexAttribDivisorANGLE(B,Q)},N.drawArraysInstanced=function(B,Q,ue,he){D.drawArraysInstancedANGLE(B,Q,ue,he)},N.drawElementsInstanced=function(B,Q,ue,he,ye){D.drawElementsInstancedANGLE(B,Q,ue,he,ye)},1}function Kh(N){var D=N.getExtension("OES_vertex_array_object");if(D)return N.createVertexArray=function(){return D.createVertexArrayOES()},N.deleteVertexArray=function(B){D.deleteVertexArrayOES(B)},N.bindVertexArray=function(B){D.bindVertexArrayOES(B)},N.isVertexArray=function(B){return D.isVertexArrayOES(B)},1}function Xh(N){var D=N.getExtension("WEBGL_draw_buffers");if(D)return N.drawBuffers=function(B,Q){D.drawBuffersWEBGL(B,Q)},1}function Yh(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var gt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(D){gt.lastError||(gt.lastError=D)},getNewId:function(N){for(var D=gt.counter++,B=N.length;B<D;B++)N[B]=null;return D},getSource:function(N,D,B,Q){for(var ue="",he=0;he<D;++he){var ye=Q?l()[Q+he*4>>2]:-1;ue+=en(l()[B+he*4>>2],ye<0?void 0:ye)}return ue},createContext:function(N,D){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(ue,he){var ye=N.getContextSafariWebGL2Fixed(ue,he);return ue=="webgl"==ye instanceof WebGLRenderingContext?ye:null});var B=N.getContext("webgl",D);if(!B)return 0;var Q=gt.registerContext(B,D);return Q},registerContext:function(N,D){var B=zf(8);l()[B+4>>2]=Mc();var Q={handle:B,attributes:D,version:D.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=Q),gt.contexts[B]=Q,(typeof D.enableExtensionsByDefault=="undefined"||D.enableExtensionsByDefault)&>.initExtensions(Q),B},makeContextCurrent:function(N){return gt.currentContext=gt.contexts[N],d.ctx=Dc=gt.currentContext&>.currentContext.GLctx,!(N&&!Dc)},getContext:function(N){return gt.contexts[N]},deleteContext:function(N){gt.currentContext===gt.contexts[N]&&(gt.currentContext=null),typeof Le=="object"&&Le.removeAllHandlersOnTarget(gt.contexts[N].GLctx.canvas),gt.contexts[N]&>.contexts[N].GLctx.canvas&&(gt.contexts[N].GLctx.canvas.GLctxObject=void 0),ex(gt.contexts[N].handle),gt.contexts[N]=null},initExtensions:function(N){if(N||(N=gt.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var D=N.GLctx;jh(D),Kh(D),Xh(D),D.disjointTimerQueryExt=D.getExtension("EXT_disjoint_timer_query"),Yh(D);var B=D.getSupportedExtensions()||[];B.forEach(function(Q){!Q.includes("lose_context")&&!Q.includes("debug")&&D.getExtension(Q)})}}},Qh=["default","low-power","high-performance"];function Zh(N,D){var B=D>>2,Q=l()[B+6],ue={alpha:!!l()[B+0],depth:!!l()[B+1],stencil:!!l()[B+2],antialias:!!l()[B+3],premultipliedAlpha:!!l()[B+4],preserveDrawingBuffer:!!l()[B+5],powerPreference:Qh[Q],failIfMajorPerformanceCaveat:!!l()[B+7],majorVersion:l()[B+8],minorVersion:l()[B+9],enableExtensionsByDefault:l()[B+10],explicitSwapControl:l()[B+11],proxyContextToMainThread:l()[B+12],renderViaOffscreenBackBuffer:l()[B+13]},he=wu(N);if(!he||ue.explicitSwapControl)return 0;var ye=gt.createContext(he,ue);return ye}function Jh(N,D){return Zh(N,D)}var Ai={mappings:{},buffers:[null,[],[]],printChar:function(N,D){var B=Ai.buffers[N];D===0||D===10?((N===1?ne:ee)(Dn(B,0)),B.length=0):B.push(D)},varargs:void 0,get:function(){Ai.varargs+=4;var N=l()[Ai.varargs-4>>2];return N},getStr:function(N){var D=en(N);return D},get64:function(N,D){return N}};function Ac(N){return $?Vr(3,1,N):0}function Ec(N,D,B,Q,ue){if($)return Vr(4,1,N,D,B,Q,ue)}function Rc(N,D,B,Q){if($)return Vr(5,1,N,D,B,Q);for(var ue=0,he=0;he<B;he++){var ye=l()[D>>2],Te=l()[D+4>>2];D+=8;for(var bt=0;bt<Te;bt++)Ai.printChar(N,i()[ye+bt]);ue+=Te}return l()[Q>>2]=ue,0}function ef(N){Re(N)}$e.init();var Dc,tf=[null,Cc,_c,Ac,Ec,Rc],Qv=!1,Fc={__clock_gettime:Nh,__emscripten_init_main_thread_js:Th,__emscripten_thread_cleanup:$h,__pthread_create_js:_h,_emscripten_default_pthread_stack_size:Ah,_emscripten_notify_thread_queue:Eh,abort:Rh,emscripten_check_blocking_allowed:Dh,emscripten_get_heap_max:Tc,emscripten_get_now:Br,emscripten_memcpy_big:Fh,emscripten_num_logical_cores:Oh,emscripten_receive_on_main_thread_js:Ph,emscripten_resize_heap:Mh,emscripten_set_canvas_element_size:Hh,emscripten_unwind_to_js_event_loop:qh,emscripten_webgl_create_context:Jh,exit:Ic,fd_close:Ac,fd_seek:Ec,fd_write:Rc,memory:Ce||d.wasmMemory,setTempRet0:ef},Zv=mh(),nf=d.___wasm_call_ctors=function(){return(nf=d.___wasm_call_ctors=d.asm.__wasm_call_ctors).apply(null,arguments)},sf=d._init=function(){return(sf=d._init=d.asm.init).apply(null,arguments)},rf=d._init_with_threads_count=function(){return(rf=d._init_with_threads_count=d.asm.init_with_threads_count).apply(null,arguments)},af=d._get_threads_count=function(){return(af=d._get_threads_count=d.asm.get_threads_count).apply(null,arguments)},of=d._register_tensor=function(){return(of=d._register_tensor=d.asm.register_tensor).apply(null,arguments)},uf=d._dispose_data=function(){return(uf=d._dispose_data=d.asm.dispose_data).apply(null,arguments)},lf=d._dispose=function(){return(lf=d._dispose=d.asm.dispose).apply(null,arguments)},cf=d._Abs=function(){return(cf=d._Abs=d.asm.Abs).apply(null,arguments)},df=d._Add=function(){return(df=d._Add=d.asm.Add).apply(null,arguments)},pf=d._AddN=function(){return(pf=d._AddN=d.asm.AddN).apply(null,arguments)},hf=d._All=function(){return(hf=d._All=d.asm.All).apply(null,arguments)},ff=d._Any=function(){return(ff=d._Any=d.asm.Any).apply(null,arguments)},mf=d._ArgMax=function(){return(mf=d._ArgMax=d.asm.ArgMax).apply(null,arguments)},gf=d._AvgPool=function(){return(gf=d._AvgPool=d.asm.AvgPool).apply(null,arguments)},bf=d._BatchMatMul=function(){return(bf=d._BatchMatMul=d.asm.BatchMatMul).apply(null,arguments)},yf=d._Ceil=function(){return(yf=d._Ceil=d.asm.Ceil).apply(null,arguments)},vf=d._ClipByValue=function(){return(vf=d._ClipByValue=d.asm.ClipByValue).apply(null,arguments)},xf=d._Conv2D=function(){return(xf=d._Conv2D=d.asm.Conv2D).apply(null,arguments)},wf=d._Conv2DBackpropInput=function(){return(wf=d._Conv2DBackpropInput=d.asm.Conv2DBackpropInput).apply(null,arguments)},kf=d._Cos=function(){return(kf=d._Cos=d.asm.Cos).apply(null,arguments)},Sf=d._Cosh=function(){return(Sf=d._Cosh=d.asm.Cosh).apply(null,arguments)},If=d._CropAndResize=function(){return(If=d._CropAndResize=d.asm.CropAndResize).apply(null,arguments)},Cf=d._Cumprod=function(){return(Cf=d._Cumprod=d.asm.Cumprod).apply(null,arguments)},Nf=d._Cumsum=function(){return(Nf=d._Cumsum=d.asm.Cumsum).apply(null,arguments)},Tf=d._DepthToSpace=function(){return(Tf=d._DepthToSpace=d.asm.DepthToSpace).apply(null,arguments)},$f=d._DepthwiseConv2dNative=function(){return($f=d._DepthwiseConv2dNative=d.asm.DepthwiseConv2dNative).apply(null,arguments)},_f=d._Elu=function(){return(_f=d._Elu=d.asm.Elu).apply(null,arguments)},Af=d._Equal=function(){return(Af=d._Equal=d.asm.Equal).apply(null,arguments)},Ef=d._Exp=function(){return(Ef=d._Exp=d.asm.Exp).apply(null,arguments)},Rf=d._FlipLeftRight=function(){return(Rf=d._FlipLeftRight=d.asm.FlipLeftRight).apply(null,arguments)},Oc=d._Floor=function(){return(Oc=d._Floor=d.asm.Floor).apply(null,arguments)},Pc=d._FloorDiv=function(){return(Pc=d._FloorDiv=d.asm.FloorDiv).apply(null,arguments)},ku=d._FusedBatchNorm=function(){return(ku=d._FusedBatchNorm=d.asm.FusedBatchNorm).apply(null,arguments)},Df=d._FusedConv2D=function(){return(Df=d._FusedConv2D=d.asm.FusedConv2D).apply(null,arguments)},Ff=d._FusedDepthwiseConv2D=function(){return(Ff=d._FusedDepthwiseConv2D=d.asm.FusedDepthwiseConv2D).apply(null,arguments)},Ei=d._Gather=function(){return(Ei=d._Gather=d.asm.Gather).apply(null,arguments)},Su=d._GatherNd=function(){return(Su=d._GatherNd=d.asm.GatherNd).apply(null,arguments)},Iu=d._Greater=function(){return(Iu=d._Greater=d.asm.Greater).apply(null,arguments)},Jv=d._GreaterEqual=function(){return(Jv=d._GreaterEqual=d.asm.GreaterEqual).apply(null,arguments)},Ri=d._LeakyRelu=function(){return(Ri=d._LeakyRelu=d.asm.LeakyRelu).apply(null,arguments)},Di=d._Less=function(){return(Di=d._Less=d.asm.Less).apply(null,arguments)},Of=d._LessEqual=function(){return(Of=d._LessEqual=d.asm.LessEqual).apply(null,arguments)},H=d._Log=function(){return(H=d._Log=d.asm.Log).apply(null,arguments)},J=d._LogicalAnd=function(){return(J=d._LogicalAnd=d.asm.LogicalAnd).apply(null,arguments)},ce=d._Max=function(){return(ce=d._Max=d.asm.Max).apply(null,arguments)},Se=d._MaxPool=function(){return(Se=d._MaxPool=d.asm.MaxPool).apply(null,arguments)},Qe=d._Maximum=function(){return(Qe=d._Maximum=d.asm.Maximum).apply(null,arguments)},Ze=d._Mean=function(){return(Ze=d._Mean=d.asm.Mean).apply(null,arguments)},Be=d._Min=function(){return(Be=d._Min=d.asm.Min).apply(null,arguments)},ze=d._Minimum=function(){return(ze=d._Minimum=d.asm.Minimum).apply(null,arguments)},Tt=d._MirrorPad=function(){return(Tt=d._MirrorPad=d.asm.MirrorPad).apply(null,arguments)},is=d._Multiply=function(){return(is=d._Multiply=d.asm.Multiply).apply(null,arguments)},os=d._Neg=function(){return(os=d._Neg=d.asm.Neg).apply(null,arguments)},Fi=d._NonMaxSuppressionV3=function(){return(Fi=d._NonMaxSuppressionV3=d.asm.NonMaxSuppressionV3).apply(null,arguments)},Wr=d._NonMaxSuppressionV4=function(){return(Wr=d._NonMaxSuppressionV4=d.asm.NonMaxSuppressionV4).apply(null,arguments)},Pf=d._NonMaxSuppressionV5=function(){return(Pf=d._NonMaxSuppressionV5=d.asm.NonMaxSuppressionV5).apply(null,arguments)},rn=d._NotEqual=function(){return(rn=d._NotEqual=d.asm.NotEqual).apply(null,arguments)},tr=d._OneHot=function(){return(tr=d._OneHot=d.asm.OneHot).apply(null,arguments)},zc=d._PadV2=function(){return(zc=d._PadV2=d.asm.PadV2).apply(null,arguments)},iT=d._Pow=function(){return(iT=d._Pow=d.asm.Pow).apply(null,arguments)},oT=d._Prelu=function(){return(oT=d._Prelu=d.asm.Prelu).apply(null,arguments)},uT=d._Prod=function(){return(uT=d._Prod=d.asm.Prod).apply(null,arguments)},lT=d._RealDiv=function(){return(lT=d._RealDiv=d.asm.RealDiv).apply(null,arguments)},cT=d._Relu=function(){return(cT=d._Relu=d.asm.Relu).apply(null,arguments)},dT=d._Relu6=function(){return(dT=d._Relu6=d.asm.Relu6).apply(null,arguments)},pT=d._ResizeBilinear=function(){return(pT=d._ResizeBilinear=d.asm.ResizeBilinear).apply(null,arguments)},hT=d._Reverse=function(){return(hT=d._Reverse=d.asm.Reverse).apply(null,arguments)},fT=d._RotateWithOffset=function(){return(fT=d._RotateWithOffset=d.asm.RotateWithOffset).apply(null,arguments)},mT=d._Round=function(){return(mT=d._Round=d.asm.Round).apply(null,arguments)},gT=d._Rsqrt=function(){return(gT=d._Rsqrt=d.asm.Rsqrt).apply(null,arguments)},bT=d._ScatterNd=function(){return(bT=d._ScatterNd=d.asm.ScatterNd).apply(null,arguments)},yT=d._SelectV2=function(){return(yT=d._SelectV2=d.asm.SelectV2).apply(null,arguments)},vT=d._Sigmoid=function(){return(vT=d._Sigmoid=d.asm.Sigmoid).apply(null,arguments)},xT=d._Sin=function(){return(xT=d._Sin=d.asm.Sin).apply(null,arguments)},wT=d._Softmax=function(){return(wT=d._Softmax=d.asm.Softmax).apply(null,arguments)},kT=d._SparseFillEmptyRows=function(){return(kT=d._SparseFillEmptyRows=d.asm.SparseFillEmptyRows).apply(null,arguments)},ST=d._SparseReshape=function(){return(ST=d._SparseReshape=d.asm.SparseReshape).apply(null,arguments)},IT=d._SparseSegmentReduction=function(){return(IT=d._SparseSegmentReduction=d.asm.SparseSegmentReduction).apply(null,arguments)},CT=d._Sqrt=function(){return(CT=d._Sqrt=d.asm.Sqrt).apply(null,arguments)},NT=d._Square=function(){return(NT=d._Square=d.asm.Square).apply(null,arguments)},TT=d._SquaredDifference=function(){return(TT=d._SquaredDifference=d.asm.SquaredDifference).apply(null,arguments)},$T=d._Step=function(){return($T=d._Step=d.asm.Step).apply(null,arguments)},_T=d._StridedSlice=function(){return(_T=d._StridedSlice=d.asm.StridedSlice).apply(null,arguments)},AT=d._Sub=function(){return(AT=d._Sub=d.asm.Sub).apply(null,arguments)},ET=d._Sum=function(){return(ET=d._Sum=d.asm.Sum).apply(null,arguments)},RT=d._Tan=function(){return(RT=d._Tan=d.asm.Tan).apply(null,arguments)},DT=d._Tanh=function(){return(DT=d._Tanh=d.asm.Tanh).apply(null,arguments)},FT=d._Tile=function(){return(FT=d._Tile=d.asm.Tile).apply(null,arguments)},OT=d._TopK=function(){return(OT=d._TopK=d.asm.TopK).apply(null,arguments)},PT=d._Transform=function(){return(PT=d._Transform=d.asm.Transform).apply(null,arguments)},zT=d._Transpose=function(){return(zT=d._Transpose=d.asm.Transpose).apply(null,arguments)},MT=d.__FusedMatMul=function(){return(MT=d.__FusedMatMul=d.asm._FusedMatMul).apply(null,arguments)},zf=d._malloc=function(){return(zf=d._malloc=d.asm.malloc).apply(null,arguments)},ex=d._free=function(){return(ex=d._free=d.asm.free).apply(null,arguments)},LT=d._emscripten_tls_init=function(){return(LT=d._emscripten_tls_init=d.asm.emscripten_tls_init).apply(null,arguments)},tx=d.___errno_location=function(){return(tx=d.___errno_location=d.asm.__errno_location).apply(null,arguments)},Mc=d._pthread_self=function(){return(Mc=d._pthread_self=d.asm.pthread_self).apply(null,arguments)},nx=d._emscripten_main_thread_process_queued_calls=function(){return(nx=d._emscripten_main_thread_process_queued_calls=d.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},BT=d.__emscripten_thread_crashed=function(){return(BT=d.__emscripten_thread_crashed=d.asm._emscripten_thread_crashed).apply(null,arguments)},sx=d.__emscripten_thread_init=function(){return(sx=d.__emscripten_thread_init=d.asm._emscripten_thread_init).apply(null,arguments)},VT=d._emscripten_current_thread_process_queued_calls=function(){return(VT=d._emscripten_current_thread_process_queued_calls=d.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},WT=d._emscripten_main_browser_thread_id=function(){return(WT=d._emscripten_main_browser_thread_id=d.asm.emscripten_main_browser_thread_id).apply(null,arguments)},UT=d._emscripten_sync_run_in_main_thread_2=function(){return(UT=d._emscripten_sync_run_in_main_thread_2=d.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},rx=d._emscripten_sync_run_in_main_thread_4=function(){return(rx=d._emscripten_sync_run_in_main_thread_4=d.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},ax=d._emscripten_run_in_main_runtime_thread_js=function(){return(ax=d._emscripten_run_in_main_runtime_thread_js=d.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},Mf=d._emscripten_dispatch_to_thread_=function(){return(Mf=d._emscripten_dispatch_to_thread_=d.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},Lf=d.__emscripten_thread_free_data=function(){return(Lf=d.__emscripten_thread_free_data=d.asm._emscripten_thread_free_data).apply(null,arguments)},GT=d.__emscripten_thread_exit=function(){return(GT=d.__emscripten_thread_exit=d.asm._emscripten_thread_exit).apply(null,arguments)},HT=d._memalign=function(){return(HT=d._memalign=d.asm.memalign).apply(null,arguments)},ix=d._emscripten_stack_set_limits=function(){return(ix=d._emscripten_stack_set_limits=d.asm.emscripten_stack_set_limits).apply(null,arguments)},Bf=d.stackSave=function(){return(Bf=d.stackSave=d.asm.stackSave).apply(null,arguments)},Lc=d.stackRestore=function(){return(Lc=d.stackRestore=d.asm.stackRestore).apply(null,arguments)},Oi=d.stackAlloc=function(){return(Oi=d.stackAlloc=d.asm.stackAlloc).apply(null,arguments)},qT=d.dynCall_iijjiiii=function(){return(qT=d.dynCall_iijjiiii=d.asm.dynCall_iijjiiii).apply(null,arguments)},jT=d.dynCall_jiji=function(){return(jT=d.dynCall_jiji=d.asm.dynCall_jiji).apply(null,arguments)},ox=d.__emscripten_allow_main_runtime_queued_calls=21456;d.cwrap=Jt,d.keepRuntimeAlive=Mr,d.PThread=$e,d.PThread=$e,d.wasmMemory=Ce,d.ExitStatus=Cu;var Bc;function Cu(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}as=function N(){Bc||Vf(),Bc||(as=N)};function Vf(N){if(N=N||b,er>0)return;if($){h(d),bu(),postMessage({cmd:"loaded"});return}if(nn(),er>0)return;function D(){Bc||(Bc=!0,d.calledRun=!0,!at&&(bu(),h(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),hh()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),D()},1)):D()}d.run=Vf;function KT(N,D){if(Zt=N,!D&&$)throw Cc(N),"unwind";Mr()||ph(),XT(N)}function XT(N){Zt=N,Mr()||($e.terminateAllThreads(),d.onExit&&d.onExit(N),at=!0),v(N,new Cu(N))}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();Vf();var Vc;m&&(Vc={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!m.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!m.unhandledRejection.indexOf(N)>-1})});var Wc;if(typeof WasmBackendModule!="undefined")Wc=WasmBackendModule;else if(typeof r!="undefined")Wc=r;else throw new Error("Could not find wasm module in post.js");if(Vc){var YT=Wc._dispose;Wc._dispose=function(){YT(),Vc.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),Vc.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),v$=zt({"src/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},i,o;a.ready=new Promise(function(H,J){i=H,o=J});var u;typeof process!="undefined"&&process.listeners&&(u={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var l=Object.assign({},a),c=[],p="./this.program",d=(H,J)=>{throw J},h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function b(H){return a.locateFile?a.locateFile(H,g):g+H}var y,v,x,k;function I(H){if(H instanceof Su)return;A("exiting due to exception: "+H)}var $,R,E;m?(f?g=gd().dirname(g)+"/":g=__dirname+"/",E=()=>{R||($=lg(),R=gd())},y=function(J,ce){return E(),J=R.normalize(J),$.readFileSync(J,ce?void 0:"utf8")},x=H=>{var J=y(H,!0);return J.buffer||(J=new Uint8Array(J)),J},v=(H,J,ce)=>{E(),H=R.normalize(H),$.readFile(H,function(Se,Qe){Se?ce(Se):J(Qe.buffer)})},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(H){if(!(H instanceof Su))throw H}),process.on("unhandledRejection",function(H){throw H}),d=(H,J)=>{if(gu())throw process.exitCode=H,J;I(J),process.exit(H)},a.inspect=function(){return"[Emscripten Module object]"}):(h||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),s&&(g=s),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",y=H=>{var J=new XMLHttpRequest;return J.open("GET",H,!1),J.send(null),J.responseText},f&&(x=H=>{var J=new XMLHttpRequest;return J.open("GET",H,!1),J.responseType="arraybuffer",J.send(null),new Uint8Array(J.response)}),v=(H,J,ce)=>{var Se=new XMLHttpRequest;Se.open("GET",H,!0),Se.responseType="arraybuffer",Se.onload=()=>{if(Se.status==200||Se.status==0&&Se.response){J(Se.response);return}ce()},Se.onerror=ce,Se.send(null)},k=H=>document.title=H);var P=a.print||console.log.bind(console),A=a.printErr||console.warn.bind(console);Object.assign(a,l),l=null,a.arguments&&(c=a.arguments),a.thisProgram&&(p=a.thisProgram),a.quit&&(d=a.quit);var O=4;function T(H){T.shown||(T.shown={}),T.shown[H]||(T.shown[H]=1,A(H))}function M(H,J){if(typeof WebAssembly.Function=="function"){for(var ce={i:"i32",j:"i64",f:"f32",d:"f64"},Se={parameters:[],results:J[0]=="v"?[]:[ce[J[0]]]},Qe=1;Qe<J.length;++Qe)Se.parameters.push(ce[J[Qe]]);return new WebAssembly.Function(Se,H)}var Ze=[1,0,1,96],Be=J.slice(0,1),ze=J.slice(1),Tt={i:127,j:126,f:125,d:124};Ze.push(ze.length);for(var Qe=0;Qe<ze.length;++Qe)Ze.push(Tt[ze[Qe]]);Be=="v"?Ze.push(0):Ze=Ze.concat([1,Tt[Be]]),Ze[1]=Ze.length-2;var is=new Uint8Array([0,97,115,109,1,0,0,0].concat(Ze,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),os=new WebAssembly.Module(is),Fi=new WebAssembly.Instance(os,{e:{f:H}}),Wr=Fi.exports.f;return Wr}var W=[],j;function Y(){if(W.length)return W.pop();try{Zs.grow(1)}catch(H){throw H instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":H}return Zs.length-1}function X(H,J){for(var ce=H;ce<H+J;ce++){var Se=vu(ce);Se&&j.set(Se,ce)}}var Z=0,ne=H=>{Z=H},ee;a.wasmBinary&&(ee=a.wasmBinary);var se=a.noExitRuntime||!0;typeof WebAssembly!="object"&&zr("no native wasm support detected");var te,oe=!1,ae;function de(H,J){H||zr(J)}function me(H){var J=a["_"+H];return J}function ke(H,J,ce,Se,Qe){var Ze={string:function(rn){var tr=0;if(rn!=null&&rn!==0){var zc=(rn.length<<2)+1;tr=ku(zc),tt(rn,tr,zc)}return tr},array:function(rn){var tr=ku(rn.length);return at(rn,tr),tr}};function Be(rn){return J==="string"?Je(rn):J==="boolean"?Boolean(rn):rn}var ze=me(H),Tt=[],is=0;if(Se)for(var os=0;os<Se.length;os++){var Fi=Ze[ce[os]];Fi?(is===0&&(is=Oc()),Tt[os]=Fi(Se[os])):Tt[os]=Se[os]}var Wr=ze.apply(null,Tt);function Pf(rn){return is!==0&&Pc(is),Be(rn)}return Wr=Pf(Wr),Wr}function Ie(H,J,ce,Se){ce=ce||[];var Qe=ce.every(function(Be){return Be==="number"}),Ze=J!=="string";return Ze&&Qe&&!Se?me(H):function(){return ke(H,J,ce,arguments,Se)}}var Re=1,Pe=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Xe(H,J,ce){for(var Se=J+ce,Qe=J;H[Qe]&&!(Qe>=Se);)++Qe;if(Qe-J>16&&H.subarray&&Pe)return Pe.decode(H.subarray(J,Qe));for(var Ze="";J<Qe;){var Be=H[J++];if(!(Be&128)){Ze+=String.fromCharCode(Be);continue}var ze=H[J++]&63;if((Be&224)==192){Ze+=String.fromCharCode((Be&31)<<6|ze);continue}var Tt=H[J++]&63;if((Be&240)==224?Be=(Be&15)<<12|ze<<6|Tt:Be=(Be&7)<<18|ze<<12|Tt<<6|H[J++]&63,Be<65536)Ze+=String.fromCharCode(Be);else{var is=Be-65536;Ze+=String.fromCharCode(55296|is>>10,56320|is&1023)}}return Ze}function Je(H,J){return H?Xe(Jt,H,J):""}function Ye(H,J,ce,Se){if(!(Se>0))return 0;for(var Qe=ce,Ze=ce+Se-1,Be=0;Be<H.length;++Be){var ze=H.charCodeAt(Be);if(ze>=55296&&ze<=57343){var Tt=H.charCodeAt(++Be);ze=65536+((ze&1023)<<10)|Tt&1023}if(ze<=127){if(ce>=Ze)break;J[ce++]=ze}else if(ze<=2047){if(ce+1>=Ze)break;J[ce++]=192|ze>>6,J[ce++]=128|ze&63}else if(ze<=65535){if(ce+2>=Ze)break;J[ce++]=224|ze>>12,J[ce++]=128|ze>>6&63,J[ce++]=128|ze&63}else{if(ce+3>=Ze)break;J[ce++]=240|ze>>18,J[ce++]=128|ze>>12&63,J[ce++]=128|ze>>6&63,J[ce++]=128|ze&63}}return J[ce]=0,ce-Qe}function tt(H,J,ce){return Ye(H,Jt,J,ce)}function Ce(H){for(var J=0,ce=0;ce<H.length;++ce){var Se=H.charCodeAt(ce);Se>=55296&&Se<=57343&&(Se=65536+((Se&1023)<<10)|H.charCodeAt(++ce)&1023),Se<=127?++J:Se<=2047?J+=2:Se<=65535?J+=3:J+=4}return J}var ut=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function at(H,J){Et.set(H,J)}function Zt(H,J,ce){for(var Se=0;Se<H.length;++Se)Et[J++>>0]=H.charCodeAt(Se);ce||(Et[J>>0]=0)}function Nt(H,J){return H%J>0&&(H+=J-H%J),H}var In,Et,Jt,Cn,Nn,Xt,Dn,en,zs;function Ms(H){In=H,a.HEAP8=Et=new Int8Array(H),a.HEAP16=Cn=new Int16Array(H),a.HEAP32=Xt=new Int32Array(H),a.HEAPU8=Jt=new Uint8Array(H),a.HEAPU16=Nn=new Uint16Array(H),a.HEAPU32=Dn=new Uint32Array(H),a.HEAPF32=en=new Float32Array(H),a.HEAPF64=zs=new Float64Array(H)}var Si=a.INITIAL_MEMORY||16777216,Zs,Ls=[],mu=[],Ii=[],tn=!1,lc=!1,cc=0;function gu(){return se||cc>0}function dc(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)fc(a.preRun.shift());yu(Ls)}function pc(){tn=!0,yu(mu)}function Wv(){lc=!0}function hc(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)mc(a.postRun.shift());yu(Ii)}function fc(H){Ls.unshift(H)}function rs(H){mu.unshift(H)}function mc(H){Ii.unshift(H)}var Fn=0,Ci=null,Js=null;function ch(H){Fn++,a.monitorRunDependencies&&a.monitorRunDependencies(Fn)}function gc(H){if(Fn--,a.monitorRunDependencies&&a.monitorRunDependencies(Fn),Fn==0&&(Ci!==null&&(clearInterval(Ci),Ci=null),Js)){var J=Js;Js=null,J()}}a.preloadedImages={},a.preloadedAudios={};function zr(H){a.onAbort&&a.onAbort(H),H="Aborted("+H+")",A(H),oe=!0,ae=1,H+=". Build with -s ASSERTIONS=1 for more info.";var J=new WebAssembly.RuntimeError(H);throw o(J),J}var dh="data:application/octet-stream;base64,";function bc(H){return H.startsWith(dh)}function Mr(H){return H.startsWith("file://")}var nn;nn="tfjs-backend-wasm.wasm",bc(nn)||(nn=b(nn));function bu(H){try{if(H==nn&&ee)return new Uint8Array(ee);if(x)return x(H);throw"both async and sync fetching of the wasm failed"}catch(J){zr(J)}}function ph(){if(!ee&&(h||f)){if(typeof fetch=="function"&&!Mr(nn))return fetch(nn,{credentials:"same-origin"}).then(function(H){if(!H.ok)throw"failed to load wasm binary file at '"+nn+"'";return H.arrayBuffer()}).catch(function(){return bu(nn)});if(v)return new Promise(function(H,J){v(nn,function(ce){H(new Uint8Array(ce))},J)})}return Promise.resolve().then(function(){return bu(nn)})}function hh(){var H={env:$i,wasi_snapshot_preview1:$i};function J(Be,ze){var Tt=Be.exports;a.asm=Tt,te=a.asm.memory,Ms(te.buffer),Zs=a.asm.__indirect_function_table,rs(a.asm.__wasm_call_ctors),gc("wasm-instantiate")}ch("wasm-instantiate");function ce(Be){J(Be.instance)}function Se(Be){return ph().then(function(ze){return WebAssembly.instantiate(ze,H)}).then(function(ze){return ze}).then(Be,function(ze){A("failed to asynchronously prepare wasm: "+ze),zr(ze)})}function Qe(){return!ee&&typeof WebAssembly.instantiateStreaming=="function"&&!bc(nn)&&!Mr(nn)&&typeof fetch=="function"?fetch(nn,{credentials:"same-origin"}).then(function(Be){var ze=WebAssembly.instantiateStreaming(Be,H);return ze.then(ce,function(Tt){return A("wasm streaming compile failed: "+Tt),A("falling back to ArrayBuffer instantiation"),Se(ce)})}):Se(ce)}if(a.instantiateWasm)try{var Ze=a.instantiateWasm(H,J);return Ze}catch(Be){return A("Module.instantiateWasm callback failed with error: "+Be),!1}return Qe().catch(o),{}}var Uv,Gv;function yu(H){for(;H.length>0;){var J=H.shift();if(typeof J=="function"){J(a);continue}var ce=J.func;typeof ce=="number"?J.arg===void 0?vu(ce)():vu(ce)(J.arg):ce(J.arg===void 0?null:J.arg)}}function er(H){return H}function yc(H){var J=/\b_Z[\w\d_]+/g;return H.replace(J,function(ce){var Se=ce;return ce===Se?ce:Se+" ["+ce+"]"})}var as=[];function vu(H){var J=as[H];return J||(H>=as.length&&(as.length=H+1),as[H]=J=Zs.get(H)),J}function Hv(){var H=new Error;if(!H.stack){try{throw new Error}catch(J){H=J}if(!H.stack)return"(no stack trace available)"}return H.stack.toString()}function Ni(H,J){Zs.set(H,J),as[H]=J}function fh(){zr("")}function vc(H,J,ce){Jt.copyWithin(H,J,J+ce)}function xc(){return 2147483648}function sn(H){try{return te.grow(H-In.byteLength+65535>>>16),Ms(te.buffer),1}catch(J){}}function wc(H){var J=Jt.length;H=H>>>0;var ce=xc();if(H>ce)return!1;for(var Se=1;Se<=4;Se*=2){var Qe=J*(1+.2/Se);Qe=Math.min(Qe,H+100663296);var Ze=Math.min(ce,Nt(Math.max(H,Qe),65536)),Be=sn(Ze);if(Be)return!0}return!1}var Ti={mappings:{},buffers:[null,[],[]],printChar:function(H,J){var ce=Ti.buffers[H];J===0||J===10?((H===1?P:A)(Xe(ce,0)),ce.length=0):ce.push(J)},varargs:void 0,get:function(){Ti.varargs+=4;var H=Xt[Ti.varargs-4>>2];return H},getStr:function(H){var J=Je(H);return J},get64:function(H,J){return H}};function mh(H){return 0}function qv(H,J,ce,Se,Qe){}function jv(H,J,ce,Se){for(var Qe=0,Ze=0;Ze<ce;Ze++){var Be=Xt[J>>2],ze=Xt[J+4>>2];J+=8;for(var Tt=0;Tt<ze;Tt++)Ti.printChar(H,Jt[Be+Tt]);Qe+=ze}return Xt[Se>>2]=Qe,0}function gh(H){ne(H)}var kc=!1,$i={abort:fh,emscripten_memcpy_big:vc,emscripten_resize_heap:wc,fd_close:mh,fd_seek:qv,fd_write:jv,setTempRet0:gh},aT=hh(),Kv=a.___wasm_call_ctors=function(){return(Kv=a.___wasm_call_ctors=a.asm.__wasm_call_ctors).apply(null,arguments)},bh=a._init=function(){return(bh=a._init=a.asm.init).apply(null,arguments)},yh=a._init_with_threads_count=function(){return(yh=a._init_with_threads_count=a.asm.init_with_threads_count).apply(null,arguments)},Sc=a._get_threads_count=function(){return(Sc=a._get_threads_count=a.asm.get_threads_count).apply(null,arguments)},Ic=a._register_tensor=function(){return(Ic=a._register_tensor=a.asm.register_tensor).apply(null,arguments)},vh=a._dispose_data=function(){return(vh=a._dispose_data=a.asm.dispose_data).apply(null,arguments)},$e=a._dispose=function(){return($e=a._dispose=a.asm.dispose).apply(null,arguments)},xh=a._Abs=function(){return(xh=a._Abs=a.asm.Abs).apply(null,arguments)},Cc=a._Add=function(){return(Cc=a._Add=a.asm.Add).apply(null,arguments)},Lr=a._AddN=function(){return(Lr=a._AddN=a.asm.AddN).apply(null,arguments)},_i=a._All=function(){return(_i=a._All=a.asm.All).apply(null,arguments)},wh=a._Any=function(){return(wh=a._Any=a.asm.Any).apply(null,arguments)},Xv=a._ArgMax=function(){return(Xv=a._ArgMax=a.asm.ArgMax).apply(null,arguments)},kh=a._AvgPool=function(){return(kh=a._AvgPool=a.asm.AvgPool).apply(null,arguments)},Yv=a._BatchMatMul=function(){return(Yv=a._BatchMatMul=a.asm.BatchMatMul).apply(null,arguments)},Br=a._Ceil=function(){return(Br=a._Ceil=a.asm.Ceil).apply(null,arguments)},Sh=a._ClipByValue=function(){return(Sh=a._ClipByValue=a.asm.ClipByValue).apply(null,arguments)},Ih=a._Conv2D=function(){return(Ih=a._Conv2D=a.asm.Conv2D).apply(null,arguments)},Ch=a._Conv2DBackpropInput=function(){return(Ch=a._Conv2DBackpropInput=a.asm.Conv2DBackpropInput).apply(null,arguments)},Nh=a._Cos=function(){return(Nh=a._Cos=a.asm.Cos).apply(null,arguments)},Th=a._Cosh=function(){return(Th=a._Cosh=a.asm.Cosh).apply(null,arguments)},$h=a._CropAndResize=function(){return($h=a._CropAndResize=a.asm.CropAndResize).apply(null,arguments)},Nc=a._Cumprod=function(){return(Nc=a._Cumprod=a.asm.Cumprod).apply(null,arguments)},_h=a._Cumsum=function(){return(_h=a._Cumsum=a.asm.Cumsum).apply(null,arguments)},Ah=a._DepthToSpace=function(){return(Ah=a._DepthToSpace=a.asm.DepthToSpace).apply(null,arguments)},Eh=a._DepthwiseConv2dNative=function(){return(Eh=a._DepthwiseConv2dNative=a.asm.DepthwiseConv2dNative).apply(null,arguments)},Rh=a._Elu=function(){return(Rh=a._Elu=a.asm.Elu).apply(null,arguments)},Dh=a._Equal=function(){return(Dh=a._Equal=a.asm.Equal).apply(null,arguments)},Tc=a._Exp=function(){return(Tc=a._Exp=a.asm.Exp).apply(null,arguments)},Fh=a._FlipLeftRight=function(){return(Fh=a._FlipLeftRight=a.asm.FlipLeftRight).apply(null,arguments)},Oh=a._Floor=function(){return(Oh=a._Floor=a.asm.Floor).apply(null,arguments)},Vr=a._FloorDiv=function(){return(Vr=a._FloorDiv=a.asm.FloorDiv).apply(null,arguments)},xu=a._FusedBatchNorm=function(){return(xu=a._FusedBatchNorm=a.asm.FusedBatchNorm).apply(null,arguments)},Ph=a._FusedConv2D=function(){return(Ph=a._FusedConv2D=a.asm.FusedConv2D).apply(null,arguments)},zh=a._FusedDepthwiseConv2D=function(){return(zh=a._FusedDepthwiseConv2D=a.asm.FusedDepthwiseConv2D).apply(null,arguments)},Mh=a._Gather=function(){return(Mh=a._Gather=a.asm.Gather).apply(null,arguments)},Le=a._GatherNd=function(){return(Le=a._GatherNd=a.asm.GatherNd).apply(null,arguments)},Lh=a._Greater=function(){return(Lh=a._Greater=a.asm.Greater).apply(null,arguments)},Bh=a._GreaterEqual=function(){return(Bh=a._GreaterEqual=a.asm.GreaterEqual).apply(null,arguments)},Vh=a._LeakyRelu=function(){return(Vh=a._LeakyRelu=a.asm.LeakyRelu).apply(null,arguments)},Wh=a._Less=function(){return(Wh=a._Less=a.asm.Less).apply(null,arguments)},Uh=a._LessEqual=function(){return(Uh=a._LessEqual=a.asm.LessEqual).apply(null,arguments)},Gh=a._Log=function(){return(Gh=a._Log=a.asm.Log).apply(null,arguments)},wu=a._LogicalAnd=function(){return(wu=a._LogicalAnd=a.asm.LogicalAnd).apply(null,arguments)},$c=a._Max=function(){return($c=a._Max=a.asm.Max).apply(null,arguments)},_c=a._MaxPool=function(){return(_c=a._MaxPool=a.asm.MaxPool).apply(null,arguments)},Hh=a._Maximum=function(){return(Hh=a._Maximum=a.asm.Maximum).apply(null,arguments)},qh=a._Mean=function(){return(qh=a._Mean=a.asm.Mean).apply(null,arguments)},jh=a._Min=function(){return(jh=a._Min=a.asm.Min).apply(null,arguments)},Kh=a._Minimum=function(){return(Kh=a._Minimum=a.asm.Minimum).apply(null,arguments)},Xh=a._MirrorPad=function(){return(Xh=a._MirrorPad=a.asm.MirrorPad).apply(null,arguments)},Yh=a._Multiply=function(){return(Yh=a._Multiply=a.asm.Multiply).apply(null,arguments)},gt=a._Neg=function(){return(gt=a._Neg=a.asm.Neg).apply(null,arguments)},Qh=a._NonMaxSuppressionV3=function(){return(Qh=a._NonMaxSuppressionV3=a.asm.NonMaxSuppressionV3).apply(null,arguments)},Zh=a._NonMaxSuppressionV4=function(){return(Zh=a._NonMaxSuppressionV4=a.asm.NonMaxSuppressionV4).apply(null,arguments)},Jh=a._NonMaxSuppressionV5=function(){return(Jh=a._NonMaxSuppressionV5=a.asm.NonMaxSuppressionV5).apply(null,arguments)},Ai=a._NotEqual=function(){return(Ai=a._NotEqual=a.asm.NotEqual).apply(null,arguments)},Ac=a._OneHot=function(){return(Ac=a._OneHot=a.asm.OneHot).apply(null,arguments)},Ec=a._PadV2=function(){return(Ec=a._PadV2=a.asm.PadV2).apply(null,arguments)},Rc=a._Pow=function(){return(Rc=a._Pow=a.asm.Pow).apply(null,arguments)},ef=a._Prelu=function(){return(ef=a._Prelu=a.asm.Prelu).apply(null,arguments)},Dc=a._Prod=function(){return(Dc=a._Prod=a.asm.Prod).apply(null,arguments)},tf=a._RealDiv=function(){return(tf=a._RealDiv=a.asm.RealDiv).apply(null,arguments)},Qv=a._Relu=function(){return(Qv=a._Relu=a.asm.Relu).apply(null,arguments)},Fc=a._Relu6=function(){return(Fc=a._Relu6=a.asm.Relu6).apply(null,arguments)},Zv=a._ResizeBilinear=function(){return(Zv=a._ResizeBilinear=a.asm.ResizeBilinear).apply(null,arguments)},nf=a._Reverse=function(){return(nf=a._Reverse=a.asm.Reverse).apply(null,arguments)},sf=a._RotateWithOffset=function(){return(sf=a._RotateWithOffset=a.asm.RotateWithOffset).apply(null,arguments)},rf=a._Round=function(){return(rf=a._Round=a.asm.Round).apply(null,arguments)},af=a._Rsqrt=function(){return(af=a._Rsqrt=a.asm.Rsqrt).apply(null,arguments)},of=a._ScatterNd=function(){return(of=a._ScatterNd=a.asm.ScatterNd).apply(null,arguments)},uf=a._SelectV2=function(){return(uf=a._SelectV2=a.asm.SelectV2).apply(null,arguments)},lf=a._Sigmoid=function(){return(lf=a._Sigmoid=a.asm.Sigmoid).apply(null,arguments)},cf=a._Sin=function(){return(cf=a._Sin=a.asm.Sin).apply(null,arguments)},df=a._Softmax=function(){return(df=a._Softmax=a.asm.Softmax).apply(null,arguments)},pf=a._SparseFillEmptyRows=function(){return(pf=a._SparseFillEmptyRows=a.asm.SparseFillEmptyRows).apply(null,arguments)},hf=a._SparseReshape=function(){return(hf=a._SparseReshape=a.asm.SparseReshape).apply(null,arguments)},ff=a._SparseSegmentReduction=function(){return(ff=a._SparseSegmentReduction=a.asm.SparseSegmentReduction).apply(null,arguments)},mf=a._Sqrt=function(){return(mf=a._Sqrt=a.asm.Sqrt).apply(null,arguments)},gf=a._Square=function(){return(gf=a._Square=a.asm.Square).apply(null,arguments)},bf=a._SquaredDifference=function(){return(bf=a._SquaredDifference=a.asm.SquaredDifference).apply(null,arguments)},yf=a._Step=function(){return(yf=a._Step=a.asm.Step).apply(null,arguments)},vf=a._StridedSlice=function(){return(vf=a._StridedSlice=a.asm.StridedSlice).apply(null,arguments)},xf=a._Sub=function(){return(xf=a._Sub=a.asm.Sub).apply(null,arguments)},wf=a._Sum=function(){return(wf=a._Sum=a.asm.Sum).apply(null,arguments)},kf=a._Tan=function(){return(kf=a._Tan=a.asm.Tan).apply(null,arguments)},Sf=a._Tanh=function(){return(Sf=a._Tanh=a.asm.Tanh).apply(null,arguments)},If=a._Tile=function(){return(If=a._Tile=a.asm.Tile).apply(null,arguments)},Cf=a._TopK=function(){return(Cf=a._TopK=a.asm.TopK).apply(null,arguments)},Nf=a._Transform=function(){return(Nf=a._Transform=a.asm.Transform).apply(null,arguments)},Tf=a._Transpose=function(){return(Tf=a._Transpose=a.asm.Transpose).apply(null,arguments)},$f=a.__FusedMatMul=function(){return($f=a.__FusedMatMul=a.asm._FusedMatMul).apply(null,arguments)},_f=a._malloc=function(){return(_f=a._malloc=a.asm.malloc).apply(null,arguments)},Af=a._free=function(){return(Af=a._free=a.asm.free).apply(null,arguments)},Ef=a.___errno_location=function(){return(Ef=a.___errno_location=a.asm.__errno_location).apply(null,arguments)},Rf=a._emscripten_main_thread_process_queued_calls=function(){return(Rf=a._emscripten_main_thread_process_queued_calls=a.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Oc=a.stackSave=function(){return(Oc=a.stackSave=a.asm.stackSave).apply(null,arguments)},Pc=a.stackRestore=function(){return(Pc=a.stackRestore=a.asm.stackRestore).apply(null,arguments)},ku=a.stackAlloc=function(){return(ku=a.stackAlloc=a.asm.stackAlloc).apply(null,arguments)},Df=a.dynCall_iijjiiii=function(){return(Df=a.dynCall_iijjiiii=a.asm.dynCall_iijjiiii).apply(null,arguments)},Ff=a.dynCall_jiji=function(){return(Ff=a.dynCall_jiji=a.asm.dynCall_jiji).apply(null,arguments)};a.cwrap=Ie;var Ei;function Su(H){this.name="ExitStatus",this.message="Program terminated with exit("+H+")",this.status=H}Js=function H(){Ei||Iu(),Ei||(Js=H)};function Iu(H){if(H=H||c,Fn>0||(dc(),Fn>0))return;function J(){Ei||(Ei=!0,a.calledRun=!0,!oe&&(pc(),i(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),hc()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),J()},1)):J()}a.run=Iu;function Jv(H){ae=H,gu()||(a.onExit&&a.onExit(H),oe=!0),d(H,new Su(H))}if(a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();Iu();var Ri;u&&(Ri={uncaughtException:process.listeners("uncaughtException").filter(function(H){return!u.uncaughtException.indexOf(H)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(H){return!u.unhandledRejection.indexOf(H)>-1})});var Di;if(typeof r!="undefined")Di=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Di=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Ri){var Of=Di._dispose;Di._dispose=function(){Of(),Ri.uncaughtException.forEach(function(H){process.removeListener("uncaughtException",H)}),Ri.unhandledRejection.forEach(function(H){process.removeListener("unhandledRejection",H)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),x$=1e-7,w$=1e-4,Qd=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},ol=class{refCount(e){return On("refCount")}incRef(e){return On("incRef")}timerAvailable(){return!0}time(e){return On("time")}read(e){return On("read")}readSync(e){return On("readSync")}readToGPU(e,t){return On("readToGPU")}numDataIds(){return On("numDataIds")}disposeData(e,t){return On("disposeData")}write(e,t,n){return On("write")}move(e,t,n,s,r){return On("move")}memory(){return On("memory")}floatPrecision(){return On("floatPrecision")}epsilon(){return this.floatPrecision()===32?x$:w$}dispose(){return On("dispose")}};function On(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function tk(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,bd(e,t,n)}function k$(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,bd(e,n,s),bd(t,n,s)}function Gu(e,t,n){return Math.max(e,Math.min(t,n))}function S$(e){return e%2===0?e:e+1}function bd(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function I$(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function C$(e,t){let n=Math.random();return t*n+(1-n)*e}function N$(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function pn(e,t,n=""){F(Sr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ka(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function aa(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Yt(e)&&!n)for(let s=0;s<e.length;++s)aa(e[s],t,n);else t.push(e);return t}function dt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function T$(e){return e.length===0}function Sr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Zi(e){return e%1===0}function $$(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function _$(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function A$(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return tk(t),t}function Bu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function E$(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,i=()=>{if(e()){s();return}a++;let o=t(a);if(n!=null&&a>=n){r();return}setTimeout(i,o)};i()})}function R$(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function ts(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),F(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(s=>Zi(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function nk(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:ts(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(a!=null){if(a[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(a[i]==null||a[i]>o)&&e[o]===1&&(n.push(e[o]),s.push(o)),a[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),s.push(o))}return{newShape:n,keptDims:s}}function sk(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function rk(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function ak(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function ik(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function D$(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Yt(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function sm(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function ok(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function ar(e){return typeof e=="string"||e instanceof String}function uk(e){return typeof e=="boolean"}function lk(e){return typeof e=="number"}function Zd(e){return Array.isArray(e)?Zd(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":lk(e)?"float32":ar(e)?"string":uk(e)?"bool":"float32"}function hr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function yd(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function uo(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function ck(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let i=0;i<a;i++)r[i]=n[e+i]}else{let a=t[0],i=t.slice(1),o=i.reduce((u,l)=>u*l)*(s?2:1);for(let u=0;u<a;u++)r[u]=ck(e+u*o,i,n,s)}return r}function ji(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return ck(0,e,t,n)}function cg(e,t){let n=Jd(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function Jd(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function F$(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return ji(e,new Float32Array(n));if(t==="int32")return ji(e,new Int32Array(n));if(t==="bool")return ji(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function dg(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function O$(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function P$(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function pg(e){return e&&e.then&&typeof e.then=="function"}var lx="tfjsflags",z$=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=M$,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(K().getBool("IS_TEST")||K().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];K().getBool("IS_TEST")||K().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(pg(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);lx in e&&e[lx].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=B$(s,r)})}};function M$(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(L$(t,s[0],s[1]),s.join("="))),t}function L$(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function B$(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function K(){return dk}var dk=null;function V$(e){dk=e}var Wf;function pk(){if(Wf==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Wf=e}return Wf}function W$(){let e=pk();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function hg(e,t){let n=W$();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var lo="Abs",ul="Acos",ll="Acosh",Ir="Add",Sa="AddN",cl="All",dl="Any",Ia="ArgMax",pl="ArgMin",hl="Asin",fl="Asinh",ml="Atan",gl="Atanh",bl="Atan2",Ca="AvgPool",fg="AvgPoolGrad",ep="AvgPool3D",mg="AvgPool3DGrad",Na="BatchMatMul",co="BatchToSpaceND",gg="Bincount",U$="BroadcastTo",bg="BroadcastArgs",Ta="Cast",$a="Ceil",Cr="ClipByValue",tp="Complex",np="ComplexAbs",po="Concat",_a="Conv2D",yg="Conv2DBackpropFilter",Aa="Conv2DBackpropInput",sp="Conv3D",vg="Conv3DBackpropFilterV2",xg="Conv3DBackpropInputV2",Ea="Cos",Ra="Cosh",ho="Cumprod",Da="Cumsum",fo="CropAndResize",wg="DenseBincount",mo="DepthToSpace",Fa="DepthwiseConv2dNative",kg="DepthwiseConv2dNativeBackpropFilter",Sg="DepthwiseConv2dNativeBackpropInput",Ig="Diag",rp="Dilation2D",rm="Dilation2DBackpropInput",am="Dilation2DBackpropFilter",Oa="RealDiv",ap="Einsum",Pa="Elu",Cg="EluGrad",yl="Erf",go="Equal",za="Exp",bo="ExpandDims",yo="Expm1",Ng="FFT",vl="Fill",vo="FlipLeftRight",Ma="Floor",La="FloorDiv",Ba="FusedBatchNorm",xo="GatherV2",wo="GatherNd",ko="Greater",Va="GreaterEqual",Wa="Identity",Tg="IFFT",ip="Imag",xl="IsFinite",wl="IsInf",kl="IsNan",Ua="LeakyRelu",So="Less",Io="LessEqual",$g="LinSpace",Ga="Log",Sl="Log1p",Co="LogicalAnd",Il="LogicalNot",op="LogicalOr",G$="LogSoftmax",hpe="LowerBound",up="LRN",_g="LRNGrad",Ha="Max",qa="Maximum",ja="MaxPool",Ag="MaxPoolGrad",lp="MaxPool3D",Eg="MaxPool3DGrad",Rg="MaxPoolWithArgmax",Ka="Mean",Xa="Min",Ya="Minimum",Qa="MirrorPad",Cl="Mod",Dg="Multinomial",Za="Multiply",No="Neg",To="NotEqual",$o="NonMaxSuppressionV3",Nl="NonMaxSuppressionV4",_o="NonMaxSuppressionV5",Ao="OnesLike",Eo="OneHot",Ro="Pack",Ja="PadV2",fpe="Pool",ei="Pow",ti="Prelu",ni="Prod",Tl="Range",cp="Real",$l="Reciprocal",si="Relu",Do="Reshape",_l="ResizeNearestNeighbor",Fg="ResizeNearestNeighborGrad",ri="ResizeBilinear",Og="ResizeBilinearGrad",ai="Relu6",Fo="Reverse",Oo="Round",ii="Rsqrt",Po="ScatterNd",Pg="SearchSorted",zo="Select",Al="Selu",Mo="Slice",oi="Sin",Lo="Sinh",El="Sign",ui="Sigmoid",Rl="Softplus",li="Sqrt",ci="Sum",Bo="SpaceToBatchND",Vo="SplitV",di="Softmax",dp="SparseFillEmptyRows",Dl="SparseReshape",pp="SparseSegmentMean",hp="SparseSegmentSum",fp="SparseToDense",pi="SquaredDifference",Fl="Square",Wo="StridedSlice",mp="StringNGrams",zg="StringSplit",Mg="StringToHashBucketFast",hi="Sub",Uo="Tan",fi="Tanh",Nr="Tile",Go="TopK",Ho="Transform",Hs="Transpose",Lg="Unique",qo="Unpack",gp="UnsortedSegmentSum",mpe="UpperBound",jo="ZerosLike",mi="Step",vd="FromPixels",Ko="RotateWithOffset",ia="_FusedMatMul",oa="FusedConv2D",ua="FusedDepthwiseConv2D";function rr(...e){K().getBool("IS_TEST")||K().getBool("PROD")||console.warn(...e)}function H$(...e){K().getBool("IS_TEST")||K().getBool("PROD")||console.log(...e)}var Ji=hg("kernelRegistry",()=>new Map),Hu=hg("gradRegistry",()=>new Map);function im(e,t){let n=Bg(e,t);return Ji.get(n)}function cx(e){return Hu.get(e)}function om(e){let t=Ji.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,i]=r,[o]=a.split("_");o===e&&n.push(i)}return n}function Ol(e){let{kernelName:t,backendName:n}=e,s=Bg(t,n);Ji.has(s)&&rr(`The kernel '${t}' for backend '${n}' is already registered`),Ji.set(s,e)}function q$(e){let{kernelName:t}=e;Hu.has(t)&&K().getBool("DEBUG")&&rr(`Overriding the gradient for '${t}'`),Hu.set(t,e)}function gpe(e,t){let n=Bg(e,t);if(!Ji.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Ji.delete(n)}function bpe(e){if(!Hu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Hu.delete(e)}function ype(e,t){om(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});Ol(r)})}function Bg(e,t){return`${t}_${e}`}var w={};Ee(w,{arraysEqual:()=>Sr,assert:()=>F,assertNonNegativeIntegerDimensions:()=>dg,assertNonNull:()=>ka,assertShapesMatch:()=>pn,bytesFromStringArray:()=>ok,bytesPerElement:()=>sm,checkConversionForErrors:()=>ak,clamp:()=>Gu,computeStrides:()=>uo,createScalarValue:()=>Z$,createShuffledIndices:()=>A$,decodeString:()=>xd,distSquared:()=>N$,encodeString:()=>zl,fetch:()=>e_,fingerPrint64:()=>Q$,flatten:()=>aa,getArrayFromDType:()=>rk,getTypedArrayFromDType:()=>sk,hasEncodingLoss:()=>D$,hexToLong:()=>Pl,indexToLoc:()=>P$,inferDtype:()=>Zd,inferFromImplicitShape:()=>R$,isBoolean:()=>uk,isFunction:()=>hr,isInt:()=>Zi,isNumber:()=>lk,isPromise:()=>pg,isScalarShape:()=>T$,isString:()=>ar,isTypedArray:()=>Yt,isValidDtype:()=>ik,locToIndex:()=>O$,makeOnesTypedArray:()=>cg,makeZerosNestedTypedArray:()=>F$,makeZerosTypedArray:()=>Jd,nearestDivisor:()=>yd,nearestLargerEven:()=>S$,now:()=>qu,parseAxisParam:()=>ts,randUniform:()=>C$,repeatedTry:()=>E$,rightPad:()=>Bu,shuffle:()=>tk,shuffleCombo:()=>k$,sizeFromShape:()=>dt,sizeToSquarishShape:()=>_$,squeezeShape:()=>nk,sum:()=>I$,swap:()=>bd,tanh:()=>$$,toNestedArray:()=>ji,toTypedArray:()=>bp});var dx=wa(r$()),Kr=dx.default||dx;function Pl(e){return Kr.fromString(e,!0,16)}var hk=Pl("c3a5c85c97cb3127"),qr=Pl("b492b66fbe98f273"),an=Pl("9ae16a3b2f90404f");function um(e){return e.xor(e.shru(47))}function fk(e,t,n){let s=e.slice(t,t+n);return Kr.fromBytes(Array.from(s),!0,!0)}function lt(e,t){return fk(e,t,8)}function px(e,t){return fk(e,t,4)}function Lt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function or(e,t,n=Pl("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function j$(e,t,n,s,r,a){r=r.add(e),a=Lt(a.add(r).add(s),21);let i=r;return r=r.add(t),r=r.add(n),a=a.add(Lt(r,44)),[r.add(s),a.add(i)]}function Gc(e,t,n,s){return j$(lt(e,t),lt(e,t+8),lt(e,t+16),lt(e,t+24),n,s)}function K$(e,t=e.length){if(t>=8){let n=an.add(t*2),s=lt(e,0).add(an),r=lt(e,t-8),a=Lt(r,37).mul(n).add(s),i=Lt(s,25).add(r).mul(n);return or(a,i,n)}if(t>=4){let n=an.add(t*2),s=px(e,0);return or(s.shl(3).add(t),px(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),i=t+(r<<2);return um(an.mul(a).xor(hk.mul(i))).mul(an)}return an}function X$(e,t=e.length){let n=an.add(t*2),s=lt(e,0).mul(qr),r=lt(e,8),a=lt(e,t-8).mul(n),i=lt(e,t-16).mul(an);return or(Lt(s.add(r),43).add(Lt(a,30)).add(i),s.add(Lt(r.add(an),18)).add(a),n)}function Y$(e,t=e.length){let n=an.add(t*2),s=lt(e,0).mul(an),r=lt(e,8),a=lt(e,t-8).mul(n),i=lt(e,t-16).mul(an),o=Lt(s.add(r),43).add(Lt(a,30)).add(i),u=or(o,s.add(Lt(r.add(an),18)).add(a),n),l=lt(e,16).mul(n),c=lt(e,24),p=o.add(lt(e,t-32)).mul(n),d=u.add(lt(e,t-24)).mul(n);return or(Lt(l.add(c),43).add(Lt(p,30)).add(d),l.add(Lt(c.add(s),18)).add(p),n)}function Q$(e,t=e.length){let n=Kr.fromNumber(81,!0);if(t<=32)return t<=16?K$(e,t):X$(e,t);if(t<=64)return Y$(e,t);let s=n,r=n.mul(qr).add(113),a=um(r.mul(an).add(113)).mul(an),i=[Kr.UZERO,Kr.UZERO],o=[Kr.UZERO,Kr.UZERO];s=s.mul(an).add(lt(e,0));let u=0,l=(t-1>>6)*64,c=l+(t-1&63)-63;do s=Lt(s.add(r).add(i[0]).add(lt(e,u+8)),37).mul(qr),r=Lt(r.add(i[1]).add(lt(e,u+48)),42).mul(qr),s=s.xor(o[1]),r=r.add(i[0]).add(lt(e,u+40)),a=Lt(a.add(o[0]),33).mul(qr),i=Gc(e,u,i[1].mul(qr),s.add(o[0])),o=Gc(e,u+32,a.add(o[1]),r.add(lt(e,u+16))),[a,s]=[s,a],u+=64;while(u!==l);let p=qr.add(a.and(255).shl(1));return u=c,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),s=Lt(s.add(r).add(i[0]).add(lt(e,u+8)),37).mul(p),r=Lt(r.add(i[1]).add(lt(e,u+48)),42).mul(p),s=s.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(lt(e,u+40))),a=Lt(a.add(o[0]),33).mul(p),i=Gc(e,u,i[1].mul(p),s.add(o[0])),o=Gc(e,u+32,a.add(o[1]),r.add(lt(e,u+16))),[a,s]=[s,a],or(or(i[0],o[0],p).add(um(r).mul(hk)).add(a),or(i[1],o[1],p).add(s),p)}function Z$(e,t){return t==="string"?zl(e):bp([e],t)}function J$(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function bp(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=aa(e)),K().getBool("DEBUG")&&ak(e,t),J$(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function qu(){return K().platform.now()}function e_(e,t){return K().platform.fetch(e,t)}function zl(e,t="utf-8"){return t=t||"utf-8",K().platform.encode(e,t)}function xd(e,t="utf-8"){return t=t||"utf-8",K().platform.decode(e,t)}var t_=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new s_)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,i=qu();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let u of s)u.dataSync();a=Promise.resolve({kernelMs:qu()-i})}if(K().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let u=0;u<s.length;u++){let l=s[u];l.data().then(c=>{n_(c,l.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(u=>u.kernelMs),extraInfo:a.then(u=>u.getExtraProfileInfo!=null?u.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(i=>{Promise.all([i.data(),s,a]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function n_(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var s_=class{logKernelProfile(e,t,n,s,r,a){let i=typeof s=="number"?Bu(`${s}ms`,9):s.error,o=Bu(e,25),u=t.rank,l=t.size,c=Bu(t.shape.toString(),14),p="";for(let d in r){let h=r[d];if(h!=null){let f=h.shape||t.shape,m=f.length;p+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${o} %c${i} %c${u}D ${c} %c${l} %c${p} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function r_(e,t,n){let s={},r={};for(let u=0;u<t.length;u++)s[t[u].id]=!0;for(let u=0;u<e.length;u++){let l=e[u],c=l.inputs;for(let p in c){let d=c[p],h=!1;for(let f=0;f<t.length;f++)if(s[d.id]){l.outputs.forEach(m=>s[m.id]=!0),h=!0,r[l.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let i={};for(let u=e.length-1;u>=0;u--){let l=e[u],c=l.inputs;for(let p=0;p<l.outputs.length;p++)if(a[l.outputs[p].id]){for(let d in c)a[c[d].id]=!0,i[l.id]=!0;break}}let o=[];for(let u=0;u<e.length;u++){let l=e[u];if(r[l.id]&&i[l.id]){let c={};for(let d in l.inputs){let h=l.inputs[d];s[h.id]&&(c[d]=h)}let p=Object.assign({},l);p.inputs=c,p.outputs=l.outputs,o.push(p)}}return o}function a_(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],i=[];if(a.outputs.forEach(u=>{let l=e[u.id];l!=null?i.push(l):i.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let o=a.gradient(i);for(let u in a.inputs){if(!(u in o))throw new Error(`Cannot backprop through input ${u}. Available gradients found: ${Object.keys(o)}.`);let l=n(()=>o[u]());if(l.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${u} must have 'float32' dtype, but has '${l.dtype}'`);let c=a.inputs[u];if(!Sr(l.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${u}' has shape '${l.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=l;else{let p=e[c.id];e[c.id]=s(p,l),p.dispose()}}}}var hx=20,Tu=3,Uf=7;function i_(e,t,n,s){let r=uo(t),a=o_(e,t,n,r),i=t.length,o=rd(e,t,n,r,a),u=["Tensor"];return s&&(u.push(` dtype: ${n}`),u.push(` rank: ${i}`),u.push(` shape: [${t}]`),u.push(" values:")),u.push(o.map(l=>" "+l).join(`
|
|
`)),u.join(`
|
|
`)}function o_(e,t,n,s){let r=dt(t),a=s[s.length-1],i=new Array(a).fill(0),o=t.length,u=n==="complex64"?Ru(e):e;if(o>1)for(let l=0;l<r/a;l++){let c=l*a;for(let p=0;p<a;p++)i[p]=Math.max(i[p],Eu(u[c+p],0,n).length)}return i}function Eu(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(Uf))} + ${parseFloat(e[1].toFixed(Uf))}j`:ar(e)?s=`'${e}'`:n==="bool"?s=mk(e):s=parseFloat(e.toFixed(Uf)).toString(),Bu(s,t)}function mk(e){return e===0?"false":"true"}function rd(e,t,n,s,r,a=!0){let i=n==="complex64"?2:1,o=t[0],u=t.length;if(u===0){if(n==="complex64"){let m=Ru(e);return[Eu(m[0],0,n)]}return n==="bool"?[mk(e[0])]:[e[0].toString()]}if(u===1){if(o>hx){let g=Tu*i,b=Array.from(e.slice(0,g)),y=Array.from(e.slice((o-Tu)*i,o*i));return n==="complex64"&&(b=Ru(b),y=Ru(y)),["["+b.map((v,x)=>Eu(v,r[x],n)).join(", ")+", ..., "+y.map((v,x)=>Eu(v,r[o-Tu+x],n)).join(", ")+"]"]}let m=n==="complex64"?Ru(e):Array.from(e);return["["+m.map((g,b)=>Eu(g,r[b],n)).join(", ")+"]"]}let l=t.slice(1),c=s.slice(1),p=s[0]*i,d=[];if(o>hx){for(let m=0;m<Tu;m++){let g=m*p,b=g+p;d.push(...rd(e.slice(g,b),l,n,c,r,!1))}d.push("...");for(let m=o-Tu;m<o;m++){let g=m*p,b=g+p;d.push(...rd(e.slice(g,b),l,n,c,r,m===o-1))}}else for(let m=0;m<o;m++){let g=m*p,b=g+p;d.push(...rd(e.slice(g,b),l,n,c,r,m===o-1))}let h=u===2?",":"";d[0]="["+d[0]+h;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+h;let f=`,
|
|
`;for(let m=2;m<u;m++)f+=`
|
|
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(a?"":f),d}function Ru(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Vt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=dt(e),n!=null){let s=n.length;F(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||rk(t,this.size),this.strides=uo(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return cs().makeTensor(this.values,this.shape,this.dtype)}},cs=null,Ui=null,u_=null;function l_(e){cs=e}function c_(e){Ui=e}function d_(e){u_=e}var et=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=dt(e),this.strides=uo(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Ui.buffer(this.shape,this.dtype,e)}bufferSync(){return Ui.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return ji(this.shape,e,this.dtype==="complex64")}arraySync(){return ji(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=cs().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>xd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),cs().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=cs().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>xd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await cs().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(cs().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Ui.print(this,e)}clone(){return this.throwIfDisposed(),Ui.clone(this)}toString(e=!1){let t=this.dataSync();return i_(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Ui.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),cs().makeVariable(this,e,t,n)}};Object.defineProperty(et,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function p_(){return hg("Tensor",()=>et)}p_();var wd=class extends et{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!Sr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);cs().disposeTensor(this),this.dataId=e.dataId,cs().incRef(this,null)}dispose(){cs().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(wd,Symbol.hasInstance,{value:e=>e instanceof et&&e.assign!=null&&e.assign instanceof Function});var _s={};Ee(_s,{assertTypesMatch:()=>xk,getTensorsInContainer:()=>Vg,isTensorInList:()=>m_,makeTypesMatch:()=>xt});var h_=(e=>(e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6",e))(h_||{}),gk=(e=>(e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64",e))(gk||{}),bk=(e=>(e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64",e))(bk||{}),yk=(e=>(e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64",e))(yk||{}),vk=(e=>(e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64",e))(vk||{}),f_={float32:yk,int32:gk,bool:bk,complex64:vk};function ln(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return f_[e][t]}function yp(e){return ln(e,"int32")}function xt(e,t){if(e.dtype===t.dtype)return[e,t];let n=ln(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function xk(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function m_(e,t){return t.some(n=>n.id===e.id)}function Vg(e){let t=[];return wk(e,t,new Set),t}function wk(e,t,n){if(e==null)return;if(e instanceof et){t.push(e);return}if(!g_(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),wk(a,t,n))}}function g_(e){return Array.isArray(e)||typeof e=="object"}function Gf(e){return e.kernelName!=null}var fx=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},lm=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new fx}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(rr(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new t_(this.backendInstance),!0}setupRegisteredKernels(){om(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){om(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof ol)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,rr(`Initialization of backend ${e} failed`),rr(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return rr(`Initialization of backend ${e} failed`),rr(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return lm.nextTensorId++}nextVariableId(){return lm.nextVariableId++}clone(e){let t=z.runKernel(Wa,{x:e}),n={x:e},s=a=>({x:()=>{let i="float32",o={x:a},u={dtype:i};return z.runKernel(Ta,o,u)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(im(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=s-t-r-a;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,u=Gf(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Gf(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=im(h,this.backendName);F(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let b=this.backend.numDataIds();o=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,b,y);let v=y.map(x=>x.rank!=null?x:this.makeTensorFromTensorInfo(x));if(s){let x=this.getTensorsForGradient(h,f,v);n=this.saveTensorsForBackwardMode(x)}return v}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,f));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(u,m,g),g}}let{inputs:l,attrs:c}=e,p=Gf(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(u,l,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),s&&this.addTapeNode(u,l,t,p,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:u,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(l).map(h=>l[h]!=null?l[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=cx(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],i;s.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(u=>t[u])):i=r.map(u=>t[u]);let o=n.filter((u,l)=>a[l]);return i.concat(o)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&ar(e[0])&&(r=e.map(o=>zl(o)));let a=s.write(r,t,n),i=new et(t,n,a,this.nextTensorId());if(this.trackTensor(i,s),n==="string"){let o=this.state.tensorInfo.get(a),u=ok(r);this.state.numBytes+=u-o.bytes,o.bytes=u}return i}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,s)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:s,dtype:r}=e,a=new et(s,r,n,this.nextTensorId());return this.trackTensor(a,t),a}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new wd(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*sm(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof wd||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*sm(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=cx(e);o!=null&&(s=o.gradFunc),s!=null&&(i.gradient=u=>(u=u.map((l,c)=>{if(l==null){let p=n[c],d=Jd(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return l}),s(u.length>1?u:u[0],r,a))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Vg(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(r instanceof et,()=>"The result y returned by f() must be a tensor.");let a=r_(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?b_(r.shape):n,a_(i,a,u=>this.tidy(u),y_);let o=t.map(u=>i[u.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(u=>{for(let l of u.saved)l.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return F(hr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof et),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((i,o)=>{s[o]=i});let r=(i,o)=>(n=e(...t,o),F(n.value instanceof et,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(hr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(i,o)=>{let u=n.gradFunc(i,o),l=Array.isArray(u)?u:[u];F(l.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(l.every(p=>p instanceof et),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return l.forEach((p,d)=>{c[d]=()=>p}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=qu(),n=await this.backend.time(e);return n.wallMs=qu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new fx;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}},Wg=lm;Wg.nextTensorId=0;Wg.nextVariableId=0;function b_(e){let t=cg(dt(e),"float32");return z.makeTensor(t,e,"float32")}function kk(){let e=pk();if(e._tfengine==null){let t=new z$(e);e._tfengine=new Wg(t)}return V$(e._tfengine.ENV),l_(()=>e._tfengine),e._tfengine}var z=kk();function y_(e,t){let n={a:e,b:t};return z.runKernel(Ir,n)}var vp={};Ee(vp,{isBrowser:()=>Sk,isMobile:()=>w_,mockIsMobile:()=>x_});function v_(){return typeof navigator!="undefined"&&navigator!=null}var cm;function x_(e){cm=e}function w_(e){if(cm!==void 0)return cm;if(e||v_()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Sk(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Kn=K();Kn.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Kn.registerFlag("IS_BROWSER",()=>Sk());Kn.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Kn.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Kn.registerFlag("PROD",()=>!1);Kn.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Kn.getBool("DEBUG"));Kn.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Kn.registerFlag("IS_TEST",()=>!1);Kn.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Kn.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Kn.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function Rs(e,t){let n=e;if(Yt(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||Yt(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&K().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Ik(e,s,[]),s}function Ik(e,t,n){if(n=n||[],!Array.isArray(e)&&!Yt(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)Ik(e[r],s,n.concat(r))}function mx(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function _(e,t,n,s="numeric"){if(e instanceof et)return mx(s,e.dtype,t,n),e;let r=Zd(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),mx(s,r,t,n),e==null||!Yt(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let u=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${u}'`)}let a=Rs(e,r);!Yt(e)&&!Array.isArray(e)&&(e=[e]);let o=r!=="string"?bp(e,r):aa(e,[],!0);return z.makeTensor(o,a,r)}function ju(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,i)=>_(a,`${t}[${i}]`,n,s))}var k_="__op";function L(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+k_;let r=(...a)=>{z.startScope(n);try{let i=s(...a);return pg(i)&&console.error("Cannot return a Promise inside of tidy."),z.endScope(i),i}catch(i){throw z.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function S_(e,t){let n=_(e,"real","complex"),s=_(t,"imag","complex");pn(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return z.runKernel(tp,r)}var fr=L({complex_:S_});function Tr(e,t,n,s){if(s==null&&(s=Zd(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Yt(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){dg(t);let r=dt(t),a=dt(n);F(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let i=0;i<n.length;++i){let o=n[i],u=i===n.length-1?o!==dt(t.slice(i)):!0;F(n[i]===t[i]||!u,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Yt(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?bp(e,s):aa(e,[],!0),z.makeTensor(e,t,s)}function ms(e,t,n){let s=Rs(e,n);return Tr(e,t,s,n)}var dm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},kd=4;async function I_(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],u=Array.isArray(e)?e[i].tensor:e[o];if(u.dtype!=="float32"&&u.dtype!=="int32"&&u.dtype!=="bool"&&u.dtype!=="string"&&u.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${u.dtype}`);let l={name:o,shape:u.shape,dtype:u.dtype};if(u.dtype==="string"){let c=new Promise(async p=>{let d=await u.bytes(),h=d.reduce((g,b)=>g+b.length,0)+kd*d.length,f=new Uint8Array(h),m=0;for(let g=0;g<d.length;g++){let b=d[g],y=new Uint8Array(new Uint32Array([b.length]).buffer);f.set(y,m),m+=kd,f.set(b,m),m+=b.length}p(f)});s.push(c)}else s.push(u.data());t!=null&&(l.group=t),n.push(l)}let a=await Promise.all(s);return{data:C_(a),specs:n}}function Ck(e,t){let n={},s,r=0;for(let a of t){let i=a.name,o=a.dtype,u=a.shape,l=dt(u),c;if("quantization"in a){let p=a.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${a.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${a.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=dm[p.dtype],h=e.slice(r,r+l*d),f=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=g*p.scale+p.min}}else if(p.dtype==="float16")s===void 0&&(s=E_()),c=s(f);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=l*d}else if(o==="string"){let p=dt(a.shape);c=[];for(let d=0;d<p;d++){let h=new Uint32Array(e.slice(r,r+kd))[0];r+=kd;let f=new Uint8Array(e.slice(r,r+h));c.push(f),r+=h}}else{let p=dm[o],d=e.slice(r,r+l*p);if(o==="float32")c=new Float32Array(d);else if(o==="int32")c=new Int32Array(d);else if(o==="bool")c=new Uint8Array(d);else if(o==="complex64"){c=new Float32Array(d);let h=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let b=0;b<h.length;b++)h[b]=c[b*2],f[b]=c[b*2+1];let m=ms(h,u,"float32"),g=ms(f,u,"float32");n[i]=fr(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=l*p}o!=="complex64"&&(n[i]=ms(c,u,o))}return n}function C_(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var Ug=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function gx(e){return Ug?Buffer.byteLength(e):new Blob([e]).size}function N_(e){if(Ug)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function T_(e){if(Ug){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function Gg(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function bx(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Nk(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Hg(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function Ml(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:gx(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:gx(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function $_(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)===0;)r-=8388608,s<<=1;return s&=-8388609,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function __(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function A_(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function E_(){let e=$_(),t=__(),n=A_();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let i=0;i<s.length;i++){let o=s[i],u=e[n[o>>10]+(o&1023)]+t[o>>10];a[i]=u}return new Float32Array(r)}}var wt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return wt.instance==null&&(wt.instance=new wt),wt.instance}static registerSaveRouter(e){wt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){wt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return wt.getHandlers(e,"save")}static getLoadHandlers(e,t){return wt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?wt.getInstance().loadRouters:wt.getInstance().saveRouters).forEach(a=>{let i=a(e,n);i!==null&&s.push(i)}),s}},R_=e=>wt.registerSaveRouter(e),D_=e=>wt.registerLoadRouter(e),F_=e=>wt.getSaveHandlers(e),O_=(e,t)=>wt.getLoadHandlers(e,t),pm="tensorflowjs",hm=1,Zr="models_store",ir="model_info_store";function Tk(){if(!K().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function fm(e){let t=e.result;t.createObjectStore(Zr,{keyPath:"modelPath"}),t.createObjectStore(ir,{keyPath:"modelPath"})}var la=class{constructor(e){if(this.indexedDB=Tk(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(pm,hm);r.onupgradeneeded=()=>fm(r),r.onsuccess=()=>{let a=r.result;if(t==null){let i=a.transaction(Zr,"readonly"),u=i.objectStore(Zr).get(this.modelPath);u.onsuccess=()=>{if(u.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(u.result.modelArtifacts)},u.onerror=l=>(a.close(),s(u.error)),i.oncomplete=()=>a.close()}else{let i=Ml(t),o=a.transaction(ir,"readwrite"),u=o.objectStore(ir),l=u.put({modelPath:this.modelPath,modelArtifactsInfo:i}),c;l.onsuccess=()=>{c=a.transaction(Zr,"readwrite");let d=c.objectStore(Zr).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});d.onsuccess=()=>n({modelArtifactsInfo:i}),d.onerror=h=>{u=o.objectStore(ir);let f=u.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(d.error)),f.onerror=m=>(a.close(),s(d.error))}},l.onerror=p=>(a.close(),s(l.error)),o.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};la.URL_SCHEME="indexeddb://";var $k=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(la.URL_SCHEME)?P_(e.slice(la.URL_SCHEME.length)):null;wt.registerSaveRouter($k);wt.registerLoadRouter($k);function P_(e){return new la(e)}function z_(e){return e.startsWith(la.URL_SCHEME)?e.slice(la.URL_SCHEME.length):e}var M_=class{constructor(){this.indexedDB=Tk()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(pm,hm);n.onupgradeneeded=()=>fm(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(ir,"readonly"),i=r.objectStore(ir).getAll();i.onsuccess=()=>{let o={};for(let u of i.result)o[u.modelPath]=u.modelArtifactsInfo;e(o)},i.onerror=o=>(s.close(),t(i.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=z_(e),new Promise((t,n)=>{let s=this.indexedDB.open(pm,hm);s.onupgradeneeded=()=>fm(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(ir,"readwrite"),i=a.objectStore(ir),o=i.get(e),u;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let l=i.delete(e),c=()=>{u=r.transaction(Zr,"readwrite");let d=u.objectStore(Zr).delete(e);d.onsuccess=()=>t(o.result.modelArtifactsInfo),d.onerror=h=>n(o.error)};l.onsuccess=c,l.onerror=p=>(c(),r.close(),n(o.error))}},o.onerror=l=>(r.close(),n(o.error)),a.oncomplete=()=>{u==null?r.close():u.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},Us="/",Gi="tensorflowjs_models",_k="info",L_="model_topology",B_="weight_specs",V_="weight_data",W_="model_metadata";function Ak(e){return{info:[Gi,e,_k].join(Us),topology:[Gi,e,L_].join(Us),weightSpecs:[Gi,e,B_].join(Us),weightData:[Gi,e,V_].join(Us),modelMetadata:[Gi,e,W_].join(Us)}}function Ek(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function U_(e){let t=e.split(Us);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(Us)}function G_(e){return e.startsWith(ca.URL_SCHEME)?e.slice(ca.URL_SCHEME.length):e}var ca=class{constructor(e){if(!K().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Ak(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=Ml(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,N_(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw Ek(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer),i.trainingConfig!=null&&(t.trainingConfig=i.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=T_(a),t}};ca.URL_SCHEME="localstorage://";var Rk=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ca.URL_SCHEME)?H_(e.slice(ca.URL_SCHEME.length)):null;wt.registerSaveRouter(Rk);wt.registerLoadRouter(Rk);function H_(e){return new ca(e)}var q_=class{constructor(){F(K().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Gi+Us,n=Us+_k;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=U_(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=G_(e);let t=Ak(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return Ek(t),n}},Ki="://",zn=class{constructor(){this.managers={}}static getInstance(){return zn.instance==null&&(zn.instance=new zn),zn.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Ki)&&(e=e.slice(0,e.indexOf(Ki))),F(e.length>0,()=>"scheme must not be an empty string.");let n=zn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function ad(e){if(e.indexOf(Ki)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${zn.getSchemes().join(",")}`);return{scheme:e.split(Ki)[0],path:e.split(Ki)[1]}}async function Dk(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=wt.getLoadHandlers(e);F(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=wt.getSaveHandlers(t);F(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let i=a[0],o=ad(e).scheme,u=ad(e).path,l=o===ad(e).scheme,c=await r.load();n&&l&&await zn.getManager(o).removeModel(u);let p=await i.save(c);return n&&!l&&await zn.getManager(o).removeModel(u),p.modelArtifactsInfo}async function j_(){let e=zn.getSchemes(),t={};for(let n of e){let s=await zn.getManager(n).listModels();for(let r in s){let a=n+Ki+r;t[a]=s[r]}}return t}async function K_(e){let t=ad(e);return zn.getManager(t.scheme).removeModel(t.path)}async function X_(e,t){return Dk(e,t,!1)}async function Y_(e,t){return Dk(e,t,!0)}var Q_=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(K().get("IS_BROWSER")){K().setPlatform("browser",new Q_);try{zn.registerManager(ca.URL_SCHEME,new q_)}catch(e){}try{zn.registerManager(la.URL_SCHEME,new M_)}catch(e){}}var Z_={importFetch:()=>a$()},Hf,J_=class{constructor(){this.util=i$(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return K().global.fetch!=null?K().global.fetch(e,t):(Hf==null&&(Hf=Z_.importFetch()),Hf(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};K().get("IS_NODE")&&!K().get("IS_BROWSER")&&K().setPlatform("node",new J_);function Ae(e,t="float32",n){return t=t||"float32",dg(e),new Vt(e,t,n)}function eA(e,t){let n=_(e,"x","cast");if(!ik(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return z.runKernel(Ta,s,r)}var le=L({cast_:eA});function tA(e){let n={x:_(e,"x","clone","string_or_numeric")};return z.runKernel(Wa,n)}var ur=L({clone_:tA});function nA(e,t=!1){console.log(e.toString(t))}kk();var sA={buffer:Ae,cast:le,clone:ur,print:nA};c_(sA);var An={};Ee(An,{browserFiles:()=>cA,browserHTTPRequest:()=>mA,concatenateArrayBuffers:()=>Gg,copyModel:()=>X_,decodeWeights:()=>Ck,encodeWeights:()=>I_,fromMemory:()=>bA,fromMemorySync:()=>Mk,getLoadHandlers:()=>O_,getModelArtifactsForJSON:()=>Hg,getModelArtifactsInfoForJSON:()=>Ml,getSaveHandlers:()=>F_,http:()=>jg,isHTTPScheme:()=>gm,listModels:()=>j_,loadWeights:()=>dA,moveModel:()=>Y_,registerLoadRouter:()=>D_,registerSaveRouter:()=>R_,removeModel:()=>K_,weightsLoaderFactory:()=>Ok,withSaveHandler:()=>yA,withSaveHandlerSync:()=>vA});var rA="model",aA=".json",iA=".weights.bin";function yx(e){return new Promise(t=>setTimeout(t)).then(e)}var mm=class{constructor(e){if(!K().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(mm.URL_SCHEME)&&(e=e.slice(mm.URL_SCHEME.length)),(e==null||e.length===0)&&(e=rA),this.modelJsonFileName=e+aA,this.weightDataFileName=e+iA}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=Nk(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await yx(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await yx(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Ml(e)}}}},Sd=mm;Sd.URL_SCHEME="downloads://";var oA=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let o=Hg(r,u=>this.loadWeights(u));e(o)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Gg(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let i=a.target.result;n(i)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>bx(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let i=bx(a);if(t.indexOf(i)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${i}'`);if(t.push(i),n.indexOf(i)===-1)throw new Error(`Weight file with basename '${i}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(i)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},uA=e=>K().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Sd.URL_SCHEME)?lA(e.slice(Sd.URL_SCHEME.length)):null;wt.registerSaveRouter(uA);function lA(e="model"){return new Sd(e)}function cA(e){return new oA(e)}function vx(e,t,n,s){i(e),n=n==null?0:n,s=s==null?1:s,o(n,s);let r=0,a=u=>(u.then(l=>{let c=n+ ++r/e.length*(s-n);return t(c),l}),u);function i(u){F(u!=null&&Array.isArray(u)&&u.length>0,()=>"promises must be a none empty array")}function o(u,l){F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${u}`),F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${l}`),F(l>=u,()=>`startFraction must be no more than endFraction, but got startFraction ${u} and endFraction ${l}`)}return Promise.all(e.map(a))}async function Fk(e,t){t==null&&(t={});let n=t.fetchFunc==null?K().platform.fetch:t.fetchFunc,s=e.map(p=>n(p,t.requestInit,{isBinary:!0})),r=0,a=.5,o=(t.onProgress==null?await Promise.all(s):await vx(s,t.onProgress,r,a)).map(p=>p.arrayBuffer()),u=.5,l=1;return t.onProgress==null?await Promise.all(o):await vx(o,t.onProgress,u,l)}async function dA(e,t="",n,s){return Ok(i=>Fk(i,{requestInit:s}))(e,t,n)}function Ok(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},i=s!=null?s.map(()=>!1):[],o=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let b="quantization"in g?g.quantization.dtype:g.dtype,y=dm[b]*dt(g.shape),v=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:y})};s!=null?s.forEach((x,k)=>{x===g.name&&(v(),i[k]=!0)}):v(),o.push(g.name),m+=y})}),!i.every(h=>h)){let h=s.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let u=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),l=[];u.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;l.push(m)})});let c=await e(l),p={},d=0;return u.forEach(h=>{let f=t[h].paths.length,m=0;for(let x=0;x<f;x++)m+=c[d+x].byteLength;let g=new ArrayBuffer(m),b=new Uint8Array(g),y=0;for(let x=0;x<f;x++){let k=new Uint8Array(c[d+x]);b.set(k,y),y+=k.byteLength}a[h].forEach(x=>{let k=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),I=Ck(k,[x.manifestEntry]);for(let $ in I)p[$]=I[$]}),d+=f}),p}}var pA="application/octet-stream",hA="application/json",qg=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=K().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=Nk(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:hA}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:pA}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Ml(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Hg(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=fA(t),r=this.weightPathPrefix||n,a=[];for(let l of e)a.push(...l.weights);let i=[],o=[];for(let l of e)for(let c of l.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(c)):i.push(r+c+s);this.weightUrlConverter&&i.push(...await Promise.all(o));let u=await Fk(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Gg(u)]}};qg.URL_SCHEME_REGEX=/^https?:\/\//;function fA(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function gm(e){return e.match(qg.URL_SCHEME_REGEX)!=null}var Pk=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>gm(s)):n=gm(e),n)return jg(e,t)}return null};wt.registerSaveRouter(Pk);wt.registerLoadRouter(Pk);function jg(e,t){return new qg(e,t)}function mA(e,t){return jg(e,t)}var qf=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},zk=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},gA=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function bA(e,t,n,s){let r=arguments;return new gA(Mk(...r))}function Mk(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new qf(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new qf({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new qf({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function yA(e){return new zk(e)}function vA(e){return new zk(e)}var xA={};Ee(xA,{confusionMatrix:()=>_A});function wA(e,t,n=!1,s=!1){let r=_(e,"a","matMul"),a=_(t,"b","matMul");[r,a]=xt(r,a);let i={a:r,b:a},o={transposeA:n,transposeB:s};return z.runKernel(Na,i,o)}var We=L({matMul_:wA});function kA(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:_(e,"indices","oneHot","int32")},i={depth:t,onValue:n,offValue:s};return z.runKernel(Eo,a,i)}var Id=L({oneHot_:kA});function vpe(){K().set("PROD",!0)}function xpe(){K().set("DEBUG",!0)}function wpe(){K().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Lk(e){K().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}d_(Lk);function kpe(){z.disposeVariables()}function ds(){return z}function bm(){return z.memory()}function Spe(e){return z.profile(e)}function q(e,t){return z.tidy(e,t)}function De(e){Vg(e).forEach(n=>n.dispose())}function Ht(e){return z.keep(e)}function Ipe(e){return z.time(e)}function Cpe(e){return z.setBackend(e)}function Npe(){return z.ready()}function Tpe(){return z.backendName}function $pe(e){z.removeBackend(e)}function _pe(e){return z.findBackend(e)}function Ape(e){return z.findBackendFactory(e)}function xp(e,t,n=1){return z.registerBackend(e,t,n)}function SA(){return z.backend}function Epe(e,t){K().setPlatform(e,t)}function IA(e){let n={input:_(e,"input","imag")};return z.runKernel(ip,n)}var wp=L({imag_:IA});function CA(e){let n={x:_(e,"x","neg")};return z.runKernel(No,n)}var vt=L({neg_:CA});function NA(e){let n={input:_(e,"input","real")};return z.runKernel(cp,n)}var Ku=L({real_:NA});function TA(e,t,n){let s=_(e,"x","transpose");if(t==null&&(t=s.shape.map((i,o)=>o).reverse()),F(s.rank===t.length,()=>`Error in transpose: rank of input ${s.rank} must match length of perm ${t}.`),t.forEach(i=>{F(i>=0&&i<s.rank,()=>`All entries in 'perm' must be between 0 and ${s.rank-1} but got ${t}`)}),s.rank<=1)return s.clone();let r={x:s},a={perm:t};return s.dtype==="complex64"?q(()=>{let i=Ku(s),o=wp(s);return i=z.runKernel(Hs,{x:i},a),o=z.runKernel(Hs,{x:o},a),n&&(o=vt(o)),fr(i,o)}):z.runKernel(Hs,r,a)}var Ge=L({transpose_:TA});function $A(e,t,n){let s=_(e,"labels","confusionMatrix"),r=_(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),F(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),F(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=Id(le(s,"int32"),n),i=Id(le(r,"int32"),n),o=Ge(a),u=We(o,i);return le(u,"int32")}var _A=L({confusionMatrix_:$A}),Xo={};Ee(Xo,{assertAndGetBroadcastShape:()=>rt,getBroadcastDims:()=>Bk,getReductionAxes:()=>_t});function Bk(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,i=e[a]||1;(t[t.length-1-r]||1)>1&&i===1&&s.unshift(a)}return s}function _t(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,i=t[a];(r==null||r===1&&i>1)&&n.unshift(a)}return n}function rt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let i=t[t.length-r-1];if(i==null&&(i=1),a===1)n.unshift(i);else if(i===1)n.unshift(a);else if(a!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(a)}return n}var Vk={};Ee(Vk,{fromPixels:()=>zA,fromPixelsAsync:()=>OA,toPixels:()=>PA});function AA(e,t,n){if(ka(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Rs(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Tr(e,t,s,n)}var Ur;function Wk(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r&&r&&e.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(im(vd,z.backendName)!=null){let f={pixels:e},m={numChannels:t};return z.runKernel(vd,f,m)}let[l,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(i)p=e.getContext("2d").getImageData(0,0,l,c).data;else if(s||n)p=e.data;else if(a||r||o){if(Ur==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Ur=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Ur=document.createElement("canvas").getContext("2d");Ur.canvas.width=l,Ur.canvas.height=c,Ur.drawImage(e,0,0,l,c),p=Ur.getImageData(0,0,l,c).data}let d;if(t===4)d=new Int32Array(p);else{let f=l*c;d=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)d[m*t+g]=p[m*4+g]}return AA(d,[c,l,t],"int32")}function EA(e){return e!=null&&e.data instanceof Uint8Array}function RA(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function DA(e){return e!=null&&e.width!==0&&e.height!==0}function FA(e){return RA()&&!(e instanceof ImageBitmap)&&DA(e)&&!EA(e)}async function OA(e,t=3){let n=null;if(K().getBool("WRAP_TO_IMAGEBITMAP")&&FA(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return Wk(n,t)}async function PA(e,t){let n=_(e,"img","toPixels");if(!(e instanceof et)){let l=n;n=le(l,"int32"),l.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,u=new Uint8ClampedArray(r*s*4);for(let l=0;l<s*r;++l){let c=[0,0,0,255];for(let d=0;d<a;d++){let h=i[l*a+d];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(c[0]=h*o,c[1]=h*o,c[2]=h*o):c[d]=h*o}let p=l*4;u[p+0]=Math.round(c[0]),u[p+1]=Math.round(c[1]),u[p+2]=Math.round(c[2]),u[p+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let l=t.getContext("2d"),c=new ImageData(u,r,s);l.putImageData(c,0,0)}return n!==e&&n.dispose(),u}var zA=L({fromPixels_:Wk}),Uk={};Ee(Uk,{prepareAndValidate:()=>Gk});function Gk(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(dt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,u=r.slice();u.pop();let l=1;for(let p=a;p<n;++p)l*=o[p],u.push(o[p]);let c=[...uo(e.shape).map(p=>p/l),1].slice(0,a);return[u,i,l,c]}var Hk={};Ee(Hk,{calculateShapes:()=>qk,validateInput:()=>Xg,validateUpdateShape:()=>Kg});function Kg(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(a+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+s])throw new Error(a+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function Xg(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}Kg(n,t,e)}function qk(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,i=1;for(let p=r;p<a;++p)i*=n[p];let o=r<1?1:r,u=dt(t.shape)/o,l=[...uo(n.slice(0,r)),1],c=dt(n);return{sliceRank:r,numUpdates:u,sliceSize:i,strides:l,outputSize:c}}var kt={};Ee(kt,{assertParamsValid:()=>LA,computeFlatOffset:()=>GA,computeOutShape:()=>VA,getNormalizedAxes:()=>WA,isSliceContinous:()=>UA,maskToAxes:()=>BA,parseSliceParams:()=>tS,sliceInfo:()=>HA,startForAxis:()=>Jk,startIndicesWithElidedDims:()=>Yk,stopForAxis:()=>eS,stopIndicesWithElidedDims:()=>Qk,stridesForAxis:()=>Zk,stridesWithElidedDims:()=>jk});var ym=-2,MA=-1;function LA(e,t,n){let s=e.shape.length;F(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),F(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)F(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function BA(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function VA(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function jk(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function Kk(e,t,n){return n<=e?n:n-(t-1)}function Xk(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function WA(e,t,n,s,r,a,i,o,u){let l=e.length,c=new Array(l),p=new Array(l),d=new Array(l);if(t.length&&n>0){let h=t[0],f=n+1;c=Yk(i,h,f,s,e),p=Qk(o,h,f,r,e),d=jk(a,h,f,e)}else for(let h=0;h<l;h++)c[h]=Jk(i,s,a,e,h,u),p[h]=eS(o,r,a,e,h,u),d[h]=Zk(a,h,u);return{begin:c,end:p,strides:d}}function Yk(e,t,n,s,r){let a=[...r],i=Xk(n,t);for(let o=0;o<a.length;o++)if(i.indexOf(o)>-1)a[o]=0;else{let u=Kk(t,n,o),l=s[u];e&1<<u&&(l=0),a[o]=l}return a}function Qk(e,t,n,s,r){let a=[...r],i=Xk(n,t);for(let o=0;o<a.length;o++)if(i.indexOf(o)>-1)a[o]=Number.MAX_SAFE_INTEGER;else{let u=Kk(t,n,o),l=s[u];e&1<<u&&(l=Number.MAX_SAFE_INTEGER),a[o]=l}for(let o=0;o<a.length;o++){let u=r[o];a[o]<0&&(a[o]+=u),a[o]=Gu(0,a[o],r[o])}return a}function Zk(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function Jk(e,t,n,s,r,a){let i=t[r],o=n[r]||1;(e&1<<r||a&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let u=s[r];return i<0&&(i+=u),i=Gu(0,i,u-1),i}function eS(e,t,n,s,r,a){let i=t[r],o=n[r]||1;(e&1<<r||a&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let u=s[r];return i<0&&(i+=u),o>0?i=Gu(0,i,u):i=Gu(-1,i,u-1),i}function UA(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function GA(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function tS(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-s[o])),[s,a]}function HA(e,t,n,s,r,a,i,o,u){let l;if(s==null?(l=new Array(t.length),l.fill(1)):l=s,i!=null&&(i&i-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,p={dims:l.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:l.slice(),beginMask:r,endMask:a,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:u};for(let v=0;v<p.dims;v++)c&&(1<<v&o)!==0&&p.numAddAxisAfterEllipsis++,1<<v&i&&(c=!0);c||(p.ellipsisMask|=1<<p.dims,p.dims++);let d={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};qA(p,d);let h=!0,f=!0,m=!0,g=[],b=[];for(let v=0;v<e.length;++v){if(d.strides[v]===0)throw Error(`strides[${v}] must be non-zero`);let x=!!(d.shrinkAxisMask&1<<v),k=e[v];if(k===-1){g.push(x?1:-1);continue}let I=[d.beginMask&1<<v,d.endMask&1<<v],$=[d.strides[v]>0?0:-1,d.strides[v]>0?k:k-1];if(x&&d.strides[v]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&d.strides[v]===1;let R=!!(d.beginMask&1<<v&&d.endMask&1<<v);if(d.beginValid&&d.endValid){if(x){let O=d.begin[v]<0?k+d.begin[v]:d.begin[v];if(d.begin[v]=O,d.end[v]=d.begin[v]+1,O<0||O>=k)throw Error(`slice index ${d.begin[v]} of dimension ${v} out of bounds.`)}else d.begin[v]=xx(d.begin[v],0,d.strides[v],k,I,$),d.end[v]=xx(d.end[v],1,d.strides[v],k,I,$);let A=d.strides[v]===1&&d.begin[v]===0&&d.end[v]===k;h=h&&A,f=f&&(v===0&&d.strides[v]===1||A)}else h=h&&d.strides[v]===1&&R,f=f&&(v===0&&d.strides[v]===1||R);let E,P=!1;if(d.beginValid&&d.endValid?(E=d.end[v]-d.begin[v],P=!0):x?(E=1,P=!0):R&&k>=0&&(d.strides[v]<0?E=-k:E=k,P=!0),P){let A;E===0||E<0!=d.strides[v]<0?A=0:A=Math.trunc(E/d.strides[v])+(E%d.strides[v]!==0?1:0),g.push(A)}else g.push(-1)}for(let v=0;v<d.finalShapeGatherIndices.length;++v){let x=d.finalShapeGatherIndices[v];x>=0?b.push(g[x]):x===ym&&b.push(1)}return{finalShapeSparse:b.filter((v,x)=>d.finalShapeGatherIndices[x]!==ym),finalShape:b,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:d.begin,end:d.end,strides:d.strides}}function qA(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let s=0;s<e.dims;s++)if(1<<s&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-s)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=s}else if(1<<s&e.newAxisMask)t.finalShapeGatherIndices.push(ym),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[s]),e.end!=null&&(t.end[n]=e.end[s]),t.strides[n]=e.strides[s],e.beginMask&1<<s&&(t.beginMask|=1<<n),e.endMask&1<<s&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<s?(t.finalShapeGatherIndices.push(MA),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(s)),t.inputShapeGatherIndicesSparse[n]=s,n++}}function xx(e,t,n,s,r,a){if(r[t])return n>0?a[t]:a[t+1&1];{let i=e<0?s+e:e;return i<a[0]?a[0]:i>a[1]?a[1]:i}}var re={};Ee(re,{Serializable:()=>nS,SerializationMap:()=>Xr,registerClass:()=>$r});var nS=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Xr=class{constructor(){this.classNameMap={}}static getMap(){return Xr.instance==null&&(Xr.instance=new Xr),Xr.instance}static register(e){Xr.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function $r(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Xr.register(e)}var jA={};Ee(jA,{TEST_EPSILON_FLOAT16:()=>sS,encodeStrings:()=>rS,expectArrayBuffersEqual:()=>eE,expectArraysClose:()=>XA,expectArraysEqual:()=>QA,expectNumbersClose:()=>ZA,expectPromiseToFail:()=>YA,expectValuesInRange:()=>JA,testEpsilon:()=>Yg});var KA=.001,sS=.1;function XA(e,t,n){return n==null&&(n=Yg()),vm(e,t,(s,r)=>Qg(s,r,n))}function Yg(){return z.backend.floatPrecision()===32?KA:sS}function vm(e,t,n){let s=!0;if((Yt(e)||Yt(t))&&(s=!1),Yt(e)&&Yt(t)&&(s=!0),s){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Rs(e),o=Rs(t);if(!Sr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=Yt(e)?e:aa(e),a=Yt(t)?t:aa(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`);for(let i=0;i<a.length;++i){let o=r[i],u=a[i];if(!n(o,u))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${u}.
|
|
Actual: ${r}.
|
|
Expected: ${a}.`)}}function YA(e,t){e().then(()=>t.fail(),()=>t())}function QA(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return ar(e)||ar(e[0])||ar(t)||ar(t[0])?vm(e,n,(s,r)=>s==r):vm(e,t,(s,r)=>Qg(s,r,0))}function ZA(e,t,n){if(n==null&&(n=Yg()),!Qg(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Qg(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function JA(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function eE(e,t){let n=new Float32Array(e),s=new Float32Array(t);if(n.length!==s.length)throw new Error(`Expected ArrayBuffer to be of length ${s.length}, but it was ${n.length}`);for(let r=0;r<s.length;r++)if(n[r]!==s[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${s[r]} but got ${n[r]} instead`)}function rS(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?rS(n):e[t]=zl(n)}return e}var Rpe="0.0.0";function tE(e,t){let n=_(e,"a","add"),s=_(t,"b","add");[n,s]=xt(n,s);let r={a:n,b:s};return z.runKernel(Ir,r)}var ie=L({add_:tE});function nE(e,t){let n=_(e,"a","floorDiv"),s=_(t,"b","floorDiv");[n,s]=xt(n,s);let r={a:n,b:s};return z.runKernel(La,r)}var aS=L({floorDiv_:nE});function sE(e,t){let n=_(e,"a","div"),s=_(t,"b","div");if([n,s]=xt(n,s),n.dtype==="int32"&&s.dtype==="int32")return aS(n,s);let r={a:n,b:s},a={};return z.runKernel(Oa,r,a)}var xe=L({div_:sE});function rE(e,t){let n=_(e,"a","mul"),s=_(t,"b","mul");[n,s]=xt(n,s);let r={a:n,b:s};return z.runKernel(Za,r)}var V=L({mul_:rE});function aE(e){let t=_(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return z.runKernel(np,n)}else{let n={x:t};return z.runKernel(lo,n)}}var Mt=L({abs_:aE});function iE(e){let n={x:_(e,"x","acos")};return z.runKernel(ul,n)}var oE=L({acos_:iE});function uE(e){let n={x:_(e,"x","acosh")};return z.runKernel(ll,n)}var lE=L({acosh_:uE});function cE(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>_(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!Sr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return z.runKernel(Sa,s)}var dE=L({addN_:cE});function pE(e,t=null,n=!1){let r={x:_(e,"x","all","bool")},a={axis:t,keepDims:n};return z.runKernel(cl,r,a)}var iS=L({all_:pE});function hE(e,t=null,n=!1){let r={x:_(e,"x","any","bool")},a={axis:t,keepDims:n};return z.runKernel(dl,r,a)}var xm=L({any_:hE});function fE(e,t=0){let s={x:_(e,"x","argMax")},r={axis:t};return z.runKernel(Ia,s,r)}var Xu=L({argMax_:fE});function mE(e,t=0){let s={x:_(e,"x","argMin")},r={axis:t};return z.runKernel(pl,s,r)}var gE=L({argMin_:mE});function bE(e){let n={x:_(e,"x","asin")};return z.runKernel(hl,n)}var yE=L({asin_:bE});function vE(e){let n={x:_(e,"x","asinh")};return z.runKernel(fl,n)}var xE=L({asinh_:vE});function wE(e){let n={x:_(e,"x","atan")};return z.runKernel(ml,n)}var kE=L({atan_:wE});function SE(e,t){let n=_(e,"a","atan2"),s=_(t,"b","atan2");[n,s]=xt(n,s);let r={a:n,b:s};return z.runKernel(bl,r)}var IE=L({atan2_:SE});function CE(e){let n={x:_(e,"x","atanh")};return z.runKernel(gl,n)}var NE=L({atanh_:CE});function TE(e,t,n,s,r="NHWC",a){let i=e[3],o=[...t,i],u=lS(r);return Ll(e,o,n,a,s,null,null,u)}function oS(e,t,n,s,r,a,i="channelsLast"){let[o,u]=Cd(t),l;if(i==="channelsLast")l=[o,u,e[3],e[3]];else if(i==="channelsFirst")l=[o,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Ll(e,l,n,s,r,a,!1,i)}function $E(e,t,n,s,r,a,i="NDHWC"){let[o,u,l]=wm(t),c,p;if(i==="NDHWC")p="channelsLast",c=[o,u,l,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",c=[o,u,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return uS(e,c,n,s,r,!1,p,a)}function Ll(e,t,n,s,r,a,i=!1,o="channelsLast"){let[u,l,c,p]=[-1,-1,-1,-1];if(o==="channelsLast")[u,l,c,p]=e;else if(o==="channelsFirst")[u,p,l,c]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,h,,f]=t,[m,g]=Cd(n),[b,y]=Cd(s),v=Xi(d,b),x=Xi(h,y),{padInfo:k,outHeight:I,outWidth:$}=EE(r,l,c,m,g,v,x,a,o),R=i?f*p:f,E;return o==="channelsFirst"?E=[u,R,I,$]:o==="channelsLast"&&(E=[u,I,$,R]),{batchSize:u,dataFormat:o,inHeight:l,inWidth:c,inChannels:p,outHeight:I,outWidth:$,outChannels:R,padInfo:k,strideHeight:m,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:v,effectiveFilterWidth:x,dilationHeight:b,dilationWidth:y,inShape:e,outShape:E,filterShape:t}}function uS(e,t,n,s,r,a=!1,i="channelsLast",o){let[u,l,c,p,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[u,l,c,p,d]=e;else if(i==="channelsFirst")[u,d,l,c,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,f,m,,g]=t,[b,y,v]=wm(n),[x,k,I]=wm(s),$=Xi(h,x),R=Xi(f,k),E=Xi(m,I),{padInfo:P,outDepth:A,outHeight:O,outWidth:T}=RE(r,l,c,p,b,y,v,$,R,E,o),M=a?g*d:g,W;return i==="channelsFirst"?W=[u,M,A,O,T]:i==="channelsLast"&&(W=[u,A,O,T,M]),{batchSize:u,dataFormat:i,inDepth:l,inHeight:c,inWidth:p,inChannels:d,outDepth:A,outHeight:O,outWidth:T,outChannels:M,padInfo:P,strideDepth:b,strideHeight:y,strideWidth:v,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:$,effectiveFilterHeight:R,effectiveFilterWidth:E,dilationDepth:x,dilationHeight:k,dilationWidth:I,inShape:e,outShape:W,filterShape:t}}function _E(e,t,n,s,r){s==null&&(s=Zg(e,t,n));let a=e[0],i=e[1],o=ta((a-t+2*s)/n+1,r),u=ta((i-t+2*s)/n+1,r);return[o,u]}function AE(e,t,n,s,r,a){r==null&&(r=Zg(e,t,s));let i=e[0],o=e[1],u=e[2],l=ta((i-t+2*r)/s+1,a),c=ta((o-t+2*r)/s+1,a),p=ta((u-t+2*r)/s+1,a);return[l,c,p,n]}function Zg(e,t,n,s=1){let r=Xi(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Cd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function wm(e){return typeof e=="number"?[e,e,e]:e}function Xi(e,t){return t<=1?e:e+(e-1)*(t-1)}function EE(e,t,n,s,r,a,i,o,u){let l,c,p;if(typeof e=="number"){l={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=_E([t,n],a,s,e,o);c=h[0],p=h[1]}else if(e==="same"){c=Math.ceil(t/s),p=Math.ceil(n/r);let d=Math.max(0,(c-1)*s+a-t),h=Math.max(0,(p-1)*r+i-n),f=Math.floor(d/2),m=d-f,g=Math.floor(h/2),b=h-g;l={top:f,bottom:m,left:g,right:b,type:"SAME"}}else if(e==="valid")l={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let d=u==="channelsLast"?e[1][0]:e[2][0],h=u==="channelsLast"?e[1][1]:e[2][1],f=u==="channelsLast"?e[2][0]:e[3][0],m=u==="channelsLast"?e[2][1]:e[3][1];l={top:d,bottom:h,left:f,right:m,type:d===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=ta((t-a+d+h)/s+1,o),p=ta((n-i+f+m)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:l,outHeight:c,outWidth:p}}function RE(e,t,n,s,r,a,i,o,u,l,c){let p,d,h,f;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=AE([t,n,s,1],o,1,r,e,c);d=g[0],h=g[1],f=g[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/i);let m=(d-1)*r+o-t,g=(h-1)*a+u-n,b=(f-1)*i+l-s,y=Math.floor(m/2),v=m-y,x=Math.floor(g/2),k=g-x,I=Math.floor(b/2),$=b-I;p={top:x,bottom:k,left:I,right:$,front:y,back:v,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/r),h=Math.ceil((n-u+1)/a),f=Math.ceil((s-l+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:f}}function ta(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function mr(e){let[t,n,s]=Cd(e);return t===1&&n===1&&s===1}function Ps(e,t){return mr(e)||mr(t)}function lS(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function hn(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")F(Zi(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(s=>{s.forEach(r=>{F(Zi(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function DE(e,t){let s={x:_(e,"x","reshape","string_or_numeric")},r={shape:t};return z.runKernel(Do,s,r)}var U=L({reshape_:DE});function FE(e,t,n,s,r){let a=_(e,"x","avgPool","float32"),i=1;F(Ps(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=a,u=!1;a.rank===3&&(u=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),hn("avgPool",s,r);let l={x:o},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=z.runKernel(Ca,l,c);return p=le(p,a.dtype),u?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Jg=L({avgPool_:FE});function OE(e,t,n,s,r,a="NDHWC"){let i=_(e,"x","avgPool3d","float32"),o=i,u=!1;i.rank===4&&(u=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),hn("avgPool3d",s,r);let l={x:o},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=z.runKernel(ep,l,c);return p=le(p,o.dtype),u?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var cS=L({avgPool3d_:OE});function PE(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=ju(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${a.dtype}. `)}),n.length===1)return ur(n[0]);let s=n,r={axis:t};return z.runKernel(po,s,r)}var Ft=L({concat_:PE});function zE(e){let n={x:_(e,"x","sigmoid","float32")};return z.runKernel(ui,n)}var qs=L({sigmoid_:zE});function ME(e,t,n){let s=_(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return z.runKernel(Mo,r,a)}var qe=L({slice_:ME});function LE(e){let n={x:_(e,"x","tanh","float32")};return z.runKernel(fi,n)}var Yu=L({tanh_:LE});function BE(e,t,n,s,r,a){let i=_(e,"forgetBias","basicLSTMCell"),o=_(t,"lstmKernel","basicLSTMCell"),u=_(n,"lstmBias","basicLSTMCell"),l=_(s,"data","basicLSTMCell"),c=_(r,"c","basicLSTMCell"),p=_(a,"h","basicLSTMCell"),d=Ft([l,p],1),h=We(d,o),f=ie(h,u),m=f.shape[0],g=f.shape[1]/4,b=[m,g],y=qe(f,[0,0],b),v=qe(f,[0,g],b),x=qe(f,[0,g*2],b),k=qe(f,[0,g*3],b),I=ie(V(qs(y),Yu(v)),V(c,qs(ie(i,x)))),$=V(Yu(I),qs(k));return[I,$]}var Dpe=L({basicLSTMCell_:BE});function VE(e,t,n){let s=_(e,"x","batchToSpaceND"),r=t.reduce((o,u)=>o*u);F(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(s.shape[0]%r===0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},i={blockShape:t,crops:n};return z.runKernel(co,a,i)}var eb=L({batchToSpaceND_:VE});function WE(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function UE(e,t,n,s,r,a){a==null&&(a=.001);let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),u=_(n,"variance","batchNorm"),l;r!=null&&(l=_(r,"scale","batchNorm"));let c;s!=null&&(c=_(s,"offset","batchNorm")),F(o.rank===u.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(l==null||o.rank===l.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:WE(i),scale:l,offset:c,mean:o,variance:u},h={varianceEpsilon:a},f=z.runKernel(Ba,d,h);return U(f,i.shape)}var Qu=L({batchNorm_:UE});function GE(e,t,n,s,r,a){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),u=_(n,"variance","batchNorm"),l;r!=null&&(l=_(r,"scale","batchNorm"));let c;return s!=null&&(c=_(s,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${u.rank}.`),l!=null&&F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${l.rank}.`),c!=null&&F(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Qu(i,o,u,c,l,a)}var HE=L({batchNorm2d_:GE});function qE(e,t,n,s,r,a){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),u=_(n,"variance","batchNorm"),l;r!=null&&(l=_(r,"scale","batchNorm"));let c;return s!=null&&(c=_(s,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${u.rank}.`),l!=null&&F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${l.rank}.`),c!=null&&F(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Qu(i,o,u,c,l,a)}var jE=L({batchNorm3d_:qE});function KE(e,t,n,s,r,a){let i=_(e,"x","batchNorm"),o=_(t,"mean","batchNorm"),u=_(n,"variance","batchNorm"),l;r!=null&&(l=_(r,"scale","batchNorm"));let c;return s!=null&&(c=_(s,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${u.rank}.`),l!=null&&F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${l.rank}.`),c!=null&&F(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Qu(i,o,u,c,l,a)}var XE=L({batchNorm4d_:KE});function YE(e,t,n){let s=_(e,"x","bincount"),r=_(t,"weights","bincount");F(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},i={size:n};return z.runKernel(gg,a,i)}var dS=L({bincount_:YE});function QE(e,t){let n=_(e,"s0","broadcastArgs","int32"),s=_(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return z.runKernel(bg,r)}var ZE=L({broadcastArgs_:QE});function JE(e,t){let n=_(e,"broadcastTo","x"),s=n.shape;if(t.some(l=>!(l>0)||l%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=U(n,l)}let r=n.shape,a=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])a[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((l,c)=>l>1?c:-1).filter(l=>l>=0).length===0)return ur(n);let o={x:n},u={reps:a};return z.runKernel(Nr,o,u)}var id=L({broadcastTo_:JE});function eR(e){let n={x:_(e,"x","ceil","float32")};return z.runKernel($a,n)}var tR=L({ceil_:eR});function nR(e,t,n){let s=_(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return z.runKernel(Cr,r,a)}var Vn=L({clipByValue_:nR});function sR(e){return Ft(e,0)}var rR=L({concat1d_:sR});function aR(e,t){return Ft(e,t)}var iR=L({concat2d_:aR});function oR(e,t){return Ft(e,t)}var uR=L({concat3d_:oR});function lR(e,t){return Ft(e,t)}var cR=L({concat4d_:lR});function dR(e,t,n,s,r="NHWC",a=[1,1],i){let o=_(e,"x","conv2d","float32"),u=_(t,"filter","conv2d","float32"),l=o,c=!1;o.rank===3&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(l.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${u.rank}.`),hn("conv2d",s,i);let p=r==="NHWC"?l.shape[3]:l.shape[1];F(p===u.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${u.shape[2]}.`),F(Ps(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let d={x:l,filter:u},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:i},f=z.runKernel(_a,d,h);return c?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var da=L({conv2d_:dR});function pR(e,t,n,s,r="NWC",a=1,i){let o=_(e,"x","conv1d"),u=_(t,"filter","conv1d"),l=o,c=!1;o.rank===2&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1]])),F(l.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${l.rank}.`),F(u.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${u.rank}.`),hn("conv1d",s,i),F(l.shape[2]===u.shape[1],()=>`Error in conv1d: depth of input (${l.shape[2]}) must match input depth for filter ${u.shape[1]}.`),F(Ps(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),F(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=U(u,[1,u.shape[0],u.shape[1],u.shape[2]]),d=U(l,[l.shape[0],1,l.shape[1],l.shape[2]]),g=da(d,p,[1,n],s,"NHWC",[1,a],i);return c?U(g,[g.shape[2],g.shape[3]]):U(g,[g.shape[0],g.shape[2],g.shape[3]])}var pS=L({conv1d_:pR});function hR(e,t,n,s,r,a="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,u=t,l=!1;t.rank===3&&(l=!0,u=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(u.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${u.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?o[3]:o[1],p=a==="NHWC"?u.shape[3]:u.shape[1];F(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),F(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),hn("conv2dDerInput",r,i);let d={dy:u,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:i,inputShape:o},f=z.runKernel(Aa,d,h);return l?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var tb=L({conv2DBackpropInput_:hR});function fR(e,t,n,s,r,a){let i=_(e,"x","conv2dTranspose"),o=_(t,"filter","conv2dTranspose");return tb(n,i,o,s,r,"NHWC",a)}var hS=L({conv2dTranspose_:fR});function mR(e,t,n,s,r="NDHWC",a=[1,1,1]){let i=_(e,"x","conv3d"),o=_(t,"filter","conv3d"),u=i,l=!1;i.rank===4&&(l=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(u.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${u.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(u.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${u.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Ps(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),F(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:u,filter:o},p={strides:n,pad:s,dataFormat:r,dilations:a},d=z.runKernel(sp,c,p);return l?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var fS=L({conv3d_:mR});function gR(e,t,n,s,r){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,i=t,o=!1;t.rank===4&&(o=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let u=a[4],l=i.shape[4];F(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(u===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[3]}.`),F(l===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${l}) must match output depth for filter ${n.shape[4]}.`);let c={dy:i,filter:n},p={pad:r,strides:s,inputShape:a},d=z.runKernel(xg,c,p);return o?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var mS=L({conv3DBackpropInput_:gR});function bR(e,t,n,s,r){let a=_(e,"x","conv3dTranspose"),i=_(t,"filter","conv3dTranspose");return mS(n,a,i,s,r)}var yR=L({conv3dTranspose_:bR});function vR(e){let n={x:_(e,"x","cos","float32")};return z.runKernel(Ea,n)}var nb=L({cos_:vR});function xR(e){let n={x:_(e,"x","cosh","float32")};return z.runKernel(Ra,n)}var gS=L({cosh_:xR});function wR(e,t=0,n=!1,s=!1){let a={x:_(e,"x","cumprod")},i={axis:t,exclusive:n,reverse:s};return z.runKernel(ho,a,i)}var km=L({cumprod_:wR});function kR(e,t=0,n=!1,s=!1){let a={x:_(e,"x","cumsum")},i={axis:t,exclusive:n,reverse:s};return z.runKernel(Da,a,i)}var bS=L({cumsum_:kR});function SR(e,t,n,s=!1){let r=_(e,"x","denseBincount"),a=_(t,"weights","denseBincount");F(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),F(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let i={x:r,weights:a},o={size:n,binaryOutput:s};return z.runKernel(wg,i,o)}var IR=L({denseBincount_:SR});function CR(e,t,n="NHWC"){let s=_(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],i=n==="NHWC"?s.shape[3]:s.shape[1];F(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),F(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),F(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${s.shape}`),F(i%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${s.shape}`);let o={x:s},u={blockSize:t,dataFormat:n};return z.runKernel(mo,o,u)}var NR=L({depthToSpace_:CR});function TR(e,t,n,s,r="NHWC",a=[1,1],i){let o=_(e,"x","depthwiseConv2d","float32"),u=_(t,"filter","depthwiseConv2d","float32"),l=o,c=!1;o.rank===3&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(l.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[3]===u.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),hn("depthwiseConv2d",s,i);let p={x:l,filter:u},d={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:i},h=z.runKernel(Fa,p,d);return c?U(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var kp=L({depthwiseConv2d_:TR});function $R(e){let n={x:_(e,"x","diag")};return z.runKernel(Ig,n)}var Fpe=L({diag_:$R});function _R(e,t,n,s,r=[1,1],a="NHWC"){let i=_(e,"x","dilation2d"),o=_(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let u=i,l=!1;i.rank===3&&(u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=!0);let c={x:u,filter:o},p={strides:n,pad:s,dilations:r},d=z.runKernel(rp,c,p);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var AR=L({dilation2d_:_R});function ER(e,t){let n=_(e,"a","equal","string_or_numeric"),s=_(t,"b","equal","string_or_numeric");[n,s]=xt(n,s),rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(go,r)}var Xn=L({equal_:ER});function RR(e,t,n){let s=_(t,"a","where"),r=_(n,"b","where"),a=_(e,"condition","where","bool"),i=rt(rt(a.shape,s.shape),r.shape),o=id(a,i),u=id(s,i),l=id(r,i),c={condition:o,t:u,e:l};return z.runKernel(zo,c)}var vn=L({where_:RR});function DR(e){let n={x:_(e,"x","zerosLike")};return z.runKernel(jo,n)}var je=L({zerosLike_:DR});function FR(e,t){let n=_(e,"a","div"),s=_(t,"b","div");[n,s]=xt(n,s);let r=xe(n,s),a=je(r),i=Xn(s,a);return vn(i,a,r)}var OR=L({divNoNan_:FR});function PR(e,t){let n=_(e,"t1","dot"),s=_(t,"t2","dot");F((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(F(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let i=U(n,[1,-1]),o=U(s,[-1,1]),u=We(i,o);return U(u,[])}else if(n.rank===1&&s.rank===2){let i=U(n,[1,-1]),o=U(s,[s.shape[0],s.shape[1]]),u=We(i,o);return U(u,[u.size])}else if(n.rank===2&&s.rank===1){let i=U(s,[-1,1]),o=We(n,i);return U(o,[o.size])}else{let i=U(s,[s.shape[0],s.shape[1]]);return We(n,i)}}var Ope=L({dot_:PR});function zR(e,...t){let n=t.map((r,a)=>_(r,`tensors${a}`,"einsum")),s={equation:e};return z.runKernel(ap,n,s)}var MR=L({einsum_:zR});function LR(e){let n={x:_(e,"x","elu","float32")};return z.runKernel(Pa,n)}var Sp=L({elu_:LR});function BR(e){let t=_(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=le(t,"float32"));let n={x:t};return z.runKernel(yl,n)}var VR=L({erf_:BR});function sb(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function yS(e,t,n){let s=e.length+t.length,r=[],a=0,i=0;for(let o=0;o<s;o++)n.indexOf(o)===-1?r.push(e[a++]):r.push(t[i++]);return r}function vS(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function pa(e,t){let n=t.map(s=>1);return yS(e,n,t)}function WR(e,t,n){F(sb(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function xS(e,t){if(sb(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function rb(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function UR(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function GR(e,t=null,n=!1){let r={x:_(e,"x","max")},a={reductionIndices:t,keepDims:n};return z.runKernel(Ha,r,a)}var As=L({max_:GR});function HR(e,t=null,n=!1){let r={x:_(e,"x","min")},a={axis:t,keepDims:n};return z.runKernel(Xa,r,a)}var Sm=L({min_:HR});function qR(e,t){let n=_(e,"base","pow"),s=_(t,"exp","pow");[n,s]=xt(n,s);let r={a:n,b:s};return z.runKernel(ei,r)}var ha=L({pow_:qR});function we(e,t){if((Yt(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Yt(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Tr(e,[],[],t)}function jR(e){let n={x:_(e,"x","sqrt","float32")};return z.runKernel(li,n)}var cn=L({sqrt_:jR});function KR(e){let t=_(e,"x","square"),n={};return z.runKernel("Square",{x:t},n)}var ct=L({square_:KR});function XR(e,t=null,n=!1){let s=_(e,"x","sum");s.dtype==="bool"&&(s=le(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return z.runKernel(ci,r,a)}var ve=L({sum_:XR});function YR(e,t="euclidean",n=null,s=!1){e=_(e,"x","norm");let r=wS(e,t,n),a=r.shape;if(s){let i=ts(n,e.shape);a=pa(r.shape,i)}return U(r,a)}function wS(e,t,n=null){if(e.rank===0)return Mt(e);if(e.rank!==1&&n===null)return wS(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ve(Mt(e),n);if(t===1/0)return As(Mt(e),n);if(t===-1/0)return Sm(Mt(e),n);if(t==="euclidean"||t===2)return cn(ve(ha(Mt(e),we(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return As(ve(Mt(e),n[0]),n[1]-1);if(t===1/0)return As(ve(Mt(e),n[1]),n[0]);if(t===-1/0)return Sm(ve(Mt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return cn(ve(ct(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var ab=L({norm_:YR});function QR(e,t=null,n=!1){return ab(e,"euclidean",t,n)}var ZR=L({euclideanNorm_:QR});function JR(e){let n={x:_(e,"x","exp")};return z.runKernel(za,n)}var Yn=L({exp_:JR});function eD(e,t=0){let n=_(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return z.runKernel(bo,s,r)}var Pn=L({expandDims_:eD});function tD(e){let n={x:_(e,"x","expm1")};return z.runKernel(yo,n)}var nD=L({expm1_:tD});function sD(e,t){let n=_(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return z.runKernel(Nr,s,r)}var hs=L({tile_:sD});function rD(e,t,n,s="float32"){t==null&&(t=e);let r=Ae([e,t],s),a=e<=t?e:t;for(let o=0;o<a;++o)r.set(1,o,o);let i=U(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return hs(Pn(i,0),[n[0],1,1]);if(n.length===2)return hs(Pn(Pn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return hs(Pn(Pn(Pn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var kS=L({eye_:rD});function Bl(e,t,n){let s={shape:e,value:t,dtype:n};return z.runKernel(vl,{},s)}function aD(e){let n={x:_(e,"x","floor","float32")};return z.runKernel(Ma,n)}var Ip=L({floor_:aD});function iD(e,t,n=0,s=0){let r=_(e,"x","gather"),a=_(t,"indices","gather","int32"),i={x:r,indices:a},o={axis:n,batchDims:s};return z.runKernel(xo,i,o)}var Zu=L({gather_:iD});function oD(e,t){let n=_(e,"a","greater","string_or_numeric"),s=_(t,"b","greater","string_or_numeric");[n,s]=xt(n,s),rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(ko,r)}var Un=L({greater_:oD});function uD(e,t){let n=_(e,"a","greaterEqual","string_or_numeric"),s=_(t,"b","greaterEqual","string_or_numeric");[n,s]=xt(n,s),rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Va,r)}var Yo=L({greaterEqual_:uD});function lD(e){let n={x:_(e,"x","isFinite")};return z.runKernel(xl,n)}var Ppe=L({isFinite_:lD});function cD(e){let n={x:_(e,"x","isInf")};return z.runKernel(wl,n)}var zpe=L({isInf_:cD});function dD(e){let n={x:_(e,"x","isNaN")};return z.runKernel(kl,n)}var pD=L({isNaN_:dD});function hD(e,t=.2){let s={x:_(e,"x","leakyRelu")},r={alpha:t};return z.runKernel(Ua,s,r)}var ib=L({leakyRelu_:hD});function fD(e,t){let n=_(e,"a","less","string_or_numeric"),s=_(t,"b","less","string_or_numeric");[n,s]=xt(n,s),rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(So,r)}var SS=L({less_:fD});function mD(e,t){let n=_(e,"a","lessEqual","string_or_numeric"),s=_(t,"b","lessEqual","string_or_numeric");[n,s]=xt(n,s),rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Io,r)}var Qo=L({lessEqual_:mD});function gD(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return z.runKernel($g,{},s)}function bD(e,t=5,n=1,s=1,r=.5){let a=_(e,"x","localResponseNormalization");F(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${a.rank}.`),F(Zi(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=a,o=!1;a.rank===3&&(o=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let u={x:i},l={depthRadius:t,bias:n,alpha:s,beta:r},c=z.runKernel(up,u,l);return o?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var yD=L({localResponseNormalization_:bD});function vD(e){let n={x:_(e,"x","log","float32")};return z.runKernel(Ga,n)}var Qn=L({log_:vD});function xD(e){let n={x:_(e,"x","log1p")};return z.runKernel(Sl,n)}var ob=L({log1p_:xD});function Mpe(e){return F(hr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=_(t,"x","tf.grad","string_or_numeric"),r=n!=null?_(n,"dy","tf.grad"):null;return z.tidy(()=>{let{value:a,grads:i}=z.gradients(()=>e(s),[s],r);return r!=null&&pn(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Cp(i),i[0]})}}function Lpe(e){return F(hr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=ju(t,"args","tf.grads","string_or_numeric"),r=n!=null?_(n,"dy","tf.grads"):null;return z.tidy(()=>{let{value:a,grads:i}=z.gradients(()=>e(...s),s,r);return r!=null&&pn(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Cp(i),i})}}function Bpe(e){return F(hr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof et,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof et,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=z.gradients(()=>e(t),[t],n);return Cp(s),{grad:s[0],value:r}}}function Vpe(e){return F(hr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(r=>r instanceof et),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof et,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=z.gradients(()=>e(...t),t,n);return n!=null&&pn(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Cp(s.grads),s}}function wD(e,t){F(hr(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(l=>l instanceof wd),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let l in z.registeredVariables)t.push(z.registeredVariables[l])}let s=n?t.filter(l=>!l.trainable):null,r=t.length;t=t.filter(l=>l.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:i,grads:o}=z.gradients(e,t,null,a);F(o.some(l=>l!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let u={};return t.forEach((l,c)=>{o[c]!=null&&(u[l.name]=o[c])}),s!=null&&s.forEach(l=>u[l.name]=null),{value:i,grads:u}}function js(e){return z.customGrad(e)}function Cp(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function kD(e){let n={x:_(e,"x","softplus")};return z.runKernel(Rl,n)}var Vl=L({softplus_:kD});function SD(e){let t=_(e,"x","logSigmoid");return js(s=>({value:vt(Vl(vt(s))),gradFunc:i=>V(i,qs(vt(s)))}))(t)}var Wpe=L({logSigmoid_:SD});function ID(e,t){let n=_(e,"a","sub"),s=_(t,"b","sub");[n,s]=xt(n,s);let r={a:n,b:s};return z.runKernel(hi,r)}var ge=L({sub_:ID});function CD(e,t=-1){let n=_(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return js((r,a)=>{let o=As(r,t,!0),u=ge(r,o),l=ge(le(u,"float32"),Qn(ve(Yn(u),t,!0)));return a([l]),{value:l,gradFunc:(p,d)=>{let[h]=d,f=!0,m=Yn(h);return ge(p,V(ve(p,t,f),m))}}})(n)}var IS=L({logSoftmax_:CD});function ND(e,t=null,n=!1){let s=_(e,"x","logSumExp"),r=ts(t,s.shape),a=As(s,r,!0),i=ge(s,a),o=Yn(i),u=ve(o,r),l=Qn(u),c=ie(U(a,l.shape),l);if(n){let p=pa(c.shape,r);return U(c,p)}return c}var TD=L({logSumExp_:ND});function $D(e,t){let n=_(e,"a","logicalAnd","bool"),s=_(t,"b","logicalAnd","bool");rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Co,r)}var Ds=L({logicalAnd_:$D});function _D(e){let n={x:_(e,"x","logicalNot","bool")};return z.runKernel(Il,n)}var ub=L({logicalNot_:_D});function AD(e,t){let n=_(e,"a","logicalOr","bool"),s=_(t,"b","logicalOr","bool");rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(op,r)}var CS=L({logicalOr_:AD});function ED(e,t){let n=_(e,"a","logicalXor","bool"),s=_(t,"b","logicalXor","bool");return rt(n.shape,s.shape),Ds(CS(e,t),ub(Ds(e,t)))}var Upe=L({logicalXor_:ED}),Hc=2147483648;function RD(e,t,n="left"){let s=_(e,"sortedSequence","searchSorted"),r=_(t,"values","searchSorted"),a=s.shape[s.shape.length-1],i=r.shape[r.shape.length-1],o=U(s,[-1,a]),u=U(r,[-1,i]);if(o.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(o.shape[0]!==u.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(dt(u.shape)>=Hc)throw new Error(`values tensor size must less than ${Hc}`);if(o.shape[1]>=Hc)throw new Error(`trailing dim_size must less than ${Hc} for int32 output type, was ${o.shape[1]}`);let l={sortedSequence:o,values:u},c={side:n};return z.runKernel(Pg,l,c)}var NS=L({searchSorted_:RD});function DD(e,t){return NS(e,t,"left")}function FD(e,t,n,s,r){let a=_(e,"x","maxPool"),i=1,o=a,u=!1;a.rank===3&&(u=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Ps(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),hn("maxPool",s,r);let l={x:o},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=z.runKernel(ja,l,c);return u?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var lb=L({maxPool_:FD});function OD(e,t=[1,1,1],n,s,r,a="NDHWC"){let i=_(e,"x","maxPool3d"),o=i,u=!1;i.rank===4&&(u=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),hn("maxPool3d",s,r);let l={x:o},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=z.runKernel(lp,l,c);return u?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var TS=L({maxPool3d_:OD});function PD(e,t,n,s,r=!1){let i={x:_(e,"x","maxPoolWithArgmax")},o={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},u=z.runKernel(Rg,i,o);return{result:u[0],indexes:u[1]}}var zD=L({maxPoolWithArgmax_:PD});function MD(e,t){let n=_(e,"a","maximum"),s=_(t,"b","maximum");[n,s]=xt(n,s),n.dtype==="bool"&&(n=le(n,"int32"),s=le(s,"int32")),rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(qa,r)}var _r=L({maximum_:MD});function LD(e,t=null,n=!1){let r={x:_(e,"x","mean")},a={axis:t,keepDims:n};return z.runKernel(Ka,r,a)}var It=L({mean_:LD});function $t(e,t="float32"){if(t==="complex64"){let s=$t(e,"float32"),r=$t(e,"float32");return fr(s,r)}let n=Jd(dt(e),t);return z.makeTensor(n,e,t)}function Mn(e,t="float32"){if(t==="complex64"){let s=Mn(e,"float32"),r=$t(e,"float32");return fr(s,r)}let n=cg(dt(e),t);return z.makeTensor(n,e,t)}function Gpe(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=_(e,"x","meshgrid",e instanceof et?e.dtype:"float32");if(t===void 0)return[s];let r=_(t,"y","meshgrid",t instanceof et?t.dtype:"float32"),a=dt(s.shape),i=dt(r.shape);return n==="xy"?(s=U(s,[1,-1]),r=U(r,[-1,1]),[We(Mn([i,1],s.dtype),s),We(r,Mn([1,a],r.dtype))]):(s=U(s,[-1,1]),r=U(r,[1,-1]),[We(s,Mn([1,i],s.dtype)),We(Mn([a,1],r.dtype),r)])}function BD(e,t){let n=_(e,"a","minimum"),s=_(t,"b","minimum");[n,s]=xt(n,s),n.dtype==="bool"&&(n=le(n,"int32"),s=le(s,"int32")),rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(Ya,r)}var Np=L({minimum_:BD});function VD(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=_(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<s.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=s.shape[o]-r&&t[o][1]>=0&&t[o][1]<=s.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${s.shape[o]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},i={x:s};return z.runKernel(Qa,i,a)}var WD=L({mirrorPad_:VD});function UD(e,t){let n=_(e,"a","mod"),s=_(t,"b","mod");[n,s]=xt(n,s);let r={a:n,b:s};return z.runKernel(Cl,r)}var GD=L({mod_:UD});function HD(e,t=null,n=!1){e=_(e,"x","moments");let s=ts(t,e.shape),r=It(e,s,n),a=r.shape;n||(a=pa(r.shape,s));let i=ct(ge(le(e,"float32"),U(r,a))),o=It(i,s,n);return{mean:r,variance:o}}var cb=L({moments_:HD});function qD(e,t,n,s){let r=_(t,"data","multiRNNCell"),a=ju(n,"c","multiRNNCell"),i=ju(s,"h","multiRNNCell"),o=r,u=[];for(let p=0;p<e.length;p++){let d=e[p](o,a[p],i[p]);u.push(d[0]),u.push(d[1]),o=d[1]}let l=[],c=[];for(let p=0;p<u.length;p+=2)l.push(u[p]),c.push(u[p+1]);return[l,c]}var Hpe=L({multiRNNCell_:qD});function jD(e,t,n,s=!1){let r=_(e,"logits","multinomial"),a=r.size,i=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let u={logits:i===1?U(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:s},c=z.runKernel(Dg,u,l);return i===1?U(c,[c.size]):c}var KD=L({multinomial_:jD});function XD(e,t){let n=_(e,"a","notEqual","string_or_numeric"),s=_(t,"b","notEqual","string_or_numeric");[n,s]=xt(n,s),rt(n.shape,s.shape);let r={a:n,b:s};return z.runKernel(To,r)}var Ju=L({notEqual_:XD});function YD(e){let n={x:_(e,"x","onesLike")};return z.runKernel(Ao,n)}var Zn=L({onesLike_:YD});function QD(e,t){let n=_(e,"v1","outerProduct"),s=_(t,"v2","outerProduct");F(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=U(n,[-1,1]),a=U(s,[1,-1]);return We(r,a)}var qpe=L({outerProduct_:QD});function ZD(e,t,n=0){let s=_(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return z.runKernel(Ja,a,r)}var gi=L({pad_:ZD});function JD(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),gi(e,[t],n)}var jpe=L({pad1d_:JD});function e3(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),gi(e,t,n)}var Kpe=L({pad2d_:e3});function t3(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),gi(e,t,n)}var Xpe=L({pad3d_:t3});function n3(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),gi(e,t,n)}var Ype=L({pad4d_:n3});function s3(e,t,n){let s=_(e,"x","spaceToBatchND");F(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(s.shape.reduce((i,o,u)=>u>0&&u<=t.length?i&&(o+n[u-1][0]+n[u-1][1])%t[u-1]===0:i,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return z.runKernel(Bo,r,a)}var db=L({spaceToBatchND_:s3});function r3(e,t,n,s,r,a,i){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let o=_(e,"x","maxPool"),u=o,l=!1;o.rank===3&&(l=!0,u=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(Ps(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=oS(u.shape,t,a,r,s),p=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=i3([c.filterHeight,c.filterWidth],p):d=[[0,0],[0,0]];let h=p[0]===1&&p[1]===1,[f,m]=a3([c.inHeight,c.inWidth],p,d),g=h?s:"valid",b=h?u:db(u,p,f),v=(n==="avg"?()=>Jg(b,t,a,g,i):()=>lb(b,t,a,g,i))(),x=h?v:eb(v,p,m);return l?U(x,[x.shape[1],x.shape[2],x.shape[3]]):x}function a3(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),i=t.map((c,p)=>(c-a[p]%c)%c),o=r.map((c,p)=>c+i[p]),u=t.map((c,p)=>[s[p],o[p]]),l=t.map((c,p)=>[0,i[p]]);return[u,l]}function i3(e,t){let s=e.map((i,o)=>i+(i-1)*(t[o]-1)).map(i=>i-1),r=s.map(i=>Math.floor(i/2)),a=s.map((i,o)=>i-r[o]);return s.map((i,o)=>[r[o],a[o]])}var Qpe=L({pool_:r3});function o3(e,t){let n=_(e,"x","prelu"),s=_(t,"alpha","prelu"),r={x:n,alpha:s};return z.runKernel(ti,r)}var pb=L({prelu_:o3});function u3(e,t=null,n=!1){let s=_(e,"x","prod");s.dtype==="bool"&&(s=le(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return z.runKernel(ni,r,a)}var $S=L({prod_:u3});function l3(e,t,n){let s=dt(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return z.makeTensor(r,e,n)}var Zpe=L({rand_:l3}),hb=wa(Yd()),fb=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=hb.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let i=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},c3=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=hb.alea(r.toString()),this.randn=new fb(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},d3=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=hb.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function p3(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new c3(t,n,s,r),i=Ae(e,s);for(let o=0;o<i.values.length;o++)i.values[o]=a.nextValue();return i.toTensor()}var Jpe=L({randomGamma_:p3});function h3(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new fb(t,n,s,!1,r),i=Ae(e,s);for(let o=0;o<i.values.length;o++)i.values[o]=a.nextValue();return i.toTensor()}var f3=L({randomNormal_:h3});function m3(e,t=0,n=1,s="float32",r){let a=Ae(e,s),i=new d3(t,n,null,r);for(let o=0;o<a.values.length;o++)a.values[o]=i.nextValue();return a.toTensor()}var Wl=L({randomUniform_:m3});function el(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return z.runKernel(Tl,{},r)}function g3(e){let n={x:_(e,"x","reciprocal")};return z.runKernel($l,n)}var b3=L({reciprocal_:g3});function y3(e){let n={x:_(e,"x","relu")};return z.runKernel(si,n)}var Xs=L({relu_:y3});function v3(e){let n={x:_(e,"x","relu6")};return z.runKernel(ai,n)}var _S=L({relu6_:v3});function x3(e,t){let s={x:_(e,"x","reverse")},r={dims:t};return z.runKernel(Fo,s,r)}var Jn=L({reverse_:x3});function w3(e){let t=_(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Jn(t,0)}var ehe=L({reverse1d_:w3});function k3(e,t){let n=_(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Jn(n,t)}var the=L({reverse2d_:k3});function S3(e,t){let n=_(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Jn(n,t)}var nhe=L({reverse3d_:S3});function I3(e,t){let n=_(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Jn(n,t)}var she=L({reverse4d_:I3});function C3(e){let n={x:_(e,"x","round")};return z.runKernel(Oo,n)}var AS=L({round_:C3});function N3(e){let n={x:_(e,"x","rsqrt","float32")};return z.runKernel(ii,n)}var ES=L({rsqrt_:N3});function T3(e){let n={x:_(e,"x","selu")};return z.runKernel(Al,n)}var RS=L({selu_:T3});function $3(e,t,n,s,r,a=[1,1],i="NHWC"){let o=_(e,"x","separableConv2d"),u=_(t,"depthwiseFilter","separableConv2d"),l=_(n,"pointwiseFilter","separableConv2d"),c=o,p=!1;if(o.rank===3&&(p=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${l.shape[0]}.`),F(l.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${l.shape[1]}.`);let d=u.shape[2],h=u.shape[3];F(l.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${l.shape[2]}.`);let f=kp(c,u,s,r,i,a),g=da(f,l,1,"valid",i);return p?U(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var _3=L({separableConv2d_:$3});async function A3(e,t){let n=_(e,"x","setdiff1d"),s=_(t,"y","setdiff1d");F(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),i=new Set(a),o=0;for(let c=0;c<r.length;c++)i.has(r[c])||o++;let u=new Vt([o],n.dtype),l=new Vt([o],"int32");for(let c=0,p=0;c<r.length;c++)i.has(r[c])||(u.values[p]=r[c],l.values[p]=c,p++);return[u.toTensor(),l.toTensor()]}var E3=A3;function R3(e){let n={x:_(e,"x","sign")};return z.runKernel(El,n)}var D3=L({sign_:R3});function F3(e){let n={x:_(e,"x","sin","float32")};return z.runKernel(oi,n)}var DS=L({sin_:F3});function O3(e){let n={x:_(e,"x","sinh")};return z.runKernel(Lo,n)}var FS=L({sinh_:O3});function P3(e,t,n){let s=_(e,"x","slice1d");return F(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),qe(s,[t],[n])}var mb=L({slice1d_:P3});function z3(e,t,n){let s=_(e,"x","slice2d");return F(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),qe(s,t,n)}var OS=L({slice2d_:z3});function M3(e,t,n){let s=_(e,"x","slice3d");return F(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),qe(s,t,n)}var gb=L({slice3d_:M3});function L3(e,t,n){let s=_(e,"x","slice4d");return F(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),qe(s,t,n)}var Nd=L({slice4d_:L3});function B3(e,t=-1){let n=_(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return z.runKernel(di,s,r)}var bb=L({softmax_:B3});function V3(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(Ng,t)}var yb=L({fft_:V3});function W3(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return z.runKernel(Tg,t)}var Td=L({ifft_:W3});function U3(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=U(e,[n,t]);s=Td(r)}else{let r=[n,2*(t-1)],a=U(Ku(e),[n,t]),i=U(wp(e),[n,t]),o=Jn(qe(a,[0,1],[n,t-2]),1),u=V(Jn(qe(i,[0,1],[n,t-2]),1),we(-1)),l=Ft([a,o],1),c=Ft([i,u],1),p=U(fr(l,c),[r[0],r[1]]);s=Td(p)}if(s=Ku(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=U(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var PS=L({irfft_:U3});function G3(e,t,n=0){let r={x:_(e,"x","split")},a={numOrSizeSplits:t,axis:n};return z.runKernel(Vo,r,a)}var Bn=L({split_:G3});function H3(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=qe(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=Ft([e,$t(f)],e.shape.length-1),n=t}else r=e;let a=je(r),i=U(fr(r,a),[s,n]),o=yb(i),u=Math.floor(n/2)+1,l=Ku(o),c=wp(o),p=Bn(l,[u,n-u],l.shape.length-1),d=Bn(c,[u,n-u],c.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=u,U(fr(p[0],d[0]),h)}var vb=L({rfft_:H3});function q3(e,t){let n=_(e,"a","squaredDifference"),s=_(t,"b","squaredDifference");[n,s]=xt(n,s),rt(n.shape,s.shape);let r={a:n,b:s},a={};return z.runKernel(pi,r,a)}var zS=L({squaredDifference_:q3});function j3(e,t){let n=_(e,"x","squeeze");return U(n,nk(n.shape,t).newShape)}var gr=L({squeeze_:j3});function K3(e,t=0){let n=ju(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return z.runKernel(Ro,s,r)}var es=L({stack_:K3});function X3(e,t=0){let s={x:_(e,"x","step")},r={alpha:t};return z.runKernel(mi,s,r)}var Tp=L({step_:X3});function Y3(e,t,n,s,r=0,a=0,i=0,o=0,u=0){let c={x:_(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:u};return z.runKernel(Wo,c,p)}var Q3=L({stridedSlice_:Y3});function Z3(e){let n={x:_(e,"x","tan","float32")};return z.runKernel(Uo,n)}var J3=L({tan_:Z3});function Qt(e,t){ka(e);let n=Rs(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Tr(e,null,n,t)}function Yi(e,t,n){if(ka(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Rs(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Tr(e,t,s,n)}function rhe(e,t,n){if(ka(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Rs(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Tr(e,t,s,n)}function ahe(e,t,n){if(ka(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Rs(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Tr(e,t,s,n)}function ihe(e,t,n){if(ka(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Rs(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,Tr(e,t,s,n)}function eF(e,t=1,n=!0){let s=_(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},i={k:t,sorted:n},[o,u]=z.runKernel(Go,a,i);return{values:o,indices:u}}var tF=L({topk_:eF});function nF(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new fb(t,n,s,!0,r),i=Ae(e,s);for(let o=0;o<i.values.length;o++)i.values[o]=a.nextValue();return i.toTensor()}var xb=L({truncatedNormal_:nF});function sF(e,t=0){let n=_(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,i]=z.runKernel(Lg,s,r);return{values:a,indices:i}}var wx=L({unique_:sF});function rF(e,t,n){let s=_(e,"x","unsortedSegmentSum"),r=_(t,"segmentIds","unsortedSegmentSum","int32");F(Zi(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},i={numSegments:n};return z.runKernel(gp,a,i)}var aF=L({unsortedSegmentSum_:rF});function iF(e,t=0){let n=_(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return z.runKernel(qo,s,r)}var Fs=L({unstack_:iF});function oF(e,t){return NS(e,t,"right")}function uF(e,t=!0,n,s){return z.makeVariable(e,t,n,s)}function MS(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=Ae(e,"int32"),r=Ae([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let i=s.indexToLoc(n[a]),o=a*e.length;r.values.set(i,o)}return r.toTensor()}async function lF(e){let t=_(e,"condition","whereAsync","bool"),n=await t.data(),s=MS(t.shape,n);return e!==t&&t.dispose(),s}var LS=lF;async function cF(e,t,n){let s=_(e,"tensor","boolMask"),r=_(t,"mask","boolMask","bool"),a=n==null?0:n,i=r.rank,o=s.shape;F(i>0,()=>"mask cannot be scalar"),pn(o.slice(a,a+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let u=1;for(let m=a;m<a+i;m++)u*=o[m];let l=o.slice(0,a).concat([u],o.slice(a+i)),c=U(s,l),p=U(r,[-1]),d=await LS(p),h=gr(d,[1]),f=Zu(c,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),c.dispose(),p.dispose(),d.dispose(),f}var ohe=cF;function dF(e,t,n,s,r=!0){let a=_(e,"v","movingAverage"),i=_(t,"x","movingAverage"),o=_(n,"decay","movingAverage");xk(a,i),F(Sr(a.shape,i.shape),()=>"Shape mismatch in v and x");let u=we(1),l=ge(u,o),c=V(ge(i,a),l);if(r){F(s!=null,()=>"When using zeroDebias: true, step is required.");let p=_(s,"step","movingAverage");c=xe(c,ge(u,ha(o,p)))}return ie(a,c)}var uhe=L({movingAverage_:dF});function pF(e,t,n){let s=_(e,"indices","scatterND","int32"),r=_(t,"updates","scatterND");Xg(r,s,n);let a={indices:s,updates:r},i={shape:n};return z.runKernel(Po,a,i)}var hF=L({scatterND_:pF});function fF(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function mF(e,t,n,s=0){let r=_(e,"sparseIndices","sparseToDense","int32"),a=_(t,"sparseValues","sparseToDense","string_or_numeric"),i=_(s,"defaultValue","sparseToDense",a.dtype);fF(r,a,n,i);let o={sparseIndices:r,sparseValues:a,defaultValue:i},u={outputShape:n};return z.runKernel(fp,o,u)}var BS=L({sparseToDense_:mF});function gF(e,t){let n=_(t,"indices","gatherND","int32"),r={params:_(e,"x","gatherND","string_or_numeric"),indices:n};return z.runKernel(wo,r)}var bF=L({gatherND_:gF});function yF(e,t){if(t==null)return e.shape.slice();if(Sr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function vF(e,t,n,s){let r=_(e,"x","dropout");if(F(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof et?r.clone():r;let a=yF(r,n),i=1-t,o=xe(Ip(ie(Wl(a,0,1,"float32",s),i)),i);return V(r,o)}var xF=L({dropout_:vF});function wF(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function VS(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let i=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(i)}return Qt(r,"float32")}async function kF(e,t,n=1){let s=_(e,"predictions","inTopK"),r=_(t,"targets","inTopK");F(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),F(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),pn(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];F(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let i=await s.data(),o=await r.data(),[u,l]=[i.length/a,a],c=sk("bool",u);for(let p=0;p<u;p++){let d=p*l,h=i.subarray(d,d+l),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),c[p]=0;for(let m=0;m<n;m++)if(f[m].index===o[p]){c[p]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),ms(c,r.shape,"bool")}var lhe=kF,fa={};Ee(fa,{conv2d:()=>CF,depthwiseConv2d:()=>_F,matMul:()=>EF});function SF(e,t,n,s,r,a="NHWC",i){let o=e;e.rank===3&&(o=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u=t;u.rank===3&&(u=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(u.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${u.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let l=a==="NHWC"?o.shape[3]:o.shape[1],c=a==="NHWC"?u.shape[3]:u.shape[1];F(l===n[2],()=>`Error in conv2dDerFilter: depth of input ${l}) must match input depth in filter (${n[2]}.`),F(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),hn("conv2dDerFilter",r,i);let p={x:o,dy:u},d={strides:s,pad:r,dataFormat:a,dimRoundingMode:i,filterShape:n};return z.runKernel(yg,p,d)}var wb=L({conv2DBackpropFilter_:SF});function $p(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return V(e,Tp(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function _p(e,t){let n=t,s=_t(e.shape,t.shape);return s.length>0&&(n=ve(n,s)),U(n,e.shape)}function Ap(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Xs(e);if(t==="elu")return Sp(e);if(t==="relu6")return _S(e);if(t==="prelu")return pb(e,n);if(t==="leakyrelu")return ib(e,s);if(t==="sigmoid")return qs(e);throw new Error(`Unknown fused activation ${t}.`)}var Ep=(e,t)=>!(e>0)||t==="linear";function IF({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:i,bias:o,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(u=u||"linear",Ep(z.state.gradientDepth,u)===!1){F(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let I=da(e,t,n,s,r,a,i);return o!=null&&(I=ie(I,o)),Ap(I,u,l,c)}let p=_(e,"x","conv2d","float32"),d=_(t,"filter","conv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=U(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),F(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),hn("fused conv2d",s,i);let m=r==="NHWC"?h.shape[3]:h.shape[1];F(d.shape[2]===m,()=>`Error in conv2d: depth of input (${m}) must match input depth for filter ${d.shape[2]}.`),F(Ps(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let g=Ll(h.shape,d.shape,n,a,s,i),b;o!=null&&(b=_(o,"bias","fused conv2d"),[b]=xt(b,p),r==="NHWC"?rt(g.outShape,b.shape):(F(b.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${b.shape.length}.`),F(b.shape.length===0||b.shape[0]===g.outChannels||b.shape[0]===1,()=>`Error in fused conv2d: bias shape (${b.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let y;if(l!=null){let I=l.shape;if(F(I.length<=1||I.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${I.length}.`),I.length===1)F(I[0]===1||I[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${I}) is not compatible with the number of output channels (${g.outChannels}).`);else if(I.length===3)try{rt(I,g.outShape)}catch($){let R=`Error in fused conv2d: PReLU activation weights (${I}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(R)}y=_(l,"prelu weights","fused conv2d")}let v=(I,$)=>{F(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[R,E,P,A]=$,O=$p(I,P,u);F(mr(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let T=tb(E.shape,O,R,n,s),M=wb(E,O,R.shape,n,s),W=[T,M];if(A!=null){let j=_p(A,O);W.push(j)}return W},x={x:h,filter:d,bias:b,preluActivationWeights:y},k={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return o==null?js(($,R,E)=>{let P=z.runKernel(oa,x,k);return E([R,$,P]),f&&(P=U(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:v}})(h,d):js(($,R,E,P)=>{let A=z.runKernel(oa,x,k);return P([R,$,A,E]),f&&(A=U(A,[A.shape[1],A.shape[2],A.shape[3]])),{value:A,gradFunc:v}})(h,d,b)}var CF=L({fusedConv2d_:IF});function NF(e,t,n,s,r,a=[1,1],i){let o=e;e.rank===3&&(o=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u=t;u.rank===3&&(u=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={x:o,dy:u},c={strides:s,pad:r,dimRoundingMode:i,dilations:a,filterShape:n};return z.runKernel(kg,l,c)}var WS=L({depthwiseConv2dNativeBackpropFilter_:NF});function TF(e,t,n,s,r,a=[1,1],i){let o=t,u=!1;t.rank===3&&(u=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={dy:o,filter:n},c={strides:s,pad:r,dimRoundingMode:i,dilations:a,inputShape:e},p=z.runKernel(Sg,l,c);return u?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var US=L({depthwiseConv2dNativeBackpropInput_:TF});function $F({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:i,bias:o,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:c}){if(Ep(z.state.gradientDepth,u)===!1){let k=kp(e,t,n,s,r,a,i);return o!=null&&(k=ie(k,o)),Ap(k,u,l,c)}let p=_(e,"x","depthwiseConv2d","float32"),d=_(t,"filter","depthwiseConv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=U(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),F(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),F(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),a==null&&(a=[1,1]),F(Ps(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),hn("fused depthwiseConv2d",s,i);let m=Ll(h.shape,d.shape,n,a,s,i,!0),g;o!=null&&(g=_(o,"bias","fused conv2d"),[g]=xt(g,p),rt(m.outShape,g.shape));let b;l!=null&&(b=_(l,"prelu weights","fused depthwiseConv2d"));let y=(k,I)=>{F(mr(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[$,R,E,P]=I,A=$p(k,E,u),O=US(R.shape,A,$,n,s,a,i),T=WS(R,A,$.shape,n,s,a,i);if(P!=null){let M=_p(g,A);return[O,T,M]}return[O,T]},v={x:h,filter:d,bias:g,preluActivationWeights:b},x={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:i,activation:u,leakyreluAlpha:c};return o==null?js((I,$,R)=>{let E=z.runKernel(ua,v,x);return R([$,I,E]),f&&(E=U(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(h,d):js((I,$,R,E)=>{let P=z.runKernel(ua,v,x);return E([$,I,P,R]),f&&(P=U(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:y}})(h,d,g)}var _F=L({fusedDepthwiseConv2d_:$F});function AF({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:i,leakyreluAlpha:o=.2}){if(Ep(z.state.gradientDepth,a)===!1){let A=We(e,t,n,s);return r!=null&&(A=ie(A,r)),Ap(A,a,i,o)}let u=_(e,"a","fused matMul"),l=_(t,"b","fused matMul");[u,l]=xt(u,l);let c=n?u.shape[u.rank-2]:u.shape[u.rank-1],p=s?l.shape[l.rank-1]:l.shape[l.rank-2],d=n?u.shape[u.rank-1]:u.shape[u.rank-2],h=s?l.shape[l.rank-2]:l.shape[l.rank-1],f=u.shape.slice(0,-2),m=l.shape.slice(0,-2),g=dt(f),b=dt(m);F(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${u.shape} and ${l.shape} and transposeA=${n} and transposeB=${s} must match.`);let v=rt(u.shape.slice(0,-2),l.shape.slice(0,-2)).concat([d,h]),x=n?U(u,[g,c,d]):U(u,[g,d,c]),k=s?U(l,[b,h,p]):U(l,[b,p,h]),I;r!=null&&(I=_(r,"bias","fused matMul"),[I]=xt(I,u),rt(v,I.shape));let $;i!=null&&($=_(i,"prelu weights","fused matMul"));let R=(A,O)=>{let[T,M,W,j]=O,Y=$p(U(A,W.shape),W,a),X,Z;if(!n&&!s?(X=We(Y,M,!1,!0),Z=We(T,Y,!0,!1)):!n&&s?(X=We(Y,M,!1,!1),Z=We(Y,T,!0,!1)):n&&!s?(X=We(M,Y,!1,!0),Z=We(T,Y,!1,!1)):(X=We(M,Y,!0,!0),Z=We(Y,T,!0,!0)),r!=null){let ne=_p(j,Y);return[X,Z,ne]}else return[X,Z]},E={a:x,b:k,bias:I,preluActivationWeights:$},P={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:o};return r==null?js((O,T,M)=>{let W=z.runKernel(ia,E,P);return M([O,T,W]),{value:U(W,v),gradFunc:R}})(x,k):js((O,T,M,W)=>{let j=z.runKernel(ia,E,P);return W([O,T,j,M]),{value:U(j,v),gradFunc:R}})(x,k,I)}var EF=L({fusedMatMul_:AF});function RF(e){return VS(e,.54,.46)}var DF=L({hammingWindow_:RF});function FF(e){return VS(e,.5,.5)}var GS=L({hannWindow_:FF});function OF(e,t,n,s=!1,r=0){let a=0,i=[];for(;a+t<=e.size;)i.push(qe(e,a,t)),a+=n;if(s)for(;a<e.size;){let o=a+t-e.size,u=Ft([qe(e,a,t-o),Bl([o],r)]);i.push(u),a+=n}return i.length===0?Yi([],[0,t]):U(Ft(i),[i.length,t])}var HS=L({frame_:OF});function PF(e,t,n,s,r=GS){s==null&&(s=wF(t));let a=HS(e,t,n),i=V(a,r(t));return vb(i,s)}var zF=L({stft_:PF});function MF(e,t,n,s,r="bilinear",a=0){let i=_(e,"image","cropAndResize"),o=_(t,"boxes","cropAndResize","float32"),u=_(n,"boxInd","cropAndResize","int32"),l=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${l},4] but had shape ${o.shape}.`),F(u.rank===1&&u.shape[0]===l,()=>`Error in cropAndResize: boxInd must be have size [${l}] but had shape ${o.shape}.`),F(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),F(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),F(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:i,boxes:o,boxInd:u},p={method:r,extrapolationValue:a,cropSize:s};return z.runKernel(fo,c,p)}var LF=L({cropAndResize_:MF});function BF(e){let t=_(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return z.runKernel(vo,n,{})}var VF=L({flipLeftRight_:BF});function WF(e){let t=_(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];F(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),F(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,hs(t,r)}var UF=L({grayscaleToRGB_:WF});function GF(e,t,n=0,s=.5){let r=_(e,"image","rotateWithOffset","float32");F(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},i={radians:t,fillValue:n,center:s};return z.runKernel(Ko,a,i)}var HF=L({rotateWithOffset_:GF});function Zo(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function qF(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=_(e,"boxes","nonMaxSuppression","float32"),i=_(t,"scores","nonMaxSuppression","float32"),o=Zo(a,i,n,s,r);n=o.maxOutputSize,s=o.iouThreshold,r=o.scoreThreshold;let u={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return z.runKernel($o,{boxes:a,scores:i},u)}var jF=L({nonMaxSuppression_:qF});function KF(e,t,n){let s=XF(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function XF(e,t,n){return QF(e,t,n||YF)}function YF(e,t){return e>t?1:e<t?-1:0}function QF(e,t,n){let s=0,r=e.length,a=0,i=!1;for(;s<r;){a=s+(r-s>>>1);let o=n(t,e[a]);o>0?s=a+1:(r=a,i=!o)}return i?s:-s-1}function qS(e,t,n,s,r){return kb(e,t,n,s,r,0)}function jS(e,t,n,s,r,a){return kb(e,t,n,s,r,0,!1,a,!0)}function KS(e,t,n,s,r,a){return kb(e,t,n,s,r,a,!0)}function kb(e,t,n,s,r,a,i=!1,o=!1,u=!1){let l=[];for(let g=0;g<t.length;g++)t[g]>r&&l.push({score:t[g],boxIndex:g,suppressBeginIndex:0});l.sort(kx);let c=a>0?-.5/a:0,p=[],d=[];for(;p.length<n&&l.length>0;){let g=l.pop(),{score:b,boxIndex:y,suppressBeginIndex:v}=g;if(b<r)break;let x=!1;for(let k=p.length-1;k>=v;--k){let I=ZF(e,y,p[k]);if(I>=s){x=!0;break}if(g.score=g.score*JF(s,c,I),g.score<=r)break}g.suppressBeginIndex=p.length,x||(g.score===b?(p.push(y),d.push(g.score)):g.score>r&&KF(l,g,kx))}let h=p.length,f=n-h;o&&f>0&&(p.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:p};return i&&(m.selectedScores=d),u&&(m.validOutputs=h),m}function ZF(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),i=Math.min(s[1],s[3]),o=Math.max(s[0],s[2]),u=Math.max(s[1],s[3]),l=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(o-a)*(u-i),f=(p-l)*(d-c);if(h<=0||f<=0)return 0;let m=Math.max(a,l),g=Math.max(i,c),b=Math.min(o,p),y=Math.min(u,d),v=Math.max(b-m,0)*Math.max(y-g,0);return v/(h+f-v)}function JF(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function kx(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function eO(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=_(e,"boxes","nonMaxSuppressionAsync"),i=_(t,"scores","nonMaxSuppressionAsync"),o=Zo(a,i,n,s,r);n=o.maxOutputSize,s=o.iouThreshold,r=o.scoreThreshold;let u=await Promise.all([a.data(),i.data()]),l=u[0],c=u[1],{selectedIndices:p}=qS(l,c,n,s,r);return a!==e&&a.dispose(),i!==t&&i.dispose(),Qt(p,"int32")}var tO=eO;function nO(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),u=Zo(i,o,n,s,r,a);n=u.maxOutputSize,s=u.iouThreshold,r=u.scoreThreshold,a=u.softNmsSigma;let l={boxes:i,scores:o},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},p=z.runKernel(_o,l,c);return{selectedIndices:p[0],selectedScores:p[1]}}var sO=L({nonMaxSuppressionWithScore_:nO});async function rO(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),u=Zo(i,o,n,s,r,a);n=u.maxOutputSize,s=u.iouThreshold,r=u.scoreThreshold,a=u.softNmsSigma;let l=await Promise.all([i.data(),o.data()]),c=l[0],p=l[1],{selectedIndices:d,selectedScores:h}=KS(c,p,n,s,r,a);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Qt(d,"int32"),selectedScores:Qt(h)}}var aO=rO;function iO(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let i=_(e,"boxes","nonMaxSuppression"),o=_(t,"scores","nonMaxSuppression"),u=Zo(i,o,n,s,r,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,d={boxes:i,scores:o},h={maxOutputSize:l,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:a},f=z.runKernel(Nl,d,h);return{selectedIndices:f[0],validOutputs:f[1]}}var oO=L({nonMaxSuppressionPadded_:iO});async function uO(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let i=_(e,"boxes","nonMaxSuppressionAsync"),o=_(t,"scores","nonMaxSuppressionAsync"),u=Zo(i,o,n,s,r,null),l=u.maxOutputSize,c=u.iouThreshold,p=u.scoreThreshold,[d,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=jS(d,h,l,c,p,a);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Qt(f,"int32"),validOutputs:we(m,"int32")}}var lO=uO;function cO(e,t,n=!1,s=!1){let r=_(e,"images","resizeBilinear");F(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,i=!1;r.rank===3&&(i=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:a},u={alignCorners:n,halfPixelCenters:s,size:t},l=z.runKernel(ri,o,u);return i?U(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var dO=L({resizeBilinear_:cO});function pO(e,t,n=!1,s=!1){let r=_(e,"images","resizeNearestNeighbor");F(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,i=!1;r.rank===3&&(i=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:a},u={alignCorners:n,halfPixelCenters:s,size:t},l=z.runKernel(_l,o,u);return i?U(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var hO=L({resizeNearestNeighbor_:pO});function fO(e,t="binary",n=!1,s=.5){let r=_(e,"image","threshold"),a=.2989,i=.587,o=.114,u=r.shape[0]*r.shape[1],l=V(Qt([s]),255),c,p,d,h;if(F(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),F(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),F(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),F(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,p,d]=Bn(r,[1,1,1],-1);let g=V(c,a),b=V(p,i),y=V(d,o);h=ie(ie(g,b),y)}else h=e;if(t==="otsu"){let g=dS(le(AS(h),"int32"),ms([]),256);l=mO(g,u)}let f=n?Qo(h,l):Un(h,l);return le(V(f,255),"int32")}function mO(e,t){let n=Qt([-1]),s=Qt([0]),r=Qt([0]),a,i,o,u,l,c;for(let p=0;p<e.size-1;p++){a=qe(e,0,p+1),i=qe(e,p+1),l=xe(ve(a),t),c=xe(ve(i),t);let d=ve(V(a,el(0,a.size)));o=xe(d,ve(a));let h=Bl(i.shape,a.size),f=ie(el(0,i.size),h),m=V(i,f);u=xe(ve(m),ve(i));let g=ge(o,u),b=ge(o,u),y=V(l,c);r=V(V(y,g),b);let v=Un(r,s);s=vn(v,r,s),n=vn(v,Qt([p]),n)}return n}var gO=L({threshold_:fO});function bO(e,t,n="nearest",s="constant",r=0,a){let i=_(e,"image","transform","float32"),o=_(t,"transforms","transform","float32");F(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),F(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let u={image:i,transforms:o},l={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return z.runKernel(Ho,u,l)}var yO=L({transform_:bO});function vO(e,t,n){F(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=_(e,"a","bandPart");F(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,i]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=a),n<0&&(n=i);let o=U(el(0,a,1,"int32"),[-1,1]),u=el(0,i,1,"int32"),l=ge(o,u),c=Ds(Qo(l,we(+t,"int32")),Yo(l,we(-n,"int32"))),p=$t([a,i],s.dtype);return U(es(Fs(U(s,[-1,a,i])).map(d=>vn(c,d,p))),r)}var xO=L({bandPart_:vO});function wO(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)F(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=Bn(e,e.shape[0],0).map(r=>gr(r,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(z.tidy(()=>{let a=s[r];if(r>0)for(let i=0;i<r;++i){let o=V(ve(V(n[i],a)),n[i]);a=ge(a,o)}return xe(a,ab(a,"euclidean"))}));return t?es(n,0):n}var kO=L({gramSchmidt_:wO});function SO(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return Sx(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((u,l)=>u*l),s=Fs(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(u=>{let[l,c]=Sx(u,t);r.push(l),a.push(c)});let i=U(es(r,0),e.shape),o=U(es(a,0),e.shape);return[i,o]}}function Sx(e,t=!1){return z.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=kS(n),a=ur(e),i=Yi([[1]],[1,1]),o=ur(i),u=n>=s?s:n;for(let l=0;l<u;++l){let c=a,p=o,d=r;[o,a,r]=z.tidy(()=>{let h=qe(a,[l,l],[n-l,1]),f=ab(h),m=qe(a,[l,l],[1,1]),g=vn(Un(m,0),Yi([[-1]]),Yi([[1]])),b=ge(m,V(g,f)),y=xe(h,b);y.shape[0]===1?o=ur(i):o=Ft([i,qe(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let v=vt(xe(We(g,b),f)),x=qe(a,[l,0],[n-l,s]),k=V(v,o),I=Ge(o);if(l===0)a=ge(x,We(k,We(I,x)));else{let E=ge(x,We(k,We(I,x)));a=Ft([qe(a,[0,0],[l,s]),E],0)}let $=Ge(k),R=qe(r,[0,l],[n,r.shape[1]-l]);if(l===0)r=ge(R,We(We(R,o),$));else{let E=ge(R,We(We(R,o),$));r=Ft([qe(r,[0,0],[n,l]),E],1)}return[o,a,r]}),De([c,p,d])}return!t&&n>s&&(r=qe(r,[0,0],[n,s]),a=qe(a,[0,0],[s,s])),[r,a]})}var IO=L({qr_:SO}),CO=(e=>(e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS",e))(CO||{});function NO(e,t,n=3){let s=_(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=_(t,"weights","computeWeightedLoss"));let a=r==null?s:V(s,r);if(n===0)return a;if(n===2)return ve(a);if(n===1){if(r==null)return It(a);{let i=s.size/r.size,o=xe(ve(a),ve(r));return i>1?xe(o,we(i)):o}}if(n===3){if(r==null)return xe(ve(a),we(s.size));{let i=V(r,Mn(s.shape)),o=le(ve(Ju(i,we(0))),"float32");return xe(ve(a),o)}}throw Error(`Unknown reduction: ${n}`)}var Ys=L({computeWeightedLoss_:NO});function TO(e,t,n,s=3){let r=_(e,"labels","absoluteDifference"),a=_(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=_(n,"weights","absoluteDifference")),pn(r.shape,a.shape,"Error in absoluteDifference: ");let o=Mt(ge(r,a));return Ys(o,i,s)}var $O=L({absoluteDifference_:TO});function _O(e,t,n,s,r=3){let a=_(e,"labels","cosineDistance"),i=_(t,"predictions","cosineDistance"),o=null;s!=null&&(o=_(s,"weights","cosineDistance")),pn(a.shape,i.shape,"Error in cosineDistance: ");let u=we(1),l=ge(u,ve(V(a,i),n,!0));return Ys(l,o,r)}var AO=L({cosineDistance_:_O});function EO(e,t,n,s=3){let r=_(e,"labels","hingeLoss"),a=_(t,"predictions","hingeLoss"),i=null;n!=null&&(i=_(n,"weights","hingeLoss")),pn(r.shape,a.shape,"Error in hingeLoss: ");let o=we(1);r=ge(V(we(2),r),o);let u=Xs(ge(o,V(r,a)));return Ys(u,i,s)}var RO=L({hingeLoss_:EO});function DO(e,t,n,s=1,r=3){let a=_(e,"labels","huberLoss"),i=_(t,"predictions","huberLoss"),o=null;n!=null&&(o=_(n,"weights","huberLoss")),pn(a.shape,i.shape,"Error in huberLoss: ");let u=we(s),l=Mt(ge(i,a)),c=Np(l,u),p=ge(l,c),d=ie(V(we(.5),ct(c)),V(u,p));return Ys(d,o,r)}var FO=L({huberLoss_:DO});function OO(e,t,n,s=1e-7,r=3){let a=_(e,"labels","logLoss"),i=_(t,"predictions","logLoss"),o=null;n!=null&&(o=_(n,"weights","logLoss")),pn(a.shape,i.shape,"Error in logLoss: ");let u=we(1),l=we(s),c=vt(V(a,Qn(ie(i,l)))),p=V(ge(u,a),Qn(ie(ge(u,i),l))),d=ge(c,p);return Ys(d,o,r)}var PO=L({logLoss_:OO});function zO(e,t,n,s=3){let r=_(e,"labels","meanSquaredError"),a=_(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=_(n,"weights","meanSquaredError")),pn(r.shape,a.shape,"Error in meanSquaredError: ");let o=zS(r,a);return Ys(o,i,s)}var MO=L({meanSquaredError_:zO});function LO(e,t){let n=_(e,"labels","sigmoidCrossEntropyWithLogits"),s=_(t,"logits","sigmoidCrossEntropyWithLogits");pn(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Xs(s),a=V(s,n),i=ob(Yn(vt(Mt(s))));return ie(ge(r,a),i)}function BO(e,t,n,s=0,r=3){let a=_(e,"multiClassLabels","sigmoidCrossEntropy"),i=_(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","sigmoidCrossEntropy")),pn(a.shape,i.shape,"Error in sigmoidCrossEntropy: "),s>0){let l=we(s),c=we(1),p=we(.5);a=ie(V(a,ge(c,l)),V(p,l))}let u=LO(a,i);return Ys(u,o,r)}var VO=L({sigmoidCrossEntropy_:BO});function WO(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return js((r,a,i)=>{let u=TD(a,[n],!0),l=ge(le(a,"float32"),u);i([r,l]);let c=vt(V(l,r));return{value:ve(c,[n]),gradFunc:(h,f)=>{let[m,g]=f,b=pa(h.shape,[n]);return[V(U(h,b),ge(le(m,"float32"),Yn(g))),V(U(h,b),ge(Yn(g),le(m,"float32")))]}}})(e,t)}function UO(e,t,n,s=0,r=3){let a=_(e,"onehotLabels","softmaxCrossEntropy"),i=_(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=_(n,"weights","softmaxCrossEntropy")),pn(a.shape,i.shape,"Error in softmaxCrossEntropy: "),s>0){let l=we(s),c=we(1),p=we(a.shape[1]);a=ie(V(a,ge(c,l)),xe(l,p))}let u=WO(a,i);return Ys(u,o,r)}var GO=L({softmaxCrossEntropy_:UO});function HO(e,t,n,s){let r=_(e,"indices","sparseFillEmptyRows","int32"),a=_(t,"values","sparseFillEmptyRows"),i=_(n,"denseShape","sparseFillEmptyRows","int32"),o=_(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let u={indices:r,values:a,denseShape:i,defaultValue:o},l=z.runKernel(dp,u);return{outputIndices:l[0],outputValues:l[1],emptyRowIndicator:l[2],reverseIndexMap:l[3]}}var qO=L({sparseFillEmptyRows_:HO});function jO(e,t,n){let s=_(e,"inputIndices","sparseReshape","int32"),r=_(t,"inputShape","sparseReshape","int32"),a=_(n,"newShape","sparseReshape","int32");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let i={inputIndices:s,inputShape:r,newShape:a},o=z.runKernel(Dl,i);return{outputIndices:o[0],outputShape:o[1]}}var KO=L({sparseReshape_:jO});function XO(e,t,n){let s=_(e,"data","sparseSegmentMean"),r=_(t,"indices","sparseSegmentMean","int32"),a=_(n,"segmentIds","sparseSegmentMean","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let i={data:s,indices:r,segmentIds:a};return z.runKernel(pp,i)}var YO=L({sparseSegmentMean_:XO});function QO(e,t,n){let s=_(e,"data","sparseSegmentSum"),r=_(t,"indices","sparseSegmentSum","int32"),a=_(n,"segmentIds","sparseSegmentSum","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${a.shape}`);let i={data:s,indices:r,segmentIds:a};return z.runKernel(hp,i)}var ZO=L({sparseSegmentSum_:QO});function JO(e,t,n,s,r,a,i,o){let u=_(e,"data","stringNGrams","string");if(u.dtype!=="string")throw new Error("Data must be of datatype string");if(u.shape.length!==1)throw new Error(`Data must be a vector, saw: ${u.shape}`);let l=_(t,"dataSplits","stringNGrams");if(l.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:i,preserveShortSequences:o},p={data:u,dataSplits:l},d=z.runKernel(mp,p,c);return{nGrams:d[0],nGramsSplits:d[1]}}var eP=L({stringNGrams_:JO});function tP(e,t,n=!0){let s=_(e,"input","stringSplit","string"),r=_(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},i={input:s,delimiter:r},o=z.runKernel(zg,i,a);return{indices:o[0],values:o[1],shape:o[2]}}var nP=L({stringSplit_:tP});function sP(e,t){let n=_(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return z.runKernel(Mg,r,s)}var rP=L({stringToHashBucketFast_:sP}),che={fft:yb,ifft:Td,rfft:vb,irfft:PS},dhe={hammingWindow:DF,hannWindow:GS,frame:HS,stft:zF},jn={flipLeftRight:VF,grayscaleToRGB:UF,resizeNearestNeighbor:hO,resizeBilinear:dO,rotateWithOffset:HF,cropAndResize:LF,nonMaxSuppression:jF,nonMaxSuppressionAsync:tO,nonMaxSuppressionWithScore:sO,nonMaxSuppressionWithScoreAsync:aO,nonMaxSuppressionPadded:oO,nonMaxSuppressionPaddedAsync:lO,threshold:gO,transform:yO},aP={bandPart:xO,gramSchmidt:kO,qr:IO},phe={absoluteDifference:$O,computeWeightedLoss:Ys,cosineDistance:AO,hingeLoss:RO,huberLoss:FO,logLoss:PO,meanSquaredError:MO,sigmoidCrossEntropy:VO,softmaxCrossEntropy:GO},qc={sparseFillEmptyRows:qO,sparseReshape:KO,sparseSegmentMean:YO,sparseSegmentSum:ZO},jf={stringNGrams:eP,stringSplit:nP,stringToHashBucketFast:rP},Ar=class extends nS{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(a)}else this.applyGradients(r);return De(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return wD(e,t)}dispose(){this.iterations_!=null&&De(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:we(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Ar,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Sb=class extends Ar{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=z.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:q(()=>je(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:q(()=>je(r).variable(a))});let i=Array.isArray(e)?e[s].tensor:e[n];if(i==null)return;let o=this.accumulatedGrads[s].variable,u=this.accumulatedUpdates[s].variable;q(()=>{let l=ie(V(o,this.rho),V(ct(i),1-this.rho)),c=V(xe(cn(ie(u,this.epsilon)),cn(ie(o,this.epsilon))),i),p=ie(V(u,this.rho),V(ct(c),1-this.rho));o.assign(l),u.assign(p);let d=ie(V(c,-this.learningRate),r);r.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(De(this.accumulatedGrads.map(e=>e.variable)),De(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Sb.className="Adadelta";$r(Sb);var Ib=class extends Ar{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=z.registeredVariables[n];this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:q(()=>Bl(r.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let i=this.accumulatedGrads[s].variable;q(()=>{let o=ie(i,ct(a));i.assign(o);let u=ie(V(xe(a,cn(ie(o,z.backend.epsilon()))),-this.learningRate),r);r.assign(u)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&De(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Ib.className="Adagrad";$r(Ib);var Cb=class extends Ar{constructor(e,t,n,s=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],q(()=>{this.accBeta1=we(t).variable(),this.accBeta2=we(n).variable()}),s==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);q(()=>{let n=ge(1,this.accBeta1),s=ge(1,this.accBeta2);t.forEach((r,a)=>{let i=z.registeredVariables[r],o=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:q(()=>je(i).variable(o))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:q(()=>je(i).variable(o))});let u=Array.isArray(e)?e[a].tensor:e[r];if(u==null)return;let l=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,p=ie(V(l,this.beta1),V(u,1-this.beta1)),d=ie(V(c,this.beta2),V(ct(u),1-this.beta2)),h=xe(p,n),f=xe(d,s);l.assign(p),c.assign(d);let m=ie(V(xe(h,ie(cn(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(V(this.accBeta1,this.beta1)),this.accBeta2.assign(V(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&De(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&De(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),q(()=>{this.accBeta1.assign(ha(this.beta1,this.iterations_+1)),this.accBeta2.assign(ha(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Cb.className="Adam";$r(Cb);var Nb=class extends Ar{constructor(e,t,n,s=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],q(()=>{this.iteration=we(0).variable(),this.accBeta1=we(t).variable()}),s==null&&(this.epsilon=z.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);q(()=>{let n=ge(1,this.accBeta1),s=xe(-this.learningRate,ie(V(this.iteration,this.decay),1));t.forEach((r,a)=>{let i=z.registeredVariables[r],o=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:je(i).variable(o)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:je(i).variable(o)});let u=Array.isArray(e)?e[a].tensor:e[r];if(u==null)return;let l=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,p=ie(V(l,this.beta1),V(u,1-this.beta1)),d=V(c,this.beta2),h=Mt(u),f=_r(d,h);l.assign(p),c.assign(f);let m=ie(V(xe(s,n),xe(p,ie(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(ie(this.iteration,1)),this.accBeta1.assign(V(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&De(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&De(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Nb.className="Adamax";$r(Nb);var Rp=class extends Ar{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=z.registeredVariables[n];q(()=>{let i=ie(V(this.c,r),a);a.assign(i)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Ht(we(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Rp.className="SGD";$r(Rp);var Tb=class extends Rp{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=we(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=z.registeredVariables[n];this.accumulations[s]==null&&(this.accumulations[s]={originalName:`${n}/momentum`,variable:q(()=>je(r).variable(!1))});let a=this.accumulations[s].variable,i=Array.isArray(e)?e[s].tensor:e[n];i!=null&&q(()=>{let o,u=ie(V(this.m,a),i);this.useNesterov?o=ie(V(this.c,ie(i,V(u,this.m))),r):o=ie(V(this.c,u),r),a.assign(u),r.assign(o)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&De(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Tb.className="Momentum";$r(Tb);var $b=class extends Ar{constructor(e,t=.9,n=0,s=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=z.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=z.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:q(()=>je(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:q(()=>je(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:q(()=>je(r).variable(a))});let i=Array.isArray(e)?e[s].tensor:e[n];if(i==null)return;let o=this.accumulatedMeanSquares[s].variable,u=this.accumulatedMoments[s].variable;q(()=>{let l=ie(V(o,this.decay),V(ct(i),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,p=ie(V(c,this.decay),V(i,1-this.decay)),d=xe(V(i,this.learningRate),cn(ge(l,ie(ct(p),this.epsilon)))),h=ie(V(u,this.momentum),d);o.assign(l),c.assign(p),u.assign(h);let f=ge(r,h);r.assign(f)}else{let c=ie(V(o,this.decay),V(ct(i),1-this.decay)),p=ie(V(u,this.momentum),xe(V(i,this.learningRate),cn(ie(c,this.epsilon))));o.assign(c),u.assign(p);let d=ge(r,p);r.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&De(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&De(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&De(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};$b.className="RMSProp";$r($b);var Gr=class{static sgd(e){return new Rp(e)}static momentum(e,t,n=!1){return new Tb(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new $b(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new Cb(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new Sb(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new Nb(e,t,n,s,r)}static adagrad(e,t=.1){return new Ib(e,t)}},zi={sgd:Gr.sgd,momentum:Gr.momentum,adadelta:Gr.adadelta,adagrad:Gr.adagrad,rmsprop:Gr.rmsprop,adamax:Gr.adamax,adam:Gr.adam},iP=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function XS(){return new Promise(e=>iP(()=>e()))}var C={};Ee(C,{ERF_A1:()=>bP,ERF_A2:()=>yP,ERF_A3:()=>vP,ERF_A4:()=>xP,ERF_A5:()=>wP,ERF_P:()=>gP,PARALLELIZE_THRESHOLD:()=>_b,SELU_SCALE:()=>QS,SELU_SCALEALPHA:()=>YS,applyActivation:()=>Ap,assertAndGetBroadcastShape:()=>rt,assertAxesAreInnerMostDims:()=>WR,assertParamsConsistent:()=>oP,assignToTypedArray:()=>TP,axesAreInnerMostDims:()=>sb,calculateShapes:()=>qk,checkEinsumDimSizes:()=>DP,checkPadOnDimRoundingMode:()=>hn,combineLocations:()=>yS,complexWithEvenIndex:()=>IP,complexWithOddIndex:()=>CP,computeConv2DInfo:()=>Ll,computeConv3DInfo:()=>uS,computeDefaultPad:()=>Zg,computeDilation2DInfo:()=>TE,computeOptimalWindowSize:()=>lP,computeOutAndReduceShapes:()=>vS,computeOutShape:()=>uP,computePool2DInfo:()=>oS,computePool3DInfo:()=>$E,convertConv2DDataFormat:()=>lS,decodeEinsumEquation:()=>EP,eitherStridesOrDilationsAreOne:()=>Ps,expandShapeToKeepDim:()=>pa,exponent:()=>_P,exponents:()=>$P,fromStringArrayToUint8:()=>ez,fromUint8ToStringArray:()=>JP,getAxesPermutation:()=>xS,getBroadcastDims:()=>Bk,getComplexWithIndex:()=>NP,getEinsumComputePath:()=>FP,getEinsumPermutation:()=>RP,getFusedBiasGradient:()=>_p,getFusedDyActivation:()=>$p,getImageCenter:()=>cP,getInnerMostAxes:()=>UR,getPermuted:()=>pP,getReductionAxes:()=>_t,getReshaped:()=>dP,getReshapedPermuted:()=>hP,getSliceBeginCoords:()=>fP,getSliceSize:()=>mP,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>MP,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>LP,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>BP,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>UP,getSparseReshapeInputOutputMismatchErrorMessage:()=>HP,getSparseReshapeInputOutputMultipleErrorMessage:()=>GP,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>VP,getSparseReshapeNegativeOutputDimErrorMessage:()=>WP,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>XP,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>qP,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>jP,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>KP,getUndoAxesPermutation:()=>rb,isIdentityPermutation:()=>OP,log:()=>H$,mergeRealAndImagArrays:()=>kP,prepareAndValidate:()=>Gk,prepareSplitSize:()=>zP,segment_util:()=>ZS,shouldFuse:()=>Ep,slice_util:()=>kt,splitRealAndImagArrays:()=>SP,tupleValuesAreOne:()=>mr,upcastType:()=>ln,validateInput:()=>Xg,validateUpdateShape:()=>Kg,warn:()=>rr});function oP(e,t){let n=e[0].length;e.forEach((r,a)=>{F(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let i=0;i<n;i++)F(i===t||r[i]===s[i],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function uP(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var _b=30;function lP(e){return e<=_b?e:yd(e,Math.floor(Math.sqrt(e)))}function cP(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function dP(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let i=0;i<a;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(a+1))}return r}function pP(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let i=1;i<e;++i)i>=t*2+1||i%2===1?a.push(i):r.push(i);s.push(...r),s.push(0),s.push(...a)}return s}function hP(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function fP(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function mP(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var YS=1.7580993408473768,QS=1.0507009873554805,gP=.3275911,bP=.254829592,yP=-.284496736,vP=1.421413741,xP=-1.453152027,wP=1.061405429;function kP(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function SP(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function IP(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function CP(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function NP(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function TP(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function $P(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function _P(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var Kf="->",AP=/->/g,Ix=",",Cx="...";function EP(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(AP,"").length)/Kf.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${Kf}").`);let[s,r]=e.split(Kf);F(s.indexOf(Cx)===-1,()=>`The ellipsis notation ("${Cx}") is not supported yet.`);let a=s.split(Ix),i=a.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let d=0;d<r.length;++d){let h=r[d];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let d=0;d<s.length;++d){let h=s[d];o.indexOf(h)===-1&&h!==Ix&&o.push(h)}let u=new Array(a.length);for(let d=0;d<i;++d){if(new Set(a[d].split("")).size!==a[d].length)throw new Error(`Found duplicate axes in input component ${a[d]}. Support for duplicate axes in input is not implemented yet.`);u[d]=[];for(let h=0;h<a[d].length;++h)u[d].push(o.indexOf(a[d][h]))}let l=o.length,c=r.length,p=[];for(let d=c;d<l;++d)p.push(d);return{allDims:o,summedDims:p,idDims:u}}function RP(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function DP(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let i=0;i<t[r].length;++i)s[t[r][i]]===void 0?s[t[r][i]]=a[i]:F(s[t[r][i]]===a[i],()=>`Expected dimension ${s[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(a)}, but got dimension ${a[i]}`)}}function FP(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)s.push([]);let a=[];for(let i=0;i<n.length;++i){let o=n[i],u=PP(t,o);for(let l of u)a.indexOf(l)===-1&&(s[i].push(l),a.push(l))}return{path:n,steps:s}}function OP(e){return e.every((t,n)=>t===n)}function PP(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function zP(e,t,n=0){let s=[];if(typeof t=="number")F(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let i=t.reduce((o,u)=>u>0?o+u:o);t[a]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}function MP(e){return`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${e}`}function LP(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function BP(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function VP(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function WP(e,t){return`size ${e} must be non-negative, not ${t}`}function UP(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function GP(e,t){let n=dt(e),s=dt(t);return`Input to reshape is a SparseTensor with ${n}
|
|
dense values, but the requested shape requires a multiple of ${s}. inputShape=${e} outputShape= ${t}`}function HP(e,t){let n=dt(e),s=dt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${s}. inputShape=${e} outputShape=${t}`}function qP(){return"segment ids must be >= 0"}function jP(){return"segment ids are not increasing"}function KP(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function XP(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var ZS={};Ee(ZS,{collectGatherOpShapeInfo:()=>ZP,computeOutShape:()=>QP,segOpComputeOptimalWindowSize:()=>YP});function YP(e,t){let n=!1,s;for(e<=_b?(s=e,n=!0):s=yd(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=yd(e,s+1);return s}function QP(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function ZP(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
|
|
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let p=0;p<s;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],u=1,l=1,c=1;for(let p=0;p<s;++p)o.push(e.shape[p]),u*=e.shape[p];for(let p=s;p<n;p++)o.push(e.shape[p]),l*=e.shape[p];for(let p=s;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<a;p++)o.push(e.shape[p]),c*=e.shape[p];return{batchSize:u,sliceSize:c,outerSize:l,dimSize:i,outputShape:o}}function JP(e){try{return e.map(t=>xd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function ez(e){return e.map(t=>zl(t))}var ws={};Ee(ws,{nonMaxSuppressionV3Impl:()=>qS,nonMaxSuppressionV4Impl:()=>jS,nonMaxSuppressionV5Impl:()=>KS,whereImpl:()=>MS});var Bs=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Bs.prototype)}},fs=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,fs.prototype)}},G=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,G.prototype)}},Fe=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Fe.prototype)}},JS=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,JS.prototype)}},eI=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function ma(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Cs(e,t){if(!e)throw new JS(t)}function Nx(e,t){let n=0;for(let s of e)s===t&&n++;return n}function bn(e){return e.length===1?e[0]:e}function ht(e){return Array.isArray(e)?e:[e]}function Vs(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function Yr(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var Hn={};function Ab(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function Im(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>Im(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:Im(s))}}}function Ul(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,i;if(a in n)i=n[a];else if(a in Hn)i=Hn[a];else if(i=t[a],i==null)throw new G(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let a=e;if(a.className==null||a.config==null)throw new G(`${s}: Improper config format: ${JSON.stringify(a)}.
|
|
'className' and 'config' must set.`);let i=a.className,o,u;if(i in n?[o,u]=n[i]:i in Hn?[o,u]=Hn.className:i in t&&([o,u]=t[i]),o==null)throw new G(`Unknown ${s}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(u!=null){let l={};for(let h of Object.keys(Hn))l[h]=Hn[h];for(let h of Object.keys(n))l[h]=n[h];let c=a.config;c.customObjects=l;let p={...Hn};for(let h of Object.keys(n))Hn[h]=n[h];Im(a.config);let d=u(o,a.config,n,r);return Hn={...p},d}else{let l={...Hn};for(let p of Object.keys(n))Hn[p]=n[p];let c=new o(a.config);return Hn={...l},c}}}function tz(e,t){return e<t?-1:e>t?1:0}function jc(e,t){return-1*tz(e,t)}function lr(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function nz(e){if(e==null)throw new G(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function bi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new G(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Eb(e,t,n=0,s=1/0){return Cs(n>=0),Cs(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function Bt(e,t){Array.isArray(e)?(w.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>Bt(n,`element ${s+1} of ${t}`))):w.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${tI(e)}.`)}function tI(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>tI(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function sz(e,t,n){let s=n!=null?n():w.now(),r;return(...i)=>{let o=n!=null?n():w.now();return o-s<t||(s=o,r=e(...i)),r}}function nI(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var rz=0;function sI(){return rz++}var Kc={};function Dp(e=""){return e in Kc||(Kc[e]=0),Kc[e]+=1,e+Kc[e].toString()}var az=["channelsFirst","channelsLast"],iz=["nearest","bilinear"],oz=["valid","same","causal"],uz=["max","avg"],lz=["sum","mul","concat","ave"],Mi=new Map;function Ct(e){bi(az,"DataFormat",e)}function cz(e){bi(iz,"InterpolationFormat",e)}function Gn(e){bi(oz,"PaddingMode",e)}function rI(e){bi(uz,"PoolMode",e)}var Vu=[],Tx="/";function na(e,t){Vu.push(e);try{let n=t();return Vu.pop(),n}catch(n){throw Vu.pop(),n}}function dz(){return Vu.length===0?"":Vu.join(Tx)+Tx}function aI(e){if(!oI(e))throw new Error("Not a valid tensor name: '"+e+"'");return dz()+e}function iI(e){if(!oI(e))throw new Error("Not a valid tensor name: '"+e+"'");Mi.has(e)||Mi.set(e,0);let t=Mi.get(e);if(Mi.set(e,Mi.get(e)+1),t>0){let n=`${e}_${t}`;return Mi.set(n,1),n}else return e}var pz=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function oI(e){return!!e.match(pz)}function hz(e){return e===parseInt(e.toString(),10)}function cr(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function eo(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function br(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function ys(e,t){if(t<e)throw new G(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}var Xf;function Rt(){return Xf==null&&(Xf=SA().epsilon()),Xf}function vs(){return"channelsLast"}function Fp(e,t){return le(e,t)}function Gl(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),U(e,n)}function fz(e,t){return q(()=>{if(e.shape.length!==2)throw new G(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Gl(e,1);return Cm(n,[1,t,1])})}function mz(e){let t=[cr(e.shape)];return U(e,t)}function gz(e){if(e.rank<=1)throw new G(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],cr(e.shape,1)];return U(e,t)}function sa(e,t,n){return q(()=>{switch(e.rank){case 1:return mb(e,t,n);case 2:return OS(e,[t,0],[n,e.shape[1]]);case 3:return gb(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Nd(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return qe(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return qe(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new G(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Yf(e,t,n){return q(()=>{switch(e.rank){case 1:return mb(e,t,n);case 2:return OS(e,[0,t],[e.shape[0],n]);case 3:return gb(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Nd(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Xc(e,t,n,s){return q(()=>{switch(e.rank){case 1:return mb(e,t,n);case 2:switch(s){case 1:return sa(e,t,n);case 2:return Yf(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return sa(e,t,n);case 2:return gb(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return Yf(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return sa(e,t,n);case 2:return Nd(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Nd(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return Yf(e,t,n);default:throw new G(`The axis is not within the rank of the tensor ${s}`)}default:throw new G(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Rb(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Ft(e,t)}function $x(e,t){switch(e.rank){case 1:return rR([e,t]);case 2:return iR([e,t],0);case 3:return uR([e,t],0);case 4:return cR([e,t],0);default:throw new G(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Cm(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new G(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return hs(e,t)}function Op(e,t=0,n=1,s,r){return f3(e,t,n,s,r)}function Es(e,t,n,s){if(e.rank<2||t.rank<2)throw new Fe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Fe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return fa.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:s?Nm(e.rank,s,vs()):null,activation:n});{let r=e.shape.slice(),a=r.pop();e=U(e,[-1,a]);let i=t.shape.slice(),o=i.pop(),u=i.pop(),l=[...i,o],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=U(Ge(t,c),[u,-1]);let p=[...r,...l],d=!1,h=!1;return U(fa.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:s?Nm(e.rank,s,vs()):null,activation:n}),p)}}function uI(e,t,n){return q(()=>(Array.isArray(t)?t=Qt(t,"int32"):t=le(t,"int32"),Zu(e,t,n)))}function Hl(e){return V(e,e)}function Nm(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new G(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1,1]):U(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1]):U(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1]):U(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,s[0]]):U(t,[1].concat(s))}else if(e<3)return t;throw new G(`Unsupported input rank by biasAdd: ${t.rank}`)}function ks(e,t,n){return q(()=>(n==null&&(n=vs()),Ct(n),ie(e,Nm(e.rank,t,n))))}function bz(e,t=1){if(t!==1)throw new Fe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Sp(e)}function yz(e){return q(()=>xe(e,ie(Mt(e),1)))}function lI(e,t,n,s){return q(()=>xF(e,t,n,s))}function vz(e){return q(()=>{let t=ie(.5,V(.2,e));return Vn(t,0,1)})}function ql(e,t,n=!1){return n?e():t()}var xz=["fanIn","fanOut","fanAvg"],wz=["normal","uniform","truncatedNormal"];function kz(e){bi(xz,"FanMode",e)}function Sz(e){bi(wz,"Distribution",e)}var ns=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Db=class extends ns{apply(e,t){return $t(e,t)}};Db.className="Zeros";re.registerClass(Db);var Pp=class extends ns{apply(e,t){return Mn(e,t)}};Pp.className="Ones";re.registerClass(Pp);var Fb=class extends ns{constructor(e){if(super(),typeof e!="object")throw new G(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new G(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return q(()=>V(we(this.value),Mn(e,t)))}getConfig(){return{value:this.value}}};Fb.className="Constant";re.registerClass(Fb);var Ob=class extends ns{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Wl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};Ob.className="RandomUniform";re.registerClass(Ob);var Pb=class extends ns{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Fe(`randomNormal does not support dType ${t}.`);return Op(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};Pb.className="RandomNormal";re.registerClass(Pb);var zb=class extends ns{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Fe(`truncatedNormal does not support dType ${t}.`);return xb(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};zb.className="TruncatedNormal";re.registerClass(zb);var Mb=class extends ns{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return q(()=>{if(e.length!==2||e[0]!==e[1])throw new G("Identity matrix initializer can only be used for 2D square matrices.");return V(this.gain,kS(e[0]))})}getConfig(){return{gain:this.gain}}};Mb.className="Identity";re.registerClass(Mb);function Iz(e,t="channelsLast"){let n,s;if(Ct(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=cr(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=cr(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=cr(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var xn=class extends ns{constructor(e){if(super(),e.scale<0)throw new G(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,kz(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Sz(this.distribution),this.seed=e.seed}apply(e,t){let n=Iz(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let i=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Fe(`${this.getClassName()} does not support dType ${t}.`);return xb(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*a);return Wl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};xn.className="VarianceScaling";re.registerClass(xn);var zp=class extends xn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return xn.className}};zp.className="GlorotUniform";re.registerClass(zp);var Mp=class extends xn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Mp.className="GlorotNormal";re.registerClass(Mp);var Lp=class extends xn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Lp.className="HeNormal";re.registerClass(Lp);var Bp=class extends xn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Bp.className="HeUniform";re.registerClass(Bp);var Vp=class extends xn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Vp.className="LeCunNormal";re.registerClass(Vp);var Wp=class extends xn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return xn.className}};Wp.className="LeCunNormal";re.registerClass(Wp);var Lb=class extends ns{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Fe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return q(()=>{if(e.length<2)throw new Fe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=Op(n,0,1,"float32"),r=aP.gramSchmidt(s);return e[0]>e[1]&&(r=Ge(r)),V(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Lb.className="Orthogonal";re.registerClass(Lb);var _x={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Ax(e,t={}){return Ul(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function yt(e){return Ab(e)}function ft(e){if(typeof e=="string"){let t=e in _x?_x[e]:e;if(t==="GlorotNormal")return new Mp;if(t==="GlorotUniform")return new zp;if(t==="HeNormal")return new Lp;if(t==="HeUniform")return new Bp;if(t==="LeCunNormal")return new Vp;if(t==="LeCunUniform")return new Wp;{let n={};return n.className=t,n.config={},Ax(n)}}else return e instanceof ns?e:Ax(e)}function Tm(e){return Array.isArray(e)&&Array.isArray(e[0])}function $d(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Oe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new G(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function nt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new G(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function _d(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var Ex="Variable",Cz=class{constructor(e,t="float32",n=Ex,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=sI(),n=n==null?Ex:n,this.originalName=aI(n),this.name=iI(this.originalName),this.trainable_=s,this.constraint=r,this.val=uF(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),Nz(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function Nz(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function $m(e){return e.map(t=>t.read())}function Bb(e){e.forEach(t=>{t[0].write(t[1])})}var Dt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},$s=class{constructor(e,t,n,s,r,a,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=i,this.id=sI(),a!=null&&(this.originalName=aI(a),this.name=iI(this.originalName)),this.rank=t.length}},Tz=0,Up=class{constructor(e,t){this.callArgs=t,this.id=Tz++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},$z=0,He=class extends re.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=$z++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=Vs(n)+"_"+Dp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new fs(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new G(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return bn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return bn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Bs(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Bs(`Layer ${this.name} is not connected, no input to return.`);return bn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Bs(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Bs(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return bn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=ht(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=ht(this.inputSpec);if(e.length!==t.length)throw new G(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new G(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let i=s.shape;for(let o in r.axes){let u=Number(o),l=r.axes[o],c=u>=0?i[u]:i[i.length+u];if(l!=null&&[l,null].indexOf(c)===-1)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected axis ${u} of input shape to have value ${l} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],u=s.shape[i];if(o!=null&&u!=null&&o!==u)throw new G(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=ht(e),s=!0;for(let a of n)if(!(a instanceof $s)){s=!1;break}let r=!0;for(let a of n)if(a instanceof $s){r=!1;break}if(s===r)throw new G("Arguments to apply() must be all SymbolicTensors or all Tensors");return na(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let i of ht(e))a.push(i.shape);this.build(bn(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),i=ht(a),o=[];for(let u of i)n.indexOf(u)!==-1&&(u=u.clone()),o.push(u);if(a=bn(o),this.activityRegularizer!=null)throw new Fe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=_z(e),i=this.computeOutputShape(a),o,u=Az(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((l,c)=>new $s(u,l,this,ht(e),t,this.name,c)):o=new $s(u,i,this,ht(e),t,this.name),this.addInboundNode(e,o,null,null,a,i,t),this._refCount++,this.activityRegularizer!=null)throw new Fe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Bs(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Bs(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new fs(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return _d(this.weights)}build(e){this.built=!0}getWeights(e=!1){return $m(e?this.trainableWeights:this.weights)}setWeights(e){q(()=>{let t=this.weights;if(t.length!==e.length)throw new G(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=$m(t);for(let r=0;r<s.length;++r){let a=s[r],i=t[r],o=e[r];if(!w.arraysEqual(a.shape,o.shape))throw new G(`Layer weight shape ${a.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}Bb(n)})}addWeight(e,t,n,s,r,a,i,o){if(this._addedWeightNames.indexOf(e)!==-1)throw new G(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=o!=null?o():ft("zeros"));let u=s.apply(t,n),l=new Cz(u,n,e,a,i);return u.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),a==null&&(a=!0),a?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=ht(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,i=null){let o=ht(e);t=ht(t),n=ht(n),s=ht(s),r=$d(r),a=$d(a);let u=[],l=[],c=[];for(let p of o)u.push(p.sourceLayer),l.push(p.nodeIndex),c.push(p.tensorIndex);new Up({outboundLayer:this,inboundLayers:u,nodeIndices:l,tensorIndices:c,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function _z(e){e=ht(e);let t=[];for(let n of e)t.push(n.shape);return bn(t)}function Az(e){return"float32"}function cI(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let i=s.inputTensors[a],o=s.inboundLayers[a],u=s.nodeIndices[a],l=cI(i,o,u);for(let c of l)r.indexOf(c)===-1&&r.push(c)}return r}}}var Jo=class extends He{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:Dp("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new G("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new G("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new G("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new $s(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new Up({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new G(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Jo.className="InputLayer";re.registerClass(Jo);function dI(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new G("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Jo({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function Ez(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return le(t,e.dtype)}catch(n){throw new G(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Jr=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Jr)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Ez(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new G(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof $s){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof $s){if(this.id2Value[e.id]==null)throw new G(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new G(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&De(this.id2Mask)}},Ad=new eI,Ed=new eI;function Rz(e){Ad!=null&&Ad.setMaxEntries(e),Ed!=null&&Ed.setMaxEntries(e)}function Du(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),i=a?e:[e],o=i.map(f=>f.name),u=[],l=t.names();for(let f of o)l.indexOf(f)!==-1?u.push(t.getValue(f)):u.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=o.join(",")+"|"+t.names().sort().join(","),p=Ad.get(c),d;if(p==null){let f=Dz(i,t);p=f.sorted,d=f.recipientCounts,Ad.put(c,p),Ed.put(c,d)}d={},r||Object.assign(d,Ed.get(c));let h=new Jr(t);for(let f=0;f<p.length;++f){if(s!=null){let E=bm().numTensors;E>s.maxNumTensors&&(s.maxNumTensors=E),E<s.minNumTensors&&(s.minNumTensors=E)}let m=p[f],g=m.sourceLayer;if(g instanceof Jo)continue;let b=[],y=[],v=[],x=!1;for(let E of m.inputs){let P=h.getValue(E),A=h.getMask(E);b.push(P),y.push(A),A!=null&&(x=!0),r||(d[E.name]--,d[E.name]===0&&!t.hasKey(E)&&o.indexOf(E.name)===-1&&!P.isDisposed&&E.sourceLayer.stateful!==!0&&v.push(P))}x&&(n=n||{},n.mask=y[0]);let k=ht(g.apply(b,n)),I=null;g.supportsMasking&&(I=g.computeMask(b,y));let $=Oz(m),R=Array.isArray($)?$:[$];for(let E=0;E<R.length;++E){h.hasKey(R[E])||h.add(R[E],k[E],Array.isArray(I)?I[0]:I);let P=o.indexOf(R[E].name);P!==-1&&(u[P]=k[E])}r||De(v)}return h.disposeMasks(),a?u:u[0]}function Dz(e,t){w.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Rx(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:i,recipientMap:o}=Rx(a,t);for(let u of i)r.has(u.name)||(n.push(u),r.add(u.name));for(let u in o)s[u]==null&&(s[u]=new Set),o[u].forEach(l=>s[u].add(l))}}return{sorted:n,recipientCounts:Fz(s)}}function Fz(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Rx(e,t){let n=new Set,s=[],r={};for(let o of t.names())n.add(o);let a=[],i=[];for(a.push(e);a.length>0;){let o=a[a.length-1];if(n.has(o.name)){a.pop();continue}let u=i[i.length-1]===a.length-1;if(o.inputs.length===0||u)a.pop(),s.push(o),n.add(o.name),u&&i.pop();else{i.push(a.length-1);for(let l of o.inputs)r[l.name]==null&&(r[l.name]=new Set),r[l.name].add(o.name),!n.has(l.name)&&a.push(l)}}return{sorted:s,recipientMap:r}}function Oz(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var Pz=K();Pz.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,Rz);var pI={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,Tp(le(n,"float32"),-1))}}},zz={kernelName:ul,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ct(le(n,"float32")),r=cn(ge(we(1),s));return vt(xe(e,r))}}}},Mz={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=cn(ge(ct(le(n,"float32")),1));return xe(e,s)}}}},Lz={kernelName:Ir,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=rt(n.shape,s.shape);return{a:()=>{let o=e,u=_t(n.shape,r);return u.length>0&&(o=ve(o,u)),U(o,n.shape)},b:()=>{let o=e,u=_t(s.shape,r);return u.length>0&&(o=ve(o,u)),U(o,s.shape)}}}},Bz={kernelName:Sa,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},Vz={kernelName:Ia,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>je(n)}}},Wz={kernelName:pl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>je(n)}}},Uz={kernelName:hl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,cn(ge(we(1),ct(le(n,"float32")))))}}},Gz={kernelName:fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=cn(ie(we(1),ct(le(n,"float32"))));return xe(e,s)}}}},Hz={kernelName:bl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=rt(n.shape,s.shape);return{a:()=>{let o=ie(ct(n),ct(s)),u=V(e,xe(s,o)),l=_t(n.shape,r);return l.length>0&&(u=ve(u,l)),U(u,n.shape)},b:()=>{let o=ie(ct(n),ct(s)),u=vt(V(e,xe(n,o))),l=_t(s.shape,r);return l.length>0&&(u=ve(u,l)),U(u,s.shape)}}}},qz={kernelName:ml,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,ie(ct(le(n,"float32")),1))}}},jz={kernelName:gl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,ge(we(1),ct(le(n,"float32"))))}}};function Kz(e,t,n,s,r,a){let i=_(e,"dy","avgPool3dGrad"),o=_(t,"input","avgPool3dGrad"),u=i,l=o,c=!1;o.rank===4&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(u.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),F(l.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${l.rank}.`),hn("avgPool3dGrad",r,a);let p={dy:u,input:l},d={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=z.runKernel(mg,p,d);return c?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var Xz=L({avgPool3dGrad_:Kz}),Yz={kernelName:ep,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:i,dimRoundingMode:o}=n;return{x:()=>Xz(e,s,r,a,i,o)}}};function Qz(e,t,n,s,r){let a=_(e,"dy","avgPoolGrad"),i=_(t,"input","avgPoolGrad");F(i.rank===a.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${a.rank})`);let o=i,u=a,l=!1;i.rank===3&&(l=!0,o=U(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),F(u.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${u.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let c={dy:u,input:o},p={filterSize:n,strides:s,pad:r},d=z.runKernel(fg,c,p);return l?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var Zz=L({avgPoolGrad_:Qz}),Jz={kernelName:Ca,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:i}=n;return{x:()=>Zz(e,s,r,a,i)}}},eM={kernelName:Na,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:i}=n;return!a&&!i?{a:()=>We(e,r,!1,!0),b:()=>We(s,e,!0,!1)}:!a&&i?{a:()=>We(e,r,!1,!1),b:()=>We(e,s,!0,!1)}:a&&!i?{a:()=>We(r,e,!1,!0),b:()=>We(s,e,!1,!1)}:{a:()=>We(r,e,!0,!0),b:()=>We(e,s,!0,!0)}}},tM={kernelName:co,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>db(e,s,r)}}},nM={kernelName:U$,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,i=Array.from(a);for(let u=r.length-1;u>=0;u--)if(r[u]===a[u])i[u]=1;else if(r[u]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let o=[];for(let u=0;u<i.length;u++)i[u]>1&&o.push(u);return{x:()=>ve(e,o,!0)}}},sM={kernelName:Ta,gradFunc:e=>({x:()=>e.clone()})},rM={kernelName:$a,gradFunc:e=>({x:()=>je(e)})},aM={kernelName:Cr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>vn(Ds(Yo(s,r),Qo(s,a)),e,je(e))}}},iM={kernelName:np,inputsToSave:["x"],gradFunc:pI.gradFunc},oM={kernelName:po,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(u=>u.shape),{axis:r}=n,a=ts(r,t[0].shape)[0],i=s.map(u=>u[a]);return Bn(e,i,a).map(u=>()=>u)}},uM={kernelName:_a,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:i,pad:o,dataFormat:u}=n;return F(mr(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>tb(s.shape,e,r,i,o,u),filter:()=>wb(s,e,r.shape,i,o,u)}}},lM={kernelName:Aa,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:i,dataFormat:o,dimRoundingMode:u}=n;return{dy:()=>da(e,r,a,i,o,1,u),filter:()=>wb(e,s,r.shape,a,i,o,u)}}};function cM(e,t,n,s,r){let a=e;e.rank===4&&(a=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:a,dy:i},u={strides:s,pad:r,filterShape:n};return z.runKernel(vg,o,u)}var dM=L({conv3DBackpropFilter_:cM}),pM={kernelName:sp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;F(mr(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[i,o]=t;return{x:()=>mS(i.shape,e,o,r,a),filter:()=>dM(i,e,o.shape,r,a)}}},hM={kernelName:Ea,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(vt(DS(le(n,"float32"))),e)}}},fM={kernelName:Ra,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(FS(le(n,"float32")),e)}}},mM={kernelName:Da,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:i}=n;return{x:()=>{let o=xS([r],s.rank),u=bS(e,r,a,!i);return o!=null&&(u=Ge(u,o)),u}}}},gM={kernelName:Fa,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:i}=n,o=s==null?[1,1]:s;F(mr(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[u,l]=t;return F(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),F(Ps(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),hn("depthwiseConv2d",a,i),{x:()=>US(u.shape,e,l,r,a,o,i),filter:()=>WS(u,e,l.shape,r,a,o,i)}}},bM={kernelName:rp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},i={x:s,filter:r,dy:e};return{x:()=>z.runKernel(rm,a,n),filter:()=>z.runKernel(am,i,n)}}},yM={kernelName:Pa,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>z.runKernel(Cg,s)}}},vM={kernelName:yl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=V(Yn(vt(ct(n))),2/Math.sqrt(Math.PI));return{x:()=>V(e,s)}}},xM={kernelName:za,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,n)}}},wM={kernelName:bo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},kM={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,Yn(n))}}},SM={kernelName:Ma,gradFunc:e=>({x:()=>je(e)})},IM={kernelName:La,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=rt(n.shape,s.shape);return{a:()=>{let o=xe(e,le(s,"float32")),u=_t(n.shape,r);return u.length>0?U(ve(o,u),n.shape):o},b:()=>{let o=V(e,le(n,"float32")),u=_t(s.shape,r);u.length>0&&(o=U(ve(o,u),s.shape));let l=ct(s);return vt(xe(o,le(l,"float32")))}}}},CM={kernelName:Ba,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,i,o]=t,u=o==null?we(1):o,l=_t(a.shape,r.shape),c=[];if(a.rank===1){for(let x=0;x<r.shape.length-1;++x)c.push(r.shape[x]);c.push(1)}let p=ge(r,a),d=V(e,u),h=ES(ie(i,we(s))),f=V(V(V(h,h),h),we(-.5));return{x:()=>a.rank===1?U(V(V(e,hs(U(h,[1,1,1,a.shape[0]]),c)),u),r.shape):U(V(V(e,h),u),r.shape),mean:()=>{let x=V(V(h,we(-1)),d);return a.rank===1&&(x=ve(x,l)),U(x,a.shape)},variance:()=>{let x=V(V(f,p),d);return a.rank===1&&(x=ve(x,l)),U(x,a.shape)},scale:()=>{let x=V(p,h),k=V(e,x);return a.rank===1&&(k=ve(k,l)),U(k,a.shape)},offset:()=>{let x=e;return a.rank===1&&(x=ve(x,l)),U(x,a.shape)}}}},NM={kernelName:xo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,i=ts(a,s.shape)[0];return{x:()=>{let u=s.shape,l=r.size,c=u.slice(0,i),p=c.length,d=u.slice(a,u.length).slice(1),h=d.length,f=Dx(0,p),m=Dx(p+1,p+1+h),g=Fx([c,[l],d]),b=U(e,g),y=U(r,[l]),v=Fx([[p],f,m]),x=Ge(b,v),k=aF(x,y,s.shape[i]),I=rb(v);return k=Ge(k,I),k},indices:()=>r}}};function Dx(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Fx(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var TM={kernelName:Va,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>je(n),b:()=>je(s)}}},$M={kernelName:Wa,gradFunc:e=>({x:()=>le(e,"float32")})},_M={kernelName:xl,gradFunc:e=>({x:()=>je(e)})},AM={kernelName:wl,gradFunc:e=>({x:()=>je(e)})},EM={kernelName:kl,gradFunc:e=>({x:()=>je(e)})},RM={kernelName:Ua,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=Un(s,0);return{x:()=>vn(a,e,V(e,r))}}},DM={kernelName:Sl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,ie(n,1))}}},FM={kernelName:Ga,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,le(n,"float32"))}}},OM={kernelName:G$,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let i=Yn(s);return ge(e,V(ve(e,r,!0),i))}}}};function PM(e,t,n,s=5,r=1,a=1,i=.5){let o={x:e,y:t,dy:n},u={depthRadius:s,bias:r,alpha:a,beta:i};return z.runKernel(_g,o,u)}var zM=L({localResponseNormalizationBackprop_:PM}),MM={kernelName:up,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:i,alpha:o,beta:u}=n;return{x:()=>zM(s,r,e,a,i,o,u)}}};function hI(e,t,n,s){return t.rank<n.rank&&(t=U(t,pa(t.shape,s))),e.rank<n.rank&&(e=U(e,pa(e.shape,s))),{x:()=>V(e,le(Xn(n,t),e.dtype))}}var Ox={kernelName:Ha,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],i=t[1],o=ts(r,a.shape),u=hI(e,i,a,o);return{x:()=>u.x()}}},LM={kernelName:qa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>V(e,le(Yo(n,s),"float32")),b:()=>V(e,le(SS(n,s),"float32"))}}};function BM(e,t,n,s,r,a,i){let o=_(e,"dy","maxPool3dGrad"),u=_(t,"input","maxPool3dGrad"),l=_(n,"output","maxPool3dGrad"),c=o,p=u,d=l,h=!1;u.rank===4&&(h=!0,c=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=U(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]]),d=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),F(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),F(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),F(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),hn("maxPool3dGrad",a,i);let f={dy:c,input:p,output:d},m={filterSize:s,strides:r,pad:a,dimRoundingMode:i},g=z.runKernel(Eg,f,m);return h?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var VM=L({maxPool3dGrad_:BM}),WM={kernelName:lp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=n;return{x:()=>VM(e,s,r,a,i,o,u)}}};function UM(e,t,n,s,r,a,i){let o=_(e,"dy","maxPoolGrad"),u=_(t,"input","maxPoolGrad"),l=_(n,"output","maxPoolGrad");F(u.rank===o.rank,()=>`Rank of input (${u.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(u.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${u.rank}.`),hn("maxPoolGrad",a,i);let c={dy:o,input:u,output:l},p={filterSize:s,strides:r,pad:a,dimRoundingMode:i};return z.runKernel(Ag,c,p)}var GM=L({maxPoolGrad_:UM}),HM={kernelName:ja,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:i,pad:o}=n;return{x:()=>GM(e,s,r,a,i,o)}}},qM={kernelName:Ka,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=ts(r,s.shape),o=vS(s.shape,a)[1],u=dt(o);return{x:()=>{let c=s.shape.slice();a.forEach(h=>{c[h]=1});let p=U(e,c);return xe(V(p,Mn(s.shape,"float32")),u)}}}},jM={kernelName:Xa,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,i]=t,o=ts(r,a.shape),u=hI(e,i,a,o);return{x:()=>u.x()}}},KM={kernelName:Ya,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>V(e,le(Qo(n,s),"float32")),b:()=>V(e,le(Un(n,s),"float32"))}}},XM={kernelName:Qa,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(i=>i[0]);return{x:()=>qe(e,a,s.shape)}}},YM={kernelName:Cl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=rt(n.shape,s.shape);return{a:()=>{let o=_t(n.shape,r);return o.length>0?U(ve(e,o),n.shape):e},b:()=>{let o=V(e,vt(Ip(xe(n,s)))),u=_t(s.shape,r);return u.length>0?U(ve(o,u),s.shape):o}}}},QM={kernelName:Za,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=rt(n.shape,s.shape);return{a:()=>{let o=V(e,le(s,"float32")),u=_t(n.shape,r);return u.length>0?U(ve(o,u),n.shape):o},b:()=>{let o=V(e,le(n,"float32")),u=_t(s.shape,r);return u.length>0?U(ve(o,u),s.shape):o}}}},ZM={kernelName:No,gradFunc:e=>({x:()=>vt(e)})},JM={kernelName:Eo,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>$t(n.shape,"float32")}}},eL={kernelName:Ao,gradFunc:e=>({x:()=>je(e)})},tL={kernelName:Ro,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return Fs(e,s).map(a=>()=>a)}},Px={kernelName:Ja,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(i=>i[0]);return{x:()=>qe(e,a,s.shape)}}},nL={kernelName:ei,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,i=s,o=rt(a.shape,i.shape);return{a:()=>{let c=le(i,"float32"),p=V(e,V(c,ha(a,ge(c,we(1))))),d=_t(a.shape,o);return d.length>0&&(p=ve(p,d)),U(p,a.shape)},b:()=>{let c=Un(a,0),p=vn(c,Qn(a),je(a)),d=V(e,V(r,p)),h=_t(i.shape,o);return h.length>0&&(d=ve(d,h)),U(d,i.shape)}}}},sL={kernelName:ti,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=Un(n,0);return{x:()=>vn(r,e,V(e,s)),alpha:()=>{let a=vn(r,je(e),V(e,n)),i=_t(s.shape,e.shape);return i.length>0&&(a=ve(a,i)),U(a,s.shape)}}}};function rL(e,t,n){let s=e.shape.slice();s[n]=1;let r=U(t,s),a=km(e,n,!0,!1),i=km(e,n,!0,!0),o=V(a,i);return V(r,o)}function aL(e,t,n){let s=e.shape.length,r=s-n.length,a=C.getAxesPermutation(n,s),i=e;a!=null&&(i=Ge(e,a));let o=i.shape.slice(),l=o.splice(s-n.length,n.length).reduce((d,h)=>d*h,1);o.push(l);let c=i.reshape(o),p=rL(c,t,r);if(p=p.reshape(i.shape),a!=null){let d=C.getUndoAxesPermutation(a);p=Ge(p,d)}return p}var iL={kernelName:ni,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=[];return r==null?a=s.shape.map((i,o)=>o):typeof r=="number"?a=[r]:a=r,{x:()=>aL(s,e,a)}}},oL={kernelName:Oa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=rt(n.shape,s.shape);return{a:()=>{let o=xe(e,le(s,"float32")),u=_t(n.shape,r);return u.length>0?U(ve(o,u),n.shape):o},b:()=>{let o=V(e,le(n,"float32")),u=_t(s.shape,r);u.length>0&&(o=U(ve(o,u),s.shape));let l=ct(s);return vt(xe(o,le(l,"float32")))}}}},uL={kernelName:$l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,vt(ct(n)))}}},lL={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=V(Qo(n,6),Tp(n));return{x:()=>V(e,le(s,"float32"))}}},cL={kernelName:si,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,le(Tp(n),"float32"))}}},dL={kernelName:Do,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},pL={kernelName:ri,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>z.runKernel(Og,r,n)}}},hL={kernelName:_l,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>z.runKernel(Fg,r,n)}}},fL={kernelName:Fo,gradFunc:(e,t,n)=>{let{dims:s}=n,r=ts(s,e.shape);return{x:()=>Jn(e,r)}}},mL={kernelName:Oo,gradFunc:e=>({x:()=>je(e)})},gL={kernelName:ii,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>vt(xe(e,V(ha(n,1.5),2)))}}},bL={kernelName:zo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>le(je(n),"float32"),t:()=>V(e,le(n,e.dtype)),e:()=>V(e,le(ub(n),e.dtype))}}},yL={kernelName:Al,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Un(n,we(0)),r=we(YS),a=we(QS),i=V(e,a),o=V(V(e,r),Yn(le(n,"float32")));return vn(s,i,o)}}}},vL={kernelName:ui,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,V(n,ge(we(1),n)))}}},xL={kernelName:El,gradFunc:e=>({x:()=>je(e)})},wL={kernelName:oi,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(nb(le(n,"float32")),e)}}},kL={kernelName:Lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(gS(le(n,"float32")),e)}}},SL={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,i=s.shape,[o,u]=tS(s,r,a),l=[];for(let c=0;c<e.rank;c++)l.push([o[c],i[c]-o[c]-u[c]]);return{x:()=>gi(e,l)}}},IL={kernelName:di,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,i=V(e,s);return{logits:()=>ge(i,V(ve(i,[r],a),s))}}},CL={kernelName:Rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,qs(n))}}},zx={kernelName:Bo,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>eb(e,s,r)}}},Mx={kernelName:Vo,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>Ft(e,s)}}},NL={kernelName:li,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,V(cn(le(n,"float32")),2))}}},TL={kernelName:Fl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,V(le(n,"float32"),2))}}},$L={kernelName:pi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=we(2);return{a:()=>V(e,V(r,ge(n,s))),b:()=>V(e,V(r,ge(s,n)))}}},_L={kernelName:mi,gradFunc:e=>({x:()=>je(e)})},AL={kernelName:hi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=rt(n.shape,s.shape);return{a:()=>{let o=e,u=_t(n.shape,r);return u.length>0&&(o=ve(o,u)),U(o,n.shape)},b:()=>{let o=e,u=_t(s.shape,r);return u.length>0&&(o=ve(o,u)),U(vt(o),s.shape)}}}},EL={kernelName:ci,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;ts(a,s.shape).forEach(l=>{r[l]=1});let o=U(e,r),u=V(o,Mn(s.shape,"float32"));return{x:()=>u}}},RL={kernelName:Uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>xe(e,ct(nb(n)))}}},DL={kernelName:fi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(ge(we(1),ct(n)),e)}}},FL={kernelName:Nr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let i=je(s);if(s.rank===1)for(let o=0;o<r[0];++o)i=ie(i,qe(e,[o*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let o=0;o<r[0];++o)for(let u=0;u<r[1];++u)i=ie(i,qe(e,[o*s.shape[0],u*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let o=0;o<r[0];++o)for(let u=0;u<r[1];++u)for(let l=0;l<r[2];++l)i=ie(i,qe(e,[o*s.shape[0],u*s.shape[1],l*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let o=0;o<r[0];++o)for(let u=0;u<r[1];++u)for(let l=0;l<r[2];++l)for(let c=0;c<r[3];++c)i=ie(i,qe(e,[o*s.shape[0],u*s.shape[1],l*s.shape[2],c*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return i}}}},OL={kernelName:Hs,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=rb(r);return{x:()=>Ge(e,a)}}},PL={kernelName:qo,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>es(e,r)}}},zL={kernelName:gp,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ML(e,n)}}};function ML(e,t){let n=_r(t,je(t)),s=Zu(e,n),r=Yo(t,we(0,"int32")),a=s.rank-r.rank;for(let o=0;o<a;++o)r=Pn(r,o+1);r=Ds(r,Mn(s.shape,"bool"));let i=je(s);return vn(r,s,i)}var LL={kernelName:jo,gradFunc:e=>({x:()=>je(e)})},BL=[pI,zz,Mz,Lz,Bz,Vz,Wz,Uz,Gz,Hz,qz,jz,Yz,Jz,eM,tM,nM,sM,rM,aM,iM,oM,lM,uM,pM,hM,fM,mM,gM,bM,oL,yM,vM,xM,wM,kM,IM,SM,CM,NM,TM,$M,_M,AM,EM,RM,DM,FM,OM,MM,Ox,Ox,LM,WM,HM,qM,jM,KM,XM,YM,QM,ZM,JM,eL,tL,Px,Px,nL,sL,iL,uL,lL,cL,dL,pL,hL,fL,mL,gL,bL,yL,vL,xL,wL,kL,SL,IL,CL,zx,zx,Mx,Mx,NL,$L,TL,_L,AL,EL,RL,DL,FL,OL,PL,zL,LL];for(let e of BL)q$(e);var VL={};Ee(VL,{maxNorm:()=>WL,minMaxNorm:()=>HL,nonNeg:()=>GL,unitNorm:()=>UL});function Vb(e,t){return q(()=>cn(ve(V(e,e),t,!0)))}var jl=class extends re.Serializable{getConfig(){return{}}},Wb=class extends jl{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return q(()=>{let t=Vb(e,this.axis),n=Vn(t,0,this.maxValue);return V(e,xe(n,ie(Rt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Wb.className="MaxNorm";re.registerClass(Wb);var Ub=class extends jl{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return q(()=>xe(e,ie(Rt(),Vb(e,this.axis))))}getConfig(){return{axis:this.axis}}};Ub.className="UnitNorm";re.registerClass(Ub);var Gb=class extends jl{apply(e){return Xs(e)}};Gb.className="NonNeg";re.registerClass(Gb);var Hb=class extends jl{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return q(()=>{let t=Vb(e,this.axis),n=ie(V(this.rate,Vn(t,this.minValue,this.maxValue)),V(1-this.rate,t));return V(e,xe(n,ie(Rt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Hb.className="MinMaxNorm";re.registerClass(Hb);var Lx={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Ot(e){return Ab(e)}function Bx(e,t={}){return Ul(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Pt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Lx?Lx[e]:e,config:{}};return Bx(n)}else return e instanceof jl?e:Bx(e)}function WL(e){return new Wb(e)}function UL(e){return new Ub(e)}function GL(){return new Gb}function HL(e){return new Hb(e)}var qL={};Ee(qL,{constant:()=>XL,glorotNormal:()=>nB,glorotUniform:()=>tB,heNormal:()=>sB,heUniform:()=>rB,identity:()=>JL,leCunNormal:()=>aB,leCunUniform:()=>iB,ones:()=>KL,orthogonal:()=>oB,randomNormal:()=>QL,randomUniform:()=>YL,truncatedNormal:()=>ZL,varianceScaling:()=>eB,zeros:()=>jL});function jL(){return new Db}function KL(){return new Pp}function XL(e){return new Fb(e)}function YL(e){return new Ob(e)}function QL(e){return new Pb(e)}function ZL(e){return new zb(e)}function JL(e){return new Mb(e)}function eB(e){return new xn(e)}function tB(e){return new zp(e)}function nB(e){return new Mp(e)}function sB(e){return new Lp(e)}function rB(e){return new Bp(e)}function aB(e){return new Vp(e)}function iB(e){return new Wp(e)}function oB(e){return new Lb(e)}var uB={};Ee(uB,{Layer:()=>He,RNN:()=>Er,RNNCell:()=>Yl,activation:()=>DV,add:()=>WV,alphaDropout:()=>CW,average:()=>UV,averagePooling1d:()=>ev,averagePooling2d:()=>tv,averagePooling3d:()=>nv,avgPool1d:()=>ZV,avgPool2d:()=>eW,avgPool3d:()=>nW,avgPooling1d:()=>JV,avgPooling2d:()=>tW,avgPooling3d:()=>sW,batchNormalization:()=>XV,bidirectional:()=>bW,concatenate:()=>GV,conv1d:()=>IV,conv2d:()=>CV,conv2dTranspose:()=>NV,conv3d:()=>TV,conv3dTranspose:()=>$V,convLstm2d:()=>hW,convLstm2dCell:()=>fW,cropping2D:()=>AV,dense:()=>FV,depthwiseConv2d:()=>RV,dot:()=>KV,dropout:()=>OV,elu:()=>yV,embedding:()=>VV,flatten:()=>zV,gaussianDropout:()=>IW,gaussianNoise:()=>SW,globalAveragePooling1d:()=>rW,globalAveragePooling2d:()=>aW,globalMaxPool1d:()=>vW,globalMaxPool2d:()=>xW,globalMaxPooling1d:()=>a0,globalMaxPooling2d:()=>i0,gru:()=>oW,gruCell:()=>uW,input:()=>rV,inputLayer:()=>bV,layerNormalization:()=>YV,leakyReLU:()=>xV,lstm:()=>lW,lstmCell:()=>cW,masking:()=>NW,maxPool1d:()=>wW,maxPool2d:()=>kW,maxPooling1d:()=>o0,maxPooling2d:()=>u0,maxPooling3d:()=>iW,maximum:()=>HV,minimum:()=>qV,multiply:()=>jV,permute:()=>BV,prelu:()=>wV,reLU:()=>vV,repeatVector:()=>MV,reshape:()=>LV,rnn:()=>mW,separableConv2d:()=>_V,simpleRNN:()=>dW,simpleRNNCell:()=>pW,softmax:()=>kV,spatialDropout1d:()=>PV,stackedRNNCells:()=>gW,thresholdedReLU:()=>SV,timeDistributed:()=>yW,upSampling2d:()=>EV,zeroPadding2d:()=>QV});async function sr(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let i=a;t.push(i.data()),n.push(r),s.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];De(s)}}function fI(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var lB=125,to=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},cB=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},dB=class extends to{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let i=q(()=>ie(this.totals[s],V(r,n)));this.totals[s]=i,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:q(()=>{let s=V(xe(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),Ht(t[n])}))}},pB=class extends to{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let i=0;i<a.length;++i)if(typeof a[i]!="number"){let o=a[i];e.push(o.data()),t.push(r),n.push(i)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},hB=class extends to{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||XS,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=lB),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");w.isNumber(this.yieldEvery)&&(this.maybeWait=sz(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await sr(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await sr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await sr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await sr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await sr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):w.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await sr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await sr(e),await this.trainEnd(e))}};function mI(e,t){return e==null&&(e={}),e instanceof to?[e]:Array.isArray(e)&&e[0]instanceof to?e:ht(e).map(s=>new hB(s,t))}var Ss=class{constructor(){}static registerCallbackConstructor(e,t){w.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Ss.checkForDuplicate(t),Ss.constructors[e]==null&&(Ss.constructors[e]=[]),Ss.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Ss.constructors)Ss.constructors[+t].forEach(s=>{if(s===e)throw new G("Duplicate callback constructor.")})}static clear(){Ss.constructors={}}static createCallbacks(e){let t=[];for(let n in Ss.constructors){let s=+n;e>=s&&t.push(...Ss.constructors[s])}return t.map(n=>new n)}},qb=Ss;qb.constructors={};function gI(e,t,n,s,r,a,i,o,u){let l=new pB,c=[new dB,...qb.createCallbacks(t)];e!=null&&c.push(...e),c.push(l);let p=new cB(c);return p.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:i,verbose:t,doValidation:o,metrics:u}),{callbackList:p,history:l}}function gs(e,t={},n=!1){return Ul(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function Rd(e,t){return q(()=>{e.dtype!=="float32"&&(e=le(e,"float32"));let n=ve(Hl(e),t,!0),s=Bl(n.shape,Rt()),r=cn(_r(n,s));return xe(e,r)})}function yi(e,t){return q(()=>It(Hl(ge(t,e)),-1))}function Gp(e,t){return q(()=>It(Mt(ge(t,e)),-1))}function eu(e,t){return q(()=>{let n=ge(e,t),s=Vn(Mt(e),Rt(),Number.MAX_VALUE),r=Mt(xe(n,s));return V(100,It(r,-1))})}function fB(e,t){return q(()=>{let n=Vn(t,Rt(),Number.MAX_VALUE),s=Qn(ie(1,n)),r=Vn(e,Rt(),Number.MAX_VALUE),a=Qn(ie(1,r));return It(Hl(ge(s,a)),-1)})}function mB(e,t){return q(()=>{let n=_r(0,ge(1,V(e,t)));return It(Hl(n),-1)})}function gB(e,t){return q(()=>{let n=_r(0,ge(1,V(e,t)));return It(n,-1)})}function bB(e,t){return q(()=>{let n=ve(V(e,t),-1),s=As(V(ge(1,e),t),-1);return _r(0,ie(1,ge(s,n)))})}function yB(e,t){return q(()=>{let n=Math.log(2),s=ge(t,e),r=ge(ie(s,Vl(V(-2,s))),n);return It(r,-1)})}function tl(e,t,n=!1){return q(()=>{if(n)t=bb(t);else{let s=ve(t,t.shape.length-1,!0);t=xe(t,s)}return t=Vn(t,Rt(),1-Rt()),vt(ve(V(le(e,"float32"),Qn(t)),t.shape.length-1))})}function Dd(e,t,n=!1){return q(()=>{let s=le(Ip(mz(e)),"int32");t=Vn(t,Rt(),1-Rt());let r=t.shape,a=U(Id(s,r[r.length-1]),r);return tl(a,t,n)})}function vB(e,t){if(!w.arraysEqual(e.shape,t.shape))throw new G(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return q(()=>{let n=Xs(t),s=vt(Mt(t));return ie(ge(n,V(t,e)),ob(Yn(s)))})}function Hp(e,t){return q(()=>{let n;return n=Vn(t,Rt(),1-Rt()),n=Qn(xe(n,ge(1,n))),It(vB(e,n),-1)})}function xB(e,t){return q(()=>{let n=Vn(e,Rt(),1),s=Vn(t,Rt(),1);return ve(V(e,Qn(xe(n,s))),-1)})}function wB(e,t){return q(()=>{let n=Qn(ie(Rt(),t));return It(ge(t,V(e,n)),-1)})}function jb(e,t){return q(()=>{let n=Rd(e,-1),s=Rd(t,-1),r=V(n,s);return vt(ve(r,-1))})}var Fd={meanSquaredError:yi,meanAbsoluteError:Gp,meanAbsolutePercentageError:eu,meanSquaredLogarithmicError:fB,squaredHinge:mB,hinge:gB,categoricalHinge:bB,logcosh:yB,categoricalCrossentropy:tl,sparseCategoricalCrossentropy:Dd,binaryCrossentropy:Hp,kullbackLeiblerDivergence:xB,poisson:wB,cosineProximity:jb};function Qf(e){if(typeof e=="string"){if(e in Fd)return Fd[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new G(t)}else return e}function Kb(e,t){return q(()=>{let n=V(.5,Zn(t)),s=Fp(Un(t,n),e.dtype);return It(Xn(e,s),-1)})}function Xb(e,t){return q(()=>Fp(Xn(Xu(e,-1),Xu(t,-1)),"float32"))}function bI(e,t){return q(()=>le(ve(Ds(Xn(e,1),Xn(t,1))),"float32"))}function kB(e,t){return q(()=>le(ve(Ds(Xn(e,1),Xn(t,0))),"float32"))}function SB(e,t){return q(()=>le(ve(Ds(Xn(e,0),Xn(t,1))),"float32"))}function yI(e,t){return q(()=>{let n=bI(e,t),s=SB(e,t),r=ie(n,s);return le(vn(Un(r,0),xe(n,r),0),"float32")})}function IB(e,t){return q(()=>{let n=bI(e,t),s=kB(e,t),r=ie(n,s);return le(vn(Un(r,0),xe(n,r),0),"float32")})}function vI(e,t){return Hp(e,t)}function xI(e,t){return e.rank===t.rank&&(e=gr(e,[e.rank-1])),t=Xu(t,-1),t.dtype!==e.dtype&&(t=le(t,e.dtype)),le(Xn(e,t),"float32")}var CB=yi,NB=yi,TB=Gp,$B=Gp,_B=eu,AB=eu,Yb=tl,EB=jb,wI=Dd,Od={binaryAccuracy:Kb,categoricalAccuracy:Xb,precision:yI,categoricalCrossentropy:Yb,sparseCategoricalCrossentropy:wI,mse:CB,MSE:NB,mae:TB,MAE:$B,mape:_B,MAPE:AB,cosine:EB};function RB(e){if(typeof e=="string"&&e in Od)return Od[e];if(typeof e!="string"&&e!=null)return e;throw new G(`Unknown metric ${e}`)}function Yc(e){if(Cs(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Fd))if(Fd[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Od))if(Od[n]===e){t=n;break}return t!==void 0?t:e.name}}function DB(e){let t={Adagrad:()=>zi.adagrad(.01),Adadelta:()=>zi.adadelta(1,.95,Rt()),Adam:()=>zi.adam(.001,.9,.999,Rt()),Adamax:()=>zi.adamax(.002,.9,.999,Rt(),0),RMSProp:()=>zi.rmsprop(.001,.9,0,Rt()),SGD:()=>zi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new G(`Unknown Optimizer ${e}`)}var Vx=1*1024*1024;function Wx(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!_m(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>Vx&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${Vx}.`)}}function _m(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!_m(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!_m(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function FB(e,t,n,s=console.log){let r=PB(e),a=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let i;if(!r){a.push("Receives inputs"),i=[];for(let c in e.nodesByDepth)i.push(...e.nodesByDepth[c])}s("_".repeat(t)),Pd(a,n,s),s("=".repeat(t));let o=e.layers;for(let c=0;c<o.length;++c)r?zB(o[c],n,s):MB(o[c],n,i,s),s((c===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let u=OB(e),l=_d(e.nonTrainableWeights);s(`Total params: ${u+l}`),s(`Trainable params: ${u}`),s(`Non-trainable params: ${l}`),s("_".repeat(t))}function OB(e){let t;return e.collectedTrainableWeights!=null?t=_d(e.collectedTrainableWeights):t=_d(e.trainableWeights),t}function PB(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let i of r.inboundNodes)if(s.indexOf(i)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Pd(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function zB(e,t,n){let s,r;try{r=e.inboundNodes.map(u=>JSON.stringify(u.inputShapes)).join(",")}catch(u){r="multiple"}try{s=JSON.stringify(e.outputShape)}catch(u){s="multiple"}let a=e.name,i=e.getClassName(),o=[`${a} (${i})`,r,s,e.countParams().toString()];Pd(o,t,n)}function MB(e,t,n,s){let r,a;try{a=e.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(",")}catch(p){a="multiple"}try{r=JSON.stringify(e.outputShape)}catch(p){r="multiple"}let i=[];for(let p of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(p)===-1))for(let d=0;d<p.inboundLayers.length;++d){let h=p.inboundLayers[d].name,f=p.nodeIndices[d],m=p.tensorIndices[d];i.push(`${h}[${f}][${m}]`)}let o=e.name,u=e.getClassName(),l=i.length===0?"":i[0],c=[`${o} (${u})`,a,r,e.countParams().toString(),l];Pd(c,t,s);for(let p=1;p<i.length;++p)Pd(["","","","",i[p]],t,s)}function kI(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function nl(e,t){if(e===null)return null;if(typeof e=="string")return Yr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];kI(t,r,a)?n.push(a):n.push(nl(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=Yr(s);n[a]=nl(r,a)}}return n}}function Am(e,t){if(e==null)return null;if(typeof e=="string")return Vs(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];kI(t,r,a)?n.push(a):n.push(Am(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=Vs(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=Am(r,s)}return n}}var SI="0.0.0",Is=class extends He{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let b=this.getClassName().toLowerCase();this.name=Dp(b)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],lr(this.inputs).length!==this.inputs.length)throw new G(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(b=>b.name)}`);lr(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(b=>b.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let b of this.outputs){let y=b.sourceLayer,v=b.nodeIndex,x=b.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(v),this.outputLayersTensorIndices.push(x)}for(let b of this.inputs){let y=b.sourceLayer,v=b.nodeIndex,x=b.tensorIndex;Cs(v===0,"input layer has >1 nodes"),Cs(x===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(v),this.inputLayersTensorIndices.push(x)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let b=0;b<this.inputLayers.length;b++){let y=this.inputLayers[b];if(!(y instanceof Jo))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${b} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let b of this.outputLayers)this.outputNames.push(b.name);this.internalInputShapes=this.inputs.map(b=>b.shape),this.internalOutputShapes=this.outputs.map(b=>b.shape);let t={},n={},s={},r={},a={},i=[],o=(b,y,v,x,k,I)=>{(x==null||k==null||I==null)&&(x=b.sourceLayer,k=b.nodeIndex,I=b.tensorIndex);let $=x.inboundNodes[k];if(v.indexOf($)!==-1)throw new fs(`The tensor ${b.name} at layer "${x.name}" is part of a cycle.`);if(y.indexOf($)!==-1)return;this.containerNodes.add(Is.nodeKey(x,k)),x.id in a||(a[x.id]=Object.keys(a).length),v.indexOf($)===-1&&v.push($);let R=$.inboundLayers.length;for(let E=0;E<R;E++){let P=$.inputTensors[E],A=$.inboundLayers[E],O=$.nodeIndices[E],T=$.tensorIndices[E];o(P,y,v,A,O,T)}for(y.push($);v.indexOf($)>=0;)v.splice(v.indexOf($),1);i.push($)},u=[],l=[];for(let b of this.outputs)o(b,u,l);let c=i.slice().reverse();for(let b of c){n[b.id]=b,b.id in t||(t[b.id]=0);let y=t[b.id],v=s[b.outboundLayer.id]==null?0:s[b.outboundLayer.id];y=Math.max(y,v),s[b.outboundLayer.id]=y,r[b.outboundLayer.id]=b.outboundLayer,t[b.id]=y;for(let x=0;x<b.inboundLayers.length;x++){let k=b.inboundLayers[x],I=b.nodeIndices[x],$=k.inboundNodes[I],R=t[$.id]==null?0:t[$.id];t[$.id]=Math.max(y+1,R),n[$.id]=$}}let p={};for(let b in t){let y=t[b];y in p||(p[y]=[]),p[y].push(n[b])}let d={};for(let b in s){let y=s[b];y in d||(d[y]=[]),d[y].push(r[b])}let h=Object.keys(d).map(b=>parseInt(b,10)).sort(jc);this.layers=[];for(let b of h){let y=d[b];y.sort((v,x)=>{let k=a[v.id],I=a[x.id];return k<I?-1:k>I?1:0});for(let v of y)v instanceof Is&&this.internalContainerRefs.push(v),this.layers.push(v)}this.layersByDepth=d,h=Object.keys(p).map(b=>parseInt(b,10)).sort(jc);let f=this.inputs.slice(),m=[];for(let b of h)for(let y of p[b]){let v=y.outboundLayer;if(v!=null){for(let x of y.inputTensors)if(f.indexOf(x)===-1)throw new fs(`Graph disconnected: cannot obtain value for tensor ${x} at layer "${v.name}". The following previous layers were accessed without issue: ${m}`);for(let x of y.outputTensors)f.push(x);m.push(v.name)}}this.nodesByDepth=p;let g=this.layers.map(b=>b.name);for(let b of g){let y=g.filter(v=>v===b).length;if(y!==1)throw new fs(`The name "${b}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new Up({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(b=>null),outputMasks:this.outputs.map(b=>null),inputShapes:this.inputs.map(b=>b.shape),outputShapes:this.outputs.map(b=>b.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new G("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let i of a.weights){if(n[i.originalName]!=null)throw new G(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,s++}let r=[];for(let a in e){let i=a;if(n[a]==null){let o=a.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[a]]);else if(t)throw new G(`Provided weight data has no target variable: ${a}`);delete n[i]}if(t){let a=[];for(let i in n)a.push(i);if(a.length>0)throw new G(`${a.length} of ${s} weights are not set: ${a}`)}Bb(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${SI}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Am(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return q(()=>{e=ht(e);let n=new Jr;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return Du(this.outputs,n,t)})}computeMask(e,t){return q(()=>{e=ht(e);let n;return t==null?n=ma(null,e.length):n=ht(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=$d(e);if(t.length!==this.inputLayers.length)throw new G(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],u=t[i],l=o.name+"_0_0";n[l]=u}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(jc);if(s.length>1)for(let i of s){let o=this.nodesByDepth[i];for(let u of o){let l=u.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(l.id)!==-1)continue;let c=[];for(let f=0;f<u.inboundLayers.length;f++){let m=u.inboundLayers[f],g=u.nodeIndices[f],b=u.tensorIndices[f],y=`${m.name}_${g}_${b}`,v=n[y];c.push(v)}let p=l.computeOutputShape(bn(c)),d=$d(p),h=l.inboundNodes.indexOf(u);for(let f=0;f<d.length;f++){let m=`${l.name}_${h}_${f}`;n[m]=d[f]}}}let r=[],a=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],u=this.outputLayersNodeIndices[i],l=this.outputLayersTensorIndices[i],c=`${o.name}_${u}_${l}`;a.push(c)}for(let i=0;i<a.length;i++){let o=a[i];Cs(o in n),r.push(n[o])}return bn(r)}runInternalGraph(e,t){t==null&&(t=ma(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let u=this.inputs[o],l=e[o],c=t[o];n[u.id]=[l,c]}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(jc);for(let o of s){let u=this.nodesByDepth[o];for(let l of u){let c=l.outboundLayer,p=l.inputTensors,d=l.outputTensors,h=new Array;for(let f of p)f.id in n&&h.push(n[f.id]);if(h.length===p.length){let f={},m,g,b,y;if(l.callArgs!=null&&(f=l.callArgs),h.length===1){let[v,x]=h[0];f.mask==null&&(f.mask=x),b=ht(c.call(v,f)),y=ht(c.computeMask(v,x)),m=[v],g=[x]}else m=h.map(v=>v[0]),g=h.map(v=>v[1]),f.mask==null&&(f.mask=g),b=ht(c.call(m,f)),y=ht(c.computeMask(m,g));if(c.activityRegularizer)throw new Fe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let v=0;v<d.length;++v){let x=d[v],k=b[v],I=y[v];n[x.id]=[k,I]}}}}let r=[],a=[],i=[];for(let o of this.outputs){Cs(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[u,l]=n[o.id];i.push(u.shape),r.push(u),a.push(l)}return[r,a,i]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof Is?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=Is.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new G(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new G("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new G(`No such layer: ${e}`)}calculateLosses(){return q(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=Is.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let i=a.getClassName(),o=a.getConfig(),u=[];for(let c=0;c<a.inboundNodes.length;c++){let p=a.inboundNodes[c],d=Is.nodeKey(a,c),h={};if(this.containerNodes.has(d)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let f=[];for(let m=0;m<p.inboundLayers.length;m++){let g=p.inboundLayers[m],b=p.nodeIndices[m],y=p.tensorIndices[m],v=Is.nodeKey(g,b),x=t[v];x==null&&(x=0),f.push([g.name,x,y,h])}u.push(f)}}}let l={};l.name=a.name,l.className=i,l.config=o,l.inboundNodes=u,n.push(l)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let i=this.inputLayers[a],o=this.inputLayersNodeIndices[a],u=Is.nodeKey(i,o);if(!this.containerNodes.has(u))continue;let l=t[u];l==null&&(l=0);let c=this.inputLayersTensorIndices[a];s.push([i.name,l,c])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let i=this.outputLayers[a],o=this.outputLayersNodeIndices[a],u=Is.nodeKey(i,o);if(!this.containerNodes.has(u))continue;let l=t[u];l==null&&(l=0);let c=this.outputLayersTensorIndices[a];r.push([i.name,l,c])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function i(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function o(m,g){let b=[],y;for(let v of g){let x=v[0],k=v[1],I=v[2];if(y=v[3]==null?{}:v[3],!(x in r)){i(m,g);return}let $=r[x];if($.inboundNodes.length<=k){i(m,g);return}let R=$.inboundNodes[k];b.push(R.outputTensors[I])}b.length>0&&m.apply(bn(b),y)}function u(m){let g=m.name,b=gs(m,t.customObjects!=null?t.customObjects:{});b.setFastWeightInitDuringBuild(s),r[g]=b,m.inboundNodes.forEach(v=>{if(!(v instanceof Array))throw new G(`Corrupted configuration, expected array for nodeData: ${v}`);i(b,v)})}let l=t.name,c=t.layers;for(let m of c)u(m);for(;!nz(a);)for(let m of c){let g=r[m.name];if(g.name in a){let b=a[g.name];delete a[g.name];for(let y of b)o(g,y)}}let p=[],d=[],h=t.inputLayers;for(let m of h){let g=m[0],b=m[1],y=m[2];Cs(g in r);let x=r[g].inboundNodes[b].outputTensors;p.push(x[y])}let f=t.outputLayers;for(let m of f){let g=m[0],b=m[1],y=m[2];Cs(g in r);let x=r[g].inboundNodes[b].outputTensors;d.push(x[y])}return new e({inputs:p,outputs:d,name:l})}get stateful(){if(this._stateful)throw new G("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){q(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function LB(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function II(e,t){return LB(e,t,"classWeight")}async function CI(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=q(()=>{if(e.shape.length===1)return ur(e);if(e.shape.length===2){if(e.shape[1]>1)return Xu(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());De(r);let i=[];return a.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Qt(i,"float32")}else return null}function BB(e,t){return V(e,t)}var VB=32;function NI(e,t){let n,s,r=t;n=r.xs,s=r.ys,w.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=Ux("input",e.inputNames,n),i=Ux("output",e.outputNames,s),o=a[0].shape[0];w.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),w.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let u=0;u<a.length;u++)w.assert(a[u].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[u]} has ${a[u].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let u=0;u<i.length;u++)w.assert(i[u].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[u]} has ${i[u].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:a,ys:i}}function Ux(e,t,n){if(n instanceof et)return[n];if(Array.isArray(n))return w.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new G(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function WB(e){if(e.length===3)throw new Fe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function UB(e,t,n){let s=n.batchesPerEpoch!=null;if(w.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),w.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),w.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),w.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),w.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,i;if(r)if(Gx(n.validationData))w.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=WB(n.validationData);a=g.xs,i=g.ys}let o=e.makeTrainFunction(),u=e.getDedupedMetricsNames(),l;r?l=u.slice().concat(u.map(g=>"val_"+g)):l=u.slice();let c=mI(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=gI(c,p,n.epochs,null,null,GB(t,n),null,r,l);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await d.onEpochBegin(f);let b=0,y=0;for(s||(m=await t.iterator());!s||b<n.batchesPerEpoch;){let v=await m.next();if(s&&v.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${b} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(v.value!=null){let{xs:x,ys:k}=NI(e,v.value),I={};I.batch=y,I.size=x[0].shape[0],await d.onBatchBegin(y,I);let $=[];if(n.classWeight!=null){let P=II(n.classWeight,e.outputNames);for(let A=0;A<P.length;++A)$.push(await CI(k[A],null,P[A]))}let R=x.concat(k).concat($),E=o(R);De(R);for(let P=0;P<u.length;++P){let A=u[P],O=E[P];I[A]=O,Ht(O)}await d.onBatchEnd(y,I),fI(I),y++,b++}if(s?b>=n.batchesPerEpoch:v.done){if(r){let x;Gx(n.validationData)?x=ht(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):x=ht(e.evaluate(a,i,{batchSize:n.validationBatchSize==null?VB:n.validationBatchSize,verbose:0}));for(let k=0;k<e.metricsNames.length;++k)g[`val_${e.metricsNames[k]}`]=x[k]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(f,g),f++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function GB(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function Gx(e){return typeof e.iterator=="function"}function HB(e){return typeof e.next=="function"}async function qB(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Fe("Verbose mode is not implemented yet.");w.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=HB(t)?t:await t.iterator(),o=0,u=0;for(;!s||u<n.batches;){let l=await i.next();if(a=q(()=>{if(l.value){let{xs:c,ys:p}=NI(e,l.value),d=c.concat(p),h=q(()=>r(d));if(De(d),u===0)for(let m=0;m<h.length;++m)a.push(we(0));let f=d[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],b=a[m];a[m]=q(()=>ie(a[m],V(f,g))),u>0&&De(b)}De(h),o+=f,++u}return a}),l.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let l=0;l<a.length;++l){let c=a[l];a[l]=xe(a[l],o),De(c)}return bn(a)}function Em(e){w.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Fu(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>sa(s,t,n-t)):sa(e,t,n-t)}function Qb(e,t){return q(()=>e==null?null:Array.isArray(e)?e.map(n=>Qb(n,t)):uI(e,t.dtype==="int32"?t:le(t,"int32")))}function Rm(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function jB(e,t,n,s,r,a,i,o,u,l,c,p,d,h,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),d==null&&(d=0);let m=!1;if(u!=null&&l!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new G("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),b;g!=null&&(b=ys(0,g)),i==null&&(i=1);let{callbackList:y,history:v}=gI(o,i,a,d,g,h,r,m,p);y.setModel(e),e.history=v,await y.onTrainBegin(),e.stopTraining_=!1;for(let x=d;x<a;++x){await y.onEpochBegin(x);let k={};if(h!=null)throw new Fe("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Fe("batch shuffling is not implemneted yet");c&&w.shuffle(b);let I=Qt(b),$=Rm(g,r);for(let R=0;R<$.length;++R){let E={};if(await y.onBatchBegin(R,E),q(()=>{let P=$[R][0],A=$[R][1],O=sa(I,P,A-P);E.batch=R,E.size=A-P;let T=Qb(n,O),M=t(T);for(let W=0;W<s.length;++W){let j=s[W],Y=M[W];E[j]=Y,Ht(Y)}if(R===$.length-1&&m){let W=e.testLoop(u,l,r);for(let j=0;j<s.length;++j){let Y=s[j],X=W[j];Ht(X),k["val_"+Y]=X}}}),await y.onBatchEnd(R,E),fI(E),e.stopTraining_)break}I.dispose()}if(await y.onEpochEnd(x,k),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function KB(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,i,o,u,l,c,p,d;try{let h=s.batchSize==null?32:s.batchSize;Em(h);let f=!1,m=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,f,h);r=m[0],a=m[1],d=m[2];let g=!1,b;if(s.validationData!=null&&s.validationData.length>0){if(g=!0,s.validationData.length===2)u=s.validationData[0],l=s.validationData[1];else throw s.validationData.length===3?new Fe("validationData including sample weights is not supported yet."):new G(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let E=!0,P=await e.standardizeUserData(u,l,null,null,E,h);c=P[0],p=P[1],b=c.concat(p)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){g=!0;let E=Math.floor(r[0].shape[0]*(1-s.validationSplit)),P=r[0].shape[0];c=Fu(r,E,P),i=r,r=Fu(r,0,E),p=Fu(a,E,P),o=a,a=Fu(a,0,E),b=c.concat(p)}else s.validationSteps!=null&&(g=!0);let y=r.concat(a).concat(d);e.checkTrainableWeightsConsistency();let v=e.makeTrainFunction(),x=e.getDedupedMetricsNames(),k,I;g?(e.makeTestFunction(),k=e.testFunction,I=x.slice().concat(x.map(E=>"val_"+E))):(k=null,b=[],I=x.slice());let $=mI(s.callbacks,s.yieldEvery);return await jB(e,v,y,x,h,s.epochs,s.verbose,$,k,b,s.shuffle,I,s.initialEpoch,null,null)}finally{e.isTraining=!1,ps(r,t),ps(a,n),ps(i,t),ps(o,n),ps(c,u),ps(p,l),d!=null&&De(d)}}function TI(e){let t=[];e instanceof et&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(Gl(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function ps(e,t){if(e==null)return;let n=[];if(t instanceof et)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof et)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function XB(e){return e instanceof et}function Dm(e){return Array.isArray(e)}function Hx(e){return!XB(e)&&!Dm(e)}function qx(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Dm(e)&&e.length>0)i=!0;else if(Hx(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new G(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let a;if(Hx(e)){e=e,a=[];for(let i of t){if(e[i]==null)throw new G(`No data provided for "${i}". Need data for each key in: ${t}`);a.push(e[i])}}else if(Dm(e)){if(e=e,e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new G(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=TI(a),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=a[i];if(o.shape.length!==n[i].length)throw new G(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let u=0;u<n[i].length;++u){if(u===0&&!s)continue;let l=o.shape[u],c=n[i][u];if(c!=null&&c>=0&&l!==c)throw new G(`${r} expected a batch of elements where each example has shape [${n[i].slice(1,n[i].length)}] (i.e.,tensor shape [*,${n[i].slice(1,n[i].length)}]) but the ${r} received an input with ${o.shape[0]} examples, each with shape [${o.shape.slice(1,o.shape.length)}] (tensor shape [${o.shape}])`)}}return a}function YB(e,t,n){let s=lr(e.map(a=>a.shape[0]));s.sort();let r=lr(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new G(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new G(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!w.arraysEqual(s,r))throw new G(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function QB(e,t,n){let s=[yi,Hp,tl];for(let r=0;r<e.length;++r){let a=e[r],i=t[r],o=n[r];if(i!=null){if(i===tl&&a.shape[a.shape.length-1]===1)throw new G(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(i)!==-1){let u=a.shape.slice(1),l=o.slice(1);for(let c=0;c<u.length;++c){let p=u[c],d=l[c];if(d!=null&&p!==d)throw new G(`A target Tensor with shape ${a.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function jx(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new G(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new G(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=a[i];if(o.shape.length!==n[i].length)throw new G(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let u=0;u<n[i].length;++u){if(u===0&&!s)continue;let l=o.shape[u],c=n[i][u];if(c!=null&&c!==l)throw new G(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function ZB(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var JB="layers-model",dr=class extends Is{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new G("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");FB(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=DB(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Ar))throw new G("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new G(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(Qf(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new G(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(i=>Qf(i))}else{let a=Qf(e.loss);this.outputs.forEach(i=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let i=this.internalOutputShapes[a],o=this.outputNames[a];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],na("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let i=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([i,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=ZB(e.metrics,this.outputNames),r=(a,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[a]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,a])};na("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let i=s[a];(u=>{let l="",c,p,d;for(let h of u){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===Hp?["accuracy","acc"].indexOf(h)!==-1?p=Kb:["crossentropy","ce"].indexOf(h)!==-1&&(p=vI):this.lossFunctions[a]===Dd?["accuracy","acc"].indexOf(h)!==-1?p=xI:["crossentropy","ce"].indexOf(h)!==-1&&(p=wI):["accuracy","acc"].indexOf(h)!==-1?p=Xb:["crossentropy","ce"].indexOf(h)!==-1&&(p=Yb);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),d=p,c=l+g}else d=RB(h),c=l+Yc(h);let f;na(c,()=>{f=d}),r(a,c,f)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;Em(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let i=a[0].concat(a[1]);this.makeTestFunction();let o=this.testFunction,u=this.testLoop(o,i,s,n.verbose,n.steps);return bn(u)}finally{ps(a[0],e),ps(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),qB(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new G(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new G(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new G("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new Jr;if(e instanceof et&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new G(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)a.add(this.inputs[o],e[o])}else for(let o of this.inputs){let u=e[o.name];if(u==null)throw new G(`No value is provided for the model's input ${o.name}`);a.add(o,u)}let i=Du(r,a);return n?i:i[0]}retrieveSymbolicTensors(e){let t=ma(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=a.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new G(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return q(()=>{let s=this.checkNumSamples(e);if(n)throw new Fe("Verbose predictLoop() is not implemented yet.");let r=Rm(s,t),a=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)q(()=>{let u=r[i][0],l=r[i][1],c=Fu(e,u,l),p=[];if(Array.isArray(c))for(let h=0;h<c.length;++h)p.push({key:this.inputs[h],value:c[h]});else p.push({key:this.inputs[0],value:c});let d=new Jr(p);return Du(this.outputs,d)}).forEach((u,l)=>a[l].push(u));return bn(a.map(i=>Ft(i,0)))})}predict(e,t={}){let n=TI(e);jx(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return Em(s),this.predictLoop(n,s)}finally{ps(n,e)}}predictOnBatch(e){jx(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new fs("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let i=this.feedOutputShapes[a];this.feedLossFns[a]===Dd?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=qx(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=qx(t,this.feedOutputNames,r,!1,"target"),YB(e,t,null),QB(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!==0)throw new G(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[i,o]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let u=null;if(s!=null){let l=II(s,this.outputNames);u=[];for(let c=0;c<l.length;++c)u.push(await CI(o[c],null,l[c]))}return[i,o,u]}testLoop(e,t,n,s=0,r){return q(()=>{let a=this.checkNumSamples(t,n,r,"steps"),i=[];if(s>0)throw new Fe("Verbose mode is not implemented yet.");if(r!=null)throw new Fe("steps mode in testLoop() is not implemented yet");{let o=Rm(a,n),u=Qt(ys(0,a));for(let l=0;l<o.length;++l){let c=o[l][0],p=o[l][1],d=sa(u,c,p-c),h=Qb(t,d),f=e(h);if(l===0)for(let m=0;m<f.length;++m)i.push(we(0));for(let m=0;m<f.length;++m){let g=f[m];i[m]=ie(i[m],V(p-c,g))}}for(let l=0;l<i.length;++l)i[l]=xe(i[l],a)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;Nx(e,s)>1&&(r+=`_${Nx(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],i=()=>{let c=[];for(let f=0;f<this.inputs.length;++f)c.push({key:this.inputs[f],value:n[f]});let p=new Jr(c),d=Du(this.outputs,p,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let g=this.lossFunctions[f](s[f],d[f]);r[f]!=null&&(g=BB(g,r[f]));let b=It(g);t.push(b),f===0?h=g:h=ie(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],b=this.metricsTensors[f][1];m=It(g(s[b],d[b]))}Ht(m),a.push(m)}return h=It(h),this.calculateLosses().forEach(f=>{h=ie(h,f)}),h},o=this.collectedTrainableWeights.map(c=>c.read()),u=!0;return[this.optimizer_.minimize(i,u,o)].concat(a)}}makeTestFunction(){this.testFunction=e=>q(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let u=0;u<this.inputs.length;++u)a.push({key:this.inputs[u],value:s[u]});let i=new Jr(a),o=Du(this.outputs,i);for(let u=0;u<this.lossFunctions.length;++u){let l=this.lossFunctions[u],c=It(l(r[u],o[u]));u===0?n=c:n=ie(n,c),t.push(n)}for(let u=0;u<this.metricsTensors.length;++u){let l=this.metricsTensors[u][0],c=this.metricsTensors[u][1],p=It(l(r[c],o[c]));t.push(p)}return t})}async fit(e,t,n={}){return KB(this,e,t,n)}async fitDataset(e,t){return UB(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],i=this.makeTrainFunction()(s.concat(r)),o=[];for(let u of i){let l=await u.data();o.push(l[0])}return De(i),ps(n[0],e),ps(n[1],t),bn(o)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=bm().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-bm().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=Vs(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>Vs(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=Vs(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[Vs(Yc(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>Vs(Yc(e)));{let e={};for(let t in this.metrics)e[t]=Vs(Yc(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=nl(e.optimizer_config),n=gs(t),s;if(typeof e.loss=="string")s=Yr(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>Yr(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=Yr(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>Yr(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=Yr(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let u=An.getSaveHandlers(e);if(u.length===0)throw new G(`Cannot find any save handlers for URL '${e}'`);if(u.length>1)throw new G(`Found more than one (${u.length}) save handlers for URL '${e}'`);e=u[0]}if(e.save==null)throw new G("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await An.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,i={modelTopology:this.toJSON(r,s),format:JB,generatedBy:`TensorFlow.js tfjs-layers v${SI}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){i.trainingConfig=this.getTrainingConfig();let u="optimizer",{data:l,specs:c}=await An.encodeWeights(await this.optimizer.getWeights(),u);n.specs.push(...c),n.data=An.concatenateArrayBuffers([n.data,l])}return this.userDefinedMetadata!=null&&(Wx(this.userDefinedMetadata,this.name,!0),i.userDefinedMetadata=this.userDefinedMetadata),i.weightData=n.data,i.weightSpecs=n.specs,e.save(i)}setUserDefinedMetadata(e){Wx(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};dr.className="Model";re.registerClass(dr);var $I=class extends dr{};$I.className="Functional";re.registerClass($I);async function eV(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=nl(n),r=gs(s,t);if(e.weightsManifest!=null){let a=await An.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=a[o.originalName];r.loadWeights(i),De(a)}return r}async function tV(e,t){if(t==null&&(t={}),typeof e=="string"){let n=An.getLoadHandlers(e,t);if(n.length===0)n.push(An.browserHTTPRequest(e,t));else if(n.length>1)throw new G(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return nV(e,void 0,t)}async function nV(e,t,n){if(n==null&&(n={}),e.load==null)throw new G("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,i=s.weightData!=null&&s.weightSpecs!=null&&a,o=gs(nl(r),t,i),u=s.trainingConfig;if(u!=null&&o.loadTrainingConfig(u),s.userDefinedMetadata!=null&&o.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new G("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:l,optimizerWeights:c}=sV(s.weightData,s.weightSpecs);o.loadWeights(l,a),o.optimizer!=null&&c.length>0&&await o.optimizer.setWeights(c),De(l),De(c.map(p=>p.tensor))}return o}function sV(e,t){let n=An.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var Fm=class extends dr{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Dp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new G(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Fm||e instanceof dr,n;if(t){if(n=e,n.outputs.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new G("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new G("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=dI({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new G(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new G("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=cI(this.outputs[0])}this.inboundNodes=[],new Up({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:ma(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(nt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new dr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new fs("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new fs("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new fs("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new fs("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new G("Legacy serialization format not supported yet.");r=t}else w.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let i=new e(a);if(!(i instanceof Fm))throw new Fe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=gs(o,void 0,s);s&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new G("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new G("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}},Zb=Fm;Zb.className="Sequential";re.registerClass(Zb);function hhe(e){return new dr(e)}function fhe(e){return new Zb(e)}function mhe(e,t){return t==null&&(t={}),tV(e,t)}function rV(e){return dI(e)}function ghe(e,t){qb.registerCallbackConstructor(e,t)}var kn=class extends re.Serializable{getConfig(){return{}}},_I=class extends kn{apply(e,t=1){return bz(e,t)}};_I.className="elu";re.registerClass(_I);var AI=class extends kn{apply(e){return RS(e)}};AI.className="selu";re.registerClass(AI);var EI=class extends kn{apply(e){return Xs(e)}};EI.className="relu";re.registerClass(EI);var RI=class extends kn{apply(e){return q(()=>Np(6,Xs(e)))}};RI.className="relu6";re.registerClass(RI);var DI=class extends kn{apply(e){return e}};DI.className="linear";re.registerClass(DI);var FI=class extends kn{apply(e){return qs(e)}};FI.className="sigmoid";re.registerClass(FI);var OI=class extends kn{apply(e){return vz(e)}};OI.className="hardSigmoid";re.registerClass(OI);var PI=class extends kn{apply(e){return Vl(e)}};PI.className="softplus";re.registerClass(PI);var zI=class extends kn{apply(e){return yz(e)}};zI.className="softsign";re.registerClass(zI);var MI=class extends kn{apply(e){return Yu(e)}};MI.className="tanh";re.registerClass(MI);var Jb=class extends kn{apply(e,t=-1){return bb(e,t)}};Jb.className="softmax";re.registerClass(Jb);var LI=class extends kn{apply(e,t=-1){return IS(e,t)}};LI.className="logSoftmax";re.registerClass(LI);var BI=class extends kn{apply(e,t=1){return q(()=>V(qs(V(e,t)),e))}};BI.className="swish";re.registerClass(BI);var VI=class extends kn{apply(e){return q(()=>V(e,Yu(Vl(e))))}};VI.className="mish";re.registerClass(VI);function yr(e){return e.getClassName()}function Zf(e,t={}){return Ul(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function vr(e){if(e==null){let t={};return t.className="linear",t.config={},Zf(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Zf(t)}else return e instanceof kn?e:Zf(e)}function ey(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var WI=class extends re.Serializable{},Kl=class extends WI{constructor(e){super(),ey(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return q(()=>{let t=$t([1]);return this.hasL1&&(t=ie(t,ve(V(this.l1,Mt(e))))),this.hasL2&&(t=ie(t,ve(V(this.l2,Hl(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Kl.className="L1L2";re.registerClass(Kl);function aV(e){return ey(e),new Kl({l1:e!=null?e.l1:null,l2:0})}function iV(e){return ey(e),new Kl({l2:e!=null?e.l2:null,l1:0})}var Kx={l1l2:"L1L2"};function it(e){return Ab(e)}function Xx(e,t={}){return Ul(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function mt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Kx?Kx[e]:e,config:{}};return Xx(n)}else return e instanceof WI?e:Xx(e)}var ty=class extends He{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Oe(e);let n=Xs(e);return this.maxValue!=null&&(n=Vn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};ty.className="ReLU";re.registerClass(ty);var ny=class extends He{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Oe(e);return ib(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};ny.className="LeakyReLU";re.registerClass(ny);var sy=class extends He{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=ft(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=mt(e.alphaRegularizer),this.alphaConstraint=Pt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new G(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=nt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new Dt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Oe(e),pb(e,this.alpha.read())}getConfig(){let e={alphaInitializer:yt(this.alphaInitializer),alphaRegularizer:it(this.alphaRegularizer),alphaConstraint:Ot(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};sy.className="PReLU";re.registerClass(sy);var ry=class extends He{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Fe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Oe(e);return Sp(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};ry.className="ELU";re.registerClass(ry);var ay=class extends He{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Oe(e);return V(n,le(Un(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};ay.className="ThresholdedReLU";re.registerClass(ay);var iy=class extends He{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new Jb().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Oe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};iy.className="Softmax";re.registerClass(iy);function Qi(e,t,n){if(typeof e=="number")return ma(e,t);if(e.length!==t)throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!hz(r))throw new G(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function bs(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-a+1,Math.floor((i+s-1)/s)}function Ns(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+br([n-t,0]);else if(s==="same")e=e*t;else throw new G(`Unsupport padding mode: ${s}.`);return e}function oy(e,t){return q(()=>(Ct(t),t==="channelsFirst"?Ge(e,[0,2,3,1]):e))}function UI(e,t){return q(()=>(Ct(t),t==="channelsFirst"?Ge(e,[0,2,3,4,1]):e))}function oV(e,t,n,s=1,r="valid",a,i=1){return q(()=>{if(a==null&&(a=vs()),Ct(a),e.shape.length!==3)throw new G(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new G(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new G(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=Ge(e,[0,2,1])),r==="causal")throw new Fe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=pS(e,t,s,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=ks(o,n)),o})}function Yx(e,t,n,s=[1,1],r="valid",a,i,o=null){return q(()=>{if(a==null&&(a=vs()),Ct(a),e.rank!==3&&e.rank!==4)throw new G(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new G(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let u=oy(e,a);if(r==="causal")throw new Fe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return u=fa.conv2d({x:u,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),a==="channelsFirst"&&(u=Ge(u,[0,3,1,2])),u})}function uV(e,t,n,s=[1,1,1],r="valid",a,i){return q(()=>{if(a==null&&(a=vs()),Ct(a),e.rank!==4&&e.rank!==5)throw new G(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new G(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=UI(e,a);if(r==="causal")throw new Fe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=fS(o,t,s,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=ks(o,n)),a==="channelsFirst"&&(o=Ge(o,[0,4,1,2,3])),o})}var uy=class extends He{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",uy.verifyArgs(t),this.rank=e,Bt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Fe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Qi(t.kernelSize,e,"kernelSize"),this.strides=Qi(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Gn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ct(this.dataFormat),this.activation=vr(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=ft(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Pt(t.biasConstraint),this.biasRegularizer=mt(t.biasRegularizer),this.activityRegularizer=mt(t.activityRegularizer),this.dilationRate=Qi(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new G(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new G(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new G(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Cs("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Eb(e.kernelSize,"number",1,3))throw new G(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:yr(this.activation),useBias:this.useBias,biasInitializer:yt(this.biasInitializer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),biasConstraint:Ot(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Xl=class extends uy{constructor(e,t){super(e,t),this.kernel=null,Xl.verifyArgs(t),this.filters=t.filters,Bt(this.filters,"filters"),this.kernelInitializer=ft(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Pt(t.kernelConstraint),this.kernelRegularizer=mt(t.kernelRegularizer)}build(e){e=nt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return q(()=>{e=Oe(e);let n,s=this.bias==null?null:this.bias.read(),r=nI(this.activation.getClassName());if(r!=null&&this.rank===2)n=Yx(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=oV(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Yx(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=uV(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Fe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=nt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=bs(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:yt(this.kernelInitializer),kernelRegularizer:it(this.kernelRegularizer),kernelConstraint:Ot(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new G(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},GI=class extends Xl{constructor(e){super(2,e),GI.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Eb(e.kernelSize,"number",1,2))throw new G(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}},qp=GI;qp.className="Conv2D";re.registerClass(qp);var HI=class extends Xl{constructor(e){super(3,e),HI.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new G(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}},jp=HI;jp.className="Conv3D";re.registerClass(jp);var ly=class extends qp{constructor(e){if(super(e),this.inputSpec=[new Dt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=nt(e),e.length!==4)throw new G("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Dt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return q(()=>{let n=Oe(e);if(n.shape.length!==4)throw new G(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,i;this.dataFormat==="channelsFirst"?(a=2,i=3):(a=1,i=2);let o=s[a],u=s[i],l=this.kernelSize[0],c=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=Ns(o,p,l,this.padding),f=Ns(u,d,c,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=Ge(n,[0,2,3,1]));let g=hS(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Ge(g,[0,3,1,2])),this.bias!=null&&(g=ks(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=nt(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],u=this.strides[1];return t[n]=this.filters,t[s]=Ns(t[s],o,a,this.padding),t[r]=Ns(t[r],u,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};ly.className="Conv2DTranspose";re.registerClass(ly);var cy=class extends jp{constructor(e){if(super(e),this.inputSpec=[new Dt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new G(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=nt(e),e.length!==5)throw new G("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new G("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Dt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return q(()=>{let n=Oe(e);if(n.shape.length!==5)throw new G(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,i,o;this.dataFormat==="channelsFirst"?(o=2,a=3,i=4):(o=1,a=2,i=3);let u=s[o],l=s[a],c=s[i],p=this.kernelSize[0],d=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],b=Ns(u,f,p,this.padding),y=Ns(l,m,d,this.padding),v=Ns(c,g,h,this.padding),x=[r,b,y,v,this.filters];this.dataFormat!=="channelsLast"&&(n=Ge(n,[0,2,3,4,1]));let k=yR(n,this.kernel.read(),x,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(k=Ge(k,[0,4,1,2,3])),this.bias!==null&&(k=ks(k,this.bias.read(),this.dataFormat)),this.activation!==null&&(k=this.activation.apply(k)),k})}computeOutputShape(e){e=nt(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let i=this.kernelSize[0],o=this.kernelSize[1],u=this.kernelSize[2],l=this.strides[0],c=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[s]=Ns(t[s],l,i,this.padding),t[r]=Ns(t[r],c,o,this.padding),t[a]=Ns(t[a],p,u,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};cy.className="Conv3DTranspose";re.registerClass(cy);var qI=class extends Xl{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new G("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new G("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new G(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=ft(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=mt(t.depthwiseRegularizer),this.depthwiseConstraint=Pt(t.depthwiseConstraint),this.pointwiseInitializer=ft(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=mt(t.pointwiseRegularizer),this.pointwiseConstraint=Pt(t.pointwiseConstraint)}build(e){if(e=nt(e),e.length<this.rank+2)throw new G(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new Dt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return q(()=>{e=Oe(e);let n;if(this.rank===1)throw new Fe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ge(e,[0,2,3,1])),n=_3(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=ks(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ge(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=yt(this.depthwiseInitializer),e.pointwiseInitializer=yt(this.pointwiseInitializer),e.depthwiseRegularizer=it(this.depthwiseRegularizer),e.pointwiseRegularizer=it(this.pointwiseRegularizer),e.depthwiseConstraint=Ot(this.depthwiseConstraint),e.pointwiseConstraint=Ot(this.pointwiseConstraint),e}};qI.className="SeparableConv";var dy=class extends qI{constructor(e){super(2,e)}};dy.className="SeparableConv2D";re.registerClass(dy);var jI=class extends Xl{constructor(e){super(1,e),jI.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Eb(e.kernelSize,"number",1,1))throw new G(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}},py=jI;py.className="Conv1D";re.registerClass(py);var hy=class extends He{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return q(()=>{if(e=Oe(e),this.dataFormat==="channelsLast"){let n=Xc(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Xc(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Xc(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Xc(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};hy.className="Cropping2D";re.registerClass(hy);var fy=class extends He{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,cz(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return q(()=>{let n=Oe(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=Ge(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],i=this.interpolation==="nearest"?jn.resizeNearestNeighbor(n,[r,a]):jn.resizeBilinear(n,[r,a]);return Ge(i,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?jn.resizeNearestNeighbor(n,[r,a]):jn.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};fy.className="UpSampling2D";re.registerClass(fy);function lV(e,t,n=[1,1],s="valid",r,a){return q(()=>{r==null&&(r=vs()),Ct(r);let i=oy(e,r);if(e.rank!==4)throw new G(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new G(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=kp(i,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(i=Ge(i,[0,3,1,2])),i})}var my=class extends uy{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=ft(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Pt(e.depthwiseConstraint),this.depthwiseRegularizer=mt(e.depthwiseRegularizer)}build(e){if(e=nt(e),e.length<4)throw new G(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new G(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return q(()=>{e=Oe(e);let n=lV(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=ks(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=nt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=bs(t,this.kernelSize[0],this.padding,this.strides[0]),a=bs(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=yt(this.depthwiseInitializer),e.depthwiseRegularizer=it(this.depthwiseRegularizer),e.depthwiseConstraint=Ot(this.depthwiseRegularizer),e}};my.className="DepthwiseConv2D";re.registerClass(my);function KI(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new G("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function XI(e,t,n,s=!1,r,a,i=!1,o=!1){return q(()=>{let u=t.shape.length;if(u<3)throw new G(`Input should be at least 3D, but is ${u}D.`);let l=[1,0].concat(ys(2,u));if(t=Ge(t,l),a!=null)throw new Fe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=le(le(r,"bool"),"float32"),r.rank===u-1&&(r=Pn(r,-1)),r=Ge(r,l)),s&&(t=Jn(t,0),r!=null&&(r=Jn(r,0)));let c=[],p,d=n,h=t.shape[0],f=Fs(t),m;r!=null&&(m=Fs(r));for(let b=0;b<h;++b){let y=f[b],v=q(()=>e(y,d));if(r==null)p=v[0],d=v[1];else{let x=q(()=>{let k=m[b],I=ge(Zn(k),k),$=ie(V(v[0],k),V(d[0],I)),R=d.map((E,P)=>ie(V(v[1][P],k),V(E,I)));return{output:$,newStates:R}});p=x.output,d=x.newStates}o&&c.push(p)}let g;return o&&(g=es(c,1)),[p,g,d]})}var YI=class extends He{constructor(e){super(e);let t;if(e.cell==null)throw new G("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new Yp({cells:e.cell}):t=e.cell,t.stateSize==null)throw new G("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Dt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return ys(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Tm(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return q(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Fe("Constants support is not implemented in RNN yet.");Tm(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new Dt({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!w.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),a))throw new G(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(i=>new Dt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){q(()=>{if(!this.stateful)throw new Bs("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>$t([n,s])):this.states_=[$t([n,this.cell.stateSize])];else if(e==null)De(this.states_),this.keptStates!=null&&(De(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>$t([n,s])):this.states_[0]=$t([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):De(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,i=[n,a];if(!w.arraysEqual(r.shape,i))throw new G(`State ${s} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>Ht(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=KI(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],i=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let u of n)this.stateSpec.push(new Dt({shape:u.shape}));i=i.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof $s){let u=[e].concat(a),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let p=super.apply(u,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return q(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Oe(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new G(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:s},u=XI((h,f)=>{let m=this.cell.call([h].concat(f),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=u[0],c=u[1],p=u[2];this.stateful&&this.resetStates(p,s);let d=this.returnSequences?c:l;return this.returnState?[d].concat(p):d})}getInitialState(e){return q(()=>{let t=$t(e.shape);return t=ve(t,[1,2]),t=Gl(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Cm(t,[1,n]):t):this.cell.stateSize>1?[Cm(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===YI.className&&(t.cell={className:this.cell.getClassName(),config:n}),{...n,...e,...t}}static fromConfig(e,t,n={}){let s=t.cell,r=gs(s,n);return new e(Object.assign(t,{cell:r}))}},Er=YI;Er.className="RNN";re.registerClass(Er);var Yl=class extends He{},Kp=class extends Yl{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Bt(this.units,"units"),this.activation=vr(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=mt(e.kernelRegularizer),this.recurrentRegularizer=mt(e.recurrentRegularizer),this.biasRegularizer=mt(e.biasRegularizer),this.kernelConstraint=Pt(e.kernelConstraint),this.recurrentConstraint=Pt(e.recurrentConstraint),this.biasConstraint=Pt(e.biasConstraint),this.dropout=eo([1,br([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=eo([1,br([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=nt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return q(()=>{if(e=e,e.length!==2)throw new G(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=xr({ones:()=>Zn(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=xr({ones:()=>Zn(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,i=this.recurrentDropoutMask;a!=null?r=Es(V(e,a),this.kernel.read()):r=Es(e,this.kernel.read()),this.bias!=null&&(r=ks(r,this.bias.read())),i!=null&&(n=V(n,i));let o=ie(r,Es(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:yr(this.activation),useBias:this.useBias,kernelInitializer:yt(this.kernelInitializer),recurrentInitializer:yt(this.recurrentInitializer),biasInitializer:yt(this.biasInitializer),kernelRegularizer:it(this.kernelRegularizer),recurrentRegularizer:it(this.recurrentRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Ot(this.kernelConstraint),recurrentConstraint:Ot(this.recurrentConstraint),biasConstraint:Ot(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return{...e,...t}}};Kp.className="SimpleRNNCell";re.registerClass(Kp);var gy=class extends Er{constructor(e){e.cell=new Kp(e),super(e)}call(e,t){return q(()=>{this.cell.dropoutMask!=null&&(De(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(De(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};gy.className="SimpleRNN";re.registerClass(gy);var Xp=class extends Yl{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new G("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Bt(this.units,"units"),this.activation=vr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=vr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=mt(e.kernelRegularizer),this.recurrentRegularizer=mt(e.recurrentRegularizer),this.biasRegularizer=mt(e.biasRegularizer),this.kernelConstraint=Pt(e.kernelConstraint),this.recurrentConstraint=Pt(e.recurrentConstraint),this.biasConstraint=Pt(e.biasConstraint),this.dropout=eo([1,br([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=eo([1,br([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=nt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return q(()=>{if(e=e,e.length!==2)throw new G(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=xr({ones:()=>Zn(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=xr({ones:()=>Zn(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,i,o,u;0<this.dropout&&this.dropout<1&&(e=V(e,r[0]));let l=Es(e,this.kernel.read());this.useBias&&(l=ks(l,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=V(s,a[0]));let c=this.recurrentKernel.read(),[p,d]=Bn(c,[2*this.units,this.units],c.rank-1),h=Es(s,p),[f,m,g]=Bn(l,3,l.rank-1),[b,y]=Bn(h,2,h.rank-1);i=this.recurrentActivation.apply(ie(f,b)),o=this.recurrentActivation.apply(ie(m,y));let v=Es(V(o,s),d);u=this.activation.apply(ie(g,v));let x=ie(V(i,s),V(ie(1,vt(i)),u));return[x,x]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:yr(this.activation),recurrentActivation:yr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:yt(this.kernelInitializer),recurrentInitializer:yt(this.recurrentInitializer),biasInitializer:yt(this.biasInitializer),kernelRegularizer:it(this.kernelRegularizer),recurrentRegularizer:it(this.recurrentRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Ot(this.kernelConstraint),recurrentConstraint:Ot(this.recurrentConstraint),biasConstraint:Ot(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return{...e,...t}}};Xp.className="GRUCell";re.registerClass(Xp);var by=class extends Er{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Xp(e),super(e)}call(e,t){return q(()=>{this.cell.dropoutMask!=null&&(De(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(De(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};by.className="GRU";re.registerClass(by);var Ql=class extends Yl{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Bt(this.units,"units"),this.activation=vr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=vr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=mt(e.kernelRegularizer),this.recurrentRegularizer=mt(e.recurrentRegularizer),this.biasRegularizer=mt(e.biasRegularizer),this.kernelConstraint=Pt(e.kernelConstraint),this.recurrentConstraint=Pt(e.recurrentConstraint),this.biasConstraint=Pt(e.biasConstraint),this.dropout=eo([1,br([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=eo([1,br([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=nt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends ns{apply(i,o){let u=r.apply([a]),l=new Pp().apply([a]),c=r.apply([a*2]);return $x($x(u,l),c)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return q(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new G(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=xr({ones:()=>Zn(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=xr({ones:()=>Zn(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,i=this.recurrentDropoutMask,o,u,l,c;0<this.dropout&&this.dropout<1&&(e=V(e,a[0]));let p=Es(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=V(s,i[0])),p=ie(p,Es(s,this.recurrentKernel.read())),this.useBias&&(p=ks(p,this.bias.read()));let[d,h,f,m]=Bn(p,4,p.rank-1);o=this.recurrentActivation.apply(d),u=this.recurrentActivation.apply(h),l=ie(V(u,r),V(o,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let g=V(c,this.activation.apply(l));return[g,g,l]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:yr(this.activation),recurrentActivation:yr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:yt(this.kernelInitializer),recurrentInitializer:yt(this.recurrentInitializer),biasInitializer:yt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:it(this.kernelRegularizer),recurrentRegularizer:it(this.recurrentRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Ot(this.kernelConstraint),recurrentConstraint:Ot(this.recurrentConstraint),biasConstraint:Ot(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return{...e,...t}}};Ql.className="LSTMCell";re.registerClass(Ql);var yy=class extends Er{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Ql(e),super(e)}call(e,t){return q(()=>{this.cell.dropoutMask!=null&&(De(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(De(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};yy.className="LSTM";re.registerClass(yy);var Yp=class extends Yl{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return q(()=>{e=e;let n=e.slice(1),s=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?s.push(n.splice(0,i.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=s[i],i===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=o.call(a,t),r.push(a.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[a[0]].concat(n)})}build(e){Tm(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{na(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return{...e,...s}}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(gs(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return $m(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}Bb(t)}};Yp.className="StackedRNNCells";re.registerClass(Yp);function xr(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,i=()=>a!=null?a(t(),n):lI(t(),n),o=()=>ql(i,t,s);return!r||r<=1?Ht(o().clone()):Array(r).fill(void 0).map(o).map(l=>Ht(l.clone()))}var QI=class extends Er{constructor(e){if(e.unroll)throw new Fe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Fe("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new Dt({ndim:5})]}call(e,t){return q(()=>{if(this.cell.dropoutMask!=null&&(De(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(De(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new G("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return q(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=$t(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){q(()=>{if(!this.stateful)throw new Bs("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new G("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>$t(r)):this.states_=[$t(r)];else if(e==null)De(this.states_),this.keptStates!=null&&(De(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>$t(r)):this.states_[0]=$t(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new G(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):De(this.states_);for(let i=0;i<this.states_.length;++i){let o=e[i],u=r;if(!w.arraysEqual(o.shape,u))throw new G(`State ${i} is incompatible with layer ${this.name}: expected shape=${u}, received shape=${o.shape}`);this.states_[i]=o}}this.states_=this.states_.map(i=>Ht(i.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:i}=this.cell,o=t==="channelsFirst",u=e[o?3:2],l=e[o?4:3],c=bs(u,s[0],r,a[0],i[0]),p=bs(l,s[1],r,a[1],i[1]);return[...e.slice(0,2),...o?[n,c,p]:[c,p,n]]}};QI.className="ConvRNN2D";var Qp=class extends Ql{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:i}=e;super({...e,units:t}),this.filters=t,Bt(this.filters,"filters"),this.kernelSize=Qi(n,2,"kernelSize"),this.kernelSize.forEach(o=>Bt(o,"kernelSize")),this.strides=Qi(s||1,2,"strides"),this.strides.forEach(o=>Bt(o,"strides")),this.padding=r||"valid",Gn(this.padding),this.dataFormat=a||"channelsLast",Ct(this.dataFormat),this.dilationRate=Qi(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Bt(o,"dilationRate"))}build(e){var t;e=nt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new G(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let u=this.biasInitializer,l=this.filters;o=new(t=class extends ns{apply(c,p){let d=u.apply([l]),h=Mn([l]),f=u.apply([l*2]);return Rb([d,h,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return q(()=>{if(e.length!==3)throw new G(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=xr({ones:()=>Zn(s),rate:this.dropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let o=this.dropoutMask,u=(Z,ne,ee)=>!ne||!ne[ee]?Z:V(ne[ee],Z),l=u(s,o,0),c=u(s,o,1),p=u(s,o,2),d=u(s,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=xr({ones:()=>Zn(r),rate:this.recurrentDropout,training:n,count:i,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=u(r,h,0),m=u(r,h,1),g=u(r,h,2),b=u(r,h,3),y=3,[v,x,k,I]=Bn(this.kernel.read(),i,y),[$,R,E,P]=this.useBias?Bn(this.bias.read(),i):[null,null,null,null];l=this.inputConv(l,v,$,this.padding),c=this.inputConv(c,x,R,this.padding),p=this.inputConv(p,k,E,this.padding),d=this.inputConv(d,I,P,this.padding);let[A,O,T,M]=Bn(this.recurrentKernel.read(),i,y);f=this.recurrentConv(f,A),m=this.recurrentConv(m,O),g=this.recurrentConv(g,T),b=this.recurrentConv(b,M);let W=this.recurrentActivation.apply(ie(l,f)),j=this.recurrentActivation.apply(ie(c,m)),Y=ie(V(j,a),V(W,this.activation.apply(ie(p,g)))),X=V(this.recurrentActivation.apply(ie(d,b)),this.activation.apply(Y));return[X,X,Y]})}getConfig(){let{units:e,...t}=super.getConfig(),n={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return{...t,...n}}inputConv(e,t,n,s){let r=da(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?ks(r,n,this.dataFormat):r}recurrentConv(e,t){return da(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};Qp.className="ConvLSTM2DCell";re.registerClass(Qp);var vy=class extends QI{constructor(e){let t=new Qp(e);super({...e,cell:t})}static fromConfig(e,t){return new e(t)}};vy.className="ConvLSTM2D";re.registerClass(vy);var Zp=class extends He{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return ql(()=>lI(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};Zp.className="Dropout";re.registerClass(Zp);var xy=class extends Zp{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};xy.className="SpatialDropout1D";re.registerClass(xy);var wy=class extends He{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Bt(this.units,"units"),this.activation=vr(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Pt(e.kernelConstraint),this.biasConstraint=Pt(e.biasConstraint),this.kernelRegularizer=mt(e.kernelRegularizer),this.biasRegularizer=mt(e.biasRegularizer),this.activityRegularizer=mt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=nt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=nt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e),s=nI(this.activation.getClassName()),r;return s!=null?r=Es(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=Es(n,this.kernel.read()),this.bias!=null&&(r=ks(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:yr(this.activation),useBias:this.useBias,kernelInitializer:yt(this.kernelInitializer),biasInitializer:yt(this.biasInitializer),kernelRegularizer:it(this.kernelRegularizer),biasRegularizer:it(this.biasRegularizer),activityRegularizer:it(this.activityRegularizer),kernelConstraint:Ot(this.kernelConstraint),biasConstraint:Ot(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};wy.className="Dense";re.registerClass(wy);var ky=class extends He{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=nt(e);for(let t of e.slice(1))if(t==null)throw new G(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],cr(e,1)]}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=Ge(n,s)}return gz(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};ky.className="Flatten";re.registerClass(ky);var Sy=class extends He{constructor(e){super(e),this.supportsMasking=!0,this.activation=vr(e.activation)}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e);return this.activation.apply(n)})}getConfig(){let e={activation:yr(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Sy.className="Activation";re.registerClass(Sy);var Iy=class extends He{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return q(()=>(e=Oe(e),fz(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Iy.className="RepeatVector";re.registerClass(Iy);var Cy=class extends He{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let o=0;o<s.length;++o){let u=s[o];if(this.isUnknown(u))if(a===null)a=o;else throw new G("Can only specifiy one unknown dimension.");else r*=u}let i=cr(e);if(a!==null){if(r===0||i%r!==0)throw new G(n);s[a]=i/r}else if(i!==r)throw new G(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return U(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Cy.className="Reshape";re.registerClass(Cy);var Ny=class extends He{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=ys(1,e.dims.length+1);if(!w.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Dt({ndim:this.dims.length+1})]}computeOutputShape(e){e=nt(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return Ge(Oe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Ny.className="Permute";re.registerClass(Ny);var Ty=class extends He{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Oe(e),s=-1;return xm(Ju(n,this.maskValue),s)}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e),s=-1,r=!0,a=xm(Ju(n,this.maskValue),s,r);return V(n,le(a,n.dtype))})}};Ty.className="Masking";re.registerClass(Ty);var $y=class extends He{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(ht(e.inputLength))}this.inputDim=e.inputDim,Bt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Bt(this.outputDim,"outputDim"),this.embeddingsInitializer=ft(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=mt(e.embeddingsRegularizer),this.activityRegularizer=mt(e.activityRegularizer),this.embeddingsConstraint=Pt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return q(()=>this.maskZero?(e=Oe(e),Ju(e,je(e))):null)}computeOutputShape(e){if(e=nt(e),this.inputLength==null)return[...e,this.outputDim];let t=ht(this.inputLength);if(t.length!==e.length-1)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new G(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e);n.dtype!=="int32"&&(n=Fp(n,"int32"));let s=uI(this.embeddings.read(),U(n,[n.size]));return U(s,nt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:yt(this.embeddingsInitializer),embeddingsRegularizer:it(this.embeddingsRegularizer),activityRegularizer:it(this.activityRegularizer),embeddingsConstraint:Ot(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};$y.className="Embedding";re.registerClass($y);var vi=class extends He{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Fe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new G("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[nt(e)]),e=e,e.length<2)throw new G(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=lr(t),t.length>1)throw new G(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&lr(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return q(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=br(s);for(let a of e){let i=a.rank;for(let o=0;o<r-i;++o)a=Gl(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let u=o.rank;if(u==null){let l=o.shape,c=l[0],p=l.slice(1).concat([c]),d=U(o,[c].concat(cr(l.slice(1))));d=Ge(d,[1,0]),d=U(d,p),n.push(d),r=!0}else if(u>1){let l=ys(1,u).concat([0]);n.push(Ge(o,l)),r=!0}else n.push(o)}let a=this.mergeFunction(n),i=a.rank;if(r){if(i==null){let o=a.shape,u=o.length,l=o[u-1],c=[l].concat(o.slice(0,o.length-1));a=U(Ge(U(a,[-1,l]),[1,0]),c)}else if(i>1){let o=[i-1].concat(ys(0,i-1));a=Ge(a,o)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=lr(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return q(()=>{if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an Array");if(!Array.isArray(e))throw new G("`inputs` should be an Array");if(t.length!==e.length)throw new G(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Pn(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=Ds(n,t[s]);return n})}},_y=class extends vi{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return t})}};_y.className="Add";re.registerClass(_y);var Ay=class extends vi{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=V(t,e[n]);return t})}};Ay.className="Multiply";re.registerClass(Ay);var Ey=class extends vi{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return V(1/e.length,t)})}};Ey.className="Average";re.registerClass(Ey);var Ry=class extends vi{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=_r(t,e[n]);return t})}};Ry.className="Maximum";re.registerClass(Ry);var Dy=class extends vi{constructor(e){super(e)}mergeFunction(e){return q(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Np(t,e[n]);return t})}};Dy.className="Minimum";re.registerClass(Dy);var Fy=class extends vi{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new G("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let i of n)if(w.arraysEqual(i,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new G("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return q(()=>Rb(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new G("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new G("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new G("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new G(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return q(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(le(Zn(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Pn(t[a],-1)):s.push(t[a]);let r=Ft(s,this.axis);return iS(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Fy.className="Concatenate";re.registerClass(Fy);function $u(e,t){for(;e<0;)e+=t;return e}function cV(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Fe("batchDot is not implemented for tensors of 4D or higher rank yet");if(w.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),w.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Fe("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return q(()=>{let i;if(s>r){i=s-r;let u=[];for(let l=0;l<i;++l)u.push(1);t=U(t,t.shape.concat(u))}else if(r>s){i=r-s;let u=[];for(let l=0;l<i;++l)u.push(1);e=U(e,e.shape.concat(u))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?o=ve(V(e,t),a[0]):o=ve(V(Ge(e,[1,0]),t),a[1]);else{let u=a[0]!==e.shape.length-1,l=a[1]===t.shape.length-1;o=We(e,t,u,l)}if(i>0){let u;s>r?u=s+r-3:u=s-1;let l=[];for(let c=u;c<u+i;++c)l.push(c);o=gr(o,l)}return o.shape.length===1&&(o=Pn(o,1)),o})}var Oy=class extends vi{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Fe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new G(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new G(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>$u(r,e[a].shape.length)):s=[$u(this.axes,t.shape.length),$u(this.axes,n.shape.length)],this.normalize&&(t=Rd(t,s[0]),n=Rd(n,s[1])),cV(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[$u(this.axes,e.length),$u(this.axes,t.length)],n}computeOutputShape(e){w.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Fe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Oy.className="Dot";re.registerClass(Oy);var Py=class extends He{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e);return ql(()=>ie(Op(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};Py.className="GaussianNoise";re.registerClass(Py);var zy=class extends He{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return q(()=>{this.invokeCallHook(e,t);let n=Oe(e);return this.rate>0&&this.rate<1?ql(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return V(n,Op(n.shape,1,r))},()=>n,t.training||!1):n})}};zy.className="GaussianDropout";re.registerClass(zy);var My=class extends He{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Oe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return q(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return ql(()=>{let r=Oe(e),a=1.6732632423543772,i=1.0507009873554805,o=-a*i,u=Yo(Wl(n),this.rate);u=Fp(u,"float32");let l=((1-this.rate)*(1+this.rate*o**2))**-.5,c=-l*o*this.rate,p=ie(V(r,u),V(ie(u,-1),o));return ie(V(p,l),c)},()=>Oe(e),t.training||!1)}return e})}};My.className="AlphaDropout";re.registerClass(My);function sl(e,t,n,s,r,a=.001){let i;if(e.rank===2)i=HE(e,t,n,s,r,a);else if(e.rank===3)i=jE(e,t,n,s,r,a);else if(e.rank===4)i=XE(e,t,n,s,r,a);else throw new Fe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function dV(e,t,n,s,r=.001){return q(()=>{let a=cb(e,s),i=a.mean,o=a.variance;return[sl(e,i,o,n,t,r),i,o]})}function pV(e,t,n,s,r=.001){return q(()=>{let a=cb(e,s),i=a.mean,o=a.variance,u=[];for(let f of ys(0,e.rank))s.indexOf(f)!==-1?u.push(1):u.push(e.shape[f]);let l=U(i,u),c=U(o,u),p=t==null?null:U(t,u),d=n==null?null:U(n,u);return[sl(e,l,c,d,p,r),i,o]})}function hV(e,t,n,s,r=.001){return w.arraysEqual(s.slice().sort(),ys(0,e.rank-1))?dV(e,t,n,s,r):pV(e,t,n,s,r)}var Ly=class extends He{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=ft(e.betaInitializer||"zeros"),this.gammaInitializer=ft(e.gammaInitializer||"ones"),this.movingMeanInitializer=ft(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=ft(e.movingVarianceInitializer||"ones"),this.betaConstraint=Pt(e.betaConstraint),this.gammaConstraint=Pt(e.gammaConstraint),this.betaRegularizer=mt(e.betaRegularizer),this.gammaRegularizer=mt(e.gammaRegularizer)}build(e){e=nt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new G(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Dt({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return q(()=>{let n=t.training==null?!1:t.training,s=Oe(e),r=s.shape,a=r.length,i=ys(0,a),o=this.axis>=0?this.axis:this.axis+a;i.splice(o,1);let u=ma(1,a);u[o]=r[o];let l=i.slice();l.sort();let c=!w.arraysEqual(l,ys(0,a).slice(0,a-1)),p=()=>{if(c){let b=U(this.movingMean.read(),u),y=U(this.movingVariance.read(),u),v=this.center?U(this.beta.read(),u):null,x=this.scale?U(this.gamma.read(),u):null;return sl(s,b,y,v,x,this.epsilon)}else return sl(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,f]=hV(s,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(b,y,v)=>{q(()=>{let x=1-v,k=b.read(),I=V(ge(k,y),x);b.write(ge(k,I))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:yt(this.betaInitializer),gammaInitializer:yt(this.gammaInitializer),movingMeanInitializer:yt(this.movingMeanInitializer),movingVarianceInitializer:yt(this.movingVarianceInitializer),betaRegularizer:it(this.betaRegularizer),gammaRegularizer:it(this.gammaRegularizer),betaConstraint:Ot(this.betaConstraint),gammaConstraint:Ot(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Ly.className="BatchNormalization";re.registerClass(Ly);var By=class extends He{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=ft(e.betaInitializer||"zeros"),this.gammaInitializer=ft(e.gammaInitializer||"ones"),this.betaRegularizer=mt(e.betaRegularizer),this.gammaRegularizer=mt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=nt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==lr(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Oe(e),s=n.shape,r=s.length;return q(()=>{let{mean:i,variance:o}=cb(n,this.axis,!0),u=ma(1,r);for(let f of this.axis)u[f]=s[f];let l=f=>f!=null&&f.shape.length!==r?U(f,u):f,c=this.scale?l(this.gamma.read()):null,p=this.center?l(this.beta.read()):null,d=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(d.push(s[f]),h.push(1)):(d.push(1),h.push(s[f]));return i=hs(i,d),o=hs(o,d),c!=null&&(c=hs(c,h)),p!=null&&(p=hs(p,h)),sl(n,i,o,p,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:yt(this.betaInitializer),gammaInitializer:yt(this.gammaInitializer),betaRegularizer:it(this.betaRegularizer),gammaRegularizer:it(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};By.className="LayerNormalization";re.registerClass(By);function fV(e,t,n){return q(()=>{if(e.rank!==4)throw new G(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new G("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=vs()),n!=="channelsLast"&&n!=="channelsFirst")throw new G(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],gi(e,s)})}var Vy=class extends He{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?vs():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new G(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new G(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new G(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Dt({ndim:4})]}computeOutputShape(e){e=nt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return q(()=>fV(Oe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Vy.className="ZeroPadding2D";re.registerClass(Vy);function Jp(e,t,n,s,r,a){return q(()=>{Ct(r),rI(a),Gn(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=vs()),a==null&&(a="max"),e=oy(e,r);let i,o=s==="same"?"same":"valid";return a==="max"?i=lb(e,t,n,o):i=Jg(e,t,n,o),r==="channelsFirst"&&(i=Ge(i,[0,3,1,2])),i})}function ZI(e,t,n,s,r,a){return q(()=>{Ct(r),rI(a),Gn(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=vs()),a==null&&(a="max"),e=UI(e,r);let i,o=s==="same"?"same":"valid";return a==="max"?i=TS(e,t,n,o):i=cS(e,t,n,o),r==="channelsFirst"&&(i=Ge(i,[0,4,1,2,3])),i})}var JI=class extends He{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new G(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Bt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new G(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Bt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Gn(this.padding),this.inputSpec=[new Dt({ndim:3})]}computeOutputShape(e){e=nt(e);let t=bs(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return q(()=>{this.invokeCallHook(e,t),e=Gl(Oe(e),2);let n=this.poolingFunction(Oe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return gr(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Wy=class extends JI{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),Jp(e,t,n,s,r,"max")}};Wy.className="MaxPooling1D";re.registerClass(Wy);var Uy=class extends JI{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),Jp(e,t,n,s,r,"avg")}};Uy.className="AveragePooling1D";re.registerClass(Uy);var e0=class extends He{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new G(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Bt(this.poolSize,"poolSize"),Bt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),Gn(this.padding),this.inputSpec=[new Dt({ndim:4})]}computeOutputShape(e){e=nt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=bs(t,this.poolSize[0],this.padding,this.strides[0]),n=bs(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return q(()=>(this.invokeCallHook(e,t),this.poolingFunction(Oe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Gy=class extends e0{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),Jp(e,t,n,s,r,"max")}};Gy.className="MaxPooling2D";re.registerClass(Gy);var Hy=class extends e0{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),Jp(e,t,n,s,r,"avg")}};Hy.className="AveragePooling2D";re.registerClass(Hy);var t0=class extends He{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new G(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Bt(this.poolSize,"poolSize"),Bt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),Gn(this.padding),this.inputSpec=[new Dt({ndim:5})]}computeOutputShape(e){e=nt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=bs(t,this.poolSize[0],this.padding,this.strides[0]),n=bs(n,this.poolSize[1],this.padding,this.strides[1]),s=bs(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return q(()=>(this.invokeCallHook(e,t),this.poolingFunction(Oe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},qy=class extends t0{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),ZI(e,t,n,s,r,"max")}};qy.className="MaxPooling3D";re.registerClass(qy);var jy=class extends t0{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Ct(r),Gn(s),ZI(e,t,n,s,r,"avg")}};jy.className="AveragePooling3D";re.registerClass(jy);var n0=class extends He{constructor(e){super(e),this.inputSpec=[new Dt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Fe}},Ky=class extends n0{constructor(e){super(e||{})}call(e,t){return q(()=>{let n=Oe(e);return It(n,1)})}};Ky.className="GlobalAveragePooling1D";re.registerClass(Ky);var Xy=class extends n0{constructor(e){super(e||{})}call(e,t){return q(()=>{let n=Oe(e);return As(n,1)})}};Xy.className="GlobalMaxPooling1D";re.registerClass(Xy);var s0=class extends He{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ct(this.dataFormat),this.inputSpec=[new Dt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Fe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Yy=class extends s0{call(e,t){return q(()=>{let n=Oe(e);return this.dataFormat==="channelsLast"?It(n,[1,2]):It(n,[2,3])})}};Yy.className="GlobalAveragePooling2D";re.registerClass(Yy);var Qy=class extends s0{call(e,t){return q(()=>{let n=Oe(e);return this.dataFormat==="channelsLast"?As(n,[1,2]):As(n,[2,3])})}};Qy.className="GlobalMaxPooling2D";re.registerClass(Qy);var r0=class extends He{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=gs(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},Zy=class extends r0{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=nt(e),e.length<3)throw new G(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=nt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return q(()=>(e=Oe(e),XI((a,i)=>[Oe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Zy.className="TimeDistributed";re.registerClass(Zy);function mV(e){bi(lz,"BidirectionalMergeMode",e)}var gV="concat",Jy=class extends r0{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=gs(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=gs(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?gV:e.mergeMode,mV(this.mergeMode),e.weights)throw new Fe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):bn(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=KI(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],i=[];if(n!=null){let u=n.length;if(u%2>0)throw new G("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let l=n.map(c=>new Dt({shape:c.shape}));this.forwardLayer.stateSpec=l.slice(0,u/2),this.backwardLayer.stateSpec=l.slice(u/2),i.push(...l)}if(s!=null)throw new Fe("Support for constants in Bidirectional layers is not implemented yet.");let o=a[0]instanceof $s;for(let u of a)if(u instanceof $s!==o)throw new G("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let u=[e].concat(a),l=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=l;let p=super.apply(u,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return q(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),u=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:u}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=Jn(r,1));let i;return this.mergeMode==="concat"?i=Rb([s,r]):this.mergeMode==="sum"?i=ie(s,r):this.mergeMode==="ave"?i=V(.5,ie(s,r)):this.mergeMode==="mul"?i=V(s,r):this.mergeMode==null&&(i=[s,r]),this.returnState?this.mergeMode==null?i.concat(a):[i].concat(a):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){na(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),na(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=gs(t.layer);if(delete t.layer,t.numConstants!=null)throw new Fe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};Jy.className="Bidirectional";re.registerClass(Jy);function bV(e){return new Jo(e)}function yV(e){return new ry(e)}function vV(e){return new ty(e)}function xV(e){return new ny(e)}function wV(e){return new sy(e)}function kV(e){return new iy(e)}function SV(e){return new ay(e)}function IV(e){return new py(e)}function CV(e){return new qp(e)}function NV(e){return new ly(e)}function TV(e){return new jp(e)}function $V(e){return new cy(e)}function _V(e){return new dy(e)}function AV(e){return new hy(e)}function EV(e){return new fy(e)}function RV(e){return new my(e)}function DV(e){return new Sy(e)}function FV(e){return new wy(e)}function OV(e){return new Zp(e)}function PV(e){return new xy(e)}function zV(e){return new ky(e)}function MV(e){return new Iy(e)}function LV(e){return new Cy(e)}function BV(e){return new Ny(e)}function VV(e){return new $y(e)}function WV(e){return new _y(e)}function UV(e){return new Ey(e)}function GV(e){return new Fy(e)}function HV(e){return new Ry(e)}function qV(e){return new Dy(e)}function jV(e){return new Ay(e)}function KV(e){return new Oy(e)}function XV(e){return new Ly(e)}function YV(e){return new By(e)}function QV(e){return new Vy(e)}function ev(e){return new Uy(e)}function ZV(e){return ev(e)}function JV(e){return ev(e)}function tv(e){return new Hy(e)}function eW(e){return tv(e)}function tW(e){return tv(e)}function nv(e){return new jy(e)}function nW(e){return nv(e)}function sW(e){return nv(e)}function rW(e){return new Ky(e)}function aW(e){return new Yy(e)}function a0(e){return new Xy(e)}function i0(e){return new Qy(e)}function o0(e){return new Wy(e)}function u0(e){return new Gy(e)}function iW(e){return new qy(e)}function oW(e){return new by(e)}function uW(e){return new Xp(e)}function lW(e){return new yy(e)}function cW(e){return new Ql(e)}function dW(e){return new gy(e)}function pW(e){return new Kp(e)}function hW(e){return new vy(e)}function fW(e){return new Qp(e)}function mW(e){return new Er(e)}function gW(e){return new Yp(e)}function bW(e){return new Jy(e)}function yW(e){return new Zy(e)}var vW=a0,xW=i0,wW=o0,kW=u0;function SW(e){return new Py(e)}function IW(e){return new zy(e)}function CW(e){return new My(e)}function NW(e){return new Ty(e)}var TW={};Ee(TW,{MAPE:()=>MW,MSE:()=>VW,binaryAccuracy:()=>$W,binaryCrossentropy:()=>_W,categoricalAccuracy:()=>EW,categoricalCrossentropy:()=>RW,cosineProximity:()=>OW,mape:()=>LW,meanAbsoluteError:()=>PW,meanAbsolutePercentageError:()=>zW,meanSquaredError:()=>BW,mse:()=>WW,precision:()=>DW,recall:()=>FW,sparseCategoricalAccuracy:()=>AW});function $W(e,t){return Kb(e,t)}function _W(e,t){return vI(e,t)}function AW(e,t){return xI(e,t)}function EW(e,t){return Xb(e,t)}function RW(e,t){return Yb(e,t)}function DW(e,t){return yI(e,t)}function FW(e,t){return IB(e,t)}function OW(e,t){return jb(e,t)}function PW(e,t){return Gp(e,t)}function zW(e,t){return eu(e,t)}function MW(e,t){return eu(e,t)}function LW(e,t){return eu(e,t)}function BW(e,t){return yi(e,t)}function VW(e,t){return yi(e,t)}function WW(e,t){return yi(e,t)}var UW={};Ee(UW,{modelFromJSON:()=>eV});var GW={};Ee(GW,{l1:()=>qW,l1l2:()=>HW,l2:()=>jW});function HW(e){return new Kl(e)}function qW(e){return aV(e)}function jW(e){return iV(e)}var KW=class extends to{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof dr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Qc(e,t){return e<t}function Qx(e,t){return e>t}var XW=class extends KW{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Fe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Qc:this.mode==="max"?this.monitorFunc=Qx:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Qx:this.monitorFunc=Qc,this.monitorFunc===Qc&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Qc?1/0:-1/0}async onEpochEnd(e,t){await sr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function YW(e){return new XW(e)}var bhe={earlyStopping:YW},QW=K();QW.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var l0=(e=>(e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF",e))(l0||{}),Zx;(e=>{let t;(n=>{n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Zx||(Zx={}));var sv={};function yhe(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};sv[e]=n}function c0(e){return sv[e]}function vhe(e){delete sv[e]}function S(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let o=a.inputIndexStart,u=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?o+1:a.inputIndexEnd;if(a.type==="tensor")return on(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(o,u).map(d=>on(d,n,s,r));let l=on(t.inputNames.slice(o)[0],n,s,r),c=l.dataSync();return a.type==="number"?c[0]:w.toNestedArray(l.shape,c)}let i=t.attrParams[e];return i&&i.value}function on(e,t,n,s){let[r,a]=_n(e);if(s!=null){let o=s.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[zd(r,o)]);return i!==void 0?t[zd(r,i)][a]:void 0}function ZW(e,t,n){return t[zd(e,n.currentContextId)]}function Ts(e,t){let[n,s,r]=_n(e);return[zd(n,t&&t.currentContextId),s,r]}function zd(e,t){return t?`${e}-${t}`:e}function _n(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function od(e,t,n){let s=S("pad",e,t,n);if(s==="explicit"){s=S("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function Ws(e){return e.kept?e:ur(e)}var d0={};Ee(d0,{json:()=>JW});var JW=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],p0={};Ee(p0,{json:()=>e4});var e4=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],h0={};Ee(h0,{json:()=>t4});var t4=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],f0={};Ee(f0,{json:()=>n4});var n4=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],m0={};Ee(m0,{json:()=>s4});var s4=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],g0={};Ee(g0,{json:()=>r4});var r4=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],b0={};Ee(b0,{json:()=>a4});var a4=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],y0={};Ee(y0,{json:()=>i4});var i4=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],v0={};Ee(v0,{json:()=>o4});var o4=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],x0={};Ee(x0,{json:()=>u4});var u4=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],w0={};Ee(w0,{json:()=>l4});var l4=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],k0={};Ee(k0,{json:()=>c4});var c4=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],S0={};Ee(S0,{json:()=>d4});var d4=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],I0={};Ee(I0,{json:()=>p4});var p4=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],C0={};Ee(C0,{json:()=>h4});var h4=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],N0={};Ee(N0,{json:()=>f4});var f4=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],T0={};Ee(T0,{json:()=>m4});var m4=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],$0={};Ee($0,{json:()=>g4});var g4=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],_0={};Ee(_0,{json:()=>b4});var b4=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],Jx=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[d0,p0,h0,f0,m0,g0,b0,y0,v0,x0,w0,k0,S0,I0,C0,N0,T0,$0,_0],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],i=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),o=[],u=[],l={},c={};t!=null&&(l=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(f=>{let m=i[f];m.inputNames.forEach((g,b)=>{let[y,,v]=Ts(g),x=i[y];if(x.outputs!=null){let k=x.outputs.indexOf(v);if(k!==-1){let I=`${y}:${k}`;m.inputNames[b]=I}}m.inputs.push(x),x.children.push(m)})}),Object.keys(c).length===0?p.forEach(f=>{let m=i[f];m.children.length===0&&u.push(m)}):Object.keys(c).forEach(f=>{let[m]=Ts(f),g=i[m];g!=null&&(g.signatureKey=c[f],u.push(g))}),Object.keys(l).length>0?Object.keys(l).forEach(f=>{let[m]=Ts(f),g=i[m];g&&(g.signatureKey=l[f],o.push(g))}):o=s;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:i,inputs:o,outputs:u,weights:r,placeholders:s,signature:t,functions:d};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=c0(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.slice(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,i;switch(r.type){case"string":i=Om(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Om(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=Wm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Wm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=zm(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=zm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=Vm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Vm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=Pm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Pm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=Gm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Gm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=Bm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Bm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=Um(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Um(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=Mm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Mm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=Lm(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Lm(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=ew(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ew(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:i,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,p)=>(c[p.name]=this.mapNode(p),p.op==="Const"&&s.push(c[p.name]),c),{}));let a=[],i=[];e.signature.inputArg.forEach(c=>{let[p]=Ts(c.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:rv(c.type),type:"dtype"}},children:[]};d.signatureKey=c.name,a.push(d),r[p]=d}),Object.keys(r).forEach(c=>{let p=r[c];p.inputNames.forEach((d,h)=>{let[f,,m]=Ts(d),g=r[f];if(g.outputs!=null){let b=g.outputs.indexOf(m);if(b!==-1){let y=`${f}:${b}`;p.inputNames[h]=y}}p.inputs.push(g),g.children.push(p)})});let u=e.ret;e.signature.outputArg.forEach(c=>{let[p,d]=Ts(u[c.name]),h=r[p];h!=null&&(h.defaultOutput=d,i.push(h))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:i,weights:s,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function y4(e){let t=K().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function A0(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):y4(e);return t?n:n.toLowerCase()}function Om(e,t,n,s=!1){let r=e[t];return r!=null?A0(r.s,s):n}function Pm(e,t,n){let s=e[t];return s?s.b:n}function zm(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function rv(e){switch(typeof e=="string"&&(e=l0[e]),e){case 1:case 19:return"float32";case 3:case 9:case 6:case 4:return"int32";case 10:return"bool";case 2:return"float32";case 7:return"string";default:return null}}function ew(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function Mm(e,t,n){let s=e[t];return s&&s.type?rv(s.type):n}function Lm(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>rv(r)):n}function E0(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function Bm(e,t,n){let s=e[t];return s&&s.shape?E0(s.shape):n}function Vm(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function Wm(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>A0(a,s)):n}function Um(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>E0(r)):n}function Gm(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var v4=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return on(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return on(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return zm(this.node.rawAttrs,e,t);if(n.s!=null)return Om(this.node.rawAttrs,e,t);if(n.b!=null)return Pm(this.node.rawAttrs,e,t);if(n.shape!=null)return Bm(this.node.rawAttrs,e,t);if(n.type!=null)return Mm(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return Vm(this.node.rawAttrs,e,t);if(n.list.s!=null)return Wm(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Um(this.node.rawAttrs,e,t);if(n.list.b!=null)return Gm(this.node.rawAttrs,e,t);if(n.list.type!=null)return Lm(this.node.rawAttrs,e,t)}return t}},x4=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ie(S("a",e,t,n),S("b",e,t,n))];case"AddN":return[dE(S("tensors",e,t,n))];case"FloorMod":case"Mod":return[GD(S("a",e,t,n),S("b",e,t,n))];case"Mul":return[V(S("a",e,t,n),S("b",e,t,n))];case"RealDiv":case"Div":return[xe(S("a",e,t,n),S("b",e,t,n))];case"DivNoNan":return[OR(S("a",e,t,n),S("b",e,t,n))];case"FloorDiv":return[aS(S("a",e,t,n),S("b",e,t,n))];case"Sub":return[ge(S("a",e,t,n),S("b",e,t,n))];case"Minimum":return[Np(S("a",e,t,n),S("b",e,t,n))];case"Maximum":return[_r(S("a",e,t,n),S("b",e,t,n))];case"Pow":return[ha(S("a",e,t,n),S("b",e,t,n))];case"SquaredDifference":return[zS(S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},w4=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Mt(S("x",e,t,n))];case"Acos":return[oE(S("x",e,t,n))];case"Acosh":return[lE(S("x",e,t,n))];case"Asin":return[yE(S("x",e,t,n))];case"Asinh":return[xE(S("x",e,t,n))];case"Atan":return[kE(S("x",e,t,n))];case"Atan2":return[IE(S("x",e,t,n),S("y",e,t,n))];case"Atanh":return[NE(S("x",e,t,n))];case"Ceil":return[tR(S("x",e,t,n))];case"Complex":return[fr(S("real",e,t,n),S("imag",e,t,n))];case"Cos":return[nb(S("x",e,t,n))];case"Cosh":return[gS(S("x",e,t,n))];case"Elu":return[Sp(S("x",e,t,n))];case"Erf":return[VR(S("x",e,t,n))];case"Exp":return[Yn(S("x",e,t,n))];case"Expm1":return[nD(S("x",e,t,n))];case"Floor":return[Ip(S("x",e,t,n))];case"Log":return[Qn(S("x",e,t,n))];case"Log1p":return[ob(S("x",e,t,n))];case"Imag":return[wp(S("x",e,t,n))];case"Neg":return[vt(S("x",e,t,n))];case"Reciprocal":return[b3(S("x",e,t,n))];case"Real":return[Ku(S("x",e,t,n))];case"Relu":return[Xs(S("x",e,t,n))];case"Round":return[AS(S("x",e,t,n))];case"Selu":return[RS(S("x",e,t,n))];case"Sigmoid":return[qs(S("x",e,t,n))];case"Sin":return[DS(S("x",e,t,n))];case"Sign":return[D3(S("x",e,t,n))];case"Sinh":return[FS(S("x",e,t,n))];case"Softplus":return[Vl(S("x",e,t,n))];case"Sqrt":return[cn(S("x",e,t,n))];case"Square":return[ct(S("x",e,t,n))];case"Tanh":return[Yu(S("x",e,t,n))];case"Tan":return[J3(S("x",e,t,n))];case"ClipByValue":return[Vn(S("x",e,t,n),S("clipValueMin",e,t,n),S("clipValueMax",e,t,n))];case"Relu6":return[_S(S("x",e,t,n))];case"Rsqrt":return[ES(on(e.inputNames[0],t,n))];case"Prod":return[$S(S("x",e,t,n),S("axes",e,t,n))];case"LeakyRelu":return[ib(S("x",e,t,n),S("alpha",e,t,n))];case"Prelu":return[pb(S("x",e,t,n),S("alpha",e,t,n))];case"IsNan":return[pD(on(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function qn(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){w.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];w.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function tw(e){return!(typeof e=="number"||e.some(t=>t<0))}function _u(e,t,n){let s=Hm(e,n),r=!tw(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=Hm(a.shape,s)}),!tw(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function Hm(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var k4=class{constructor(e,t,n,s,r,a,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=we(0),Ht(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),qn(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Ht(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return ms([],[0].concat(this.elementShape));let n=this.readMany(e);return qn(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),es(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ms([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return qn(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Ft(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,Fs(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];q(()=>{t=U(t,[1,n,r]);for(let o=0;o<e.length;++o){let u=o===0?0:s[o-1],l=[0,u,0],c=[1,e[o],r];a[o]=U(qe(t,l,c),this.elementShape)}return a});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,a)}},no=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);qn(t,r.shape,"TensorList shape mismatch: "),Ht(r)}),this.idTensor=we(0),this.maxNumElements=s,Ht(this.idTensor)}get id(){return this.idTensor.id}copy(){return new no([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);qn(e,this.elementShape,"TensorList shape mismatch: ");let s=_u(this.elementShape,this.tensors,e);return q(()=>{let r=this.tensors.map(a=>U(a,s));return es(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=_u(this.elementShape,this.tensors,e),s=this.tensors.pop();return qn(s.shape,e,"TensorList shape mismatch: "),U(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(qn(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Ht(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new no([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);qn(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=_u(this.elementShape,this.tensors,t);return U(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);qn(this.elementShape,t.shape,"TensorList shape mismatch: "),Ht(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);qn(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=_u(this.elementShape,this.tensors,n);return e.length===0?ms([],[0].concat(s)):q(()=>{let r=e.map(a=>U(this.tensors[a],s));return es(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);qn(this.elementShape,t,"TensorList shape mismatch: ");let n=_u(this.elementShape,this.tensors,t);return this.size()===0?ms([],[0].concat(n)):q(()=>{let s=this.tensors.map(r=>U(r,n));return Ft(s,0)})}};function S4(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);qn(r,t,"TensorList shape mismatch: ");let a=Fs(e);return new no(a,t,s)}function I4(e,t,n){return new no([],e,t,n)}function C4(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new no([],n,e.dtype,s),i=Fs(e,0);return t.forEach((o,u)=>{a.setItem(o,i[u])}),a}function N4(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),i=Hm(a,n),o=s===0?0:e.size/s,u=q(()=>{let c=[];e=U(e,[1,s,o]);for(let p=0;p<t.length;++p){let d=p===0?0:r[p-1],h=[0,d,0],f=[1,t[p],o];c[p]=U(qe(e,h,f),i)}return e.dispose(),c}),l=new no([],n,e.dtype,t.length);for(let c=0;c<u.length;c++)l.setItem(c,u[c]);return l}var T4=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=S("thenBranch",e,t,n),r=S("elseBranch",e,t,n),a=S("cond",e,t,n),i=S("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=S("body",e,t,n),r=S("cond",e,t,n),a=S("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),o=a.map(c=>c.id),u=await i[0].data();i.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&c.dispose()});let l=a;for(;u[0];){let c=l;l=await n.functionMap[s].executeFunctionAsync(l,n.tensorArrayMap,n.tensorListMap);let p=l.map(h=>h.id);c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(l,n.tensorArrayMap,n.tensorListMap);u=await d[0].data(),d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return l}case"LoopCond":{let s=S("pred",e,t,n);return[Ws(s)]}case"Switch":{let s=S("pred",e,t,n),r=S("data",e,t,n);return r.kept||(r=Ws(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>on(r,t,n)!==void 0);if(s){let r=on(s,t,n);return[Ws(r)]}return}case"Enter":{let s=S("frameName",e,t,n),r=S("tensor",e,t,n);return n.enterFrame(s),[Ws(r)]}case"Exit":{let s=S("tensor",e,t,n);return n.exitFrame(),[Ws(s)]}case"NextIteration":{let s=S("tensor",e,t,n);return n.nextIteration(),[Ws(s)]}case"TensorArrayV3":{let s=S("size",e,t,n),r=S("dtype",e,t,n),a=S("elementShape",e,t,n),i=S("dynamicSize",e,t,n),o=S("clearAfterRead",e,t,n),u=S("identicalElementShapes",e,t,n),l=S("name",e,t,n),c=new k4(l,r,s,a,u,i,o);return n.addTensorArray(c),[c.idTensor,we(1)]}case"TensorArrayWriteV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),i=n.getTensorArray(s.id);return i.write(r,a),[i.idTensor]}case"TensorArrayReadV3":{let s=S("tensorArrayId",e,t,n),r=S("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),a=S("tensor",e,t,n),i=n.getTensorArray(s.id);return i.scatter(r,a),[i.idTensor]}case"TensorArrayConcatV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=S("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=S("tensorArrayId",e,t,n),r=S("tensor",e,t,n),a=S("lengths",e,t,n),i=n.getTensorArray(s.id);return i.split(a,r),[i.idTensor]}case"TensorArraySizeV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[we(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=S("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("tensor",e,t,n),i=n.getTensorList(s.id);return i.setItem(r,a),[i.idTensor]}case"TensorListGetItem":{let s=S("tensorListId",e,t,n),r=S("index",e,t,n),a=S("elementShape",e,t,n),i=S("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,i)]}case"TensorListScatterV2":case"TensorListScatter":{let s=S("indices",e,t,n),r=S("tensor",e,t,n),a=S("elementShape",e,t,n),i=S("numElements",e,t,n),o=C4(r,s,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=S("elementShape",e,t,n),r=S("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let i=S(a,e,t,n),o=I4(s,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let s=S("tensorListId",e,t,n),r=S("indices",e,t,n),a=S("elementShape",e,t,n),i=S("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,i,a)]}case"TensorListStack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),i=S("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,i)]}case"TensorListFromTensor":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n),i=S4(s,r,a);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let s=S("tensorListId",e,t,n),r=n.getTensorList(s.id),a=S("dtype",e,t,n),i=S("elementShape",e,t,n);return[r.concat(a,i)]}case"TensorListPushBack":{let s=S("tensorListId",e,t,n),r=S("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),a=S("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=S("tensor",e,t,n),r=S("elementShape",e,t,n),a=S("lengths",e,t,n),i=N4(s,a,r);return n.addTensorList(i),[i.idTensor]}case"TensorListLength":{let s=S("tensorListId",e,t,n),r=n.getTensorList(s.id);return[we(r.size(),"int32")]}case"TensorListResize":{let s=S("tensorListId",e,t,n),r=S("size",e,t,n),i=n.getTensorList(s.id).resize(r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function nw(e,t,n){let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",i=!a,o=r==="prelu",u=s==="fusedbatchnorm",l=S("numArgs",e,t,n);if(a){if(o&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&a&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(u)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=S("strides",e,t,n),p=od(e,t,n),d=S("dataFormat",e,t,n).toUpperCase(),h=S("dilations",e,t,n),[f,m]=S("args",e,t,n);i&&(m=f,f=void 0);let g=S("leakyreluAlpha",e,t,n);return{stride:c,pad:p,dataFormat:d,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var $4=(e,t,n)=>{switch(e.op){case"Conv1D":{let s=S("stride",e,t,n),r=S("pad",e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),i=S("dilation",e,t,n);return[pS(S("x",e,t,n),S("filter",e,t,n),s,r,a,i)]}case"Conv2D":{let s=S("strides",e,t,n),r=od(e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),i=S("dilations",e,t,n);return[da(S("x",e,t,n),S("filter",e,t,n),[s[1],s[2]],r,a,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:s,pad:r,dataFormat:a,dilations:i,biasArg:o,preluArg:u,activationFunc:l,leakyreluAlpha:c}=nw(e,t,n);return[fa.conv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[i[1],i[2]],bias:o,activation:l,preluActivationWeights:u,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:s,pad:r,dataFormat:a,dilations:i,biasArg:o,preluArg:u,activationFunc:l,leakyreluAlpha:c}=nw(e,t,n);return[fa.depthwiseConv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[s[1],s[2]],pad:r,dataFormat:a,dilations:[i[1],i[2]],bias:o,activation:l,preluActivationWeights:u,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let s=S("outputShape",e,t,n),r=S("strides",e,t,n),a=od(e,t,n);return[hS(S("x",e,t,n),S("filter",e,t,n),s,[r[1],r[2]],a)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let s=S("strides",e,t,n),r=od(e,t,n),a=S("dilations",e,t,n),i=S("dataFormat",e,t,n).toUpperCase();return[kp(S("input",e,t,n),S("filter",e,t,n),[s[1],s[2]],r,i,[a[1],a[2]])]}case"Conv3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("dataFormat",e,t,n).toUpperCase(),i=S("dilations",e,t,n);return[fS(S("x",e,t,n),S("filter",e,t,n),[s[1],s[2],s[3]],r,a,[i[1],i[2],i[3]])]}case"AvgPool":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[Jg(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPool":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[lb(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r)]}case"MaxPoolWithArgmax":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n),i=S("includeBatchInIndex",e,t,n),{result:o,indexes:u}=zD(S("x",e,t,n),[a[1],a[2]],[s[1],s[2]],r,i);return[o,u]}case"AvgPool3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[cS(S("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"MaxPool3D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("kernelSize",e,t,n);return[TS(S("x",e,t,n),[a[1],a[2],a[3]],[s[1],s[2],s[3]],r)]}case"Dilation2D":{let s=S("strides",e,t,n),r=S("pad",e,t,n),a=S("dilations",e,t,n),i=s[1],o=s[2],u=a[1],l=a[2];return[AR(S("x",e,t,n),S("filter",e,t,n),[i,o],r,[u,l],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},_4=(e,t,n)=>{switch(e.op){case"Fill":{let s=S("shape",e,t,n),r=S("dtype",e,t,n),a=S("value",e,t,n);return[Bl(s,a,r)]}case"LinSpace":{let s=S("start",e,t,n),r=S("stop",e,t,n),a=S("num",e,t,n);return[gD(s,r,a)]}case"Multinomial":{let s=S("logits",e,t,n),r=S("numSamples",e,t,n),a=S("seed",e,t,n);return[KD(s,r,a)]}case"OneHot":{let s=S("indices",e,t,n),r=S("depth",e,t,n),a=S("onValue",e,t,n),i=S("offValue",e,t,n);return[Id(s,r,a,i)]}case"Ones":return[Mn(S("shape",e,t,n),S("dtype",e,t,n))];case"OnesLike":return[Zn(S("x",e,t,n))];case"RandomUniform":return[Wl(S("shape",e,t,n),S("minval",e,t,n),S("maxval",e,t,n),S("dtype",e,t,n))];case"Range":{let s=S("start",e,t,n),r=S("stop",e,t,n),a=S("step",e,t,n);return[el(s,r,a,S("dtype",e,t,n))]}case"TruncatedNormal":{let s=S("shape",e,t,n),r=S("mean",e,t,n),a=S("stdDev",e,t,n),i=S("seed",e,t,n);return[xb(s,r,a,S("dtype",e,t,n),i)]}case"Zeros":return[$t(S("shape",e,t,n),S("dtype",e,t,n))];case"ZerosLike":return[je(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Jf(e,t,n){let s=S("boxes",e,t,n),r=S("scores",e,t,n),a=S("maxOutputSize",e,t,n),i=S("iouThreshold",e,t,n),o=S("scoreThreshold",e,t,n),u=S("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:i,scoreThreshold:o,softNmsSigma:u}}var A4=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:i,scoreThreshold:o,softNmsSigma:u}=Jf(e,t,n),l=await jn.nonMaxSuppressionWithScoreAsync(s,r,a,i,o,u);return[l.selectedIndices,l.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:i,scoreThreshold:o}=Jf(e,t,n),u=S("padToMaxOutputSize",e,t,n),l=await jn.nonMaxSuppressionPaddedAsync(s,r,a,i,o,u);return[l.selectedIndices,l.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:s,scores:r,maxOutputSize:a,iouThreshold:i,scoreThreshold:o}=Jf(e,t,n);return[await jn.nonMaxSuppressionAsync(s,r,a,i,o)]}case"Where":{let s=le(S("condition",e,t,n),"bool"),r=[await LS(s)];return s.dispose(),r}case"ListDiff":return E3(S("x",e,t,n),S("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},E4=(e,t,n)=>{switch(e.op){case"LowerBound":{let s=S("sortedSequence",e,t,n),r=S("values",e,t,n);return[DD(s,r)]}case"TopKV2":{let s=S("x",e,t,n),r=S("k",e,t,n),a=S("sorted",e,t,n),i=tF(s,r,a);return[i.values,i.indices]}case"UpperBound":{let s=S("sortedSequence",e,t,n),r=S("values",e,t,n);return[oF(s,r)]}case"Unique":{let s=S("x",e,t,n),r=wx(s);return[r.values,r.indices]}case"UniqueV2":{let s=S("x",e,t,n),r=S("axis",e,t,n),a=wx(s,r);return[a.values,a.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},R4=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let s=S("default",e,t,n);return[on(e.name,t,n)||s];case"Placeholder":return[on(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let l=S("x",e,t,n);return[Ws(l)]}case"IdentityN":return S("x",e,t,n).map(l=>Ws(l));case"Snapshot":let r=S("x",e,t,n);return[Ws(r)];case"Shape":return[Qt(S("x",e,t,n).shape,"int32")];case"ShapeN":return S("x",e,t,n).map(l=>Qt(l.shape));case"Size":return[we(S("x",e,t,n).size,"int32")];case"Rank":return[we(S("x",e,t,n).rank,"int32")];case"NoOp":return[we(1)];case"Print":let a=S("x",e,t,n),i=S("data",e,t,n),o=S("message",e,t,n),u=S("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let l=0;l<i.length;l++)console.log(Array.prototype.slice.call(i[l].dataSync()).slice(0,u));return[a];default:throw TypeError(`Node type ${e.op} is not implemented`)}},D4=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=we(0),this.tensorMap=new Map,Ht(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return we(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),q(()=>{let s=Fs(t),r=n.length,a=s.length;w.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let i=0;i<r;i++){let o=n[i],u=s[i];Ht(u),this.tensorMap.set(o,u)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return q(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],i=this.findWithDefault(a,t);s.push(i)}return es(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},F4=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=S("keyDType",e,t,n),a=S("valueDType",e,t,n),i=new D4(r,a);return s.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),i=S("values",e,t,n);return[await s.getHashTableById(r.id).import(a,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=S("tableHandle",e,t,n,s),a=S("keys",e,t,n),i=S("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=S("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},O4=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let s=S("images",e,t,n),r=S("size",e,t,n),a=S("alignCorners",e,t,n),i=S("halfPixelCenters",e,t,n);return[jn.resizeBilinear(s,[r[0],r[1]],a,i)]}case"ResizeNearestNeighbor":{let s=S("images",e,t,n),r=S("size",e,t,n),a=S("alignCorners",e,t,n),i=S("halfPixelCenters",e,t,n);return[jn.resizeNearestNeighbor(s,[r[0],r[1]],a,i)]}case"CropAndResize":{let s=S("image",e,t,n),r=S("boxes",e,t,n),a=S("boxInd",e,t,n),i=S("cropSize",e,t,n),o=S("method",e,t,n),u=S("extrapolationValue",e,t,n);return[jn.cropAndResize(s,r,a,i,o,u)]}case"ImageProjectiveTransformV3":{let s=S("images",e,t,n),r=S("transforms",e,t,n),a=S("outputShape",e,t,n),i=S("fillValue",e,t,n),o=S("interpolation",e,t,n),u=S("fillMode",e,t,n);return[jn.transform(s,r,o.toLowerCase(),u.toLowerCase(),i,a)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},P4=(e,t,n)=>{switch(e.op){case"Equal":return[Xn(S("a",e,t,n),S("b",e,t,n))];case"NotEqual":return[Ju(S("a",e,t,n),S("b",e,t,n))];case"Greater":return[Un(S("a",e,t,n),S("b",e,t,n))];case"GreaterEqual":return[Yo(S("a",e,t,n),S("b",e,t,n))];case"Less":return[SS(S("a",e,t,n),S("b",e,t,n))];case"LessEqual":return[Qo(S("a",e,t,n),S("b",e,t,n))];case"LogicalAnd":return[Ds(S("a",e,t,n),S("b",e,t,n))];case"LogicalNot":return[ub(S("a",e,t,n))];case"LogicalOr":return[CS(S("a",e,t,n),S("b",e,t,n))];case"Select":case"SelectV2":return[vn(S("condition",e,t,n),S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},z4=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[We(S("a",e,t,n),S("b",e,t,n),S("transposeA",e,t,n),S("transposeB",e,t,n))];case"Einsum":return[MR(S("equation",e,t,n),...S("tensors",e,t,n))];case"Transpose":return[Ge(S("x",e,t,n),S("perm",e,t,n))];case"_FusedMatMul":let[s,r]=S("fusedOps",e,t,n),a=s==="biasadd",i=r==="prelu",o=S("numArgs",e,t,n),u=S("leakyreluAlpha",e,t,n);if(a){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[l,c]=S("args",e,t,n);return[fa.matMul({a:S("a",e,t,n),b:S("b",e,t,n),transposeA:S("transposeA",e,t,n),transposeB:S("transposeB",e,t,n),bias:l,activation:r,preluActivationWeights:c,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},M4=(e,t,n)=>{switch(e.op){case"EuclideanNorm":return[ZR(S("x",e,t,n),S("axis",e,t,n),S("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[Qu(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"FusedBatchNormV3":return[Qu(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"LRN":return[yD(S("x",e,t,n),S("radius",e,t,n),S("bias",e,t,n),S("alpha",e,t,n),S("beta",e,t,n))];case"Softmax":return[bb(S("x",e,t,n))];case"LogSoftmax":return[IS(S("x",e,t,n))];case"SparseToDense":return[BS(S("sparseIndices",e,t,n),S("outputShape",e,t,n),S("sparseValues",e,t,n),S("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},L4=(e,t,n)=>{switch(e.op){case"Max":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[As(S("x",e,t,n),i,o)]}case"Mean":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[It(S("x",e,t,n),i,o)]}case"Min":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[Sm(S("x",e,t,n),i,o)]}case"Sum":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[ve(S("x",e,t,n),i,o)]}case"All":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[iS(S("x",e,t,n),i,o)]}case"Any":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[xm(S("x",e,t,n),i,o)]}case"ArgMax":{let i=S("axis",e,t,n);return[Xu(S("x",e,t,n),i)]}case"ArgMin":{let i=S("axis",e,t,n);return[gE(S("x",e,t,n),i)]}case"Prod":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[$S(S("x",e,t,n),i,o)]}case"Cumprod":{let i=S("axis",e,t,n),o=S("exclusive",e,t,n),u=S("reverse",e,t,n);return[km(S("x",e,t,n),i,o,u)]}case"Cumsum":{let i=S("axis",e,t,n),o=S("exclusive",e,t,n),u=S("reverse",e,t,n);return[bS(S("x",e,t,n),i,o,u)]}case"Bincount":let s=S("x",e,t,n),r=S("weights",e,t,n),a=S("size",e,t,n);return[dS(s,r,a)];case"DenseBincount":{let i=S("x",e,t,n),o=S("weights",e,t,n),u=S("size",e,t,n),l=S("binaryOutput",e,t,n);return[IR(i,o,u,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},B4=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let s=S("n",e,t,n),r=S("axis",e,t,n),a=S("tensors",e,t,n);return a=a.slice(0,s),[Ft(a,r)]}case"Gather":{let s=S("x",e,t,n),r=S("indices",e,t,n);return[Zu(s,le(r,"int32"),0)]}case"GatherV2":{let s=S("axis",e,t,n),r=S("batchDims",e,t,n),a=S("x",e,t,n),i=S("indices",e,t,n);return[Zu(a,le(i,"int32"),s,r)]}case"Reverse":{let s=S("dims",e,t,n),r=[];for(let i=0;i<s.length;i++)s[i]&&r.push(i);let a=S("x",e,t,n);return[Jn(a,r)]}case"ReverseV2":{let s=S("axis",e,t,n),r=S("x",e,t,n);return[Jn(r,s)]}case"Slice":{let s=S("begin",e,t,n),r=S("size",e,t,n);return[qe(S("x",e,t,n),s,r)]}case"StridedSlice":{let s=S("begin",e,t,n),r=S("end",e,t,n),a=S("strides",e,t,n),i=S("beginMask",e,t,n),o=S("endMask",e,t,n),u=S("ellipsisMask",e,t,n),l=S("newAxisMask",e,t,n),c=S("shrinkAxisMask",e,t,n),p=S("x",e,t,n);return[Q3(p,s,r,a,i,o,u,l,c)]}case"Pack":return q(()=>{let s=S("axis",e,t,n),r=S("tensors",e,t,n),a=r[0].shape,i=gr(r[0]).shape,o=r.map(u=>{let l=w.arraysEqual(u.shape,a);if(!l&&!w.arraysEqual(gr(u).shape,i))throw new Error("the input tensors shape does not match");return l?u:U(u,a)});return[es(o,s)]});case"Unpack":{let s=S("axis",e,t,n),r=S("tensor",e,t,n);return Fs(r,s)}case"Tile":{let s=S("reps",e,t,n);return[hs(S("x",e,t,n),s)]}case"Split":case"SplitV":{let s=S("axis",e,t,n),r=S("numOrSizeSplits",e,t,n),a=S("x",e,t,n);return Bn(a,r,s)}case"ScatterNd":{let s=S("indices",e,t,n),r=S("values",e,t,n),a=S("shape",e,t,n);return[hF(s,r,a)]}case"GatherNd":{let s=S("x",e,t,n),r=S("indices",e,t,n);return[bF(s,r)]}case"SparseToDense":{let s=S("sparseIndices",e,t,n),r=S("outputShape",e,t,n),a=S("sparseValues",e,t,n),i=S("defaultValue",e,t,n);return[BS(s,a,r,a.dtype===i.dtype?i:le(i,a.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},V4=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:s,outputValues:r,emptyRowIndicator:a,reverseIndexMap:i}=qc.sparseFillEmptyRows(S("indices",e,t,n),S("values",e,t,n),S("denseShape",e,t,n),S("defaultValue",e,t,n));return[s,r,a,i]}case"SparseReshape":{let{outputIndices:s,outputShape:r}=qc.sparseReshape(S("inputIndices",e,t,n),S("inputShape",e,t,n),S("newShape",e,t,n));return[s,r]}case"SparseSegmentMean":return[qc.sparseSegmentMean(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];case"SparseSegmentSum":return[qc.sparseSegmentSum(S("data",e,t,n),S("indices",e,t,n),S("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},W4=(e,t,n)=>{switch(e.op){case"FFT":return[yb(S("x",e,t,n))];case"IFFT":return[Td(S("x",e,t,n))];case"RFFT":return[vb(S("x",e,t,n))];case"IRFFT":return[PS(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},U4=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:s,nGramsSplits:r}=jf.stringNGrams(S("data",e,t,n),S("dataSplits",e,t,n),S("separator",e,t,n),S("nGramWidths",e,t,n),S("leftPad",e,t,n),S("rightPad",e,t,n),S("padWidth",e,t,n),S("preserveShortSequences",e,t,n));return[s,r]}case"StringSplit":{let{indices:s,values:r,shape:a}=jf.stringSplit(S("input",e,t,n),S("delimiter",e,t,n),S("skipEmpty",e,t,n));return[s,r,a]}case"StringToHashBucketFast":return[jf.stringToHashBucketFast(S("input",e,t,n),S("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},G4=(e,t,n)=>{switch(e.op){case"Cast":return[le(S("x",e,t,n),S("dtype",e,t,n))];case"ExpandDims":{let s=S("axis",e,t,n);return[Pn(S("x",e,t,n),s)]}case"Squeeze":{let s=S("axis",e,t,n);return[gr(S("x",e,t,n),s)]}case"Reshape":return[U(S("x",e,t,n),S("shape",e,t,n))];case"MirrorPad":return[WD(S("x",e,t,n),S("padding",e,t,n),S("mode",e,t,n))];case"PadV2":case"Pad":return[gi(S("x",e,t,n),S("padding",e,t,n),S("constantValue",e,t,n))];case"SpaceToBatchND":{let s=S("blockShape",e,t,n),r=S("paddings",e,t,n);return[db(S("x",e,t,n),s,r)]}case"BatchToSpaceND":{let s=S("blockShape",e,t,n),r=S("crops",e,t,n);return[eb(S("x",e,t,n),s,r)]}case"DepthToSpace":{let s=S("blockSize",e,t,n),r=S("dataFormat",e,t,n).toUpperCase();return[NR(S("x",e,t,n),s,r)]}case"BroadcastTo":return[id(S("x",e,t,n),S("shape",e,t,n))];case"BroadcastArgs":return[ZE(S("s0",e,t,n),S("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function sw(e,t,n,s){let r=((a,i,o)=>{switch(a.category){case"arithmetic":return q(()=>x4(a,i,o));case"basic_math":return q(()=>w4(a,i,o));case"control":return T4(a,i,o);case"convolution":return q(()=>$4(a,i,o));case"creation":return q(()=>_4(a,i,o));case"dynamic":return A4(a,i,o);case"evaluation":return q(()=>E4(a,i,o));case"image":return q(()=>O4(a,i,o));case"graph":return q(()=>R4(a,i,o));case"logical":return q(()=>P4(a,i,o));case"matrices":return q(()=>z4(a,i,o));case"normalization":return q(()=>M4(a,i,o));case"reduction":return q(()=>L4(a,i,o));case"slice_join":return q(()=>B4(a,i,o));case"sparse":return q(()=>V4(a,i,o));case"spectral":return q(()=>W4(a,i,o));case"string":return q(()=>U4(a,i,o));case"transformation":return q(()=>G4(a,i,o));case"hash_table":return F4(a,i,o,s);case"custom":let u=c0(a.op);if(u&&u.customExecutor)return u.customExecutor(new v4(a,i,o));throw TypeError(`Custom op ${a.op} is not registered.`);default:throw TypeError(`Unknown op '${a.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return w.isPromise(r)?r.then(a=>[].concat(a)):[].concat(r)}var rw=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function aw(e,t,n,s){let r=new Set,a=[],i=null,o=null,u=new Set,l=Object.keys(e).map(d=>_n(d)[0]),c=[];s!=null&&(c=s.map(d=>_n(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((R0(d)||X4(d)||Y4(d))&&i==null&&(i=d,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&l.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){a.push(d.name);continue}d.inputs.forEach(h=>{u.has(h.name)||(u.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:i,syncInputs:o}}function H4(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],i=Object.keys(r).map(c=>_n(c)[0]).map(c=>e.nodes[c]),o=e.initNodes;i.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),o!=null&&o.forEach(c=>{s.has(c.name)&&a.push(c)});let u=new Set,l=[];for(;a.length>0;){let c=a.pop();u.add(c.name),t[c.name]||l.push(c),c.children.forEach(p=>{!u.has(p.name)&&s.has(p.name)&&p.inputs.every(d=>u.has(d.name))&&a.push(p)})}return l}var q4=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],j4=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],K4=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function R0(e){return q4.indexOf(e.op)>=0}function X4(e){return j4.indexOf(e.op)>=0}function Y4(e){return K4.indexOf(e.op)>=0}var qm=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new qm(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=aw(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let i=t.map(u=>u.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${s}]`)}return H4(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[_n(c)[0]]),r=t.map(c=>_n(c)[0]),a=r.map(c=>this.graph.nodes[c]);this.resetIntermediateTensors(),a.length===0&&(a=this._outputs);let i=this.getCompilationKey(s,a),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,a),this.compiledMap.set(i,o));let u={},l={};return q(()=>{let c=new rw(this.weightMap,u,l,this.functionExecutorMap),p={...this.weightMap};Object.keys(e).forEach(f=>{let[m,g]=_n(f),b=[];b[g]=e[f],p[m]=b});let d=this.getFrozenTensorIds(p),h={};for(let f=0;f<o.length;f++){let m=o[f];if(!p[m.name]){let g=sw(m,p,c,this._resourceManager);if(w.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);p[m.name]=g,this.checkTensorForDisposal(m.name,m,p,c,d,r,h)}}return this.parent==null&&c.dispose(d),t.map(f=>on(f,p,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,i){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let u=ZW(o.name,n,s);u!=null&&u.forEach(l=>{if(l&&!l.kept&&!r.has(l.id)){let c=i[l.id];if(c===1){if(!this.keepTensorForDebug)l.dispose();else{let[p,d]=Ts(t.name,s);this.intermediateTensors[p]?this.intermediateTensors[p][d]=l:(this.intermediateTensors[p]=[],this.intermediateTensors[p][d]=l)}delete i[l.id]}else c!=null&&i[l.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=K().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(l){console.warn(l.message)}this.resetIntermediateTensors();let a=new rw(this.weightMap,s,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,a,t,n);let i=t.map(l=>on(l,this.tensorsMap,a)),o=i.map(l=>l.id),u=Object.keys(e).map(l=>e[l].id);return this.keepIds=new Set([...o,...u,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&a.dispose(this.keepIds),i}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,i)=>(r[this.inputs[i].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(y=>this.graph.nodes[_n(y)[0]]),i=n.map(y=>_n(y)[0]),o=i.map(y=>this.graph.nodes[y]);o.length===0&&(o=this._outputs);let{usedNodes:u,missingInputs:l,dynamicNode:c,syncInputs:p}=aw(e,o,this.weightMap,this._initNodes),d=[...a,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),h={...this.weightMap};Object.keys(e).forEach(y=>{let[v,x]=_n(y),k=[];k[x]=e[y],h[v]=k});let f={},m=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let y=this.processStack(a,d,t,h,g,m,i,f,u);await Promise.all(y)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let b=o.filter(y=>!R0(y)&&!on(y.name,h,t)).map(y=>y.name);if(b.length>0){let y="";throw c!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${b}] from the provided inputs [${r}]. Consider providing the following inputs: [${l}]. ${y}`)}return h}processStack(e,t,n,s,r,a,i,o,u){let l=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let p="";if(c.node.op==="Enter"&&S("isConstant",c.node,s,n)&&([p]=Ts(c.node.name,n)),s[c.node.name]==null){let d=sw(c.node,s,n,this._resourceManager);p||([p]=Ts(c.node.name,n));let h=n.currentContext;w.isPromise(d)?l.push(d.then(f=>(s[p]=f,n.currentContext=h,this.checkTensorForDisposal(p,c.node,s,n,a,i,o),this.processChildNodes(c.node,t,n,s,r,u),f))):(s[p]=d,this.checkTensorForDisposal(p,c.node,s,n,a,i,o),this.processChildNodes(c.node,t,n,s,r,u))}else this.processChildNodes(c.node,t,n,s,r,u)}return l}processChildNodes(e,t,n,s,r,a){e.children.forEach(i=>{let[o]=Ts(i.name,n);r[o]||!a.has(i.name)||(i.op==="Merge"?i.inputNames.some(u=>!!on(u,s,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(u=>!!on(u,s,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=_n(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,i=a.length===n.shape.length&&n.shape.every((o,u)=>a[u]===-1||a[u]===o);w.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&w.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=_n(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=_n(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Q4=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Z4="?tfjs-format=file",J4="model.json",D0=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Q4}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=An.browserHTTPRequest(e,this.loadOptions);else{let t=An.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(An.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return w.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=An.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new qm(Jx.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Jx.Instance.transformGraph(e.modelInitializer);this.initializer=new qm(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=An.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof et)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function xhe(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=eU(e));let n=new D0(e,t);return await n.load(),n}function whe(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model");if(!e.load)throw new Error(`modelUrl IO Handler ${e} has no load function`);let t=new D0(e);return t.load(),t}function eU(e){return e.endsWith("/")||(e=e+"/"),`${e}${J4}${Z4}`}var khe="0.0.0",tU={};Ee(tU,{CSVDataset:()=>H0,Dataset:()=>tu,FileDataSource:()=>Z0,TextLineDataset:()=>G0,URLDataSource:()=>J0,array:()=>IU,csv:()=>OU,func:()=>PU,generator:()=>zU,microphone:()=>LU,version_data:()=>BU,webcam:()=>MU,zip:()=>CU});var nU=wa(Yd()),sU=wa(Yd());function rU(e,t){return Md(e,t)}function Md(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(so(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let i in e){let o=e[i],u=Md(o,t,n,s);a[i]=u}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function aU(e,t=O0){return F0(e,t)}function F0(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(so(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let i in s){let o=e.map(l=>l[i]),u=F0(o,t,n);a[i]=u}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function O0(e){return e===null?null:so(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function P0(e,t){let n=new Map;Md(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(w.isPromise(a)){let i=await a;n.set(r,i)}}return Md(e,t,n)}function so(e){let t=!1;if(K().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=ek();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof et)&&!(e instanceof Promise)&&!t)}function iU(e){return e==null||oU(e)||Array.isArray(e)||typeof e=="object"&&e instanceof et||w.isTypedArray(e)}function oU(e){return e===null||typeof e!="object"&&typeof e!="function"}function uU(e){return rU(e,lU)}function lU(e){return e instanceof et?{value:e.clone(),recurse:!1}:so(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var z0=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},M0=class extends z0{constructor(){super(M0.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}},L0=M0;L0.INITIAL_CAPACITY=32;function B0(e){return new pU(e)}function av(e){return new hU(e)}function cU(e,t){return new V0(e,t)}function dU(e,t=W0.FAIL){return new kU(e,t)}var Ut=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new xU(this,e)}filter(e){return new yU(this,e)}map(e){return new vU(this,e)}mapAsync(e){return new iw(this,e)}serialMapAsync(e){return new iw(this,e).serial()}flatmap(e){return new wU(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new bU(this,e,t)}columnMajorBatch(e,t=!0,n=O0){return this.rowMajorBatch(e,t).map(r=>aU(r,n))}concatenate(e,t){return new V0(B0([this,e]),t)}take(e){return e<0||e==null?this:new gU(this,e)}skip(e){return e<0||e==null?this:new mU(this,e)}prefetch(e){return new U0(this,e)}shuffle(e,t){return new SU(this,e,t)}serial(){return new fU(this)}},pU=class extends Ut{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:uU(e),done:!1}}},hU=class extends Ut{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},fU=class extends Ut{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},mU=class extends Ut{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;De(e.value)}return this.upstream.next()}},gU=class extends Ut{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},bU=class extends Ut{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},yU=class extends Ut{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;De(e.value)}}},vU=class extends Ut{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=_s.getTensorsInContainer(e.value),n=this.transform(e.value),s=_s.getTensorsInContainer(n);for(let r of t)_s.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},xU=class extends Ut{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},iw=class extends Ut{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=_s.getTensorsInContainer(e.value),n=await this.transform(e.value),s=_s.getTensorsInContainer(n);for(let r of t)_s.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},iv=class extends Ut{constructor(){super(),this.outputQueue=new L0,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},wU=class extends iv{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=_s.getTensorsInContainer(e.value),n=this.transform(e.value),s=_s.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)_s.isTensorInList(r,s)||r.dispose();return!0}},V0=class extends Ut{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},W0=(e=>(e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST",e))(W0||{}),kU=class extends Ut{constructor(e,t=0){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof Ut?{value:a.next().then(o=>(t++,o.done&&n++,o.value)),recurse:!1}:{value:null,recurse:!0}}let r=await P0(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case 0:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case 1:return{value:null,done:!0};case 2:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},U0=class extends Ut{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new z0(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},SU=class extends U0{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=sU.alea(n||w.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},tu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;w.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),$n(async()=>(await n.iterator()).columnMajorBatch(e,t,NU),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,$n(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,$n(async()=>(await t.iterator()).filter(s=>q(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return $n(async()=>(await t.iterator()).map(n=>q(()=>e(n))),this.size)}mapAsync(e){let t=this;return $n(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return $n(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,$n(async()=>{let s=av(async()=>({value:await t.iterator(),done:!1}));return cU(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,$n(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=nU.alea(t||w.now().toString());return $n(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,$n(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};tu.MAX_BUFFER_SIZE=1e4;function $n(e,t=null){return new class extends tu{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function IU(e){return $n(async()=>B0(e),e.length)}function CU(e){if(!so(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return $n(async()=>{let n=await P0(e,s=>{if(s instanceof tu)return{value:s.iterator(),recurse:!1};if(so(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return dU(n,1)},t)}function NU(e){if(e===null)return null;let t=e[0];return iU(t)?{value:TU(e),recurse:!1}:{value:null,recurse:!0}}function TU(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof et?es(e):ms(e)}var G0=class extends tu{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},Zc='"',Au=Symbol("out"),ow=Symbol("field"),Jc=Symbol("quote"),em=Symbol("quoteafterquote"),uw=Symbol("quoteinquote"),H0=class extends tu{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new G0(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(w.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&w.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(w.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],u=null;if(o==="")if(i&&i.default!==void 0)u=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);u=void 0}else{let l=Number(o);if(isNaN(l))i&&i.dtype==="bool"?u=this.getBoolean(o):u=o;else if(!i||!i.dtype)u=l;else switch(i.dtype){case"float32":u=l;break;case"int32":u=Math.floor(l);break;case"bool":u=this.getBoolean(o);break;default:u=l}}i&&i.isLabel?s[a]=u:n[a]=u}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=Au;for(let i=0;i<r;i++)switch(a){case Au:switch(e.charAt(i)){case Zc:s=i+1,a=Jc;break;case this.delimiter:if(s=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=Au;break;default:a=ow,s=i;break}break;case ow:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(s,i)),a=Au,s=i+1;break;default:}break;case Jc:switch(e.charAt(i)){case Zc:a=em;break;default:}break;case em:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(s,i-1)),a=Au,s=i+1;break;case Zc:a=Jc;break;default:a=uw;break}break;case uw:switch(e.charAt(i)){case Zc:a=Jc;break;default:}break;default:}if(a===em?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},q0=class extends Ut{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!K().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new q0(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(w.sizeFromShape(t));return n.set(e,n.length-e.length),ms(n,t)}},j0=class extends Ut{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Qt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,i=r+n,o=s+a;this.cropBox=Yi([a,r,o,i],[1,4])}else this.cropBox=Yi([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!K().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new j0(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&w.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Vk.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return q(()=>{let t=Pn(le(e,"float32"),0),n;n=jn.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return U(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},K0=class{},X0=class extends Ut{split(e){return new $U(this,e)}},$U=class extends X0{constructor(e,t){super(),this.upstream=e,this.impl=new _U(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},_U=class extends iv{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},AU=class extends Ut{decodeUTF8(){return new EU(this)}},EU=class extends X0{constructor(e){super(),this.upstream=e,this.impl=new RU(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},RU=class extends iv{constructor(e){if(super(),this.upstream=e,K().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=ek();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return K().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},Y0=class extends AU{constructor(e,t={}){super(),this.file=e,this.options=t,w.assert(e instanceof Uint8Array||(K().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=i=>{let o=r.result;if(o instanceof ArrayBuffer&&(o=new Uint8Array(o)),!(o instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(o)},r.onabort=i=>n(new Error("Aborted")),r.onerror=i=>n(new Error(i.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function DU(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=FU(e));let a=await(n||w.fetch)(s,r);if(a.ok){let i=new Uint8Array(await a.arrayBuffer());return new Y0(i,t)}else throw new Error(a.statusText)}var FU=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function Q0(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var Z0=class extends K0{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(Q0(this.input)&&K().get("IS_NODE")){let e=lg();this.input=e.readFileSync(this.input.slice(7))}return new Y0(this.input,this.options)}},J0=class extends K0{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return Q0(this.url)?new Z0(this.url,this.fileOptions).iterator():DU(this.url,this.fileOptions)}};function OU(e,t={}){return new H0(new J0(e),t)}function PU(e){let t=av(e);return $n(async()=>t)}function zU(e){return $n(async()=>{let t=await e();return av(()=>t.next())})}async function MU(e,t){return j0.create(e,t)}async function LU(e){return q0.create(e)}var BU="0.0.0";function be(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var VU=ws.whereImpl,eC=class extends ol{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Qd(this,ds())}nextDataId(){return eC.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,K().get("IS_NODE")&&C.warn(`
|
|
============================
|
|
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>w.decodeString(s));return Ae(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ae(e.shape,e.dtype,t)}makeOutput(e,t,n){return ds().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){be([e],"where");let t=this.readSync(e.dataId);return VU(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}},tC=eC;tC.nextDataId=0;var ov={};Ee(ov,{addImpl:()=>sC,bincountImpl:()=>lv,bincountReduceImpl:()=>rC,ceilImpl:()=>aC,concatImpl:()=>cv,equalImpl:()=>iC,expImpl:()=>uC,expm1Impl:()=>cC,floorImpl:()=>dC,gatherNdImpl:()=>pC,gatherV2Impl:()=>hC,greaterEqualImpl:()=>mC,greaterImpl:()=>fC,lessEqualImpl:()=>bC,lessImpl:()=>gC,linSpaceImpl:()=>yC,logImpl:()=>vC,maxImpl:()=>xC,maximumImpl:()=>wC,minimumImpl:()=>kC,multiplyImpl:()=>dv,negImpl:()=>SC,notEqualImpl:()=>IC,prodImpl:()=>CC,rangeImpl:()=>hv,rsqrtImpl:()=>NC,scatterImpl:()=>qi,sigmoidImpl:()=>_G,simpleAbsImpl:()=>nC,sliceImpl:()=>Bd,sparseFillEmptyRowsImpl:()=>$C,sparseReshapeImpl:()=>_C,sparseSegmentReductionImpl:()=>fv,sqrtImpl:()=>RG,squaredDifferenceImpl:()=>AC,stridedSliceImpl:()=>EC,stringNGramsImpl:()=>RC,stringSplitImpl:()=>DC,stringToHashBucketFastImpl:()=>FC,subImpl:()=>OC,tileImpl:()=>PC,topKImpl:()=>MC,transposeImpl:()=>pv,uniqueImpl:()=>LC});function nC(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var WU=e=>{let{x:t}=e.inputs,n=e.backend;be(t,"abs");let s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=nC(r),n.makeOutput(s,t.shape,t.dtype)},UU={kernelName:lo,backendName:"cpu",kernelFunc:WU};function At(e){return(t,n,s,r,a)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,u=w.computeStrides(i),l=w.sizeFromShape(i),c=w.getTypedArrayFromDType(a,l),p=t.length,d=n.length,h=w.computeStrides(t),f=w.computeStrides(n),m=C.getBroadcastDims(t,i),g=C.getBroadcastDims(n,i);if(m.length+g.length===0)for(let b=0;b<c.length;++b)c[b]=e(s[b%s.length],r[b%r.length]);else for(let b=0;b<c.length;++b){let y=w.indexToLoc(b,o,u),v=y.slice(-p);m.forEach($=>v[$]=0);let x=w.locToIndex(v,p,h),k=y.slice(-d);g.forEach($=>k[$]=0);let I=w.locToIndex(k,d,f);c[b]=e(s[x],r[I])}return[c,i]}}function En(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(s.shape,"complex64"),u=n.data.get(o.dataId);return u.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var GU={kernelName:tp,backendName:"cpu",kernelFunc:En};function Ld(e,t,n="float32"){if(n==="complex64"){let r=Ld(e,t,"float32"),a=Ld(e,t,"float32");return En({inputs:{real:r,imag:a},backend:e})}let s=w.makeZerosTypedArray(w.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function Os(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var HU={kernelName:Wa,backendName:"cpu",kernelFunc:Os};function ga(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var qU={kernelName:cp,backendName:"cpu",kernelFunc:ga};function wr(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Os({inputs:{x:r},backend:n});let i=Ld(n,r.shape,r.dtype),o=wr({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),u=En({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}if(r.dtype==="complex64"){let i=ga({inputs:{input:r},backend:n}),o=wr({inputs:{x:i},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,a)){let i=Os({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:a}}if(a==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(a==="bool"){let i=n.data.get(r.dataId).values,o=w.toTypedArray([0],r.dtype),[u,l]=At((c,p)=>c!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(l,"bool",u)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var jU={kernelName:Ta,backendName:"cpu",kernelFunc:wr};function Gt(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:i,b:o}=r,u=a;be([i,o],e);let l=u.data.get(i.dataId).values,c=u.data.get(o.dataId).values,p=i.dtype==="string"?C.fromUint8ToStringArray(l):l,d=i.dtype==="string"?C.fromUint8ToStringArray(c):c,h=s||i.dtype,[f,m]=t(i.shape,o.shape,p,d,h);return u.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:i,b:o}=r,u=a;if(i.dtype==="complex64"||o.dtype==="complex64"){let l=wr({inputs:{x:i},backend:u,attrs:{dtype:"complex64"}}),c=u.data.get(l.dataId),p=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,h=u.data.get(p.dataId).values,f=u.data.get(d.dataId).values,m=wr({inputs:{x:o},backend:u,attrs:{dtype:"complex64"}}),g=u.data.get(m.dataId),b=g.complexTensorInfos.real,y=g.complexTensorInfos.imag,v=u.data.get(b.dataId).values,x=u.data.get(y.dataId).values,[k,I,$]=n(i.shape,o.shape,h,f,v,x),R=u.makeTensorInfo($,"float32",k),E=u.makeTensorInfo($,"float32",I),P=En({inputs:{real:R,imag:E},backend:u});return u.disposeIntermediateTensorInfo(l),u.disposeIntermediateTensorInfo(m),u.disposeIntermediateTensorInfo(R),u.disposeIntermediateTensorInfo(E),P}else{let l=u.data.get(i.dataId).values,c=u.data.get(o.dataId).values,p=s||i.dtype,[d,h]=t(i.shape,o.shape,l,c,p);return u.makeTensorInfo(h,p,d)}}}function uv(e){return(t,n,s,r,a,i)=>{let o=C.assertAndGetBroadcastShape(t,n),u=w.sizeFromShape(o),l=o.length,c=w.computeStrides(o),p=w.getTypedArrayFromDType("float32",u),d=w.getTypedArrayFromDType("float32",u),h=C.getBroadcastDims(t,o),f=C.getBroadcastDims(n,o),m=C.mergeRealAndImagArrays(s,r),g=C.mergeRealAndImagArrays(a,i),b=t.length,y=w.computeStrides(t),v=n.length,x=w.computeStrides(n);if(h.length+f.length===0)for(let k=0;k<p.length;k++){let I=k%m.length,$=k%g.length,R=e(m[I*2],m[I*2+1],g[$*2],g[$*2+1]);p[k]=R.real,d[k]=R.imag}else for(let k=0;k<p.length;k++){let I=w.indexToLoc(k,l,c),$=I.slice(-b);h.forEach(O=>$[O]=0);let R=w.locToIndex($,b,y),E=I.slice(-v);f.forEach(O=>E[O]=0);let P=w.locToIndex(E,v,x),A=e(m[R*2],m[R*2+1],g[P*2],g[P*2+1]);p[k]=A.real,d[k]=A.imag}return[p,d,o]}}var sC=At((e,t)=>e+t),KU=uv((e,t,n,s)=>({real:e+n,imag:t+s})),ro=Gt(Ir,sC,KU),XU={kernelName:Ir,backendName:"cpu",kernelFunc:ro};function lv(e,t,n,s,r){let a=w.sizeFromShape(s),i=w.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let u=e[o];if(u<0)throw new Error("Input x must be non-negative!");u>=r||(a>0?i[u]+=t[o]:i[u]+=1)}return i}function rC(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],i=Ae([r,n],t.dtype);for(let o=0;o<r;o++)for(let u=0;u<a;u++){let l=e.get(o,u);if(l<0)throw new Error("Input x must be non-negative!");l>=n||(s?i.set(1,o,l):t.size>0?i.set(i.get(o,l)+t.get(o,u),o,l):i.set(i.get(o,l)+1,o,l))}return i}function Rr(e){return(t,n,s)=>{let r=w.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function st(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:i}=s;if(be(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=a,u=o.data.get(i.dataId).values,l=w.sizeFromShape(i.shape),c=n||i.dtype,p=w.getArrayFromDType(c,l);for(let d=0;d<l;++d)p[d]=t(u[d],r);return o.makeTensorInfo(i.shape,c,p)}}function nu(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:i}=s;if(be(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=a,u=o.data.get(i.dataId).values,l=n||i.dtype,c=t(u,l,r);return o.makeTensorInfo(i.shape,l,c)}}var aC=Rr(e=>Math.ceil(e)),YU=nu($a,aC),QU={kernelName:$a,backendName:"cpu",kernelFunc:YU};function cv(e,t,n,s){let r=w.getArrayFromDType(n,w.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(i=>{let o=w.sizeFromShape(i.shape);r.set(i.vals,a),a+=o})}else{let a=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,u=0;for(let l=0;l<i.shape[0];++l){let c=l*t[1]+a;for(let p=0;p<i.shape[1];++p)r[c+p]=o[u++]}a+=i.shape[1]})}return r}var iC=At((e,t)=>e===t?1:0),oC=Gt(go,iC,null,"bool"),ZU={kernelName:go,backendName:"cpu",kernelFunc:oC},uC=Rr(e=>Math.exp(e)),lC=nu(za,uC,"float32"),JU={kernelName:za,backendName:"cpu",kernelFunc:lC},cC=Rr(e=>Math.expm1(e)),eG=nu(yo,cC),tG={kernelName:yo,backendName:"cpu",kernelFunc:eG},dC=Rr(e=>Math.floor(e)),nG=nu(Ma,dC),sG={kernelName:Ma,backendName:"cpu",kernelFunc:nG};function pC(e,t,n,s,r,a,i,o,u){let l=Ae([s,a],n);for(let c=0;c<s;c++){let p=[],d=0;for(let h=0;h<r;h++){let f=e[c*r+h];d+=f*i[h],p.push(f)}if(d<0||d>=u/a)throw new Error(`Invalid indices: ${p} does not index into ${o}`);for(let h=0;h<a;h++)l.values[c*a+h]=t.get(...t.indexToLoc(d*a+h))}return l}function hC(e,t,n){let s=Ae(n,e.dtype);for(let r=0;r<s.size;++r){let i=s.indexToLoc(r).slice(),o=i[0],u=i[2],l=t.locToIndex([o,u]);i[2]=t.values[l];let c=e.locToIndex(i);0<=c&&c<e.values.length&&(s.values[r]=e.values[c])}return s}var fC=At((e,t)=>e>t?1:0),rG=Gt(ko,fC,null,"bool"),aG={kernelName:ko,backendName:"cpu",kernelFunc:rG},mC=At((e,t)=>e>=t?1:0),iG=Gt(Va,mC,null,"bool"),oG={kernelName:Va,backendName:"cpu",kernelFunc:iG},gC=At((e,t)=>e<t?1:0),uG=Gt(So,gC,null,"bool"),lG={kernelName:So,backendName:"cpu",kernelFunc:uG},bC=At((e,t)=>e<=t?1:0),cG=Gt(Io,bC,null,"bool"),dG={kernelName:Io,backendName:"cpu",kernelFunc:cG};function yC(e,t,n){let s=(t-e)/(n-1),r=w.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var vC=Rr(e=>Math.log(e)),pG=nu(Ga,vC),hG={kernelName:Ga,backendName:"cpu",kernelFunc:pG};function xC(e,t,n,s){let r=w.getTypedArrayFromDType(s,w.sizeFromShape(n));for(let a=0;a<r.length;++a){let i=a*t,o=e[i];for(let u=0;u<t;++u){let l=e[i+u];(Number.isNaN(l)||l>o)&&(o=l)}r[a]=o}return r}var wC=At((e,t)=>Math.max(e,t)),fG=Gt(qa,wC),mG={kernelName:qa,backendName:"cpu",kernelFunc:fG},kC=At((e,t)=>Math.min(e,t)),gG=Gt(Ya,kC),bG={kernelName:Ya,backendName:"cpu",kernelFunc:gG},dv=At((e,t)=>e*t),yG=uv((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),eh=Gt(Za,dv,yG),vG={kernelName:Za,backendName:"cpu",kernelFunc:eh};function SC(e,t,n){let s=w.createScalarValue(-1,n);return dv([],t,s,e,n)}function xG(e){let{inputs:t,backend:n}=e,{x:s}=t;be(s,"neg");let r=n.data.get(s.dataId).values,[a,i]=SC(r,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,a)}var wG={kernelName:No,backendName:"cpu",kernelFunc:xG},IC=At((e,t)=>e!==t?1:0),kG=Gt(To,IC,null,"bool"),SG={kernelName:To,backendName:"cpu",kernelFunc:kG};function pv(e,t,n,s,r){let a=t.length,i=w.sizeFromShape(t),o=w.computeStrides(t),u=w.computeStrides(r),l=w.getTypedArrayFromDType(n,w.sizeFromShape(r));for(let c=0;c<i;++c){let p=w.indexToLoc(c,a,o),d=new Array(p.length);for(let f=0;f<d.length;f++)d[f]=p[s[f]];let h=w.locToIndex(d,a,u);l[h]=e[c]}return l}function wn(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;be(r,"transpose");let i=r.shape.length,o=new Array(i);for(let p=0;p<o.length;p++)o[p]=r.shape[a[p]];let u=s.data.get(r.dataId).values,l=pv(u,r.shape,r.dtype,a,o);return{dataId:s.write(l,o,r.dtype),shape:o,dtype:r.dtype}}var IG={kernelName:Hs,backendName:"cpu",kernelFunc:wn};function CC(e,t,n,s){let[r,a]=C.computeOutAndReduceShapes(e,s),i=ln(t,"int32"),o=w.makeZerosTypedArray(w.sizeFromShape(r),i),u=w.sizeFromShape(a);for(let l=0;l<o.length;++l){let c=l*u,p=1;for(let d=0;d<u;++d)p*=n[c+d];o[l]=p}return{outVals:o,outShape:r,outDtype:i}}function CG(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;be(r,"prod");let o=r.shape.length,u=w.parseAxisParam(a,r.shape),l=C.getAxesPermutation(u,o),c=u,p=r,d=[];l!=null&&(p=wn({inputs:{x:r},backend:n,attrs:{perm:l}}),d.push(p),c=C.getInnerMostAxes(c.length,o));let h=n.data.get(p.dataId).values,{outVals:f,outShape:m,outDtype:g}=CC(p.shape,p.dtype,h,c),b=m;return i&&(b=C.expandShapeToKeepDim(m,u)),d.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(b,g,f)}var NG={kernelName:ni,backendName:"cpu",kernelFunc:CG};function hv(e,t,n,s){let r=e===t,a=e<t&&n<0,i=t<e&&n>1;if(r||a||i)return w.makeZerosTypedArray(0,s);let o=Math.abs(Math.ceil((t-e)/n)),u=w.makeZerosTypedArray(o,s);t<e&&n===1&&(n=-1),u[0]=e;for(let l=1;l<u.length;l++)u[l]=u[l-1]+n;return u}var NC=Rr(e=>1/Math.sqrt(e)),TG=nu(ii,NC),$G={kernelName:ii,backendName:"cpu",kernelFunc:TG};function qi(e,t,n,s,r,a,i,o,u,l){let c=[s/r,r],p=e.values,d=t.values;if(s===0)return Ae(n,t.dtype);let h=Ae(c,t.dtype);typeof u=="string"||typeof u=="number"?h.values.fill(u):typeof u=="boolean"&&h.values.fill(+u);for(let f=0;f<a;f++){let m=[],g=0;for(let b=0;b<i;b++){let y=p[f*i+b];m.push(y),g+=y*o[b]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let b=0;b<r;b++)l?h.values[g*r+b]+=d[f*r+b]:h.values[g*r+b]=t.rank===0?d[0]:d[f*r+b]}return h}var _G=Rr(e=>1/(1+Math.exp(-e))),TC=st(ui,e=>1/(1+Math.exp(-e))),AG={kernelName:ui,backendName:"cpu",kernelFunc:TC};function Bd(e,t,n,s,r){let a=kt.isSliceContinous(s,t,n),i=w.sizeFromShape(n),o=w.computeStrides(s);if(a){let p=kt.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let u=r==="string"?C.fromUint8ToStringArray(e):e,l=Ae(s,r,u),c=Ae(n,r);for(let p=0;p<c.size;++p){let d=c.indexToLoc(p),h=d.map((f,m)=>f+t[m]);c.set(l.get(...h),...d)}return r==="string"?C.fromStringArrayToUint8(c.values):c.values}function ba(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:i}=s;be(r,"slice");let[o,u]=kt.parseSliceParams(r,a,i);kt.assertParamsValid(r,o,u);let l=n.data.get(r.dataId).values,c=Bd(l,o,u,r.shape,r.dtype);return n.makeTensorInfo(u,r.dtype,c)}var EG={kernelName:Mo,backendName:"cpu",kernelFunc:ba};function $C(e,t,n,s,r,a,i){let o=t[0],u=a[0],l=new Array(u),c=new Array(o),p=t[1];if(u===0){if(o!==0)throw new Error(C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(o));let g=w.getArrayFromDType(n,0),b=w.getArrayFromDType(r,0);return[g,[0,p],b,l,c]}let d=!0,h=0,f=new Array(u).fill(0);for(let g=0;g<o;++g){let b=e[g*p];if(b<0)throw new Error(C.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,b));if(b>=u)throw new Error(C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,b,u));++f[b],d=d&&b>=h,h=b}let m=!0;for(let g=0;g<u;++g){let b=f[g]===0;l[g]=b,m=m&&!b,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&d){let g=e,b=s;for(let y=0;y<o;++y)c[y]=y;return[g,[o,p],b,l,c]}else{let g=f[u-1],b=w.getArrayFromDType(n,g*p),y=w.getArrayFromDType(r,g),v=new Array(u).fill(0);for(let x=0;x<o;++x){let k=e[x*p],I=v[k],$=(k===0?0:f[k-1])+I;v[k]++;for(let R=0;R<p;++R)b[$*p+R]=e[x*p+R];y[$]=s[x],c[x]=$}for(let x=0;x<u;++x)if(v[x]===0){let I=x===0?0:f[x-1];b[I*p+0]=x;for(let $=1;$<p;++$)b[I*p+$]=0;y[I]=i}return[b,[g,p],y,l,c]}}function _C(e,t,n,s,r){let a=w.sizeFromShape(s),i=t[0],o=r.length,u=[],l=1,c=-1;for(let g=0;g<o;++g){let b=r[g];if(b===-1){if(c!==-1)throw new Error(C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,u.push(1)}else{if(b<0)throw new Error(C.getSparseReshapeNegativeOutputDimErrorMessage(g,b));l*=b,u.push(b)}}if(c!==-1){if(l<=0)throw new Error(C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(a/l);if(l*g!==a)throw new Error(C.getSparseReshapeInputOutputMultipleErrorMessage(s,u));u[c]=g}if(w.sizeFromShape(u)!==a)throw new Error(C.getSparseReshapeInputOutputMismatchErrorMessage(s,u));let d=s.length,h=[];if(d>0){h[d-1]=1;for(let g=d-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(o>0){f[o-1]=1;for(let g=o-2;g>=0;--g)f[g]=f[g+1]*u[g+1]}let m=w.getArrayFromDType(n,i*o);for(let g=0;g<i;++g){let b=0;for(let y=0;y<d;++y)b+=e[g*d+y]*h[y];for(let y=0;y<o;++y)m[g*o+y]=Math.trunc(b/f[y]),b%=f[y]}return[m,[i,o],u]}function fv(e,t,n,s,r,a=!1,i=0){let o=s.length,u=[t[0],e.length/t[0]],l=u[1],p=o>0?r[o-1]+1:0;if(p<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let h=d.reduce((v,x)=>v*x,1),f=w.getArrayFromDType(n,h);if(o===0)return p>0&&f.fill(i),[f,d];if(p<=0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,g=1,b=0,y=r[m];for(;;){let v=0;if(g<o){if(v=r[g],y===v){++g;continue}if(y>=v)throw new Error(C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(y<0||y>=p)throw new Error(C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(y,p));y>b&&f.fill(i,b*l,y*l);for(let x=m;x<g;++x){let k=s[x];if(k<0||k>=u[0])throw new Error(C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(x,s[x],u[0]));for(let I=0;I<l;I++)f[y*l+I]+=e[k*l+I]}if(a)for(let x=0;x<l;x++)f[y*l+x]/=g-m;if(m=g,++g,b=y+1,y=v,g>o)break}return b<p&&f.fill(i,b*l,p*l),[f,d]}var RG=Rr(e=>Math.sqrt(e)),DG=st(li,e=>Math.sqrt(e)),FG={kernelName:li,backendName:"cpu",kernelFunc:DG},AC=At((e,t)=>{let n=e-t;return n*n}),OG=Gt(pi,AC),PG={kernelName:pi,backendName:"cpu",kernelFunc:OG};function EC(e,t,n,s){let r=Ae(e,t.dtype);for(let a=0;a<r.size;a++){let i=r.indexToLoc(a),o=new Array(i.length);for(let u=0;u<o.length;u++)o[u]=i[u]*n[u]+s[u];r.set(t.get(...o),...i)}return r}var zG=class{constructor(e,t,n,s,r,a){this.separator=w.encodeString(e),this.nGramWidths=t,this.leftPad=w.encodeString(n),this.rightPad=w.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let i=0;i<r;++i){let o=this.getPadWidth(a),u=Math.max(0,o-i),l=Math.max(0,o-(r-(i+1))),c=a-(u+l),p=t+(u>0?0:i-o),d=0;d+=u*this.leftPad.length;for(let b=0;b<c;++b)d+=e[p+b].length;d+=l*this.rightPad.length,d+=(u+l+c-1)*this.separator.length,n[s+i]=new Uint8Array(d);let f=n[s+i],m=0,g=b=>b.forEach(y=>f[m++]=y);for(let b=0;b<u;++b)g(this.leftPad),g(this.separator);for(let b=0;b<c-1;++b)g(e[p+b]),g(this.separator);if(c>0){g(e[p+c-1]);for(let b=0;b<l;++b)g(this.separator),g(this.rightPad)}else{for(let b=0;b<l-1;++b)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let u=1;u<s;++u){let l=t[u]>=o;if(l=l&&t[u]<=n,!l)throw new Error(`Invalid split value ${t[u]}, must be in [${o}, ${n}]`);o=t[u]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=s-1,a=w.getArrayFromDType("int32",s);if(n===0||s===0){let o=new Array(n);for(let u=0;u<=r;++u)a[u]=0;return[o,a]}a[0]=0;for(let o=1;o<=r;++o){let u=t[o]-t[o-1],l=0;this.nGramWidths.forEach(c=>{l+=this.getNumNGrams(u,c)}),this.preserveShort&&u>0&&l===0&&(l=1),a[o]=a[o-1]+l}let i=new Array(a[r]);for(let o=0;o<r;++o){let u=t[o],l=a[o];if(this.nGramWidths.forEach(c=>{let p=t[o+1]-t[o],d=this.getNumNGrams(p,c);this.createNGrams(e,u,i,l,d,c),l+=d}),this.preserveShort&&l===a[o]){let c=t[o+1]-t[o];if(c===0)continue;let p=c+2*this.padWidth,d=1;this.createNGrams(e,u,i,l,d,p)}}return[i,a]}};function RC(e,t,n,s,r,a,i,o){return new zG(n,s,r,a,i,o).compute(e,t)}function MG(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],i=e.indexOf(a);for(;i!==-1;){let o=e.subarray(0,i);(!n||o.length!==0)&&s.push(o),e=e.subarray(i+1),i=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let i=e.subarray(r,a);(!n||i.length!==0)&&s.push(i),r=a+1}}function DC(e,t,n){let s=e.length,r=[],a=0,i=0,o=new Array(s);for(let d=0;d<s;++d){let h=r.length;MG(e[d],t,n,r);let f=r.length-h;o[d]=f,a+=f,i=Math.max(i,f)}let u=w.getArrayFromDType("int32",a*2),l=new Array(a),c=[s,i],p=0;for(let d=0;d<s;++d)for(let h=0;h<o[d];++h)u[p*2]=d,u[p*2+1]=h,l[p]=r[p],++p;return[u,l,c]}function FC(e,t){let n=w.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=w.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var OC=At((e,t)=>e-t),LG=uv((e,t,n,s)=>({real:e-n,imag:t-s})),mv=Gt(hi,OC,LG),BG={kernelName:hi,backendName:"cpu",kernelFunc:mv};function PC(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=Ae(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),i=new Array(e.rank);for(let u=0;u<i.length;u++)i[u]=a[u]%e.shape[u];let o=e.locToIndex(i);s.values[r]=e.values[o]}return s}var Ou=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function zC(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let o=s-n+1,u=t-n+1,l=Math.log(o),c=.5*Math.exp(2*l/3),p=.5*Math.sqrt(l*c*(o-c)/o)*Math.sign(u-o/2),d=Math.max(n,Math.floor(t-u*c/o+p)),h=Math.min(s,Math.floor(t+(o-u)*c/o+p));zC(e,t,d,h)}let r=e[t],a=n,i=s;for(w.swap(e,n,t),Ou(e[s],r)>0&&w.swap(e,n,s);a<i;){for(w.swap(e,a,i),a++,i--;Ou(e[a],r)<0;)a=a+1;for(;Ou(e[i],r)>0;)i=i-1}Ou(e[n],r)===0?w.swap(e,n,i):(i=i+1,w.swap(e,i,s)),i<=t&&(n=i+1),t<=i&&(s=i-1)}}function MC(e,t,n,s,r){let a=t[t.length-1],[i,o]=[e.length/a,a],u=w.getTypedArrayFromDType(n,i*s),l=w.getTypedArrayFromDType("int32",i*s);for(let p=0;p<i;p++){let d=p*o,h=e.subarray(d,d+o),f=new Array(h.length);h.forEach((y,v)=>f[v]={value:y,index:v}),s<f.length&&(zC(f,s),f=f.slice(0,s)),r&&f.sort(Ou);let m=p*s,g=u.subarray(m,m+s),b=l.subarray(m,m+s);for(let y=0;y<s;y++)g[y]=f[y].value,b[y]=f[y].index}let c=t.slice();return c[c.length-1]=s,[Ae(c,n,u),Ae(c,"int32",l)]}function LC(e,t,n,s){let r=w.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let i={},o=new Int32Array(n[r]),u=new Vt(a,s,e),l=[],c=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(c)m=e[f].toString();else{let g=[];for(let b=0;b<a[0];b++)for(let y=0;y<a[2];y++)g.push(u.get(b,f,y));m=g.join(",")}if(i[m]!==void 0)o[f]=i[m];else{let g=Object.keys(i).length;i[m]=g,o[f]=g,l.push(f)}}let p=a.slice();p[1]=Object.keys(i).length;let d=new Vt(p,s);l.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let b=0;b<a[2];b++)d.set(u.get(g,f,b),g,m,b)});let h=n.slice();return h[r]=p[1],{outputValues:d.values,outputShape:h,indices:o}}var She="0.0.0";xp("cpu",()=>new tC,1);var BC=st(Pa,e=>e>=0?e:Math.exp(e)-1),VG={kernelName:Pa,backendName:"cpu",kernelFunc:BC};function VC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;be([r],"leakyRelu");let i=w.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,u=w.getTypedArrayFromDType("float32",i);for(let l=0;l<o.length;l++)u[l]=o[l]<0?a*o[l]:o[l];return n.makeTensorInfo(r.shape,"float32",u)}var WG={kernelName:Ua,backendName:"cpu",kernelFunc:VC},UG=At((e,t)=>e<0?t*e:e);function WC(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;be([s,r],"prelu");let a=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,[o,u]=UG(s.shape,r.shape,a,i,"float32");return n.makeTensorInfo(u,"float32",o)}var GG={kernelName:ti,backendName:"cpu",kernelFunc:WC},UC=st(si,e=>Math.max(0,e)),HG={kernelName:si,backendName:"cpu",kernelFunc:UC},GC=st(ai,e=>Math.min(Math.max(0,e),6)),qG={kernelName:ai,backendName:"cpu",kernelFunc:GC};function Vd(e,t,n,s,r){if(n==="linear")return Os({inputs:{x:t},backend:e});if(n==="relu")return UC({inputs:{x:t},backend:e});if(n==="elu")return BC({inputs:{x:t},backend:e});if(n==="relu6")return GC({inputs:{x:t},backend:e});if(n==="prelu")return WC({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return VC({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return TC({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function pt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,i=w.sizeFromShape(r.shape),o=w.inferFromImplicitShape(a,i),u=w.sizeFromShape(o);w.assert(i===u,()=>`The new shape (${o}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let l=n.data.get(r.dataId);if(l.complexTensorInfos!=null){let c=l.complexTensorInfos.real,p=l.complexTensorInfos.imag;c.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var jG={kernelName:Do,backendName:"cpu",kernelFunc:pt};function HC(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:i,transposeB:o}=s;be([r,a],"matMul");let u=r.shape.length,l=a.shape.length,c=i?r.shape[u-2]:r.shape[u-1],p=o?a.shape[l-1]:a.shape[l-2],d=i?r.shape[u-1]:r.shape[u-2],h=o?a.shape[l-2]:a.shape[l-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),b=w.sizeFromShape(m),v=Xo.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);w.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,c,d]:[g,d,c],k=o?[b,h,p]:[b,p,h],I=pt({inputs:{x:r},backend:n,attrs:{shape:x}}),$=pt({inputs:{x:a},backend:n,attrs:{shape:k}}),R=i?I.shape[1]:I.shape[2],E=i?I.shape[2]:I.shape[1],P=o?$.shape[1]:$.shape[2],A=Math.max(g,b),O=n.data.get(I.dataId).values,T=n.data.get($.dataId).values,M=w.computeStrides(I.shape),W=w.computeStrides($.shape),[j,Y,X]=i?[M[0],1,M[1]]:[M[0],M[1],1],[Z,ne,ee]=o?[1,W[1],W[0]]:[W[1],1,W[0]],se=E*P,te=Ae([A,E,P],I.dtype),oe=te.values,ae=n.blockSize;for(let de=0;de<A;de++)for(let me=0;me<E;me+=ae)for(let ke=0;ke<P;ke+=ae)for(let Ie=0;Ie<R;Ie+=ae){let Re=Math.min(me+ae,E),Pe=Math.min(ke+ae,P),Xe=Math.min(Ie+ae,R);for(let Je=me;Je<Re;Je++)for(let Ye=ke;Ye<Pe;Ye++){let tt=0;for(let Ce=Ie;Ce<Xe;Ce++){let ut=Math.min(de,g-1)*j,at=Math.min(de,b-1)*ee,Zt=O[ut+Je*Y+Ce*X],Nt=T[Ce*Z+Ye*ne+at];tt+=Zt*Nt}oe[de*se+(Je*P+Ye)]+=tt}}return n.disposeIntermediateTensorInfo(I),n.disposeIntermediateTensorInfo($),n.makeTensorInfo(v,te.dtype,te.values)}var KG={kernelName:Na,backendName:"cpu",kernelFunc:HC};function XG(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:i,preluActivationWeights:o}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=s,d,h,f,m=[];d=HC({inputs:{a:r,b:a},attrs:{transposeA:u,transposeB:l},backend:n}),i&&(h=ro({inputs:{a:d,b:i},backend:n}),m.push(d),d=h),c&&(f=Vd(n,d,c,o,p),m.push(d),d=f);for(let b of m)n.disposeIntermediateTensorInfo(b);return d}var YG={kernelName:ia,backendName:"cpu",kernelFunc:XG},QG=st(ul,e=>Math.acos(e)),ZG={kernelName:ul,backendName:"cpu",kernelFunc:QG},JG=st(ll,e=>Math.acosh(e)),eH={kernelName:ll,backendName:"cpu",kernelFunc:JG};function tH(e){let{inputs:t,backend:n}=e,s=t;be(t,"addN");let r=s.map(o=>n.data.get(o.dataId).values),a=Ae(s[0].shape,s[0].dtype),i=a.values;for(let o=0;o<s.length;o++){let u=r[o];for(let l=0;l<i.length;l++)i[l]+=u[l]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var nH={kernelName:Sa,backendName:"cpu",kernelFunc:tH};function sH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;be(r,"all");let o=w.parseAxisParam(a,r.shape),u=o,l=C.getAxesPermutation(u,r.shape.length),c=r;l!=null&&(c=wn({inputs:{x:r},backend:n,attrs:{perm:l}}),u=C.getInnerMostAxes(u.length,r.shape.length)),C.assertAxesAreInnerMostDims("all",u,c.shape.length);let[p,d]=C.computeOutAndReduceShapes(c.shape,u),h=w.sizeFromShape(d),f=w.makeZerosTypedArray(w.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let k=m[y+x];v=v&&k}f[b]=v}l!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(i){let b=C.expandShapeToKeepDim(p,o),y=pt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var rH={kernelName:cl,backendName:"cpu",kernelFunc:sH};function aH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;be(r,"any");let o=w.parseAxisParam(a,r.shape),u=o,l=C.getAxesPermutation(u,r.shape.length),c=r;l!=null&&(c=wn({inputs:{x:r},backend:n,attrs:{perm:l}}),u=C.getInnerMostAxes(u.length,r.shape.length)),C.assertAxesAreInnerMostDims("any",u,c.shape.length);let[p,d]=C.computeOutAndReduceShapes(c.shape,u),h=w.sizeFromShape(d),f=w.makeZerosTypedArray(w.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let k=m[y+x];v=v||k}f[b]=v}l!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(i){let b=C.expandShapeToKeepDim(p,o),y=pt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var iH={kernelName:dl,backendName:"cpu",kernelFunc:aH};function oH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;be(r,"argMax");let i=w.parseAxisParam(a,r.shape),o=C.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=wn({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=C.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,u.shape.length);let[c,p]=C.computeOutAndReduceShapes(u.shape,i),d=w.sizeFromShape(c),h=w.makeZerosTypedArray(d,"int32"),f=w.sizeFromShape(p),m=n.data.get(u.dataId).values;for(let g=0;g<h.length;++g){let b=g*f,y=m[b],v=0;for(let x=0;x<f;++x){let k=m[b+x];k>y&&(y=k,v=x)}h[g]=v}return l.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var uH={kernelName:Ia,backendName:"cpu",kernelFunc:oH};function lH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;be(r,"argMin");let i=w.parseAxisParam(a,r.shape),o=C.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=wn({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=C.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,u.shape.length);let[c,p]=C.computeOutAndReduceShapes(u.shape,i),d=w.sizeFromShape(c),h=w.makeZerosTypedArray(d,"int32"),f=w.sizeFromShape(p),m=n.data.get(u.dataId).values;for(let g=0;g<h.length;++g){let b=g*f,y=m[b],v=0;for(let x=0;x<f;++x){let k=m[b+x];k<y&&(y=k,v=x)}h[g]=v}return l.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var cH={kernelName:pl,backendName:"cpu",kernelFunc:lH},dH=st(hl,e=>Math.asin(e)),pH={kernelName:hl,backendName:"cpu",kernelFunc:dH},hH=st(fl,e=>Math.asinh(e)),fH={kernelName:fl,backendName:"cpu",kernelFunc:hH},mH=st(ml,e=>Math.atan(e)),gH={kernelName:ml,backendName:"cpu",kernelFunc:mH},bH=At((e,t)=>Math.atan2(e,t)),yH=Gt(bl,bH),vH={kernelName:bl,backendName:"cpu",kernelFunc:yH},xH=st(gl,e=>Math.atanh(e)),wH={kernelName:gl,backendName:"cpu",kernelFunc:xH};function gv(e,t,n,s,r,a){let i=r.strideHeight,o=r.strideWidth,u=r.dilationHeight,l=r.dilationWidth,c=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Ae(r.outShape,n),g=m.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3],y=r.outShape[2]*r.outShape[3],v=r.outShape[3];for(let x=0;x<r.batchSize;++x){let k=x*b,I=x*s[0];for(let $=0;$<r.inChannels;++$)for(let R=0;R<r.outHeight;++R){let E=R*i-d,P=Math.max(0,E),A=Math.min(r.inHeight,c+E),O=k+R*y;for(let T=0;T<r.outWidth;++T){let M=T*o-h,W=Math.max(0,M),j=Math.min(r.inWidth,p+M),Y=f,X=0,Z=0;for(let ee=P;ee<A;ee+=u){let se=I+ee*s[1];for(let te=W;te<j;te+=l){let oe=se+te*s[2],ae=e[oe+$];a==="max"&&ae>Y?Y=ae:a==="avg"&&(X+=ae,Z++)}if(isNaN(Y))break}let ne=O+T*v+$;g[ne]=a==="avg"?X/Z:Y}}}return m}function qC(e,t,n,s,r=!1,a=!1){let i=Ae(s.outShape,"int32"),o=s.strideHeight,u=s.strideWidth,l=s.dilationHeight,c=s.dilationWidth,p=s.effectiveFilterHeight,d=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=Ae(t,n,e);for(let g=0;g<s.batchSize;++g)for(let b=0;b<s.inChannels;++b)for(let y=0;y<s.outHeight;++y){let v=y*o-h,x=v;for(;x<0;)x+=l;let k=Math.min(s.inHeight,p+v);for(let I=0;I<s.outWidth;++I){let $=I*u-f,R=$;for(;R<0;)R+=c;let E=Math.min(s.inWidth,d+$),P=Number.NEGATIVE_INFINITY,A=-1;for(let O=x;O<k;O+=l){let T=O-v;for(let M=R;M<E;M+=c){let W=M-$,j=m.get(g,O,M,b);j>P&&(P=j,r?A=a?((g*s.inHeight+O)*s.inWidth+M)*s.inChannels+b:(O*s.inWidth+M)*s.inChannels+b:A=T*d+W)}}i.set(A,g,y,I,b)}}return i}function jC(e,t,n,s,r,a){let i=r.strideDepth,o=r.strideHeight,u=r.strideWidth,l=r.dilationDepth,c=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,b=r.padInfo.left,y=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,v=Ae(r.outShape,n),x=v.values,k=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],I=r.outShape[2]*r.outShape[3]*r.outShape[4],$=r.outShape[3]*r.outShape[4],R=r.outShape[4];for(let E=0;E<r.batchSize;++E){let P=E*k,A=E*s[0];for(let O=0;O<r.inChannels;++O)for(let T=0;T<r.outDepth;++T){let M=T*i-m,W=M;for(;W<0;)W+=l;let j=Math.min(r.inDepth,d+M),Y=P+T*I;for(let X=0;X<r.outHeight;++X){let Z=X*o-g,ne=Z;for(;ne<0;)ne+=c;let ee=Math.min(r.inHeight,h+Z),se=Y+X*$;for(let te=0;te<r.outWidth;++te){let oe=te*u-b,ae=oe;for(;ae<0;)ae+=p;let de=Math.min(r.inWidth,f+oe),me=se+te*R,ke=y,Ie=0,Re=0;for(let Xe=W;Xe<j;Xe+=l){let Je=A+Xe*s[1];for(let Ye=ne;Ye<ee;Ye+=c){let tt=Je+Ye*s[2];for(let Ce=ae;Ce<de;Ce+=p){let ut=tt+Ce*s[3],at=e[ut+O];if(a==="max"&&at>ke?ke=at:a==="avg"&&(Ie+=at,Re++),isNaN(ke))break}if(isNaN(ke))break}if(isNaN(ke))break}let Pe=me+O;x[Pe]=a==="avg"?Ie/Re:ke}}}}return v}function kH(e,t){let n=Ae(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,u=t.dilationWidth,l=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let b=0;b<t.outDepth;++b){let y=b*s-d,v=y;for(;v<0;)v+=i;let x=Math.min(t.inDepth,l+y);for(let k=0;k<t.outHeight;++k){let I=k*r-h,$=I;for(;$<0;)$+=o;let R=Math.min(t.inHeight,c+I);for(let E=0;E<t.outWidth;++E){let P=E*a-f,A=P;for(;A<0;)A+=u;let O=Math.min(t.inWidth,p+P),T=Number.NEGATIVE_INFINITY,M=-1;for(let W=v;W<x;W+=i){let j=W-y;for(let Y=$;Y<R;Y+=o){let X=Y-I;for(let Z=A;Z<O;Z+=u){let ne=Z-P,ee=e.get(m,W,Y,Z,g);ee>=T&&(T=ee,M=j*c*p+X*c+ne)}}}n.set(M,m,b,k,E,g)}}}return n}function SH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;be(r,"avgPool");let{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1;w.assert(C.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=C.computePool2DInfo(r.shape,a,i,l,o,u),p;if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))p=Os({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=gv(d,r.shape,r.dtype,h,c,"avg");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var IH={kernelName:Ca,backendName:"cpu",kernelFunc:SH};function CH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u,dataFormat:l}=s;be(r,"avgPool3d");let c=C.computePool3DInfo(r.shape,a,i,1,o,u,l),p=n.data.get(r.dataId).values,d=jC(p,r.shape,r.dtype,w.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var NH={kernelName:ep,backendName:"cpu",kernelFunc:CH};function TH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:i,strides:o,pad:u,dimRoundingMode:l}=s;be([r,a],"avgPool3DGrad");let c=C.computePool3DInfo(a.shape,i,o,1,u,l),p=c.strideDepth,d=c.strideHeight,h=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,b=c.dilationDepth,y=c.dilationHeight,v=c.dilationWidth,x=c.effectiveFilterDepth,k=c.effectiveFilterHeight,I=c.effectiveFilterWidth,$=x-1-c.padInfo.front,R=I-1-c.padInfo.left,E=k-1-c.padInfo.top,P=Ae(a.shape,"float32"),A=1/(f*m*g),O=n.bufferSync(r);for(let T=0;T<c.batchSize;++T)for(let M=0;M<c.inChannels;++M)for(let W=0;W<c.inDepth;++W)for(let j=0;j<c.inHeight;++j)for(let Y=0;Y<c.inWidth;++Y){let X=W-$,Z=j-E,ne=Y-R,ee=0;for(let se=0;se<x;se+=b){let te=(X+se)/p;if(!(te<0||te>=c.outDepth||Math.floor(te)!==te))for(let oe=0;oe<k;oe+=y){let ae=(Z+oe)/d;if(!(ae<0||ae>=c.outHeight||Math.floor(ae)!==ae))for(let de=0;de<I;de+=v){let me=(ne+de)/h;if(me<0||me>=c.outWidth||Math.floor(me)!==me)continue;ee+=O.get(T,te,ae,me,M)}}}P.set(ee*A,T,W,j,Y,M)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var $H={kernelName:mg,backendName:"cpu",kernelFunc:TH};function _H(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,i=a;be([r,a],"avgPoolGrad");let{filterSize:o,strides:u,pad:l}=s,c=C.computePool2DInfo(i.shape,o,u,1,l),p=c.strideHeight,d=c.strideWidth,h=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,b=c.effectiveFilterHeight,y=c.effectiveFilterWidth,v=y-1-c.padInfo.left,x=b-1-c.padInfo.top,k=Ae(i.shape,"float32"),I=1/(h*f),$=n.data.get(r.dataId).values,R=Ae(r.shape,"float32",$);for(let E=0;E<c.batchSize;++E)for(let P=0;P<c.inChannels;++P)for(let A=0;A<c.inHeight;++A)for(let O=0;O<c.inWidth;++O){let T=A-x,M=O-v,W=0;for(let j=0;j<b;j+=m){let Y=(T+j)/p;if(!(Y<0||Y>=c.outHeight||Math.floor(Y)!==Y))for(let X=0;X<y;X+=g){let Z=(M+X)/d;if(Z<0||Z>=c.outWidth||Math.floor(Z)!==Z)continue;W+=R.get(E,Y,Z,P)}}k.set(W*I,E,A,O,P)}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var AH={kernelName:fg,backendName:"cpu",kernelFunc:_H};function EH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:i,mean:o,variance:u}=t;w.assert(o.shape.length===u.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(a==null||o.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),be([r,o,u,a,i],"batchNorm");let{varianceEpsilon:l}=s;l==null&&(l=.001);let c=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,d=n.data.get(u.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,b=h.length,y=d.length,v=p.length,x=0,k=0,I=0,$=0;for(let R=0;R<c.length;++R)m[R]=f[x++]+(c[R]-p[k++])*h[I++]/Math.sqrt(d[$++]+l),x>=g&&(x=0),k>=v&&(k=0),I>=b&&(I=0),$>=y&&($=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var RH={kernelName:Ba,backendName:"cpu",kernelFunc:EH};function DH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:i}=s;be([r],"batchToSpaceND");let o=a.reduce((b,y)=>b*y),u=C.getReshaped(r.shape,a,o),l=C.getPermuted(u.length,a.length),c=C.getReshapedPermuted(r.shape,a,o),p=C.getSliceBeginCoords(i,a.length),d=C.getSliceSize(c,i,a.length),h=pt({inputs:{x:r},backend:n,attrs:{shape:u}}),f=wn({inputs:{x:h},backend:n,attrs:{perm:l}}),m=pt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=ba({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var FH={kernelName:co,backendName:"cpu",kernelFunc:DH};function OH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:i}=s,o=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,l=lv(o,u,a.dtype,a.shape,i);return n.makeTensorInfo([i],a.dtype,l)}var PH={kernelName:gg,backendName:"cpu",kernelFunc:OH};function zH(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,o=C.assertAndGetBroadcastShape(Array.from(a),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var MH={kernelName:bg,backendName:"cpu",kernelFunc:zH},LH=st(Cr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),BH={kernelName:Cr,backendName:"cpu",kernelFunc:LH},VH=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(w.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(a.dataId).values,u=n.data.get(i.dataId).values;for(let l=0;l<o.length;l++){let c=o[l],p=u[l];s[l]=Math.hypot(c,p)}return n.makeOutput(s,t.shape,"float32")},WH={kernelName:np,backendName:"cpu",kernelFunc:VH};function ao(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var UH={kernelName:ip,backendName:"cpu",kernelFunc:ao};function io(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(m=>m.shape),a);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>w.sizeFromShape(m.shape)>0);if(o.length===1)return Os({inputs:{x:o[0]},backend:n});let u=o.map(m=>m.shape);if(C.assertParamsConsistent(u,a),o[0].dtype==="complex64"){let m=o.map(x=>ga({inputs:{input:x},backend:n})),g=o.map(x=>ao({inputs:{input:x},backend:n})),b=io({inputs:m,backend:n,attrs:{axis:a}}),y=io({inputs:g,backend:n,attrs:{axis:a}}),v=En({inputs:{real:b,imag:y},backend:n});return m.forEach(x=>n.disposeIntermediateTensorInfo(x)),g.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),v}let l=o.map(m=>{let g=w.sizeFromShape(m.shape.slice(a));return pt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=l.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=C.computeOutShape(l.map(m=>m.shape),1);let p=l[0].shape[0]===1,d=cv(c,i,t[0].dtype,p),h=C.computeOutShape(o.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,d);return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var GH={kernelName:po,backendName:"cpu",kernelFunc:io};function KC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dataFormat:u,dilations:l,dimRoundingMode:c}=s;be([r,a],"conv2d");let p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(r.shape,a.shape,i,l,o,c,!1,p),h=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,g=d.dilationWidth,b=d.padInfo.left,y=d.padInfo.top,v=d.dataFormat==="channelsLast",x=new Vt(d.outShape,r.dtype),k=w.computeStrides(r.shape),I=w.computeStrides(a.shape),$=k[0],R=v?k[1]:k[2],E=v?k[2]:1,P=v?1:k[1],A=x.strides[0],O=v?x.strides[1]:x.strides[2],T=v?x.strides[2]:1,M=v?1:x.strides[1],W=n.data.get(r.dataId).values,j=n.data.get(a.dataId).values,Y=x.values;for(let X=0;X<d.batchSize;++X){let Z=X*$,ne=X*A;for(let ee=0;ee<d.outHeight;++ee){let se=ne+ee*O,te=ee*d.strideHeight-y;for(let oe=0;oe<h;++oe){let ae=te+oe*m;if(ae<0||ae>=d.inHeight)continue;let de=oe*I[0],me=Z+ae*R;for(let ke=0;ke<d.outWidth;++ke){let Ie=se+ke*T,Re=ke*d.strideWidth-b;for(let Pe=0;Pe<f;++Pe){let Xe=Re+Pe*g;if(Xe<0||Xe>=d.inWidth)continue;let Je=de+Pe*I[1],Ye=me+Xe*E,tt=Je;for(let Ce=0;Ce<d.inChannels;++Ce){let ut=W[Ye+Ce*P];for(let at=0;at<d.outChannels;++at)Y[Ie+at*M]+=ut*j[tt+at];tt+=d.outChannels}}}}}}return n.makeTensorInfo(x.shape,x.dtype,Y)}var HH={kernelName:_a,backendName:"cpu",kernelFunc:KC};function qH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,pad:o,dataFormat:u,dimRoundingMode:l,filterShape:c}=s;be([r,a],"conv2dBackpropFilter");let p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(r.shape,c,i,1,o,l,!1,p),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=d,b=d.dataFormat==="channelsLast",y=new Vt(d.filterShape,"float32"),v=d.padInfo.left,x=d.padInfo.top,k=n.data.get(r.dataId).values,I=n.data.get(a.dataId).values,$=new Vt(r.shape,r.dtype,k),R=new Vt(a.shape,a.dtype,I);for(let E=0;E<m;++E){let P=Math.max(0,Math.ceil((x-E)/h)),A=Math.min(d.outHeight,(d.inHeight+x-E)/h);for(let O=0;O<g;++O){let T=Math.max(0,Math.ceil((v-O)/f)),M=Math.min(d.outWidth,(d.inWidth+v-O)/f);for(let W=0;W<d.inChannels;++W)for(let j=0;j<d.outChannels;++j){let Y=0;for(let X=0;X<d.batchSize;++X)for(let Z=P;Z<A;++Z){let ne=E+Z*h-x;for(let ee=T;ee<M;++ee){let se=O+ee*f-v;b?Y+=$.get(X,ne,se,W)*R.get(X,Z,ee,j):Y+=$.get(X,W,ne,se)*R.get(X,j,Z,ee)}}y.set(Y,E,O,W,j)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var jH={kernelName:yg,backendName:"cpu",kernelFunc:qH};function KH(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:i,strides:o,pad:u,dataFormat:l,dimRoundingMode:c}=s;be([r,a],"conv2dBackpropInput");let p=w.computeStrides(a.shape),d=w.computeStrides(r.shape),h=C.convertConv2DDataFormat(l),f=C.computeConv2DInfo(i,a.shape,o,1,u,c,!1,h),m=new Vt(f.inShape,"float32"),g=m.values,b=n.data.get(r.dataId).values,y=n.data.get(a.dataId).values,[v,x,k]=p,{batchSize:I,filterHeight:$,filterWidth:R,inChannels:E,inHeight:P,inWidth:A,outChannels:O,outHeight:T,outWidth:M,strideHeight:W,strideWidth:j}=f;h=f.dataFormat;let Y=$-1-f.padInfo.top,X=R-1-f.padInfo.left,Z=h==="channelsLast",ne=m.strides[0],ee=Z?m.strides[1]:m.strides[2],se=Z?m.strides[2]:1,te=Z?1:m.strides[1],oe=d[0],ae=Z?d[1]:d[2],de=Z?d[2]:1,me=Z?1:d[1];for(let ke=0;ke<I;++ke)for(let Ie=0;Ie<E;++Ie)for(let Re=0;Re<P;++Re){let Pe=Re-Y,Xe=Math.max(0,Math.ceil(Pe/W)),Je=Math.min(T,($+Pe)/W);for(let Ye=0;Ye<A;++Ye){let tt=Ye-X,Ce=Math.max(0,Math.ceil(tt/j)),ut=Math.min(M,(R+tt)/j),at=0;for(let Nt=Xe;Nt<Je;++Nt){let In=Nt*W-Pe;for(let Et=Ce;Et<ut;++Et){let Jt=Et*j-tt,Cn=oe*ke+ae*Nt+de*Et,Nn=v*($-1-In)+x*(R-1-Jt)+k*Ie;for(let Xt=0;Xt<O;++Xt){let Dn=b[Cn+me*Xt],en=y[Nn+Xt];at+=Dn*en}}}let Zt=ne*ke+ee*Re+se*Ye+te*Ie;g[Zt]=at}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var XH={kernelName:Aa,backendName:"cpu",kernelFunc:KH};function YH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u}=s;be([r,a],"conv3d");let l=C.computeConv3DInfo(r.shape,a.shape,i,u,o),{filterDepth:c,filterHeight:p,filterWidth:d,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=l,b=g.front,y=g.left,v=g.top,x=new Vt(l.outShape,r.dtype),k=n.data.get(r.dataId).values,I=n.data.get(a.dataId).values,$=x.values,R=w.computeStrides(r.shape),E=w.computeStrides(a.shape);for(let P=0;P<l.batchSize;++P){let A=P*R[0],O=P*x.strides[0];for(let T=0;T<l.outDepth;++T){let M=O+T*x.strides[1],W=T*l.strideDepth-b;for(let j=0;j<c;++j){let Y=W+j*h;if(Y<0||Y>=l.inDepth)continue;let X=j*E[0],Z=A+Y*R[1];for(let ne=0;ne<l.outHeight;++ne){let ee=M+ne*x.strides[2],se=ne*l.strideHeight-v;for(let te=0;te<p;++te){let oe=se+te*f;if(oe<0||oe>=l.inHeight)continue;let ae=X+te*E[1],de=Z+oe*R[2];for(let me=0;me<l.outWidth;++me){let ke=ee+me*l.outChannels,Ie=me*l.strideWidth-y;for(let Re=0;Re<d;++Re){let Pe=Ie+Re*m;if(Pe<0||Pe>=l.inWidth)continue;let Xe=ae+Re*E[2],Je=de+Pe*l.inChannels,Ye=Xe;for(let tt=0;tt<l.inChannels;++tt){let Ce=k[Je+tt];for(let ut=0;ut<l.outChannels;++ut)$[ke+ut]+=Ce*I[Ye+ut];Ye+=l.outChannels}}}}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var QH={kernelName:sp,backendName:"cpu",kernelFunc:YH};function ZH(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,pad:o,filterShape:u}=s;be([r,a],"conv3dBackpropFilterV2");let l=w.computeStrides(r.shape),c=w.computeStrides(a.shape),p=C.computeConv3DInfo(r.shape,u,i,1,o),d=p.strideDepth,h=p.strideHeight,f=p.strideWidth,m=p.filterDepth,g=p.filterHeight,b=p.filterWidth,y=new Vt(p.filterShape,"float32"),v=y.values,[x,k,I,$]=y.strides,R=n.data.get(a.dataId).values,[E,P,A,O]=c,T=n.data.get(r.dataId).values,[M,W,j,Y]=l,X=p.padInfo.front,Z=p.padInfo.left,ne=p.padInfo.top;for(let ee=0;ee<m;++ee){let se=Math.max(0,Math.ceil((X-ee)/d)),te=Math.min(p.outDepth,(p.inDepth+X-ee)/d),oe=ee*x;for(let ae=0;ae<g;++ae){let de=Math.max(0,Math.ceil((ne-ae)/h)),me=Math.min(p.outHeight,(p.inHeight+ne-ae)/h),ke=ae*k+oe;for(let Ie=0;Ie<b;++Ie){let Re=Math.max(0,Math.ceil((Z-Ie)/f)),Pe=Math.min(p.outWidth,(p.inWidth+Z-Ie)/f),Xe=Ie*I+ke;for(let Je=0;Je<p.inChannels;++Je){let Ye=Je*$+Xe;for(let tt=0;tt<p.outChannels;++tt){let Ce=0;for(let ut=0;ut<p.batchSize;++ut){let at=ut*M,Zt=ut*E;for(let Nt=se;Nt<te;++Nt){let Et=(ee+Nt*d-X)*W+at,Jt=Nt*P+Zt;for(let Cn=de;Cn<me;++Cn){let Xt=(ae+Cn*h-ne)*j+Et,Dn=Cn*A+Jt;for(let en=Re;en<Pe;++en){let Ms=(Ie+en*f-Z)*Y+Xt,Si=en*O+Dn;Ce+=T[Ms+Je]*R[Si+tt]}}}}v[Ye+tt]=Ce}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var JH={kernelName:vg,backendName:"cpu",kernelFunc:ZH};function eq(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:i,strides:o,inputShape:u}=s;be([r],"conv3dBackpropInputV2");let l=w.computeStrides(r.shape),c=w.computeStrides(a.shape),p=C.computeConv3DInfo(u,a.shape,o,1,i),d=new Vt(p.inShape,"float32"),h=d.values,[f,m,g,b]=d.strides,y=n.data.get(r.dataId).values,[v,x,k,I]=l,$=n.data.get(a.dataId).values,[R,E,P,A]=c,{batchSize:O,filterDepth:T,filterHeight:M,filterWidth:W,inChannels:j,inDepth:Y,inHeight:X,inWidth:Z,outChannels:ne,outDepth:ee,outHeight:se,outWidth:te,strideDepth:oe,strideHeight:ae,strideWidth:de}=p,me=T-1-p.padInfo.front,ke=M-1-p.padInfo.top,Ie=W-1-p.padInfo.left;for(let Re=0;Re<O;++Re)for(let Pe=0;Pe<j;++Pe)for(let Xe=0;Xe<Y;++Xe){let Je=Xe-me,Ye=Math.max(0,Math.ceil(Je/oe)),tt=Math.min(ee,(T+Je)/oe);for(let Ce=0;Ce<X;++Ce){let ut=Ce-ke,at=Math.max(0,Math.ceil(ut/ae)),Zt=Math.min(se,(M+ut)/ae);for(let Nt=0;Nt<Z;++Nt){let In=Nt-Ie,Et=Math.max(0,Math.ceil(In/de)),Jt=Math.min(te,(W+In)/de),Cn=0;for(let Nn=Ye;Nn<tt;++Nn){let Xt=Nn*oe-Je;for(let Dn=at;Dn<Zt;++Dn){let en=Dn*ae-ut;for(let zs=Et;zs<Jt;++zs){let Ms=zs*de-In,Si=v*Re+x*Nn+k*Dn+I*zs,Zs=R*(T-1-Xt)+E*(M-1-en)+P*(W-1-Ms)+A*Pe;for(let Ls=0;Ls<ne;++Ls){let mu=y[Si+Ls],Ii=$[Zs+Ls];Cn+=mu*Ii}}}}h[f*Re+m*Xe+g*Ce+b*Nt+Pe]=Cn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var tq={kernelName:xg,backendName:"cpu",kernelFunc:eq},nq=st(Ea,e=>Math.cos(e)),sq={kernelName:Ea,backendName:"cpu",kernelFunc:nq},rq=st(Ra,e=>Math.cosh(e)),aq={kernelName:Ra,backendName:"cpu",kernelFunc:rq};function iq(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:i}=t,{cropSize:o,method:u,extrapolationValue:l}=s,[c,p,d,h]=r.shape,f=a.shape[0],[m,g]=o,b=Ae([f,m,g,h],"float32"),y=n.data.get(a.dataId).values,v=n.data.get(i.dataId).values,x=n.data.get(r.dataId).values,k=w.computeStrides(r.shape),I=w.computeStrides(b.shape);for(let $=0;$<f;$++){let R=$*4,E=y[R],P=y[R+1],A=y[R+2],O=y[R+3],T=v[$];if(T>=c)continue;let M=m>1?(A-E)*(p-1)/(m-1):0,W=g>1?(O-P)*(d-1)/(g-1):0;for(let j=0;j<m;j++){let Y=m>1?E*(p-1)+j*M:.5*(E+A)*(p-1);if(Y<0||Y>p-1){for(let X=0;X<g;X++)for(let Z=0;Z<h;Z++){let ne=Z+X*I[2]+j*I[1]+$*I[0];b.values[ne]=l}continue}if(u==="bilinear"){let X=Math.floor(Y),Z=Math.ceil(Y),ne=Y-X;for(let ee=0;ee<g;ee++){let se=g>1?P*(d-1)+ee*W:.5*(P+O)*(d-1);if(se<0||se>d-1){for(let de=0;de<h;de++){let me=de+ee*I[2]+j*I[1]+$*I[0];b.values[me]=l}continue}let te=Math.floor(se),oe=Math.ceil(se),ae=se-te;for(let de=0;de<h;de++){let me=de+te*k[2]+X*k[1]+T*k[0],ke=x[me];me=de+oe*k[2]+X*k[1]+T*k[0];let Ie=x[me];me=de+te*k[2]+Z*k[1]+T*k[0];let Re=x[me];me=de+oe*k[2]+Z*k[1]+T*k[0];let Pe=x[me],Xe=ke+(Ie-ke)*ae,Je=Re+(Pe-Re)*ae;me=de+ee*I[2]+j*I[1]+$*I[0],b.values[me]=Xe+(Je-Xe)*ne}}}else for(let X=0;X<g;++X){let Z=g>1?P*(d-1)+X*W:.5*(P+O)*(d-1);if(Z<0||Z>d-1){for(let se=0;se<h;se++){let te=se+X*I[2]+j*I[1]+$*I[0];b.values[te]=l}continue}let ne=Math.round(Z),ee=Math.round(Y);for(let se=0;se<h;se++){let te=se+ne*k[2]+ee*k[1]+T*k[0],oe=se+X*I[2]+j*I[1]+$*I[0];b.values[oe]=x[te]}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var oq={kernelName:fo,backendName:"cpu",kernelFunc:iq};function uq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s;be(r,"cumprod");let u=C.getAxesPermutation([a],r.shape.length),l=r;u!=null&&(l=wn({inputs:{x:r},backend:n,attrs:{perm:u}}));let c=C.getInnerMostAxes(1,r.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let p=ln(l.dtype,"int32"),d=w.makeOnesTypedArray(w.sizeFromShape(l.shape),p),h=n.data.get(l.dataId).values,f=l.shape[l.shape.length-1],m=o?(b,y)=>b+f-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=f)for(let y=0;y<f;y++){let v=m(b,y);if(y===0)d[v]=i?1:h[v];else{let x=m(b,y-1);d[v]=i?h[x]*d[x]:h[v]*d[x]}}let g=n.makeTensorInfo(l.shape,p,d);if(u!=null){let b=C.getUndoAxesPermutation(u),y=wn({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(l),y}return g}var lq={kernelName:ho,backendName:"cpu",kernelFunc:uq};function cq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s;be(r,"cumsum");let u=C.getAxesPermutation([a],r.shape.length),l=r;u!=null&&(l=wn({inputs:{x:r},backend:n,attrs:{perm:u}}));let c=C.getInnerMostAxes(1,r.shape.length)[0];if(c!==l.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${c}`);let p=ln(l.dtype,"int32"),d=w.makeZerosTypedArray(w.sizeFromShape(l.shape),p),h=n.data.get(l.dataId).values,f=l.shape[l.shape.length-1],m=o?(b,y)=>b+f-y-1:(b,y)=>b+y;for(let b=0;b<h.length;b+=f)for(let y=0;y<f;y++){let v=m(b,y);if(y===0)d[v]=i?0:h[v];else{let x=m(b,y-1);d[v]=i?h[x]+d[x]:h[v]+d[x]}}let g=n.makeTensorInfo(l.shape,p,d);if(u!=null){let b=C.getUndoAxesPermutation(u),y=wn({inputs:{x:g},backend:n,attrs:{perm:b}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(l),y}return g}var dq={kernelName:Da,backendName:"cpu",kernelFunc:cq};function pq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:i,binaryOutput:o}=s;if(r.shape.length===1){let u=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=lv(u,l,a.dtype,a.shape,i);return n.makeTensorInfo([i],a.dtype,c)}else if(r.shape.length===2){let u=n.bufferSync(r),l=n.bufferSync(a),c=rC(u,l,i,o);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var hq={kernelName:wg,backendName:"cpu",kernelFunc:pq};function fq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:i}=s;w.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`);let o=r.shape[0],u=r.shape[1],l=r.shape[2],c=r.shape[3],p=u*a,d=l*a,h=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(o*p*d*h),g=0;for(let b=0;b<o;++b)for(let y=0;y<p;++y){let v=Math.floor(y/a),x=y%a;for(let k=0;k<d;++k){let I=Math.floor(k/a),$=k%a,R=(x*a+$)*h;for(let E=0;E<h;++E){let A=E+R+c*(I+l*(v+u*b));m[g++]=f[A]}}}return n.makeTensorInfo([o,p,d,h],r.dtype,m)}var mq={kernelName:mo,backendName:"cpu",kernelFunc:fq};function XC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u,dimRoundingMode:l}=s;be([r,a],"depthwiseConv2DNative");let c=w.computeStrides(r.shape),p=w.computeStrides(a.shape),d=u;d==null&&(d=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let h=C.computeConv2DInfo(r.shape,a.shape,i,d,o,l,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:b,padInfo:y}=h,v=y.left,x=y.top,k=h.outChannels/h.inChannels,I=new Vt(h.outShape,r.dtype),$=n.data.get(r.dataId).values,R=n.data.get(a.dataId).values,E=I.values;for(let P=0;P<h.batchSize;++P){let A=P*c[0],O=P*I.strides[0];for(let T=0;T<h.outHeight;++T){let M=O+T*I.strides[1],W=T*h.strideHeight-x;for(let j=0;j<f;++j){let Y=W+j*g;if(Y<0||Y>=h.inHeight)continue;let X=j*p[0],Z=A+Y*c[1];for(let ne=0;ne<h.outWidth;++ne){let ee=M+ne*I.strides[2],se=ne*h.strideWidth-v;for(let te=0;te<m;++te){let oe=se+te*b;if(oe<0||oe>=h.inWidth)continue;let ae=X+te*p[1],de=Z+oe*h.inChannels,me=ee,ke=ae;for(let Ie=0;Ie<h.inChannels;++Ie){let Re=$[de+Ie];for(let Pe=0;Pe<k;++Pe)E[me+Pe]+=Re*R[ke+Pe];me+=k,ke+=k}}}}}}return n.makeTensorInfo(I.shape,I.dtype,I.values)}var gq={kernelName:Fa,backendName:"cpu",kernelFunc:XC};function bq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,dilations:o,pad:u,dimRoundingMode:l,filterShape:c}=s;be([r,a],"depthwiseConv2dNativeBackpropFilter");let p=C.computeConv2DInfo(r.shape,c,i,o,u,l,!0),{strideHeight:d,strideWidth:h,filterHeight:f,filterWidth:m}=p,g=new Vt(p.filterShape,"float32"),b=p.padInfo.left,y=p.padInfo.top,v=p.outChannels/p.inChannels,x=n.data.get(r.dataId).values,k=new Vt(r.shape,r.dtype,x),I=n.data.get(a.dataId).values,$=new Vt(a.shape,a.dtype,I);for(let R=0;R<f;++R){let E=Math.max(0,Math.ceil((y-R)/d)),P=Math.min(p.outHeight,(p.inHeight+y-R)/d);for(let A=0;A<m;++A){let O=Math.max(0,Math.ceil((b-A)/h)),T=Math.min(p.outWidth,(p.inWidth+b-A)/h);for(let M=0;M<p.outChannels;++M){let W=Math.trunc(M/v),j=M%v,Y=0;for(let X=0;X<p.batchSize;++X)for(let Z=E;Z<P;++Z){let ne=R+Z*d-y;for(let ee=O;ee<T;++ee){let se=A+ee*h-b;Y+=k.get(X,ne,se,W)*$.get(X,Z,ee,M)}}g.set(Y,R,A,W,j)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var yq={kernelName:kg,backendName:"cpu",kernelFunc:bq};function vq(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:i,dilations:o,pad:u,dimRoundingMode:l,inputShape:c}=s;be([r,a],"depthwiseConv2DNativeBackpropInput");let p=w.computeStrides(r.shape),d=w.computeStrides(a.shape),h=C.computeConv2DInfo(c,a.shape,i,o,u,l,!0),f=new Vt(h.inShape,"float32"),m=f.values,[g,b,y]=f.strides,v=n.data.get(r.dataId).values,[x,k,I]=p,$=n.data.get(a.dataId).values,[R,E,P]=d,{batchSize:A,filterHeight:O,filterWidth:T,inChannels:M,inHeight:W,inWidth:j,outChannels:Y,outHeight:X,outWidth:Z,strideHeight:ne,strideWidth:ee}=h,se=O-1-h.padInfo.top,te=T-1-h.padInfo.left,oe=Y/M;for(let ae=0;ae<A;++ae)for(let de=0;de<M;++de)for(let me=0;me<W;++me){let ke=me-se,Ie=Math.max(0,Math.ceil(ke/ne)),Re=Math.min(X,(O+ke)/ne);for(let Pe=0;Pe<j;++Pe){let Xe=Pe-te,Je=Math.max(0,Math.ceil(Xe/ee)),Ye=Math.min(Z,(T+Xe)/ee),tt=0;for(let Ce=Ie;Ce<Re;++Ce){let ut=Ce*ne-ke;for(let at=Je;at<Ye;++at){let Zt=at*ee-Xe,Nt=x*ae+k*Ce+I*at,In=R*(O-1-ut)+E*(T-1-Zt)+P*de;for(let Et=0;Et<oe;++Et){let Jt=de*oe+Et,Cn=v[Nt+Jt],Nn=$[In+Et];tt+=Cn*Nn}}}m[g*ae+b*me+y*Pe+de]=tt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var xq={kernelName:Sg,backendName:"cpu",kernelFunc:vq};function wq(e){let{inputs:t,backend:n}=e,{x:s}=t,r=w.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,i=Ae([r,r],s.dtype),o=i.values;for(let l=0;l<a.length;l++)o[l*r+l]=a[l];let u=[...s.shape,...s.shape];return n.makeTensorInfo(u,i.dtype,i.values)}var kq={kernelName:Ig,backendName:"cpu",kernelFunc:wq},Sq={kernelName:rp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:i,dilations:o}=n,u=t,l=u.data.get(s.dataId).values,c=s.shape.length,p=u.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:b,outWidth:y,padInfo:v,strideHeight:x,strideWidth:k,filterHeight:I,filterWidth:$,dilationHeight:R,dilationWidth:E,outShape:P}=C.computeDilation2DInfo(s.shape,r.shape,a,i,"NHWC",o),A=w.sizeFromShape(P),O=P.length,T=w.getArrayFromDType(s.dtype,A);for(let W=0;W<h;++W)for(let j=0;j<b;++j){let Y=j*x-v.top;for(let X=0;X<y;++X){let Z=X*k-v.left;for(let ne=0;ne<g;++ne){let ee=Number.MIN_SAFE_INTEGER;for(let te=0;te<I;++te){let oe=Y+te*R;if(oe>=0&&oe<f)for(let ae=0;ae<$;++ae){let de=Z+ae*E;if(de>=0&&de<m){let me=w.locToIndex([W,oe,de,ne],c,w.computeStrides(s.shape)),ke=w.locToIndex([te,ae,ne],d,w.computeStrides(r.shape)),Ie=l[me]+p[ke];Ie>ee&&(ee=Ie)}}}let se=w.locToIndex([W,j,X,ne],O,w.computeStrides(P));T[se]=ee}}}return{dataId:u.write(w.toTypedArray(T,s.dtype),P,s.dtype),shape:P,dtype:s.dtype}}},Iq={kernelName:am,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:i,pad:o,dilations:u}=n,l=t,c=w.toNestedArray(s.shape,l.data.get(s.dataId).values),p=w.toNestedArray(r.shape,l.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:b,padInfo:y,strideHeight:v,strideWidth:x,filterHeight:k,filterWidth:I,dilationHeight:$,dilationWidth:R,outShape:E}=C.computeDilation2DInfo(s.shape,r.shape,i,o,"NHWC",u);w.assert(a.rank===E.length,()=>`Error in ${am}, dy must have the same rank as output ${E.length}, but got ${a.rank}`);let P=w.toNestedArray(E,l.data.get(a.dataId).values),A=w.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<d;++T)for(let M=0;M<g;++M){let W=M*v-y.top;for(let j=0;j<b;++j){let Y=j*x-y.left;for(let X=0;X<m;++X){let Z=Number.MIN_SAFE_INTEGER,ne=0,ee=0;for(let se=0;se<k;++se){let te=W+se*$;if(te>=0&&te<h)for(let oe=0;oe<I;++oe){let ae=Y+oe*R;if(ae>=0&&ae<f){let de=c[T][te][ae][X]+p[se][oe][X];de>Z&&(Z=de,ne=se,ee=oe)}}}A[ne][ee][X]+=P[T][M][j][X]}}}return{dataId:l.write(w.toTypedArray(A,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},Cq={kernelName:rm,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:i,pad:o,dilations:u}=n,l=t,c=w.toNestedArray(s.shape,l.data.get(s.dataId).values),p=w.toNestedArray(r.shape,l.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:b,padInfo:y,strideHeight:v,strideWidth:x,filterHeight:k,filterWidth:I,dilationHeight:$,dilationWidth:R,outShape:E}=C.computeDilation2DInfo(s.shape,r.shape,i,o,"NHWC",u);w.assert(a.rank===E.length,()=>`Error in ${rm}, dy must have the same rank as output ${E.length}, but got ${a.rank}`);let P=w.toNestedArray(E,l.data.get(a.dataId).values),A=w.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<d;++T)for(let M=0;M<g;++M){let W=M*v-y.top;for(let j=0;j<b;++j){let Y=j*x-y.left;for(let X=0;X<m;++X){let Z=Number.MIN_SAFE_INTEGER,ne=W<0?0:W,ee=Y<0?0:Y;for(let se=0;se<k;++se){let te=W+se*$;if(te>=0&&te<h)for(let oe=0;oe<I;++oe){let ae=Y+oe*R;if(ae>=0&&ae<f){let de=c[T][te][ae][X]+p[se][oe][X];de>Z&&(Z=de,ne=te,ee=ae)}}}A[T][ne][ee][X]+=P[T][M][j][X]}}}return{dataId:l.write(w.toTypedArray(A,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Zl(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;be(r,"sum");let o;r.dtype==="bool"?o=wr({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=Os({inputs:{x:r},backend:n});let u=o.shape.length,l=w.parseAxisParam(a,o.shape),c=C.getAxesPermutation(l,u),p=l,d=o;c!=null&&(d=wn({inputs:{x:o},backend:n,attrs:{perm:c}}),p=C.getInnerMostAxes(p.length,u)),C.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,f]=C.computeOutAndReduceShapes(d.shape,p),m=C.upcastType(d.dtype,"int32"),g=Ld(n,h,m),b=w.sizeFromShape(f),y=n.data.get(g.dataId).values,v=n.data.get(d.dataId).values;for(let x=0;x<y.length;++x){let k=x*b,I=0;for(let $=0;$<b;++$)I+=v[k+$];y[x]=I}if(i){let x=C.expandShapeToKeepDim(g.shape,l),k=g;g=pt({inputs:{x:g},backend:n,attrs:{shape:x}}),n.disposeIntermediateTensorInfo(k)}return n.disposeIntermediateTensorInfo(o),c!=null&&n.disposeIntermediateTensorInfo(d),g}var Nq={kernelName:ci,backendName:"cpu",kernelFunc:Zl};function Tq(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:i,summedDims:o,idDims:u}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(i.length,u,a);let{path:l,steps:c}=C.getEinsumComputePath(o,u),p=c.length,d=null,h=i.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:b,expandDims:y}=C.getEinsumPermutation(h,u[g]),v;C.isIdentityPermutation(b)?v=a[g]:(v=wn({inputs:{x:a[g]},backend:n,attrs:{perm:b}}),f.push(v));let x=v.shape.slice();for(let k=0;k<y.length;++k)x.splice(y[k],0,1);w.arraysEqual(v.shape,x)||(v=pt({inputs:{x:v},backend:n,attrs:{shape:x}}),f.push(v)),d===null?d=v:(d=eh({inputs:{a:v,b:d},backend:n}),f.push(d))}m<p-1&&(l[m]>=0&&(d=Zl({inputs:{x:d},backend:n,attrs:{axis:l[m]-(i.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var $q={kernelName:ap,backendName:"cpu",kernelFunc:Tq};function _q(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;be([s,r],"eluGrad");let a=new Float32Array(w.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(s.dataId).values;for(let u=0;u<i.length;++u){let l=i[u];l>=1?a[u]=o[u]:a[u]=o[u]*(l+1)}return n.makeTensorInfo(r.shape,"float32",a)}var Aq={kernelName:Cg,backendName:"cpu",kernelFunc:_q},Eq=C.ERF_P,Rq=C.ERF_A1,Dq=C.ERF_A2,Fq=C.ERF_A3,Oq=C.ERF_A4,Pq=C.ERF_A5,zq=st(yl,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+Eq*n);return t*(1-((((Pq*s+Oq)*s+Fq)*s+Dq)*s+Rq)*s*Math.exp(-n*n))}),Mq={kernelName:yl,backendName:"cpu",kernelFunc:zq};function Wd(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,i=r.shape.length,o=r.shape.slice(),u=a;return a<0&&(w.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+a+1),o.splice(u,0,1),pt({inputs:{x:r},backend:n,attrs:{shape:o}})}var Lq={kernelName:bo,backendName:"cpu",kernelFunc:Wd},Bq=At((e,t)=>e/t),bv=Gt(Oa,Bq),jm={kernelName:Oa,backendName:"cpu",kernelFunc:bv};function YC(e,t,n){let s=e.shape,r=s[0],a=s[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,u=i.complexTensorInfos.imag,l=[r,a],c=w.sizeFromShape(l),p=w.getTypedArrayFromDType("float32",c),d=w.getTypedArrayFromDType("float32",c);for(let g=0;g<r;g++){let b=ba({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,a]}}),y=ba({inputs:{x:u},backend:n,attrs:{begin:[g,0],size:[1,a]}}),v=En({inputs:{real:b,imag:y},backend:n}),{real:x,imag:k}=Vq(v,t,n),I=C.mergeRealAndImagArrays(x,k);for(let $=0;$<a;$++){let R=C.getComplexWithIndex(I,$);p[g*a+$]=R.real,d[g*a+$]=R.imag}n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(v)}let h=n.makeTensorInfo(l,"float32",p),f=n.makeTensorInfo(l,"float32",d),m=En({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function Vq(e,t,n){let s=w.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(Wq(s)){let o=Km(a,i,s,t,n),u=[e.shape[0],e.shape[1]];if(t){let l=n.makeTensorInfo(u,"float32",o.real),c=n.makeTensorInfo(u,"float32",o.imag),p=n.makeTensorInfo([],"float32",w.createScalarValue(s,"float32")),d=Os({inputs:{x:p},backend:n}),h=jm.kernelFunc({inputs:{a:l,b:p},backend:n}),f=jm.kernelFunc({inputs:{a:c,b:d},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return o}else{let o=C.mergeRealAndImagArrays(a,i),u=Uq(o,s,t);return C.splitRealAndImagArrays(u)}}function Wq(e){return(e&e-1)===0}function Km(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=C.mergeRealAndImagArrays(e,t),i=n/2,o=C.complexWithEvenIndex(a),u=o.real,l=o.imag,c=[u.length],p=r.makeTensorInfo(c,"float32",u),d=r.makeTensorInfo(c,"float32",l),h=En({inputs:{real:p,imag:d},backend:r}),f=C.complexWithOddIndex(a),m=f.real,g=f.imag,b=[m.length],y=r.makeTensorInfo(b,"float32",m),v=r.makeTensorInfo(b,"float32",g),x=En({inputs:{real:y,imag:v},backend:r}),k=Km(u,l,i,s,r),I=k.real,$=k.imag,R=[I.length],E=r.makeTensorInfo(R,"float32",I),P=r.makeTensorInfo(R,"float32",$),A=En({inputs:{real:E,imag:P},backend:r}),O=Km(m,g,i,s,r),T=O.real,M=O.imag,W=[T.length],j=r.makeTensorInfo(W,"float32",T),Y=r.makeTensorInfo(W,"float32",M),X=En({inputs:{real:j,imag:Y},backend:r}),Z=C.exponents(n,s),ne=[Z.real.length],ee=r.makeTensorInfo(ne,"float32",Z.real),se=r.makeTensorInfo(ne,"float32",Z.imag),te=En({inputs:{real:ee,imag:se},backend:r}),oe=eh({inputs:{a:te,b:X},backend:r}),ae=ro({inputs:{a:A,b:oe},backend:r}),de=mv({inputs:{a:A,b:oe},backend:r}),me=ga({inputs:{input:ae},backend:r}),ke=ga({inputs:{input:de},backend:r}),Ie=ao({inputs:{input:ae},backend:r}),Re=ao({inputs:{input:de},backend:r}),Pe=io({inputs:[me,ke],backend:r,attrs:{axis:0}}),Xe=io({inputs:[Ie,Re],backend:r,attrs:{axis:0}}),Je=r.data.get(Pe.dataId).values,Ye=r.data.get(Xe.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(y),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(E),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(j),r.disposeIntermediateTensorInfo(Y),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(te),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(de),r.disposeIntermediateTensorInfo(me),r.disposeIntermediateTensorInfo(Ie),r.disposeIntermediateTensorInfo(ke),r.disposeIntermediateTensorInfo(Re),r.disposeIntermediateTensorInfo(Pe),r.disposeIntermediateTensorInfo(Xe),{real:Je,imag:Ye}}function Uq(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,i=0;for(let o=0;o<t;o++){let u=C.exponent(r*o,t,n),l=C.getComplexWithIndex(e,o);a+=l.real*u.real-l.imag*u.imag,i+=l.real*u.imag+l.imag*u.real}n&&(a/=t,i/=t),C.assignToTypedArray(s,a,i,r)}return s}function Gq(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],i=r/a,o=pt({inputs:{x:s},backend:n,attrs:{shape:[i,a]}}),u=YC(o,!1,n),l=pt({inputs:{x:u},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),l}var Hq={kernelName:Ng,backendName:"cpu",kernelFunc:Gq};function yv(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,i=a||w.inferDtype(r),o=w.getArrayFromDType(i,w.sizeFromShape(s));return jq(o,r,i),t.makeTensorInfo(s,i,o)}var qq={kernelName:vl,backendName:"cpu",kernelFunc:yv};function jq(e,t,n){e.fill(t)}var Kq={kernelName:vo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[i,o,u,l]=s.shape,c=r.data.get(s.dataId).values;for(let d=0;d<i;d++){let h=d*u*o*l;for(let f=0;f<o;f++){let m=f*(u*l);for(let g=0;g<u;g++){let b=g*l;for(let y=0;y<l;y++){let v=Math.round(u-g-1),x=h+m+b+y,k=c[x];if(v>=0&&v<u){let I=v*l,$=h+m+I+y;k=c[$]}a[x]=k}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},Xq=At((e,t)=>Math.floor(e/t)),Yq=Gt(La,Xq,null,"int32"),Qq={kernelName:La,backendName:"cpu",kernelFunc:Yq};function Zq(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=KC({inputs:{x:r,filter:a},backend:n,attrs:{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d}});if(i){let g=m;if(c==="NCHW"&&i.shape.length===1&&i.shape[0]!==1){let b=pt({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});m=ro({inputs:{a:m,b},backend:n}),n.disposeIntermediateTensorInfo(b)}else m=ro({inputs:{a:m,b:i},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=m;if(c==="NCHW"&&h==="prelu"&&o.shape.length===1&&o.shape[0]!==1){let b=pt({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});m=Vd(n,m,h,b,f),n.disposeIntermediateTensorInfo(b)}else m=Vd(n,m,h,o,f);n.disposeIntermediateTensorInfo(g)}return m}var Jq={kernelName:oa,backendName:"cpu",kernelFunc:Zq};function e6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=XC({inputs:{x:r,filter:a},backend:n,attrs:{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d}});if(i){let g=m;m=ro({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Vd(n,m,h,o,f),n.disposeIntermediateTensorInfo(g)}return m}var t6={kernelName:ua,backendName:"cpu",kernelFunc:e6};function n6(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=w.sizeFromShape(s.shape),i=r.shape,o=i[i.length-1],[u,l,c,p]=C.prepareAndValidate(s,r);if(l===0)return n.makeTensorInfo(u,s.dtype,[]);let d=n.data.get(r.dataId).values,h=n.bufferSync(s),f=pC(d,h,s.dtype,l,o,c,p,s.shape,a);return n.makeTensorInfo(u,s.dtype,f.values)}var s6={kernelName:wo,backendName:"cpu",kernelFunc:n6};function r6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:i,batchDims:o}=s;be([r,a],"gatherV2");let u=w.parseAxisParam(i,r.shape)[0],l=n.data.get(a.dataId).values,c=r.shape[u];for(let x=0;x<l.length;++x){let k=l[x];w.assert(k<=c-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${c-1}]`)}let p=o;o==null&&(p=0);let d=w.sizeFromShape(a.shape),h=C.segment_util.collectGatherOpShapeInfo(r,a,u,p),f=pt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=pt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,d/h.batchSize]}}),g=[h.batchSize,h.outerSize,d/h.batchSize,h.sliceSize],b=n.bufferSync(m),y=n.bufferSync(f),v=hC(y,b,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,v.dtype,v.values)}var a6={kernelName:xo,backendName:"cpu",kernelFunc:r6};function i6(e){let{inputs:t,backend:n}=e,{input:s}=t,r=w.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],i=r/a,o=pt({inputs:{x:s},backend:n,attrs:{shape:[i,a]}}),u=YC(o,!0,n),l=pt({inputs:{x:u},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),l}var o6={kernelName:Tg,backendName:"cpu",kernelFunc:i6},u6=st(xl,e=>Number.isFinite(e)?1:0,"bool"),l6={kernelName:xl,backendName:"cpu",kernelFunc:u6},c6=st(wl,e=>Math.abs(e)===1/0?1:0,"bool"),d6={kernelName:wl,backendName:"cpu",kernelFunc:c6},p6=st(kl,e=>Number.isNaN(e)?1:0,"bool"),h6={kernelName:kl,backendName:"cpu",kernelFunc:p6};function f6(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,i=yC(s,r,a);return t.makeTensorInfo([i.length],"float32",i)}var m6={kernelName:$g,backendName:"cpu",kernelFunc:f6},g6=st(Sl,e=>Math.log1p(e)),b6={kernelName:Sl,backendName:"cpu",kernelFunc:g6},y6=At((e,t)=>e&&t),v6=Gt(Co,y6,null,"bool"),x6={kernelName:Co,backendName:"cpu",kernelFunc:v6},w6=st(Il,e=>e?0:1,"bool"),k6={kernelName:Il,backendName:"cpu",kernelFunc:w6},S6=At((e,t)=>e||t),I6=Gt(op,S6,null,"bool"),C6={kernelName:op,backendName:"cpu",kernelFunc:I6};function N6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:i,alpha:o,beta:u}=s;be(r,"LRN");let l=r.shape[3],c=l-1,p=n.data.get(r.dataId).values,d=w.sizeFromShape(r.shape),h=new Float32Array(d);function f(m){let g=m%l,b=m-g+Math.max(0,g-a),y=m-g+Math.min(g+a,c),v=0;for(;b<=y;b++){let x=p[b];v+=x*x}return v}for(let m=0;m<d;m++){let g=f(m),b=p[m]*Math.pow(i+o*g,-u);h[m]=b}return n.makeTensorInfo(r.shape,r.dtype,h)}var T6={kernelName:up,backendName:"cpu",kernelFunc:N6};function $6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:i}=t,{depthRadius:o,bias:u,alpha:l,beta:c}=s;be(i,"LRNGrad");let p=w.sizeFromShape(i.shape),d=i.shape[3],h=n.data.get(i.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(p),b=p;for(let y=0;y<b;y++){let v=y%d,x=y-v+Math.max(0,v-o),k=y-v+Math.min(d,v+o+1),I=0;for(let $=x;$<k;$++)I+=Math.pow(f[$],2);I=l*I+u;for(let $=x;$<k;$++){let R=-2*l*c*f[$]*m[y]/I;y===$&&(R+=Math.pow(I,-c)),R*=h[y],g[$]+=R}}return n.makeTensorInfo(i.shape,r.dtype,g)}var _6={kernelName:_g,backendName:"cpu",kernelFunc:$6};function QC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:i}=s,o=n,u=r.shape,l=u.length,c=w.parseAxisParam(a,u),p=c,d=C.getAxesPermutation(p,l),h=o.data.get(r.dataId).values;if(d!=null){let x=new Array(l);for(let k=0;k<x.length;k++)x[k]=u[d[k]];h=pv(h,u,r.dtype,d,x),p=C.getInnerMostAxes(p.length,l),u=x}be(r,"max"),C.assertAxesAreInnerMostDims("max",p,l);let[f,m]=C.computeOutAndReduceShapes(u,p),g=w.sizeFromShape(m),b=xC(h,g,f,r.dtype),y=o.write(b,f,r.dtype),v=f;return i&&(v=C.expandShapeToKeepDim(f,c)),{dataId:y,shape:v,dtype:r.dtype}}var A6={kernelName:Ha,backendName:"cpu",kernelFunc:QC};function E6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;be(r,"maxPool");let{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1;w.assert(C.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=C.computePool2DInfo(r.shape,a,i,l,o,u),p;if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))p=Os({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=w.computeStrides(r.shape),f=gv(d,r.shape,r.dtype,h,c,"max");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var R6={kernelName:ja,backendName:"cpu",kernelFunc:E6};function D6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u,dataFormat:l}=s;be(r,"maxPool3d");let c=C.computePool3DInfo(r.shape,a,i,1,o,u,l),p=n.data.get(r.dataId).values,d=jC(p,r.shape,r.dtype,w.computeStrides(r.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var F6={kernelName:lp,backendName:"cpu",kernelFunc:D6};function O6(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:i,strides:o,pad:u,dimRoundingMode:l}=s;be([r,a],"maxPool3DGrad");let c=C.computePool3DInfo(a.shape,i,o,1,u,l),p=n.bufferSync(a),d=kH(p,c),h=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,b=c.dilationHeight,y=c.dilationWidth,v=c.effectiveFilterDepth,x=c.effectiveFilterHeight,k=c.effectiveFilterWidth,I=v-1-c.padInfo.front,$=k-1-c.padInfo.left,R=x-1-c.padInfo.top,E=Ae(a.shape,"float32"),P=n.bufferSync(r);for(let A=0;A<c.batchSize;++A)for(let O=0;O<c.inChannels;++O)for(let T=0;T<c.inDepth;++T)for(let M=0;M<c.inHeight;++M)for(let W=0;W<c.inWidth;++W){let j=T-I,Y=M-R,X=W-$,Z=0;for(let ne=0;ne<v;ne+=g){let ee=(j+ne)/h;if(!(ee<0||ee>=c.outDepth||Math.floor(ee)!==ee))for(let se=0;se<x;se+=b){let te=(Y+se)/f;if(!(te<0||te>=c.outHeight||Math.floor(te)!==te))for(let oe=0;oe<k;oe+=y){let ae=(X+oe)/m;if(ae<0||ae>=c.outWidth||Math.floor(ae)!==ae)continue;let de=v*x*k-1-d.get(A,ee,te,ae,O),me=ne*x*k+se*k+oe,ke=de===me?1:0;if(ke===0)continue;Z+=P.get(A,ee,te,ae,O)*ke}}}E.set(Z,A,T,M,W,O)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var P6={kernelName:Eg,backendName:"cpu",kernelFunc:O6};function z6(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:i}=t,o=a;be([a,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=s,d=C.computePool2DInfo(o.shape,u,l,1,c,p),h=n.data.get(o.dataId).values,f=Ae(d.outShape,o.dtype,qC(h,o.shape,o.dtype,d).values),m=d.strideHeight,g=d.strideWidth,b=d.dilationHeight,y=d.dilationWidth,v=d.effectiveFilterHeight,x=d.effectiveFilterWidth,k=x-1-d.padInfo.left,I=v-1-d.padInfo.top,$=Ae(o.shape,"float32"),R=n.data.get(r.dataId).values,E=Ae(r.shape,"float32",R);for(let P=0;P<d.batchSize;++P)for(let A=0;A<d.inChannels;++A)for(let O=0;O<d.inHeight;++O)for(let T=0;T<d.inWidth;++T){let M=O-I,W=T-k,j=0;for(let Y=0;Y<v;Y+=b){let X=(M+Y)/m;if(!(X<0||X>=d.outHeight||Math.floor(X)!==X))for(let Z=0;Z<x;Z+=y){let ne=(W+Z)/g;if(ne<0||ne>=d.outWidth||Math.floor(ne)!==ne)continue;let ee=v*x-1-f.get(P,X,ne,A),se=Y*x+Z,te=ee===se?1:0;if(te===0)continue;j+=E.get(P,X,ne,A)*te}}$.set(j,P,O,T,A)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var M6={kernelName:Ag,backendName:"cpu",kernelFunc:z6};function L6(e,t,n,s,r){let a=w.computeStrides(t),i=gv(e,t,n,a,r,"max"),o=qC(e,t,n,r,!0,s);return[i.values,o.values]}var B6={kernelName:Rg,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:i,includeBatchInIndex:o}=t,u=n;be(s,"MaxPoolWithArgmax");let l=u.data.get(s.dataId).values,c=C.computePool2DInfo(s.shape,r,a,[1,1],i),[p,d]=L6(l,s.shape,s.dtype,o,c),h=u.write(p,c.outShape,s.dtype),f=u.write(d,c.outShape,s.dtype);return[{dataId:h,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function V6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s,o=w.parseAxisParam(a,r.shape),l=C.computeOutAndReduceShapes(r.shape,o)[1],c=w.sizeFromShape(l),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([c]));p.push(d);let h=wr({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(h);let f=bv({inputs:{a:h,b:d},backend:n});p.push(f);let m=Zl({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:i}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var W6={kernelName:Ka,backendName:"cpu",kernelFunc:V6};function U6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;be(r,"min");let o=w.parseAxisParam(a,r.shape),u=o,l=C.getAxesPermutation(u,r.shape.length),c=r;l!=null&&(c=wn({inputs:{x:r},backend:n,attrs:{perm:l}}),u=C.getInnerMostAxes(u.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",u,c.shape.length);let[p,d]=C.computeOutAndReduceShapes(c.shape,u),h=w.sizeFromShape(d),f=w.makeZerosTypedArray(w.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let b=0;b<f.length;++b){let y=b*h,v=m[y];for(let x=0;x<h;++x){let k=m[y+x];(Number.isNaN(k)||k<v)&&(v=k)}f[b]=v}l!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(i){let b=C.expandShapeToKeepDim(p,o),y=pt({inputs:{x:g},backend:n,attrs:{shape:b}});return n.disposeIntermediateTensorInfo(g),y}return g}var G6={kernelName:Xa,backendName:"cpu",kernelFunc:U6};function H6(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:i}=s;be(r,"mirrorPad");let o=a.map((v,x)=>v[0]+r.shape[x]+v[1]),u=a.map(v=>v[0]),l=a.map((v,x)=>v[0]+r.shape[x]),c=i==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=w.computeStrides(r.shape),f=w.sizeFromShape(o),m=o.length,g=w.computeStrides(o),b=w.getTypedArrayFromDType(r.dtype,f);for(let v=0;v<f;v++){let x=w.indexToLoc(v,m,g);for(let I=0;I<m;I++)x[I]<u[I]?x[I]=u[I]*2-x[I]-c:x[I]>=l[I]&&(x[I]=(l[I]-1)*2-x[I]+c);x=x.map((I,$)=>I-u[$]);let k=w.locToIndex(x,d,h);b[v]=p[k]}return{dataId:n.write(b,o,r.dtype),shape:o,dtype:r.dtype}}var q6={kernelName:Qa,backendName:"cpu",kernelFunc:H6},j6=At((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),K6=Gt(Cl,j6),X6={kernelName:Cl,backendName:"cpu",kernelFunc:K6},Y6=wa(Yd());function ZC(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,i=r.shape.length,o=a;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let u=w.parseAxisParam([o],r.shape),l=QC({inputs:{x:r},backend:n,attrs:{reductionIndices:u,keepDims:!1}}),c=C.expandShapeToKeepDim(l.shape,u),p=pt({inputs:{x:l},backend:n,attrs:{shape:c}}),d=mv({inputs:{a:r,b:p},backend:n}),h=lC({inputs:{x:d},backend:n}),f=Zl({inputs:{x:h},backend:n,attrs:{axis:u,keepDims:!1}}),m=pt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=bv({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var Q6={kernelName:di,backendName:"cpu",kernelFunc:ZC};function Z6(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:i,normalized:o}=s;be(r,"multinomial");let u=o?r:ZC({inputs:{logits:r},backend:n,attrs:{dim:-1}}),l=u.shape[0],c=u.shape[1],p=n.data.get(u.dataId).values,d=[l,a],h=w.makeZerosTypedArray(w.sizeFromShape(d),"int32");for(let f=0;f<l;++f){let m=f*c,g=new Float32Array(c-1);g[0]=p[m];for(let v=1;v<g.length;++v)g[v]=g[v-1]+p[m+v];let b=Y6.alea(i.toString()),y=f*a;for(let v=0;v<a;++v){let x=b();h[y+v]=g.length;for(let k=0;k<g.length;k++)if(x<g[k]){h[y+v]=k;break}}}return o||n.disposeIntermediateTensorInfo(u),n.makeTensorInfo(d,"int32",h)}var J6={kernelName:Dg,backendName:"cpu",kernelFunc:Z6},ej=ws.nonMaxSuppressionV3Impl;function tj(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u}=s;be(r,"NonMaxSuppression");let l=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,{selectedIndices:p}=ej(l,c,i,o,u);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var nj={kernelName:$o,backendName:"cpu",kernelFunc:tj},sj=ws.nonMaxSuppressionV4Impl;function rj(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,padToMaxOutputSize:l}=s;be(r,"NonMaxSuppressionPadded");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,{selectedIndices:d,validOutputs:h}=sj(c,p,i,o,u,l);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var aj={kernelName:Nl,backendName:"cpu",kernelFunc:rj},ij=ws.nonMaxSuppressionV5Impl;function oj(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,softNmsSigma:l}=s;be(r,"NonMaxSuppressionWithScore");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,d=i,h=o,f=u,m=l,{selectedIndices:g,selectedScores:b}=ij(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var uj={kernelName:_o,backendName:"cpu",kernelFunc:oj};function lj(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:i,offValue:o}=s;be(r,"oneHot");let u=w.sizeFromShape(r.shape),l=new Float32Array(u*a);l.fill(o);let c=n.data.get(r.dataId).values;for(let p=0;p<u;++p)c[p]>=0&&c[p]<a&&(l[p*a+c[p]]=i);return n.makeTensorInfo([...r.shape,a],"int32",l)}var cj={kernelName:Eo,backendName:"cpu",kernelFunc:lj};function Ud(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=ga({inputs:{input:s},backend:n}),a=Ud({inputs:{x:r},backend:n}),i=ao({inputs:{input:s},backend:n}),o=Ud({inputs:{x:i},backend:n}),u=En({inputs:{real:a,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}else return yv({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var dj={kernelName:jo,backendName:"cpu",kernelFunc:Ud};function JC(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=ga({inputs:{input:s},backend:n}),a=JC({inputs:{x:r},backend:n}),i=ao({inputs:{input:s},backend:n}),o=Ud({inputs:{x:i},backend:n}),u=En({inputs:{real:a,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}else return yv({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var pj={kernelName:Ao,backendName:"cpu",kernelFunc:JC};function e1(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Wd({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,i=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],u=t.map(c=>{let p=Wd({inputs:{input:c},backend:n,attrs:{dim:r}});return o.push(p),p}),l=io({inputs:u,backend:n,attrs:{axis:r}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),l}var hj={kernelName:Ro,backendName:"cpu",kernelFunc:e1};function fj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:i}=s;be(r,"pad");let o=a.map((y,v)=>y[0]+r.shape[v]+y[1]),u=a.map(y=>y[0]),l=n.data.get(r.dataId).values,c=w.sizeFromShape(r.shape),p=r.shape.length,d=w.computeStrides(r.shape),h=w.sizeFromShape(o),f=o.length,m=w.computeStrides(o),g=w.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;y<c;y++){let x=w.indexToLoc(y,p,d).map((I,$)=>I+u[$]),k=w.locToIndex(x,f,m);g[k]=l[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var t1={kernelName:Ja,backendName:"cpu",kernelFunc:fj},mj=At((e,t)=>Math.pow(e,t)),gj=Gt(ei,mj),bj={kernelName:ei,backendName:"cpu",kernelFunc:gj};function yj(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:i}=n,o=hv(s,r,i,a);return t.makeTensorInfo([o.length],a,o)}var vj={kernelName:Tl,backendName:"cpu",kernelFunc:yj},xj=st($l,e=>1/e),wj={kernelName:$l,backendName:"cpu",kernelFunc:xj};function kj(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:i,size:o}=s;be(r,"resizeBilinear");let u=w.computeStrides(r.shape),[l,c]=o,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(w.sizeFromShape([p,l,c,f])),b=[a&&l>1?d-1:d,a&&c>1?h-1:h],y=[a&&l>1?l-1:l,a&&c>1?c-1:c],v=0,x=b[0]/y[0],k=b[1]/y[1];for(let I=0;I<p;I++)for(let $=0;$<l;$++){let R;i?R=x*($+.5)-.5:R=x*$;let E=Math.max(0,Math.floor(R)),P=R-E,A=Math.min(d-1,Math.ceil(R)),O=I*u[0]+E*u[1],T=I*u[0]+A*u[1];for(let M=0;M<c;M++){let W;i?W=k*(M+.5)-.5:W=k*M;let j=Math.max(0,Math.floor(W)),Y=W-j,X=Math.min(h-1,Math.ceil(W)),Z=O+j*u[2],ne=T+j*u[2],ee=O+X*u[2],se=T+X*u[2];for(let te=0;te<f;te++){let oe=m[Z+te],ae=m[ne+te],de=m[ee+te],me=m[se+te],ke=oe+(de-oe)*Y,Ie=ae+(me-ae)*Y,Re=ke+(Ie-ke)*P;g[v++]=Re}}}return n.makeTensorInfo([p,l,c,f],"float32",g)}var Sj={kernelName:ri,backendName:"cpu",kernelFunc:kj};function Ij(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:i}=s;be([a,r],"resizeBilinearGrad");let o=w.computeStrides(r.shape),[u,l,c,p]=r.shape,[,d,h]=a.shape,f=new Float32Array(u*l*c*p),m=[i&&d>1?l-1:l,i&&h>1?c-1:c],g=[i&&d>1?d-1:d,i&&h>1?h-1:h],b=m[0]/g[0],y=m[1]/g[1],v=n.data.get(a.dataId).values,x=0;for(let k=0;k<u;k++){let I=k*o[0];for(let $=0;$<d;$++){let R=$*b,E=Math.floor(R),P=Math.min(Math.ceil(R),l-1),A=I+E*o[1],O=I+P*o[1],T=R-E,M=1-T;for(let W=0;W<h;W++){let j=W*y,Y=Math.floor(j),X=Math.min(Math.ceil(j),c-1),Z=j-Y,ne=1-Z,ee=A+Y*o[2],se=A+X*o[2],te=O+Y*o[2],oe=O+X*o[2],ae=M*ne,de=M*Z,me=T*ne,ke=T*Z;for(let Ie=0;Ie<p;Ie++){let Re=v[x++];f[ee+Ie]+=Re*ae,f[se+Ie]+=Re*de,f[te+Ie]+=Re*me,f[oe+Ie]+=Re*ke}}}}return n.makeTensorInfo([u,c,l,p],"float32",f)}var Cj={kernelName:Og,backendName:"cpu",kernelFunc:Ij};function Nj(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:i,size:o}=s;be(r,"resizeNearestNeighbor");let u=w.computeStrides(r.shape),[l,c]=o,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(p*l*c*f),b=[a&&l>1?d-1:d,a&&c>1?h-1:h],y=[a&&l>1?l-1:l,a&&c>1?c-1:c],v=b[0]/y[0],x=b[1]/y[1],k=0;for(let I=0;I<p;I++){let $=I*u[0];for(let R=0;R<l;R++){let E=i?v*(R+.5):v*R,P=Math.min(d-1,a?Math.round(E):Math.floor(E));i&&(P=Math.max(0,P));let A=$+P*u[1];for(let O=0;O<c;O++){let T=i?x*(O+.5):x*O,M=Math.min(h-1,a?Math.round(T):Math.floor(T));i&&(M=Math.max(0,M));let W=A+M*u[2];for(let j=0;j<f;j++){let Y=m[W+j];g[k++]=Y}}}}return n.makeTensorInfo([p,l,c,f],r.dtype,g)}var Tj={kernelName:_l,backendName:"cpu",kernelFunc:Nj};function $j(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:i}=s;be([a,r],"resizeNearestNeighborGrad");let o=w.computeStrides(r.shape),u=w.computeStrides(a.shape),[l,c,p,d]=r.shape,[,h,f]=a.shape,m=new Float32Array(l*c*p*d),g=n.data.get(a.dataId).values,b=[i&&h>1?c-1:c,i&&f>1?p-1:p],y=[i&&h>1?h-1:h,i&&f>1?f-1:f],v=b[0]/y[0],x=b[1]/y[1],k=1/v,I=1/x,$=Math.ceil(k)*2+2,R=Math.ceil(I)*2+2;for(let E=0;E<l;E++){let P=E*o[0];for(let A=0;A<c;A++){let O=P+A*o[1],T=Math.floor(A*k),M=Math.floor(T-$/2);for(let W=0;W<p;W++){let j=O+W*o[2],Y=Math.floor(W*I),X=Math.floor(Y-R/2);for(let Z=0;Z<d;Z++){let ne=0;for(let ee=0;ee<$;ee++){let se=ee+M;if(se<0||se>=h)continue;let te=P+se*u[1],oe=se*v,ae=Math.min(c-1,i?Math.round(oe):Math.floor(oe));if(A===ae)for(let de=0;de<R;de++){let me=de+X;if(me<0||me>=f)continue;let ke=te+me*u[2],Ie=me*x,Re=Math.min(p-1,i?Math.round(Ie):Math.floor(Ie));W===Re&&(ne+=g[ke+Z])}}m[j+Z]=ne}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var _j={kernelName:Fg,backendName:"cpu",kernelFunc:$j};function Aj(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;be(r,"reverse");let i=r.shape.length,o=w.parseAxisParam(a,r.shape);if(i===0)return Os({inputs:{x:r},backend:n});let u=new Vt(r.shape,r.dtype),l=n.bufferSync(r);for(let c=0;c<u.size;c++){let p=u.indexToLoc(c),d=p.slice();o.forEach(h=>d[h]=r.shape[h]-1-d[h]),u.set(l.get(...d),...p)}return n.makeTensorInfo(u.shape,u.dtype,u.values)}var Ej={kernelName:Fo,backendName:"cpu",kernelFunc:Aj},Rj={kernelName:Ko,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:i}=t,o=n,u=w.getTypedArrayFromDType(s.dtype,w.sizeFromShape(s.shape)),[l,c,p,d]=s.shape,[h,f]=C.getImageCenter(i,c,p),m=255,g=Math.sin(r),b=Math.cos(r),y=o.data.get(s.dataId).values;for(let x=0;x<l;x++){let k=x*p*c*d;for(let I=0;I<c;I++){let $=I*(p*d);for(let R=0;R<p;R++){let E=R*d;for(let P=0;P<d;P++){let A=[l,I,R,P],O=A[2],T=A[1],M=(O-h)*b-(T-f)*g,W=(O-h)*g+(T-f)*b;M=Math.round(M+h),W=Math.round(W+f);let j=a;if(typeof a!="number"&&(P===3?j=m:j=a[P]),M>=0&&M<p&&W>=0&&W<c){let X=W*(p*d),Z=M*d,ne=k+X+Z+P;j=y[ne]}let Y=k+$+E+P;u[Y]=j}}}}return{dataId:o.write(u,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},Dj=st(Oo,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),Fj={kernelName:Oo,backendName:"cpu",kernelFunc:Dj};function Oj(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:i}=s,{sliceRank:o,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=C.calculateShapes(a,r,i),d=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=qi(h,f,i,p,l,u,o,c,0,d);return n.makeTensorInfo(i,m.dtype,m.values)}var Pj={kernelName:Po,backendName:"cpu",kernelFunc:Oj};function zj(e,t){let n=0,s=e.length,r=0;for(;n<s;)r=Math.floor((n+s)/2),e[r]<t?n=r+1:s=r;return s}function Mj(e,t){let n=0,s=e.length,r=0;for(;n<s;)r=Math.floor((n+s)/2),e[r]<=t?n=r+1:s=r;return s}function Lj(e,t,n,s,r,a){let i=w.getArrayFromDType("int32",n*r);for(let o=0;o<n;++o){let u=e.slice(o*s,(o+1)*s),l=o*r;for(let c=0;c<r;++c)i[l+c]=a==="left"?zj(u,t[c+l]):Mj(u,t[c+l])}return i}function Bj(e){let{inputs:t,backend:n,attrs:s}=e,{sortedSequence:r,values:a}=t,{side:i}=s,o=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,l=Lj(o,u,r.shape[0],r.shape[1],a.shape[1],i);return n.makeTensorInfo(a.shape,"int32",l)}var Vj={kernelName:Pg,backendName:"cpu",kernelFunc:Bj};function Wj(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;be([s,r,a],"select");let i=s.shape.length,o=n.data.get(s.dataId).values,u=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=ln(r.dtype,a.dtype),p=w.makeZerosTypedArray(w.sizeFromShape(r.shape),c),d=0,h=i===0||i>1||r.shape.length===1?1:w.sizeFromShape(r.shape.slice(1));for(let f=0;f<o.length;f++)for(let m=0;m<h;m++)o[f]===1?p[d++]=u[f]:p[d++]=l[f];return n.makeTensorInfo(r.shape,c,p)}var Uj={kernelName:zo,backendName:"cpu",kernelFunc:Wj},Gj=C.SELU_SCALEALPHA,Hj=C.SELU_SCALE,qj=st(Al,e=>e>=0?Hj*e:Gj*(Math.exp(e)-1)),jj={kernelName:Al,backendName:"cpu",kernelFunc:qj},Kj=st(El,e=>e<0?-1:e>0?1:0),Xj={kernelName:El,backendName:"cpu",kernelFunc:Kj},Yj=st(oi,e=>Math.sin(e)),Qj={kernelName:oi,backendName:"cpu",kernelFunc:Yj},Zj=st(Lo,e=>Math.sinh(e)),Jj={kernelName:Lo,backendName:"cpu",kernelFunc:Zj},e5=11920928955078125e-23,lw=Math.log(e5)+2,t5=st(Rl,e=>{let t=e>-lw,n=e<lw,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),n5={kernelName:Rl,backendName:"cpu",kernelFunc:t5};function s5(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:i}=s;be([r],"spaceToBatchND");let o=w.sizeFromShape(a),u=[[0,0]];u.push(...i);for(let I=1+a.length;I<r.shape.length;++I)u.push([0,0]);let l=t1.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:u,constantValue:0}}),c=C.getReshaped(l.shape,a,o,!1),p=C.getPermuted(c.length,a.length,!1),d=C.getReshapedPermuted(l.shape,a,o,!1),m=pt({inputs:{x:l},backend:n,attrs:{shape:c}}),y=wn({inputs:{x:m},backend:n,attrs:{perm:p}}),k=pt({inputs:{x:y},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),k}var r5={kernelName:Bo,backendName:"cpu",kernelFunc:s5};function a5(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:i}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.data.get(s.dataId).values,u=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,c=n.data.get(i.dataId).values[0],[p,d,h,f,m]=$C(o,s.shape,s.dtype,u,r.dtype,l,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var i5={kernelName:dp,backendName:"cpu",kernelFunc:a5};function o5(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(s.dataId).values,u=Array.from(n.data.get(a.dataId).values),[l,c,p]=_C(o,s.shape,s.dtype,i,u);return[n.makeTensorInfo(c,s.dtype,l),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var u5={kernelName:Dl,backendName:"cpu",kernelFunc:o5};function l5(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,[l,c]=fv(i,s.shape,s.dtype,o,u,!0);return n.makeTensorInfo(c,s.dtype,l)}var c5={kernelName:pp,backendName:"cpu",kernelFunc:l5};function d5(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let i=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,[l,c]=fv(i,s.shape,s.dtype,o,u);return n.makeTensorInfo(c,s.dtype,l)}var p5={kernelName:hp,backendName:"cpu",kernelFunc:d5};function h5(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:i}=t,{outputShape:o}=s,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:d}=C.calculateShapes(a,r,o),h=!1,f=n.bufferSync(r),m;switch(a.dtype){case"bool":{let g=n.bufferSync(a),b=Boolean(n.data.get(i.dataId).values[0]);m=qi(f,g,o,d,c,l,u,p,b,h);break}case"float32":{let g=n.bufferSync(a),b=n.data.get(i.dataId).values[0];m=qi(f,g,o,d,c,l,u,p,b,h);break}case"int32":{let g=n.bufferSync(a),b=n.data.get(i.dataId).values[0];m=qi(f,g,o,d,c,l,u,p,b,h);break}case"string":{let g=n.bufferSync(a),b=w.decodeString(n.data.get(i.dataId).values[0]);m=qi(f,g,o,d,c,l,u,p,b,h);break}default:throw new Error(`Unsupported type ${a.dtype}`)}return n.makeTensorInfo(o,m.dtype,m.values)}var f5={kernelName:fp,backendName:"cpu",kernelFunc:h5};function m5(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:i}=s,o=w.parseAxisParam(i,r.shape)[0],u=C.prepareSplitSize(r,a,o),l=new Array(r.shape.length).fill(0),c=r.shape.slice();return u.map(p=>{let d=[...c];d[o]=p;let h=ba({inputs:{x:r},backend:n,attrs:{begin:l,size:d}});return l[o]+=p,h})}var g5={kernelName:Vo,backendName:"cpu",kernelFunc:m5},b5={kernelName:Fl,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;be(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let o=0;o<r.length;++o){let u=r[o];a[o]=u*u}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},y5=st(mi,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),v5={kernelName:mi,backendName:"cpu",kernelFunc:y5};function x5(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:i,strides:o,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s;be(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=kt.sliceInfo(r.shape,a,i,o,u,l,c,p,d),k;if(m)k=pt({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||b){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let I=kt.computeOutShape(y,v,x),$=ba({inputs:{x:r},backend:n,attrs:{begin:y,size:I}});k=pt({inputs:{x:$},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo($)}else{let I=n.bufferSync(r),$=EC(h,I,x,y);k=n.makeTensorInfo(f,$.dtype,$.values)}return k}var w5={kernelName:Wo,backendName:"cpu",kernelFunc:x5};function k5(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:i,rightPad:o,padWidth:u,preserveShortSequences:l}=s,{data:c,dataSplits:p}=t,d=n.data.get(c.dataId).values,h=n.data.get(p.dataId).values,[f,m]=RC(d,h,r,a,i,o,u,l);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var S5={kernelName:mp,backendName:"cpu",kernelFunc:k5};function I5(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:i}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(a.dataId).values,u=n.data.get(i.dataId).values[0],[l,c,p]=DC(o,u,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",l),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var C5={kernelName:zg,backendName:"cpu",kernelFunc:I5};function N5(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(a.dataId).values,o=FC(i,r);return n.makeTensorInfo(a.shape,"int32",o)}var T5={kernelName:Mg,backendName:"cpu",kernelFunc:N5},$5=st(Uo,e=>Math.tan(e)),_5={kernelName:Uo,backendName:"cpu",kernelFunc:$5},A5=st(fi,e=>Math.tanh(e)),E5={kernelName:fi,backendName:"cpu",kernelFunc:A5};function R5(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;be(r,"tile");let i=PC(n.bufferSync(r),a);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var D5={kernelName:Nr,backendName:"cpu",kernelFunc:R5};function F5(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:i}=s;be(r,"topk");let o=n.data.get(r.dataId).values,[u,l]=MC(o,r.shape,r.dtype,a,i);return[n.makeTensorInfo(u.shape,u.dtype,u.values),n.makeTensorInfo(l.shape,l.dtype,l.values)]}var O5={kernelName:Go,backendName:"cpu",kernelFunc:F5};function P5(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:i,fillMode:o,fillValue:u,outputShape:l}=n,[c,p,d,h]=r.shape,[f,m]=l!=null?l:[p,d],g=[c,f,m,h],b=w.computeStrides(r.shape),y=b[0],v=b[1],x=b[2],k=w.getTypedArrayFromDType(r.dtype,w.sizeFromShape(g));k.fill(u);let I=s.data.get(r.dataId).values,$=s.data.get(a.dataId).values;for(let E=0;E<c;++E){let P=a.shape[0]===1?$:$.subarray(E*8,E*8+8);for(let A=0;A<f;++A)for(let O=0;O<m;++O)for(let T=0;T<h;++T){let M,W=P[6]*O+P[7]*A+1;if(W===0)continue;let j=(P[0]*O+P[1]*A+P[2])/W,Y=(P[3]*O+P[4]*A+P[5])/W,X=cw(j,d,o),Z=cw(Y,p,o);switch(i){case"nearest":M=W5(I,p,d,y,v,x,E,Z,X,T,u);break;case"bilinear":M=U5(I,p,d,y,v,x,E,Z,X,T,u);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let ne=E*y+A*v+O*x+T;k[ne]=M}return s.makeTensorInfo(g,r.dtype,k)}return{dataId:s.write(k,g,r.dtype),shape:r.shape,dtype:r.dtype}}var z5={kernelName:Ho,backendName:"cpu",kernelFunc:P5};function cw(e,t,n){switch(n){case"reflect":return M5(e,t);case"wrap":return L5(e,t);case"nearest":return V5(e,t);case"constant":default:return B5(e,t)}}function M5(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return w.clamp(0,n,t-1)}function L5(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return w.clamp(0,n,t-1)}function B5(e,t){return e}function V5(e,t){return w.clamp(0,e,t-1)}function Pu(e,t,n,s,r,a,i,o,u,l,c){let p=i*s+o*r+u*a+l;return 0<=o&&o<t&&0<=u&&u<n?e[p]:c}function W5(e,t,n,s,r,a,i,o,u,l,c){let p=Math.round(o),d=Math.round(u);return Pu(e,t,n,s,r,a,i,p,d,l,c)}function U5(e,t,n,s,r,a,i,o,u,l,c){let p=Math.floor(o),d=Math.floor(u),h=p+1,f=d+1,m=(f-u)*Pu(e,t,n,s,r,a,i,p,d,l,c)+(u-d)*Pu(e,t,n,s,r,a,i,p,f,l,c),g=(f-u)*Pu(e,t,n,s,r,a,i,h,d,l,c)+(u-d)*Pu(e,t,n,s,r,a,i,h,f,l,c);return(h-o)*m+(o-p)*g}function G5(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;be(a,"unique");let i=s.data.get(a.dataId).values,{outputValues:o,outputShape:u,indices:l}=LC(i,r,a.shape,a.dtype);return[s.makeTensorInfo(u,a.dtype,o),s.makeTensorInfo([l.length],"int32",l)]}var H5={kernelName:Lg,backendName:"cpu",kernelFunc:G5};function q5(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let i=r.shape.length,o=r.shape[a],u=new Array(i-1),l=0;for(let h=0;h<i;h++)h!==a&&(u[l++]=r.shape[h]);let c=new Array(i).fill(0),p=r.shape.slice();p[a]=1;let d=new Array(o);for(let h=0;h<d.length;h++){c[a]=h;let f=ba({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});d[h]=pt({inputs:{x:f},backend:n,attrs:{shape:u}}),n.disposeIntermediateTensorInfo(f)}return d}var j5={kernelName:qo,backendName:"cpu",kernelFunc:q5};function K5(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:i}=s;be(r,"unsortedSegmentSum");let o=r.shape.length,u=a.shape.length,l=[],c=[],p=o-u,d=a;for(let f=0;f<p;++f){let m=Wd({inputs:{input:d},backend:n,attrs:{dim:f+1}});d=m,c.push(m)}for(let f=0;f<i;++f){let m=w.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),b=oC({inputs:{a:g,b:d},backend:n}),y=wr({inputs:{x:b},backend:n,attrs:{dtype:"float32"}}),v=eh({inputs:{a:y,b:r},backend:n}),x=Zl({inputs:{x:v},backend:n,attrs:{axis:0,keepDims:!1}});l.push(x),c.push(g),c.push(b),c.push(y),c.push(v),c.push(x)}let h=e1({inputs:l,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var X5={kernelName:gp,backendName:"cpu",kernelFunc:K5},Y5=[YG,UU,ZG,eH,XU,nH,rH,iH,uH,cH,pH,fH,gH,vH,wH,IH,NH,$H,AH,KG,RH,FH,PH,MH,jU,QU,BH,GU,WH,GH,HH,jH,XH,QH,JH,tq,sq,aq,oq,lq,dq,hq,mq,gq,yq,xq,kq,Sq,Iq,Cq,$q,VG,Aq,ZU,Mq,JU,Lq,tG,Hq,qq,Kq,sG,Qq,Jq,t6,s6,a6,aG,oG,HU,o6,UH,l6,d6,h6,WG,lG,dG,m6,hG,b6,x6,k6,C6,T6,_6,A6,mG,R6,F6,P6,M6,B6,W6,G6,bG,q6,X6,J6,vG,wG,nj,aj,uj,SG,cj,pj,hj,t1,bj,GG,NG,vj,qU,jm,wj,HG,qG,jG,Sj,Cj,Tj,_j,Ej,Rj,Fj,$G,Pj,Vj,Uj,jj,AG,Xj,Qj,Jj,EG,Q6,n5,r5,i5,u5,c5,p5,f5,g5,FG,b5,PG,v5,w5,S5,C5,T5,BG,Nq,_5,E5,D5,O5,z5,IG,H5,j5,X5,dj];for(let e of Y5)Ol(e);var Q5={};Ee(Q5,{assertNotComplex:()=>ru,bindCanvasToFramebuffer:()=>lK,bindColorTextureToFramebuffer:()=>ld,bindTextureToProgramUniformSampler:()=>g1,bindTextureUnit:()=>h1,bindVertexBufferToProgramAttribute:()=>Xm,callAndCheck:()=>fe,canBeRepresented:()=>n1,createFragmentShader:()=>a1,createFramebuffer:()=>p1,createProgram:()=>i1,createStaticIndexBuffer:()=>l1,createStaticVertexBuffer:()=>u1,createTexture:()=>c1,createVertexShader:()=>r1,getBatchDim:()=>ya,getExtensionOrThrow:()=>zu,getFramebufferErrorMessage:()=>b1,getMaxTexturesInShader:()=>w1,getNumChannels:()=>oK,getProgramUniformLocation:()=>m1,getProgramUniformLocationOrThrow:()=>f1,getRowsCols:()=>va,getShapeAs3D:()=>cd,getTextureShapeFromLogicalShape:()=>v1,getWebGLDisjointQueryTimerVersion:()=>k1,getWebGLErrorMessage:()=>s1,getWebGLMaxTextureSize:()=>x1,hasExtension:()=>Ln,isCapableOfRenderingToFloatTexture:()=>S1,isDownloadFloatTextureEnabled:()=>I1,isReshapeFree:()=>rl,isWebGLFenceEnabled:()=>C1,isWebGLVersionEnabled:()=>Qm,linkProgram:()=>o1,logShaderSourceAndInfoLog:()=>xv,resetMaxTextureSize:()=>cK,resetMaxTexturesInShader:()=>dK,unbindColorTextureFromFramebuffer:()=>Ym,unbindTextureUnit:()=>uK,validateFramebuffer:()=>Mu,validateProgram:()=>ud,validateTextureSize:()=>d1});var Qr={},tm={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Z5(e,t){Qr[e]=t}function xs(e,t){if(!(e in Qr)||t!=null){let s=eK(e,t);if(s!==null)Qr[e]=s;else return console.log("Could not get context for WebGL version",e),null}let n=Qr[e];return n==null||n.isContextLost()?(delete Qr[e],xs(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Qr[e])}function J5(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function eK(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?J5(e):t;return n.addEventListener("webglcontextlost",s=>{s.preventDefault(),delete Qr[e]},!1),e===1?n.getContext("webgl",tm)||n.getContext("experimental-webgl",tm):n.getContext("webgl2",tm)}function Jl(e,t){return[t,e]}function tK(e,t){return e*t}function ed(e){let t=w.sizeFromShape(e),n=Math.ceil(t/4);return w.sizeToSquarishShape(n)}function su(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function nK(e,t){let[n,s]=su(e,t);return n*s*4}function vv(e,t){let n=e,s,r,a,i,o,u,l,c,p,d;return K().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,i=n.RGBA32F,o=n.RED,l=4,c=1,p=n.HALF_FLOAT,d=n.FLOAT,u=n.RGBA8):(s=e.RGBA,r=e.RGBA,a=e.RGBA,i=n.RGBA,o=e.RGBA,l=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT,u=e.RGBA),{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:u,downloadUnpackNumChannels:l,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:d}}function fe(e,t){let n=t();return K().getBool("DEBUG")&&sK(e),n}function sK(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+s1(e,t))}var rK=596e-10,aK=65504;function n1(e){return!!(K().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||rK<Math.abs(e)&&Math.abs(e)<aK)}function s1(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function zu(e,t){return Qs(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function r1(e,t){let n=Qs(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(fe(e,()=>e.shaderSource(n,t)),fe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function a1(e,t){let n=Qs(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(fe(e,()=>e.shaderSource(n,t)),fe(e,()=>e.compileShader(n)),K().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw xv(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var iK=/ERROR: [0-9]+:([0-9]+):/g;function xv(e,t){let n=iK.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
|
|
`),a=r.length.toString().length+2,i=r.map((p,d)=>w.rightPad((d+1).toString(),a)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let u=i.slice(0,s-1),l=i.slice(s-1,s),c=i.slice(s);console.log(u.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${w.rightPad(l[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function i1(e){return Qs(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function o1(e,t){if(fe(e,()=>e.linkProgram(t)),!K().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function ud(e,t){if(fe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function u1(e,t){let n=Qs(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return fe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),fe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function l1(e,t){let n=Qs(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return fe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),fe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function oK(){return K().getNumber("WEBGL_VERSION")===2?1:4}function c1(e){return Qs(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function d1(e,t){let n=K().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function p1(e){return Qs(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Xm(e,t,n,s,r,a,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(fe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),fe(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,a,i)),fe(e,()=>e.enableVertexAttribArray(o)),!0)}function h1(e,t,n){y1(e,n),fe(e,()=>e.activeTexture(e.TEXTURE0+n)),fe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function uK(e,t){y1(e,t),fe(e,()=>e.activeTexture(e.TEXTURE0+t)),fe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function f1(e,t,n){return Qs(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function m1(e,t,n){return e.getUniformLocation(t,n)}function g1(e,t,n,s){fe(e,()=>h1(e,t,s)),fe(e,()=>e.uniform1i(n,s))}function lK(e){fe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),fe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),fe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function ld(e,t,n){fe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),fe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function Ym(e,t){fe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),fe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Mu(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+b1(e,t))}function b1(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Qs(e,t,n){let s=fe(e,()=>t());if(s==null)throw new Error(n);return s}function y1(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function ya(e,t=2){return w.sizeFromShape(e.slice(0,e.length-t))}function va(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function cd(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[ya(e),...va(e)]),t}function v1(e,t=!1){let n=K().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?w.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=w.squeezeShape(e).newShape);let s=w.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=ya(e),a=2,i=2;return e.length&&([a,i]=va(e)),s=r*(a/2)*(i/2),w.sizeToSquarishShape(s).map(o=>o*2)}return w.sizeToSquarishShape(s)}function td(e){return e%2===0}function rl(e,t){if(e=e.slice(-2),t=t.slice(-2),w.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||td(n)&&td(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&td(e[0])&&td(t[0])}var dd,pd;function x1(e){if(dd==null){let t=xs(e);dd=t.getParameter(t.MAX_TEXTURE_SIZE)}return dd}function cK(){dd=null}function dK(){pd=null}function w1(e){if(pd==null){let t=xs(e);pd=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,pd)}function k1(e){if(e===0)return 0;let t,n=xs(e);return Ln(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ln(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ln(e,t){return e.getExtension(t)!=null}function Qm(e){try{if(xs(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function S1(e){if(e===0)return!1;let t=xs(e);if(e===1){if(!Ln(t,"OES_texture_float"))return!1}else if(!Ln(t,"EXT_color_buffer_float"))return!1;return Zm(t)}function I1(e){if(e===0)return!1;let t=xs(e);if(e===1){if(!Ln(t,"OES_texture_float")||!Ln(t,"WEBGL_color_buffer_float"))return!1}else{if(Ln(t,"EXT_color_buffer_float"))return Zm(t);let s="EXT_color_buffer_half_float";if(Ln(t,s)){let r=t.getExtension(s);return pK(t,r)}return!1}return Zm(t)}function Zm(e){let t=vv(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),i}function pK(e,t){let n=vv(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(i),o}function C1(e){return e!==2?!1:xs(e).fenceSync!=null}function ru(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&w.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Ne=K();Ne.registerFlag("HAS_WEBGL",()=>Ne.getNumber("WEBGL_VERSION")>0);Ne.registerFlag("WEBGL_VERSION",()=>Qm(2)?2:Qm(1)?1:0);Ne.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Ne.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Ne.get("WEBGL_VERSION")===2);Ne.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Ne.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Ne.registerFlag("WEBGL_PACK",()=>Ne.getBool("HAS_WEBGL"));Ne.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_CLIP",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_PACK_REDUCE",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_LAZILY_UNPACK",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_CONV_IM2COL",()=>Ne.getBool("WEBGL_PACK"));Ne.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>x1(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>w1(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Ne.getNumber("WEBGL_VERSION");return e===0?0:k1(e)});Ne.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Ne.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!vp.isMobile());Ne.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>S1(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Ne.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Ne.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Ne.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>I1(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_FENCE_API_ENABLED",()=>C1(Ne.getNumber("WEBGL_VERSION")));Ne.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Ne.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Ne.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Ne.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>vp.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Ne.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Ne.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Ne.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Ne.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function fn(){let e,t,n,s,r,a,i,o,u,l;return K().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
uint floatToUint = floatBitsToUint(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,u="",l=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,u=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,l=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:u,defineRound:l}}function xi(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let i=`int ${e[a]} = ${n} / ${r}`,o=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${i}; ${o};`}).join("")}function th(e,t,n="index"){let s=w.computeStrides(t);return s.map((r,a)=>{let i=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,o=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${i}; ${o};`}).join("")}function hK(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function fK(e,t,n="index"){let s=e.map((a,i)=>i),r=hK(s,t);return r.map((a,i)=>{let o=`int ${e[i]} = ${n} / ${r[i]}`,u=i===r.length-1?`int ${e[i+1]} = ${n} - ${e[i]} * ${r[i]}`:`index -= ${e[i]} * ${r[i]}`;return`${o}; ${u};`}).join("")}function wv(e){let t=w.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}function kv(){return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
|
|
}
|
|
`}var N1=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,{getBroadcastDims:T1}=C;function mK(e,t,n){let s=[];if(e.forEach(h=>{let f=w.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=Sv(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
|
|
`),a=e.map(h=>gK(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
|
|
`),i=t.texShape,o=fn(),u=vK(o),l,c,p=kK(o);return t.isPacked?(l=bK(t.logicalShape,i,n.enableShapeUniforms),c=wK(o)):(l=yK(t.logicalShape,i,n.enableShapeUniforms),c=xK(o)),n.packedInputs&&(p+=NK),[p,u,c,r,l,a,n.userCode].join(`
|
|
`)}function au(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return MK(e,t);case 1:return BK(e,t);case 2:return WK(e,t);case 3:return GK(e,t);case 4:return qK(e,t);case 5:return jK(e);case 6:return KK(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function $1(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return zK(e);case 1:return LK(e,t);case 2:return VK(e,t);case 3:return UK(e,t);default:return HK(e,t)}}function gK(e,t,n=!1,s){let r="";n?r+=$1(e,s):r+=au(e,s);let a=e.shapeInfo.logicalShape,i=t.logicalShape;return a.length<=i.length&&(n?r+=XK(e,t):r+=YK(e,t)),r}function bK(e,t,n){switch(e.length){case 0:return _1();case 1:return TK(e,t,n);case 2:return OK(e,t,n);case 3:return _K(e,t,n);default:return EK(e,t,n)}}function yK(e,t,n){switch(e.length){case 0:return _1();case 1:return $K(e,t,n);case 2:return PK(e,t,n);case 3:return AK(e,t,n);case 4:return RK(e,t,n);case 5:return DK(e,t);case 6:return FK(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function vK(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function xK(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function wK(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function kK(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${SK}
|
|
${IK}
|
|
${CK}
|
|
`}var SK=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,IK=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,CK=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,NK=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function _1(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function TK(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${s[1]}.0);
|
|
}
|
|
`:s[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${s[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
|
|
}
|
|
`}function $K(e,t,n){return t[0]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * float(outTexShape[1]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?n?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * float(outTexShape[0]));
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:n?`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
return resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function _K(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function AK(e,t,n){if(n)return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${th(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`;let s=xi(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function EK(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
|
|
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
|
|
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
|
|
int texelsInBatchN = texelsInBatch * outShape[1];
|
|
|
|
int b2 = index / texelsInBatchN;
|
|
index -= b2 * texelsInBatchN;
|
|
|
|
int b = index / texelsInBatch;
|
|
index -= b * texelsInBatch;
|
|
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec4(b2, b, r, c);
|
|
}
|
|
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),i=a,o="",u="b, r, c";for(let l=2;l<e.length-1;l++)i*=e[e.length-l-1],o=`
|
|
int b${l} = index / ${i};
|
|
index -= b${l} * ${i};
|
|
`+o,u=`b${l}, `+u;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
|
|
${o}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${u});
|
|
}
|
|
`}function RK(e,t,n){if(n)return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
${th(["r","c","d","d2"],e)}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`;let s=xi(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${s}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function DK(e,t){let n=xi(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function FK(e,t){let n=xi(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function OK(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(w.arraysEqual(e,t))return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
|
|
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(packedTexShape[0], packedTexShape[1]));
|
|
|
|
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
|
|
int r = 2 * (index / texelsInLogicalRow);
|
|
int c = imod(index, texelsInLogicalRow) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${s[0]}, ${s[1]}));
|
|
|
|
int index = resTexRC.x * ${s[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function PK(e,t,n){return w.arraysEqual(e,t)?n?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:n?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(outTexShape[0], outTexShape[1]));
|
|
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
|
|
int r = index / outShape[1];
|
|
int c = index - r * outShape[1];
|
|
return ivec2(r, c);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function wi(e){return`offset${e}`}function zK(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=fn();return`
|
|
vec4 ${n}() {
|
|
return ${s.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function MK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${s}() {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let i=wi(n);if(t)return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let[o,u]=e.shapeInfo.texShape;return`
|
|
float ${s}() {
|
|
vec2 uv = uvFromFlat(${o}, ${u}, ${i});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function LK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=fn();if(t)return`
|
|
vec4 ${s}(int index) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom1D(
|
|
packedTexShape[0], packedTexShape[1], index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`;let i=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
|
|
vec4 ${s}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${i[0]}, ${i[1]}, index);
|
|
return ${a.texture2D}(${n}, uv);
|
|
}
|
|
`}function BK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int index) {
|
|
${iu(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],i=r[1];if(i===1&&a===1)return`
|
|
float ${s}(int index) {
|
|
return sampleTexture(${n}, halfCR);
|
|
}
|
|
`;let o=wi(n);return i===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / float(${n}TexShape[0]));
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${o}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:a===1?t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / float(${n}TexShape[1]), 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = vec2((float(index + ${o}) + 0.5) / ${i}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:t?`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${s}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${i}, index + ${o});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function VK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,i=a[0],o=a[1],u=fn();if(a!=null&&w.arraysEqual(n,a))return t?`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
|
|
return ${u.texture2D}(${s}, uv);
|
|
}
|
|
`:`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${o}.0, ${i}.0);
|
|
|
|
return ${u.texture2D}(${s}, uv);
|
|
}
|
|
`;if(t)return`
|
|
vec4 ${r}(int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
|
|
return ${u.texture2D}(${s}, uv);
|
|
}
|
|
`;let l=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${c}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${u.texture2D}(${s}, uv);
|
|
}
|
|
`}function WK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&w.arraysEqual(n,a)){if(t)return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let d=a[0],h=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}let{newShape:i,keptDims:o}=w.squeezeShape(n),u=i;if(u.length<n.length){let d=ou(e,u),h=["row","col"];return`
|
|
${au(d,t)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${uu(h,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
|
|
${iu(e)}
|
|
}
|
|
`;let l=a[0],c=a[1],p=wi(s);return c===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:l===1?t?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:t?`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${s}Shape[1] + col + ${p};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${n[1]} + col + ${p};
|
|
vec2 uv = uvFromFlat(${l}, ${c}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function UK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,i=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let d=n.slice(1),h=[1,2],f=ou(e,d),m=["b","row","col"];return`
|
|
${$1(f,t)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${uu(m,h)});
|
|
}
|
|
`}let o=fn();if(t)return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
|
|
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
|
|
vec2 uv = packedUVfrom3D(
|
|
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
|
|
return ${o.texture2D}(${s}, uv);
|
|
}
|
|
`;let u=i[0],l=i[1],c=Math.ceil(n[2]/2),p=c*Math.ceil(n[1]/2);return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${u}, ${l}, ${p}, ${c}, b, row, col);
|
|
return ${o.texture2D}(${s}, uv);
|
|
}
|
|
`}function GK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],i=n[2],{newShape:o,keptDims:u}=w.squeezeShape(n),l=o;if(l.length<n.length){let m=ou(e,l),g=["row","col","depth"];return`
|
|
${au(m,t)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${uu(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${i}, 1)));
|
|
${iu(e)}
|
|
}
|
|
`;let c=e.shapeInfo.texShape,p=c[0],d=c[1],h=e.shapeInfo.flatOffset;if(d===a&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
int stride1 = ${s}Shape[2];
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(stride1, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${i}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(d===i&&h==null)return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}.0, ${p}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let f=wi(s);return t?`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int stride0 = ${s}Shape[1] * ${s}Shape[2];
|
|
int stride1 = ${s}Shape[2];
|
|
int index = row * ${a} + col * ${i} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${i} + depth + ${f};
|
|
vec2 uv = uvFromFlat(${p}, ${d}, index);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function HK(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=fn();if(t)return`
|
|
vec4 ${s}(int b2, int b, int row, int col) {
|
|
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
|
|
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
|
|
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
|
|
texelsInBatch *= ${n}Shape[1];
|
|
index = b2 * texelsInBatch + index;
|
|
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
|
|
int texR = index / packedTexShape[1];
|
|
int texC = index - texR * packedTexShape[1];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`;let a=e.shapeInfo.logicalShape,i=a.length,o=e.shapeInfo.texShape,u=[Math.ceil(o[0]/2),Math.ceil(o[1]/2)],l=u[0],c=u[1],p=Math.ceil(a[i-1]/2),d=p*Math.ceil(a[i-2]/2),h="int b, int row, int col",f=`b * ${d} + (row / 2) * ${p} + (col / 2)`;for(let m=2;m<i-1;m++)h=`int b${m}, `+h,d*=a[i-m-1],f=`b${m} * ${d} + `+f;return`
|
|
vec4 ${s}(${h}) {
|
|
int index = ${f};
|
|
int texR = index / ${c};
|
|
int texC = index - texR * ${c};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${l});
|
|
return ${r.texture2D}(${n}, uv);
|
|
}
|
|
`}function qK(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],i=n[2]*a,o=n[1]*i,{newShape:u,keptDims:l}=w.squeezeShape(n);if(u.length<n.length){let y=ou(e,u),v=["row","col","depth","depth2"];return`
|
|
${au(y,t)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${uu(v,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${a}, 1)));
|
|
${iu(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===o&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
${f}
|
|
${m}
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(stride1, stride2, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${i}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;if(h===a&&c==null)return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}TexShape[1], ${s}TexShape[0]);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${n[1]*n[2]}, ${n[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`;let b=wi(s);return t?`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
${f}
|
|
${m}
|
|
${g}
|
|
int index = row * stride0 + col * stride1 +
|
|
depth * stride2 + depth2;
|
|
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${b});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index + ${b});
|
|
return sampleTexture(${s}, uv);
|
|
}
|
|
`}function jK(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,i=t[2]*a,o=t[1]*i,{newShape:u,keptDims:l}=w.squeezeShape(t);if(u.length<t.length){let m=ou(e,u),g=["row","col","depth","depth2","depth3"];return`
|
|
${au(m)}
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${s}(${uu(g,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${a}, ${r})) +
|
|
depth3;
|
|
${iu(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1];if(h===o&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${a}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&c==null)return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=wi(n);return`
|
|
float ${s}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${a} +
|
|
depth2 * ${r} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function KK(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=w.squeezeShape(t);if(r.length<t.length){let g=ou(e,r),b=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${au(g)}
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${s}(${uu(b,a)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,u=t[3]*o,l=t[2]*u,c=t[1]*l;if(e.shapeInfo.isUniform)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${l}, ${u}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${iu(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],f=d[1];if(f===c&&p==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${l}, ${u}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===i&&p==null)return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=wi(n);return`
|
|
float ${s}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${l} + depth * ${u} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${h}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function iu(e){let t=e.name,n=w.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function XK(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=T1(e.shapeInfo.logicalShape,t.logicalShape),u=ot(i),l=i-a,c,p=["x","y","z","w","u","v"];a===0?c="":i<2&&o.length>=1?c="coords = 0;":c=o.map(y=>`coords.${p[y+l]} = 0;`).join(`
|
|
`);let d="";i<2&&a>0?d="coords":d=e.shapeInfo.logicalShape.map((y,v)=>`coords.${p[v+l]}`).join(", ");let h="return outputValue;",m=w.sizeFromShape(e.shapeInfo.logicalShape)===1,b=w.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!b)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!b)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let y=a-2,v=a-1;o.indexOf(y)>-1&&o.indexOf(v)>-1?h="return vec4(outputValue.x);":o.indexOf(y)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(v)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${s}(${d});
|
|
${h}
|
|
}
|
|
`}function YK(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,u=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===u&&e.shapeInfo.flatOffset==null&&w.arraysEqual(i,a))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let l=ot(u),c=T1(e.shapeInfo.logicalShape,t.logicalShape),p=u-o,d,h=["x","y","z","w","u","v"];o===0?d="":u<2&&c.length>=1?d="coords = 0;":d=c.map(m=>`coords.${h[m+p]} = 0;`).join(`
|
|
`);let f="";return u<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+p]}`).join(", "),`
|
|
float ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${d}
|
|
return get${s}(${f});
|
|
}
|
|
`}function ot(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Sv(e,t,n){let{newShape:s,keptDims:r}=w.squeezeShape(t),a=t.length,i=e&&a===3&&t[0]===1,o=i?t.slice(1):s,u=!e&&a>1&&!w.arraysEqual(t,n)&&s.length<a||i;return{useSqueezeShape:u,uniformShape:u?o:t,keptDims:r}}function ou(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function uu(e,t){return t.map(n=>e[n]).join(", ")}function QK(e,t,n,s){let r=n.map((c,p)=>{let d={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(d.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:d}}),a=r.map(c=>c.shapeInfo),i={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},o=mK(r,i,t),u=a1(e.gl,o),l=e.createProgram(u);return K().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:u,source:o,webGLProgram:l,inShapeInfos:a,outShapeInfo:i,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:{program:t,fragmentShader:u,source:o,webGLProgram:l,inShapeInfos:a,outShapeInfo:i,...A1(e,t,l)}}function A1(e,t,n){let s={},r={},a={},i=[],o,u,l,c=null,p=null;p=e.getUniformLocation(n,"NAN",!1),K().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(n,"INFINITY",!1));let d=!1;for(let h=0;h<t.variableNames.length;h++){let f=t.variableNames[h];s[f]=e.getUniformLocation(n,f,d),s[`offset${f}`]=e.getUniformLocation(n,`offset${f}`,d),t.enableShapeUniforms&&(r[`${f}Shape`]=e.getUniformLocation(n,`${f}Shape`,d),a[`${f}TexShape`]=e.getUniformLocation(n,`${f}TexShape`,d))}return t.enableShapeUniforms&&(o=e.getUniformLocation(n,"outShape",d),l=e.getUniformLocation(n,"outShapeStrides",d),u=e.getUniformLocation(n,"outTexShape",d)),t.customUniforms&&t.customUniforms.forEach((h,f)=>{i[f]=e.getUniformLocation(n,h.name,d)}),{uniformLocations:s,customUniformLocations:i,infLoc:c,nanLoc:p,inShapesLocations:r,inTexShapesLocations:a,outShapeLocation:o,outShapeStridesLocation:l,outTexShapeLocation:u}}function dw(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],i=a.shape;if(!w.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&a.isUniform)return;let o=n.texShape,u=a.isUniform?null:a.texData.texShape;if(!w.arraysEqual(o,u))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${u} must match`)})}function ZK(e,t,n,s,r){t.program.enableShapeUniforms||(dw(t.inShapeInfos,n),dw([t.outShapeInfo],[s]));let a=s.texData.texture,i=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a.texture,i[0],i[1]):e.setOutputMatrixTexture(a.texture,i[0],i[1]),e.setProgram(t.webGLProgram),K().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((u,l)=>{let c=t.program.variableNames[l],p=t.uniformLocations[c],d=t.uniformLocations[`offset${c}`],h=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(h){let{uniformShape:m}=Sv(t.program.packedInputs,u.shape,u.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,u.texData.texShape[0],u.texData.texShape[1]),p!=null){if(u.isUniform){if(w.sizeFromShape(u.shape)<2)e.gl.uniform1f(p,u.uniformValues[0]);else{let m=u.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(p,m)}return}u.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,u.texData.slice.flatOffset),e.setInputMatrixTexture(u.texData.texture.texture,p,l)}});let o=t.outShapeLocation;if(o)switch(s.shape.length){case 1:e.gl.uniform1iv(o,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(o,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(o,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(o,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let u=w.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(u));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(u));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(u));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((u,l)=>{let c=t.customUniformLocations[l],p=r[l];if(u.type==="float")e.gl.uniform1fv(c,p);else if(u.type==="vec2")e.gl.uniform2fv(c,p);else if(u.type==="vec3")e.gl.uniform3fv(c,p);else if(u.type==="vec4")e.gl.uniform4fv(c,p);else if(u.type==="int")e.gl.uniform1iv(c,p);else if(u.type==="ivec2")e.gl.uniform2iv(c,p);else if(u.type==="ivec3")e.gl.uniform3iv(c,p);else if(u.type==="ivec4")e.gl.uniform4iv(c,p);else throw Error(`uniform type ${u.type} is not supported yet.`)}),e.executeProgram()}function JK(e,t,n){let s="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!i.isUniform){let u=i.texData.texShape,{useSqueezeShape:l,uniformShape:c,keptDims:p}=Sv(e.packedInputs,i.shape,u),d="",h="",f="";if(c.length===1&&e.packedInputs){let k=[Math.ceil(u[0]/2),Math.ceil(u[1]/2)];d=`${k[0]>1}_${k[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let k=w.computeStrides(c);f=`${k[0]===u[1]}_${k[k.length-1]===u[1]}`}let m=i.shape.length,g=c.length===2&&w.arraysEqual(i.shape,u),b=w.sizeFromShape(i.shape)===1,y=C.getBroadcastDims(i.shape,n.shape),v=!e.packedInputs&&m===n.shape.length&&w.arraysEqual(u,n.texData.texShape),x=e.packedInputs||c.length>2?"":`${u[0]>1}_${u[1]>1}`;s+=`${m}_${v}_${l?p:""}_${c.length}_${b}_${y}_${g}_${d}_${h}_${f}_${x}_${o}`}else{let u=i.isUniform?"uniform":i.texData.texShape;s+=`${i.shape}_${u}_${o}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${K().getNumber("WEBGL_VERSION")}`,a}function Sn(e){return K().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var eX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=fn();this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?th(["r","c","d"],e):xi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},tX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=fn();this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length),this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${this.enableShapeUniforms?th(["r","c","d"],e):xi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
|
|
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},nX=class{constructor(e){this.variableNames=["A"],this.outTexUsage=3;let t=fn();this.outputShape=e,this.userCode=`
|
|
${N1}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},sX=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=3;let t=fn();this.outputShape=e,this.userCode=`
|
|
${N1}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},rX=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=fn();this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${this.enableShapeUniforms?kv():wv(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
vec4 values = ${n.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${n.output} = vec4(${s}, 0., 0., 0.);
|
|
}
|
|
`}},aX=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=fn();this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let i=0;i<=1;i++){let o=a*2+i;s+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${i} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
|
|
localCoords[2] += ${i};
|
|
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
|
|
localCoords[1] += ${a};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / texShape[1];
|
|
int c = imod(flatIndex, texShape[1]);
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
|
|
values = ${n.texture2D}(A, uv);
|
|
|
|
if (offset == 0) {
|
|
result[${o}] = values[0];
|
|
} else if (offset == 1) {
|
|
result[${o}] = values[1];
|
|
} else if (offset == 2) {
|
|
result[${o}] = values[2];
|
|
} else {
|
|
result[${o}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${this.enableShapeUniforms?kv():wv(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${s}
|
|
|
|
${n.output} = ${r};
|
|
}
|
|
`}},iX={};Ee(iX,{bindVertexProgramAttributeStreams:()=>L1,createBufferFromOutputTexture:()=>W1,createFloat16MatrixTexture:()=>O1,createFloat16PackedMatrixTexture:()=>M1,createFloat32MatrixTexture:()=>F1,createIndexBuffer:()=>D1,createPackedMatrixTexture:()=>z1,createUnsignedBytesMatrixTexture:()=>P1,createVertexBuffer:()=>R1,createVertexShader:()=>E1,downloadByteEncodedFloatMatrixFromOutputTexture:()=>G1,downloadFloat32MatrixFromBuffer:()=>U1,downloadMatrixFromPackedOutputTexture:()=>q1,downloadPackedMatrixFromBuffer:()=>H1,getInternalFormatForFloat16MatrixTexture:()=>Cv,getInternalFormatForFloat16PackedMatrixTexture:()=>$v,getInternalFormatForFloat32MatrixTexture:()=>Iv,getInternalFormatForPackedMatrixTexture:()=>Tv,getInternalFormatForUnsignedBytesMatrixTexture:()=>Nv,uploadDenseMatrixToTexture:()=>B1,uploadPixelDataToTexture:()=>V1});function E1(e){let t=fn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return r1(e,n)}function R1(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return u1(e,t)}function D1(e){let t=new Uint16Array([0,1,2,2,1,3]);return l1(e,t)}function ec(e,t,n,s,r,a){d1(t,n);let i=c1(e),o=e.TEXTURE_2D;return fe(e,()=>e.bindTexture(o,i)),fe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),fe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),fe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),fe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),K().getNumber("WEBGL_VERSION")===1?fe(e,()=>e.texImage2D(o,0,s,t,n,0,r,a,null)):fe(e,()=>e.texStorage2D(o,1,s,t,n)),fe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:i,texShape:[n,t]}}function Iv(e){return e.internalFormatFloat}function F1(e,t,n,s){let[r,a]=Jl(t,n);return ec(e,r,a,Iv(s),s.textureFormatFloat,e.FLOAT)}function Cv(e){return e.internalFormatHalfFloat}function O1(e,t,n,s){let[r,a]=Jl(t,n);return ec(e,r,a,Cv(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function Nv(e){return e.downloadTextureFormat}function P1(e,t,n,s){let[r,a]=Jl(t,n);return ec(e,r,a,Nv(s),e.RGBA,e.UNSIGNED_BYTE)}function Tv(e){return e.internalFormatPackedFloat}function z1(e,t,n,s){let[r,a]=su(t,n);return ec(e,r,a,Tv(s),e.RGBA,e.FLOAT)}function $v(e){return e.internalFormatPackedHalfFloat}function M1(e,t,n,s){let[r,a]=su(t,n);return ec(e,r,a,$v(s),e.RGBA,s.textureTypeHalfFloat)}function L1(e,t,n){return fe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Xm(e,t,"clipSpacePos",n,3,20,0)&&Xm(e,t,"uv",n,2,20,12)}function B1(e,t,n,s,r,a){fe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,u;r instanceof Uint8Array?(i=new Uint8Array(n*s*4),o=e.UNSIGNED_BYTE,u=e.RGBA):(i=new Float32Array(n*s*4),o=e.FLOAT,u=a.internalFormatPackedFloat),i.set(r),K().getNumber("WEBGL_VERSION")===2?fe(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,s,e.RGBA,o,i)):fe(e,()=>e.texImage2D(e.TEXTURE_2D,0,u,n,s,0,e.RGBA,o,i)),fe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function V1(e,t,n){fe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?K().getNumber("WEBGL_VERSION")===2?fe(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):fe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):K().getNumber("WEBGL_VERSION")===2?fe(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):fe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),fe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function W1(e,t,n,s){let r=e.createBuffer();fe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let o=4*4*t*n;return fe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,o,e.STREAM_READ)),fe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),fe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function U1(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function G1(e,t,n,s){let[r,a]=Jl(t,n),i=4,o=new Uint8Array(tK(t*n,i));return fe(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function H1(e,t,n,s,r,a,i,o){let u=e,l=new Float32Array(nK(a,i));return u.bindBuffer(u.PIXEL_PACK_BUFFER,t),u.getBufferSubData(u.PIXEL_PACK_BUFFER,0,l),u.bindBuffer(u.PIXEL_PACK_BUFFER,null),l}function q1(e,t,n){let s=new Float32Array(t*n*4);return fe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var nm=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=K().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Z5(t,e)):this.gl=xs(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),K().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=zu(this.gl,r),Ln(this.gl,a))this.textureHalfFloatExtension=zu(this.gl,a);else if(K().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ln(this.gl,s))this.colorBufferHalfFloatExtension=zu(this.gl,s);else if(K().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ln(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ln(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=R1(this.gl),this.indexBuffer=D1(this.gl),this.framebuffer=p1(this.gl),this.textureConfig=vv(this.gl,this.textureHalfFloatExtension)}get debug(){return K().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;fe(e,()=>e.finish()),fe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),fe(e,()=>e.deleteFramebuffer(this.framebuffer)),fe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),fe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),fe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),F1(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),O1(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),P1(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),V1(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),B1(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),M1(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),z1(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(Ym(this.gl,this.framebuffer),this.outputTexture=null),fe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>G1(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return H1(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return U1(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=W1(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(K().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>q1(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=E1(t));let n=i1(t);return fe(t,()=>t.attachShader(n,this.vertexShader)),fe(t,()=>t.attachShader(n,e)),o1(t,n),this.debug&&ud(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=L1(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&fe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&ud(this.gl,this.program),fe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?f1(this.gl,e,t):m1(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),fe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),g1(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=su(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&ud(this.gl,this.program),Mu(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),fe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),fe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=zu(this.gl,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await w.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=oX(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&w.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),ld(this.gl,e,this.framebuffer),this.debug&&Mu(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(ld(this.gl,this.outputTexture,this.framebuffer),this.debug&&Mu(this.gl)):Ym(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;ld(s,e,this.framebuffer),this.debug&&Mu(s),this.outputTexture=e,fe(s,()=>s.viewport(0,0,t,n)),fe(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),fe(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function oX(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:uX,bincountImpl:j1,bincountReduceImpl:lX,ceilImpl:cX,concatImpl:dX,equalImpl:pX,expImpl:hX,expm1Impl:fX,floorImpl:mX,gatherNdImpl:gX,gatherV2Impl:bX,greaterImpl:yX,greaterEqualImpl:vX,lessImpl:xX,lessEqualImpl:wX,linSpaceImpl:kX,logImpl:SX,maxImpl:IX,maximumImpl:CX,minimumImpl:NX,multiplyImpl:TX,negImpl:$X,notEqualImpl:_X,prodImpl:AX,rangeImpl:EX,rsqrtImpl:RX,scatterImpl:DX,sigmoidImpl:FX,simpleAbsImpl:K1,sliceImpl:OX,sparseFillEmptyRowsImpl:PX,sparseReshapeImpl:zX,sparseSegmentReductionImpl:X1,sqrtImpl:MX,stridedSliceImpl:LX,stringNGramsImpl:BX,stringSplitImpl:VX,stringToHashBucketFastImpl:WX,subImpl:UX,tileImpl:GX,topKImpl:HX,transposeImpl:_v,uniqueImpl:qX}=ov;function Y1(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function un(e,t){return t===1?[e]:Y1(e,t)}function jX(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var KX=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=Sn(this.outputShape.length),this.rank===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let t=un("rc",this.rank),n=ot(this.rank),s=this.getOutOfBoundsCondition(t),r=this.getSetup(t),a=this.getOutput(t);this.userCode=`
|
|
void main() {
|
|
${n} rc = getOutputCoords();
|
|
|
|
if(${s}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${r}
|
|
|
|
setOutput(vec4(${a}));
|
|
}
|
|
}
|
|
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let s=0;s<=1;s++){let r=`${n===0?"r":"rp1"}, ${s===0?"c":"cp1"}`;for(let a=2;a<this.rank;a++)r=`${e[e.length-1-a]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],s=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
|
|
int r = ${t[0]};
|
|
int c = ${t[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${n};
|
|
bool rEdge = rp1 >= ${s};
|
|
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
|
|
cEdge ? 0. : getA(${t[1]}),
|
|
rEdge ? 0. : getA(${t[2]}),
|
|
rEdge || cEdge ? 0. : getA(${t[3]})`}},Q1=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2===1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${s}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${s>0?"}":""}
|
|
`}this.userCode=`
|
|
${XX(t,this.enableShapeUniforms)}
|
|
${this.enableShapeUniforms?kv():wv(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
|
|
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function XX(e,t){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${t?fK(["r","c","d"],"inputShape"):xi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var YX=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=hw(t,n),r=fw(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=pw(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return s===3?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===4?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===1?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===0?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===2&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),i}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=hw(n,s),a=fw(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let i=pw(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),o=K().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=i):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let u=this.usedTextures[a],l=u.indexOf(e);if(l<0)throw new Error("Cannot release a texture that was never provided by this texture manager");u.splice(l,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function QX(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function pw(e,t,n,s,r){let a=ZX(t,s),i;if(r){let[u,l]=su(e[0],e[1]);i=u*l}else{let[u,l]=Jl(e[0],e[1]);i=u*l}let o=QX(n,a);return i*o}function ZX(e,t){switch(e){case 3:return Tv(t);case 4:return $v(t);case 1:return Iv(t);case 0:return Cv(t);case 2:return Nv(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function JX(e){return K().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?3:1:e?4:0}function hw(e,t){if(e===1)return 3;if(e===0||e==null)return JX(t);if(e===3||e===2)return 2;throw new Error(`Unknown logical texture type ${e}`)}function fw(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Gs=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length),this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},ss="if (isnan(x)) return x;",e8="return x;",mw="return abs(x);",t8="return (x >= 0.0) ? x : (exp(x) - 1.0);",n8=ss+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,s8=ss+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Li="return x;",r8="return 1.0 / (1.0 + exp(-1.0 * x));",a8="return x;",i8=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,o8=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,u8=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,l8="return 1.0 / (1.0 + exp(-1.0 * x));",ea=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length),this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},c8=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length);let t=e.length,n=un("rc",t),s=ot(t),r=jX(t,n),a=n.slice(-2),i=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},d8=ws.whereImpl,p8=1e-7,h8=1e-4,nd={};function f8(e){return e in nd||(nd[e]={}),nd[e]}var m8=K().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),g8=600;function b8(){return K().global.screen==null?1024:K().global.screen.height*K().global.screen.width*window.devicePixelRatio*g8/1024/1024}var Z1=class extends ol{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!K().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof nm)t=e;else{let n=xs(K().getNumber("WEBGL_VERSION"),e);t=new nm(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=xs(K().getNumber("WEBGL_VERSION"));t=new nm(n),this.binaryCache=f8(K().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new YX(this.gpgpu),this.numMBBeforeWarning=b8(),this.texData=new Qd(this,ds())}nextDataId(){return Z1.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((K().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||K().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:1,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(K().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:1,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:i,isPacked:o}=t;if(a!=null){let p;o?p=new ea(i,Li):p=new Gs(i,Li);let d=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:s}],s),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let u=this.activeTimers!=null,l;u&&(l=w.now());let c;if(s==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);c=C.mergeRealAndImagArrays(p,d)}else c=this.getValuesFromTexture(e);return u&&(this.downloadWaitMs+=w.now()-l),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new ea(s,Li):h=new Gs(s,Li);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(K().getBool("DEBUG")&&!K().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&K().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let u=null,l;if(a!=="complex64"&&K().get("WEBGL_BUFFER_SUPPORTED")){l=this.decode(e);let h=this.texData.get(l.dataId);u=this.gpgpu.createBufferFromTexture(h.texture.texture,...ed(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=h[0],m=h[1];c=C.mergeRealAndImagArrays(f,m)}else if(u==null)c=this.getValuesFromTexture(e);else{let h=w.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(u,h)}if(l!=null&&this.disposeIntermediateTensorInfo(l),u!=null){let h=this.gpgpu.gl;fe(h,()=>h.deleteBuffer(u))}let p=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&ds().removeDataId(e,this),this.pendingDeletes--),p}readToGPU(e,t={}){let n=this.texData.get(e),{values:s,shape:r,slice:a,dtype:i,isPacked:o,texture:u}=n;if(i==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(a!=null){let d;o?d=new ea(r,Li):d=new Gs(r,Li);let h=this.runWebGLProgram(d,[{dataId:e,shape:r,dtype:i}],i),f=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),f}if(u==null)throw s!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let l=this.decode(e,t.customTexShape),c=ds().makeTensorFromTensorInfo(l),p=this.texData.get(l.dataId);return{tensorRef:c,...p.texture}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>w.decodeString(s));return Ae(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ae(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!n1(n))throw K().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=w.sizeFromShape(t);if(K().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),d=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture.texture,...ed(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let a=K().getBool("WEBGL_PACK")&&s===!0,i=a?cd(t):t,o=a?new sX(i):new nX(i),u=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),l=this.texData.get(u.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(l.texture.texture,l.texShape[0],l.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(u),c}timerAvailable(){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),a=w.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((u,l)=>({name:a[l],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:w.now(),endMs:null}}endTimer(e){return K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=w.now(),e)}async getQueryTime(e){if(K().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,u=this.dataRefCount.get(o);u>1?this.dataRefCount.set(o,u-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let l=this.texData.get(e);l.texture=null,l.texShape=null,l.isPacked=!1,l.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=m8){return K().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&w.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return d8(e.shape,t)}packedUnaryOp(e,t,n){let s=new ea(e.shape,t),r=this.compileAndRun(s,[e],n);return ds().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=K1(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(K().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,mw,e.dtype);let t=new Gs(e.shape,mw),n=this.compileAndRun(t,[e]);return ds().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){return ds().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new c8(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new KX(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[ya(e.shape),...va(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[ya(t),...va(t)],a=new Q1(r,n),i=!0,o=[n],u=this.runWebGLProgram(a,[s],e.dtype,o,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:s,shape:r,dtype:a}=n;if(t!=null){let p=w.sizeFromShape(r),d=t[0]*t[1]*4;w.assert(p<=d,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let i=cd(r),o;s?o=new tX(i):o=new eX(i);let u=!0,l=[t!=null?t:ed(i)],c=this.runWebGLProgram(o,[{shape:i,dtype:a,dataId:e}],a,l,u,t);return{dtype:a,shape:r,dataId:c.dataId}}runWebGLProgram(e,t,n,s,r=!1,a){let i=this.makeTensorInfo(e.outputShape,n),o=this.texData.get(i.dataId);if(e.packedOutput&&(o.isPacked=!0),e.outPackingScheme===0){let g=a!=null?a:ed(e.outputShape);o.texShape=g.map(b=>b*2)}if(e.outTexUsage!=null&&(o.usage=e.outTexUsage),w.sizeFromShape(i.shape)===0)return o.values=w.getTypedArrayFromDType(i.dtype,0),i;let u=[],l=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let b=this.texData.get(g.dataId);if(b.texture==null){if(!e.packedInputs&&w.sizeFromShape(g.shape)<=K().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:b.values};e.packedInputs&&(b.isPacked=!0,b.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!b.isPacked!=!!e.packedInputs)g=b.isPacked?this.unpackTensor(g):this.packTensor(g),u.push(g),b=this.texData.get(g.dataId);else if(b.isPacked&&!rl(b.shape,g.shape)){let y=g,v=g.shape;g.shape=b.shape,g=this.packedReshape(g,v),u.push(g),b=this.texData.get(g.dataId),y.shape=v}return{shape:g.shape,texData:b,isUniform:!1}});this.uploadToGPU(i.dataId);let c={shape:i.shape,texData:o,isUniform:!1},p=JK(e,l,c),d=this.getAndSaveBinary(p,()=>QK(this.gpgpu,e,l,c)),h=this.activeTimers!=null,f;h&&(f=this.startTimer()),K().get("ENGINE_COMPILE_ONLY")||ZK(this.gpgpu,d,l,c,s),u.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=K().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=w.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!K().getBool("WEBGL_LAZILY_UNPACK")&&o.isPacked&&r===!1){let g=this.unpackTensor(i);return this.disposeIntermediateTensorInfo(i),g}return i}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(K().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=q(()=>{if(!K().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=K().getBool("DEBUG");K().set("DEBUG",!1);let t=this.abs(we(1e-8)).dataSync()[0];if(K().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?p8:h8}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:i,isPacked:o}=t;if(a!=null)return;let u=this.activeTimers!=null,l;u&&(l=w.now());let c=t.texShape;if(c==null&&(c=v1(n,o),t.texShape=c),r!=null){let p=cd(n),d,h=c[1],f=c[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(o||!m)&&([h,f]=su(c[0],c[1])),o?d=new aX(p,m):d=new rX(p,m);let g=m?[f,h]:c,b=this.makeTensorInfo(g,s),y=this.texData.get(b.dataId);m?y.usage=2:y.usage=1,y.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(b.dataId),h,f,r);let v=[[f,h]],x=!0,k=this.runWebGLProgram(d,[b],s,v,x),I=this.texData.get(k.dataId);t.texShape=I.texShape,t.isPacked=I.isPacked,t.usage=I.usage,K().get("ENGINE_COMPILE_ONLY")?this.disposeData(k.dataId):(t.texture=I.texture,t.values=null,this.texData.delete(k.dataId)),this.disposeIntermediateTensorInfo(b),u&&(this.uploadWaitMs+=w.now()-l)}else{let p=this.acquireTexture(c,i,s,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=y8(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*w.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(s=>{try{this.checkCompletion_(t),s(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await XS(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(xv(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:s,nanLoc:r,inShapesLocations:a,inTexShapesLocations:i,outShapeLocation:o,outShapeStridesLocation:u,outTexShapeLocation:l}=A1(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=s,e.nanLoc=r,e.inShapesLocations=a,e.inTexShapesLocations=i,e.outShapeLocation=o,e.outShapeStridesLocation=u,e.outTexShapeLocation=l}}},J1=Z1;J1.nextDataId=0;function y8(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var Ihe="0.0.0";function v8(){K().set("WEBGL_FORCE_F16_TEXTURES",!0)}vp.isBrowser()&&xp("webgl",()=>new J1,2);var Che={forceHalfFloat:v8},e2=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,oo=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=Sn(this.outputShape.length),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},nh=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,tc=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=Sn(r);let a="";if(s)if(r===0||w.sizeFromShape(this.outputShape)===1)a=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(a=`
|
|
${ot(r)} coords = getOutputCoords();
|
|
`,r===1)this.enableShapeUniforms?a+=`
|
|
result.y = (coords + 1) >= outShape ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`:a+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let o=un("coords",r);this.enableShapeUniforms?a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${o[r-2]} + 1) >= outShape[${r} - 2];
|
|
bool nextColOutOfBounds =
|
|
(${o[r-1]} + 1) >= outShape[${r} - 1];
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`:a+=`
|
|
bool nextRowOutOfBounds =
|
|
(${o[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${o[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${a}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Rn(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var x8={kernelName:Wa,backendName:"webgl",kernelFunc:Rn};function Dr(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),i=n.texData.get(a.dataId),o=Rn({inputs:{x:s},backend:n}),u=Rn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:u},a}var w8={kernelName:tp,backendName:"webgl",kernelFunc:Dr},t2="return (a < 0.) ? b * a : a;",n2=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function k8(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,i=n.makeTensorInfo([],"float32",w.createScalarValue(a,"float32")),o=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new tc(n2,r.shape,i.shape):new oo(t2,r.shape,i.shape),u=n.runWebGLProgram(o,[r,i],"float32");return n.disposeIntermediateTensorInfo(i),u}var S8={kernelName:Ua,backendName:"webgl",kernelFunc:k8},s2="return (a < 0.) ? b * a : a;",r2=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function I8(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new tc(r2,s.shape,r.shape):new oo(s2,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var C8={kernelName:ti,backendName:"webgl",kernelFunc:I8},lu="if (isnan(x)) return x;",N8=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,T8=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Ke({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:i}=r,o=a,u=s||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),d=n(p.values,u);return o.makeTensorInfo(i.shape,u,d)}let l=K().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return l?c=new ea(i.shape,t):c=new Gs(i.shape,e),o.runWebGLProgram(c,[i],u)}}function qt({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:i,backend:o})=>{let{a:u,b:l}=i,c=o;if(s&&u.dtype==="complex64"){let f=c.texData.get(u.dataId),m=c.texData.get(l.dataId),[g,b]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(v=>{let[x,k]=v,I={dataId:x.dataId,dtype:x.dtype,shape:u.shape},$={dataId:k.dataId,dtype:k.dtype,shape:l.shape},R=new oo(e,u.shape,l.shape);return c.runWebGLProgram(R,[I,$],ln(x.dtype,k.dtype))}),y=Dr({inputs:{real:g,imag:b},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(b),y}let p=a||ln(u.dtype,l.dtype);if((u.dtype==="string"||l.dtype==="string"||c.shouldExecuteOnCPU([u,l]))&&r!=null){let f=c.texData.get(u.dataId).values,m=c.texData.get(l.dataId).values,g=u.dtype==="string"?C.fromUint8ToStringArray(f):f,b=u.dtype==="string"?C.fromUint8ToStringArray(m):m,[y,v]=r(u.shape,l.shape,g,b,p),x=c.makeTensorInfo(v,p),k=c.texData.get(x.dataId);return k.values=y,x}let d=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new tc(t,u.shape,l.shape,n):h=new oo(e,u.shape,l.shape),c.runWebGLProgram(h,[u,l],p)}}function sh(e,t=!1){if(e==="linear")return t?a8:e8;if(e==="relu")return t?o8:n8;if(e==="elu")return t?i8:t8;if(e==="relu6")return t?u8:s8;if(e==="prelu")return t?r2:s2;if(e==="leakyrelu")return t?n2:t2;if(e==="sigmoid")return t?l8:r8;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var a2=class{constructor(e,t,n,s=!1,r=!1,a=!1,i=null,o=!1,u=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=Sn(this.outputShape.length);let l=s?e[1]:e[2],c=Math.ceil(l/2),p=s?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";i&&(o?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:u?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let b=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),u&&this.variableNames.push("leakyreluAlpha");let y="rc.x",v="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(v=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
// Don't use uniform for sharedDimensionPacked for performance.
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${v};
|
|
vec4 a = getMatrixA(batchA, ${p});
|
|
vec4 b = getMatrixB(batchB, ${d});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${f[0]});
|
|
result += (${h[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${b}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},gw={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},bw=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},yw="return a * b;";function Av(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=C.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let o=n.texData.get(s.dataId),u=n.texData.get(r.dataId),l=new bw(gw.REAL,s.shape,r.shape),c=new bw(gw.IMAG,s.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:s.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:u.complexTensorInfos.real.dataId,dtype:u.complexTensorInfos.real.dtype,shape:r.shape},{dataId:u.complexTensorInfos.imag.dataId,dtype:u.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(l,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=Dr({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let o=n.texData.get(s.dataId),u=n.texData.get(r.dataId),[l,c]=TX(s.shape,r.shape,o.values,u.values,a),p=n.makeTensorInfo(c,a),d=n.texData.get(p.dataId);return d.values=l,p}let i;return K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new tc(yw,s.shape,r.shape):i=new oo(yw,s.shape,r.shape),n.runWebGLProgram(i,[s,r],a)}var $8={kernelName:Za,backendName:"webgl",kernelFunc:Av};function _8(e,t,n){let s=[ya(e.shape),...va(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[ya(t),...va(t)],i=new Q1(a,s),o=!0,u=[s],l=n.runWebGLProgram(i,[r],e.dtype,u,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function pe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,i=n,o=w.sizeFromShape(r.shape),u=w.inferFromImplicitShape(a,o),l=w.sizeFromShape(u);w.assert(o===l,()=>`The new shape (${u}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(r.dataId);return c.isPacked&&!rl(r.shape,u)&&!(c.texture!==null&&rl(c.shape,u))?_8(r,u,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:u,dtype:r.dtype})}var A8={kernelName:Do,backendName:"webgl",kernelFunc:pe},vw=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let i=Math.floor(n/4)*4,o=n%4,u="sumValue += dot(values, ones);";if(t!=null){let c=1/t;u=`sumValue += dot(values * ${w.isInt(c)?c.toPrecision(2):c}, ones);`}let l="";r%n>0&&(l=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${l}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${u}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${u}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${u}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${u}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},E8=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let u=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?u="sumValue":t==="prod"?u="prodValue":t==="all"?u="allValue":t==="any"&&(u="anyValue");let l=Math.floor(n/4)*4,c=n%4,p=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,d="vec4";t==="all"?(i="1.0",p=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,d="bvec4"):t==="any"&&(i="0.0",p=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,d="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${l}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${l};
|
|
if (${c===1}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===2}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===3}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${u});
|
|
}
|
|
`}};function R8(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function ki(e,t,n,s){let r=R8(e.shape),a=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:u,outSize:l}=r[i],c,p;n==="mean"?c=i===0?new vw({windowSize:u,inSize:o,batchSize:e.shape[0],outSize:l},o):new vw({windowSize:u,inSize:o,batchSize:e.shape[0],outSize:l}):c=new E8({windowSize:u,inSize:o,batchSize:e.shape[0],outSize:l},n),p=a,a=s.runWebGLProgram(c,[a],t),p.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(p)}return a}var D8=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=ot(this.rank),r=F8(t);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function F8(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var O8=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let l=0;l<n.length;l++)n[l]=e[t[l]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=ot(this.rank),r=Y1("rc",this.rank),a=new Array(this.rank);for(let l=0;l<t.length;l++)a[t[l]]=r[l];let i=`vec2(${a.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,u=`getChannel(getA(${a.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${s} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${u};
|
|
if(${o}) {
|
|
result[1] = ${u};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${u};
|
|
if(${o}) {
|
|
result[3] = ${u};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function rh(e,t,n){let s=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new O8(e.shape,t):new D8(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function P8(e,t,n,s){let r=t,a=e.shape.length,i=w.parseAxisParam(r,e.shape),o=i,u=C.getAxesPermutation(o,a),l=u!=null,c=e;l&&(c=rh(e,u,s),o=C.getInnerMostAxes(o.length,a)),C.assertAxesAreInnerMostDims("sum",o,a);let[p,d]=C.computeOutAndReduceShapes(c.shape,o),h=p;n&&(h=C.expandShapeToKeepDim(p,i));let f=w.sizeFromShape(d),g=w.sizeFromShape(e.shape)/f,b=pe({inputs:{x:c},attrs:{shape:[g,f]},backend:s}),y=yp(e.dtype),v=ki(b,y,"sum",s),x=pe({inputs:{x:v},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(b),s.disposeIntermediateTensorInfo(v),l&&s.disposeIntermediateTensorInfo(c),x}function ah(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;return P8(r,a,i,n)}var z8={kernelName:ci,backendName:"webgl",kernelFunc:ah};function dn(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,i=n,o=r.shape.length,u=new Array(o);for(let c=0;c<u.length;c++)u[c]=r.shape[a[c]];let l;if(i.shouldExecuteOnCPU([r])){let p=i.texData.get(r.dataId).values,d=_v(p,r.shape,r.dtype,a,u);l=i.makeTensorInfo(u,r.dtype);let h=i.texData.get(l.dataId);h.values=d}else l=rh(r,a,i);return l}var M8={kernelName:Hs,backendName:"webgl",kernelFunc:dn},i2=1e3;function Gd({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:u=null}){let l=e.shape.length,c=t.shape.length,p=n?e.shape[l-2]:e.shape[l-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[l-1]:e.shape[l-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),b=w.sizeFromShape(m),y=w.sizeFromShape(g),x=Xo.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[b,p,h]:[b,h,p],I=s?[y,f,d]:[y,d,f],$=pe({inputs:{x:e},backend:r,attrs:{shape:k}}),R=pe({inputs:{x:t},backend:r,attrs:{shape:I}}),E=[$,R],P=Math.max(b,y),A=n?$.shape[1]:$.shape[2],O=a!=null,T=i!=null,M=u==="leakyrelu",W=u!=null?sh(u,!0):null,j=O||T||M||W!=null,Y;if((h===1||f===1)&&A>i2&&j===!1){let Z=$,ne=R;n&&(Z=dn({inputs:{x:$},backend:r,attrs:{perm:[0,2,1]}}),E.push(Z)),s&&(ne=dn({inputs:{x:R},backend:r,attrs:{perm:[0,2,1]}}),E.push(ne));let ee=f!==1,se=f===1,te=Z;ee&&(te=pe({inputs:{x:Z},backend:r,attrs:{shape:[P,A,1]}}),E.push(te));let oe=f===1?2:1,ae=ne;se&&(ae=pe({inputs:{x:ne},backend:r,attrs:{shape:[P,1,A]}}),E.push(ae));let de=Av({inputs:{a:te,b:ae},backend:r});Y=ah({inputs:{x:de},backend:r,attrs:{axis:oe,keepDims:!0}}),E.push(de)}else{let Z=ln(e.dtype,t.dtype),ne=new a2(k,I,[P,h,f],n,s,O,W,T,M),ee=[$,R];if(a!=null&&ee.push(a),T&&ee.push(i),M){let se=r.makeTensorInfo([],"float32",w.createScalarValue(o,"float32"));ee.push(se),E.push(se)}Y=r.runWebGLProgram(ne,ee,Z)}let X=pe({inputs:{x:Y},backend:r,attrs:{shape:x}});E.push(Y);for(let Z of E)r.disposeIntermediateTensorInfo(Z);return X}function L8(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:i,preluActivationWeights:o}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=s;return Gd({a:r,b:a,transposeA:u,transposeB:l,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:c})}var B8={kernelName:ia,backendName:"webgl",kernelFunc:L8},xw="return abs(x);";function V8(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),i=K1(a.values);return n.makeTensorInfo(s.shape,s.dtype,i)}let r;return K().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new ea(s.shape,xw):r=new Gs(s.shape,xw),n.runWebGLProgram(r,[s],s.dtype)}var W8={kernelName:lo,backendName:"webgl",kernelFunc:V8},U8=ss+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,G8=Ke({opSnippet:U8}),H8={kernelName:ul,backendName:"webgl",kernelFunc:G8},q8=ss+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,j8=Ke({opSnippet:q8}),K8={kernelName:ll,backendName:"webgl",kernelFunc:j8},ww="return a + b;",X8=qt({opSnippet:ww,packedOpSnippet:ww,supportsComplex:!0,cpuKernelImpl:uX}),Y8={kernelName:Ir,backendName:"webgl",kernelFunc:X8},Q8=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}},Z8=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${s};
|
|
setOutput(result);
|
|
}
|
|
`}};function hd(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Rn({inputs:{x:s[0]},backend:n});if(s.length>K().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(s.length/2),l=hd({inputs:s.slice(0,u),backend:n}),c=hd({inputs:s.slice(u),backend:n});return hd({inputs:[l,c],backend:n})}let r=s.map(u=>u.dtype).reduce((u,l)=>ln(u,l)),a=s.map(u=>u.shape),o=K().getBool("WEBGL_PACK")?new Z8(s[0].shape,a):new Q8(s[0].shape,a);return n.runWebGLProgram(o,s,r)}var J8={kernelName:Sa,backendName:"webgl",kernelFunc:hd};function eY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s,o=r.shape.length,u=w.parseAxisParam(a,r.shape),l=u,c=C.getAxesPermutation(l,o),p=r;c!=null&&(p=dn({inputs:{x:r},backend:n,attrs:{perm:c}}),l=C.getInnerMostAxes(l.length,o)),C.assertAxesAreInnerMostDims("all",l,o);let[d,h]=C.computeOutAndReduceShapes(p.shape,l),f=w.sizeFromShape(h),m=pe({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=ki(m,m.dtype,"all",n),b;if(i){let y=C.expandShapeToKeepDim(d,u);b=pe({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=pe({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),b}var tY={kernelName:cl,backendName:"webgl",kernelFunc:eY};function nY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s,o=r.shape.length,u=w.parseAxisParam(a,r.shape),l=u,c=C.getAxesPermutation(l,o),p=r;c!=null&&(p=dn({inputs:{x:r},backend:n,attrs:{perm:c}}),l=C.getInnerMostAxes(l.length,o)),C.assertAxesAreInnerMostDims("any",l,o);let[d,h]=C.computeOutAndReduceShapes(p.shape,l),f=w.sizeFromShape(h),m=pe({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=ki(m,m.dtype,"any",n),b;if(i){let y=C.expandShapeToKeepDim(d,u);b=pe({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=pe({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),b}var sY={kernelName:dl,backendName:"webgl",kernelFunc:nY},rY=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${s};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},aY=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,w.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,u=ot(o),l=un("coords",o),c,p;if(a===1){p=o+1;let $=ot(p);c=`
|
|
${$} sourceLocR = ${$}(${l.join()}, 0);
|
|
++${l[o-1]};
|
|
${$} sourceLocG = ${$}(${l.join()}, 0);
|
|
++${l[o-2]};
|
|
${$} sourceLocA = ${$}(${l.join()}, 0);
|
|
--${l[o-1]};
|
|
${$} sourceLocB = ${$}(${l.join()}, 0);
|
|
--${l[o-2]};`}else p=o,c=`
|
|
${u} sourceLocR = coords;
|
|
++${l[o-1]};
|
|
${u} sourceLocG = coords;
|
|
++${l[o-2]};
|
|
${u} sourceLocA = coords;
|
|
--${l[o-1]};
|
|
${u} sourceLocB = coords;
|
|
--${l[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],f=d.map($=>"int "+$),m=un("sourceLocR",p-1).concat("inIdx.r"),g=un("sourceLocG",p-1).concat("inIdx.g"),b=un("sourceLocB",p-1).concat("inIdx.b"),y=un("sourceLocA",p-1).concat("inIdx.a"),v=n==="max"?"greaterThan":"lessThan",x=s?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${b.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,k=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${b.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,I=s?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}
|
|
${I}
|
|
void main() {
|
|
${u} coords = getOutputCoords();
|
|
bool hasNextCol = ${l[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${l[o-2]} < ${i[o-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${k};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${x}
|
|
vec4 candidate = ${k};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${v}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function o2(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let i=C.computeOptimalWindowSize(a),o={windowSize:i,inSize:a,batchSize:r,outSize:Math.ceil(a/i)},u=new rY(o,n,s==null),l=[t];s!=null&&l.push(s);let c=e.runWebGLProgram(u,l,"int32");if(c.shape[1]===1)return c;let p=o2(e,t,n,c);return e.disposeIntermediateTensorInfo(c),p}function u2(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],i=C.computeOptimalWindowSize(a),o=new aY(r,i,n,s==null),u=s==null?[t]:[t,s],l=e.runWebGLProgram(o,u,"int32");if(l.shape.length===t.shape.length){let c=u2(e,t,n,l);return e.disposeIntermediateTensorInfo(l),c}return l}function l2(e,t,n,s){let r=[n];if(C.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!K().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],i=e.texData.get(t.dataId),o=i!==null&&i.isPacked,u=t;o&&(u=e.unpackTensor(t),a.push(u));let[l,c]=C.computeOutAndReduceShapes(u.shape,r),p=w.sizeFromShape(c),d=pe({inputs:{x:u},backend:e,attrs:{shape:[-1,p]}});a.push(d);let h=o2(e,d,s);a.push(h);let f=pe({inputs:{x:h},backend:e,attrs:{shape:l}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return u2(e,t,s)}function iY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,i=w.parseAxisParam(a,r.shape),o=C.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=dn({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=C.getInnerMostAxes(i.length,u.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],u.shape.length);let c=l2(n,u,i[0],"max");return l.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var oY={kernelName:Ia,backendName:"webgl",kernelFunc:iY};function uY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,i=w.parseAxisParam(a,r.shape),o=C.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=dn({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=C.getInnerMostAxes(i.length,u.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],u.shape.length);let c=l2(n,u,i[0],"min");return l.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var lY={kernelName:pl,backendName:"webgl",kernelFunc:uY},cY=ss+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,dY=Ke({opSnippet:cY}),pY={kernelName:hl,backendName:"webgl",kernelFunc:dY},hY=ss+"return log(x + sqrt(x * x + 1.0));",fY=Ke({opSnippet:hY}),mY={kernelName:fl,backendName:"webgl",kernelFunc:fY},gY=ss+`
|
|
return atan(x);
|
|
`,bY=Ke({opSnippet:gY}),yY={kernelName:ml,backendName:"webgl",kernelFunc:bY},vY=N8+`
|
|
return atan(a, b);
|
|
`,xY=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+T8+`
|
|
return result;
|
|
`,wY=qt({opSnippet:vY,packedOpSnippet:xY}),kY={kernelName:bl,backendName:"webgl",kernelFunc:wY},SY=ss+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,IY=Ke({opSnippet:SY}),CY={kernelName:gl,backendName:"webgl",kernelFunc:IY},al=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideHeight,o=e.strideWidth,u=e.dilationHeight,l=e.dilationWidth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,b="0.0";if(f||(b="-1.0 / 1e-20"),n){let $=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${l}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${$} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?m:g:`wR * ${p} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",v=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(v="avgValue / count");let x=Math.floor(a/4)*4,k=a%4,I=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${h});
|
|
const float initializationValue = ${b};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${b});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${x}; wC += 4) {
|
|
int xC = xCCorner + wC * ${l};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${l}, d),
|
|
getValue(batch, xR, xC + 2 * ${l}, d),
|
|
getValue(batch, xR, xC + 3 * ${l}, d)
|
|
);
|
|
|
|
${I}
|
|
}
|
|
|
|
int xC = xCCorner + ${x};
|
|
if (${k===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${I}
|
|
} else if (${k===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${l}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${I}
|
|
} else if (${k===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${l}, d),
|
|
getValue(batch, xR, xC + 2 * ${l}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${I}
|
|
}
|
|
}
|
|
setOutput(${v});
|
|
}
|
|
`}},Ev=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,i=e.strideDepth,o=e.strideHeight,u=e.strideWidth,l=e.dilationDepth,c=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,b=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",v="0.0";if(y||(v="-1.0 / 1e-20"),n){let E=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${u});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${b});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${l}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${p}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${E} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let x="max",k=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(k="avgValue / count");let I=Math.floor(a/4)*4,$=a%4,R=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${x}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${u});
|
|
const ivec3 pads = ivec3(${m}, ${g}, ${b});
|
|
const float initializationValue = ${v};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${v});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${l}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${I}; wC += 4) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
|
|
);
|
|
|
|
${R}
|
|
}
|
|
|
|
int xC = xCCorner + ${I};
|
|
if (${$===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${R}
|
|
} else if (${$===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${R}
|
|
} else if (${$===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${R}
|
|
}
|
|
}
|
|
setOutput(${k});
|
|
}
|
|
}
|
|
`}};function NY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ru(r,"avgPool");let{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1;w.assert(C.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=C.computePool2DInfo(r.shape,a,i,l,o,u);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return Rn({inputs:{x:r},backend:n});let p=new al(c,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var TY={kernelName:Ca,backendName:"webgl",kernelFunc:NY};function $Y(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u,dataFormat:l}=s,c=[1,1,1],p=C.computePool3DInfo(r.shape,a,i,c,o,u,l),d=new Ev(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var _Y={kernelName:ep,backendName:"webgl",kernelFunc:$Y},AY=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,u=e.effectiveFilterWidth,l=o-1-e.padInfo.top,c=u-1-e.padInfo.left,p=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${l}, ${c});
|
|
const float avgMultiplier = float(${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},EY=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,u=e.dilationHeight,l=e.dilationWidth,c=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=c-1-e.padInfo.front,f=p-1-e.padInfo.top,m=d-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${f}, ${m});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${u}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${l}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function RY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,i=a,{filterSize:o,strides:u,pad:l,dimRoundingMode:c}=s,p=[1,1,1],d=C.computePool3DInfo(i.shape,o,u,p,l,c),h=new EY(d);return n.runWebGLProgram(h,[r],i.dtype)}var DY={kernelName:mg,backendName:"webgl",kernelFunc:RY};function FY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,i=a;ru([r,a],"avgPoolGrad");let{filterSize:o,strides:u,pad:l}=s,c=C.computePool2DInfo(i.shape,o,u,1,l),p=new AY(c);return n.runWebGLProgram(p,[r],i.dtype)}var OY={kernelName:fg,backendName:"webgl",kernelFunc:FY};function PY(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:i,transposeB:o}=s;return Gd({a:r,b:a,transposeA:i,transposeB:o,backend:n})}var zY={kernelName:Na,backendName:"webgl",kernelFunc:PY},MY=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${a}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},LY=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},BY=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:i,scale:o}=e;w.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),w.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),w.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:u}=n;u==null&&(u=.001);let l=[s,r,a],c=null;i!=null&&(c=i.shape,l.push(i));let p=null;o!=null&&(p=o.shape,l.push(o));let d=K().getBool("WEBGL_PACK_NORMALIZATION")?new LY(s.shape,r.shape,a.shape,c,p,u):new MY(s.shape,r.shape,a.shape,c,p,u);return t.runWebGLProgram(d,l,l[0].dtype)},VY={kernelName:Ba,backendName:"webgl",kernelFunc:BY},WY=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ot(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=UY(this.rank),s,r=e.map((a,i)=>`sourceLoc.${Jm[i]} = start[${i}] + coords.${Jm[i]};`);s=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${r.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
void main() {
|
|
${s}
|
|
setOutput(getSource(${n}));
|
|
}
|
|
`}},Jm=["x","y","z","w","u","v"];function UY(e){if(e===1)return"sourceLoc";if(e<=6)return Jm.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var GY=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=ot(this.rank),n=un("coords",this.rank),s=un("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,i=`
|
|
result.x = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.y = ${a};
|
|
--${s[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${s[this.rank-2]};
|
|
result.z = ${a};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${s[this.rank-1]};
|
|
result.w = ${a};
|
|
}
|
|
}
|
|
`,u=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((l,c)=>`start[${c}]`).join()});`:e.map((l,c)=>`${s[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${u}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}};function HY(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),i=s.texData.get(a.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=kt.computeFlatOffset(t,w.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let u=s.dataRefCount.get(i.slice.origDataId)||1;return s.dataRefCount.set(i.slice.origDataId,u+1),a}function cu(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:i}=s,[o,u]=kt.parseSliceParams(r,a,i);if(kt.assertParamsValid(r,o,u),w.sizeFromShape(u)===0)return n.makeTensorInfo(u,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=OX(p.values,o,u,r.shape,r.dtype);return n.makeTensorInfo(u,r.dtype,d)}let{isPacked:l}=n.texData.get(r.dataId),c=kt.isSliceContinous(r.shape,o,u);if(l||!c){let p=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new GY(u):new WY(u),d=[o];return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),HY(r,o,u,n)}var qY={kernelName:Mo,backendName:"webgl",kernelFunc:cu},jY=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:i}=s;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=a.reduce((y,v)=>y*v),u=C.getReshaped(r.shape,a,o),l=C.getPermuted(u.length,a.length),c=C.getReshapedPermuted(r.shape,a,o),p=C.getSliceBeginCoords(i,a.length),d=C.getSliceSize(c,i,a.length),h=[],f=pe({inputs:{x:r},backend:n,attrs:{shape:u}}),m=dn({inputs:{x:f},backend:n,attrs:{perm:l}}),g=pe({inputs:{x:m},backend:n,attrs:{shape:c}}),b=cu({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeIntermediateTensorInfo(y)),b},KY={kernelName:co,backendName:"webgl",kernelFunc:jY};function XY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:i}=s,o=n.readSync(r.dataId),u=n.readSync(a.dataId),l=j1(o,u,a.dtype,a.shape,i);return n.makeTensorInfo([i],a.dtype,l)}var YY={kernelName:gg,backendName:"webgl",kernelFunc:XY};function QY(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),i=n.readSync(r.dataId),o=C.assertAndGetBroadcastShape(Array.from(a),Array.from(i));return n.makeTensorInfo([o.length],"int32",Int32Array.from(o))}var ZY={kernelName:bg,backendName:"webgl",kernelFunc:QY},JY="return float(a != b);",c2=qt({opSnippet:JY,cpuKernelImpl:_X,dtype:"bool"}),e9={kernelName:To,backendName:"webgl",kernelFunc:c2};function nc(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Rn({inputs:{x:r.complexTensorInfos.real},backend:n})}var t9={kernelName:cp,backendName:"webgl",kernelFunc:nc},n9="return float(int(x));";function s9(e,t){let n=new Gs(e.shape,n9),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function eg(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Rn({inputs:{x:r},backend:n});let i=$t(r.shape),o=eg({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),u=Dr({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),u}if(r.dtype==="complex64"){let i=nc({inputs:{input:r},backend:n}),o=eg({inputs:{x:i},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(i),o}if(!w.hasEncodingLoss(r.dtype,a)){let i=Rn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:a}}if(a==="int32")return s9(r,n);if(a==="bool"){let i=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),u=c2({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),u}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var r9={kernelName:Ta,backendName:"webgl",kernelFunc:eg},kw="return ceil(x);",a9=Ke({opSnippet:kw,packedOpSnippet:kw,cpuKernelImpl:cX}),i9={kernelName:$a,backendName:"webgl",kernelFunc:a9},o9=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}},u9=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}};function l9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:i}=s,o;K().getBool("WEBGL_PACK_CLIP")?o=new u9(r.shape):o=new o9(r.shape);let u=[[a],[i]];return n.runWebGLProgram(o,[r],r.dtype,u)}var c9={kernelName:Cr,backendName:"webgl",kernelFunc:l9},d9=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Sw(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function p9(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new d9(s.shape),i=[Sw(s,r.complexTensorInfos.real),Sw(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,i,i[0].dtype)}var h9={kernelName:np,backendName:"webgl",kernelFunc:p9},f9=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((a,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let i=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${i}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},m9=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=ot(s),a=un("coords",s),i=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f<o.length;f++)o[f]=o[f-1]+e[f][t];let u=i[t],l=i.slice(-2),c=i.join(),p=`if (${u} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${l.join()}));
|
|
}`;for(let f=1;f<o.length;f++){let m=o[f-1];p+=`
|
|
if (${u} < ${o[f]} && ${u} >= ${o[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${sd(i,u,m)}),
|
|
vec2(${sd(l,u,m)}));
|
|
}`}let d=o.length,h=o[o.length-1];p+=`
|
|
return getChannel(
|
|
getT${d}(${sd(i,u,h)}),
|
|
vec2(${sd(l,u,h)}));`,this.userCode=`
|
|
float getValue(${i.map(f=>"int "+f)}) {
|
|
${p}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
|
|
|
|
${a[s-1]} = ${a[s-1]} + 1;
|
|
if (${a[s-1]} < ${n[s-1]}) {
|
|
result.g = getValue(${a});
|
|
}
|
|
|
|
${a[s-2]} = ${a[s-2]} + 1;
|
|
if (${a[s-2]} < ${n[s-2]}) {
|
|
result.a = getValue(${a});
|
|
}
|
|
|
|
${a[s-1]} = ${a[s-1]} - 1;
|
|
if (${a[s-2]} < ${n[s-2]} &&
|
|
${a[s-1]} < ${n[s-1]}) {
|
|
result.b = getValue(${a});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function sd(e,t,n){let s=e.indexOf(t);return e.map((a,i)=>i===s?`${a} - ${n}`:a).join()}function ih(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Rn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var g9={kernelName:ip,backendName:"webgl",kernelFunc:ih};function Hi(e,t,n){let s=e[0].dtype;if(s==="complex64"){let c=e.map(m=>nc({inputs:{input:m},backend:n})),p=e.map(m=>ih({inputs:{input:m},backend:n})),d=Hi(c,t,n),h=Hi(p,t,n),f=Dr({inputs:{real:d,imag:h},backend:n});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),p.forEach(m=>n.disposeIntermediateTensorInfo(m)),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let c=e.map(b=>{let y=w.sizeFromShape(b.shape.slice(t));return pe({inputs:{x:b},backend:n,attrs:{shape:[-1,y]}})}),p=c.map(b=>({vals:n.readSync(b.dataId),shape:b.shape})),d=C.computeOutShape(c.map(b=>b.shape),1),h=c[0].shape[0]===1,f=dX(p,d,s,h),m=C.computeOutShape(e.map(b=>b.shape),t),g=n.makeTensorInfo(m,s,f);return c.forEach(b=>n.disposeIntermediateTensorInfo(b)),g}if(e.length>K().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let c=Math.floor(e.length/2),p=Hi(e.slice(0,c),t,n),d=Hi(e.slice(c),t,n),h=Hi([p,d],t,n);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),h}if(K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let c=new m9(e.map(p=>p.shape),t);return n.runWebGLProgram(c,e,s)}let{tensors2D:a,outShape:i}=b9(e,t,n),o=new f9(a.map(c=>c.shape)),u=n.runWebGLProgram(o,a,s);a.forEach(c=>n.disposeIntermediateTensorInfo(c));let l=pe({inputs:{x:u},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(u),l}function b9(e,t,n){let s=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>pe({inputs:{x:a},attrs:{shape:[-1,w.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function d2(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(l=>l.shape),a);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(l=>w.sizeFromShape(l.shape)>0);if(o.length===1)return Rn({inputs:{x:o[0]},backend:n});let u=o.map(l=>l.shape);return C.assertParamsConsistent(u,a),Hi(o,a,n)}var y9={kernelName:po,backendName:"webgl",kernelFunc:d2},p2=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,u=e.strideWidth,l=e.dilationHeight,c=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,b=m?2:3,y=m?3:1,v="",x="";n&&(s?v=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?v=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:v=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,x="result = activation(result);");let k=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${v}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${u});
|
|
const ivec2 pads = ivec2(${a}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${b}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${k}
|
|
${x}
|
|
setOutput(result);
|
|
}
|
|
`}},v9=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,u=e.dilationHeight,l=e.dilationWidth,c=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${a}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${s});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${l};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},x9=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=Sn(this.outputShape.length);let{dataFormat:n}=t,s=fn(),r=n==="channelsLast",a=r?1:2,i=r?2:3,o=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,u="";for(let l=0;l<=1;l++)for(let c=0;c<=1;c++)u+=`
|
|
blockIndex = rc.z + ${c};
|
|
pos = rc.y + ${l};
|
|
|
|
${o}
|
|
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
|
|
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
|
|
|
|
if(d0 < inputShape[${a}] && d0 >= 0) {
|
|
// Use custom imod instead mod. On Intel GPU, mod may generate
|
|
// unexpected value.
|
|
// https://github.com/tensorflow/tfjs/issues/5447
|
|
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
|
|
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
|
|
inChannels);
|
|
|
|
if(d1 < inputShape[${i}] && d1 >= 0) {
|
|
|
|
ch = imod(pos, inChannels);
|
|
|
|
if (${r}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${l*2+c}] = getChannel(
|
|
getA(rc.x, d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${l*2+c}] = getChannel(
|
|
getA(rc.x, ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${u}
|
|
|
|
${s.output} = result;
|
|
}
|
|
`}};function Hd(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function h2({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:o=null}){let u=e.shape,l=s.texData.get(e.dataId),c=n.inChannels,p=u[0]*u[1]*u[2],d=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,b=[];if(a!=null){let x=Hd(a.shape,h);x!=null&&(a=pe({inputs:{x:a},backend:s,attrs:{shape:x}}),b.push(a))}if(r!=null){let x=Hd(r.shape,h);x!=null&&(r=pe({inputs:{x:r},backend:s,attrs:{shape:x}}),b.push(r))}if(!((p===1||d===1)&&c>i2)&&l.isPacked&&h&&l.texture!=null&&u[2]%2!==0&&w.arraysEqual(l.shape.slice(-3),u.slice(-3))){let x=u[0]*u[1]*(u[2]+1),k={dataId:e.dataId,shape:[1,x,n.inChannels],dtype:e.dtype},I=l.shape;l.shape=l.shape.slice(),l.shape[l.shape.length-2]++,w.assert(rl(l.shape,k.shape),()=>`packed reshape ${l.shape} to ${k.shape} isn't free`);let $=pe({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});b.push($);let R=Gd({a:k,b:$,backend:s,transposeA:f,transposeB:m,bias:r,activation:o,preluActivationWeights:a,leakyreluAlpha:i}),E=s.texData.get(R.dataId);w.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),l.shape=I,E.shape=n.outShape,g=Rn({inputs:{x:R},backend:s}),g.shape=n.outShape,b.push(R)}else{let x=n.outHeight*n.outWidth,k=pe({inputs:{x:e},backend:s,attrs:{shape:h?[n.batchSize,x,n.inChannels]:[n.batchSize,n.inChannels,x]}}),I=pe({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),$=Gd({a:h?k:I,b:h?I:k,transposeA:!h,transposeB:m,backend:s,bias:r,activation:o,preluActivationWeights:a,leakyreluAlpha:i});g=pe({inputs:{x:$},backend:s,attrs:{shape:n.outShape}}),b.push(k),b.push(I),b.push($)}for(let x of b)s.disposeIntermediateTensorInfo(x);return g}function f2({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:u,filterHeight:l,inChannels:c,outWidth:p,outHeight:d,dataFormat:h}=n,f=h==="channelsLast",m=u*l*c,g=d*p,b=[n.batchSize,m,g],y=!0,v=!1,x=[];if(a!=null){let X=Hd(a.shape,f);X!=null&&(a=pe({inputs:{x:a},backend:s,attrs:{shape:X}}),x.push(a))}if(r!=null){let X=Hd(r.shape,f);X!=null&&(r=pe({inputs:{x:r},backend:s,attrs:{shape:X}}),x.push(r))}let k=pe({inputs:{x:t},backend:s,attrs:{shape:[1,m,w.sizeFromShape(t.shape)/m]}});x.push(k);let I=new x9(b,n),$=[e.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],R=s.runWebGLProgram(I,[e],"float32",$),E=pe({inputs:{x:R},backend:s,attrs:{shape:b}});x.push(R),x.push(E);let P=r!=null,A=a!=null,O=o==="leakyrelu",T=o?sh(o,!0):null,M=new a2(f?E.shape:k.shape,f?k.shape:E.shape,f?[n.batchSize,g,n.outChannels]:[n.batchSize,n.outChannels,g],y,v,P,T,A,O),W=f?[E,k]:[k,E];if(r&&W.push(r),A&&W.push(a),O){let X=s.makeTensorInfo([],"float32",w.createScalarValue(i,"float32"));W.push(X),x.push(X)}let j=s.runWebGLProgram(M,W,"float32"),Y=pe({inputs:{x:j},backend:s,attrs:{shape:n.outShape}});x.push(j);for(let X of x)s.disposeIntermediateTensorInfo(X);return Y}function w9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dataFormat:u,dilations:l,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(r.shape,a.shape,i,l,o,c,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=h2({x:r,filter:a,convInfo:d,backend:n});else if(K().getBool("WEBGL_CONV_IM2COL"))h=f2({x:r,filter:a,convInfo:d,backend:n});else{let m=new p2(d);h=n.runWebGLProgram(m,[r,a],"float32")}let f=pe({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),f}var k9={kernelName:_a,backendName:"webgl",kernelFunc:w9},S9=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${a}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},I9=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,u=a?1:2,l=a?2:3,c=a?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${u}], coords[${l}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${a}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},C9=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${s} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},N9=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,u=n-1-e.padInfo.top,l=s-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${u}, ${l});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${s} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function T9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,pad:o,dataFormat:u,dimRoundingMode:l,filterShape:c}=s,p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(r.shape,c,i,1,o,l,!1,p),h=new S9(d);return n.runWebGLProgram(h,[r,a],"float32")}var $9={kernelName:yg,backendName:"webgl",kernelFunc:T9};function _9(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:i,strides:o,pad:u,dataFormat:l,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(i,a.shape,o,1,u,c,!1,p),h=new I9(d);return n.runWebGLProgram(h,[r,a],"float32")}var A9={kernelName:Aa,backendName:"webgl",kernelFunc:_9};function E9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u}=s,l=C.computeConv3DInfo(r.shape,a.shape,i,u,o),c=new v9(l);return n.runWebGLProgram(c,[r,a],"float32")}var R9={kernelName:sp,backendName:"webgl",kernelFunc:E9};function D9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,pad:o,filterShape:u}=s,l=C.computeConv3DInfo(r.shape,u,i,1,o),c=new C9(l);return n.runWebGLProgram(c,[r,a],"float32")}var F9={kernelName:vg,backendName:"webgl",kernelFunc:D9};function O9(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:i,strides:o,inputShape:u}=s,l=C.computeConv3DInfo(u,a.shape,o,1,i),c=new N9(l);return n.runWebGLProgram(c,[r,a],"float32")}var P9={kernelName:xg,backendName:"webgl",kernelFunc:O9},z9=lu+`
|
|
return cos(x);
|
|
`,M9=Ke({opSnippet:z9}),L9={kernelName:Ea,backendName:"webgl",kernelFunc:M9},B9=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,V9=Ke({opSnippet:B9}),W9={kernelName:Ra,backendName:"webgl",kernelFunc:V9},U9=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,i,o,u]=e,[l]=t,[c,p]=n;this.outputShape=[l,c,p,u];let d=s==="bilinear"?1:0,[h,f]=[`${i-1}.0`,`${o-1}.0`],[m,g,b]=c>1?[`${(i-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[y,v,x]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${a}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${v};
|
|
|
|
float in_y = ${b};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${x};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${d} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},G9=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:i}=t,{cropSize:o,method:u,extrapolationValue:l}=s,c=new U9(r.shape,a.shape,o,u,l);return n.runWebGLProgram(c,[r,a,i],"float32")},H9={kernelName:fo,backendName:"webgl",kernelFunc:G9},Iw=class{constructor(e,t,n,s){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,a=this.op==="*"?"1.0":"0.0",i=n?a:`getX(${Cw(r,"coords",this.op)})`,o=this.outputShape[this.outputShape.length-1],u="",l="";n?(u=s?`end != ${o-1}`:"end != 0",l=s?"end + 1":"end - 1"):(u=s?`end + pow2 < ${o}`:"end >= pow2",l=s?"end + pow2":"end - pow2"),this.userCode=`
|
|
void main() {
|
|
${ot(r)} coords = getOutputCoords();
|
|
int end = ${Nw(r,"coords",this.op)};
|
|
float val = ${i};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${u}) {
|
|
int idx = ${l};
|
|
${Nw(r,"coords",this.op)} = idx;
|
|
val ${this.op}= getX(${Cw(r,"coords",this.op)});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}};function Cw(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function Nw(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function m2(e,t,n,s,r,a){let i=t.shape.length,o=C.getAxesPermutation([s],i),u=t;o!=null&&(u=dn({inputs:{x:t},backend:n,attrs:{perm:o}}));let l=C.getInnerMostAxes(1,i)[0];if(l!==i-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=u.shape[l],p=Rn({inputs:{x:u},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new Iw(e,u.shape,!1,a),f=[[d]],m=p;p=n.runWebGLProgram(h,[p],p.dtype,f),n.disposeIntermediateTensorInfo(m)}if(r){let d=new Iw(e,u.shape,r,a),h=p;p=n.runWebGLProgram(d,[p],p.dtype),n.disposeIntermediateTensorInfo(h)}if(o!=null){let d=C.getUndoAxesPermutation(o),h=dn({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(u),h}return p}function q9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s;return m2("*",r,n,a,i,o)}var j9={kernelName:ho,backendName:"webgl",kernelFunc:q9};function K9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s;return m2("+",r,n,a,i,o)}var X9={kernelName:Da,backendName:"webgl",kernelFunc:K9};function Y9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:i,binaryOutput:o}=s;if(r.shape.length===1){let u=n.readSync(r.dataId),l=n.readSync(a.dataId),c=j1(u,l,a.dtype,a.shape,i);return n.makeTensorInfo([i],a.dtype,c)}else if(r.shape.length===2){let u=n.bufferSync(r),l=n.bufferSync(a),c=lX(u,l,i,o);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Q9={kernelName:wg,backendName:"webgl",kernelFunc:Y9},Z9=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function J9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:i}=s,o=r.shape[0],u=i==="NHWC"?r.shape[1]:r.shape[2],l=i==="NHWC"?r.shape[2]:r.shape[3],c=i==="NHWC"?r.shape[3]:r.shape[1],p=u*a,d=l*a,h=c/(a*a),f=i==="NHWC"?[o,p,d,h]:[o,h,p,d],m=new Z9(f,a,i);return n.runWebGLProgram(m,[r],r.dtype)}var eQ={kernelName:mo,backendName:"webgl",kernelFunc:J9},g2=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Sn(this.outputShape.length);let a=e.filterHeight,i=e.filterWidth,o=e.outChannels/e.inChannels,u="",l="";n&&(s?u=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?u=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:u=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,l="result = activation(result);");let c=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${u}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${o};
|
|
int q = d2 - d1 * ${o};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${a}; wR++) {
|
|
int xR = xRCorner + wR * dilations[0];
|
|
|
|
if (xR < 0 || xR >= inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${i}; wC++) {
|
|
int xC = xCCorner + wC * dilations[1];
|
|
|
|
if (xC < 0 || xC >= inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${c}
|
|
${l}
|
|
setOutput(result);
|
|
}
|
|
`}},b2=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=Sn(this.outputShape.length);let a=e.outChannels/e.inChannels,i=e.padInfo.left,o=e.strideWidth,u=e.dilationWidth,l=e.filterHeight,c=e.filterWidth,p=c,d=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)d+=`
|
|
vec4 xTexelC${g*2};
|
|
int xTexelC${g*2}Ready;
|
|
vec4 xTexelC${g*2+1};
|
|
int xTexelC${g*2+1}Ready;
|
|
vec4 xC${g};`;d+=`
|
|
for (int r = 0; r < ${l}; r++) {
|
|
`;for(let g=0;g<c;g++)d+=`
|
|
xTexelC${g*2} = vec4(0.0);
|
|
xTexelC${g*2}Ready = 0;
|
|
xTexelC${g*2+1} = vec4(0.0);
|
|
xTexelC${g*2+1}Ready = 0;
|
|
xC${g} = vec4(0.0);`;d+=`
|
|
xR = xRCorner + r * dilations[0];
|
|
if (xR >=0 && xR < inDims[0]) {
|
|
`;for(let g=0;g<(p+1)/2;g++){let b=g*2;if(d+=`
|
|
xC = xCCorner + ${b*u};
|
|
`,o===1){if(b<c&&(i%2===1?(d+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
`,u===1&&b>0?d+=`
|
|
xC${b} = vec4(xTexelC${b-2}.zw, xTexelC${b}.xy);
|
|
`:d+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${b} = vec4(previous.zw, xTexelC${b}.xy);
|
|
} else {
|
|
xC${b} = vec4(0.0, 0.0, xTexelC${b}.xy);
|
|
}
|
|
`):d+=`
|
|
if (xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
xC${b} = xTexelC${b};
|
|
`,b+1<c)){let y=i%2===0?w.nearestLargerEven(u):u;u%2===0&&i%2===1||u%2!==0&&i%2!==1?(d+=`
|
|
xCOffset = xC + imod(pads[1], 2) + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
`,u>1&&(d+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
`),d+=`
|
|
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.xy);
|
|
`):y===1?d+=`
|
|
xC${b+1} = xTexelC${b};
|
|
`:d+=`
|
|
xCOffset = xC + ${y};
|
|
|
|
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b+1} = xTexelC${b+1};
|
|
`}}else b<c&&(i%2===1?(d+=`
|
|
xCOffset = xC + 1 - strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
|
|
`,b+1<c&&(d+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1]) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${b+1} = vec4(xTexelC${b+1}.xy, final.xy);
|
|
`)):(d+=`
|
|
if(xC >= 0 && xC < inDims[1] && xTexelC${b}Ready == 0) {
|
|
xTexelC${b} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= inDims[1]) {
|
|
xTexelC${b}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${b}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + strides[1];
|
|
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${b+1}Ready == 0) {
|
|
xTexelC${b+1} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= inDims[1]) {
|
|
xTexelC${b+1}.zw = vec2(0.);
|
|
}
|
|
xTexelC${b+1}Ready = 1;
|
|
}
|
|
|
|
xC${b} = vec4(
|
|
xTexelC${b}.xy, xTexelC${b+1}.xy);
|
|
`,b+1<c&&(d+=`
|
|
xC${b+1} = vec4(xTexelC${b}.zw, xTexelC${b+1}.zw);
|
|
`)));b<c&&(d+=`
|
|
wTexel = getW(r, ${b}, d1, q);
|
|
dotProd += xC${b} * vec4(wTexel.xz, wTexel.xz);
|
|
`,b+1<c&&(d+=`
|
|
wTexel = getW(r, ${b+1}, d1, q);
|
|
dotProd += xC${b+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}d+=`
|
|
}
|
|
`,d+=`
|
|
}
|
|
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?h=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:h=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${h}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${a};
|
|
int q = d2 - d1 * ${a};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${d}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${m}
|
|
${f}
|
|
setOutput(result);
|
|
}
|
|
`}};function tQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u,dimRoundingMode:l}=s,c=u;c==null&&(c=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let p=C.computeConv2DInfo(r.shape,a.shape,i,c,o,l,!0),d;K().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?d=new b2(p):d=new g2(p);let h=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return n.runWebGLProgram(d,[r,a],"float32",h)}var nQ={kernelName:Fa,backendName:"webgl",kernelFunc:tQ},sQ=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${a} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},rQ=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${a}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function aQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:i,dilations:o,pad:u,dimRoundingMode:l,filterShape:c}=s,p=C.computeConv2DInfo(r.shape,c,i,o,u,l,!0),d=new sQ(p);return n.runWebGLProgram(d,[r,a],"float32")}var iQ={kernelName:kg,backendName:"webgl",kernelFunc:aQ};function oQ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:i,dilations:o,pad:u,dimRoundingMode:l,inputShape:c}=s,p=C.computeConv2DInfo(c,a.shape,i,o,u,l,!0),d=new rQ(p);return n.runWebGLProgram(d,[r,a],"float32")}var uQ={kernelName:Sg,backendName:"webgl",kernelFunc:oQ},lQ=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function cQ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=w.sizeFromShape(s.shape),i=pe({inputs:{x:s},backend:n,attrs:{shape:[a]}}),o=new lQ(a),u=n.runWebGLProgram(o,[i],i.dtype),l=pe({inputs:{x:u},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),l}var dQ={kernelName:Ig,backendName:"webgl",kernelFunc:cQ},pQ=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:i,filterWidth:o,dilationHeight:u,dilationWidth:l}=e,{top:c,left:p}=s;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${a});
|
|
const ivec2 pads = ivec2(${c}, ${p});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${u};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${l};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function hQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u}=s,l=C.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",u),c,p=new pQ(l);c=n.runWebGLProgram(p,[r,a],"float32");let d=pe({inputs:{x:c},backend:n,attrs:{shape:l.outShape}});return n.disposeIntermediateTensorInfo(c),d}var fQ={kernelName:rp,backendName:"webgl",kernelFunc:hQ};function mQ(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:i,summedDims:o,idDims:u}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(i.length,u,a);let{path:l,steps:c}=C.getEinsumComputePath(o,u),p=c.length,d=null,h=i.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:b,expandDims:y}=C.getEinsumPermutation(h,u[g]),v;C.isIdentityPermutation(b)?v=a[g]:(v=dn({inputs:{x:a[g]},backend:n,attrs:{perm:b}}),f.push(v));let x=v.shape.slice();for(let k=0;k<y.length;++k)x.splice(y[k],0,1);w.arraysEqual(v.shape,x)||(v=pe({inputs:{x:v},backend:n,attrs:{shape:x}}),f.push(v)),d===null?d=v:(d=Av({inputs:{a:v,b:d},backend:n}),f.push(d))}m<p-1&&(l[m]>=0&&(d=ah({inputs:{x:d},backend:n,attrs:{axis:l[m]-(i.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var gQ={kernelName:ap,backendName:"webgl",kernelFunc:mQ},bQ="return (x >= 0.0) ? x : (exp(x) - 1.0);",yQ=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,vQ=Ke({opSnippet:bQ,packedOpSnippet:yQ}),xQ={kernelName:Pa,backendName:"webgl",kernelFunc:vQ},wQ="return (b >= 1.0) ? a : a * (b + 1.0);",kQ=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,SQ=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=K().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new tc(kQ,s.shape,r.shape):new oo(wQ,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},IQ={kernelName:Cg,backendName:"webgl",kernelFunc:SQ},CQ=`
|
|
return vec4(equal(a, b));
|
|
`,NQ="return float(a == b);",TQ=qt({opSnippet:NQ,packedOpSnippet:CQ,dtype:"bool",cpuKernelImpl:pX}),$Q={kernelName:go,backendName:"webgl",kernelFunc:TQ},_Q=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${C.ERF_P};
|
|
float a1 = ${C.ERF_A1};
|
|
float a2 = ${C.ERF_A2};
|
|
float a3 = ${C.ERF_A3};
|
|
float a4 = ${C.ERF_A4};
|
|
float a5 = ${C.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,AQ=Ke({opSnippet:_Q}),EQ={kernelName:yl,backendName:"webgl",kernelFunc:AQ},RQ=lu+`
|
|
return exp(x);
|
|
`,DQ=`
|
|
vec4 result = exp(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,y2=Ke({opSnippet:RQ,packedOpSnippet:DQ,cpuKernelImpl:hX,dtype:"float32"}),FQ={kernelName:za,backendName:"webgl",kernelFunc:y2};function tg(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,i=a.shape.length,o=a.shape.slice(),u=r;return r<0&&(w.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+r+1),o.splice(u,0,1),pe({inputs:{x:a},backend:s,attrs:{shape:o}})}var OQ={kernelName:bo,backendName:"webgl",kernelFunc:tg},Tw="return exp(x) - 1.0;",PQ=Ke({opSnippet:Tw,packedOpSnippet:Tw,cpuKernelImpl:fX}),zQ={kernelName:yo,backendName:"webgl",kernelFunc:PQ},$w=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${s});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${s}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${a};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function v2(e,t,n){let s=n.texData.get(e.dataId),r=w.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],i=r/a,o=pe({inputs:{x:e},backend:n,attrs:{shape:[i,a]}}),u=o.shape,l=new $w("real",u,t),c=new $w("imag",u,t),p=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:u},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:u}],d=n.runWebGLProgram(l,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=Dr({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let m=pe({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(f),m}function MQ(e){let{inputs:t,backend:n}=e,{input:s}=t;return v2(s,!1,n)}var LQ={kernelName:Ng,backendName:"webgl",kernelFunc:MQ},BQ=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}};function sc(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||w.inferDtype(r),a==="string"){let i=w.getArrayFromDType(a,w.sizeFromShape(s));return i.fill(r),t.makeTensorInfo(s,a,i)}else{let i=new BQ(s,r),o=[[r]];return t.runWebGLProgram(i,[],a,o)}}var VQ={kernelName:vl,backendName:"webgl",kernelFunc:sc},WQ=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x - 1;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},UQ={kernelName:vo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new WQ(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},_w="return floor(x);",GQ=Ke({opSnippet:_w,packedOpSnippet:_w,cpuKernelImpl:mX}),HQ={kernelName:Ma,backendName:"webgl",kernelFunc:GQ},qQ=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,jQ=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,KQ=qt({opSnippet:qQ,packedOpSnippet:jQ,dtype:"int32"}),XQ={kernelName:La,backendName:"webgl",kernelFunc:KQ},YQ=class{constructor(e){this.variableNames=["A"];let t=fn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},QQ=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=fn(),[n,s]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${s}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},ZQ={kernelName:vd,backendName:"webgl",kernelFunc:JQ},Bi;function JQ(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[u,l]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[l,u],p=[l,u,a];(o||i)&&(Bi==null&&(Bi=document.createElement("canvas").getContext("2d")),Bi.canvas.width=u,Bi.canvas.height=l,Bi.drawImage(r,0,0,u,l),r=Bi.canvas);let d=n.makeTensorInfo(c,"int32");n.texData.get(d.dataId).usage=2,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),r);let h=K().getBool("WEBGL_PACK")?new QQ(p):new YQ(p),f=n.runWebGLProgram(h,[d],"int32");return n.disposeData(d.dataId),f}function eZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=C.convertConv2DDataFormat(c),g=C.computeConv2DInfo(r.shape,a.shape,u,p,l,d,!1,m),b,y=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))b=h2({x:r,filter:a,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:f});else if(K().getBool("WEBGL_CONV_IM2COL"))b=f2({x:r,filter:a,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:f});else{let x=i!=null,k=o!=null,I=h==="leakyrelu",$=h?sh(h,!1):null,R=new p2(g,x,$,k,I),E=[r,a],P=(A,O)=>{if(O==="NCHW"&&A.shape.length===1&&A.shape[0]!==1){let T=pe({inputs:{x:A},backend:n,attrs:{shape:[A.shape[0],1,1]}});return y.push(T),T}return A};if(x&&E.push(P(i,c)),k&&E.push(P(o,c)),I){let A=n.makeTensorInfo([],"float32",w.createScalarValue(f,"float32"));E.push(A),y.push(A)}b=n.runWebGLProgram(R,E,"float32")}let v=pe({inputs:{x:b},backend:n,attrs:{shape:g.outShape}});return y.push(b),y.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var tZ={kernelName:oa,backendName:"webgl",kernelFunc:eZ};function nZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=[],m=c;m==null&&(m=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(u,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${m}'`);let g=C.computeConv2DInfo(r.shape,a.shape,u,m,l,p,!0),b=K().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,y=d?sh(d,b):null,v=[r,a],x=i!=null,k=o!=null,I=d==="leakyrelu";if(x&&v.push(i),k&&v.push(o),I){let P=n.makeTensorInfo([],"float32",w.createScalarValue(h,"float32"));v.push(P),f.push(P)}let $;b?$=new b2(g,x,y,k,I):$=new g2(g,x,y,k,I);let R=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],E=n.runWebGLProgram($,v,"float32",R);return f.forEach(P=>n.disposeIntermediateTensorInfo(P)),E}var sZ={kernelName:ua,backendName:"webgl",kernelFunc:nZ},rZ=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let s=ot(t.length),r=ot(n.length),a=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${s} strides = ${s}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${a};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function aZ(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,i=a[a.length-1],o=w.sizeFromShape(s.shape),[u,l,c,p]=C.prepareAndValidate(s,r),d=pe({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),h=pe({inputs:{x:s},backend:n,attrs:{shape:[w.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let b=n.readSync(r.dataId),y=n.bufferSync(s),v=gX(b,y,s.dtype,l,i,c,p,s.shape,o);return n.makeTensorInfo(u,s.dtype,v.values)}let f=new rZ(i,p,[l,c]),m=n.runWebGLProgram(f,[h,d],h.dtype),g=pe({inputs:{x:m},backend:n,attrs:{shape:u}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var iZ={kernelName:wo,backendName:"webgl",kernelFunc:aZ},oZ=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ot(this.rank),s=uZ(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
int index = int(getIndices(resRC.x, resRC.z));
|
|
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
|
|
setOutput(inBounds * getA(${s}));
|
|
}
|
|
`}};function uZ(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("index"):s.push(`${n[r]}`);return s.join()}function x2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:i,batchDims:o}=s,u=w.parseAxisParam(i,r.shape)[0];if(K().get("DEBUG")){let y=n.readSync(a.dataId),v=r.shape[u];for(let x=0;x<y.length;++x){let k=y[x];w.assert(k<=v-1&&k>=0,()=>`GatherV2: the index value ${k} is not in [0, ${v-1}]`)}}let l=C.segment_util.collectGatherOpShapeInfo(r,a,u,o),c=w.sizeFromShape(a.shape),p=[],d=pe({inputs:{x:r},backend:n,attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]}}),h=pe({inputs:{x:a},backend:n,attrs:{shape:[l.batchSize,c/l.batchSize]}});p.push(d),p.push(h);let f=[l.batchSize,l.outerSize,c/l.batchSize,l.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let y=n.bufferSync(h),v=n.bufferSync(d),x=bX(v,y,f);return p.forEach(k=>n.disposeIntermediateTensorInfo(k)),n.makeTensorInfo(l.outputShape,x.dtype,x.values)}let m=new oZ(d.shape,f),g=n.runWebGLProgram(m,[d,h],d.dtype);p.push(g);let b=pe({inputs:{x:g},backend:n,attrs:{shape:l.outputShape}});return p.forEach(y=>n.disposeIntermediateTensorInfo(y)),b}var lZ={kernelName:xo,backendName:"webgl",kernelFunc:x2},cZ="return float(a > b);",dZ=`
|
|
return vec4(greaterThan(a, b));
|
|
`,pZ=qt({opSnippet:cZ,packedOpSnippet:dZ,cpuKernelImpl:yX,dtype:"bool"}),hZ={kernelName:ko,backendName:"webgl",kernelFunc:pZ},fZ="return float(a >= b);",mZ=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,gZ=qt({opSnippet:fZ,packedOpSnippet:mZ,dtype:"bool",cpuKernelImpl:vX}),bZ={kernelName:Va,backendName:"webgl",kernelFunc:gZ};function yZ(e){let{inputs:t,backend:n}=e,{input:s}=t;return v2(s,!0,n)}var vZ={kernelName:Tg,backendName:"webgl",kernelFunc:yZ},xZ="return float(!isnan(x) && !isinf(x));",wZ=Ke({opSnippet:xZ,dtype:"bool"}),kZ={kernelName:xl,backendName:"webgl",kernelFunc:wZ},SZ="return float(isinf(x));",IZ=Ke({opSnippet:SZ,dtype:"bool"}),CZ={kernelName:wl,backendName:"webgl",kernelFunc:IZ},NZ="return float(isnan(x));",TZ=Ke({opSnippet:NZ,dtype:"bool"}),$Z={kernelName:kl,backendName:"webgl",kernelFunc:TZ},_Z="return float(a < b);",AZ=`
|
|
return vec4(lessThan(a, b));
|
|
`,EZ=qt({opSnippet:_Z,packedOpSnippet:AZ,cpuKernelImpl:xX,dtype:"bool"}),RZ={kernelName:So,backendName:"webgl",kernelFunc:EZ},DZ="return float(a <= b);",FZ=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,OZ=qt({opSnippet:DZ,packedOpSnippet:FZ,cpuKernelImpl:wX,dtype:"bool"}),PZ={kernelName:Io,backendName:"webgl",kernelFunc:OZ};function zZ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,i=kX(s,r,a);return t.makeTensorInfo([i.length],"float32",i)}var MZ={kernelName:$g,backendName:"webgl",kernelFunc:zZ},LZ=lu+`
|
|
return x < 0.0 ? 0./0. : log(x);
|
|
`,BZ=`
|
|
vec4 result = log(x);
|
|
bvec4 isNaN = isnan(x);
|
|
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
|
|
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
|
|
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
|
|
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
|
|
return result;
|
|
`,VZ=Ke({opSnippet:LZ,packedOpSnippet:BZ,cpuKernelImpl:SX}),WZ={kernelName:Ga,backendName:"webgl",kernelFunc:VZ},UZ=lu+`
|
|
return log(1.0 + x);
|
|
`,GZ=Ke({opSnippet:UZ}),HZ={kernelName:Sl,backendName:"webgl",kernelFunc:GZ},qZ="return float(a >= 1.0 && b >= 1.0);",jZ=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,KZ=qt({opSnippet:qZ,packedOpSnippet:jZ,dtype:"bool"}),XZ={kernelName:Co,backendName:"webgl",kernelFunc:KZ},YZ="return float(!(x >= 1.0));",QZ=Ke({opSnippet:YZ}),ZZ={kernelName:Il,backendName:"webgl",kernelFunc:QZ},JZ="return float(a >= 1.0 || b >= 1.0);",e7=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,t7=qt({opSnippet:JZ,packedOpSnippet:e7,dtype:"bool"}),n7={kernelName:op,backendName:"webgl",kernelFunc:t7},s7=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,i=e[3]-1;this.outputShape=e;let o,u=`float(${n}) + float(${s}) * sum`;r===.5?o=`inversesqrt(${u})`:r===1?o=`1.0/(${u})`:o=`exp(log(${u}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${a}; j <= ${a}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},r7=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,i=e[3]-1;this.outputShape=e;let o,u=`float(${n}) + float(${s}) * sum`;r===.5?o=`inversesqrt(${u})`:r===1?o=`1.0/(${u})`:o=`exp(log(${u}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${a};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${a}; j <= ${a}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},a7=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:i,alpha:o,beta:u}=s,l=K().getBool("WEBGL_PACK_NORMALIZATION")?new r7(r.shape,a,i,o,u):new s7(r.shape,a,i,o,u);return n.runWebGLProgram(l,[r],r.dtype)},i7={kernelName:up,backendName:"webgl",kernelFunc:a7},o7=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${s}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${s})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},u7=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:i}=t,{depthRadius:o,bias:u,alpha:l,beta:c}=s,p=new o7(r.shape,o,u,l,c);return n.runWebGLProgram(p,[r,a,i],r.dtype)},l7={kernelName:_g,backendName:"webgl",kernelFunc:u7};function c7(e,t,n,s){let r=w.sizeFromShape(t),i=w.sizeFromShape(e.shape)/r,o=pe({inputs:{x:e},attrs:{shape:[i,r]},backend:s}),u=ki(o,e.dtype,"max",s),l=pe({inputs:{x:u},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(o),s.disposeIntermediateTensorInfo(u),l}function w2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:i}=s,o=r.shape.length,u=w.parseAxisParam(a,r.shape),l=u,c=C.getAxesPermutation(l,o),p=c!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let v=n.texData.get(h.dataId).values,x=new Array(o);for(let $=0;$<x.length;$++)x[$]=r.shape[c[$]];let k=_v(v,r.shape,r.dtype,c,x);h=n.makeTensorInfo(x,r.dtype);let I=n.texData.get(h.dataId);I.values=k}else h=rh(r,c,n);l=C.getInnerMostAxes(l.length,o)}C.assertAxesAreInnerMostDims("max",l,o);let[f,m]=C.computeOutAndReduceShapes(h.shape,l),g=f;i&&(g=C.expandShapeToKeepDim(f,u));let b;if(d){let v=n.texData.get(h.dataId).values,x=IX(v,w.sizeFromShape(m),g,r.dtype);b=n.makeTensorInfo(g,r.dtype);let k=n.texData.get(b.dataId);k.values=x}else b=c7(h,m,g,n);return p&&n.disposeIntermediateTensorInfo(h),b}var d7={kernelName:Ha,backendName:"webgl",kernelFunc:w2},p7=e2+`
|
|
return max(a, b);
|
|
`,h7=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+nh+`
|
|
return result;
|
|
`,f7=qt({opSnippet:p7,packedOpSnippet:h7,cpuKernelImpl:CX}),m7={kernelName:qa,backendName:"webgl",kernelFunc:f7};function g7(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;ru(r,"maxPool");let{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1;w.assert(C.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let c=C.computePool2DInfo(r.shape,a,i,l,o,u);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return Rn({inputs:{x:r},backend:n});let p=new al(c,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var b7={kernelName:ja,backendName:"webgl",kernelFunc:g7};function y7(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dataFormat:u,dimRoundingMode:l}=s,c=[1,1,1],p=C.computePool3DInfo(r.shape,a,i,c,o,l,u),d=new Ev(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var v7={kernelName:lp,backendName:"webgl",kernelFunc:y7},x7=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=a-1-e.padInfo.left,u=r*a-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${u} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${a} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},w7=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,u=e.effectiveFilterHeight,l=e.effectiveFilterWidth,c=o-1-e.padInfo.front,p=u-1-e.padInfo.top,d=l-1-e.padInfo.left,h=o*u*l-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${p}, ${d});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${s}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${u} * ${l} +
|
|
wR * ${l} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function k7(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,i=a,{filterSize:o,strides:u,pad:l,dimRoundingMode:c}=s,p=[1,1,1],d=C.computePool3DInfo(i.shape,o,u,p,l,c),h=new Ev(d,"max",!0),f=n.runWebGLProgram(h,[i],i.dtype),m=new w7(d),g=n.runWebGLProgram(m,[r,f],i.dtype);return n.disposeIntermediateTensorInfo(f),g}var S7={kernelName:Eg,backendName:"webgl",kernelFunc:k7};function I7(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:i}=t,o=a;ru([a,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:c,dimRoundingMode:p}=s,d=C.computePool2DInfo(o.shape,u,l,1,c,p),h=!0,f=new al(d,"max",h),m=n.runWebGLProgram(f,[o],o.dtype),g=new x7(d),b=n.runWebGLProgram(g,[r,m],o.dtype);return n.disposeIntermediateTensorInfo(m),b}var C7={kernelName:Ag,backendName:"webgl",kernelFunc:I7};function N7(e,t,n,s){let r=new al(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new al(n,"max",!0,!0,t);let i=s.runWebGLProgram(r,[e],"float32");return[a,i]}var T7={kernelName:Rg,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:i,includeBatchInIndex:o}=t,u=n;w.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let l=[1,1];w.assert(C.eitherStridesOrDilationsAreOne(a,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${l}'`);let c=C.computePool2DInfo(s.shape,r,a,l,i),[p,d]=N7(s,o,c,u);return[p,d]}};function $7(e,t,n,s){let r=w.sizeFromShape(t),i=w.sizeFromShape(e.shape)/r,o=pe({inputs:{x:e},attrs:{shape:[i,r]},backend:s}),u=ki(o,"float32","mean",s),l=pe({inputs:{x:u},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(o),s.disposeIntermediateTensorInfo(u),l}var _7={kernelName:Ka,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,i=n,o=s.shape.length,u=w.parseAxisParam(a,s.shape),l=u,c=C.getAxesPermutation(l,o),p=c!=null,d=i.shouldExecuteOnCPU([s]),h=[],f=s;if(p){if(d){let x=i.texData.get(f.dataId).values,k=new Array(o);for(let R=0;R<k.length;R++)k[R]=s.shape[c[R]];let I=_v(x,s.shape,s.dtype,c,k);f=i.makeTensorInfo(k,s.dtype);let $=i.texData.get(f.dataId);$.values=I}else f=rh(s,c,i);h.push(f),l=C.getInnerMostAxes(l.length,o)}C.assertAxesAreInnerMostDims("sum",l,o);let[m,g]=C.computeOutAndReduceShapes(f.shape,l),b=m;r&&(b=C.expandShapeToKeepDim(m,u));let y=$7(f,g,b,i);for(let v of h)i.disposeIntermediateTensorInfo(v);return y}};function A7(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s,o=r.shape.length,u=w.parseAxisParam(a,r.shape),l=u,c=C.getAxesPermutation(l,o),p=r;c!=null&&(p=dn({inputs:{x:r},backend:n,attrs:{perm:c}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",l,o);let[d,h]=C.computeOutAndReduceShapes(p.shape,l),f=w.sizeFromShape(h),m=pe({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=ki(m,m.dtype,"min",n),b;if(i){let y=C.expandShapeToKeepDim(d,u);b=pe({inputs:{x:g},backend:n,attrs:{shape:y}})}else b=pe({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),b}var E7={kernelName:Xa,backendName:"webgl",kernelFunc:A7},R7=e2+`
|
|
return min(a, b);
|
|
`,D7=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+nh+`
|
|
return result;
|
|
`,F7=qt({opSnippet:R7,packedOpSnippet:D7,cpuKernelImpl:NX}),O7={kernelName:Ya,backendName:"webgl",kernelFunc:F7},P7=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,c)=>l[0]+e[c]+l[1]);let s=e.length,r=ot(s),a=t.map(l=>l[0]).join(","),i=t.map((l,c)=>l[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),u=n==="reflect"?0:1;if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${u};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${u};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${s}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${u};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${u};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},z7=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=ot(s),a=t.map(h=>h[0]).join(","),i=t.map((h,f)=>h[0]+e[f]).join(","),o=un("rc",s),u=un("source",s),l=`${o[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${u.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(s===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${p};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${p};
|
|
}
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${u.join()}), ${c});
|
|
${o[s-1]} += 1;
|
|
if(${l}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${u.join()}), ${c});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${p}) +
|
|
gte * ((end - 1) * 2 - source + ${p});
|
|
source -= start;
|
|
`;d=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${u.join()}), ${c});
|
|
${o[s-1]} += 1;
|
|
if(${l}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${u.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${o[s-2]} += 1;
|
|
if(${o[s-2]} < ${this.outputShape[s-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${u.join()}), ${c});
|
|
${o[s-1]} += 1;
|
|
if(${l}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${u.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}},M7=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,i=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new z7(s.shape,r,a):new P7(s.shape,r,a);return t.runWebGLProgram(i,[s],s.dtype)},L7={kernelName:Qa,backendName:"webgl",kernelFunc:M7},B7=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,V7=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+nh+`
|
|
return result;
|
|
`,W7=qt({opSnippet:B7,packedOpSnippet:V7}),U7={kernelName:Cl,backendName:"webgl",kernelFunc:W7},G7=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}},H7=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,q7=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,k2=qt({opSnippet:H7,packedOpSnippet:q7,checkOutOfBounds:!0}),j7={kernelName:Oa,backendName:"webgl",kernelFunc:k2},Aw="return a - b;",S2=qt({opSnippet:Aw,packedOpSnippet:Aw,supportsComplex:!0,cpuKernelImpl:UX}),K7={kernelName:hi,backendName:"webgl",kernelFunc:S2};function I2(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,i=w.parseAxisParam([a],r.shape),o=w2({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),u=C.expandShapeToKeepDim(o.shape,i),l=pe({inputs:{x:o},backend:n,attrs:{shape:u}}),c=S2({inputs:{a:r,b:l},backend:n}),p=y2({inputs:{x:c},backend:n}),d=ah({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=pe({inputs:{x:d},backend:n,attrs:{shape:u}}),f=k2({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}var X7={kernelName:di,backendName:"webgl",kernelFunc:I2};function Y7(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:i,normalized:o}=s,u=o?r:I2({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),l=u.shape[0],c=u.shape[1],p=new G7(l,c,a),d=[[i]],h=n.runWebGLProgram(p,[u],"int32",d);return o||n.disposeIntermediateTensorInfo(u),h}var Q7={kernelName:Dg,backendName:"webgl",kernelFunc:Y7},Z7=ss+`
|
|
return -x;
|
|
`,J7=`
|
|
vec4 result = -x;
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`;function eJ(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[i,o]=$X(a.values,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,i)}let r;return K().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new ea(s.shape,J7):r=new Gs(s.shape,Z7),n.runWebGLProgram(r,[s],s.dtype)}var tJ={kernelName:No,backendName:"webgl",kernelFunc:eJ},nJ=ws.nonMaxSuppressionV3Impl;function sJ(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u}=s,l=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=nJ(l,c,i,o,u);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var rJ={kernelName:$o,backendName:"webgl",kernelFunc:sJ},aJ=ws.nonMaxSuppressionV4Impl;function iJ(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,padToMaxOutputSize:l}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),{selectedIndices:d,validOutputs:h}=aJ(c,p,i,o,u,l);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var oJ={kernelName:Nl,backendName:"webgl",kernelFunc:iJ},uJ=ws.nonMaxSuppressionV5Impl;function lJ(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,softNmsSigma:l}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=i,h=o,f=u,m=l,{selectedIndices:g,selectedScores:b}=uJ(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var cJ={kernelName:_o,backendName:"webgl",kernelFunc:lJ},dJ=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${s}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},pJ=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:i,offValue:o}=s,u=w.sizeFromShape(r.shape),l=new dJ(u,a,i,o),c=pe({inputs:{x:r},backend:n,attrs:{shape:[u]}}),p=n.runWebGLProgram(l,[c],r.dtype);n.disposeIntermediateTensorInfo(c);let d=[...r.shape,a],h=pe({inputs:{x:p},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(p),h},hJ={kernelName:Eo,backendName:"webgl",kernelFunc:pJ};function qd(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=nc({inputs:{input:s},backend:n}),a=qd({inputs:{x:r},backend:n}),i=ih({inputs:{input:s},backend:n}),o=qd({inputs:{x:i},backend:n}),u=Dr({inputs:{real:a,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}else return sc({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var fJ={kernelName:jo,backendName:"webgl",kernelFunc:qd};function C2(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=nc({inputs:{input:s},backend:n}),a=C2({inputs:{x:r},backend:n}),i=ih({inputs:{input:s},backend:n}),o=qd({inputs:{x:i},backend:n}),u=Dr({inputs:{real:a,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}else return sc({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var mJ={kernelName:Ao,backendName:"webgl",kernelFunc:C2};function gJ(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return tg({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,i=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],u=t.map(c=>{let p=tg({inputs:{input:c},backend:n,attrs:{dim:r}});return o.push(p),p}),l=d2({inputs:u,backend:n,attrs:{axis:r}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),l}var bJ={kernelName:Ro,backendName:"webgl",kernelFunc:gJ},yJ=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((u,l)=>u[0]+e[l]+u[1]);let s=e.length,r=ot(s),a=t.map(u=>u[0]).join(","),i=t.map((u,l)=>u[0]+e[l]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
|
|
int start = ${a};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${a});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}},vJ=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=ot(s),a=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=un("rc",s),u=un("source",s),l=`${o[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${u.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[s-1]} += 1;
|
|
if(${l}) {
|
|
`,s===1?"":`}
|
|
rc = outputLoc;
|
|
${o[s-2]} += 1;
|
|
if(${o[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${o[s-1]} += 1;
|
|
if(${l}) {`],d=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
|
|
${p[f]}
|
|
if (${d}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${f}] = getChannel(getX(${u.join()}), ${c});
|
|
}
|
|
`;h+=s===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${a});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}},N2=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:i}=s;if(w.sizeFromShape(r.shape)===0){let l=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return sc({backend:n,attrs:{shape:l,value:i,dtype:r.dtype}})}let o=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new vJ(r.shape,a,i):new yJ(r.shape,a,i),u=[[i]];return n.runWebGLProgram(o,[r],r.dtype,u)},xJ={kernelName:Ja,backendName:"webgl",kernelFunc:N2},wJ=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,kJ=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+nh+`
|
|
return result;
|
|
`,SJ=qt({opSnippet:wJ,packedOpSnippet:kJ}),IJ={kernelName:ei,backendName:"webgl",kernelFunc:SJ};function CJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s,o=r.shape.length,u=[],l=w.parseAxisParam(a,r.shape),c=l,p=C.getAxesPermutation(c,o),d=r;p!=null&&(d=dn({inputs:{x:r},backend:n,attrs:{perm:p}}),c=C.getInnerMostAxes(c.length,o),u.push(d)),C.assertAxesAreInnerMostDims("prod",c,o);let h;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:g,outDtype:b}=AX(d.shape,d.dtype,f,c);h=n.makeTensorInfo(g,b,m)}else{let[f,m]=C.computeOutAndReduceShapes(d.shape,c),g=w.sizeFromShape(m),b=pe({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),y=yp(r.dtype),v=ki(b,y,"prod",n);h=pe({inputs:{x:v},backend:n,attrs:{shape:f}}),u.push(b),u.push(v)}if(i){u.push(h);let f=C.expandShapeToKeepDim(h.shape,l);h=pe({inputs:{x:h},backend:n,attrs:{shape:f}})}return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var NJ={kernelName:ni,backendName:"webgl",kernelFunc:CJ},T2=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:i}=n,o=EX(s,r,a,i);return t.makeTensorInfo([o.length],i,o)},TJ={kernelName:Tl,backendName:"webgl",kernelFunc:T2},$J="return 1.0 / x;",_J=Ke({opSnippet:$J}),AJ={kernelName:$l,backendName:"webgl",kernelFunc:_J},EJ=ss+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,RJ=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,DJ=Ke({opSnippet:EJ,packedOpSnippet:RJ}),FJ={kernelName:si,backendName:"webgl",kernelFunc:DJ},OJ=ss+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,PJ=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,zJ=Ke({opSnippet:OJ,packedOpSnippet:PJ}),MJ={kernelName:ai,backendName:"webgl",kernelFunc:zJ},LJ=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,i,o,u]=e;this.outputShape=[a,t,n,u];let l=[s&&t>1?i-1:i,s&&n>1?o-1:o],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${l[0]/c[0]},
|
|
${l[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},BJ=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,o,u]=e;this.outputShape=[a,t,n,u];let l=[s&&t>1?i-1:i,s&&n>1?o-1:o],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${l[0]/c[0]},
|
|
${l[1]/c[1]},
|
|
${l[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${u-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function VJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:i,size:o}=s,[u,l]=o,c=K().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new BJ(r.shape,u,l,a,i):new LJ(r.shape,u,l,a,i);return n.runWebGLProgram(c,[r],"float32")}var WJ={kernelName:ri,backendName:"webgl",kernelFunc:VJ},UJ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,i]=e,o=[n&&a>1?s-1:s,n&&i>1?r-1:r],u=[n&&a>1?a-1:a,n&&i>1?i-1:i],l=o[0]/u[0],c=o[1]/u[1],p=1/l,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${l});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function GJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:i}=s,o=new UJ(a.shape,r.shape,i);return n.runWebGLProgram(o,[a],a.dtype)}var HJ={kernelName:Og,backendName:"webgl",kernelFunc:GJ},qJ=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,i,o,u]=e;this.outputShape=[a,t,n,u];let l=[s&&t>1?i-1:i,s&&n>1?o-1:o],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${l[0]/c[0]},
|
|
${l[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},jJ=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,i,o,u]=e;this.outputShape=[a,t,n,u];let l=[s&&t>1?i-1:i,s&&n>1?o-1:o],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${l[0]/c[0]},
|
|
${l[1]/c[1]},
|
|
${l[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${u-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function KJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:i,size:o}=s,[u,l]=o,c=K().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new jJ(r.shape,u,l,a,i):new qJ(r.shape,u,l,a,i);return n.runWebGLProgram(c,[r],r.dtype)}var XJ={kernelName:_l,backendName:"webgl",kernelFunc:KJ},YJ=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,i]=e,o=[n&&a>1?s-1:s,n&&i>1?r-1:r],u=[n&&a>1?a-1:a,n&&i>1?i-1:i],l=o[0]/u[0],c=o[1]/u[1],p=1/l,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${l});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${a}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${u[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${u[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${s}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function QJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:i}=s,o=new YJ(a.shape,r.shape,i);return n.runWebGLProgram(o,[a],a.dtype)}var ZJ={kernelName:Fg,backendName:"webgl",kernelFunc:QJ},JJ=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let s=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>s(o)).join(","),a=ot(n);this.userCode=`
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},eee=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=un("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ot(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(s.slice())};
|
|
if(${r}){
|
|
result.g = ${u(s.slice())};
|
|
}
|
|
if(${a}) {
|
|
result.b = ${l(s.slice())};
|
|
if(${r}) {
|
|
result.a = ${c(s.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return p(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function l(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let f=e.map((b,y)=>d(y,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function d(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function tee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,i=r.shape.length,o=w.parseAxisParam(a,r.shape);if(i===0)return Rn({inputs:{x:r},backend:n});let u=K().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new eee(r.shape,o):new JJ(r.shape,o);return n.runWebGLProgram(u,[r],r.dtype)}var nee={kernelName:Fo,backendName:"webgl",kernelFunc:tee},see=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},ree={kernelName:Ko,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:i}=t,o=n,u=new see(s.shape,a),[l,c]=C.getImageCenter(i,s.shape[1],s.shape[2]),p=[[l,c,Math.sin(r),Math.cos(r)]];return o.runWebGLProgram(u,[s],s.dtype,p)}},aee=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,iee=Ke({opSnippet:aee}),oee={kernelName:Oo,backendName:"webgl",kernelFunc:iee},uee="return inversesqrt(x);",lee=Ke({opSnippet:uee,cpuKernelImpl:RX}),cee={kernelName:ii,backendName:"webgl",kernelFunc:lee},$2=class{constructor(e,t,n,s,r,a,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let o=ot(r.length),u=ot(a.length),l="";n===1?l="i":n===2&&(l="i, j");let c=`getIndices(${l})`,p="";s===1?p="i":s===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${u} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${d};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function dee(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:i}=s,{sliceRank:o,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=C.calculateShapes(a,r,i),d=[p/l,l];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=pe({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),f=pe({inputs:{x:a},backend:n,attrs:{shape:[u,l]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new $2(u,o,h.shape.length,f.shape.length,c,d),b=n.runWebGLProgram(g,[f,h,m],f.dtype),y=pe({inputs:{x:b},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(b),n.disposeIntermediateTensorInfo(m),y}var pee={kernelName:Po,backendName:"webgl",kernelFunc:dee},hee=class{constructor(e,t,n,s){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",a=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,i=K().getNumber("WEBGL_VERSION")===2?r:a,o=s==="left"?"<":"<=";this.userCode=`
|
|
int findBound(int batch, float value) {
|
|
int left = 0;
|
|
int right = numInputs;
|
|
int mid;
|
|
${i}
|
|
mid = (left + right) / 2;
|
|
if (getSortedSequence(batch, mid) ${o} value) {
|
|
left = mid + 1;
|
|
} else {
|
|
right = mid;
|
|
}
|
|
}
|
|
return right;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int valueIndex = coords[1];
|
|
|
|
float value = getValues(batch, valueIndex);
|
|
|
|
setOutput(float(findBound(batch, value)));
|
|
}
|
|
`}};function fee(e){let{inputs:t,backend:n,attrs:s}=e,{sortedSequence:r,values:a}=t,{side:i}=s,o=new hee(r.shape[0],r.shape[1],a.shape[1],i),u=[[r.shape[1]]];return n.runWebGLProgram(o,[r,a],"int32",u)}var mee={kernelName:Pg,backendName:"webgl",kernelFunc:fee},gee=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],u=[];for(let l=0;l<t.length;l++)u.push(`${i[l]}`),l<e&&o.push(`${i[l]}`);s=o.join(),r=u.join()}let a=ot(n);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
float cVal = getC(${s});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function bee(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,i=new gee(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[s,r,a],ln(r.dtype,a.dtype))}var yee={kernelName:zo,backendName:"webgl",kernelFunc:bee},vee=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${C.SELU_SCALEALPHA};
|
|
float scale = ${C.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,xee=Ke({opSnippet:vee}),wee={kernelName:Al,backendName:"webgl",kernelFunc:xee},kee=lu+`
|
|
return 1.0 / (1.0 + exp(-1.0 * x));
|
|
`,See=`
|
|
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Iee=Ke({opSnippet:kee,packedOpSnippet:See,cpuKernelImpl:FX}),Cee={kernelName:ui,backendName:"webgl",kernelFunc:Iee},Nee=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,Tee=Ke({opSnippet:Nee}),$ee={kernelName:El,backendName:"webgl",kernelFunc:Tee},_ee=lu+`
|
|
return sin(x);
|
|
`,Aee=Ke({opSnippet:_ee}),Eee={kernelName:oi,backendName:"webgl",kernelFunc:Aee},Ree=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,Dee=Ke({opSnippet:Ree}),Fee={kernelName:Lo,backendName:"webgl",kernelFunc:Dee},Oee=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,Pee=Ke({opSnippet:Oee}),zee={kernelName:Rl,backendName:"webgl",kernelFunc:Pee},Mee=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:i}=s;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=a.reduce((b,y)=>b*y),u=[[0,0]];u.push(...i);for(let b=1+a.length;b<r.shape.length;++b)u.push([0,0]);let l=[],c=N2({inputs:{x:r},backend:n,attrs:{paddings:u,constantValue:0}}),p=C.getReshaped(c.shape,a,o,!1),d=C.getPermuted(p.length,a.length,!1),h=C.getReshapedPermuted(c.shape,a,o,!1),f=pe({inputs:{x:c},backend:n,attrs:{shape:p}}),m=dn({inputs:{x:f},backend:n,attrs:{perm:d}}),g=pe({inputs:{x:m},backend:n,attrs:{shape:h}});return l.push(c),l.push(f),l.push(m),l.forEach(b=>n.disposeIntermediateTensorInfo(b)),g},Lee={kernelName:Bo,backendName:"webgl",kernelFunc:Mee};function Bee(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:i}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.readSync(s.dataId),u=n.readSync(r.dataId),l=n.readSync(a.dataId),c=n.readSync(i.dataId)[0],[p,d,h,f,m]=PX(o,s.shape,s.dtype,u,r.dtype,l,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Vee={kernelName:dp,backendName:"webgl",kernelFunc:Bee};function Wee(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(s.dataId),u=Array.from(n.readSync(a.dataId)),[l,c,p]=zX(o,s.shape,s.dtype,i,u);return[n.makeTensorInfo(c,s.dtype,l),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var Uee={kernelName:Dl,backendName:"webgl",kernelFunc:Wee};function Gee(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let i=n.readSync(s.dataId),o=n.readSync(r.dataId),u=n.readSync(a.dataId),[l,c]=X1(i,s.shape,s.dtype,o,u,!0);return n.makeTensorInfo(c,s.dtype,l)}var Hee={kernelName:pp,backendName:"webgl",kernelFunc:Gee};function qee(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${a.shape}`);let i=n.readSync(s.dataId),o=n.readSync(r.dataId),u=n.readSync(a.dataId),[l,c]=X1(i,s.shape,s.dtype,o,u);return n.makeTensorInfo(c,s.dtype,l)}var jee={kernelName:hp,backendName:"webgl",kernelFunc:qee};function Kee(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:i}=t,{outputShape:o}=s,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:d}=C.calculateShapes(a,r,o),h=!1;if(a.dtype==="string"){let b=n.bufferSync(r),y=n.bufferSync(a),v=w.decodeString(n.readSync(i.dataId)[0]),x=DX(b,y,o,d,c,l,u,p,v,h);return n.makeTensorInfo(o,x.dtype,x.values)}let f=new $2(l,u,r.shape.length,a.shape.length,p,[d,1],h),m=n.runWebGLProgram(f,[a,r,i],a.dtype),g=pe({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),g}var Xee={kernelName:fp,backendName:"webgl",kernelFunc:Kee};function Yee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:i}=s,o=w.parseAxisParam(i,r.shape)[0],u=C.prepareSplitSize(r,a,o),l=r.shape.length,c=new Array(l).fill(0),p=r.shape.slice();return u.map(d=>{let h=[...p];h[o]=d;let f=cu({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[o]+=d,f})}var Qee={kernelName:Vo,backendName:"webgl",kernelFunc:Yee},Ew="return sqrt(x);",Zee=Ke({opSnippet:Ew,packedOpSnippet:Ew,cpuKernelImpl:MX}),Jee={kernelName:li,backendName:"webgl",kernelFunc:Zee},ete="return x * x;",tte=Ke({opSnippet:ete}),nte={kernelName:Fl,backendName:"webgl",kernelFunc:tte},Rw="return (a - b) * (a - b);",ste=qt({opSnippet:Rw,packedOpSnippet:Rw}),rte={kernelName:pi,backendName:"webgl",kernelFunc:ste};function ate({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=ss+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,a=new Gs(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var ite={kernelName:mi,backendName:"webgl",kernelFunc:ate},ote=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=ot(n.length),a=ot(n.length),i="";if(s===1)i="coords * strides + begin";else{let o=0;i=n.map((u,l)=>(o++,n.length===1?`coords * strides[${l}] + begin[${l}]`:`coords[${o-1}] * strides[${l}] + begin[${l}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function ute(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:i,strides:o,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=kt.sliceInfo(r.shape,a,i,o,u,l,c,p,d),k;if(m)k=pe({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||b){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let $=kt.computeOutShape(y,v,x),R=cu({inputs:{x:r},backend:n,attrs:{begin:y,size:$}});k=pe({inputs:{x:R},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(R)}else if(n.shouldExecuteOnCPU([r])){let R=n.readSync(r.dataId),E=Ae(r.shape,r.dtype,R),P=LX(h,E,x,y);k=n.makeTensorInfo(f,r.dtype,P.values)}else{let R=new ote(y,x,h);k=n.runWebGLProgram(R,[r],r.dtype)}let I=pe({inputs:{x:k},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(k),I}var lte={kernelName:Wo,backendName:"webgl",kernelFunc:ute};function cte(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:i,rightPad:o,padWidth:u,preserveShortSequences:l}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=BX(d,h,r,a,i,o,u,l);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var dte={kernelName:mp,backendName:"webgl",kernelFunc:cte};function pte(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:i}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(a.dataId),u=n.readSync(i.dataId)[0],[l,c,p]=VX(o,u,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",l),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var hte={kernelName:zg,backendName:"webgl",kernelFunc:pte};function fte(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(a.dataId),o=WX(i,r);return n.makeTensorInfo(a.shape,"int32",o)}var mte={kernelName:Mg,backendName:"webgl",kernelFunc:fte},gte="return tan(x);",bte=Ke({opSnippet:gte}),yte={kernelName:Uo,backendName:"webgl",kernelFunc:bte},vte=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,xte=Ke({opSnippet:vte}),wte={kernelName:fi,backendName:"webgl",kernelFunc:xte},kte=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=ot(this.rank),r=Ste(e);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function Ste(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function _2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let u=n.readSync(r.dataId),l=r.dtype==="string"?u.map(d=>w.decodeString(d)):u,c=Ae(r.shape,r.dtype,l),p=GX(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new kte(r.shape,a);return n.runWebGLProgram(i,[r],r.dtype)}var Ite={kernelName:Nr,backendName:"webgl",kernelFunc:_2},Cte=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced above,
|
|
// Figure5(a) shows that element[1] is in the
|
|
// second half of the group when group size is 2, but it is in the
|
|
// first half of the group when group size is 4.
|
|
|
|
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
|
|
int i = isFirstInPair ? elemIdx : elemIdx - inc;
|
|
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
|
|
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
|
|
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
|
|
|
|
// Denotes which direction indices are in (ascending or descending).
|
|
bool reverse = imod(elemIdx, 2 * dir) >= dir;
|
|
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) { // Elements in opposite order of direction
|
|
int iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutput(float(i0));
|
|
} else {
|
|
setOutput(float(i1));
|
|
}
|
|
}
|
|
`}},Nte=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int elemIdx = coords[1];
|
|
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
|
|
// we only need to output the indices at positions |, the indices at
|
|
// positions _ can be thrown away, see Figure5(b) After Phase 2
|
|
// (Merge phase) in the Bitonic Top K paper referenced above.
|
|
// For example, the paper shows we only need to output the orange bars.
|
|
// The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back
|
|
// to the previous sequence to find the corresponding value,
|
|
// we need to double the index. When we double the index,
|
|
// we basically interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
|
|
// of each 2k positions by - elemIdx % k. E.g. for output at
|
|
// index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
|
|
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
|
|
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
|
|
|
|
float x0 = getX(batch, i0);
|
|
float x1 = i1 < n ? getX(batch, i1) : x0;
|
|
|
|
setOutput(x0 >= x1 ? float(i0) : float(i1));
|
|
}
|
|
`}};function Hr(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function Dw(e){let t=1;for(;t<e;)t*=2;return t}function Tte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:i}=s,o=K().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),u=K().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),l=r.shape,c=l[l.length-1];if(n.shouldExecuteOnCPU([r])||c<o||a>u){let P=n.readSync(r.dataId),[A,O]=HX(P,l,r.dtype,a,i);return[n.makeTensorInfo(A.shape,A.dtype,A.values),n.makeTensorInfo(O.shape,O.dtype,O.values)]}if(a===0)return l[l.length-1]=0,[n.makeTensorInfo(l,r.dtype,[]),n.makeTensorInfo(l,"int32",[])];if(c===1)return[r,sc({attrs:{shape:l,dtype:"int32",value:0},backend:n})];let p=n.texData.get(r.dataId),d=p!==null&&p.isPacked,h=d?n.unpackTensor(r):r,m=w.sizeFromShape(l)/c,g=pe({inputs:{x:h},attrs:{shape:[m,c]},backend:n});d&&Hr(n,h);let b=Dw(a),y=Dw(c),v=null,x=()=>v===null?[g,g]:[g,v],k=(P,A,O)=>{let T=x(),M=new Cte(O),j=[[c],[v===null?1:0],[Number.NEGATIVE_INFINITY],[P],[A]],Y=v;v=n.runWebGLProgram(M,T,"int32",j),Hr(n,Y)};for(let P=1;P<b;P*=2){let A=P*2;for(let O=P;O>=1;O/=2)k(A,O,[m,y])}for(let P=y;P>b;P/=2){let A=x(),O=new Nte([m,P/2]),M=[[c],[v===null?1:0],[b]],W=v;v=n.runWebGLProgram(O,A,"int32",M),Hr(n,W);let j=b/2,Y=j*2;for(let X=j;X>=1;X/=2)k(Y,X,v.shape)}let I=v;v=cu({inputs:{x:v},backend:n,attrs:{begin:0,size:[m,a]}}),Hr(n,I);let $=x2({inputs:{x:g,indices:v},backend:n,attrs:{axis:1,batchDims:1}});Hr(n,g);let R=l.slice(0,-1);R.push(a),I=v,v=pe({inputs:{x:v},attrs:{shape:R},backend:n}),Hr(n,I);let E=$;return $=pe({inputs:{x:$},attrs:{shape:R},backend:n}),Hr(n,E),[$,v]}var $te={kernelName:Go,backendName:"webgl",kernelFunc:Tte},_te=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let i=n==="nearest"?1:2,o;switch(s){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function Ate(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:i,fillMode:o,fillValue:u,outputShape:l}=s,[c,p,d,h]=r.shape,[f,m]=l!=null?l:[p,d],g=[c,f,m,h],b=new _te(p,d,i,o,u,g);return n.runWebGLProgram(b,[r,a],"float32")}var Ete={kernelName:Ho,backendName:"webgl",kernelFunc:Ate};function Rte(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;ru(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=s.readSync(a.dataId),{outputValues:o,outputShape:u,indices:l}=qX(i,r,a.shape,a.dtype);return[s.makeTensorInfo(u,a.dtype,o),s.makeTensorInfo([l.length],"int32",l)]}var Dte={kernelName:Lg,backendName:"webgl",kernelFunc:Rte};function Fte(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let i=r,o=i.shape.length,u=r.shape[a],l=new Array(o-1),c=0;for(let m=0;m<o;m++)m!==a&&(l[c++]=i.shape[m]);let p=[],d=new Array(o).fill(0),h=i.shape.slice();h[a]=1;let f=new Array(u);for(let m=0;m<f.length;m++){d[a]=m;let g=cu({inputs:{x:i},backend:n,attrs:{begin:d,size:h}}),b=pe({inputs:{x:g},backend:n,attrs:{shape:l}});f[m]=b,p.push(g)}return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var Ote={kernelName:qo,backendName:"webgl",kernelFunc:Fte},Pte=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,i=a*Math.ceil(r/n);this.outputShape=[s,i];let o="0.0",u="sumValue",l=Math.floor(n/4)*4,c=n%4,p=`
|
|
sumValue += dot(values, segFilter);
|
|
`,d="";r%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${a})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${a})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${l}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${l};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${u});
|
|
}
|
|
`}};function zte(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:i}=s,o=r.shape.length,u=[],l=0,c=C.getAxesPermutation([l],o),p=r;c!=null&&(p=dn({inputs:{x:r},backend:n,attrs:{perm:c}}),u.push(p),l=C.getInnerMostAxes(1,o)[0]);let d=C.segment_util.computeOutShape(p.shape,l,i),h=w.sizeFromShape([p.shape[l]]),f=pe({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});u.push(f);let m=yp(r.dtype),g=(x,k,I,$,R)=>{let E=x.shape[0],P=x.shape[1],A=C.segment_util.segOpComputeOptimalWindowSize(P,R),O={windowSize:A,inSize:P,batchSize:E,numSegments:R},T=new Pte(O,k),M=n.compileAndRun(T,[x,I],$);if(u.push(M),M.shape[1]===R)return M;let W=T2({backend:n,attrs:{start:0,stop:R,step:1,dtype:"float32"}}),j=_2({inputs:{x:W},backend:n,attrs:{reps:[P/A]}});return u.push(W),u.push(j),g(M,k,j,$,R)},b=g(f,"unsortedSegmentSum",a,m,i),y=pe({inputs:{x:b},backend:n,attrs:{shape:d}}),v=y;if(c!=null){u.push(y);let x=C.getUndoAxesPermutation(c);v=dn({inputs:{x:v},backend:n,attrs:{perm:x}})}return u.forEach(x=>n.disposeIntermediateTensorInfo(x)),v}var Mte={kernelName:gp,backendName:"webgl",kernelFunc:zte},Lte=[B8,W8,H8,K8,Y8,J8,tY,sY,oY,lY,pY,mY,yY,kY,CY,TY,_Y,DY,OY,zY,VY,KY,YY,ZY,r9,i9,c9,w8,h9,y9,k9,$9,A9,R9,F9,P9,L9,W9,H9,j9,X9,Q9,eQ,nQ,iQ,uQ,dQ,fQ,gQ,xQ,IQ,$Q,EQ,FQ,OQ,zQ,LQ,VQ,UQ,HQ,XQ,ZQ,tZ,sZ,iZ,lZ,hZ,bZ,x8,vZ,g9,kZ,CZ,$Z,S8,RZ,PZ,MZ,WZ,HZ,XZ,ZZ,n7,i7,l7,d7,m7,b7,v7,S7,C7,T7,_7,E7,O7,L7,U7,Q7,$8,tJ,rJ,oJ,cJ,e9,hJ,mJ,bJ,xJ,IJ,C8,NJ,TJ,t9,j7,AJ,FJ,MJ,A8,WJ,HJ,XJ,ZJ,nee,ree,oee,cee,pee,mee,yee,wee,Cee,$ee,Eee,Fee,qY,X7,zee,Lee,Vee,Uee,Hee,jee,Xee,Qee,Jee,nte,rte,ite,lte,dte,hte,mte,K7,z8,yte,wte,Ite,$te,Ete,M8,Dte,Ote,Mte,fJ];for(let e of Lte)Ol(e);var Fr=K();Fr.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);Fr.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);Fr.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);Fr.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);Fr.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);Fr.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);Fr.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);Fr.registerFlag("WEBGPU_USE_IMPORT",()=>!1);var Bte="return a + b;",Vte="return areal * breal - aimag * bimag;",Wte="return areal * bimag + aimag * breal;",Ute="return a / b;",Gte="return a * b;",Hte="return (a - b) * (a - b);",qte="return a - b;",jte="return f32(a == b);",Kte="return vec4<f32>(a == b);",Xte="return f32(a > b);",Yte="return vec4<f32>(a > b);",Qte="return f32(a >= b);",Zte="return vec4<f32>(a >= b);",Jte="return f32(a < b);",ene="return vec4<f32>(a < b);",tne="return f32(a <= b);",nne="return vec4<f32>(a <= b);",sne="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",rne=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
|
|
vec4<f32>(b >= vec4<f32>(1.0)));`,ane=`
|
|
if (isnan(a)) { return a; }
|
|
if (isnan(b)) { return b; }
|
|
`,A2=`
|
|
if (isNaN.r) {
|
|
resultTemp.r = uniforms.NAN;
|
|
}
|
|
if (isNaN.g) {
|
|
resultTemp.g = uniforms.NAN;
|
|
}
|
|
if (isNaN.b) {
|
|
resultTemp.b = uniforms.NAN;
|
|
}
|
|
if (isNaN.a) {
|
|
resultTemp.a = uniforms.NAN;
|
|
}
|
|
`,ine=`
|
|
let s = sign(a) * sign(b);
|
|
let ia = i32(round(a));
|
|
let ib = i32(round(b));
|
|
return f32(idiv(ia, ib, s));
|
|
`,one=`
|
|
let ia = vec4<i32>(round(a));
|
|
let ib = vec4<i32>(round(b));
|
|
let cond = ib != vec4<i32>(0);
|
|
var resultTemp = vec4<i32>(0);
|
|
let s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4<f32>(resultTemp);
|
|
`,une="return f32(a != b);",lne="return vec4<f32>(a != b);",cne=`
|
|
if(a < 0.0 && floor(b) < b) {
|
|
return uniforms.NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
if (round(abs(b) % 2.0) != 1.0) {
|
|
return pow(abs(a), b);
|
|
}
|
|
return sign(a) * pow(abs(a), b);
|
|
`,dne=`
|
|
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
|
|
let isModRound1 = vec4<f32>(isModRound1Bool);
|
|
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
|
|
var resultTemp = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
let isExpZero = b == vec4<f32>(0.0);
|
|
if (isExpZero.r) {
|
|
resultTemp.r = 1.0;
|
|
}
|
|
if (isExpZero.g) {
|
|
resultTemp.g = 1.0;
|
|
}
|
|
if (isExpZero.b) {
|
|
resultTemp.b = 1.0;
|
|
}
|
|
if (isExpZero.a) {
|
|
resultTemp.a = 1.0;
|
|
}
|
|
let isNaN = a < vec4<f32>(0.0) & floor(b) < b;
|
|
${A2}
|
|
return resultTemp;
|
|
`,pne="if (a < 0.0) { return b * a; } return a;",hne=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`;function Fw(e,t){let n=t?A2:ane;return t?`
|
|
var resultTemp = vec4<f32>(${e}(a, b));
|
|
let isNaN = isnanVec4(a) | isnanVec4(b);
|
|
`+n+`
|
|
return resultTemp;
|
|
`:n+`
|
|
return ${e}(a, b);
|
|
`}function rc(e,t){switch(e){case 0:return Gte;case 1:return Bte;case 2:return qte;case 3:return Ute;case 4:return t?Kte:jte;case 5:return t?Yte:Xte;case 6:return t?Zte:Qte;case 7:return t?ene:Jte;case 8:return t?nne:tne;case 9:return t?rne:sne;case 10:return t?lne:une;case 11:return Hte;case 12:return t?one:ine;case 14:return t?hne:pne;case 15:return Fw("max",t);case 16:return Fw("min",t);case 13:return t?dne:cne;case 17:return Vte;case 18:return Wte;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var fne="return abs(a);",mne="return ceil(a);",gne="return cos(a);",bne=`
|
|
let e2x = exp(-a);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,yne="return exp(a) - 1.0;",vne="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",xne=`
|
|
var resFloat = exp(a) - vec4<f32>(1.0);
|
|
if (a.r >= 0.0) {
|
|
resFloat.r = a.r;
|
|
}
|
|
if (a.g >= 0.0) {
|
|
resFloat.g = a.g;
|
|
}
|
|
if (a.b >= 0.0) {
|
|
resFloat.b = a.b;
|
|
}
|
|
if (a.a >= 0.0) {
|
|
resFloat.a = a.a;
|
|
}
|
|
return resFloat;
|
|
`,wne="return exp(a);",kne="return floor(a);",Sne="return a;",Ine=`if (a < 0.0) { return 1.0/0.0; }
|
|
return log(a);`,Cne="return f32(!(a >= 1.0));",Nne="return -a;",Tne="if (a < 0.0) { return uniforms.alpha * a; } return a;",$ne=`
|
|
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
|
|
return (aLessThanZero * (uniforms.alpha * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
|
|
`,_ne="return select(a, 0.0, a < 0.0);",Ane="return clamp(a, 0.0, 6.0);",Ene="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",Rne=`
|
|
return select(a, vec4<f32>(0.0), a < vec4<f32>(0.0));
|
|
`,Dne="return 1.0/sqrt(a);",Fne="return 1.0 / (1.0 + exp(-1.0 * a));",One="return sin(a);",Pne=`
|
|
let e2x = exp(a);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,zne="return sqrt(a);",Mne="return a * a;",Lne=`
|
|
let e2x = exp(-2.0 * abs(a));
|
|
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,Bne="return f32(i32((a)));";function jr(e,t){switch(e){case 0:return fne;case 2:return gne;case 3:return bne;case 1:return mne;case 4:return t?xne:vne;case 5:return wne;case 6:return yne;case 7:return kne;case 8:return Sne;case 9:return Ine;case 10:return Cne;case 11:return Nne;case 14:return t?$ne:Tne;case 12:return t?Rne:_ne;case 13:return t?Ene:Ane;case 15:return Dne;case 18:return Fne;case 16:return One;case 17:return Pne;case 19:return zne;case 20:return Mne;case 21:return Lne;case 22:return Bne;default:throw new Error(`BinaryType ${e} is not implemented!`)}}function Or(e,t=!1){if(e===null)return null;if(e==="linear")return jr(8);if(e==="relu")return jr(12,t);if(e==="elu")return jr(4,t);if(e==="relu6")return jr(13,t);if(e==="prelu")return rc(14,t);if(e==="sigmoid")return jr(18,t);if(e==="leakyrelu")return jr(14,t);throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`)}function Vne(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function Wt(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";if(e===5)return"vec5";if(e===6)return"vec6";throw Error(`GPU for rank ${e} is not yet supported`)}function pr(e){if(e===0)return"x";if(e===1)return"y";if(e===2)return"z";if(e===3)return"w";if(e===4)return"u";if(e===5)return"v";throw Error(`Index ${e} is not yet supported`)}function fd(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function Rv(){return`
|
|
@stage(compute) @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
|
|
`}function du(){return`
|
|
${Rv()}
|
|
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
|
|
@builtin(global_invocation_id) GlobalId : vec3<u32>,
|
|
@builtin(num_workgroups) NumWorkgroups: vec3<u32>) {
|
|
localId = LocalId;
|
|
globalId = GlobalId;
|
|
numWorkgroups = NumWorkgroups;
|
|
`}function Ue(){return`
|
|
${du()}
|
|
let index = getGlobalIndex();
|
|
`}function Wne(e,t,n,s=!1){let r=[];if(r.push(`
|
|
let workGroupSizeX = ${n.workGroupSize[0]}u;
|
|
let workGroupSizeY = ${n.workGroupSize[1]}u;
|
|
let workGroupSizeZ = ${n.workGroupSize[2]}u;
|
|
|
|
var<private> localId: vec3<u32>;
|
|
var<private> globalId: vec3<u32>;
|
|
var<private> numWorkgroups: vec3<u32>;
|
|
|
|
// Only used when the y/z dimension of workgroup size is 1.
|
|
fn getGlobalIndex() -> i32 {
|
|
${n.dispatch[1]===1&&n.dispatch[2]===1?" return i32(globalId.x);":` let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
|
|
localId.y * workGroupSizeX + localId.x;
|
|
let workGroupID = (globalId - localId)/vec3<u32>(
|
|
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
|
|
|
|
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
|
|
workGroupID.y * numWorkgroups.x + workGroupID.x) *
|
|
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
|
|
localInvocationIndex);
|
|
`}
|
|
}
|
|
`),s===!0)return r.push(`
|
|
struct Uniform {
|
|
size : i32,
|
|
numChannels : i32,
|
|
outShapeStrides : vec2<i32>,
|
|
dispatchSize : vec3<u32>,
|
|
};
|
|
|
|
@group(0) @binding(0) var<storage, write> result: array<${fd(t.dtype,n.isVec4)}>;
|
|
@group(0) @binding(2) var<uniform> uniforms: Uniform;
|
|
`),[Ow,r.join(`
|
|
`),Pw(t.shape),n.getUserCode()].join(`
|
|
`);let a=!1,i=!1,o="struct Uniforms { NAN : f32, ";n.variableNames.forEach((m,g)=>{let b=Wt(e[g].shape.length);(b==="vec5"||b==="vec6")&&(i=!0),(a||i)&&(o+="@align(16) "),a=i,o+=`${m.charAt(0).toLowerCase()+m.slice(1)}Shape : ${b}, `});let u=Wt(t.shape.length);i=u==="vec5"||u==="vec6",(a||i)&&(o+="@align(16) "),a=i,o+=`outShape : ${u}, `;let l=t.shape.length-1,c=Wt(l);i=c==="vec5"||c==="vec6",(a||i)&&(o+="@align(16) "),a=i,o+=`
|
|
outShapeStrides: ${c}, `,n.size&&(a&&(o+="@align(16) "),a=!1,o+="size : i32, "),n.uniforms&&(a&&(o+="@align(16) "),o+=n.uniforms),o+="};",r.push(o),n.atomic?r.push(`
|
|
@group(0) @binding(0) var<storage, read_write> result: array<atomic<i32>>;
|
|
`):r.push(`
|
|
@group(0) @binding(0) var<storage, write> result: array<${fd(t.dtype,n.isVec4)}>;
|
|
`),n.variableNames.forEach((m,g)=>{r.push(`
|
|
@group(0) @binding(${1+g}) var<storage, read> ${m}: array<${n.variableTypes?n.variableTypes[g]:fd(e[g].dtype,n.isVec4)}>;
|
|
`)}),o!==""&&r.push(`
|
|
@group(0) @binding(${1+n.variableNames.length}) var<uniform> uniforms: Uniforms;
|
|
`);let[p,d]=Kne(t.shape,n.dispatchLayout),h=[Ow,r.join(`
|
|
`),Pw(t.shape),p,Une(t.shape.length)];if(n.atomic||h.push(Gne(t.shape,t.dtype,n.isVec4)),d===t.shape.length){let m=e.map((g,b)=>Hne(g,t.shape,n.variableTypes?n.variableTypes[b]==="vec4<f32>":n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(`
|
|
`);h.push(m)}return h.push(n.getUserCode()),h.join(`
|
|
`)}var Ow=`
|
|
struct vec5 {x: i32, y: i32, z: i32, w: i32, u: i32};
|
|
struct vec6 {x: i32, y: i32, z: i32, w: i32, u: i32, v: i32};
|
|
|
|
// Checks whether coordinates lie within the bounds of the shape.
|
|
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
|
|
return all(coord >= vec2<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
|
|
return all(coord >= vec3<i32>(0)) && all(coord < shape);
|
|
}
|
|
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
|
|
return all(coord >= vec4<i32>(0)) && all(coord < shape);
|
|
}
|
|
|
|
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
|
|
return coord;
|
|
}
|
|
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(shape.y, 1));
|
|
}
|
|
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
|
|
}
|
|
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
|
|
}
|
|
fn getIndexFromCoords5D(coords : vec5, shape : vec5) -> i32 {
|
|
let shapeStrides: vec5 = vec5(shape.y * shape.z * shape.w * shape.u, shape.z * shape.w * shape.u, shape.w * shape.u, shape.u, 1);
|
|
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u;
|
|
}
|
|
fn getIndexFromCoords6D(coords : vec6, shape : vec6) -> i32 {
|
|
let shapeStrides: vec6 = vec6(shape.y * shape.z * shape.w * shape.u * shape.v, shape.z * shape.w * shape.u * shape.v, shape.w * shape.u * shape.v, shape.u * shape.v, shape.v, 1);
|
|
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u + coords.v*shapeStrides.v;
|
|
}
|
|
|
|
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
|
|
var res: i32 = a / b;
|
|
let mod: i32 = a % b;
|
|
if (sign < 0. && mod != 0) {
|
|
res = res - 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
// NaN defination in IEEE 754-1985 is :
|
|
// - sign = either 0 or 1.
|
|
// - biased exponent = all 1 bits.
|
|
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
|
|
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
|
|
fn isnan(val: f32) -> bool {
|
|
let floatToUint: u32 = bitcast<u32>(val);
|
|
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
|
|
}
|
|
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
|
|
return vec4<bool>(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));
|
|
}
|
|
`;function Une(e){let t="";switch(e){case 0:case 1:t+=`
|
|
fn getOutputIndexFromCoords(coords : i32) -> i32 {
|
|
return coords;
|
|
}
|
|
`;break;case 2:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
|
|
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
|
|
}
|
|
`;break;case 3:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
|
|
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
|
|
}
|
|
`;break;case 4:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
|
|
return dot(coords, vec4<i32>(
|
|
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
|
|
}
|
|
`;break;case 5:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec5) -> i32 {
|
|
return coords.x * uniforms.outShapeStrides.x +
|
|
coords.y * uniforms.outShapeStrides.y +
|
|
coords.z * uniforms.outShapeStrides.z +
|
|
coords.w * uniforms.outShapeStrides.w +
|
|
coords.u;
|
|
}
|
|
`;break;case 6:t+=`
|
|
fn getOutputIndexFromCoords(coords : vec6) -> i32 {
|
|
return coords.x * uniforms.outShapeStrides.x +
|
|
coords.y * uniforms.outShapeStrides.y +
|
|
coords.z * uniforms.outShapeStrides.z +
|
|
coords.w * uniforms.outShapeStrides.w +
|
|
coords.u * uniforms.outShapeStrides.u +
|
|
coords.v;
|
|
}
|
|
`;break;default:w.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function Gne(e,t,n){let s=e.length,r=fd(t,n),a;if(n?a=`fn setOutputAtIndex(flatIndex : i32, value : vec4<f32>) {
|
|
result[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : vec4<i32>) {
|
|
result[flatIndex] = ${r}(value);
|
|
}`:a=`fn setOutputAtIndex(flatIndex : i32, value : f32) {
|
|
result[flatIndex] = ${r}(value);
|
|
}
|
|
fn setOutputAtIndexI32(flatIndex : i32, value : i32) {
|
|
result[flatIndex] = ${r}(value);
|
|
}`,s>=2){let i=["d0","d1","d2","d3","d4","d5"].slice(0,s),o=Wt(s);n?a+=`
|
|
fn setOutputAtCoords(${i.map(u=>`${u} : i32`).join(", ")}, value : vec4<f32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndex(flatIndex / 4, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${i.map(u=>`${u} : i32`).join(", ")}, value : vec4<i32>) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex / 4, value);
|
|
}
|
|
`:a+=`
|
|
fn setOutputAtCoords(${i.map(u=>`${u} : i32`).join(", ")}, value : f32) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndex(flatIndex, value);
|
|
}
|
|
fn setOutputAtCoordsI32(${i.map(u=>`${u} : i32`).join(", ")}, value : i32) {
|
|
let flatIndex = getOutputIndexFromCoords(${o}(${i.join(", ")}));
|
|
setOutputAtIndexI32(flatIndex, value);
|
|
}
|
|
`}return a}function Hne(e,t,n,s){let r=qne(e,n);return e.shape.length<=t.length&&(r+=jne(e,t,n,s)),r}function qne(e,t){let n=e.name,s=e.shape.length,r=Wt(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),i=["d0","d1","d2","d3","d4","d5"].slice(0,s),o=i.map(c=>`${c} : i32`).join(", ");if(s<1)return t?`
|
|
fn ${a}() -> vec4<f32> {
|
|
return vec4<f32>(${n}[0]);
|
|
}
|
|
`:`
|
|
fn ${a}() ->f32 {
|
|
return f32(${n}[0]);
|
|
}
|
|
`;let u=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,l=`${s}D`;return s===0&&(l="1D"),t?`
|
|
fn ${a}(${o}) -> vec4<f32> {
|
|
return vec4<f32>(${n}[getIndexFromCoords${l}(${r}(${i.join(",")}),
|
|
${u}) / 4]);
|
|
}
|
|
`:`
|
|
fn ${a}(${o}) -> f32 {
|
|
return f32(${n}[getIndexFromCoords${l}(${r}(${i.join(",")}),
|
|
${u})]);
|
|
}
|
|
`}function jne(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),i="get"+a+"ByOutput",o=e.shape.length,u=t.length,l=Wt(u);if(w.arraysEqual(e.shape,t)&&s)return n?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
return vec4<f32>(${r}[globalIndex]);
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${l}) -> vec4<f32> {
|
|
return vec4<f32>(${r}[${u>1?"getOutputIndexFromCoords(coords)":"coords"} / 4]);
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32 {
|
|
return f32(${r}[globalIndex]);
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${l}) -> f32 {
|
|
return f32(${r}[${u>1?"getOutputIndexFromCoords(coords)":"coords"}]);
|
|
}
|
|
`;let c=C.getBroadcastDims(e.shape,t),p=u-o,d="";if(o===0)return n?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${l}) -> vec4<f32> {
|
|
return get${a}();
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32{
|
|
return get${a}();
|
|
}
|
|
|
|
fn ${i}Coords(coords : ${l}) -> f32{
|
|
return get${a}();
|
|
}
|
|
`;u<2&&c.length>=1?d="coords = 0;":d=c.map(g=>`coords.${pr(g+p)} = 0;`).join(`
|
|
`);let h="";if(u<2&&o>0)h="coords";else if(u>1){let g=Wt(o),b=e.shape.map((y,v)=>`coords.${pr(v+p)}`).join(", ");h=`${g}(${b})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${o}D`;return n?`
|
|
fn ${i}Index(globalIndex : i32) -> vec4<f32> {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${d}
|
|
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
|
|
}
|
|
|
|
fn ${i}Coords(coordsIn : ${l}) -> vec4<f32> {
|
|
var coords = coordsIn;
|
|
${d}
|
|
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
|
|
}
|
|
`:`
|
|
fn ${i}Index(globalIndex : i32) -> f32 {
|
|
var coords = getCoordsFromIndex(globalIndex);
|
|
${d}
|
|
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
|
|
}
|
|
|
|
fn ${i}Coords(coordsIn : ${l}) -> f32 {
|
|
var coords = coordsIn;
|
|
${d}
|
|
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
|
|
}
|
|
`}function Kne(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return[`fn getOutputCoords() -> ${Wt(a)}{
|
|
let globalIndex = getGlobalIndex();
|
|
return getCoordsFromIndex(globalIndex);
|
|
}
|
|
`,a];let i="",o=[n,s,r],u=0;for(let d=0;d<o.length;d++){let h=o[d];if(h.length!==0)if(u+=h.length,h.length===1)i+=`let d${h[0]} = i32(globalId[${d}]);`;else{let f=Vne(h,"uniforms.outShape");i+=`var index${d} = i32(globalId[${d}]);`;for(let m=0;m<f.length;m++)i+=`let d${h[m]} = index${d} / ${f[m]};`,m===f.length-1?i+=`let d${h[m+1]} = index${d} - d${h[m]} * ${f[m]};`:i+=`index${d} = index${d} - d${h[m]} * ${f[m]};`}}let l=[];for(let d=0;d<u;d++)l.push(`d${d}`);let c=Wt(u),p=`fn getOutputCoords() -> ${c} {
|
|
${i}
|
|
`;return l.length===0?p+=`return ${c}(0); }`:p+=`return ${c}(${l.join(",")}); }`,[p,u]}function Pw(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let n=w.computeStrides(e),s=Wt(t),r=[];for(let i=0;i<t;i++)r.push(`d${i}`);if(n.length===1)return` fn getCoordsFromIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
|
|
return vec2<i32>(d0, d1);
|
|
}`;let a;return a="var index2 = index;"+n.map((i,o)=>{let u=`let ${r[o]} = index2 / uniforms.outShapeStrides.${pr(o)}`,l=o===n.length-1?`let ${r[o+1]} = index2 - ${r[o]} * uniforms.outShapeStrides.${pr(o)}`:`index2 = index2 - ${r[o]} * uniforms.outShapeStrides.${pr(o)}`;return`${u}; ${l};`}).join(""),`
|
|
fn getCoordsFromIndex(index : i32) -> ${s} {
|
|
${a}
|
|
return ${s}(${r.join(",")});
|
|
}
|
|
`}var E2={};Ee(E2,{ArrayBufferToTypedArray:()=>D2,GPUBytesPerElement:()=>md,computeDispatch:()=>_e,computeWorkGroupSizeForConv2d:()=>Dv,computeWorkGroupSizeForMatMul:()=>R2,computeWorkPerThreadForConv2d:()=>Fv,flatDispatchLayout:()=>Ve,isWebGPUSupported:()=>Ov,tilesFitEvenlyIntoShape:()=>il});var ra=e=>{let t=1;for(let n=0;n<e.length;n++)t*=e[n];return t};function il(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((n,s)=>n%e[s]===0)}function _e(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,i]=[Math.ceil(ra(e.x.map(o=>t[o]))/(n[0]*s[0])),e.y?Math.ceil(ra(e.y.map(o=>t[o]))/(n[1]*s[1])):1,e.z?Math.ceil(ra(e.z.map(o=>t[o]))/(n[2]*s[2])):1];return[r,a,i]}function Dv(e,t){let n=ra(e.x.map(r=>t[r])),s=ra(e.y.map(r=>t[r]));return n<=4?[4,16,1]:s<=4?[16,4,1]:[16,16,1]}function R2(e,t,n){return e===1?[32,1,1]:n===1?[1,32,1]:[8,8,1]}function Fv(e,t){let n=ra(e.x.map(r=>t[r])),s=ra(e.y.map(r=>t[r]));return n<=4?[1,2,1]:s<=4?[2,1,1]:[2,2,1]}function Ve(e){return{x:e.map((t,n)=>n)}}function md(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function D2(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function Ov(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}function F2(e,t,n,s,r=4){return w.assert((s%4===0||s%3===0)&&e[0]===4&&(r===3||r===4),()=>`tileInner must be divisible by 4|3. ColPerThread must be 4.
|
|
innerElementSize must be 3|4.`),`
|
|
var<workgroup> mm_Asub : array<array<vec${r}<f32>, ${s/r}>, ${t}>;
|
|
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${n/e[0]}>, ${s}>;
|
|
|
|
let RowPerThread = ${e[1]};
|
|
let ColPerThread = ${e[0]};
|
|
let InnerElementSize = ${r};
|
|
let TileInner = ${s};
|
|
|
|
${du()}
|
|
|
|
let tileRow = ${t===1?"0":"i32(localId.y) * RowPerThread"};
|
|
let tileCol = i32(localId.x);
|
|
|
|
let globalRow = ${t===1?"0":"i32(globalId.y) * RowPerThread"};
|
|
let globalCol = i32(globalId.x);
|
|
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
|
|
|
|
var acc: array<vec4<f32>, RowPerThread>;
|
|
var BCached : array<vec4<f32>, 4>;
|
|
|
|
// Loop over shared dimension.
|
|
var globalColA = tileCol;
|
|
let RowPerThreadB = TileInner / i32(workGroupSizeY);
|
|
let tileRowB = i32(localId.y) * RowPerThreadB;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
let inputRow = tileRow + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Asub[inputRow][inputCol] = mm_readA(globalRow + innerRow, globalColA, globalId);
|
|
}
|
|
globalColA = globalColA + TileInner / InnerElementSize;
|
|
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(t * TileInner + inputRow, globalCol, globalId);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) {
|
|
BCached[0] = mm_Bsub[k * InnerElementSize][tileCol];
|
|
BCached[1] = mm_Bsub[k * InnerElementSize + 1][tileCol];
|
|
BCached[2] = mm_Bsub[k * InnerElementSize + 2][tileCol];
|
|
${r===3?"":"BCached[3] = mm_Bsub[k * InnerElementSize + 3][tileCol];"}
|
|
|
|
for (var i = 0; i < RowPerThread; i = i + 1) {
|
|
let ACached = mm_Asub[tileRow + i][k];
|
|
acc[i] = BCached[0] * ACached.x + acc[i];
|
|
acc[i] = BCached[1] * ACached.y + acc[i];
|
|
acc[i] = BCached[2] * ACached.z + acc[i];
|
|
${r===3?"":"acc[i] = BCached[3] * ACached.w + acc[i];"}
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol,
|
|
acc[innerRow], globalId);
|
|
}
|
|
}`}var Xne=class{constructor(e,t,n,s,r,a=null,i=null,o=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread);let u=a!=null,l=o!=null;u&&this.variableNames.push("bias"),l&&this.variableNames.push("preluActivationWeights"),this.tileAOuter=t[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,this.aShape=e,this.addBias=u,this.activation=i,this.hasPreluActivationWeights=l,this.batchAEqualOne=s,this.batchBEqualOne=r,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`matMulPackedVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getShapeFit(){let e=this.aShape[2],t=this.outputShape[2],n=[this.outputShape[0],e,t],s=[this.tileAOuter,this.tileInner],r=[this.tileInner,this.tileBOuter];return[il(s,this.aShape.slice(1)),il(r,n.slice(1))]}getUserCode(){let e=this.fitA?"return A[batch * batchASize + row * uniforms.dimInner / 4 + col]":`if (coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,t=this.fitB?"return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col]":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0)`,n="",s="";if(this.activation){let i=Or(this.activation,this.isVec4);this.hasPreluActivationWeights?n=`fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${i}
|
|
}`:n=`
|
|
fn activation(a : vec4<f32>, outCoord : vec3<i32>) -> vec4<f32> {
|
|
${i}
|
|
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${this.batchAEqualOne?`
|
|
let batchASize = 0;
|
|
let batch = 0;
|
|
`:`
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2] / 4;
|
|
let batch = i32(globalId.z);
|
|
`}
|
|
|
|
${e};
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${this.batchBEqualOne?`
|
|
let batchBSize = 0;
|
|
let batch = 0;
|
|
`:`
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2] / 4;
|
|
let batch = i32(globalId.z);
|
|
`}
|
|
${t};
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : vec4<f32>, globalId : vec3<u32>) {
|
|
if (row < uniforms.aShape[1] && col * 4 < uniforms.bShape[2])
|
|
{
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col * 4);
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], value);
|
|
}
|
|
}
|
|
${F2(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner)}
|
|
`}},Yne=e=>e?`
|
|
mm_Asub[inputRow][inputCol] = mm_readA(
|
|
t * TileInner + inputRow,
|
|
globalRowStart + inputCol, globalId);
|
|
`:`
|
|
mm_Asub[inputRow][inputCol] = mm_readA(
|
|
globalRowStart + inputRow,
|
|
t * TileInner + inputCol, globalId);
|
|
`,Qne=e=>e?"let ACached = mm_Asub[k][tileRow + innerRow];":"let ACached = mm_Asub[tileRow + innerRow][k];";function Pv(e,t,n=!1,s=32){let r=e[1]*t[1],a=e[0]*t[0],i=n?r:s,o=n?s:r;w.assert(o%t[1]===0&&i%t[0]===0&&s%t[1]===0,()=>`tileAHight ${o} must be divisible by workGroupSize[1]${t[1]}, tileAWidth ${i} must be divisible by workGroupSize[0]${t[0]}, tileInner ${s} must be divisible by workGroupSize[1]${t[1]}`);let u=o/t[1],l=i/t[0],c=s/t[1];return`
|
|
var<workgroup> mm_Asub : array<array<f32, ${i}>, ${o}>;
|
|
var<workgroup> mm_Bsub : array<array<f32, ${a}>, ${s}>;
|
|
let RowPerThread = ${e[1]};
|
|
let ColPerThread = ${e[0]};
|
|
let TileInner = ${s};
|
|
|
|
@stage(compute) @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
|
|
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
|
|
@builtin(global_invocation_id) GlobalId : vec3<u32>,
|
|
@builtin(num_workgroups) NumWorkgroups: vec3<u32>,
|
|
@builtin(workgroup_id) workgroupId: vec3<u32>) {
|
|
localId = LocalId;
|
|
globalId = GlobalId;
|
|
numWorkgroups = NumWorkgroups;
|
|
|
|
let tileRow = i32(localId.y) * RowPerThread;
|
|
let tileCol = i32(localId.x) * ColPerThread;
|
|
|
|
let globalRow = i32(globalId.y) * RowPerThread;
|
|
let globalCol = i32(globalId.x) * ColPerThread;
|
|
|
|
let globalRowStart = i32(workgroupId.y) * ${r};
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
|
|
|
|
var acc : array<array<f32, ColPerThread>, RowPerThread>;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = 0.0;
|
|
}
|
|
}
|
|
|
|
let tileRowA = i32(localId.y) * ${u};
|
|
let tileColA = i32(localId.x) * ${l};
|
|
let tileRowB = i32(localId.y) * ${c};
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
for (var innerRow = 0; innerRow < ${u}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ${l}; innerCol = innerCol + 1) {
|
|
let inputRow = tileRowA + innerRow;
|
|
let inputCol = tileColA + innerCol;
|
|
${Yne(n)}
|
|
}
|
|
}
|
|
|
|
// Load one tile of B into local memory.
|
|
for (var innerRow = 0; innerRow < ${c}; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
|
|
let inputRow = tileRowB + innerRow;
|
|
let inputCol = tileCol + innerCol;
|
|
mm_Bsub[inputRow][inputCol] = mm_readB(
|
|
t * ${s} + inputRow,
|
|
globalCol + innerCol, globalId);
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
var BCached : array<f32, ColPerThread>;
|
|
for (var k = 0; k < TileInner; k = k + 1) {
|
|
for (var inner = 0; inner < ColPerThread; inner = inner + 1) {
|
|
BCached[inner] = mm_Bsub[k][tileCol + inner];
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
${Qne(n)}
|
|
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
|
|
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
|
|
}
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
|
|
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
|
|
|
|
if ((globalCol + innerCol) < uniforms.dimBOuter &&
|
|
(globalRow + innerRow) < uniforms.dimAOuter) {
|
|
mm_write(globalRow + innerRow,
|
|
globalCol + innerCol,
|
|
acc[innerRow][innerCol], globalId);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`}var Zne=e=>e?`
|
|
mm_readA(colA, globalRow, globalId),
|
|
mm_readA(colA + 1, globalRow, globalId),
|
|
mm_readA(colA + 2, globalRow, globalId),
|
|
mm_readA(colA + 3, globalRow, globalId)
|
|
`:`
|
|
mm_readA(globalRow, colA, globalId),
|
|
mm_readA(globalRow, colA + 1, globalId),
|
|
mm_readA(globalRow, colA + 2, globalId),
|
|
mm_readA(globalRow, colA + 3, globalId)
|
|
`;function Jne(e,t=!1){return w.assert(e[1]===1&&e[2]===1,()=>`A linear work group size is required. But got ${e}.`),`
|
|
let TileSize = ${e[0]*4};
|
|
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
|
|
|
|
${du()}
|
|
let tileCol = i32(localId.x);
|
|
let globalCol = i32(globalId.x);
|
|
let globalRow = i32(globalId.y);
|
|
|
|
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
|
|
|
|
// Without this initialization strange values show up in acc.
|
|
var acc = 0.0;
|
|
|
|
// Loop over shared dimension.
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
// Load one tile of A into local memory.
|
|
let colA = t * TileSize + tileCol * 4;
|
|
mm_Asub[tileCol] = vec4<f32>(${Zne(t)});
|
|
workgroupBarrier();
|
|
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < TileSize / 4; k = k + 1) {
|
|
let rowB = t * TileSize + k * 4;
|
|
let BCached = vec4<f32>(mm_readB(rowB, globalCol, globalId),
|
|
mm_readB(rowB + 1, globalCol, globalId),
|
|
mm_readB(rowB + 2, globalCol, globalId),
|
|
mm_readB(rowB + 3, globalCol, globalId));
|
|
|
|
let ACached = mm_Asub[k];
|
|
acc = acc + dot(ACached, BCached);
|
|
}
|
|
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (globalRow < uniforms.dimAOuter && globalCol < uniforms.dimBOuter) {
|
|
mm_write(globalRow, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var ese=class{constructor(e,t,n,s,r,a=!1,i=!1,o=null,u=null,l=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let c=a?e[1]:e[2];this.workGroupSize=R2(t[1],c,t[2]),(t[1]===1||t[2]===1)&&(n=1),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]),w.arraysEqual(this.dispatch,[1,1,1])&&(n=1,this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]));let p=o!=null,d=l!=null;p&&this.variableNames.push("bias"),d&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.transposeA=a,this.transposeB=i,this.addBias=p,this.activation=u,this.hasPreluActivationWeights=d,this.batchAEqualOne=s,this.batchBEqualOne=r,[this.fitAOuter,this.fitBOuter,this.fitInner]=this.getShapeFit(t[1],t[2],c),this.shaderKey=`matMulPacked_${this.workPerThread}_${a}_${i}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.outputShape[1]>1}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getShapeFit(e,t,n){let s=this.workGroupSize[1]*this.workPerThread,r=this.workGroupSize[0]*this.workPerThread;this.tileInner=32,this.outputShape[1]===1&&(this.tileInner=this.workGroupSize[0]*4);let a=e%s===0,i=t%r===0,o=n%this.tileInner===0;return[a,i,o]}getUserCode(){let e=this.fitAOuter&&this.fitInner?"return A[batch * batchASize + row * uniforms.aShape[2] + col];":`
|
|
if(row < uniforms.aShape[1] && col < uniforms.aShape[2]) {
|
|
return A[batch * batchASize + row * uniforms.aShape[2] + col];
|
|
}
|
|
return 0.0;
|
|
`,t;this.transposeB===!1?t="return B[batch * batchBSize + row * uniforms.dimBOuter + col];":t="return B[batch * batchBSize + col * uniforms.dimInner + row];";let n="",s="";if(this.activation){let i=Or(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${i}
|
|
}`:n=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${i}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${this.batchAEqualOne?`
|
|
let batch = 0;
|
|
let batchASize = 0;
|
|
`:`
|
|
let batch = i32(globalId.z);
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
`}
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${this.batchBEqualOne?`
|
|
let batch = 0;
|
|
let batchBSize = 0;
|
|
`:`
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
`}
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
var value = valueIn;
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
${this.outputShape[1]>1?Pv([this.workPerThread,this.workPerThread,1],this.workGroupSize,this.transposeA,this.tileInner):Jne(this.workGroupSize,this.transposeA)}
|
|
`}};function tse(){return`
|
|
var<workgroup> sumValues : array<f32, workGroupSizeX>;
|
|
${du()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let row = coords[1];
|
|
let col = coords[2];
|
|
var sum = 0.0;
|
|
let Length = uniforms.dimInner;
|
|
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
|
|
let dataA = mm_readA(batch, row, k);
|
|
let dataB = mm_readB(batch, k, col);
|
|
sum = sum + dataA * dataB;
|
|
}
|
|
sumValues[localId.x] = sum;
|
|
workgroupBarrier();
|
|
|
|
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
|
|
currentSize = currentSize / 2u) {
|
|
if (localId.x < currentSize)
|
|
{
|
|
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u) {
|
|
sum = sumValues[0] + sumValues[1];
|
|
mm_write(batch, row, col, sum);
|
|
}
|
|
}
|
|
`}var nse=class{constructor(e,t,n,s=!1,r=!1,a=null,i=null,o=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize);let u=a!=null,l=o!=null;u&&this.variableNames.push("bias"),l&&this.variableNames.push("preluActivationWeights"),this.transposeA=s,this.transposeB=r,this.addBias=u,this.activation=i,this.hasPreluActivationWeights=l,this.batchAEqualOne=t,this.batchBEqualOne=n,this.shaderKey=`matMulReduce_${this.activation}_${s}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){let e;this.transposeA===!1?e="return f32(A[batch * batchASize + row * uniforms.dimInner + col]);":e="return f32(A[batch * batchASize + col * uniforms.dimAOuter + row]);";let t;this.transposeB===!1?t="return f32(B[batch * batchBSize + row * uniforms.dimBOuter + col]);":t="return f32(B[batch * batchBSize + col * uniforms.dimInner + row]);";let n="",s="";if(this.activation){let i=Or(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${i}
|
|
}`:n=`
|
|
fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${i}
|
|
}
|
|
`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(batchIn: i32, row : i32, col : i32) -> f32 {
|
|
${this.batchAEqualOne?`
|
|
let batchASize = 0;
|
|
let batch = 0;
|
|
`:`
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = batchIn;
|
|
`}
|
|
${e}
|
|
}
|
|
|
|
fn mm_readB(batchIn: i32, row : i32, col : i32) -> f32 {
|
|
${this.batchBEqualOne?`
|
|
let batch = 0;
|
|
let batchBSize = 0;
|
|
`:`
|
|
let batch = batchIn;
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
`}
|
|
${t}
|
|
}
|
|
|
|
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
|
|
var value = valueIn;
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
${tse()}
|
|
`}};function sse(e){let t=e[1]/2,n=e[0],s=t>n?t:n;return`
|
|
var<workgroup> mm_Asub1 : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub1 : array<array<f32, ${n}>, ${s}>;
|
|
var<workgroup> mm_Asub2 : array<array<f32, ${s}>, ${t}>;
|
|
var<workgroup> mm_Bsub2 : array<array<f32, ${n}>, ${s}>;
|
|
|
|
// If the output size is small for matrix multiplication, avoid to use vec4
|
|
// and handle some elements per thread to optimally utilize the ALU.
|
|
// Introduces two shared memory buffers, some logical threads could handle
|
|
// arithmetic operations and others handle IO operations between barrier api,
|
|
// makes ALUs and load/store units work simultaneously, could improves
|
|
// the performance.
|
|
${du()}
|
|
let tileRow = i32(localId.y);
|
|
let tileCol = i32(localId.x);
|
|
let globalRow = i32(globalId.y);
|
|
let globalCol = i32(globalId.x);
|
|
|
|
// uniforms.dimInner should be greater than 0.
|
|
let numTiles = (uniforms.dimInner - 1) / ${s} + 1;
|
|
var acc = 0.0;
|
|
|
|
var globalColA = tileCol;
|
|
var globalRowB = tileRow;
|
|
for (var t = 0; t < numTiles; t = t + 1) {
|
|
if (t == 0) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
}
|
|
} else {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub1[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub1[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub2[subRow][k] * mm_Bsub2[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
if (t != 0) {
|
|
t = t + 1;
|
|
}
|
|
|
|
if (t < numTiles) {
|
|
if (tileRow < ${t}) {
|
|
// Load one tile of A and B into local memory.
|
|
// globalRow is always greater than or equal tileRow.
|
|
mm_Asub2[tileRow][tileCol] =
|
|
mm_readA((globalRow - tileRow) / 2 + tileRow, globalColA, globalId);
|
|
globalColA = globalColA + ${s};
|
|
mm_Bsub2[tileRow][tileCol] = mm_readB(globalRowB, globalCol, globalId);
|
|
globalRowB = globalRowB + ${s};
|
|
} else {
|
|
// Compute acc values for a single thread.
|
|
for (var k = 0; k < ${s}; k = k + 1) {
|
|
let subRow = tileRow - ${t};
|
|
if (subRow < 0) {
|
|
continue;
|
|
}
|
|
acc = acc + mm_Asub1[subRow][k] * mm_Bsub1[k][tileCol];
|
|
}
|
|
}
|
|
}
|
|
workgroupBarrier();
|
|
}
|
|
let writeCol = (globalRow - tileRow) / 2 + tileRow - ${t};
|
|
if (tileRow >= ${t} && writeCol >= 0) {
|
|
mm_write(writeCol, globalCol, acc, globalId);
|
|
}
|
|
}
|
|
`}var rse=class{constructor(e,t,n,s=null,r=null,a=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,16,1],w.assert(e[1]<=16||t[2]<=16,()=>"This program can be only used when A width or B Height are small"),this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]*2/this.workGroupSize[1]),n[0]];let i=s!=null;i&&this.variableNames.push("bias");let o=a!=null;o&&this.variableNames.push("preluActivationWeights"),this.addBias=i,this.activation=r,this.hasPreluActivationWeights=o,this.batchAEqualOne=e[0]===1,this.batchBEqualOne=t[0]===1,this.shaderKey=`matMulSmallOutputSize_${this.activation}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){let e=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimInner))) {
|
|
return A[batch * batchASize + row * uniforms.dimInner + col];
|
|
}
|
|
return 0.0;`,t=`if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return B[batch * batchBSize + row * uniforms.dimBOuter + col];
|
|
}
|
|
return 0.0;`,n="",s="";if(this.activation){let i=Or(this.activation,!1);this.hasPreluActivationWeights?n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${i}
|
|
}`:n=`fn activation(a : f32, outCoord : vec3<i32>) -> f32 {
|
|
${i}
|
|
}`,s="value = activation(value, outCoord);"}let r=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${n}
|
|
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${this.batchAEqualOne?`
|
|
let batch = 0;
|
|
let batchASize = 0;
|
|
`:`
|
|
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
|
|
let batch = i32(globalId.z);
|
|
`}
|
|
${e}
|
|
}
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
${this.batchBEqualOne?`
|
|
let batch = 0;
|
|
let batchBSize = 0;
|
|
`:`
|
|
let batch = i32(globalId.z);
|
|
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
|
|
`}
|
|
${t}
|
|
}
|
|
fn mm_write(row : i32, col : i32, valueIn : f32, globalId : vec3<u32>) {
|
|
if (coordsInBounds2D(vec2<i32>(row, col), vec2<i32>(uniforms.dimAOuter, uniforms.dimBOuter))) {
|
|
let batch = i32(globalId.z);
|
|
let outCoord = vec3<i32>(batch, row, col);
|
|
var value = valueIn;
|
|
${r}
|
|
${s}
|
|
setOutputAtCoords(batch, row, col, value);
|
|
}
|
|
}
|
|
${sse(this.workGroupSize)}
|
|
`}};function Me(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=w.sizeFromShape(s.shape),i=w.inferFromImplicitShape(r,a),o=w.sizeFromShape(i);return w.assert(a===o,()=>`The new shape (${i}) has ${o} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:i,dtype:s.dtype}}var ase={kernelName:Do,backendName:"webgpu",kernelFunc:Me};function zv({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:u=null}){let l=e.shape.length,c=t.shape.length,p=n?e.shape[l-2]:e.shape[l-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[l-1]:e.shape[l-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),b=w.sizeFromShape(m),y=w.sizeFromShape(g),x=Xo.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);w.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let k=n?[b,p,h]:[b,h,p],I=s?[y,f,d]:[y,d,f],$=Me({inputs:{x:e},backend:r,attrs:{shape:k}}),R=Me({inputs:{x:t},backend:r,attrs:{shape:I}}),E=[$,R],P=Math.max(b,y),A=b===1,O=y===1,T=p%4===0&&f%4===0&&!n&&!s,M;h*f<=32?M=new nse([P,h,f],A,O,n,s,a,u,i):!n&&!s&&(h<=16&&(f<=512||d>=2*f)||f<=16&&(h<=512||p>=2*h))?M=new rse(k,I,[P,h,f],a,u,i):T?M=new Xne(k,[P,h,f],K().get("WEBGPU_MATMUL_WORK_PER_THREAD"),A,O,a,u,i):M=new ese(k,[P,h,f],K().get("WEBGPU_MATMUL_WORK_PER_THREAD"),A,O,n,s,a,u,i);let W=[$,R];a&&W.push(a),i&&W.push(i);let j=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[p]}];u==="leakyrelu"&&(j.push({type:"float32",data:[o]}),M.uniforms+=" alpha : f32,");let Y=r.runWebGPUProgram(M,W,e.dtype,j),X=Me({inputs:{x:Y},backend:r,attrs:{shape:x}});E.push(Y);for(let Z of E)r.disposeData(Z.dataId);return X}function ise(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:i,preluActivationWeights:o}=t,{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=s;return zv({a:r,b:a,transposeA:u,transposeB:l,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:c})}var ose={kernelName:ia,backendName:"webgpu",kernelFunc:ise},zw=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOpComplex(
|
|
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
|
|
${rc(this.op,!1)}
|
|
}
|
|
|
|
${Ue()}
|
|
if(index < uniforms.size) {
|
|
let areal = getARealByOutputIndex(index);
|
|
let aimag = getAImagByOutputIndex(index);
|
|
let breal = getBRealByOutputIndex(index);
|
|
let bimag = getBImagByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
}
|
|
`}},use=class{constructor(e,t,n,s){this.variableNames=["A","B"],this.size=!0;let r=256;this.workGroupSize=[r,1,1],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Ve(this.outputShape),this.lastDimensionSize=s?n[0]:t[0],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4,this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.useSharedMemoryWithB=s,this.op=e,this.shaderKey=`binaryShared_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`}getUserCode(){let e=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",t=this.useSharedMemoryWithB?`let a = getAByOutputCoords(coords);
|
|
let b = sharedBuf[${e}];`:`let a = sharedBuf[${e}];
|
|
let b = getBByOutputCoords(coords);`;return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${rc(this.op,!1)}
|
|
}
|
|
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
|
|
${Ue()}
|
|
|
|
// Fill in the shared memory buffer. Here we need a loop to make sure
|
|
// that all data in A|B are uploaded when |sharedMemorySize| is larger
|
|
// than work group size.
|
|
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
|
|
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}[localIndex]);
|
|
}
|
|
workgroupBarrier();
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
|
|
${t}
|
|
setOutputAtIndex(flatIndex, binaryOperation(a, b));
|
|
}
|
|
}
|
|
}
|
|
`}},lse=class{constructor(e,t,n){this.variableNames=["A","B"],this.workPerThread=4,this.isVec4=!0,this.size=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.op=e,this.shaderKey=`binaryVec4_${e}`}getUserCode(){return`
|
|
fn binaryOperation(a : vec4<f32>, b : vec4<f32>) -> vec4<f32> {
|
|
${rc(this.op,this.isVec4)}
|
|
}
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}},O2=class{constructor(e,t,n){this.variableNames=["A","B"],this.size=!0;let s=128;this.workGroupSize=[s,1,1],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binary_${e}`,this.op=e}getUserCode(){return`
|
|
fn binaryOperation(a : f32, b : f32) -> f32 {
|
|
${rc(this.op,!1)}
|
|
}
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
let b = getBByOutputIndex(index);
|
|
setOutputAtIndex(index, binaryOperation(a, b));
|
|
}
|
|
}
|
|
`}};function Mw(e,t,n){if(w.arraysEqual(t,n)&&w.sizeFromShape(t)%4===0)return new lse(e,t,n);let r=t.length===1&&n.length>1&&t[0]<1024,a=n.length===1&&t.length>1&&n[0]<1024;return r||a?new use(e,t,n,a):new O2(e,t,n)}function Wn(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var cse={kernelName:Wa,backendName:"webgpu",kernelFunc:Wn};function pu(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),i=n.tensorMap.get(a.dataId),o=Wn({inputs:{x:s},backend:n}),u=Wn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:u},a}var dse={kernelName:tp,backendName:"webgpu",kernelFunc:pu},ac=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
|
|
fn unaryOperation(a : f32) -> f32 {
|
|
${jr(this.op,!1)}
|
|
}
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let a = getAByOutputIndex(index);
|
|
setOutputAtIndex(index, unaryOperation(a));
|
|
}
|
|
}
|
|
`}};function jt({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,i=r,o=n||a.dtype;if(i.shouldExecuteOnCPU([a])&&t!=null){let l=i.tensorMap.get(a.dataId),c=t(l.values,o);return i.makeTensorInfo(a.shape,o,c)}let u=new ac(a.shape,e);return i.runWebGPUProgram(u,[a],o)}}function mn({opSnippet:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:i,b:o}=r,u=a;if(n&&i.dtype==="complex64"){let p=u.tensorMap.get(i.dataId),d=u.tensorMap.get(o.dataId),h,f;if(e!==0)[h,f]=[[p.complexTensorInfos.real,d.complexTensorInfos.real],[p.complexTensorInfos.imag,d.complexTensorInfos.imag]].map(g=>{let[b,y]=g,v={dataId:b.dataId,dtype:b.dtype,shape:i.shape},x={dataId:y.dataId,dtype:y.dtype,shape:o.shape},k=Mw(e,i.shape,o.shape);return u.runWebGPUProgram(k,[v,x],ln(b.dtype,y.dtype))});else{let g=new zw(17,i.shape,o.shape),b=new zw(18,i.shape,o.shape),y=[{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:i.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:i.shape},{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:o.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:o.shape}];h=u.runWebGPUProgram(g,y,"float32"),f=u.runWebGPUProgram(b,y,"float32")}let m=pu({inputs:{real:h,imag:f},backend:u});return u.disposeData(h.dataId),u.disposeData(f.dataId),m}let l=s||ln(i.dtype,o.dtype);if((i.dtype==="string"||o.dtype==="string"||u.shouldExecuteOnCPU([i,o]))&&t!=null){let p=u.tensorMap.get(i.dataId).values,d=u.tensorMap.get(o.dataId).values,h=i.dtype==="string"?C.fromUint8ToStringArray(p):p,f=i.dtype==="string"?C.fromUint8ToStringArray(d):d,[m,g]=t(i.shape,o.shape,h,f,l);return u.makeTensorInfo(g,l,m)}let c=Mw(e,i.shape,o.shape);return u.runWebGPUProgram(c,[i,o],l)}}var{addImpl:pse,ceilImpl:hse,concatImpl:fse,equalImpl:mse,expImpl:gse,expm1Impl:bse,floorImpl:yse,gatherNdImpl:vse,gatherV2Impl:xse,greaterEqualImpl:wse,greaterImpl:kse,lessEqualImpl:Sse,lessImpl:Ise,logImpl:Cse,maxImpl:Nse,maximumImpl:Tse,minimumImpl:$se,multiplyImpl:_se,negImpl:Ase,notEqualImpl:Ese,prodImpl:Rse,rangeImpl:Dse,rsqrtImpl:Fse,scatterImpl:Ose,simpleAbsImpl:Pse,sliceImpl:zse,stridedSliceImpl:Mse,stringNGramsImpl:Lse,subImpl:Bse,tileImpl:Vse,topKImpl:Wse,transposeImpl:Use,uniqueImpl:Nhe}=ov,Gse=jt({opType:0,cpuKernelImpl:Pse}),Hse={kernelName:lo,backendName:"webgpu",kernelFunc:Gse},qse=mn({opSnippet:1,cpuKernelImpl:pse,supportsComplex:!0}),jse={kernelName:Ir,backendName:"webgpu",kernelFunc:qse},Kse=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}ByOutputCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return`
|
|
${Ue()}
|
|
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
${e.join(`
|
|
`)}
|
|
setOutputAtIndex(flatIndex, ${t});
|
|
}
|
|
}
|
|
}
|
|
`}};function Xse(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Wn({inputs:{x:s[0]},backend:n});let r=s.map(o=>o.dtype).reduce((o,u)=>ln(o,u)),a=s.map(o=>o.shape),i=new Kse(a);return n.runWebGPUProgram(i,s,r)}var Yse={kernelName:Sa,backendName:"webgpu",kernelFunc:Xse},P2=class{constructor(e,t,n){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="infinityValue : f32,",this.size=!0;let s=[t];C.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.length),this.op=n==="min"?"<":">";let[r]=C.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,[1,1,1]),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=`
|
|
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`,t=()=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape.${pr(this.inputShape.length-1)}`,n=()=>{let r="";if(this.outputShape.length===1)this.inputShape.length!==1&&(r+="outputCoords,");else for(let a=0;a<this.outputShape.length;a++)r+=`outputCoords.${pr(a)},`;return r};return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${e}
|
|
|
|
${Ue()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let reduceLength = ${t()};
|
|
|
|
var bestIndex = i32(localId.x);
|
|
var bestValue = uniforms.infinityValue;
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = getX(${n()} k);
|
|
if (!isnan(candidate) && candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = k;
|
|
}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = bestIndex;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(reduceLength), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
if (candidate ${this.op} bestValue) {
|
|
bestValue = candidate;
|
|
xBestValues[localId.x] = bestValue;
|
|
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
|
|
}
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
|
|
}
|
|
}
|
|
`}},Qse=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout={x:[0],y:[1]},this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
|
|
let TILE_DIM = ${this.workGroupSize[0]};
|
|
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
|
|
${Rv()}
|
|
fn main(@builtin(local_invocation_id) localId : vec3<u32>,
|
|
@builtin(workgroup_id) workgroupId : vec3<u32>) {
|
|
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
|
|
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
|
|
let width = uniforms.outShape[0];
|
|
let height = uniforms.outShape[1];
|
|
if (x < width && y < height) {
|
|
tile[localId.y][localId.x] = A[y * width + x];
|
|
}
|
|
workgroupBarrier();
|
|
|
|
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
|
|
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
|
|
if (x < height && y < width) {
|
|
setOutputAtIndex((y * height + x), tile[localId.x]
|
|
[localId.y]);
|
|
}
|
|
}
|
|
`}},Zse=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=Wt(this.outputShape.length),t=Jse(this.newDim);return`
|
|
${Ue()}
|
|
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(flatIndex);
|
|
setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(
|
|
${e}(${t}), uniforms.aShape)]);
|
|
}
|
|
}
|
|
}
|
|
`}};function Jse(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;s<e.length;s++)n[e[s]]=`resRC.${pr(s)}`;return n.join()}function Ks(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,i=n,o=r.shape.length,u=new Array(o);for(let c=0;c<u.length;c++)u[c]=r.shape[a[c]];if(n.shouldExecuteOnCPU([r])){let p=i.tensorMap.get(r.dataId).values,d=Use(p,r.shape,r.dtype,a,u);return n.makeTensorInfo(u,r.dtype,d)}if(r.shape.length===2&&w.arraysEqual(a,[1,0])){let c=new Qse(r.shape,a);return i.runWebGPUProgram(c,[r],r.dtype)}let l=new Zse(r.shape,a);return i.runWebGPUProgram(l,[r],r.dtype)}var ere={kernelName:Hs,backendName:"webgpu",kernelFunc:Ks};function tre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,i=w.parseAxisParam(a,r.shape),o=C.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=Ks({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=C.getInnerMostAxes(i.length,u.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],u.shape.length);let c=new P2(u.shape,i[0],"max"),p=[{type:"float32",data:[Number.NEGATIVE_INFINITY]}],d=n.runWebGPUProgram(c,[u],"int32",p);return l.forEach(h=>n.disposeData(h.dataId)),d}var nre={kernelName:Ia,backendName:"webgpu",kernelFunc:tre};function sre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,i=w.parseAxisParam(a,r.shape),o=C.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=Ks({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=C.getInnerMostAxes(i.length,u.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],u.shape.length);let c=new P2(u.shape,i[0],"min"),p=[{type:"float32",data:[Number.POSITIVE_INFINITY]}],d=n.runWebGPUProgram(c,[u],"int32",p);return l.forEach(h=>n.disposeData(h.dataId)),d}var rre={kernelName:pl,backendName:"webgpu",kernelFunc:sre},z2=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>, pad : vec2<i32>, dilation : vec2<i32>, convDims : vec2<i32>, filterDims : vec2<i32>,",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
|
|
var count = 0.0;
|
|
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
|
|
let xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= uniforms.convDims.x) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
|
|
let xC = xCCorner + wC;
|
|
if (xC < 0 || xC >= uniforms.convDims.y) {
|
|
continue;
|
|
}
|
|
|
|
let value = getX(batch, xR, xC, coords[3]);
|
|
${e}
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, ${t});
|
|
}
|
|
}
|
|
`}},M2=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>,",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d = coords[3];
|
|
|
|
let xRCCorner = coords.yz * uniforms.stride;
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
let value = getX(batch, xRCorner, xCCorner, d);
|
|
setOutputAtIndex(index, value);
|
|
}
|
|
}
|
|
`}};function are(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1,c=C.computePool2DInfo(r.shape,a,i,l,o,u);if(c.filterWidth===1&&c.filterHeight===1&&w.arraysEqual(c.inShape,c.outShape))return Wn({inputs:{x:r},backend:n});let p,d=[{type:"int32",data:[c.strideHeight,c.strideWidth]}];return c.filterHeight===1&&c.filterWidth===1?p=new M2(c):(p=new z2(c,"avg"),d.push({type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]})),n.runWebGPUProgram(p,[r],r.dtype,d)}var ire={kernelName:Ca,backendName:"webgpu",kernelFunc:are};function ore(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:i,transposeB:o}=s;return zv({a:r,b:a,transposeA:i,transposeB:o,backend:n})}var ure={kernelName:Na,backendName:"webgpu",kernelFunc:ore},lre=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${Wt(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=Wt(this.rank),t=cre(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${ng[a]} = uniforms.start[${a}] + coords.${ng[a]};`),`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
var sourceLoc : ${e};
|
|
let coords = getCoordsFromIndex(index);
|
|
${n.join(`
|
|
`)}
|
|
setOutputAtIndex(index, getSource(${t}));
|
|
}
|
|
}
|
|
`}},ng=["x","y","z","w","u","v"];function cre(e){if(e===1)return"sourceLoc";if(e<=6)return ng.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function hu(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:i}=s,[o,u]=kt.parseSliceParams(r,a,i);if(kt.assertParamsValid(r,o,u),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.tensorMap.get(r.dataId),d=zse(p.values,o,u,r.shape,r.dtype);return n.makeTensorInfo(u,r.dtype,d)}if(w.sizeFromShape(u)===0)return n.makeTensorInfo(u,r.dtype,[]);let l=new lre(o,u),c=[{type:"int32",data:o}];return n.runWebGPUProgram(l,[r],r.dtype,c)}var dre={kernelName:Mo,backendName:"webgpu",kernelFunc:hu},pre=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:i}=s;w.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let o=a.reduce((y,v)=>y*v),u=C.getReshaped(r.shape,a,o),l=C.getPermuted(u.length,a.length),c=C.getReshapedPermuted(r.shape,a,o),p=C.getSliceBeginCoords(i,a.length),d=C.getSliceSize(c,i,a.length),h=[],f=Me({inputs:{x:r},backend:n,attrs:{shape:u}}),m=Ks({inputs:{x:f},backend:n,attrs:{perm:l}}),g=Me({inputs:{x:m},backend:n,attrs:{shape:c}}),b=hu({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(y=>n.disposeData(y.dataId)),b},hre={kernelName:co,backendName:"webgpu",kernelFunc:pre},L2=mn({opSnippet:10,dtype:"bool",cpuKernelImpl:Ese}),fre={kernelName:To,backendName:"webgpu",kernelFunc:L2};function ic(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Wn({inputs:{x:r.complexTensorInfos.real},backend:n})}var mre={kernelName:cp,backendName:"webgpu",kernelFunc:ic};function gre(e,t){let n=new ac(e.shape,22),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function sg(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Wn({inputs:{x:r},backend:n});let i=$t(r.shape),o=sg({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),u=pu({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeData(o.dataId),u}if(r.dtype==="complex64"){let i=ic({inputs:{input:r},backend:n}),o=sg({inputs:{x:i},backend:n,attrs:{dtype:a}});return n.disposeData(i.dataId),o}if(!w.hasEncodingLoss(r.dtype,a)){let i=Wn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:a}}if(a==="int32")return gre(r,n);if(a==="bool"){let i=n.makeTensorInfo([],"bool",w.getTypedArrayFromDType("bool",1)),u=L2({inputs:{a:r,b:i},backend:n});return n.disposeData(i.dataId),u}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var bre={kernelName:Ta,backendName:"webgpu",kernelFunc:sg},yre=jt({opType:1,cpuKernelImpl:hse}),vre={kernelName:$a,backendName:"webgpu",kernelFunc:yre},xre=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
|
|
${Ue()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
var clampedValue : vec4<f32>;
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
if (isnan(value[i])) {
|
|
clampedValue[i] = value[i];
|
|
} else {
|
|
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
|
|
}
|
|
}
|
|
|
|
setOutputAtIndex(index, clampedValue);
|
|
}
|
|
}
|
|
`}},wre=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
|
|
${Ue()}
|
|
if(index < uniforms.size) {
|
|
let value = getAByOutputIndex(index);
|
|
if (isnan(value)) {
|
|
setOutputAtIndex(index, value);
|
|
return;
|
|
}
|
|
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
|
|
}
|
|
}
|
|
`}};function kre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:i}=s,o,u=[{type:"float32",data:[a]},{type:"float32",data:[i]}];return w.sizeFromShape(r.shape)%4===0?o=new xre(r.shape):o=new wre(r.shape),n.runWebGPUProgram(o,[r],r.dtype,u)}var Sre={kernelName:Cr,backendName:"webgpu",kernelFunc:kre},Ire=class{constructor(e){this.uniforms="",this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32,`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let r=1;r<this.offsetLength;r++)e.push(`else if (yC < uniforms.offset${[r]}){ setOutputAtCoords(coords.x, coords.y, getT${r}(yR, yC - uniforms.offset${r-1})); }`);let n=this.offsetLength,s=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${s})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
|
|
${Ue()}
|
|
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
|
|
let flatIndex = index * ${this.workPerThread} + i;
|
|
if(flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndex);
|
|
let yR = coords.x;
|
|
let yC = coords.y;
|
|
|
|
${e.join(`
|
|
`)}
|
|
}
|
|
}
|
|
}
|
|
`}};function oh(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Wn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var Cre={kernelName:ip,backendName:"webgpu",kernelFunc:oh};function rg(e,t,n){let s=e[0].dtype;if(s==="complex64"){let h=e.map(y=>ic({inputs:{input:y},backend:n})),f=e.map(y=>oh({inputs:{input:y},backend:n})),m=rg(h,t,n),g=rg(f,t,n),b=pu({inputs:{real:m,imag:g},backend:n});return h.forEach(y=>n.disposeData(y.dataId)),f.forEach(y=>n.disposeData(y.dataId)),n.disposeData(m.dataId),n.disposeData(g.dataId),b}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let h=e.map(x=>{let k=w.sizeFromShape(x.shape.slice(t));return Me({inputs:{x},backend:n,attrs:{shape:[-1,k]}})}),f=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape})),m=C.computeOutShape(h.map(x=>x.shape),1),g=h[0].shape[0]===1,b=fse(f,m,s,g),y=C.computeOutShape(e.map(x=>x.shape),t),v=n.makeTensorInfo(y,s,b);return h.forEach(x=>n.disposeData(x.dataId)),v}let{tensors2D:a,outShape:i}=Nre(e,t,n),o=a.map(h=>h.shape),u=new Ire(o),l=[],c=new Array(o.length-1);if(c.length>0){c[0]=o[0][1],l.push({type:"int32",data:[c[0]]});for(let h=1;h<c.length;h++)c[h]=c[h-1]+o[h][1],l.push({type:"int32",data:[c[h]]})}let p=n.runWebGPUProgram(u,a,a[0].dtype,l);a.forEach(h=>n.disposeData(h.dataId));let d=Me({inputs:{x:p},backend:n,attrs:{shape:i}});return n.disposeData(p.dataId),d}function Nre(e,t,n){let s=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>Me({inputs:{x:a},backend:n,attrs:{shape:[w.sizeFromShape(a.shape.slice(0,t)),w.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function B2(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=w.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(l=>l.shape),a);if(w.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(l=>w.sizeFromShape(l.shape)>0);if(o.length===1)return Wn({inputs:{x:o[0]},backend:n});let u=o.map(l=>l.shape);return C.assertParamsConsistent(u,a),rg(o,a,n)}var Tre={kernelName:po,backendName:"webgpu",kernelFunc:B2},$re=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms=`filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
|
|
dimAOuter : i32, dimBOuter : i32, dimInner : i32,`,this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=e.outShape,w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.outputShape[1]===1?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivationWeights=s,this.innerElementSize=this.convInfo.inChannels%4===0?4:3,this.innerElementSize===3?this.variableTypes=["f32","vec4<f32>"]:this.variableTypes=["vec4<f32>","vec4<f32>"],this.addBias&&(this.variableNames.push("bias"),this.variableTypes.push("vec4<f32>")),this.hasPreluActivationWeights&&(this.variableNames.push("preluActivationWeights"),this.variableTypes.push("vec4<f32>")),this.tileAOuter=this.outputShape[1]===1?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.workGroupSize[0]*this.innerElementSize,[this.fitA,this.fitB]=this.getShapeFit(),this.shaderKey=`conv2DMMVec4_${this.activation}_${this.fitA}_${this.fitB}_${this.elementsPerThread}_${this.innerElementSize}`}getShapeFit(){let e=[this.tileAOuter,this.tileInner],t=[this.tileInner,this.tileBOuter],n=this.outputShape[1]*this.outputShape[2],s=this.outputShape[3],r=this.convInfo.filterHeight*this.convInfo.filterWidth*this.convInfo.inChannels;return[il(e,[n,r]),il(t,[r,s])]}getUserCode(){let e=F2(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner,this.innerElementSize),t=`let outRow = r / uniforms.outShape[2];
|
|
let outCol = r % uniforms.outShape[2];
|
|
let WRow = c / (uniforms.filterDims[1] * uniforms.xShape[3]);
|
|
let WCol = c / uniforms.xShape[3] % uniforms.filterDims[1];
|
|
let inChCoord = c % uniforms.xShape[3];
|
|
let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0];
|
|
let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1];
|
|
|
|
var resData = vec${this.innerElementSize}<f32>(0.0);
|
|
// The bounds checking is always needed since we use it to pad zero for
|
|
// the 'same' padding type.
|
|
if (xRow >= 0 && xRow < uniforms.xShape[1] && xCol >= 0 && xCol < uniforms.xShape[2]) {
|
|
var coord = vec4<i32>(
|
|
batch,
|
|
xRow,
|
|
xCol,
|
|
inChCoord);
|
|
let xIndex = getIndexFromCoords4D(coord, uniforms.xShape);
|
|
${this.innerElementSize===3?"resData = vec3<f32>(x[xIndex], x[xIndex + 1], x[xIndex + 2]);":"resData = x[xIndex / 4];"}
|
|
}
|
|
return resData;`,n=this.fitA?`${t}`:`if (r < uniforms.dimAOuter && c < uniforms.dimInner) {
|
|
${t}
|
|
}
|
|
return vec${this.innerElementSize}<f32>(0.0);
|
|
`,s=this.fitB?"return W[row * uniforms.dimBOuter / 4 + col];":`if(coordsInBounds2D(vec2<i32>(row, col * 4), vec2<i32>(uniforms.dimInner, uniforms.dimBOuter))) {
|
|
return W[row * uniforms.dimBOuter / 4 + col];
|
|
}
|
|
return vec4<f32>(0.0);
|
|
`,r="",a="";if(this.activation){let u=Or(this.activation,this.isVec4);this.hasPreluActivationWeights?r=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${u}
|
|
}`:r=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${u}
|
|
}`,a="value = activation(value, outCoord);"}let i=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${r}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> vec${this.innerElementSize}<f32> {
|
|
let r = row;
|
|
let c = col * ${this.innerElementSize};
|
|
var batch = i32(globalId.z);
|
|
${n}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> vec4<f32> {
|
|
${s}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : vec4<f32>, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
if (row < uniforms.dimAOuter && col * 4 < uniforms.dimBOuter)
|
|
{
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col * 4);
|
|
${i}
|
|
${a}
|
|
setOutputAtCoords(outCoord[0], outCoord[1], outCoord[2], outCoord[3],
|
|
value);
|
|
}
|
|
}
|
|
${e}
|
|
`}},_re=class{constructor(e,t,n,s,r=!1,a=null,i=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.dispatchLayout=this.isChannelsLast?{x:[3],y:[1,2],z:[0]}:{x:[2,3],y:[1],z:[0]},this.workGroupSize=Dv(this.dispatchLayout,this.outputShape),this.elementsPerThread=Fv(this.dispatchLayout,this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),r&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),this.addBias=r,this.activation=a,this.hasPreluActivationWeights=i;let o=this.workGroupSize[1]*this.elementsPerThread[1],u=this.workGroupSize[0]*this.elementsPerThread[0];this.tileInner=32,this.fitAOuter=t%o===0,this.fitBOuter=n%u===0,this.fitInner=s%this.tileInner===0,this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?`
|
|
let coord = vec4<i32>(batch, xRow, xCol, xCh);
|
|
`:`
|
|
let coord = vec4<i32>(batch, xCh, xRow, xCol);
|
|
`,t=this.isChannelsLast?`
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / outWidth,
|
|
row % outWidth,
|
|
col);
|
|
`:`
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row,
|
|
col / outWidth,
|
|
col % outWidth);
|
|
`,n=Pv(this.elementsPerThread,this.workGroupSize,!this.isChannelsLast,this.tileInner),s=this.isChannelsLast?"row":"col",r=this.isChannelsLast?"col":"row",a=`
|
|
let inChannels = uniforms.wShape[2];
|
|
let outWidth = ${this.isChannelsLast?"uniforms.outShape[2]":"uniforms.outShape[3]"};
|
|
let outRow = ${s} / outWidth;
|
|
let outCol = ${s} % outWidth;
|
|
|
|
let WRow = ${r} / (uniforms.filterDims[1] * inChannels);
|
|
let WCol = ${r} / inChannels % uniforms.filterDims[1];
|
|
let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0];
|
|
let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1];
|
|
let xCh = ${r} % inChannels;
|
|
${e}
|
|
// The bounds checking is always needed since we use it to pad zero for the
|
|
// 'same' padding type.
|
|
if(coordsInBounds4D(coord, uniforms.xShape)) {
|
|
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;`,i=this.isChannelsLast?this.fitAOuter&&this.fitInner?`${a}`:`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
${a}
|
|
}
|
|
return 0.0;`:this.fitInner&&this.fitBOuter?`${a}`:`if (row < uniforms.dimInner && col < uniforms.dimBOuter) {
|
|
${a}
|
|
}
|
|
return 0.0;`,o="return W[row * uniforms.wShape[3] + col];",u="",l="";if(this.activation){let d=Or(this.activation,!1);this.hasPreluActivationWeights?u=`fn activation(a: f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${d}
|
|
}`:u=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${d}
|
|
}
|
|
`,l="value = activation(value, outCoord);"}let c=this.addBias?"value = value + getBiasByOutputCoords(outCoord);":"";return`
|
|
${u}
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
${this.isChannelsLast?i:o}
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
${this.isChannelsLast?o:i}
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outWidth = ${this.isChannelsLast?"uniforms.outShape[2]":"uniforms.outShape[3]"};
|
|
${t}
|
|
${c}
|
|
${l}
|
|
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
${n}
|
|
`}};function Lw(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function Are({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:o=null}){let u=n.dataFormat==="channelsLast",l=!u,c=!1,p=u&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID",d=[],h,f;if(p){let b=n.inHeight*n.inWidth*n.inChannels;h=Me({inputs:{x:e},backend:s,attrs:{shape:[1,n.batchSize,b]}}),f=Me({inputs:{x:t},backend:s,attrs:{shape:[1,b,n.outChannels]}})}else h=Me({inputs:{x:e},backend:s,attrs:{shape:u?[n.batchSize,n.inHeight*n.inWidth,n.inChannels]:[n.batchSize,n.inChannels,n.inHeight*n.inWidth]}}),f=Me({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});if(d.push(h),d.push(f),a!=null){let b=Lw(a.shape,u);b!=null&&(a=Me({inputs:{x:a},backend:s,attrs:{shape:b}}),d.push(a))}if(r!=null){let b=Lw(r.shape,u);b!=null&&(r=Me({inputs:{x:r},backend:s,attrs:{shape:b}}),d.push(r))}let m=zv({a:u?h:f,b:u?f:h,transposeA:l,transposeB:c,backend:s,bias:r,activation:o,preluActivationWeights:a,leakyreluAlpha:i}),g=Me({inputs:{x:m},backend:s,attrs:{shape:n.outShape}});d.push(m);for(let b of d)s.disposeData(b.dataId);return g}function V2({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:i=0,activation:o=null}){let u=r!=null,l=a!=null,c=n.dataFormat==="channelsLast",p;if(c&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID"||n.filterHeight===1&&n.filterWidth===1&&n.dilationHeight===1&&n.dilationWidth===1&&n.strideHeight===1&&n.strideWidth===1&&(n.padInfo.type==="SAME"||n.padInfo.type==="VALID"))return Are({x:e,filter:t,convInfo:n,backend:s,bias:r,activation:o,preluActivationWeights:a,leakyreluAlpha:i});let h=(n.inChannels%4===0||n.inChannels%3===0)&&n.outChannels%4===0&&c,f=c?n.outHeight*n.outWidth:n.outChannels,m=c?n.outChannels:n.outHeight*n.outWidth,g=n.filterHeight*n.filterWidth*n.inChannels,b=[n.padInfo.top,n.padInfo.left],y=[{type:"int32",data:[n.filterHeight,n.filterWidth]},{type:"int32",data:[...b]},{type:"int32",data:[n.strideHeight,n.strideWidth]},{type:"int32",data:[n.dilationHeight,n.dilationWidth]},{type:"int32",data:[f]},{type:"int32",data:[m]},{type:"int32",data:[g]}];h?p=new $re(n,u,o,l):p=new _re(n,f,m,g,u,o,l);let v=[],x=[e,t];u&&(!c&&r.shape.length===1&&(r=Me({inputs:{x:r},backend:s,attrs:{shape:[r.shape[0],1,1]}}),v.push(r)),x.push(r)),l&&(!c&&a.shape.length===1&&(a=Me({inputs:{x:a},backend:s,attrs:{shape:[a.shape[0],1,1]}}),v.push(a)),x.push(a)),o==="leakyrelu"&&(y.push({type:"float32",data:[i]}),p.uniforms+=" alpha : f32,");let k=s.runWebGPUProgram(p,x,e.dtype,y);for(let I of v)s.disposeData(I.dataId);return k}function Ere(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dataFormat:u,dilations:l,dimRoundingMode:c}=n,p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(r.shape,a.shape,i,l,o,c,!1,p);return V2({x:r,filter:a,convInfo:d,backend:s})}var Rre={kernelName:_a,backendName:"webgpu",kernelFunc:Ere},Dre=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=Dv(this.dispatchLayout,this.outputShape),this.elementsPerThread=Fv(this.dispatchLayout,this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.shaderKey=`conv2DDerInputMM_${this.elementsPerThread}`}getUserCode(){return`
|
|
fn mm_readA(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
var batch = i32(globalId.z);
|
|
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
|
|
|
|
let outRow = row / uniforms.outShape[2];
|
|
let outCol = row % uniforms.outShape[2];
|
|
|
|
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
|
|
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
|
|
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
|
|
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
|
|
return 0.0;
|
|
}
|
|
let coord = vec4<i32>(
|
|
batch,
|
|
i32(xR),
|
|
i32(xC),
|
|
col % uniforms.outBackprop[3]);
|
|
return x[getIndexFromCoords4D(coord, uniforms.xShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_readB(row : i32, col : i32, globalId : vec3<u32>) -> f32 {
|
|
let coordX = uniforms.filterDims.x - 1 -
|
|
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
|
|
let coordY = uniforms.filterDims.y - 1 -
|
|
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
|
|
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
|
|
coordX >= 0 && coordY >= 0) {
|
|
let coord = vec4<i32>(coordX, coordY, col,
|
|
row % uniforms.outBackprop[3]);
|
|
return W[getIndexFromCoords4D(coord, uniforms.wShape)];
|
|
}
|
|
return 0.0;
|
|
}
|
|
|
|
fn mm_write(row : i32, col : i32, valueInput : f32, globalId : vec3<u32>) {
|
|
var batch = i32(globalId.z);
|
|
var value = valueInput;
|
|
let outCoord = vec4<i32>(
|
|
batch,
|
|
row / uniforms.outShape[2],
|
|
row % uniforms.outShape[2],
|
|
col);
|
|
result[getIndexFromCoords4D(outCoord, uniforms.outShape)] = value;
|
|
}
|
|
|
|
${Pv(this.elementsPerThread,this.workGroupSize)}
|
|
`}},Fre=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return`
|
|
${Ue()} {
|
|
if(index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let batch = coords[0];
|
|
let d1 = coords[${n}];
|
|
|
|
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
|
|
let dyRCorner = dyCorner.x;
|
|
let dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
|
|
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
|
|
let wRPerm = uniforms.filterDims.x - 1 - wR;
|
|
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
|
|
wRPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyR = dyR;
|
|
|
|
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
|
|
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
|
|
let wCPerm = uniforms.filterDims.y - 1 - wC;
|
|
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
|
|
fract(dyC) > 0.0 || wCPerm < 0) {
|
|
continue;
|
|
}
|
|
let idyC = dyC;
|
|
|
|
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
|
|
if (${this.isChannelsLast}) {
|
|
let xValue = getDy(batch, idyR, idyC, d2);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
} else {
|
|
let xValue = getDy(batch, d2, idyR, idyC);
|
|
let wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd = dotProd + xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutputAtIndex(index, dotProd);
|
|
}
|
|
}
|
|
`}};function Ore(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:i,strides:o,pad:u,dataFormat:l,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(i,a.shape,o,1,u,c,!1,p),h=[{type:"int32",data:[d.filterHeight,d.filterWidth]},{type:"int32",data:[d.filterHeight-1-d.padInfo.top,d.filterWidth-1-d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.batchSize,d.outHeight,d.outWidth,d.outChannels]}],f;if(K().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new Fre(d);else{f=new Dre(d);let m=d.inShape[1]*d.inShape[2],g=d.inShape[3],b=d.filterHeight*d.filterWidth*d.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[b]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var Pre={kernelName:Aa,backendName:"webgpu",kernelFunc:Ore},zre=jt({opType:2}),Mre={kernelName:Ea,backendName:"webgpu",kernelFunc:zre},Lre=jt({opType:3}),Bre={kernelName:Ra,backendName:"webgpu",kernelFunc:Lre},Vre=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workGroupSize=[64,1,1],this.size=!0;let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,i,o]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let height_ratio = f32(${n});
|
|
let width_ratio = f32(${a});
|
|
let b = coords[0];
|
|
let y = coords[1];
|
|
let x = coords[2];
|
|
let d = coords[3];
|
|
// get box vals
|
|
let y1 = getBoxes(b, 0);
|
|
let x1 = getBoxes(b, 1);
|
|
let y2 = getBoxes(b, 2);
|
|
let x2 = getBoxes(b, 3);
|
|
// get image in batch index
|
|
let bInd = i32(round(getBoxInd(b)));
|
|
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
|
|
return;
|
|
}
|
|
let height_scale = ${s};
|
|
let width_scale = ${i};
|
|
let in_y = ${r};
|
|
if( in_y < 0.0 || in_y > ${e} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let in_x = ${o};
|
|
if( in_x < 0.0 || in_x > ${t} ) {
|
|
setOutputAtIndex(index, uniforms.extrapolationValue);
|
|
return;
|
|
}
|
|
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
|
|
if(${this.methodId} == 1) {
|
|
// Compute the four integer indices.
|
|
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
|
|
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
|
|
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
|
|
let top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
let newValue = top + (bottom - top) * fracCR.y;
|
|
setOutputAtIndex(index, newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let sourceNearestCR = vec2<i32>(floor(
|
|
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
|
|
let newValue = getImage(
|
|
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
}
|
|
`}},Wre=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:i}=t,{cropSize:o,method:u,extrapolationValue:l}=s,c=new Vre(r.shape[3],a.shape,o,u),p=[{type:"float32",data:[l]}];return n.runWebGPUProgram(c,[r,a,i],"float32",p)},Ure={kernelName:fo,backendName:"webgpu",kernelFunc:Wre},Bw=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="index : f32,",this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=t,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.exclusive=n,this.reverse=s,this.op=e,this.shaderKey=`cum_${this.op}_${this.exclusive}_${this.reverse}`}getUserCode(){let e=this.outputShape.length,t=this.op==="*"?"1.0":"0.0",n=this.exclusive?t:`getX(${Vw(e,"coords",this.op)})`,s=this.outputShape[this.outputShape.length-1],r="",a="";return this.exclusive?(r=this.reverse?`end != ${s-1}`:"end != 0",a=this.reverse?"end + 1":"end - 1"):(r=this.reverse?`end + pow2 < ${s}`:"end >= pow2",a=this.reverse?"end + pow2":"end - pow2"),`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
var coords = getCoordsFromIndex(index);
|
|
|
|
let end = ${Ww(e,"coords",this.op)};
|
|
var val = ${n};
|
|
let pow2 = i32(pow(2.0, uniforms.index));
|
|
if (${r}) {
|
|
let idx = ${a};
|
|
${Ww(e,"coords",this.op)} = idx;
|
|
val ${this.op}= getX(${Vw(e,"coords",this.op)});
|
|
}
|
|
setOutputAtIndex(index, val);
|
|
}
|
|
}
|
|
`}};function Vw(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function Ww(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function W2(e,t,n,s,r,a){let i=t.shape.length,o=C.getAxesPermutation([s],i),u=t;o!=null&&(u=Ks({inputs:{x:t},backend:n,attrs:{perm:o}}));let l=C.getInnerMostAxes(1,i)[0];if(l!==i-1)throw new Error(`WebGPU cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=u.shape[l],p=Wn({inputs:{x:u},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new Bw(e,u.shape,!1,a),f=p,m=[{type:"float32",data:[d]}];p=n.runWebGPUProgram(h,[p],p.dtype,m),n.disposeData(f.dataId)}if(r){let d=new Bw(e,u.shape,r,a),h=p,f=[{type:"float32",data:[0]}];p=n.runWebGPUProgram(d,[p],p.dtype,f),n.disposeData(h.dataId)}if(o!=null){let d=C.getUndoAxesPermutation(o),h=Ks({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeData(p.dataId),n.disposeData(u.dataId),h}return p}function Gre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s;return W2("*",r,n,a,i,o)}var Hre={kernelName:ho,backendName:"webgpu",kernelFunc:Gre};function qre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s;return W2("+",r,n,a,i,o)}var jre={kernelName:Da,backendName:"webgpu",kernelFunc:qre},Kre=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let h = ${this.getHeightCoordString()};
|
|
let w = ${this.getWidthCoordString()};
|
|
let d = ${this.getDepthCoordString()};
|
|
|
|
let in_h = h / uniforms.blockSize;
|
|
let offset_h = h % uniforms.blockSize;
|
|
let in_w = w / uniforms.blockSize;
|
|
let offset_w = w % uniforms.blockSize;
|
|
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
let in_d = d + offset_d;
|
|
|
|
let rlt = ${this.getInputSamplingString()};
|
|
setOutputAtIndex(index, rlt);
|
|
}
|
|
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Xre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:i}=s,o=r.shape[0],u=i==="NHWC"?r.shape[1]:r.shape[2],l=i==="NHWC"?r.shape[2]:r.shape[3],c=i==="NHWC"?r.shape[3]:r.shape[1],p=u*a,d=l*a,h=c/(a*a),f=i==="NHWC"?[o,p,d,h]:[o,h,p,d],m=[{type:"int32",data:[a]}],g=new Kre(f,i);return n.runWebGPUProgram(g,[r],r.dtype,m)}var Yre={kernelName:mo,backendName:"webgpu",kernelFunc:Xre},U2=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[0,1],y:[2],z:[3]},this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,4,4]),w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise3x3_${n}`}getUserCode(){let e="",t="";if(this.activation){let r=Or(this.activation,this.isVec4);this.hasPreluActivation?e=`fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : vec4<f32>, outCoord : vec4<i32>) -> vec4<f32> {
|
|
${r}
|
|
}
|
|
`,t="dotProd[i] = activation(dotProd[i], coords);"}let n=this.addBias?"dotProd[i] = dotProd[i] + getBiasByOutputCoords(coords);":"";return`
|
|
${e}
|
|
|
|
${Rv()}
|
|
fn main(@builtin(global_invocation_id) globalId: vec3<u32>) {
|
|
let batch = 0;
|
|
let r = i32(globalId.x);
|
|
let c = i32(globalId.y) * 4;
|
|
let d2 = i32(globalId.z) * 4;
|
|
let xRCCorner = vec2<i32>(r, c) * uniforms.stride - uniforms.pad;
|
|
let d1 = d2;
|
|
let q = 0;
|
|
|
|
let xRCorner = xRCCorner.x;
|
|
let xCCorner = xRCCorner.y;
|
|
|
|
var wVals : array<vec4<f32>, 9>;
|
|
wVals[0] = getW(0, 0, d1, q);
|
|
wVals[1] = getW(0, 1, d1, q);
|
|
wVals[2] = getW(0, 2, d1, q);
|
|
wVals[3] = getW(1, 0, d1, q);
|
|
wVals[4] = getW(1, 1, d1, q);
|
|
wVals[5] = getW(1, 2, d1, q);
|
|
wVals[6] = getW(2, 0, d1, q);
|
|
wVals[7] = getW(2, 1, d1, q);
|
|
wVals[8] = getW(2, 2, d1, q);
|
|
|
|
var xVals : array<array<vec4<f32>, 6>, 3>;
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
let xR = xRCorner + wR * uniforms.dilation[0];
|
|
for (var wC = 0; wC < 6; wC = wC + 1) {
|
|
let xC = xCCorner + wC * uniforms.dilation[1];
|
|
if (xR < 0 || xR >= uniforms.inDims[0] || xC < 0 || xC >= uniforms.inDims[1]) {
|
|
xVals[wR][wC] = vec4<f32>(0.0);
|
|
} else {
|
|
xVals[wR][wC] = getX(batch, xR, xC, d1);
|
|
}
|
|
}
|
|
}
|
|
|
|
var dotProd : array<vec4<f32>, 4>;
|
|
dotProd[0] = vec4<f32>(0.0);
|
|
dotProd[1] = vec4<f32>(0.0);
|
|
dotProd[2] = vec4<f32>(0.0);
|
|
dotProd[3] = vec4<f32>(0.0);
|
|
|
|
for (var wR = 0; wR < 3; wR = wR + 1) {
|
|
for (var wC = 0; wC < 3; wC = wC + 1) {
|
|
let indexW = wR * 3 + wC;
|
|
dotProd[0] = dotProd[0] + xVals[wR][0 + wC] * wVals[indexW];
|
|
dotProd[1] = dotProd[1] + xVals[wR][1 + wC] * wVals[indexW];
|
|
dotProd[2] = dotProd[2] + xVals[wR][2 + wC] * wVals[indexW];
|
|
dotProd[3] = dotProd[3] + xVals[wR][3 + wC] * wVals[indexW];
|
|
}
|
|
}
|
|
|
|
for (var i = 0; i < 4; i = i + 1) {
|
|
let coords = vec4<i32>(batch, r, c + i, d2);
|
|
if (coordsInBounds4D(coords, uniforms.outShape)) {
|
|
${n}
|
|
${t}
|
|
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], dotProd[i]);
|
|
}
|
|
}
|
|
}
|
|
`}},G2=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>,
|
|
inDims : vec2<i32>, filterHeight : i32, filterWidth : i32,
|
|
channelMul : i32,`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),w.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.activation}`}getUserCode(){let e="",t="";if(this.activation){let r=Or(this.activation,!1);this.hasPreluActivation?e=`fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
let b = getPreluActivationWeightsByOutputCoords(outCoord);
|
|
${r}
|
|
}`:e=`
|
|
fn activation(a : f32, outCoord : vec4<i32>) -> f32 {
|
|
${r}
|
|
}
|
|
`,t="dotProd = activation(dotProd, coords);"}let n=this.addBias?"dotProd = dotProd + getBiasByOutputCoords(coords);":"";return`
|
|
${e}
|
|
|
|
fn writeResult(batch : i32, row : i32, col : i32, chan : i32,
|
|
value : f32) {
|
|
let coord = vec4<i32>(batch, row, col, chan);
|
|
if (coordsInBounds4D(coord, uniforms.outShape)) {
|
|
setOutputAtCoords(batch, row, col, chan, value);
|
|
}
|
|
}
|
|
|
|
${du()}
|
|
let coords = getOutputCoords();
|
|
let batch = coords[0];
|
|
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
|
|
let d2 = coords[3];
|
|
let d1 = d2 / uniforms.channelMul;
|
|
let q = d2 - d1 * uniforms.channelMul;
|
|
|
|
let inputRowStart = xRCCorner.x;
|
|
let inputColStart = xRCCorner.y;
|
|
let inputRowEnd = inputRowStart + uniforms.filterHeight *
|
|
uniforms.dilation[0];
|
|
let inputColEnd = inputColStart + uniforms.filterWidth *
|
|
uniforms.dilation[1];
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
var dotProd = 0.0;
|
|
|
|
// Extract if checking out of for loop for performance.
|
|
if (inputRowStart >= 0 && inputColStart >= 0 &&
|
|
inputRowEnd < uniforms.inDims[0] &&
|
|
inputColEnd < uniforms.inDims[1]) {
|
|
// Here using a constant value |this.convInfo.filterHeight| instead
|
|
// of uniform value is in order to loop unrolling.
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
} else {
|
|
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
|
|
let xR = inputRowStart + wR * uniforms.dilation[0];
|
|
|
|
if (xR < 0 || xR >= uniforms.inDims[0]) {
|
|
continue;
|
|
}
|
|
|
|
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
|
|
let xC = inputColStart + wC * uniforms.dilation[1];
|
|
|
|
if (xC < 0 || xC >= uniforms.inDims[1]) {
|
|
continue;
|
|
}
|
|
|
|
let xVal = getX(batch, xR, xC, d1);
|
|
let wVal = getW(wR, wC, d1, q);
|
|
dotProd = dotProd + xVal * wVal;
|
|
}
|
|
}
|
|
}
|
|
|
|
${n}
|
|
${t}
|
|
writeResult(batch, coords[1], coords[2], d2, dotProd);
|
|
}
|
|
`}};function Qre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:i,pad:o,dilations:u,dimRoundingMode:l}=s,c=u;c==null&&(c=[1,1]);let p=C.computeConv2DInfo(r.shape,a.shape,i,c,o,l,!0),d=[{type:"int32",data:[p.padInfo.top,p.padInfo.left]},{type:"int32",data:[p.strideHeight,p.strideWidth]},{type:"int32",data:[p.dilationHeight,p.dilationWidth]},{type:"int32",data:[p.inHeight,p.inWidth]}],h;return p.batchSize===1&&p.inHeight===p.outHeight&&p.inWidth===p.outWidth&&p.strideHeight===1&&p.strideWidth===1&&p.filterHeight===p.filterWidth&&p.inChannels===p.outChannels&&p.dilationHeight===1&&p.dilationWidth===1&&p.filterHeight===3&&p.inChannels%4===0?h=new U2(p):(h=new G2(p),d.push({type:"int32",data:[p.filterHeight]},{type:"int32",data:[p.filterWidth]},{type:"int32",data:[p.outChannels/p.inChannels]})),n.runWebGPUProgram(h,[r,a],r.dtype,d)}var Zre={kernelName:Fa,backendName:"webgpu",kernelFunc:Qre},H2=mn({opSnippet:0,cpuKernelImpl:_se,supportsComplex:!0}),Jre={kernelName:Za,backendName:"webgpu",kernelFunc:H2},eae=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[n]=C.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=n.length===0?[1]:n,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
|
|
if (isnan(candidate)) {
|
|
bestValue = uniforms.NAN;
|
|
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
|
|
{ bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let n=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
|
|
fn DIV_CEIL(a : u32, b : u32) -> u32 {
|
|
return ((a - 1u) / b + 1u);
|
|
}
|
|
|
|
${`
|
|
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
|
|
`}
|
|
fn getOffset(outputIndex : i32) -> i32 {
|
|
let outputCoords = getCoordsFromIndex(outputIndex);
|
|
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
|
|
return offset;
|
|
}
|
|
${Ue()}
|
|
let outputIndex = index / i32(workGroupSizeX);
|
|
let offset = getOffset(outputIndex);
|
|
var bestValue = ${t};
|
|
let Length = uniforms.reduceSize;
|
|
let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);
|
|
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
|
|
k = k + i32(workGroupSizeX)) {
|
|
let candidate = f32(x[offset + k]);
|
|
${e}
|
|
}
|
|
xBestValues[localId.x] = bestValue;
|
|
workgroupBarrier();
|
|
|
|
var reduceSize = min(u32(Length), workGroupSizeX);
|
|
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
|
|
currentSize = reduceSize / 2u) {
|
|
let interval = DIV_CEIL(reduceSize, 2u);
|
|
if (localId.x < currentSize) {
|
|
let candidate = xBestValues[localId.x + interval];
|
|
${e}
|
|
xBestValues[localId.x] = bestValue;
|
|
}
|
|
reduceSize = interval;
|
|
workgroupBarrier();
|
|
}
|
|
|
|
if (localId.x == 0u && outputIndex < uniforms.size) {
|
|
${n}
|
|
}
|
|
}
|
|
`}};function oc(e,t,n,s,r){let a=e.shape.length,i=[],o=w.parseAxisParam(t,e.shape),u=o,l=C.getAxesPermutation(u,a),c=e;l!=null&&(c=Ks({inputs:{x:e},attrs:{perm:l},backend:r}),u=C.getInnerMostAxes(u.length,a),i.push(c)),C.assertAxesAreInnerMostDims(s,u,a);let[p,d]=C.computeOutAndReduceShapes(c.shape,u),h=p;n&&(h=C.expandShapeToKeepDim(p,o));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([c])){let m=r.tensorMap.get(c.dataId).values;switch(s){case"max":let g=Nse(m,w.sizeFromShape(d),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:b,outShape:y,outDtype:v}=Rse(c.shape,c.dtype,m,u);f=r.makeTensorInfo(y,v,b);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=w.sizeFromShape(d),b=w.sizeFromShape(c.shape)/m,y={windowSize:m,inSize:m,batchSize:b,outSize:1},v=s==="mean"?"float32":yp(e.dtype),x=[{type:"int32",data:[m]}],k=new eae(y,s),I=r.runWebGPUProgram(k,[c],v,x);i.push(I),f=Me({inputs:{x:I},attrs:{shape:h},backend:r})}return i.forEach(m=>r.disposeData(m.dataId)),f}function Mv(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;return oc(r,a,i,"sum",n)}var tae={kernelName:ci,backendName:"webgpu",kernelFunc:Mv};function nae(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:i,summedDims:o,idDims:u}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(i.length,u,a);let{path:l,steps:c}=C.getEinsumComputePath(o,u),p=c.length,d=null,h=i.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:b,expandDims:y}=C.getEinsumPermutation(h,u[g]),v;C.isIdentityPermutation(b)?v=a[g]:(v=Ks({inputs:{x:a[g]},backend:n,attrs:{perm:b}}),f.push(v));let x=v.shape.slice();for(let k=0;k<y.length;++k)x.splice(y[k],0,1);w.arraysEqual(v.shape,x)||(v=Me({inputs:{x:v},backend:n,attrs:{shape:x}}),f.push(v)),d===null?d=v:(d=H2({inputs:{a:v,b:d},backend:n}),f.push(d))}m<p-1&&(l[m]>=0&&(d=Mv({inputs:{x:d},backend:n,attrs:{axis:l[m]-(i.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeData(m.dataId);return d}var sae={kernelName:ap,backendName:"webgpu",kernelFunc:nae},rae=jt({opType:4}),aae={kernelName:Pa,backendName:"webgpu",kernelFunc:rae},iae=mn({opSnippet:4,dtype:"bool",cpuKernelImpl:mse}),oae={kernelName:go,backendName:"webgpu",kernelFunc:iae},q2=jt({opType:5,cpuKernelImpl:gse,dtype:"float32"}),uae={kernelName:za,backendName:"webgpu",kernelFunc:q2};function ag(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,i=a.shape.length,o=a.shape.slice(),u=r;return r<0&&(w.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+r+1),o.splice(u,0,1),Me({inputs:{x:a},backend:s,attrs:{shape:o}})}var lae={kernelName:bo,backendName:"webgpu",kernelFunc:ag},cae=jt({opType:6,cpuKernelImpl:bse}),dae={kernelName:yo,backendName:"webgpu",kernelFunc:cae},pae=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
setOutputAtIndex(index, uniforms.value);
|
|
}
|
|
}
|
|
`}};function fu(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||w.inferDtype(r),a==="string"){let i=w.getArrayFromDType(a,w.sizeFromShape(s));return i.fill(r),t.makeTensorInfo(s,a,i)}else{let i=new pae(s),o=[{type:"float32",data:[r]}];return t.runWebGPUProgram(i,[],a,o)}}var hae={kernelName:vl,backendName:"webgpu",kernelFunc:fu},fae=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordX = uniforms.xShape[2] - coords[2] - 1;
|
|
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},mae={kernelName:vo,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new fae(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},gae=jt({opType:7,cpuKernelImpl:yse}),bae={kernelName:Ma,backendName:"webgpu",kernelFunc:gae},yae=mn({opSnippet:12,dtype:"int32"}),vae={kernelName:La,backendName:"webgpu",kernelFunc:yae},xae=class{constructor(e,t=!1){this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.useImport=t,this.shaderKey=`fromPixels_${this.useImport}`}getUserCode(){let e=this.useImport?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
|
|
@binding(1) @group(0) var src: ${this.useImport?"texture_external":"texture_2d<f32>"};
|
|
|
|
${Ue()}
|
|
let flatIndexBase = index * uniforms.numChannels;
|
|
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
|
|
let flatIndex = flatIndexBase + i;
|
|
if (flatIndex < uniforms.size) {
|
|
let coords = getCoordsFromIndex(flatIndexBase);
|
|
let values = ${e};
|
|
result[flatIndex] = i32(floor(255.0 * values[i]));
|
|
}
|
|
}
|
|
}
|
|
`}},wae={kernelName:vd,backendName:"webgpu",kernelFunc:kae},Vi;function kae(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,u=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,l=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[c,p]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[p,c,a];if(K().getBool("WEBGPU_USE_IMPORT")&&i)return Uw({externalImage:r,backend:n,attrs:s,outShape:d,useImport:!0});if((i||o)&&(Vi==null&&(Vi=document.createElement("canvas").getContext("2d")),Vi.canvas.width=c,Vi.canvas.height=p,Vi.drawImage(r,0,0,c,p),r=Vi.canvas),l||u||i||o)return Uw({externalImage:r,backend:n,attrs:s,outShape:d,useImport:!1});let h=r.data,f=h;if(a!=null&&a!==4){f=new Uint8Array(r.width*r.height*a);let b=h.length,y=0;for(let v=0;v<b;v++)v%4<a&&(f[y++]=h[v])}let m=n.makeTensorInfo(d,"int32"),g=n.tensorMap.get(m.dataId);return g.values=new Int32Array(f),n.maybeReleaseBuffer(m.dataId),n.uploadToGPU(m.dataId),m}function Uw(e){let{externalImage:t,backend:n,attrs:s,outShape:r,useImport:a}=e,{numChannels:i}=s,o=w.sizeFromShape(r),u=w.computeStrides(r),l=new xae(r,a),c=[{type:"uint32",data:[o]},{type:"uint32",data:[i]},{type:"uint32",data:[...u]},{type:"uint32",data:[...l.dispatch]}];return n.runFromPixelsProgram(l,r,c,a,t)}var Sae=class{constructor(e,t,n,s,r){this.uniforms="varianceEpsilon : f32,",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n),this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset")),r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=s,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
|
|
${Ue()}
|
|
if (index < uniforms.size)
|
|
{
|
|
let xValue = getXByOutputIndex(index);
|
|
let meanValue = getMeanByOutputIndex(index);
|
|
let varianValue = getVarianceByOutputIndex(index);
|
|
let offsetValue = ${e};
|
|
let scaleValue = ${t};
|
|
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
|
|
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
|
|
}
|
|
}
|
|
`}},Iae={kernelName:Ba,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:i,variance:o}=e,{varianceEpsilon:u}=t,l=n,c=[s,i,o],p=null;a!=null&&(p=a.shape,c.push(a));let d=null;r!=null&&(d=r.shape,c.push(r));let h=new Sae(s.shape,i.shape,o.shape,p,d),f=[{type:"float32",data:[u]}];return l.runWebGPUProgram(h,c,s.dtype,f)}};function Cae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=C.convertConv2DDataFormat(c),g=C.computeConv2DInfo(r.shape,a.shape,u,p,l,d,!1,m);return V2({x:r,filter:a,convInfo:g,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:f,activation:h})}var Nae={kernelName:oa,backendName:"webgpu",kernelFunc:Cae};function Tae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=c;f==null&&(f=[1,1]),w.assert(C.eitherStridesOrDilationsAreOne(u,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${f}'`);let m=C.computeConv2DInfo(r.shape,a.shape,u,f,l,p,!0),g=[r,a],b=i!=null,y=o!=null;b&&g.push(i),y&&g.push(o);let v=[{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]},{type:"int32",data:[m.inHeight,m.inWidth]}],x;return m.batchSize===1&&m.inHeight===m.outHeight&&m.inWidth===m.outWidth&&m.strideHeight===1&&m.strideWidth===1&&m.filterHeight===m.filterWidth&&m.inChannels===m.outChannels&&m.dilationHeight===1&&m.dilationWidth===1&&m.filterHeight===3&&m.inChannels%4===0?x=new U2(m,b,d,y):(x=new G2(m,b,d,y),v.push({type:"int32",data:[m.filterHeight]},{type:"int32",data:[m.filterWidth]},{type:"int32",data:[m.outChannels/m.inChannels]})),d==="leakyrelu"&&(v.push({type:"float32",data:[h]}),x.uniforms+=" alpha : f32,"),n.runWebGPUProgram(x,g,"float32",v)}var $ae={kernelName:ua,backendName:"webgpu",kernelFunc:Tae},_ae=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${Wt(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var flattenIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexTemp = i32(round(getIndices(coords[0], j)));
|
|
let strideNum = ${e};
|
|
flattenIndex = flattenIndex + indexTemp * strideNum;
|
|
}
|
|
|
|
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
|
|
}
|
|
}
|
|
`}};function Aae(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,i=a[a.length-1],o=w.sizeFromShape(s.shape),[u,l,c,p]=C.prepareAndValidate(s,r),d=Me({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),h=Me({inputs:{x:s},backend:n,attrs:{shape:[w.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let y=n.readSync(r.dataId),v=n.bufferSync(s),x=vse(y,v,s.dtype,l,i,c,p,s.shape,o);return n.makeTensorInfo(u,s.dtype,x.values)}let f=new _ae(i,[l,c]),m=[{type:"int32",data:[i]},{type:"int32",data:p}],g=n.runWebGPUProgram(f,[h,d],h.dtype,m),b=Me({inputs:{x:g},backend:n,attrs:{shape:u}});return n.disposeData(d.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),b}var Eae={kernelName:wo,backendName:"webgpu",kernelFunc:Aae},Rae=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=Dae(this.aShape);return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let indexZ = i32(getIndices(resRC.x, resRC.z));
|
|
let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);
|
|
setOutputAtIndex(index, inBounds * getA(${e}));
|
|
}
|
|
}
|
|
`}};function Dae(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let s=0;s<e.length;s++)s===2?n.push("indexZ"):n.push(`${t[s]}`);return n.join()}function j2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:i,batchDims:o}=s,u=w.parseAxisParam(i,r.shape)[0],l=C.segment_util.collectGatherOpShapeInfo(r,a,u,o),c=w.sizeFromShape(a.shape),p=[],d=Me({inputs:{x:r},backend:n,attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]}}),h=Me({inputs:{x:a},backend:n,attrs:{shape:[l.batchSize,c/l.batchSize]}});p.push(d),p.push(h);let f=[l.batchSize,l.outerSize,c/l.batchSize,l.sliceSize];if(n.shouldExecuteOnCPU([r,a])){let v=n.tensorMap.get(h.dataId).values,x=Ae(h.shape,h.dtype,v),I=n.tensorMap.get(d.dataId).values,$=Ae(d.shape,d.dtype,I),R=xse($,x,f);return p.forEach(E=>n.disposeData(E.dataId)),n.makeTensorInfo(l.outputShape,R.dtype,R.values)}let m=new Rae(d.shape,f),g=n.runWebGPUProgram(m,[d,h],d.dtype);p.push(g);let b=Me({inputs:{x:g},backend:n,attrs:{shape:l.outputShape}});return p.forEach(y=>n.disposeData(y.dataId)),b}var Fae={kernelName:xo,backendName:"webgpu",kernelFunc:j2},Oae=mn({opSnippet:5,cpuKernelImpl:kse,dtype:"bool"}),Pae={kernelName:ko,backendName:"webgpu",kernelFunc:Oae},zae=mn({opSnippet:6,dtype:"bool",cpuKernelImpl:wse}),Mae={kernelName:Va,backendName:"webgpu",kernelFunc:zae};function Lae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,i=[{type:"float32",data:[a]}],o=new ac(r.shape,14);return o.uniforms="alpha : f32,",n.runWebGPUProgram(o,[r],"float32",i)}var Bae={kernelName:Ua,backendName:"webgpu",kernelFunc:Lae},Vae=mn({opSnippet:7,dtype:"bool",cpuKernelImpl:Ise}),Wae={kernelName:So,backendName:"webgpu",kernelFunc:Vae},Uae=mn({opSnippet:8,dtype:"bool",cpuKernelImpl:Sse}),Gae={kernelName:Io,backendName:"webgpu",kernelFunc:Uae},Hae=jt({opType:9,cpuKernelImpl:Cse}),qae={kernelName:Ga,backendName:"webgpu",kernelFunc:Hae},jae=mn({opSnippet:9,dtype:"bool"}),Kae={kernelName:Co,backendName:"webgpu",kernelFunc:jae},Xae=jt({opType:10}),Yae={kernelName:Il,backendName:"webgpu",kernelFunc:Xae};function K2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:i}=s;return oc(r,a,i,"max",n)}var Qae={kernelName:Ha,backendName:"webgpu",kernelFunc:K2},Zae=mn({opSnippet:15,cpuKernelImpl:Tse}),Jae={kernelName:qa,backendName:"webgpu",kernelFunc:Zae};function eie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:i,pad:o,dimRoundingMode:u}=s,l=1,c=C.computePool2DInfo(r.shape,a,i,l,o,u),p,d=[];if(c.filterHeight===1&&c.filterWidth===1){if(w.arraysEqual(c.inShape,c.outShape))return Wn({inputs:{x:r},backend:n});p=new M2(c),d.push({type:"int32",data:[c.strideHeight,c.strideWidth]})}else p=new z2(c,"max"),d.push({type:"int32",data:[c.strideHeight,c.strideWidth]},{type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]});return n.runWebGPUProgram(p,[r],r.dtype,d)}var tie={kernelName:ja,backendName:"webgpu",kernelFunc:eie};function nie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:i}=s;return oc(r,i,a,"mean",n)}var sie={kernelName:Ka,backendName:"webgpu",kernelFunc:nie};function rie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;return oc(r,a,i,"min",n)}var aie={kernelName:Xa,backendName:"webgpu",kernelFunc:rie},iie=mn({opSnippet:16,cpuKernelImpl:$se}),oie={kernelName:Ya,backendName:"webgpu",kernelFunc:iie},uie=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2<i32>,`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((u,l)=>`uniforms.pad${l}[0]`).join(","),n=this.xShape.map((u,l)=>`uniforms.pad${l}[0] + uniforms.xShape${e>1?`[${l}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",i=Wt(e),o=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let start = ${i}(${t});
|
|
let end = ${i}(${n});
|
|
var outC = getCoordsFromIndex(index);
|
|
for (var i = 0; i < ${e}; i = i + 1) {
|
|
if (${a} < ${s}) {
|
|
${a} = ${s} * 2 - ${a} - ${this.offset};
|
|
} else if(${a} >= ${r}) {
|
|
${a} = (${r} - 1) * 2 - ${a} + ${this.offset};
|
|
}
|
|
}
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${o}));
|
|
}
|
|
}
|
|
`}},lie={kernelName:Qa,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,i=n,o=r.map(c=>({type:"int32",data:[c[0],c[1]]})),u=new uie(s.shape,r,a);return i.runWebGPUProgram(u,[s],s.dtype,o)}};function cie(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[i,o]=Ase(a.values,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,i)}let r=new ac(s.shape,11);return n.runWebGPUProgram(r,[s],s.dtype)}var die={kernelName:No,backendName:"webgpu",kernelFunc:cie};function pie(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u}=s,l=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=ws.nonMaxSuppressionV3Impl(l,c,i,o,u);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var hie={kernelName:$o,backendName:"webgpu",kernelFunc:pie};function fie(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,softNmsSigma:l}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=i,h=o,f=u,m=l,{selectedIndices:g,selectedScores:b}=ws.nonMaxSuppressionV5Impl(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([b.length],"float32",new Float32Array(b))]}var mie={kernelName:_o,backendName:"webgpu",kernelFunc:fie};function jd(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=ic({inputs:{input:s},backend:n}),a=jd({inputs:{x:r},backend:n}),i=oh({inputs:{input:s},backend:n}),o=jd({inputs:{x:i},backend:n}),u=pu({inputs:{real:a,imag:o},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(i.dataId),n.disposeData(o.dataId),u}else return fu({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var gie={kernelName:jo,backendName:"webgpu",kernelFunc:jd};function X2(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=ic({inputs:{input:s},backend:n}),a=X2({inputs:{x:r},backend:n}),i=oh({inputs:{input:s},backend:n}),o=jd({inputs:{x:i},backend:n}),u=pu({inputs:{real:a,imag:o},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(i.dataId),n.disposeData(o.dataId),u}else return fu({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var bie={kernelName:Ao,backendName:"webgpu",kernelFunc:X2};function yie(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return ag({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,i=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],u=t.map(c=>{let p=ag({inputs:{input:c},backend:n,attrs:{dim:r}});return o.push(p),p}),l=B2({inputs:u,backend:n,attrs:{axis:r}});return o.forEach(c=>n.disposeData(c.dataId)),l}var vie={kernelName:Ro,backendName:"webgpu",kernelFunc:yie},xie=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2<i32>,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=Wt(e),n=this.xShape.map((c,p)=>`uniforms.pad${p}[0]`).join(","),s=this.xShape.map((c,p)=>`uniforms.pad${p}[0] + uniforms.xShape${e>1?`[${p}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,i=e>1?"any(outC < start)":"outC < start",o=e>1?"any(outC >= end)":"outC >= end",u=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let start = ${r};
|
|
let end = ${a};
|
|
let outC = getCoordsFromIndex(index);
|
|
|
|
if (${i} || ${o}) {
|
|
setOutputAtIndex(index, uniforms.constantValue);
|
|
} else {
|
|
let coords = outC - start;
|
|
setOutputAtIndex(index, getX(${u}));
|
|
}
|
|
}
|
|
}
|
|
`}},Y2=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:i}=s;if(a.every(l=>w.arraysEqual(l,[0,0])))return Wn({inputs:{x:r},backend:n});if(w.sizeFromShape(r.shape)===0){let l=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return fu({backend:n,attrs:{shape:l,value:i,dtype:r.dtype}})}let o=[{type:"float32",data:[i]}];a.map(l=>o.push({type:"int32",data:[l[0],l[1]]}));let u=new xie(r.shape,a);return n.runWebGPUProgram(u,[r],r.dtype,o)},wie={kernelName:Ja,backendName:"webgpu",kernelFunc:Y2},kie=mn({opSnippet:13}),Sie={kernelName:ei,backendName:"webgpu",kernelFunc:kie};function Iie(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new O2(14,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var Cie={kernelName:ti,backendName:"webgpu",kernelFunc:Iie};function Nie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:i}=s;return oc(r,a,i,"prod",n)}var Tie={kernelName:ni,backendName:"webgpu",kernelFunc:Nie},$ie=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:i}=n,o=Dse(s,r,a,i);return t.makeTensorInfo([o.length],i,o)},_ie={kernelName:Tl,backendName:"webgpu",kernelFunc:$ie},Q2=mn({opSnippet:3}),Aie={kernelName:Oa,backendName:"webgpu",kernelFunc:Q2},Eie=jt({opType:12}),Rie={kernelName:si,backendName:"webgpu",kernelFunc:Eie},Die=jt({opType:13}),Fie={kernelName:ai,backendName:"webgpu",kernelFunc:Die},Oie=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, halfPixelCenters : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC =
|
|
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
|
|
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
|
|
|
|
// Compute the four integer indices.
|
|
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
|
|
let sourceCeilRC = vec2<i32>(
|
|
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
|
|
|
|
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
|
|
|
|
let top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
let newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function Pie(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:i,halfPixelCenters:o}=s,[u,l]=i,c=a&&u>1?1:0,p=a&&l>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[o?.5:0]}],f=new Oie(r.shape,u,l);return n.runWebGPUProgram(f,[r],"float32",h)}var zie={kernelName:ri,backendName:"webgpu",kernelFunc:Pie},Mie=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, roundBase : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=s,this.shaderKey=`resizeNearest_${s}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let b = coords[0];
|
|
let d = coords[3];
|
|
let rc = coords.yz;
|
|
|
|
let effectiveInSize = vec2<f32>(
|
|
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveOutSize = vec2<f32>(
|
|
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
|
|
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
|
|
|
|
let effectiveInputOverOutputRatioRC =
|
|
effectiveInSize / effectiveOutSize;
|
|
|
|
// Fractional source index
|
|
let sourceFracIndexRC = ${e};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
|
|
let sourceNearestRC = vec2<i32>(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
|
|
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutputAtIndex(index, newValue);
|
|
}
|
|
}
|
|
`}};function Lie(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:i,size:o}=s,[u,l]=o,c=a&&u>1?1:0,p=a&&l>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[a?.5:0]}],f=new Mie(r.shape,u,l,i);return n.runWebGPUProgram(f,[r],r.dtype,h)}var Bie={kernelName:_l,backendName:"webgpu",kernelFunc:Lie},Vie=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32,
|
|
cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
|
|
${Ue()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.sinRadians;
|
|
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
|
|
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
|
|
uniforms.cosRadians;
|
|
let coordX = i32(round(coordXFloat + uniforms.centerX));
|
|
let coordY = i32(round(coordYFloat + uniforms.centerY));
|
|
${this.fillSnippet}
|
|
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
|
|
coordY < uniforms.xShape[1]) {
|
|
outputValue = getX(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}},Wie={kernelName:Ko,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:i}=t,o=n,u=new Vie(s.shape,a),[l,c]=C.getImageCenter(i,s.shape[1],s.shape[2]),p=[{type:"float32",data:[l]},{type:"float32",data:[c]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?p.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):p.push({type:"float32",data:a}),o.runWebGPUProgram(u,[s],s.dtype,p)}},Uie=jt({opType:15,cpuKernelImpl:Fse}),Gie={kernelName:ii,backendName:"webgpu",kernelFunc:Uie},Hie=class{constructor(e,t,n,s,r,a,i){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=i,this.dispatchLayout=Ve(e),this.dispatch=_e(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${s}_${this.sliceDimGreaterThanOne}_${i}`;let o=Wt(r.length);this.uniforms=`sliceDim : i32, strides: ${o}, size: i32,`,this.updatesRank=s,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",s="",r="",a="";this.updatesRank===1?(s="coords[0]",r="flattenedIndex",a=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
|
|
return index;
|
|
}
|
|
`):this.updatesRank===2&&(s="coords[0], coords[1]",r="vec2<i32>(flattenedIndex, coords[1])",a=`
|
|
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
|
|
let d0 = index / uniforms.updatesShape[1];
|
|
let d1 = index - d0 * uniforms.updatesShape[1];
|
|
return vec2<i32>(d0, d1);
|
|
}
|
|
`);let i=`getUpdates(${s})`,o=this.type==="int32"?"atomicAdd(&(result[flatIndex]), i32(updateValue));":`
|
|
var assumed = atomicLoad(&(result[flatIndex]));
|
|
var success = 0;
|
|
for (; success == 0;) {
|
|
let new = bitcast<f32>(assumed) + updateValue;
|
|
let newI32 = bitcast<i32>(new);
|
|
let resValue = atomicCompareExchangeWeak(&(result[flatIndex]), assumed, newI32);
|
|
assumed = resValue[0];
|
|
success = resValue[1];
|
|
}
|
|
`;return`
|
|
${a}
|
|
|
|
${Ue()}
|
|
|
|
if (index < uniforms.size) {
|
|
let coords = getUpdatesCoordsFromFlatIndex(index);
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${t}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${n};
|
|
}
|
|
let updateValue = ${i};
|
|
let flatIndex = getOutputIndexFromCoords(${r});
|
|
|
|
${o}
|
|
}
|
|
}`}};function qie(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:i}=s,{sliceRank:o,numUpdates:u,sliceSize:l,strides:c,outputSize:p}=C.calculateShapes(a,r,i),d=[p/l,l];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=Me({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),f=Me({inputs:{x:a},backend:n,attrs:{shape:[u,l]}}),m=f.dtype,g=fu({backend:n,attrs:{shape:d,value:0,dtype:m}}),b=w.sizeFromShape(f.shape),y=[{type:"int32",data:[o]},{type:"int32",data:c},{type:"int32",data:[b]}],v=new Hie(f.shape,o,h.shape.length,f.shape.length,c,d,m),x=n.runWebGPUProgram(v,[f,h],m,y,g),k=Me({inputs:{x},backend:n,attrs:{shape:i}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(x.dataId),k}var jie={kernelName:Po,backendName:"webgpu",kernelFunc:qie},Kie=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let i=0;i<this.outputShape.length;i++)a.push(`${s[i]}`),i<this.cRank&&r.push(`${s[i]}`);e=r.join(),t=a.join()}return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
let cVal = getC(${e});
|
|
if (cVal >= 1.0) {
|
|
setOutputAtIndex(index, getA(${t}));
|
|
} else {
|
|
setOutputAtIndex(index, getB(${t}));
|
|
}
|
|
}
|
|
}
|
|
`}};function Xie(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,i=new Kie(s.shape.length,r.shape,r.shape.length);return n.runWebGPUProgram(i,[s,r,a],ln(r.dtype,a.dtype))}var Yie={kernelName:zo,backendName:"webgpu",kernelFunc:Xie},Qie=jt({opType:18}),Zie={kernelName:ui,backendName:"webgpu",kernelFunc:Qie},Jie=jt({opType:16}),eoe={kernelName:oi,backendName:"webgpu",kernelFunc:Jie},toe=jt({opType:17}),noe={kernelName:Lo,backendName:"webgpu",kernelFunc:toe},Z2=mn({opSnippet:2,cpuKernelImpl:Bse,supportsComplex:!0}),soe={kernelName:hi,backendName:"webgpu",kernelFunc:Z2};function roe(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,i=w.parseAxisParam([a],r.shape),o=K2({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),u=C.expandShapeToKeepDim(o.shape,i),l=Me({inputs:{x:o},backend:n,attrs:{shape:u}}),c=Z2({inputs:{a:r,b:l},backend:n}),p=q2({inputs:{x:c},backend:n}),d=Mv({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=Me({inputs:{x:d},backend:n,attrs:{shape:u}}),f=Q2({inputs:{a:p,b:h},backend:n});return n.disposeData(o.dataId),n.disposeData(l.dataId),n.disposeData(c.dataId),n.disposeData(p.dataId),n.disposeData(d.dataId),n.disposeData(h.dataId),f}var aoe={kernelName:di,backendName:"webgpu",kernelFunc:roe},ioe=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:i}=s;w.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let o=a.reduce((b,y)=>b*y),u=[[0,0]];u.push(...i);for(let b=1+a.length;b<r.shape.length;++b)u.push([0,0]);let l=[],c=Y2({inputs:{x:r},backend:n,attrs:{paddings:u,constantValue:0}}),p=C.getReshaped(c.shape,a,o,!1),d=C.getPermuted(p.length,a.length,!1),h=C.getReshapedPermuted(c.shape,a,o,!1),f=Me({inputs:{x:c},backend:n,attrs:{shape:p}}),m=Ks({inputs:{x:f},backend:n,attrs:{perm:d}}),g=Me({inputs:{x:m},backend:n,attrs:{shape:h}});return l.push(c),l.push(f),l.push(m),l.forEach(b=>n.disposeData(b.dataId)),g},ooe={kernelName:Bo,backendName:"webgpu",kernelFunc:ioe},uoe=class{constructor(e,t,n,s,r,a,i=!0){this.variableNames=["updates","indices","defaultValue"],this.workGroupSize=[64,1,1],this.workPerThread=4,this.size=!0,this.outputShape=a,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let o=t>1;this.shaderKey=`scatter_${n}_${s}_${o}`;let u=Wt(r.length);this.uniforms=`updateSize : i32, sliceDim : i32, strides: ${u},`;let l="";n===1?l="i":n===2&&(l="i, j"),this.indicesSnippet=`getIndices(${l})`;let c="";s===1?c="i":s===2&&(c="i, coords[1]"),this.updatesSnippet=`getUpdates(${c})`,this.strideString=o?"uniforms.strides[j]":"uniforms.strides"}getUserCode(){return`
|
|
${Ue()}
|
|
|
|
let globalIndex = index * ${this.workPerThread};
|
|
if (globalIndex < uniforms.size) {
|
|
var sum = vec4<f32>(0.0);
|
|
var found = vec4<bool>(false);
|
|
for (var i = 0; i < uniforms.updateSize; i = i + 1) {
|
|
var flattenedIndex = 0;
|
|
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
|
|
let indexInside = i32(round(${this.indicesSnippet}));
|
|
flattenedIndex = flattenedIndex + indexInside * ${this.strideString};
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
let coords = getCoordsFromIndex(curIndex);
|
|
if (flattenedIndex == coords[0]) {
|
|
sum[innerIndex] = sum[innerIndex] + ${this.updatesSnippet};
|
|
found[innerIndex] = true;
|
|
}
|
|
}
|
|
}
|
|
for (var innerIndex = 0; innerIndex < ${this.workPerThread}; innerIndex = innerIndex + 1) {
|
|
let curIndex = globalIndex + innerIndex;
|
|
if (curIndex < uniforms.size)
|
|
{
|
|
setOutputAtIndex(curIndex, mix(getDefaultValue(), sum[innerIndex], f32(found[innerIndex])));
|
|
}
|
|
}
|
|
}
|
|
}`}};function loe(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:i}=t,{outputShape:o}=s,{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:d}=C.calculateShapes(a,r,o),h=!1;if(a.dtype==="string"){let y=n.bufferSync(r),v=n.bufferSync(a),x=w.decodeString(n.readSync(i.dataId)[0]),k=Ose(y,v,o,d,c,l,u,p,x,h);return n.makeTensorInfo(o,k.dtype,k.values)}let f=[{type:"int32",data:[l]},{type:"int32",data:[u]},{type:"int32",data:p}],m=new uoe(l,u,r.shape.length,a.shape.length,p,[d,1],h),g=n.runWebGPUProgram(m,[a,r,i],a.dtype,f),b=Me({inputs:{x:g},backend:n,attrs:{shape:o}});return n.disposeData(g.dataId),b}var coe={kernelName:fp,backendName:"webgpu",kernelFunc:loe};function doe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:i}=s,o=w.parseAxisParam(i,r.shape)[0],u=C.prepareSplitSize(r,a,o),l=r.shape.length,c=new Array(l).fill(0),p=r.shape.slice();return u.map(d=>{let h=[...p];h[o]=d;let f=hu({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[o]+=d,f})}var poe={kernelName:Vo,backendName:"webgpu",kernelFunc:doe},hoe=jt({opType:19}),foe={kernelName:li,backendName:"webgpu",kernelFunc:hoe},moe={kernelName:Fl,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new ac(n.shape,20);return s.runWebGPUProgram(r,[n],n.dtype)}},goe=mn({opSnippet:11}),boe={kernelName:pi,backendName:"webgpu",kernelFunc:goe},yoe=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=Wt(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getX(${t}));
|
|
}
|
|
}
|
|
`}};function voe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:i,strides:o,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=kt.sliceInfo(r.shape,a,i,o,u,l,c,p,d),k;if(m)k=Me({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||b){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let I=kt.computeOutShape(y,v,x),$=hu({inputs:{x:r},backend:n,attrs:{begin:y,size:I}});k=Me({inputs:{x:$},backend:n,attrs:{shape:f}}),n.disposeData($.dataId)}else if(n.shouldExecuteOnCPU([r])){let $=n.readSync(r.dataId),R=Ae(r.shape,r.dtype,$),E=Mse(h,R,x,y);k=n.makeTensorInfo(f,r.dtype,E.values)}else{let $=new yoe(h),R=[{type:"int32",data:y},{type:"int32",data:x}],E=n.runWebGPUProgram($,[r],r.dtype,R);k=Me({inputs:{x:E},backend:n,attrs:{shape:f}}),n.disposeData(E.dataId)}return k}var xoe={kernelName:Wo,backendName:"webgpu",kernelFunc:voe};function woe(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:i,rightPad:o,padWidth:u,preserveShortSequences:l}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=Lse(d,h,r,a,i,o,u,l);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var koe={kernelName:mp,backendName:"webgpu",kernelFunc:woe},Soe=jt({opType:21}),Ioe={kernelName:fi,backendName:"webgpu",kernelFunc:Soe},Coe=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=Noe(this.rank,"uniforms.");return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let resRC = getCoordsFromIndex(index);
|
|
setOutputAtIndex(index, getA(${e}));
|
|
}
|
|
}
|
|
`}};function Noe(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e;r++)s.push(`(${n[r]} % ${t}aShape[${r}])`);return s.join()}function Toe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(n.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let u=n.readSync(r.dataId),l=r.dtype==="string"?u.map(d=>w.decodeString(d)):u,c=Ae(r.shape,r.dtype,l),p=Vse(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let i=new Coe(r.shape,a);return n.runWebGPUProgram(i,[r],r.dtype)}var $oe={kernelName:Nr,backendName:"webgpu",kernelFunc:Toe},_oe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32,
|
|
dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// We compare elements pair-wise within a group of size 2 * inc.
|
|
// The comparing rule for each group alternates between ascending
|
|
// and descending. Within each group, we compare each pair at
|
|
// positions i and i+inc. To decide whether an element at position i
|
|
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
|
|
// inc, it is in the first half of the group, we denote it as x0,
|
|
// otherwise we denote it as x1.
|
|
// For example, as shown in the Bitonic top K paper referenced
|
|
// above, Figure5(a) shows that element[1] is in the second half of
|
|
// the group when group size is 2, but it is in the first half of
|
|
// the group when group size is 4.
|
|
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
|
|
var i = 0;
|
|
if (isFirstInPair) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx - uniforms.inc;
|
|
}
|
|
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.inc;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.inc));
|
|
}
|
|
|
|
var x0 = f32(0.0);
|
|
var x1 = f32(0.0);
|
|
if (i0 < uniforms.inputSize) {
|
|
x0 = getX(batch, i0);
|
|
} else {
|
|
x0 = uniforms.negativeInf;
|
|
}
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = uniforms.negativeInf;
|
|
}
|
|
|
|
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
|
|
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
|
|
if (reverse == isGreater) {
|
|
// Elements in opposite order of direction
|
|
let iTemp = i0;
|
|
i0 = i1;
|
|
i1 = iTemp;
|
|
}
|
|
if (isFirstInPair) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}},Aoe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return`
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let outC = getCoordsFromIndex(index);
|
|
let batch = outC[0];
|
|
let elemIdx = outC[1];
|
|
// The output size is half of the previous size.
|
|
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
|
|
// (k=4), we only need to output the indices at positions |, the
|
|
// indices at positions _ can be thrown away, see Figure5(b) After
|
|
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
|
|
// above.
|
|
// For example, the paper shows we only need to output the orange
|
|
// bars. The output sequence should look like this | | | | | | | |.
|
|
// Because the sequence is halved, to map the output index back to
|
|
// the previous sequence to find the corresponding value, we need
|
|
// to double the index. When we double the index, we basically
|
|
// interpolate a position, so 2i looks like
|
|
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
|
|
// position of each 2k positions by - elemIdx % k. E.g. for output
|
|
// at index 4,5,6,7, we want to get the corresponding element at
|
|
// original index 8,9,10,11, for output at index 8,9,10,11,
|
|
// we want to get the corresponding element at original index
|
|
// 16,17,18,19, so on and so forth.
|
|
|
|
var i = 0;
|
|
if (elemIdx < uniforms.k) {
|
|
i = elemIdx;
|
|
} else {
|
|
i = elemIdx * 2 - elemIdx % uniforms.k;
|
|
}
|
|
var i0 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i0 = i;
|
|
} else {
|
|
i0 = i32(getIndices(batch, i));
|
|
}
|
|
var i1 = 0;
|
|
if (uniforms.firstPass == 1) {
|
|
i1 = i + uniforms.k;
|
|
} else {
|
|
i1 = i32(getIndices(batch, i + uniforms.k));
|
|
}
|
|
|
|
let x0 = getX(batch, i0);
|
|
var x1 = f32(0.0);
|
|
if (i1 < uniforms.inputSize) {
|
|
x1 = getX(batch, i1);
|
|
} else {
|
|
x1 = x0;
|
|
}
|
|
|
|
if (x0 >= x1) {
|
|
setOutputAtIndex(index, f32(i0));
|
|
} else {
|
|
setOutputAtIndex(index, f32(i1));
|
|
}
|
|
}
|
|
}
|
|
`}};function Wi(e,t){t!==null&&e.disposeData(t.dataId)}function Gw(e){let t=1;for(;t<e;)t*=2;return t}function Eoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:i}=s,o=r.shape,u=o[o.length-1];if(n.shouldExecuteOnCPU([r])){let k=n.readSync(r.dataId),[I,$]=Wse(k,o,r.dtype,a,i);return[n.makeTensorInfo(I.shape,I.dtype,I.values),n.makeTensorInfo($.shape,$.dtype,$.values)]}if(a===0)return o[o.length-1]=0,[n.makeTensorInfo(o,r.dtype,[]),n.makeTensorInfo(o,"int32",[])];if(u===1)return[r,fu({attrs:{shape:o,dtype:"int32",value:0},backend:n})];let c=w.sizeFromShape(o)/u,p=Me({inputs:{x:r},attrs:{shape:[c,u]},backend:n}),d=Gw(a),h=Gw(u),f=null,m=()=>f===null?[p,p]:[p,f],g=(k,I,$)=>{let R=m(),E=new _oe($),A=[{type:"int32",data:[u]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[k]},{type:"int32",data:[I]}],O=f;f=n.runWebGPUProgram(E,R,"int32",A),Wi(n,O)};for(let k=1;k<d;k*=2){let I=k*2;for(let $=k;$>=1;$/=2)g(I,$,[c,h])}for(let k=h;k>d;k/=2){let I=m(),$=new Aoe([c,k/2]),E=[{type:"int32",data:[u]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[d]}],P=f;f=n.runWebGPUProgram($,I,"int32",E),Wi(n,P);let A=d/2,O=A*2;for(let T=A;T>=1;T/=2)g(O,T,f.shape)}let b=f;f=hu({inputs:{x:f},backend:n,attrs:{begin:0,size:[c,a]}}),Wi(n,b);let y=j2({inputs:{x:p,indices:f},backend:n,attrs:{axis:1,batchDims:1}});Wi(n,p);let v=o.slice(0,-1);v.push(a),b=f,f=Me({inputs:{x:f},attrs:{shape:v},backend:n}),Wi(n,b);let x=y;return y=Me({inputs:{x:y},attrs:{shape:v},backend:n}),Wi(n,x),[y,f]}var Roe={kernelName:Go,backendName:"webgpu",kernelFunc:Eoe},Doe=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=Ve(this.outputShape),this.dispatch=_e(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
|
|
fn mapCoord(outCoord : f32, len : f32) -> f32{
|
|
var inCoord = outCoord;
|
|
if(uniforms.fillModeId == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
if (inCoord < -len) {
|
|
inCoord = inCoord + sz2;
|
|
} else {
|
|
inCoord = -inCoord - 1.0;
|
|
}
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz2 = 2.0 * len;
|
|
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
let sz = len - 1.0;
|
|
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (uniforms.fillModeId == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
}
|
|
return outCoord;
|
|
}
|
|
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
|
|
channel : i32) -> f32 {
|
|
var outputValue : f32;
|
|
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = uniforms.fillValue;
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
${Ue()}
|
|
if (index < uniforms.size) {
|
|
let coords = getCoordsFromIndex(index);
|
|
var outputValue : f32;
|
|
let batch = coords[0];
|
|
let x = coords[2];
|
|
let y = coords[1];
|
|
let channel = coords[3];
|
|
let xf = f32(x);
|
|
let yf = f32(y);
|
|
let a1 = getTransforms(batch, 0);
|
|
let a2 = getTransforms(batch, 1);
|
|
let a3 = getTransforms(batch, 2);
|
|
let b1 = getTransforms(batch, 3);
|
|
let b2 = getTransforms(batch, 4);
|
|
let b3 = getTransforms(batch, 5);
|
|
let c1 = getTransforms(batch, 6);
|
|
let c2 = getTransforms(batch, 7);
|
|
let projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = uniforms.fillValue;
|
|
} else {
|
|
let inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
let inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
|
|
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
|
|
|
|
if (uniforms.interpolationModeId == 1) {
|
|
let coordY = i32(round(mapY));
|
|
let coordX = i32(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
let yFloor = floor(mapY);
|
|
let xFloor = floor(mapX);
|
|
let yCeil = yFloor + 1.0;
|
|
let xCeil = xFloor + 1.0;
|
|
let valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
|
|
let valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutputAtIndex(index, outputValue);
|
|
}
|
|
}
|
|
`}};function Foe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:i,fillMode:o,fillValue:u,outputShape:l}=s,[c,p,d,h]=r.shape,[f,m]=l!=null?l:[p,d],g=[c,f,m,h],b=new Doe(g),y=i==="nearest"?1:2,v;switch(o){case"constant":v=1;break;case"reflect":v=2;break;case"wrap":v=3;break;case"nearest":v=4;break;default:v=1;break}let x=[{type:"int32",data:[y]},{type:"int32",data:[v]},{type:"float32",data:[u]}];return n.runWebGPUProgram(b,[r,a],"float32",x)}var Ooe={kernelName:Ho,backendName:"webgpu",kernelFunc:Foe};function Poe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let i=r,o=i.shape.length,u=r.shape[a],l=new Array(o-1),c=0;for(let m=0;m<o;m++)m!==a&&(l[c++]=i.shape[m]);let p=[],d=new Array(o).fill(0),h=i.shape.slice();h[a]=1;let f=new Array(u);for(let m=0;m<f.length;m++){d[a]=m;let g=hu({inputs:{x:i},backend:n,attrs:{begin:d,size:h}}),b=Me({inputs:{x:g},backend:n,attrs:{shape:l}});f[m]=b,p.push(g)}return p.forEach(m=>n.disposeData(m.dataId)),f}var zoe={kernelName:qo,backendName:"webgpu",kernelFunc:Poe},Moe=[ose,Hse,jse,Yse,nre,rre,ire,ure,hre,bre,vre,Sre,dse,Tre,Rre,Pre,Mre,Bre,Ure,Hre,jre,Yre,Zre,sae,aae,oae,uae,lae,dae,hae,mae,wae,bae,vae,Iae,Nae,$ae,Eae,Fae,Pae,Mae,cse,Cre,Bae,Wae,Gae,qae,Kae,Yae,Qae,Jae,tie,sie,aie,oie,lie,Jre,die,hie,mie,fre,bie,vie,wie,Sie,Cie,Tie,_ie,mre,Aie,Rie,Fie,ase,zie,Bie,Wie,Gie,jie,Yie,Zie,eoe,noe,dre,xoe,koe,aoe,ooe,coe,poe,foe,moe,boe,soe,tae,Ioe,$oe,Roe,Ooe,ere,zoe,gie];for(let e of Moe)Ol(e);var Loe=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,n=!1){let s=Hw(e,t);if(this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.usedBuffers.has(s)||this.usedBuffers.set(s,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(s).length>0){this.numFreeBuffers--;let a=this.freeBuffers.get(s).shift();return this.usedBuffers.get(s).push(a),a}this.numBytesAllocated+=e;let r=this.device.createBuffer({mappedAtCreation:n,size:e,usage:t});return this.usedBuffers.get(s).push(r),r}releaseBuffer(e,t,n){if(this.freeBuffers.size===0)return;let s=Hw(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,n){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,n)},s=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function Hw(e,t){return`${e}_${t}`}var Boe=class{constructor(e){this.device=e,this.numUsedTextures=0,this.numFreeTextures=0,this.freeTextures=new Map,this.usedTextures=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireTexture(e,t,n,s){let r=jw(n),a=e*t*r,i=qw(e,t,n,s);if(this.freeTextures.has(i)||this.freeTextures.set(i,[]),this.usedTextures.has(i)||this.usedTextures.set(i,[]),this.numBytesUsed+=a,this.numUsedTextures++,this.freeTextures.get(i).length>0){this.numFreeTextures--;let u=this.freeTextures.get(i).shift();return this.usedTextures.get(i).push(u),u}this.numBytesAllocated+=a;let o=this.device.createTexture({size:[e,t],format:n,usage:s});return this.usedTextures.get(i).push(o),o}releaseTexture(e,t,n,s,r){if(this.freeTextures.size===0)return;let a=qw(t,n,s,r);this.freeTextures.has(a)||this.freeTextures.set(a,[]),this.freeTextures.get(a).push(e),this.numFreeTextures++,this.numUsedTextures--;let i=this.usedTextures.get(a),o=i.indexOf(e);if(o<0)throw new Error("Cannot release a texture that was never provided by this texture manager");i.splice(o,1);let u=jw(s),l=t*n*u;this.numBytesUsed-=l}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){this.freeTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeTextures=new Map,this.usedTextures=new Map,this.numUsedTextures=0,this.numFreeTextures=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function qw(e,t,n,s){return`${e}_${t}_${n}_${s}`}function jw(e){if(e==="rgba8unorm")return 16;throw new Error(`${e} is not supported!`)}var Voe=(e,t,n,s,r)=>{let a=[s,...n];return r&&a.push(r),e.createBindGroup({layout:t,entries:a.map((i,o)=>({binding:o,resource:i}))})},Kw=(e,t,n,s,r,a=!1)=>{let i={dtype:r.dtype,shape:r.shape},o=Wne(s,i,t,a),u=e.createShaderModule({code:o,label:t.constructor.name});return e.createComputePipeline({layout:n,compute:{module:u,entryPoint:"main"},label:t.constructor.name})};function Xw(e,t,n=[],s="",r=""){let a=e.dispatch[1]===1&&e.dispatch[2]===1?"flatDispatch":"";return e.shaderKey+"_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(o=>o.length).join(",")+n.join(",")+e.variableNames.join(",")+s+r+a}var Woe=K().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),Yw=(e,t)=>{let n=e.limits.maxComputeWorkgroupsPerDimension,s=t.dispatchLayout,r=t.dispatch;if(r.every(i=>i<=n))return r;w.assert(r[0]>n&&s.y===void 0&&s.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let a=Math.ceil(Math.sqrt(r[0]));return a>n?(a=Math.ceil(Math.cbrt(r[0])),w.assert(a<=n,()=>"Total dispatch size exceeds WebGPU maximum."),[a,a,a]):[a,a,1]},J2=class extends ol{constructor(e,t=!1){if(super(),this.commandQueueOwnedIds=new WeakSet,this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[],this.textureDisposalQueue=[],this.disposed=!1,this.uploadWaitMs=0,this.downloadWaitMs=0,this.dispatchNumberInEncoder=0,this.fromPixelTextureLayout=null,this.fromPixelImportTextureLayout=null,!Ov())throw new Error("WebGPU is not supported on this device");this.layoutCache={},this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new Loe(this.device),this.textureManager=new Boe(this.device),this.tensorMap=new Qd(this,ds()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),K().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return J2.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}flushDisposalQueue(){this.tensorDisposalQueue.forEach(e=>{this.maybeReleaseBuffer(e),this.tensorMap.delete(e)}),this.uniformDisposalQueue.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.byteSize,e.usage)),this.stagingDisposalQueue.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.byteSize,e.usage)),this.textureDisposalQueue.forEach(e=>this.textureManager.releaseTexture(e.texture,e.width,e.height,e.format,e.usage)),this.tensorDisposalQueue=[],this.uniformDisposalQueue=[],this.stagingDisposalQueue=[],this.textureDisposalQueue=[]}disposeData(e,t=!1){if(this.tensorMap.has(e)){let n=this.tensorMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDisposalQueue.push(e),!1;this.maybeReleaseBuffer(e);let{complexTensorInfos:s}=this.tensorMap.get(e);s!=null&&(this.disposeData(s.real.dataId,!0),this.disposeData(s.imag.dataId,!0)),this.tensorMap.delete(e)}return!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}getBufferManager(){return this.bufferManager}getTextureManager(){return this.textureManager}acquireBuffer(e,t=this.defaultGpuBufferUsage()){return this.bufferManager.acquireBuffer(e,t)}maybeReleaseBuffer(e){let t=this.tensorMap.get(e);t!=null&&t.bufferInfo.buffer!=null&&(this.bufferManager.releaseBuffer(t.bufferInfo.buffer,t.bufferInfo.byteSize,t.bufferInfo.usage),t.bufferInfo.buffer=null)}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()},r=w.sizeFromShape(t)*md(n);return this.tensorMap.set(s,{dtype:n,shape:t,values:e,bufferInfo:{byteSize:r,usage:this.defaultGpuBufferUsage()},refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a=w.sizeFromShape(n)*md(s);this.tensorMap.set(e,{dtype:s,shape:n,values:t,bufferInfo:{byteSize:a,usage:this.defaultGpuBufferUsage()},refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.flushDisposalQueue()}getBuffer(e){return this.uploadToGPU(e),this.tensorMap.get(e).bufferInfo.buffer}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.end(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e,t){let n=this.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e,0,n,0,t),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=n.getMappedRange().slice(0);return n.unmap(),n!=null&&this.bufferManager.releaseBuffer(n,t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),K().getBool("WEBGPU_USE_PROFILE_TOOL")&&(w.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),s}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.maybeReleaseBuffer(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],i=r[1];s=C.mergeRealAndImagArrays(a,i)}else{let r=t.values!=null?t.values:await this.getBufferData(t.bufferInfo.buffer,t.bufferInfo.byteSize);s=D2(r,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}readToGPU(e){let t=this.tensorMap.get(e),{values:n,dtype:s,shape:r,bufferInfo:a}=t;if(s==="complex64")throw new Error("Does not support reading buffer for complex64 dtype.");if(a.buffer==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let i=w.sizeFromShape(r)*md(s),o=this.acquireBuffer(i);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(a.buffer,0,o,0,i),this.submitQueue();let u=this.makeTensorInfo(r,s),l=ds().makeTensorFromTensorInfo(u),c=this.tensorMap.get(u.dataId);return c.bufferInfo.buffer=o,{tensorRef:l,buffer:o,bufSize:i}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>w.decodeString(s));return Ae(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ae(e.shape,e.dtype,t)}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=w.flatten(this.activeTimers.map(u=>u.query)).filter(u=>u!=null),a=w.flatten(this.activeTimers.map(u=>u.name)).filter(u=>u!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},o=await Promise.all(r);return i.kernelMs=w.sum(o),i.getExtraProfileInfo=()=>o.map((u,l)=>({name:a[l],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,i}getAndSavePipeline(e,t){return e in this.pipelineCache||(this.pipelineCache[e]=t()),this.pipelineCache[e]}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&w.isString(n[0])){let r=n.map(a=>w.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);return{offset:0,size:t.bufferInfo.byteSize,buffer:t.bufferInfo.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.bufferInfo.buffer==null&&(t.bufferInfo.buffer=this.acquireBuffer(t.bufferInfo.byteSize),t.values)){let n=this.bufferManager.acquireUploadBuffer(t.bufferInfo.byteSize,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),s=n.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(s).set(t.values):new Float32Array(s).set(t.values),n.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(n,0,t.bufferInfo.buffer,0,t.bufferInfo.byteSize);let r={byteSize:t.bufferInfo.byteSize,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:n};this.stagingDisposalQueue.push(r)}}makeUniforms(e){let t=0,n=0,s=[];e.forEach(o=>{o.data.length===0&&(o.data=[1]);let u;switch(o.data.length){case 1:u=4;break;case 2:u=8;break;case 3:u=16;break;case 4:u=16;break;case 5:u=16;break;case 6:u=16;break;default:w.assert(!1,()=>`Unsupported ${o.data.length}D shape`)}(n===5||n===6)&&(u=16),t=Math.ceil(t/u)*u,n=o.data.length,s.push(t),t+=o.data.length*4});let r=new ArrayBuffer(t);e.forEach((o,u)=>{let l=s[u];o.type==="int32"?new Int32Array(r,l,o.data.length).set(o.data):o.type==="uint32"?new Uint32Array(r,l,o.data.length).set(o.data):new Float32Array(r,l,o.data.length).set(o.data)});let a=this.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);this.queue.writeBuffer(a,0,r,0,t);let i={byteSize:t,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:a};return this.uniformDisposalQueue.push(i),{offset:0,size:t,buffer:a}}createLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}});for(let r=0;r<e;r++)t.push({binding:r+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"read-only-storage"}});t.push({binding:e+1,visibility:GPUShaderStage.COMPUTE,buffer:{type:"uniform"}});let n=this.device.createBindGroupLayout({entries:t}),s=this.device.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}getCachedOrCreateLayout(e){return e in this.layoutCache||(this.layoutCache[e]=this.createLayout(e)),this.layoutCache[e]}runWebGPUProgram(e,t,n,s,r){if(!r){if(r=this.makeTensorInfo(e.outputShape,n),w.sizeFromShape(r.shape)===0){let I=this.tensorMap.get(r.dataId);return I.values=w.getTypedArrayFromDType(r.dtype,0),r}this.uploadToGPU(r.dataId)}e.dispatch=Yw(this.device,e);let a=[{type:"float32",data:[NaN]}],i=t.concat(r).map(I=>I.shape),o="int32";i.map(I=>{a.push({type:o,data:I})});let u=w.computeStrides(r.shape);if(a.push({type:o,data:u}),e.size){let I=w.sizeFromShape(e.outputShape);a.push({type:o,data:[e.isVec4?I/4:I]})}s&&(a=[...a,...s]);let l=this.makeUniforms(a),c=t.map((I,$)=>{if(I.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(I.dataId),{dtype:this.tensorMap.get(I.dataId).dtype,shape:I.shape,name:e.variableNames[$]}}),p=c.map(I=>I.dtype).concat(r.dtype),d=c.map(I=>C.getBroadcastDims(I.shape,r.shape)),h=c.map(I=>w.arraysEqual(I.shape,r.shape)).join("_"),f=d.map(I=>I.join("_")).join(";"),m=Xw(e,i,p,f,h),{bindGroupLayout:g,pipelineLayout:b}=this.getCachedOrCreateLayout(e.variableNames.length),y=this.getAndSavePipeline(m,()=>Kw(this.device,e,b,c,r)),v=this.activeTimers!=null,x=Voe(this.device,g,t.map(I=>this.tensorToBinding(I)),this.tensorToBinding(r),l);this.ensureCommandEncoderReady();let k=this.getComputePass();return v&&this.supportTimeQuery&&k.writeTimestamp(this.querySet,0),k.setPipeline(y),k.setBindGroup(0,x),k.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),v&&this.supportTimeQuery&&k.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(I=>{this.commandQueueOwnedIds.add(I.dataId)}),this.commandQueueOwnedIds.add(r.dataId),K().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),v&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}getFromPixelTextureLayout(e){return e?(this.fromPixelImportTextureLayout===null&&(this.fromPixelImportTextureLayout=this.createFromPixelTextureLayout(!0)),this.fromPixelImportTextureLayout):(this.fromPixelTextureLayout===null&&(this.fromPixelTextureLayout=this.createFromPixelTextureLayout(!1)),this.fromPixelTextureLayout)}createFromPixelTextureLayout(e){let t=[];t.push({binding:0,visibility:GPUShaderStage.COMPUTE,buffer:{type:"storage"}}),e?t.push({binding:1,visibility:GPUShaderStage.COMPUTE,externalTexture:{}}):t.push({binding:1,visibility:GPUShaderStage.COMPUTE,texture:{}}),t.push({binding:2,visibility:GPUShaderStage.COMPUTE,buffer:{}});let n=this.device.createBindGroupLayout({entries:t}),s=this.device.createPipelineLayout({bindGroupLayouts:[n]});return{bindGroupLayout:n,pipelineLayout:s}}copyExternalImageToTexture(e,t){let n=GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING,s="rgba8unorm",r=this.textureManager.acquireTexture(t[1],t[0],s,n),a=r.createView();this.queue.copyExternalImageToTexture({source:e},{texture:r},[t[1],t[0]]);let i={width:t[1],height:t[0],format:s,usage:n,texture:r};return this.textureDisposalQueue.push(i),a}runFromPixelsProgram(e,t,n,s,r){e.dispatch=Yw(this.device,e);let a=this.makeTensorInfo(t,"int32");if(w.sizeFromShape(a.shape)===0){let m=this.tensorMap.get(a.dataId);return m.values=w.getTypedArrayFromDType(a.dtype,0),a}this.uploadToGPU(a.dataId);let i=Xw(e,[a.shape]),o=this.getFromPixelTextureLayout(s),u=this.getAndSavePipeline(i,()=>Kw(this.device,e,o.pipelineLayout,[],a,!0)),l;if(s){let m={source:r};l=this.device.importExternalTexture(m)}else l=this.copyExternalImageToTexture(r,a.shape);let c=this.tensorToBinding(a),p=this.makeUniforms(n),d=this.device.createBindGroup({layout:o.bindGroupLayout,entries:[{binding:0,resource:{buffer:c.buffer}},{binding:1,resource:l},{binding:2,resource:{buffer:p.buffer}}]});this.ensureCommandEncoderReady();let h=this.getComputePass(),f=this.activeTimers!=null;return f&&this.supportTimeQuery&&h.writeTimestamp(this.querySet,0),h.setPipeline(u),h.setBindGroup(0,d),h.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),f&&this.supportTimeQuery&&h.writeTimestamp(this.querySet,1),this.commandQueueOwnedIds.add(a.dataId),this.dispatchNumberInEncoder++,K().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),f&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),a}async getTimeFromQuerySet(e){let t=this.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=Woe){return K().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).bufferInfo.buffer==null&&w.sizeFromShape(n.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDisposalQueue.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.textureManager.dispose(),this.disposed=!0)}},Lv=J2;Lv.nextDataId=0;var Uoe={};Ee(Uoe,{WebGPUBackend:()=>Lv,webgpu_util:()=>E2});Ov()&&xp("webgpu",async()=>{K().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:K().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n=t.limits,s={},r=t.features.has("timestamp-query");s.requiredLimits={maxComputeWorkgroupStorageSize:n.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:n.maxComputeWorkgroupsPerDimension},r?s.requiredFeatures=["timestamp-query"]:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let a=await t.requestDevice(s);return new Lv(a,r)},3);var St=(e=>(e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64",e))(St||{}),uh=(e=>(e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu",e))(uh||{}),eN;function Goe(e){eN=e.wasm.cwrap(ia,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Hoe(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:u,transposeB:l,activation:c,leakyreluAlpha:p}=s,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(i!=null){let R=n.dataIdMap.get(i.dataId);if(R.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${R.shape.length}.`);f=R.id}let m=o==null?0:n.dataIdMap.get(o.dataId).id,g=uh[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let b=u?r.shape[2]:r.shape[1],y=l?a.shape[1]:a.shape[2],v=Xo.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)),x=n.makeOutput([...v,b,y],r.dtype),k=n.dataIdMap.get(x.dataId).id,I=new Uint8Array(new Int32Array(r.shape).buffer),$=new Uint8Array(new Int32Array(a.shape).buffer);return eN(d,I,r.shape.length,h,$,a.shape.length,u,l,g,f,m,p||0,k),x}var qoe={kernelName:ia,backendName:"wasm",setupFunc:Goe,kernelFunc:Hoe};function Kt(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:i,inputs:{x:o}}=a,u=i.dataIdMap.get(o.dataId).id,l=i.makeOutput(o.shape,t||o.dtype),c=i.dataIdMap.get(l.dataId).id;return w.sizeFromShape(l.shape)===0||n(u,St[o.dtype],c),l}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var joe=Kt(lo);function gn(e,t,n){let s;function r(i){s=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(i){let{backend:o,inputs:u}=i,{a:l,b:c}=u,p=o.dataIdMap.get(l.dataId).id,d=o.dataIdMap.get(c.dataId).id,h=n!=null?n:l.dtype,f=C.assertAndGetBroadcastShape(l.shape,c.shape),m=o.makeOutput(f,h);if(w.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(l.shape).buffer),b=new Uint8Array(new Int32Array(c.shape).buffer),y=o.dataIdMap.get(m.dataId).id;return(()=>s(p,g,l.shape.length,d,b,c.shape.length,St[l.dtype],y))(),m}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var Koe=!0,Xoe=gn(Ir,Koe),tN;function Yoe(e){tN=e.wasm.cwrap(Sa,null,["array","number","number","number"])}function Qoe(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(w.sizeFromShape(s.shape)===0)return s;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(s.dataId).id;return tN(a,r.length,St[s.dtype],i),s}var Zoe={kernelName:Sa,backendName:"wasm",setupFunc:Yoe,kernelFunc:Qoe};function lh(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var Joe={kernelName:Wa,backendName:"wasm",kernelFunc:lh},nN;function eue(e){nN=e.wasm.cwrap(Hs,null,["number","array","number","number","number","array","number"])}function kr(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=nue(t.x.shape,s.perm),i=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(i=!1);let o=tue(t.x.shape,s.perm),u={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let f=lh({inputs:t,backend:n});return f.shape=o,f}let l=n.makeOutput(o,u.dtype),c=n.dataIdMap.get(u.dataId).id,p=n.dataIdMap.get(l.dataId).id,d=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(u.shape).buffer);return nN(c,h,u.shape.length,St[u.dtype],p,d,a.length),l}function tue(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function nue(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let i=0;i<s.length;++i)s[i]>=r&&(a===-1||s[a]>s[i])&&(a=i);s[a]=r}return[n,s]}var sue={kernelName:Hs,backendName:"wasm",kernelFunc:kr,setupFunc:eue};function Pr(e,t,n){let s=e.shape,r=e.shape.length,a=w.parseAxisParam(t,s),i=a,o=C.getAxesPermutation(i,r),u=null,l=!1;if(o!=null){let c=new Array(r);for(let h=0;h<c.length;h++)c[h]=s[o[h]];i=C.getInnerMostAxes(i.length,r),u=kr({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(u.dataId).id!==p&&(l=!0)}return{transposed:u,originalAxes:a,axes:i,inputWasTransposed:l}}var sN;function rue(e){sN=e.wasm.cwrap(cl,null,["number, number, number"])}function aue(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Pr(i,r,t);if(h){let v=t.dataIdMap.get(c.dataId).id;l=c,u=v}let f=l.shape.length;C.assertAxesAreInnerMostDims("all",p,f);let[m,g]=C.computeOutAndReduceShapes(l.shape,p),b=w.sizeFromShape(g),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;sN(u,b,v)}if(h&&t.disposeData(c.dataId),a){let v=C.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var iue={kernelName:cl,backendName:"wasm",setupFunc:rue,kernelFunc:aue},rN;function oue(e){rN=e.wasm.cwrap(dl,null,["number, number, number"])}function uue(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Pr(i,r,t);if(h){let v=t.dataIdMap.get(c.dataId).id;l=c,u=v}let f=l.shape.length;C.assertAxesAreInnerMostDims("any",p,f);let[m,g]=C.computeOutAndReduceShapes(l.shape,p),b=w.sizeFromShape(g),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;rN(u,b,v)}if(h&&t.disposeData(c.dataId),a){let v=C.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var lue={kernelName:dl,backendName:"wasm",setupFunc:oue,kernelFunc:uue},aN;function cue(e){aN=e.wasm.cwrap(Ia,null,["number","number","number","number","number"])}function due(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,i=t.dataIdMap.get(a.dataId).id,o=i,u=a,{transposed:l,axes:c,inputWasTransposed:p}=Pr(a,r,t);if(p){let b=t.dataIdMap.get(l.dataId).id;b!==i&&(u=l,o=b)}let d=u.shape.slice(0,-1),h=t.makeOutput(d,"int32"),f=t.dataIdMap.get(h.dataId).id,m=w.sizeFromShape(h.shape),g=u.shape[c[0]];return aN(o,St[u.dtype],m,g,f),p&&t.disposeData(l.dataId),h}var pue={kernelName:Ia,backendName:"wasm",kernelFunc:due,setupFunc:cue},iN;function hue(e){iN=e.wasm.cwrap(Ca,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fue(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:u,dimRoundingMode:l}=n,c=C.computePool2DInfo(r.shape,i,o,1,u,l),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,b=c.strideHeight,y=c.strideWidth,v=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let x=s.makeOutput(c.outShape,"float32"),k=s.dataIdMap.get(x.dataId).id;return iN(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,b,y,v,k),x}var mue={kernelName:Ca,backendName:"wasm",setupFunc:hue,kernelFunc:fue};function yn(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=w.sizeFromShape(s.shape),i=w.inferFromImplicitShape(r,a);return w.assert(a===w.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:i,dtype:s.dtype}}var gue={kernelName:Do,backendName:"wasm",kernelFunc:yn},oN;function bue(e){oN=e.wasm.cwrap(Na,null,["number","array","number","number","array","number","number","number","number"])}function yue(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:i,transposeB:o}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let u=r.shape.length,l=a.shape.length,c=i?r.shape[u-2]:r.shape[u-1],p=o?a.shape[l-1]:a.shape[l-2],d=i?r.shape[u-1]:r.shape[u-2],h=o?a.shape[l-2]:a.shape[l-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=w.sizeFromShape(f),b=w.sizeFromShape(m),v=Xo.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);w.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${i} and transposeB=${o} must match.`);let x=i?[g,c,d]:[g,d,c],k=o?[b,h,p]:[b,p,h],I=yn({inputs:{x:r},backend:n,attrs:{shape:x}}),$=yn({inputs:{x:a},backend:n,attrs:{shape:k}}),R=n.dataIdMap.get(I.dataId).id,E=n.dataIdMap.get($.dataId).id,P=i?I.shape[2]:I.shape[1],A=o?$.shape[1]:$.shape[2],O=Math.max(g,b),T=n.makeOutput([O,P,A],I.dtype),M=n.dataIdMap.get(T.dataId).id,W=new Uint8Array(new Int32Array(I.shape).buffer),j=new Uint8Array(new Int32Array($.shape).buffer);return oN(R,W,I.shape.length,E,j,$.shape.length,i,o,M),n.disposeData(I.dataId),n.disposeData($.dataId),T.shape=v,T}var vue={kernelName:Na,backendName:"wasm",setupFunc:bue,kernelFunc:yue};function xa(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,i]=kt.parseSliceParams(t,n,s),o=kt.isSliceContinous(t.shape,a,i),u=r.readSync(t.dataId),l=r.makeOutput(i,t.dtype),c=w.computeStrides(t.shape),p=r.dataIdMap.get(l.dataId);if(o){let f=kt.computeFlatOffset(a,c);return t.dtype==="string"?p.stringBytes=u.slice(f,f+w.sizeFromShape(i)):r.typedArrayFromHeap(l).set(u.subarray(f,f+w.sizeFromShape(i))),l}if(t.dtype==="string"){let f=Bd(u,a,i,t.shape,t.dtype);return p.stringBytes=f,l}let d=r.typedArrayFromHeap(l),h=t.shape.length;if(h===2)xue(u,c[0],d,a,i);else if(h===3)wue(u,c[0],c[1],d,a,i);else if(h===4)kue(u,c[0],c[1],c[2],d,a,i);else{let f=Bd(u,a,i,t.shape,t.dtype);d.set(f)}return l}function xue(e,t,n,s,r){let a=0,i=s[0],o=s[1],u=i+r[0];for(let l=i;l<u;l++){let c=l*t+o;n.set(e.subarray(c,c+r[1]),a),a+=r[1]}}function wue(e,t,n,s,r,a){let i=0,o=r[0],u=r[1],l=r[2],c=o+a[0],p=u+a[1];for(let d=o;d<c;d++)for(let h=u;h<p;h++){let f=d*t+h*n+l;s.set(e.subarray(f,f+a[2]),i),i+=a[2]}}function kue(e,t,n,s,r,a,i){let o=0,u=a[0],l=a[1],c=a[2],p=u+i[0],d=l+i[1],h=c+i[2],f=a[3];for(let m=u;m<p;m++)for(let g=l;g<d;g++)for(let b=c;b<h;b++){let y=m*t+g*n+b*s+f;r.set(e.subarray(y,y+i[3]),o),o+=i[3]}}var Sue={kernelName:Mo,backendName:"wasm",kernelFunc:xa};function Iue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:i}=s,o=a.reduce((b,y)=>b*y),u=C.getReshaped(r.shape,a,o),l=C.getPermuted(u.length,a.length),c=C.getReshapedPermuted(r.shape,a,o),p=C.getSliceBeginCoords(i,a.length),d=C.getSliceSize(c,i,a.length),h=yn({inputs:{x:r},backend:n,attrs:{shape:u}}),f=kr({inputs:{x:h},backend:n,attrs:{perm:l}}),m=yn({inputs:{x:f},backend:n,attrs:{shape:c}}),g=xa({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var Cue={kernelName:co,backendName:"wasm",kernelFunc:Iue};function uc(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var Nue={kernelName:Ta,backendName:"wasm",kernelFunc:uc},Tue=Kt($a),uN;function $ue(e){uN=e.wasm.cwrap(Cr,null,["number","number","number","number"])}function _ue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:i}=s,o=n.dataIdMap.get(r.dataId).id,u=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(u.dataId).id;return uN(o,a,i,l),u}var Aue={kernelName:Cr,backendName:"wasm",setupFunc:$ue,kernelFunc:_ue};function lN(e){let{inputs:t,backend:n}=e,s=w.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=C.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>w.sizeFromShape(h.shape)>0);if(a.length===1)return lh({inputs:{x:a[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(w.sizeFromShape(r)===0)return i;let o=a.map(h=>h.shape);if(C.assertParamsConsistent(o,s),a[0].dtype==="string"){let h=a.map(v=>{let x=w.sizeFromShape(v.shape.slice(s));return yn({inputs:{x:v},backend:n,attrs:{shape:[-1,x]}})}),f=h.map(v=>({vals:n.readSync(v.dataId),shape:v.shape}));r=C.computeOutShape(h.map(v=>v.shape),1);let m=h[0].shape[0]===1,g=cv(f,r,t[0].dtype,m),b=C.computeOutShape(a.map(v=>v.shape),s);i.shape=b;let y=n.dataIdMap.get(i.dataId);return y.stringBytes=C.fromStringArrayToUint8(g),h.forEach(v=>n.disposeData(v.dataId)),i}let u=w.sizeFromShape(a[0].shape.slice(0,s)),l=0,c=a.map(h=>{let f=w.sizeFromShape(h.shape.slice(s));return l+=f,f}),p=a.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(i);for(let h=0;h<u;h++){let f=h*l;for(let m=0;m<p.length;m++){let g=c[m],b=h*g,y=p[m].subarray(b,b+g);d.set(y,f),f+=g}}return i}var Eue={kernelName:po,backendName:"wasm",kernelFunc:lN},cN;function Rue(e){cN=e.wasm.cwrap(_a,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Due(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,i=s.dataIdMap.get(r.dataId).id,o=s.dataIdMap.get(a.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p,dataFormat:d}=n,h=C.convertConv2DDataFormat(d),f=C.computeConv2DInfo(r.shape,a.shape,u,l,c,p,!1,h),m=f.filterHeight,g=f.filterWidth,b=f.padInfo.top,y=f.padInfo.right,v=f.padInfo.bottom,x=f.padInfo.left,k=f.dilationHeight,I=f.dilationWidth,$=f.strideHeight,R=f.strideWidth,E=f.inChannels,P=f.outChannels,A=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let O=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get(O.dataId).id;return cN(i,r.shape[0],r.shape[1],r.shape[2],o,m,g,b,y,v,x,A,k,I,$,R,E,P,T),O}var Fue={kernelName:_a,backendName:"wasm",setupFunc:Rue,kernelFunc:Due},dN;function Oue(e){dN=e.wasm.cwrap(Aa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Pue(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:i,pad:o,dataFormat:u,dimRoundingMode:l,inputShape:c}=s,p=1,d=C.convertConv2DDataFormat(u),h=C.computeConv2DInfo(c,a.shape,i,p,o,l,!1,d),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:b,inHeight:y,inWidth:v,outChannels:x,outHeight:k,outWidth:I,strideHeight:$,strideWidth:R}=h,E=m-1-h.padInfo.top,P=g-1-h.padInfo.left,A=h.dataFormat==="channelsLast",O=w.computeStrides(h.inShape),T=w.computeStrides(r.shape),[M,W,j]=w.computeStrides(a.shape),Y=O[0],X=A?O[1]:O[2],Z=A?O[2]:1,ne=A?1:O[1],ee=T[0],se=A?T[1]:T[2],te=A?T[2]:1,oe=A?1:T[1],ae=t.makeOutput(h.inShape,"float32"),de=t.dataIdMap.get(ae.dataId).id,me=t.dataIdMap.get(r.dataId).id,ke=t.dataIdMap.get(a.dataId).id;return dN(me,ke,f,m,g,y,v,b,k,I,x,$,R,E,P,M,W,j,Y,X,Z,ne,ee,se,te,oe,de),ae}var zue={kernelName:Aa,backendName:"wasm",setupFunc:Oue,kernelFunc:Pue},Mue=Kt(Ea),Lue=Kt(Ra),pN=(e=>(e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest",e))(pN||{}),hN;function Bue(e){hN=e.wasm.cwrap(fo,null,["number","number","number","number","array","number","number","number","number","number"])}function Vue(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:i}=s,{image:o,boxes:u,boxInd:l}=n,c=u.shape[0],[p,d]=i,h=[c,p,d,o.shape[3]],f=t.dataIdMap.get(o.dataId),m;o.dtype!=="float32"&&(m=uc({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,b=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(l.dataId).id,v=t.makeOutput(h,"float32"),x=t.dataIdMap.get(v.dataId).id,k=new Uint8Array(new Int32Array(o.shape).buffer);return hN(g,b,y,c,k,p,d,pN[r],a,x),m!=null&&t.disposeData(m.dataId),v}var Wue={kernelName:fo,backendName:"wasm",setupFunc:Bue,kernelFunc:Vue},fN;function Uue(e){fN=e.wasm.cwrap(ho,null,["number","number","number","number","number","number"])}function Gue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s,u=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let l=C.getAxesPermutation([a],u),c=r;l!==null&&(c=kr({inputs:{x:r},attrs:{perm:l},backend:n}));let p=C.getInnerMostAxes(1,u)[0];C.assertAxesAreInnerMostDims("cumprod",[p],u);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;fN(f,i?1:0,o?1:0,h,m,St[r.dtype]);let g=d;if(l!==null){let b=C.getUndoAxesPermutation(l);g=kr({inputs:{x:d},attrs:{perm:b},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var Hue={kernelName:ho,backendName:"wasm",setupFunc:Uue,kernelFunc:Gue},mN;function que(e){mN=e.wasm.cwrap(Da,null,["number","number","number","number","number","number"])}function jue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:i,reverse:o}=s,u=r.shape.length;w.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let l=C.getAxesPermutation([a],u),c=r;l!==null&&(c=kr({inputs:{x:r},attrs:{perm:l},backend:n}));let p=C.getInnerMostAxes(1,u)[0];C.assertAxesAreInnerMostDims("cumsum",[p],u);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;mN(f,i?1:0,o?1:0,h,m,St[r.dtype]);let g=d;if(l!==null){let b=C.getUndoAxesPermutation(l);g=kr({inputs:{x:d},attrs:{perm:b},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var Kue={kernelName:Da,backendName:"wasm",setupFunc:que,kernelFunc:jue},gN;function Xue(e){gN=e.wasm.cwrap(mo,null,["number","number","number","array","number","array","array","number","number"])}function Yue(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:i}=s,o=r.shape[0],u=i==="NHWC"?r.shape[1]:r.shape[2],l=i==="NHWC"?r.shape[2]:r.shape[3],c=i==="NHWC"?r.shape[3]:r.shape[1],p=u*a,d=l*a,h=c/(a*a),f=i==="NHWC"?[o,p,d,h]:[o,h,p,d],m=t.makeOutput(f,"float32"),b=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),v=new Uint8Array(new Int32Array(f).buffer),x=new Uint8Array(new Int32Array(w.computeStrides(f)).buffer),k=t.dataIdMap.get(m.dataId).id;return gN(b,a,i==="NHWC"?1:0,y,r.shape.length-1,v,x,f.length,k),m}var Que={kernelName:mo,backendName:"wasm",setupFunc:Xue,kernelFunc:Yue},bN;function Zue(e){bN=e.wasm.cwrap(Fa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Jue(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,i=s.dataIdMap.get(r.dataId).id,o=s.dataIdMap.get(a.dataId).id,{strides:u,dilations:l,pad:c,dimRoundingMode:p}=n,d=l==null?[1,1]:l,h=C.computeConv2DInfo(r.shape,a.shape,u,d,c,p,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,b=h.padInfo.right,y=h.padInfo.bottom,v=h.padInfo.left,x=h.dilationHeight,k=h.dilationWidth,I=h.strideHeight,$=h.strideWidth,R=h.inChannels,E=h.outChannels,P=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let A=s.makeOutput(h.outShape,"float32"),O=s.dataIdMap.get(A.dataId).id;return bN(i,r.shape[0],r.shape[1],r.shape[2],o,f,m,g,b,y,v,P,x,k,I,$,R,E,O),A}var ele={kernelName:Fa,backendName:"wasm",setupFunc:Zue,kernelFunc:Jue},tle=Kt(Pa),nle=!1,sle=gn(go,nle,"bool"),rle=Kt(za,"float32");function ig(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,i=r.shape.length,o=r.shape.slice(),u=a;return a<0&&(w.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+a+1),o.splice(u,0,1),yn({inputs:{x:r},backend:s,attrs:{shape:o}})}var ale={kernelName:bo,backendName:"wasm",kernelFunc:ig};function yN(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var ile={kernelName:vl,backendName:"wasm",kernelFunc:yN},vN;function ole(e){vN=e.wasm.cwrap(vo,null,["number","number","number","number","number","number"])}function ule(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,u,l,c]=s.shape;return vN(a,o,u,l,c,i),r}var lle={kernelName:vo,backendName:"wasm",kernelFunc:ule,setupFunc:ole},cle=Kt(Ma),dle=!1,ple=gn(La,dle),xN;function hle(e){xN=e.wasm.cwrap(Ba,null,["number","number","number","number","number","number","number"])}function fle(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:i,variance:o,offset:u,scale:l}=n,c=t.dataIdMap.get(a.dataId).id,p=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,h=u!=null?t.dataIdMap.get(u.dataId).id:0,f=l!=null?t.dataIdMap.get(l.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(w.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return xN(c,p,d,h,f,r,g),m}var mle={kernelName:Ba,backendName:"wasm",setupFunc:hle,kernelFunc:fle},wN;function gle(e){wN=e.wasm.cwrap(oa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ble(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(r.shape,a.shape,u,c,l,d),g=uh[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let b=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,v=m.outChannels,x=0;if(i!=null){let te=s.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==v)throw new Error(`FusedConv2D bias shape (${te.shape}) does not match the number of output channels (${v})`);x=te.id}let k=m.filterHeight,I=m.filterWidth,$=m.padInfo.top,R=m.padInfo.right,E=m.padInfo.bottom,P=m.padInfo.left,A=m.dilationHeight,O=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,W=m.inChannels,j=m.padInfo.type==="SAME"?1:0,Y=m.batchSize,X=m.inHeight,Z=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ne=s.makeOutput(m.outShape,"float32"),ee=s.dataIdMap.get(ne.dataId).id,se=o==null?0:s.dataIdMap.get(o.dataId).id;return wN(b,Y,X,Z,y,k,I,x,$,R,E,P,j,A,O,T,M,W,v,g,se,f||0,ee),ne}var yle={kernelName:oa,backendName:"wasm",setupFunc:gle,kernelFunc:ble},kN;function vle(e){kN=e.wasm.cwrap(ua,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xle(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(r.shape,a.shape,u,c,l,d,!0),g=uh[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let b=s.dataIdMap.get(r.dataId).id,y=s.dataIdMap.get(a.dataId).id,v=m.outChannels,x=0;if(i!=null){let te=s.dataIdMap.get(i.dataId);if(te.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${te.shape.length}.`);if(te.shape[0]!==v)throw new Error(`FusedDepthwiseConv2D bias shape (${te.shape}) does not match the number of output channels (${v})`);x=te.id}let k=m.filterHeight,I=m.filterWidth,$=m.padInfo.top,R=m.padInfo.right,E=m.padInfo.bottom,P=m.padInfo.left,A=m.dilationHeight,O=m.dilationWidth,T=m.strideHeight,M=m.strideWidth,W=m.inChannels,j=m.padInfo.type==="SAME"?1:0,Y=m.batchSize,X=m.inHeight,Z=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ne=s.makeOutput(m.outShape,"float32"),ee=s.dataIdMap.get(ne.dataId).id,se=o==null?0:s.dataIdMap.get(o.dataId).id;return kN(b,Y,X,Z,y,k,I,x,$,R,E,P,j,A,O,T,M,W,v,g,se,f||0,ee),ne}var wle={kernelName:ua,backendName:"wasm",setupFunc:vle,kernelFunc:xle},SN;function kle(e){SN=e.wasm.cwrap(wo,null,["number","number","number","number","number","number","array","number"])}function Sle(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,i,o,u]=Uk.prepareAndValidate(s,r),l=t.makeOutput(a,s.dtype);if(i===0)return l;let c=r.shape,p=c[c.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(u).buffer),b=t.dataIdMap.get(l.dataId).id;return SN(h,St[s.dtype],m,i,p,o,g,b),l}var Ile={kernelName:wo,backendName:"wasm",setupFunc:kle,kernelFunc:Sle},IN;function Cle(e){IN=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function Nle(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:i,batchDims:o}=s,u=w.parseAxisParam(i,r.shape)[0],l=t.readSync(a.dataId),c=r.shape[u];for(let E=0;E<l.length;++E){let P=l[E];w.assert(P<=c-1&&P>=0,()=>`GatherV2: the index value ${P} is not in [0, ${c-1}]`)}let p=C.segment_util.collectGatherOpShapeInfo(r,a,u,o),d=yn({inputs:{x:r},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),h=w.sizeFromShape(a.shape),f=yn({inputs:{x:a},attrs:{shape:[p.batchSize,h/p.batchSize]},backend:t}),m=[p.batchSize,p.outerSize,h/p.batchSize,p.sliceSize],g=t.makeOutput(m,r.dtype);if(w.sizeFromShape(r.shape)===0)return g;let b=d.shape.length-1,v=t.dataIdMap.get(d.dataId).id,k=t.dataIdMap.get(f.dataId).id,I=t.dataIdMap.get(g.dataId).id,$=new Uint8Array(new Int32Array(w.computeStrides(d.shape)).buffer),R=new Uint8Array(new Int32Array(w.computeStrides(m)).buffer);return IN(v,St[r.dtype],$,b,k,p.batchSize,R,I),t.disposeData(d.dataId),t.disposeData(f.dataId),g.shape=p.outputShape,g}var Tle={kernelName:xo,backendName:"wasm",setupFunc:Cle,kernelFunc:Nle},$le=!1,_le=gn(ko,$le,"bool"),Ale=!1,Ele=gn(Va,Ale,"bool"),CN;function Rle(e){CN=e.wasm.cwrap(Ua,null,["number","number","number","number"])}function Dle(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(w.sizeFromShape(t.shape)!==0){let i=s.dataIdMap.get(a.dataId).id;CN(r,St[t.dtype],n,i)}return a}var Fle={kernelName:Ua,backendName:"wasm",setupFunc:Rle,kernelFunc:Dle},Ole=!1,Ple=gn(So,Ole,"bool"),zle=!1,Mle=gn(Io,zle,"bool"),Lle=Kt(Ga),Ble=!1,Vle=gn(Co,Ble,"bool"),NN;function Wle(e){NN=e.wasm.cwrap(Ha,null,["number","number","number","number"])}function Ule(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:i}=n,u=t.dataIdMap.get(i.dataId).id,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Pr(i,r,t);if(h){let v=t.dataIdMap.get(c.dataId).id;l=c,u=v}let f=l.shape.length;C.assertAxesAreInnerMostDims("max",p,f);let[m,g]=C.computeOutAndReduceShapes(l.shape,p),b=w.sizeFromShape(g),y=t.makeOutput(m,i.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;NN(u,St[i.dtype],b,v)}if(h&&t.disposeData(c.dataId),a){let v=C.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var Gle={kernelName:Ha,backendName:"wasm",setupFunc:Wle,kernelFunc:Ule},Hle=!1,qle=gn(qa,Hle),TN;function jle(e){TN=e.wasm.cwrap(ja,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Kle(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;w.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:i,strides:o,pad:u,dimRoundingMode:l}=n,c=C.computePool2DInfo(r.shape,i,o,1,u,l),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,b=c.dilationHeight,y=c.dilationWidth,v=c.strideHeight,x=c.strideWidth,k=c.inChannels,I=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let $=s.makeOutput(c.outShape,"float32"),R=s.dataIdMap.get($.dataId).id;return TN(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,b,y,v,x,k,I,R),$}var Xle={kernelName:ja,backendName:"wasm",setupFunc:jle,kernelFunc:Kle},$N;function Yle(e){$N=e.wasm.cwrap(Ka,null,["number, number, number"])}function Qle(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=o,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Pr(i,r,t),f=p;if(h){let x=t.dataIdMap.get(c.dataId).id;x!==o&&(l=c,u=x,f=C.getInnerMostAxes(f.length,l.shape.length))}C.assertAxesAreInnerMostDims("mean",f,l.shape.length);let[m,g]=C.computeOutAndReduceShapes(l.shape,f),b=w.sizeFromShape(g),y=l;l.dtype!=="float32"&&(y=uc({backend:t,inputs:{x:l},attrs:{dtype:"float32"}}),u=t.dataIdMap.get(y.dataId).id);let v=t.makeOutput(m,"float32");if(w.sizeFromShape(l.shape)!==0){let x=t.dataIdMap.get(v.dataId).id;$N(u,b,x)}if(h&&t.disposeData(c.dataId),a){let x=C.expandShapeToKeepDim(v.shape,d);v.shape=x}return l.dtype!=="float32"&&t.disposeData(y.dataId),v}var Zle={kernelName:Ka,backendName:"wasm",setupFunc:Yle,kernelFunc:Qle},_N;function Jle(e){_N=e.wasm.cwrap(Xa,null,["number","number","number","number"])}function ece(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=o,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Pr(i,r,t);if(h){let v=t.dataIdMap.get(c.dataId).id;v!==o&&(l=c,u=v)}let f=l.shape.length;C.assertAxesAreInnerMostDims("min",p,f);let[m,g]=C.computeOutAndReduceShapes(l.shape,p),b=w.sizeFromShape(g),y=t.makeOutput(m,l.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;_N(u,St[i.dtype],b,v)}if(h&&t.disposeData(c.dataId),a){let v=C.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var tce={kernelName:Xa,backendName:"wasm",setupFunc:Jle,kernelFunc:ece},nce=!1,sce=gn(Ya,nce),AN=(e=>(e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric",e))(AN||{}),EN;function rce(e){EN=e.wasm.cwrap(Qa,null,["number","array","number","number","array","array","number","number"])}function ace(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(o.dataId).id,l=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),p=s.map(f=>f[1]),d=new Uint8Array(new Int32Array(c).buffer),h=new Uint8Array(new Int32Array(p).buffer);return EN(i,l,t.shape.length,St[t.dtype],d,h,AN[r],u),o}var ice={kernelName:Qa,backendName:"wasm",kernelFunc:ace,setupFunc:rce},oce=!0,uce=gn(Za,oce),lce=Kt(No);function Bv(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:i}}var RN;function cce(e){RN=e.wasm.cwrap($o,"number",["number","number","number","number","number"])}function dce(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:i}=s,{boxes:o,scores:u}=n,l=t.dataIdMap.get(o.dataId).id,c=t.dataIdMap.get(u.dataId).id,p=RN(l,c,a,r,i),{pSelectedIndices:d,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=Bv(t,p);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",d)}var pce={kernelName:$o,backendName:"wasm",setupFunc:cce,kernelFunc:dce},DN;function hce(e){DN=e.wasm.cwrap(Nl,"number",["number","number","number","number","number","bool"])}function fce(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:i,padToMaxOutputSize:o}=s,{boxes:u,scores:l}=n,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=DN(c,p,a,r,i,o),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Bv(t,d);t.wasm._free(m);let b=t.makeOutput([f],"int32",h),y=t.makeOutput([],"int32",g);return[b,y]}var mce={kernelName:Nl,backendName:"wasm",setupFunc:hce,kernelFunc:fce},FN;function gce(e){FN=e.wasm.cwrap(_o,"number",["number","number","number","number","number","number"])}function bce(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:i,softNmsSigma:o}=s,{boxes:u,scores:l}=n,c=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,d=FN(c,p,a,r,i,o),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Bv(t,d);t.wasm._free(g);let b=t.makeOutput([f],"int32",h),y=t.makeOutput([f],"float32",m);return[b,y]}var yce={kernelName:_o,backendName:"wasm",setupFunc:gce,kernelFunc:bce},vce=!1,xce=gn(To,vce,"bool"),ON;function wce(e){ON=e.wasm.cwrap(Eo,null,["number","number","number","number","number"])}function kce(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:i,offValue:o}=s,u=n.makeOutput([...r.shape,a],"int32"),l=n.dataIdMap.get(u.dataId).id,p=n.dataIdMap.get(r.dataId).id;return ON(p,a,i,o,l),u}var Sce={kernelName:Eo,backendName:"wasm",setupFunc:wce,kernelFunc:kce};function Ice(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Cce={kernelName:Ao,backendName:"wasm",kernelFunc:Ice};function Nce(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return ig({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,i=t[0].dtype;t.forEach(c=>{w.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),w.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],u=t.map(c=>{let p=ig({inputs:{input:c},backend:n,attrs:{dim:r}});return o.push(p),p}),l=lN({inputs:u,backend:n,attrs:{axis:r}});return o.forEach(c=>n.disposeData(c.dataId)),l}var Tce={kernelName:Ro,backendName:"wasm",kernelFunc:Nce},PN;function $ce(e){PN=e.wasm.cwrap(Ja,null,["number","array","number","number","array","array","number","number"])}function _ce(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(w.sizeFromShape(t.shape)===0)return yN({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=s.map(m=>m[0]),d=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(p).buffer),f=new Uint8Array(new Int32Array(d).buffer);return PN(i,c,t.shape.length,St[t.dtype],h,f,r,l),o}var zN={kernelName:Ja,backendName:"wasm",kernelFunc:_ce,setupFunc:$ce},Ace=!1,Ece=gn(ei,Ace),MN;function Rce(e){MN=e.wasm.cwrap(ti,null,["number","number","number"])}function Dce(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=a,u=s,l=u;u.dtype!=="float32"&&(l=uc({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),o=n.dataIdMap.get(l.dataId).id);let c=n.makeOutput(s.shape,"float32"),p=n.dataIdMap.get(c.dataId).id;return MN(o,i,p),u.dtype!=="float32"&&n.disposeData(l.dataId),c}var Fce={kernelName:ti,backendName:"wasm",setupFunc:Rce,kernelFunc:Dce},LN;function Oce(e){LN=e.wasm.cwrap(ni,null,["number","number","number","number"])}function Pce(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=o,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Pr(i,r,t),f=p;if(h){let v=t.dataIdMap.get(c.dataId).id;v!==o&&(l=c,u=v,f=C.getInnerMostAxes(f.length,l.shape.length))}C.assertAxesAreInnerMostDims("prod",f,l.shape.length);let[m,g]=C.computeOutAndReduceShapes(l.shape,f),b=w.sizeFromShape(g),y=t.makeOutput(m,l.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;LN(u,b,St[y.dtype],v)}if(h&&t.disposeData(c.dataId),a){let v=C.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var zce={kernelName:ni,backendName:"wasm",setupFunc:Oce,kernelFunc:Pce},Mce=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:i}=n,o=hv(s,r,a,i),u=t.makeOutput([o.length],i);return t.typedArrayFromHeap(u).set(o),u},Lce={kernelName:Tl,backendName:"wasm",kernelFunc:Mce},Bce=!0,Vce=gn(Oa,Bce),Wce=Kt(si),Uce=Kt(ai),BN;function Gce(e){BN=e.wasm.cwrap(ri,null,["number","number","number","number","number","number","number","number","number","number"])}function Hce(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:i,size:o}=s,[u,l]=o,[c,p,d,h]=r.shape,f=[c,u,l,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=uc({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let b=m.id,y=t.makeOutput(f,"float32");if(w.sizeFromShape(r.shape)===0)return y;let v=t.dataIdMap.get(y.dataId).id;return BN(b,c,p,d,h,u,l,a?1:0,i?1:0,v),g!=null&&t.disposeData(g.dataId),y}var qce={kernelName:ri,backendName:"wasm",setupFunc:Gce,kernelFunc:Hce},VN;function jce(e){VN=e.wasm.cwrap(Fo,null,["number","array","number","array","number","number"])}function Kce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,i=w.parseAxisParam(a,r.shape);if(r.shape.length===0)return lh({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);VN(u,c,i.length,p,r.shape.length,l);let d=yn({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),d}var Xce={kernelName:Fo,backendName:"wasm",kernelFunc:Kce,setupFunc:jce},WN;function Yce(e){WN=e.wasm.cwrap(Ko,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Qce(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:i,center:o}=s,u=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(u.dataId).id,[p,d,h,f]=r.shape,[m,g]=C.getImageCenter(o,d,h),b=i===0,y=255,v=typeof i=="number"?[i,i,i,b?0:y]:[...i,y],x=new Uint8Array(new Int32Array(v).buffer);return WN(l,p,d,h,f,a,m,g,x,v.length,c),u}var Zce={kernelName:Ko,backendName:"wasm",kernelFunc:Qce,setupFunc:Yce},Jce=Kt(Oo),ede=Kt(ii),UN;function tde(e){UN=e.wasm.cwrap(Po,null,["number","number","number","number","number","number","array","number","number"])}function nde(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:i}=s,o=t.makeOutput(i,a.dtype);if(w.sizeFromShape(i)===0)return o;let{sliceRank:u,numUpdates:l,sliceSize:c,strides:p,outputSize:d}=Hk.calculateShapes(a,r,i),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,b=new Uint8Array(new Int32Array(p).buffer),y=t.dataIdMap.get(o.dataId).id;return UN(f,g,St[a.dtype],u,l,c,b,d,y),o}var sde={kernelName:Po,backendName:"wasm",setupFunc:tde,kernelFunc:nde},GN;function rde(e){GN=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function ade(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,i=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(l.dataId).id,p=s.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:w.sizeFromShape(r.shape.slice(1));return GN(i,o,u,h,c),l}var ide={kernelName:zo,backendName:"wasm",kernelFunc:ade,setupFunc:rde},HN;function ode(e){HN=e.wasm.cwrap(ui,null,["number","number"])}function ude(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return w.sizeFromShape(r.shape)===0||HN(s,a),r}var lde={kernelName:"Sigmoid",backendName:"wasm",setupFunc:ode,kernelFunc:ude},cde=Kt(oi),qN;function dde(e){qN=e.wasm.cwrap(di,null,["number","number","number","number"])}function pde(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(a.dataId).id,o=n.shape[s],u=w.sizeFromShape(n.shape)/o;return w.sizeFromShape(a.shape)===0||qN(r,i,o,u),a}var hde={kernelName:di,backendName:"wasm",setupFunc:dde,kernelFunc:pde};function fde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:i}=s,o=w.sizeFromShape(a),u=[[0,0]];u.push(...i);for(let I=1+a.length;I<r.shape.length;++I)u.push([0,0]);let l=zN.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:u,constantValue:0}}),c=C.getReshaped(l.shape,a,o,!1),p=C.getPermuted(c.length,a.length,!1),d=C.getReshapedPermuted(l.shape,a,o,!1),m=yn({inputs:{x:l},backend:n,attrs:{shape:c}}),y=kr({inputs:{x:m},backend:n,attrs:{perm:p}}),k=yn({inputs:{x:y},backend:n,attrs:{shape:d}});return n.disposeData(l.dataId),n.disposeData(m.dataId),n.disposeData(y.dataId),k}var mde={kernelName:Bo,backendName:"wasm",kernelFunc:fde},jN;function gde(e){jN=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function bde(e){let{backend:t,inputs:n}=e,{indices:s,values:r,denseShape:a,defaultValue:i}=n,o=s.shape[0],u=s.shape[1],l=t.readSync(a.dataId)[0],c=[o+l,u],p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(i.dataId).id,f=t.makeOutput(c,s.dtype),m=t.dataIdMap.get(f.dataId).id,g=t.makeOutput(c.slice(0,1),r.dtype),b=t.dataIdMap.get(g.dataId).id,y=t.makeOutput([l],"bool"),v=t.dataIdMap.get(y.dataId).id,x=t.makeOutput([o],s.dtype),k=t.dataIdMap.get(x.dataId).id,I=t.makeOutput([4],"int32"),$=t.dataIdMap.get(I.dataId).id,R=jN(p,d,St[r.dtype],o,l,u,h,m,b,v,k,$),E=t.readSync(I.dataId),P;switch(E[0]){case 1:{P=C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(E[1]);break}case 2:{P=C.getSparseFillEmptyRowsNegativeIndexErrorMessage(E[1],E[2]);break}case 3:P=C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(E[1],E[2],E[3]);break;default:P=""}if(t.disposeData(I.dataId),P)throw t.disposeData(f.dataId),t.disposeData(g.dataId),t.disposeData(y.dataId),t.disposeData(x.dataId),new Error(P);let A=f,O=g;return R!==c[0]&&(A=xa({inputs:{x:f},attrs:{begin:0,size:[R,u]},backend:t}),O=xa({inputs:{x:g},attrs:{begin:0,size:R},backend:t}),t.disposeData(f.dataId),t.disposeData(g.dataId)),[A,O,y,x]}var yde={kernelName:dp,backendName:"wasm",setupFunc:gde,kernelFunc:bde},KN;function vde(e){KN=e.wasm.cwrap(Dl,null,["number","number","number","number","number","number","number"])}function xde(e){let{backend:t,inputs:n}=e,{inputIndices:s,inputShape:r,newShape:a}=n;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let i=t.dataIdMap.get(s.dataId).id,o=t.dataIdMap.get(r.dataId).id,u=t.dataIdMap.get(a.dataId).id,l=s.shape[0],c=w.sizeFromShape(a.shape),p=t.makeOutput([l,c],s.dtype),d=t.dataIdMap.get(p.dataId).id,h=t.makeOutput([c],a.dtype),f=t.dataIdMap.get(h.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;KN(i,o,u,l,d,f,g);let b=t.readSync(m.dataId),y;switch(b[0]){case 0:{y=C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(b[1],b[2]);break}case 1:{y=C.getSparseReshapeNegativeOutputDimErrorMessage(b[1],b[2]);break}case 2:y=C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let v=Array.from(t.readSync(r.dataId)),x=Array.from(t.readSync(h.dataId));y=C.getSparseReshapeInputOutputMultipleErrorMessage(v,x);break}case 4:{let v=Array.from(t.readSync(r.dataId)),x=Array.from(t.readSync(h.dataId));y=C.getSparseReshapeInputOutputMismatchErrorMessage(v,x);break}default:y=""}if(t.disposeData(m.dataId),y)throw t.disposeData(p.dataId),t.disposeData(h.dataId),new Error(y);return[p,h]}var wde={kernelName:Dl,backendName:"wasm",setupFunc:vde,kernelFunc:xde},XN;function YN(e){XN=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function QN(e,t){let{backend:n,inputs:s}=e,{data:r,indices:a,segmentIds:i}=s,o=a.shape[0],u=n.readSync(i.dataId,o-1,o)[0],c=o>0?u+1:0;if(c<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=c;let d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=n.dataIdMap.get(i.dataId).id,m=n.makeOutput(p,r.dtype),g=n.dataIdMap.get(m.dataId).id,b=n.makeOutput([4],"int32"),y=n.dataIdMap.get(b.dataId).id;XN(d,St[r.dtype],r.shape[0],h,f,g,y,t,0);let v=n.readSync(b.dataId),x;switch(v[0]){case 0:{x=C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{x=C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:x=C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(v[1],v[2]);break;case 3:x=C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(v[1],v[2],v[3]);break;default:x=""}if(n.disposeData(b.dataId),x)throw n.disposeData(m.dataId),new Error(x);return m}function kde(e){return QN(e,!0)}var Sde={kernelName:pp,backendName:"wasm",setupFunc:YN,kernelFunc:kde};function Ide(e){return QN(e,!1)}var Cde={kernelName:hp,backendName:"wasm",setupFunc:YN,kernelFunc:Ide};function Nde(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:i}=n,o=w.parseAxisParam(i,r.shape)[0],u=C.prepareSplitSize(r,a,o),l=new Array(r.shape.length).fill(0),c=r.shape.slice();return u.map(p=>{let d=[...c];d[o]=p;let h=xa({inputs:{x:r},attrs:{begin:l,size:d},backend:s});return l[o]+=p,h})}var Tde={kernelName:Vo,backendName:"wasm",kernelFunc:Nde},$de=Kt(li),_de=Kt(Fl),Ade=!0,Ede=gn(pi,Ade),ZN;function Rde(e){ZN=e.wasm.cwrap(mi,null,["number","number","number","number"])}function Dde(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,i=t.dataIdMap.get(a.dataId).id,o=t.makeOutput(a.shape,a.dtype),u=t.dataIdMap.get(o.dataId).id;return ZN(i,r,St[a.dtype],u),o}var Fde={kernelName:mi,backendName:"wasm",setupFunc:Rde,kernelFunc:Dde},JN;function Ode(e){JN=e.wasm.cwrap(Wo,null,["number","array","number","array","array","array","array","array","number","number"])}function Pde(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:i,strides:o,beginMask:u,endMask:l,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:b,begin:y,end:v,strides:x}=kt.sliceInfo(r.shape,a,i,o,u,l,c,p,d),k;if(m)k=yn({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||b){w.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let I=kt.computeOutShape(y,v,x),$=xa({inputs:{x:r},backend:t,attrs:{begin:y,size:I}});k=yn({inputs:{x:$},backend:t,attrs:{shape:f}}),t.disposeData($.dataId)}else{let I=t.makeOutput(h,"float32"),$=t.dataIdMap.get(r.dataId).id,R=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),E=new Uint8Array(new Int32Array(y).buffer),P=new Uint8Array(new Int32Array(v).buffer),A=new Uint8Array(new Int32Array(x).buffer),O=new Uint8Array(new Int32Array(h).buffer),T=new Uint8Array(new Int32Array(w.computeStrides(h)).buffer),M=t.dataIdMap.get(I.dataId).id;JN($,R,r.shape.length,E,P,A,O,T,h.length,M),k=yn({inputs:{x:I},backend:t,attrs:{shape:f}}),t.disposeData(I.dataId)}return k}var zde={kernelName:Wo,backendName:"wasm",setupFunc:Ode,kernelFunc:Pde},Mde=!0,Lde=gn(hi,Mde),eT;function Bde(e){eT=e.wasm.cwrap(ci,null,["number","number","number","number"])}function Vde(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=o,l=i,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=Pr(i,r,t),f=p;if(h){let v=t.dataIdMap.get(c.dataId).id;v!==o&&(l=c,u=v,f=C.getInnerMostAxes(f.length,l.shape.length))}C.assertAxesAreInnerMostDims("sum",f,l.shape.length);let[m,g]=C.computeOutAndReduceShapes(l.shape,f),b=w.sizeFromShape(g),y=t.makeOutput(m,l.dtype);if(w.sizeFromShape(l.shape)!==0){let v=t.dataIdMap.get(y.dataId).id;eT(u,b,St[y.dtype],v)}if(h&&t.disposeData(c.dataId),a){let v=C.expandShapeToKeepDim(y.shape,d);y.shape=v}return y}var Wde={kernelName:ci,backendName:"wasm",setupFunc:Bde,kernelFunc:Vde},Ude=Kt(Uo),Gde=Kt(fi),tT;function Hde(e){tT=e.wasm.cwrap(Nr,null,["number","array","number","array","number","number"])}function qde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:i}=s,o=new Array(r.shape.length);for(let d=0;d<o.length;d++)o[d]=r.shape[d]*i[d];let u=new Uint8Array(new Int32Array(r.shape).buffer),l=new Uint8Array(new Int32Array(o).buffer),c=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(c.dataId).id;return tT(a,u,r.shape.length,l,o.length,St[c.dtype],p),c}var jde={kernelName:Nr,backendName:"wasm",setupFunc:Hde,kernelFunc:qde},nT;function Kde(e){nT=e.wasm.cwrap(Go,null,["number","array","number","number","number","bool","number","number"])}var Xde=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,i=t.dataIdMap.get(s.dataId).id,o=new Uint8Array(new Int32Array(s.shape).buffer),u=s.shape.slice();u[u.length-1]=r;let l=t.makeOutput(u,s.dtype),c=t.dataIdMap.get(l.dataId).id,p=t.makeOutput(u,"int32"),d=t.dataIdMap.get(p.dataId).id;return nT(i,o,s.shape.length,St[s.dtype],r,a,c,d),[l,p]},Yde={kernelName:Go,backendName:"wasm",setupFunc:Kde,kernelFunc:Xde},sT;function Qde(e){sT=e.wasm.cwrap(Ho,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function Zde(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:i,fillMode:o,fillValue:u,outputShape:l}=s,[c,p,d,h]=r.shape,[f,m]=l!=null?l:[p,d],g=[c,f,m,h],b=new Uint8Array(new Int32Array(w.computeStrides(r.shape)).buffer),y=t.makeOutput(g,r.dtype),v=t.dataIdMap.get(y.dataId).id,k=t.dataIdMap.get(r.dataId).id,$=t.dataIdMap.get(a.dataId).id,R=i==="nearest"?1:2,E;switch(o){case"constant":E=1;break;case"reflect":E=2;break;case"wrap":E=3;break;case"nearest":E=4;break;default:E=1;break}return sT(k,$,a.shape[0]>1,c,f,m,h,d,p,b,r.shape.length-1,R,E,u,v),y}var Jde={kernelName:Ho,backendName:"wasm",setupFunc:Qde,kernelFunc:Zde};function epe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let i=r.shape[a],o=r.shape.length,u=new Array(o-1),l=0;for(let h=0;h<o;h++)h!==a&&(u[l++]=r.shape[h]);let c=new Array(i),p=new Array(o).fill(0),d=r.shape.slice();d[a]=1;for(let h=0;h<c.length;h++)p[a]=h,c[h]=xa({inputs:{x:r},attrs:{begin:p,size:d},backend:n});return c.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:u}))}var tpe={kernelName:qo,backendName:"wasm",kernelFunc:epe};function npe(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var spe={kernelName:jo,backendName:"wasm",kernelFunc:npe},rpe=[qoe,joe,Xoe,Zoe,iue,lue,pue,mue,vue,Cue,Nue,Tue,Aue,Eue,Fue,zue,Mue,Lue,Wue,Hue,Kue,Que,ele,tle,sle,rle,ale,ile,lle,cle,ple,mle,yle,wle,Ile,Tle,_le,Ele,Joe,Fle,Ple,Mle,Lle,Vle,Gle,qle,Xle,Zle,tce,sce,ice,uce,lce,pce,mce,yce,xce,Sce,Cce,Tce,zN,Ece,Fce,zce,Lce,Vce,Wce,Uce,gue,qce,Xce,Zce,Jce,ede,sde,ide,lde,cde,Sue,hde,mde,yde,wde,Sde,Cde,Tde,$de,_de,Ede,Fde,zde,Lde,Wde,Ude,Gde,jde,Yde,Jde,sue,tpe,spe];for(let e of rpe)Ol(e);var og=K();og.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));og.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(og.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var Qw=wa(y$()),ape=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
|
|
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`,ipe=wa(v$()),ope=class extends ol{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(rT),ug=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Qd(this,ds())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=w.now();return e(),{kernelMs:w.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let l=t;this.dataIdMap.set(e,{id:a,stringBytes:l,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let i=w.sizeFromShape(n),o=i*w.bytesPerElement(s),u=this.wasm._malloc(o);this.dataIdMap.set(e,{id:a,memoryOffset:u,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,i,u),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),u)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:s,dtype:r,shape:a,stringBytes:i}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=i.length)?i:i.slice(t,n);t=t||0,n=n||w.sizeFromShape(a);let o=w.bytesPerElement(r),u=this.wasm.HEAPU8.slice(s+t*o,s+n*o);return cpe(u.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=w.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=w.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function upe(e){return(t,n)=>(w.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function Zw(e,t,n){if(Kd!=null)return Kd;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),Wu!=null&&Wu[s]!=null?Wu[s]:n+s}async function lpe(){let[e,t]=await Promise.all([K().getAsync("WASM_HAS_SIMD_SUPPORT"),K().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(o,u)=>{if(o.endsWith(".worker.js")){let l=ape.replace(/\n/g,"\\n"),c=new Blob([l],{type:"application/javascript"});return URL.createObjectURL(c)}return o.endsWith(".wasm")?Zw(e,t,Lu!=null?Lu:u):u+o},Vv&&(r.instantiateWasm=upe(Zw(e,t,Lu!=null?Lu:"")));let a=!1;r.onAbort=()=>{if(a||Uu)return;Uu=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let i;t&&e&&Kd==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+Qw.default.toString()],{type:"text/javascript"}),i=(0,Qw.default)(r)):i=(0,ipe.default)(r),i.then(o=>{a=!0,Uu=!1;let u=null;o.tfjs={init:o.cwrap("init",null,[]),initWithThreadsCount:o.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:o.cwrap("get_threads_count","number",[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",u,["number"]),dispose:o.cwrap("dispose",u,[])},n({wasm:o})})})}function cpe(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var dpe=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Kd=null,Lu=null,Wu={},Uu=!1,Vv=!1;function The(e,t=!1){if(Lk("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Uu)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Kd=e,Vv=t}function $he(e,t=!1){if(Uu)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Lu=e;else{Wu=e;let n=dpe.filter(s=>Wu[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Vv=t}var rT=-1,ug=-1;function _he(e){rT=e}function Ahe(){if(ug===-1)throw new Error("WASM backend not initialized.");return ug}var Ehe="0.0.0",ppe=2;xp("wasm",async()=>{let{wasm:e}=await lpe();return new ope(e)},ppe);var nr="3.18.0-20220529",Rhe={tfjs:nr,"tfjs-core":nr,"tfjs-data":nr,"tfjs-layers":nr,"tfjs-converter":nr,"tfjs-backend-cpu":nr,"tfjs-backend-webgl":nr,"tfjs-backend-wasm":nr};export{lo as Abs,ul as Acos,ll as Acosh,Sb as AdadeltaOptimizer,Ib as AdagradOptimizer,Cb as AdamOptimizer,Nb as AdamaxOptimizer,Ir as Add,Sa as AddN,cl as All,dl as Any,Ia as ArgMax,pl as ArgMin,hl as Asin,fl as Asinh,ml as Atan,bl as Atan2,gl as Atanh,Ca as AvgPool,ep as AvgPool3D,mg as AvgPool3DGrad,fg as AvgPoolGrad,ope as BackendWasm,Na as BatchMatMul,co as BatchToSpaceND,gg as Bincount,bg as BroadcastArgs,U$ as BroadcastTo,KW as Callback,cB as CallbackList,Ta as Cast,$a as Ceil,Cr as ClipByValue,tp as Complex,np as ComplexAbs,po as Concat,_a as Conv2D,yg as Conv2DBackpropFilter,Aa as Conv2DBackpropInput,sp as Conv3D,vg as Conv3DBackpropFilterV2,xg as Conv3DBackpropInputV2,Ea as Cos,Ra as Cosh,fo as CropAndResize,ho as Cumprod,Da as Cumsum,hB as CustomCallback,Qd as DataStorage,wg as DenseBincount,mo as DepthToSpace,Fa as DepthwiseConv2dNative,kg as DepthwiseConv2dNativeBackpropFilter,Sg as DepthwiseConv2dNativeBackpropInput,Ig as Diag,rp as Dilation2D,am as Dilation2DBackpropFilter,rm as Dilation2DBackpropInput,dk as ENV,XW as EarlyStopping,ap as Einsum,Pa as Elu,Cg as EluGrad,z$ as Environment,go as Equal,yl as Erf,za as Exp,bo as ExpandDims,yo as Expm1,Ng as FFT,vl as Fill,vo as FlipLeftRight,Ma as Floor,La as FloorDiv,vd as FromPixels,Ba as FusedBatchNorm,oa as FusedConv2D,ua as FusedDepthwiseConv2D,nm as GPGPUContext,wo as GatherNd,xo as GatherV2,D0 as GraphModel,ko as Greater,Va as GreaterEqual,pB as History,Tg as IFFT,Wa as Identity,ip as Imag,Dt as InputSpec,xl as IsFinite,wl as IsInf,kl as IsNan,ol as KernelBackend,up as LRN,_g as LRNGrad,Cz as LayerVariable,dr as LayersModel,Ua as LeakyRelu,So as Less,Io as LessEqual,$g as LinSpace,Ga as Log,Sl as Log1p,G$ as LogSoftmax,Co as LogicalAnd,Il as LogicalNot,op as LogicalOr,hpe as LowerBound,tC as MathBackendCPU,J1 as MathBackendWebGL,Ha as Max,ja as MaxPool,lp as MaxPool3D,Eg as MaxPool3DGrad,Ag as MaxPoolGrad,Rg as MaxPoolWithArgmax,qa as Maximum,Ka as Mean,Xa as Min,Ya as Minimum,Qa as MirrorPad,Cl as Mod,Tb as MomentumOptimizer,Dg as Multinomial,Za as Multiply,No as Neg,$o as NonMaxSuppressionV3,Nl as NonMaxSuppressionV4,_o as NonMaxSuppressionV5,To as NotEqual,k_ as OP_SCOPE_SUFFIX,Eo as OneHot,Ao as OnesLike,Ar as Optimizer,Gr as OptimizerConstructors,Ro as Pack,Ja as PadV2,fpe as Pool,ei as Pow,ti as Prelu,ni as Prod,$b as RMSPropOptimizer,Er as RNN,Tl as Range,h_ as Rank,cp as Real,Oa as RealDiv,$l as Reciprocal,CO as Reduction,si as Relu,ai as Relu6,Do as Reshape,ri as ResizeBilinear,Og as ResizeBilinearGrad,_l as ResizeNearestNeighbor,Fg as ResizeNearestNeighborGrad,Fo as Reverse,Ko as RotateWithOffset,Oo as Round,ii as Rsqrt,Rp as SGDOptimizer,Po as ScatterNd,Pg as SearchSorted,zo as Select,Al as Selu,Zb as Sequential,ui as Sigmoid,El as Sign,oi as Sin,Lo as Sinh,Mo as Slice,di as Softmax,Rl as Softplus,Bo as SpaceToBatchND,dp as SparseFillEmptyRows,Dl as SparseReshape,pp as SparseSegmentMean,hp as SparseSegmentSum,fp as SparseToDense,Vo as SplitV,li as Sqrt,Fl as Square,pi as SquaredDifference,mi as Step,Wo as StridedSlice,mp as StringNGrams,zg as StringSplit,Mg as StringToHashBucketFast,hi as Sub,ci as Sum,$s as SymbolicTensor,Uo as Tan,fi as Tanh,et as Tensor,Vt as TensorBuffer,Nr as Tile,Go as TopK,Ho as Transform,Hs as Transpose,Lg as Unique,qo as Unpack,gp as UnsortedSegmentSum,mpe as UpperBound,wd as Variable,jo as ZerosLike,ia as _FusedMatMul,Mt as abs,oE as acos,lE as acosh,ie as add,dE as addN,iS as all,xm as any,Xu as argMax,gE as argMin,yE as asin,xE as asinh,kE as atan,IE as atan2,NE as atanh,Jg as avgPool,cS as avgPool3d,SA as backend,C as backend_util,Dpe as basicLSTMCell,Qu as batchNorm,HE as batchNorm2d,jE as batchNorm3d,XE as batchNorm4d,eb as batchToSpaceND,dS as bincount,ohe as booleanMaskAsync,ZE as broadcastArgs,id as broadcastTo,Xo as broadcast_util,Vk as browser,Ae as buffer,bhe as callbacks,le as cast,tR as ceil,Vn as clipByValue,ur as clone,fr as complex,Ft as concat,rR as concat1d,iR as concat2d,uR as concat3d,cR as concat4d,VL as constraints,pS as conv1d,da as conv2d,hS as conv2dTranspose,fS as conv3d,yR as conv3dTranspose,ype as copyRegisteredKernels,nb as cos,gS as cosh,VS as cosineWindow,km as cumprod,bS as cumsum,js as customGrad,tU as data,IR as denseBincount,Lk as deprecationWarn,NR as depthToSpace,kp as depthwiseConv2d,vhe as deregisterOp,vp as device_util,Fpe as diag,AR as dilation2d,wpe as disableDeprecationWarnings,De as dispose,kpe as disposeVariables,xe as div,OR as divNoNan,Ope as dot,xF as dropout,MR as einsum,Sp as elu,xpe as enableDebugMode,vpe as enableProdMode,wF as enclosingPowerOfTwo,ds as engine,K as env,Xn as equal,VR as erf,ZR as euclideanNorm,Yn as exp,Pn as expandDims,nD as expm1,kS as eye,yb as fft,Bl as fill,_pe as findBackend,Ape as findBackendFactory,Ip as floor,aS as floorDiv,v8 as forceHalfFloat,fa as fused,Zu as gather,bF as gatherND,Uk as gather_util,Tpe as getBackend,cx as getGradient,im as getKernel,om as getKernelsForBackend,Ahe as getThreadsCount,iX as gpgpu_util,Mpe as grad,Lpe as grads,Un as greater,Yo as greaterEqual,Td as ifft,wp as imag,jn as image,lhe as inTopKAsync,qL as initializers,rV as input,An as io,PS as irfft,Ppe as isFinite,zpe as isInf,pD as isNaN,Ht as keep,ws as kernel_impls,uB as layers,ib as leakyRelu,SS as less,Qo as lessEqual,aP as linalg,gD as linspace,xhe as loadGraphModel,whe as loadGraphModelSync,mhe as loadLayersModel,yD as localResponseNormalization,Qn as log,ob as log1p,Wpe as logSigmoid,IS as logSoftmax,TD as logSumExp,Ds as logicalAnd,ub as logicalNot,CS as logicalOr,Upe as logicalXor,phe as losses,DD as lowerBound,We as matMul,xA as math,As as max,lb as maxPool,TS as maxPool3d,zD as maxPoolWithArgmax,_r as maximum,It as mean,bm as memory,Gpe as meshgrid,TW as metrics,Sm as min,Np as minimum,WD as mirrorPad,GD as mod,hhe as model,UW as models,cb as moments,uhe as movingAverage,V as mul,Hpe as multiRNNCell,KD as multinomial,vt as neg,XS as nextFrame,ab as norm,Ju as notEqual,Id as oneHot,Mn as ones,Zn as onesLike,L as op,qpe as outerProduct,gi as pad,jpe as pad1d,Kpe as pad2d,Xpe as pad3d,Ype as pad4d,Qpe as pool,ha as pow,pb as prelu,nA as print,$S as prod,Spe as profile,Zpe as rand,Jpe as randomGamma,f3 as randomNormal,Wl as randomUniform,el as range,Npe as ready,Ku as real,b3 as reciprocal,xp as registerBackend,ghe as registerCallbackConstructor,q$ as registerGradient,Ol as registerKernel,yhe as registerOp,GW as regularizers,Xs as relu,_S as relu6,$pe as removeBackend,U as reshape,Jn as reverse,ehe as reverse1d,the as reverse2d,nhe as reverse3d,she as reverse4d,vb as rfft,AS as round,ES as rsqrt,we as scalar,hF as scatterND,Hk as scatter_util,NS as searchSorted,RS as selu,_3 as separableConv2d,fhe as sequential,re as serialization,Cpe as setBackend,Epe as setPlatform,_he as setThreadsCount,The as setWasmPath,$he as setWasmPaths,Z5 as setWebGLContext,E3 as setdiff1dAsync,ov as shared,qs as sigmoid,D3 as sign,dhe as signal,DS as sin,FS as sinh,qe as slice,mb as slice1d,OS as slice2d,gb as slice3d,Nd as slice4d,kt as slice_util,bb as softmax,Vl as softplus,db as spaceToBatchND,qc as sparse,BS as sparseToDense,che as spectral,Bn as split,cn as sqrt,ct as square,zS as squaredDifference,gr as squeeze,es as stack,Tp as step,Q3 as stridedSlice,jf as string,ge as sub,ve as sum,yp as sumOutType,J3 as tan,Yu as tanh,ms as tensor,Qt as tensor1d,Yi as tensor2d,AA as tensor3d,rhe as tensor4d,ahe as tensor5d,ihe as tensor6d,_s as tensor_util,jA as test_util,q as tidy,hs as tile,Ipe as time,tF as topk,zi as train,Ge as transpose,xb as truncatedNormal,wx as unique,bpe as unregisterGradient,gpe as unregisterKernel,aF as unsortedSegmentSum,Fs as unstack,ln as upcastType,oF as upperBound,w as util,Bpe as valueAndGrad,Vpe as valueAndGrads,uF as variable,wD as variableGrads,Rhe as version,khe as version_converter,Rpe as version_core,She as version_cpu,SI as version_layers,Ehe as version_wasm,Ihe as version_webgl,Che as webgl,Q5 as webgl_util,Uoe as webgpu,vn as where,LS as whereAsync,$t as zeros,je as zerosLike};
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use backend file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2022 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the 'License');
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an 'AS IS' BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|