human/src/age/age.ts

63 lines
1.9 KiB
TypeScript

import { log } from '../log';
import * as tf from '../../dist/tfjs.esm.js';
import * as profile from '../profile.js';
let model;
let last = { age: 0 };
let skipped = Number.MAX_SAFE_INTEGER;
export async function load(config) {
if (!model) {
model = await tf.loadGraphModel(config.face.age.modelPath);
log(`load model: ${config.face.age.modelPath.match(/\/(.*)\./)[1]}`);
}
return model;
}
export async function predict(image, config) {
if (!model) return null;
if ((skipped < config.face.age.skipFrames) && config.videoOptimized && last.age && (last.age > 0)) {
skipped++;
return last;
}
if (config.videoOptimized) skipped = 0;
else skipped = Number.MAX_SAFE_INTEGER;
return new Promise(async (resolve) => {
/*
const zoom = [0, 0]; // 0..1 meaning 0%..100%
const box = [[
(image.shape[1] * zoom[0]) / image.shape[1],
(image.shape[2] * zoom[1]) / image.shape[2],
(image.shape[1] - (image.shape[1] * zoom[0])) / image.shape[1],
(image.shape[2] - (image.shape[2] * zoom[1])) / image.shape[2],
]];
const resize = tf.image.cropAndResize(image, box, [0], [config.face.age.inputSize, config.face.age.inputSize]);
*/
const resize = tf.image.resizeBilinear(image, [config.face.age.inputSize, config.face.age.inputSize], false);
const enhance = tf.mul(resize, [255.0]);
tf.dispose(resize);
let ageT;
const obj = { age: 0 };
if (!config.profile) {
if (config.face.age.enabled) ageT = await model.predict(enhance);
} else {
const profileAge = config.face.age.enabled ? await tf.profile(() => model.predict(enhance)) : {};
ageT = profileAge.result.clone();
profileAge.result.dispose();
profile.run('age', profileAge);
}
enhance.dispose();
if (ageT) {
const data = ageT.dataSync();
obj.age = Math.trunc(10 * data[0]) / 10;
}
ageT.dispose();
last = obj;
resolve(obj);
});
}